Copyright (c) 1992 Association of Mizar Users
environ vocabulary PRE_TOPC, EUCLID, FINSEQ_1, ARYTM, ARYTM_1, ARYTM_3, METRIC_1, RELAT_1, MCART_1, FUNCT_1, SQUARE_1, RVSUM_1, ABSVALUE, COMPLEX1, RLVECT_1, TOPREAL1, BOOLE, TARSKI, FINSEQ_2, FINSEQ_4; notation TARSKI, XBOOLE_0, SUBSET_1, ORDINAL1, NUMBERS, XCMPLX_0, XREAL_0, REAL_1, NAT_1, RELAT_1, FUNCT_1, STRUCT_0, FINSEQ_1, FUNCT_2, BINOP_1, PRE_TOPC, ABSVALUE, SQUARE_1, FINSEQ_2, FINSEQ_4, METRIC_1, FINSEQOP, RVSUM_1, EUCLID, TOPREAL1; constructors REAL_1, NAT_1, ABSVALUE, SQUARE_1, FINSEQOP, TOPREAL1, FINSEQ_4, INT_1, SEQ_1, MEMBERED, PARTFUN1, XBOOLE_0; clusters FUNCT_1, RELSET_1, STRUCT_0, EUCLID, XREAL_0, FINSEQ_1, INT_1, MEMBERED, ZFMISC_1, XBOOLE_0; requirements REAL, NUMERALS, SUBSET, BOOLE, ARITHM; definitions TARSKI, TOPREAL1, FUNCT_1, XBOOLE_0; theorems TARSKI, AXIOMS, REAL_1, NAT_1, ZFMISC_1, FUNCT_1, FINSEQ_1, ABSVALUE, SEQ_2, SQUARE_1, FINSEQ_2, METRIC_1, RVSUM_1, REAL_2, EUCLID, TOPREAL1, FINSEQ_3, FINSEQ_4, CQC_THE1, PROB_1, GROUP_5, PARTFUN2, TBSP_1, RELAT_1, INT_1, XBOOLE_0, XBOOLE_1, XCMPLX_0, XCMPLX_1; begin reserve p,p1,p2,p3,p11,p22,q,q1,q2 for Point of TOP-REAL 2, f,h for FinSequence of TOP-REAL 2, r,r1,r2,s,s1,s2 for real number, u,u1,u2,u5 for Point of Euclid 2, n,m,i,j,k for Nat, x,y,z for set; ::::::::::::::::::::::::::::: :: Real numbers preliminaries ::::::::::::::::::::::::::::: canceled 2; theorem Th3: r<s implies r < (r+s)/2 & (r+s)/2 < s proof assume r<s; then A1: r/2 < s/2 by REAL_1:73; then r/2 + r/2 < r/2 + s/2 by REAL_1:53; then r < r/2 + s/2 by XCMPLX_1:66; hence r < (r+s)/2 by XCMPLX_1:63; r/2 + s/2 < s/2 + s/2 by A1,REAL_1:53; then r/2 + s/2 < s by XCMPLX_1:66; hence thesis by XCMPLX_1:63; end; Lm1: the carrier of Euclid n = REAL n proof Euclid n = MetrStruct(#REAL n,Pitag_dist n#) by EUCLID:def 7; hence thesis; end; begin ::::::::::::::::::::::::::::::::::: :: Properties of sets in TOP-REAL 2 ::::::::::::::::::::::::::::::::::: canceled 2; theorem Th6: 1 in dom <*x,y,z*> & 2 in dom <*x,y,z*> & 3 in dom <*x,y,z*> proof len (<* x,y,z *>) = 3 by FINSEQ_1:62; hence thesis by FINSEQ_3:27; end; theorem Th7: (p1+p2)`1 = p1`1 + p2`1 & (p1+p2)`2 = p1`2 + p2`2 proof p1 + p2 = |[ p1`1 + p2`1, p1`2 + p2`2]| by EUCLID:59; hence thesis by EUCLID:56; end; theorem (p1-p2)`1 = p1`1 - p2`1 & (p1-p2)`2 = p1`2 - p2`2 proof p1 - p2 = |[ p1`1 - p2`1, p1`2 - p2`2]| by EUCLID:65; hence thesis by EUCLID:56; end; theorem Th9: (r*p)`1 = r*(p`1) & (r*p)`2 = r*(p`2) proof r*p = |[r*p`1,r*p`2]| by EUCLID:61; hence thesis by EUCLID:56; end; theorem Th10: p1=<*r1,s1*> & p2=<*r2,s2*> implies p1+p2=<*r1+r2,s1+s2*> & p1-p2=<*r1-r2,s1-s2*> proof assume A1: p1=<*r1,s1*> & p2=<*r2,s2*>; A2: p1+p2 = |[p1`1+p2`1,p1`2+p2`2]| & p1-p2 = |[p1`1-p2`1,p1`2-p2`2]| by EUCLID:59,65; |[r1,s1]|=<*r1,s1*> & |[r2,s2]|=<*r2,s2*> & |[r1,s1]|`1=r1 & |[r1,s1]|`2=s1 & |[r2,s2]|`1=r2 & |[r2,s2]|`2=s2 by EUCLID:56,def 16; hence thesis by A1,A2,EUCLID:def 16; end; theorem Th11: p`1 = q`1 & p`2 = q`2 implies p=q proof assume p`1 = q`1 & p`2 = q`2; hence p=|[q`1,q`2]| by EUCLID:57 .= q by EUCLID:57; end; theorem Th12: u1 = p1 & u2 = p2 implies (Pitag_dist 2).(u1,u2) = sqrt ((p1`1 - p2`1)^2 + (p1`2 - p2`2)^2) proof assume A1: u1 = p1 & u2 = p2; p1 = |[p1`1,p1`2]| by EUCLID:57; then A2: u1 = <* p1`1,p1`2 *> by A1,EUCLID:def 16; p2 = |[p2`1,p2`2]| by EUCLID:57; then A3: u2 = <* p2`1,p2`2 *> by A1,EUCLID:def 16; Euclid 2 = MetrStruct(# REAL 2,Pitag_dist 2 #) by EUCLID:def 7; then reconsider v1 = u1, v2 = u2 as Element of REAL 2; A4: v1-v2= diffreal.:(v1,v2) by RVSUM_1:def 6 .= <* diffreal.(p1`1,p2`1), diffreal.(p1`2,p2`2) *> by A2,A3,FINSEQ_2:89 .= <* p1`1 - p2`1, diffreal.(p1`2,p2`2) *> by RVSUM_1:9 .= <* p1`1 - p2`1,p1`2 - p2`2*> by RVSUM_1:9; A5: abs (v1-v2) = absreal * (v1-v2) by EUCLID:def 3 .= <* absreal.(p1`1-p2`1),absreal.(p1`2-p2`2) *> by A4,FINSEQ_2:40 .= <* abs( p1`1-p2`1 ),absreal.(p1`2-p2`2) *> by EUCLID:def 2 .= <* abs( p1`1-p2`1 ),abs( p1`2-p2`2) *> by EUCLID:def 2; A6: sqr abs (v1-v2) = sqrreal *(abs (v1-v2)) by RVSUM_1:def 8 .= <* sqrreal.(abs( p1`1 - p2`1 )),sqrreal.(abs( p1`2-p2`2 )) *> by A5,FINSEQ_2:40 .= <* (abs( p1`1 - p2`1 ))^2,sqrreal.(abs( p1`2-p2`2 )) *> by RVSUM_1:def 2 .= <* (abs( p1`1 - p2`1 ))^2,(abs(p1`2-p2`2))^2 *> by RVSUM_1:def 2 .= <* (p1`1 - p2`1)^2,(abs(p1`2-p2`2))^2 *> by SQUARE_1:62 .= <* (p1`1-p2`1)^2,(p1`2 - p2`2)^2 *> by SQUARE_1:62; (Pitag_dist 2).(u1,u2) = |.v1 - v2.| by EUCLID:def 6 .= sqrt Sum sqr (v1-v2) by EUCLID:def 5 .