begin
set a = dl. 0;
set b = dl. 1;
set c = dl. 2;
Lm1:
( dl. 0 <> dl. 1 & dl. 1 <> dl. 2 )
by AMI_3:52;
Lm2:
dl. 2 <> dl. 0
by AMI_3:52;
begin
:: deftheorem defines Euclide-Algorithm AMI_4:def 1 :
Euclide-Algorithm = (0 .--> ((dl. 2) := (dl. 1))) +* ((1 .--> (Divide ((dl. 0),(dl. 1)))) +* ((2 .--> ((dl. 0) := (dl. 2))) +* ((3 .--> ((dl. 1) >0_goto 0)) +* (4 .--> (halt SCM)))));
defpred S1[ the Instructions of SCM -valued ManySortedSet of NAT ] means ( $1 . 0 = (dl. 2) := (dl. 1) & $1 . 1 = Divide ((dl. 0),(dl. 1)) & $1 . 2 = (dl. 0) := (dl. 2) & $1 . 3 = (dl. 1) >0_goto 0 & $1 halts_at 4 );
set IN0 = 0 .--> ((dl. 2) := (dl. 1));
set IN1 = 1 .--> (Divide ((dl. 0),(dl. 1)));
set IN2 = 2 .--> ((dl. 0) := (dl. 2));
set IN3 = 3 .--> ((dl. 1) >0_goto 0);
set IN4 = 4 .--> (halt SCM);
set EA3 = (3 .--> ((dl. 1) >0_goto 0)) +* (4 .--> (halt SCM));
set EA2 = (2 .--> ((dl. 0) := (dl. 2))) +* ((3 .--> ((dl. 1) >0_goto 0)) +* (4 .--> (halt SCM)));
set EA1 = (1 .--> (Divide ((dl. 0),(dl. 1)))) +* ((2 .--> ((dl. 0) := (dl. 2))) +* ((3 .--> ((dl. 1) >0_goto 0)) +* (4 .--> (halt SCM))));
set EA0 = (0 .--> ((dl. 2) := (dl. 1))) +* ((1 .--> (Divide ((dl. 0),(dl. 1)))) +* ((2 .--> ((dl. 0) := (dl. 2))) +* ((3 .--> ((dl. 1) >0_goto 0)) +* (4 .--> (halt SCM)))));
theorem
canceled;
theorem
canceled;
theorem
canceled;
theorem Th4:
Lm3:
for P being the Instructions of SCM -valued ManySortedSet of NAT st Euclide-Algorithm c= P holds
S1[P]
begin
theorem Th5:
for
s being
State of
SCM for
P being the
Instructions of
SCM -valued ManySortedSet of
NAT st
Euclide-Algorithm c= P holds
for
k being
Element of
NAT st
IC (Comput (P,s,k)) = 0 holds
(
IC (Comput (P,s,(k + 1))) = 1 &
(Comput (P,s,(k + 1))) . (dl. 0) = (Comput (P,s,k)) . (dl. 0) &
(Comput (P,s,(k + 1))) . (dl. 1) = (Comput (P,s,k)) . (dl. 1) &
(Comput (P,s,(k + 1))) . (dl. 2) = (Comput (P,s,k)) . (dl. 1) )
theorem Th6:
for
s being
State of
SCM for
P being the
Instructions of
SCM -valued ManySortedSet of
NAT st
Euclide-Algorithm c= P holds
for
k being
Element of
NAT st
IC (Comput (P,s,k)) = 1 holds
(
IC (Comput (P,s,(k + 1))) = 2 &
(Comput (P,s,(k + 1))) . (dl. 0) = ((Comput (P,s,k)) . (dl. 0)) div ((Comput (P,s,k)) . (dl. 1)) &
(Comput (P,s,(k + 1))) . (dl. 1) = ((Comput (P,s,k)) . (dl. 0)) mod ((Comput (P,s,k)) . (dl. 1)) &
(Comput (P,s,(k + 1))) . (dl. 2) = (Comput (P,s,k)) . (dl. 2) )
theorem Th7:
for
s being
State of
SCM for
P being the
Instructions of
SCM -valued ManySortedSet of
NAT st
Euclide-Algorithm c= P holds
for
k being
Element of
NAT st
IC (Comput (P,s,k)) = 2 holds
(
IC (Comput (P,s,(k + 1))) = 3 &
(Comput (P,s,(k + 1))) . (dl. 0) = (Comput (P,s,k)) . (dl. 2) &
(Comput (P,s,(k + 1))) . (dl. 1) = (Comput (P,s,k)) . (dl. 1) &
(Comput (P,s,(k + 1))) . (dl. 2) = (Comput (P,s,k)) . (dl. 2) )
theorem Th8:
for
s being
State of
SCM for
P being the
Instructions of
SCM -valued ManySortedSet of