= sqrt Sum sqr abs (v1-v2) by EUCLID:29; hence thesis by A6,RVSUM_1:107; end; theorem Th13: the carrier of TOP-REAL n = the carrier of Euclid n proof thus the carrier of TOP-REAL n = REAL n by EUCLID:25 .= the carrier of Euclid n by Lm1; end; reserve r,r1,r2,lambda,s,s1,s2 for Real; canceled; theorem Th15: r1 < s1 implies {p1: p1`1=r & r1<=p1`2 & p1`2<=s1} = LSeg(|[r,r1]|,|[r,s1]|) proof assume A1: r1 < s1; set L = { p3 : p3`1 = r & r1 <= p3`2 & p3`2 <= s1}, p = |[ r,r1 ]|, q = |[ r,s1 ]|; A2: p`1 = r & p`2 = r1 by EUCLID:56; A3: q`1 = r & q`2 = s1 by EUCLID:56; A4: s1 - r1 > 0 by A1,SQUARE_1:11; thus L c= LSeg(p,q) proof let x; assume x in L; then consider p2 such that A5: x = p2 & p2`1 = r & r1 <= p2`2 & p2`2 <= s1; set t = p2`2, l = (t - r1)/(s1-r1); t - r1 <= s1 - r1 by A5,REAL_1:49; then l <= (s1-r1)/(s1-r1) & (s1-r1) <> 0 by A4,REAL_1:73; then A6: l <= 1 by XCMPLX_1:60; r1 - r1 <= t - r1 & r1-r1=0 by A5,REAL_1:49,XCMPLX_1:14; then A7: 0/(s1-r1) <= l & (s1-r1) <> 0 by A4,REAL_1:73; A8: ((1-l)*p + l*q)`1 = ((1-l)*p)`1 + (l*q)`1 by Th7 .= (1-l)* (p`1) + (l*q)`1 by Th9 .= (1-l)*r + l*r by A2,A3,Th9 .= (1-l+l)*r by XCMPLX_1:8 .= 1*r by XCMPLX_1:27 .= p2`1 by A5; A9: 1-l = (1*(s1-r1) -(t-r1))/(s1-r1) by A4,XCMPLX_1:128 .= (s1 - t)/(s1-r1) by XCMPLX_1:22; ((1-l)*p + l*q)`2 = ((1-l)*p)`2 + (l*q)`2 by Th7 .= (1-l)* (p`2) + (l*q)`2 by Th9 .= (1-l)*(p`2) + l*(q`2) by Th9 .= (s1-t)*(p`2)/(s1-r1) + l*(q`2) by A9,XCMPLX_1:75 .= (s1-t)*(p`2)/(s1-r1) + (t-r1)*(q`2)/(s1-r1) by XCMPLX_1:75 .= ((s1-t)*r1 + (t-r1)*s1)/(s1-r1) by A2,A3,XCMPLX_1:63 .= (s1 * r1 - t*r1 + (t-r1)*s1)/(s1-r1) by XCMPLX_1:40 .= (s1 * r1 - t*r1 + (t*s1 -r1 * s1))/(s1-r1) by XCMPLX_1:40 .= (s1 * r1 - t*r1 - (r1*s1 -t*s1))/(s1-r1) by XCMPLX_1:38 .= (s1 * r1 - t*r1 - r1*s1 +t*s1)/(s1-r1) by XCMPLX_1:37 .= (s1 * r1 +- t*r1 - s1*r1 +t*s1)/(s1-r1) by XCMPLX_0:def 8 .= (-t*r1 +t*s1)/(s1-r1) by XCMPLX_1:26 .= (t*s1 - t*r1)/(s1-r1) by XCMPLX_0:def 8 .= t*(s1 - r1)/(s1-r1) by XCMPLX_1:40 .= t*((s1 - r1)/(s1-r1)) by XCMPLX_1:75 .= t*1 by A4,XCMPLX_1:60 .= p2`2; then p2 = (1-l)*p + l*q by A8,Th11; then x in {(1-lambda)*p + lambda*q: 0 <= lambda & lambda <= 1 } by A5,A6,A7 ; hence x in LSeg(|[ r,r1 ]|,|[ r,s1 ]|) by TOPREAL1:def 4; end; let x; assume x in LSeg(p,q); then x in {(1-lambda)*p + lambda*q: 0 <= lambda & lambda <= 1 } by TOPREAL1: def 4; then consider lambda such that A10: (1-lambda)*p + lambda*q = x & 0 <= lambda & lambda <= 1; set p2 = (1-lambda)*p + lambda*q; A11: p2 `1 = ((1-lambda)*p)`1 + (lambda*q)`1 by Th7 .