NAT st
Euclide-Algorithm c= P holds
for
k being
Element of
NAT st
IC (Comput (P,s,k)) = 3 holds
( (
(Comput (P,s,k)) . (dl. 1) > 0 implies
IC (Comput (P,s,(k + 1))) = 0 ) & (
(Comput (P,s,k)) . (dl. 1) <= 0 implies
IC (Comput (P,s,(k + 1))) = 4 ) &
(Comput (P,s,(k + 1))) . (dl. 0) = (Comput (P,s,k)) . (dl. 0) &
(Comput (P,s,(k + 1))) . (dl. 1) = (Comput (P,s,k)) . (dl. 1) )
theorem Th9:
Lm4:
for k being Element of NAT
for s being 0 -started State of SCM
for P being the Instructions of SCM -valued ManySortedSet of NAT st Euclide-Algorithm c= P & s . (dl. 0) > 0 & s . (dl. 1) > 0 holds
( (Comput (P,s,(4 * k))) . (dl. 0) > 0 & ( ( (Comput (P,s,(4 * k))) . (dl. 1) > 0 & IC (Comput (P,s,(4 * k))) = 0 ) or ( (Comput (P,s,(4 * k))) . (dl. 1) = 0 & IC (Comput (P,s,(4 * k))) = 4 ) ) )
Lm5:
for k being Element of NAT
for s being 0 -started State of SCM
for P being the Instructions of SCM -valued ManySortedSet of NAT st Euclide-Algorithm c= P & s . (dl. 0) > 0 & s . (dl. 1) > 0 & (Comput (P,s,(4 * k))) . (dl. 1) > 0 holds
( (Comput (P,s,(4 * (k + 1)))) . (dl. 0) = (Comput (P,s,(4 * k))) . (dl. 1) & (Comput (P,s,(4 * (k + 1)))) . (dl. 1) = ((Comput (P,s,(4 * k))) . (dl. 0)) mod ((Comput (P,s,(4 * k))) . (dl. 1)) )
Lm6:
for s being 0 -started State of SCM
for P being the Instructions of SCM -valued ManySortedSet of NAT st Euclide-Algorithm c= P holds
for x, y being Integer st s . (dl. 0) = x & s . (dl. 1) = y & x > y & y > 0 holds
( (Result (P,s)) . (dl. 0) = x gcd y & ex k being Element of NAT st P halts_at IC (Comput (P,s,k)) )
theorem Th10:
definition
func Euclide-Function -> PartFunc of
(FinPartSt SCM),
(FinPartSt SCM) means :
Def2:
for
p,
q being
FinPartState of
SCM holds
(
[p,q] in it iff ex
x,
y being
Integer st
(
x > 0 &
y > 0 &
p = (
(dl. 0),
(dl. 1))
--> (
x,
y) &
q = (dl. 0) .--> (x gcd y) ) );
existence
ex b1 being PartFunc of (FinPartSt SCM),(FinPartSt SCM) st
for p, q being FinPartState of SCM holds
( [p,q] in b1 iff ex x, y being Integer st
( x > 0 & y > 0 & p = ((dl. 0),(dl. 1)) --> (x,y) & q = (dl. 0) .--> (x gcd y) ) )
uniqueness
for b1, b2 being PartFunc of (FinPartSt SCM),(FinPartSt SCM) st ( for p, q being FinPartState of SCM holds
( [p,q] in b1 iff ex x, y being Integer st
( x > 0 & y > 0 & p = ((dl. 0),(dl. 1)) --> (x,y) & q = (dl. 0) .--> (x gcd y) ) ) ) & ( for p, q being FinPartState of SCM holds
( [p,q] in b2 iff ex x, y being Integer st
( x > 0 & y > 0 & p = ((dl. 0),(dl. 1)) --> (x,y) & q = (dl. 0) .--> (x gcd y) ) ) ) holds
b1 = b2
end;
:: deftheorem Def2 defines Euclide-Function AMI_4:def 2 :
for b1 being PartFunc of (FinPartSt SCM),(FinPartSt SCM) holds
( b1 = Euclide-Function iff for p, q being FinPartState of SCM holds
( [p,q] in b1 iff ex x, y being Integer st
( x > 0 & y > 0 & p = ((dl. 0),(dl. 1)) --> (x,y) & q = (dl. 0) .--> (x gcd y) ) ) );
theorem Th11:
theorem Th12:
theorem