= (1-lambda)*(p`1) + (lambda*q)`1 by Th9 .= (1-lambda)*r + lambda*r by A2,A3,Th9 .= (1-lambda+lambda)*r by XCMPLX_1:8 .= 1*r by XCMPLX_1:27; A12: p2 `2 = ((1-lambda)*p)`2 + (lambda*q)`2 by Th7 .= (1-lambda)*(p`2) + (lambda*q)`2 by Th9 .= (1-lambda)*r1 + lambda*s1 by A2,A3,Th9 .= 1*r1-lambda*r1 + lambda*s1 by XCMPLX_1:40 .= r1+lambda*s1 - lambda*r1 by XCMPLX_1:29 .= r1+(lambda*s1 - lambda*r1) by XCMPLX_1:29 .= r1+lambda*(s1 - r1) by XCMPLX_1:40; 0 * (s1-r1)<=lambda*(s1-r1) by A4,A10,AXIOMS:25; then A13: r1+0<=r1+lambda*(s1-r1) by REAL_1:55; lambda*(s1-r1)<= 1*(s1-r1) by A4,A10,AXIOMS:25; then r1+lambda*(s1-r1)<=s1-r1+r1 by REAL_1:55; then p2 `2 <= s1 by A12,XCMPLX_1:27; hence x in L by A10,A11,A12,A13; end; theorem Th16: r1 < s1 implies {p1: p1`2=r & r1<=p1 `1 & p1 `1<=s1} = LSeg(|[r1,r]|,|[s1,r]|) proof assume A1: r1 < s1; set L = {p3 : p3`2 = r & r1 <= p3`1 & p3`1 <= s1}, p = |[ r1,r]|, q = |[ s1,r]|; A2: p`1 = r1 & p`2 = r by EUCLID:56; A3: q`1 = s1 & q`2 = r by EUCLID:56; A4: s1 - r1 > 0 by A1,SQUARE_1:11; thus L c= LSeg(p,q) proof let x; assume x in L; then consider p2 such that A5: x = p2 & p2`2 = r & r1 <= p2`1 & p2`1 <= s1; set t = p2`1, l = (t - r1)/(s1-r1); t - r1 <= s1 - r1 by A5,REAL_1:49; then l <= (s1-r1)/(s1-r1) & (s1-r1) <> 0 by A4,REAL_1:73; then A6: l <= 1 by XCMPLX_1:60; r1 - r1 <= t - r1 & r1-r1=0 by A5,REAL_1:49,XCMPLX_1:14; then A7: 0/(s1-r1) <= l & (s1-r1) <> 0 by A4,REAL_1:73; A8: ((1-l)*p + l*q)`2 = ((1-l)*p)`2 + (l*q)`2 by Th7 .= (1-l)* (p`2) + (l*q)`2 by Th9 .= (1-l)*r + l*r by A2,A3,Th9 .= (1-l+l)*r by XCMPLX_1:8 .= 1*r by XCMPLX_1:27 .= p2`2 by A5; A9: 1-l = (1*(s1-r1) -(t-r1))/(s1-r1) by A4,XCMPLX_1:128 .= (s1 - t)/(s1-r1) by XCMPLX_1:22; ((1-l)*p + l*q)`1 = ((1-l)*p)`1 + (l*q)`1 by Th7 .= (1-l)* (p`1) + (l*q)`1 by Th9 .= (1-l)*(p`1) + l*(q`1) by Th9 .= (s1-t)*(p`1)/(s1-r1) + l*(q`1) by A9,XCMPLX_1:75 .= (s1-t)*(p`1)/(s1-r1) + (t-r1)*(q`1)/(s1-r1) by XCMPLX_1:75 .= ((s1-t)*r1 + (t-r1)*s1)/(s1-r1) by A2,A3,XCMPLX_1:63 .= (s1 * r1 - t*r1 + (t-r1)*s1)/(s1-r1) by XCMPLX_1:40 .= (s1 * r1 - t*r1 + (t*s1 -r1 * s1))/(s1-r1) by XCMPLX_1:40 .= (s1 * r1 - t*r1 - (r1*s1 -t*s1))/(s1-r1) by XCMPLX_1:38 .= (s1 * r1 - t*r1 - r1*s1 +t*s1)/(s1-r1) by XCMPLX_1:37 .= (s1 * r1 +- t*r1 - s1*r1 +t*s1)/(s1-r1) by XCMPLX_0:def 8 .= (-t*r1 +t*s1)/(s1-r1) by XCMPLX_1:26 .= (t*s1 - t*r1)/(s1-r1) by XCMPLX_0:def 8 .= t*(s1 - r1)/(s1-r1) by XCMPLX_1:40 .= t*((s1 - r1)/(s1-r1)) by XCMPLX_1:75 .= t*1 by A4,XCMPLX_1:60 .= p2`1; then p2 = (1-l)*p + l*q by A8,Th11; then x in {(1-lambda)*p + lambda*q: 0 <= lambda & lambda <= 1 } by A5,A6,A7 ; hence x in LSeg(|[r1,r]|,|[s1,r]|) by TOPREAL1:def 4; end; let x; assume x in LSeg(p,q); then x in {(1-lambda)*p + lambda*q: 0 <= lambda & lambda <= 1 } by TOPREAL1: def 4; then consider lambda such that A10: (1-lambda)*p + lambda*q = x & 0 <= lambda & lambda <= 1; set p2 = (1-lambda)*p + lambda*q; A11: p2 `2 = ((1-lambda)*p)`2 + (lambda*q)`2 by Th7 .= (1-lambda)*(p`2) + (lambda*q)`2 by Th9 .= (1-lambda)*r + lambda*r by A2,A3,Th9 .= (1-lambda+lambda)*r by XCMPLX_1:8 .= 1*r by XCMPLX_1:27 .= r; A12: p2 `1 = ((1-lambda)*p)`1 + (lambda*q)`1 by Th7 .= (1-lambda)*(p`1) + (lambda*q)`1 by Th9 .= (1-lambda)*r1 + lambda*s1 by A2,A3,Th9 .= 1*r1-lambda*r1 + lambda*s1 by XCMPLX_1:40 .= r1+lambda*s1 - lambda*r1 by XCMPLX_1:29 .= r1+(lambda*s1 - lambda*r1) by XCMPLX_1:29 .= r1+lambda*(s1 - r1) by XCMPLX_1:40; 0 * (s1-r1)<=lambda*(s1-r1) by A4,A10,AXIOMS:25; then A13: r1+0<=r1+lambda*(s1-r1) by REAL_1:55; lambda*(s1-r1)<= 1*(s1-r1) by A4,A10,AXIOMS:25; then r1+lambda*(s1-r1)<=s1-r1+r1 by REAL_1:55; then p2 `1 <= s1 by A12,XCMPLX_1:27; hence x in L by A10,A11,A12,A13; end; theorem p in LSeg(|[r,r1]|,|[r,s1]|) implies p`1 = r proof assume A1: p in LSeg(|[r,r1]|,|[r,s1]|); per cases by AXIOMS:21; suppose r1<s1; then LSeg(|[r,r1]|,|[r,s1]|) = {q: q`1 = r & r1<=q`2 & q`2<=s1} by Th15; then ex p1 st p1=p & p1`1 = r & r1<=p1`2 & p1`2<=s1 by A1; hence p`1=r; suppose r1=s1; then p in {|[r,r1]|} by A1,TOPREAL1:7; then p = |[r,r1]| by TARSKI:def 1; hence p`1 = r by EUCLID:56; suppose r1>s1; then LSeg(|[r,r1]|,|[r,s1]|) = {q: q`1 = r & s1<=q`2 & q`2<=r1} by Th15; then ex p1 st p1=p & p1`1 = r & s1<=p1`2 & p1`2<=r1 by A1; hence p`1=r; end; theorem p in LSeg(|[r1,r]|,|[s1,r]|) implies p`2 = r proof assume A1: p in LSeg(|[r1,r]|,|[s1,r]|); per cases by AXIOMS:21; suppose r1<s1; then LSeg(|[r1,r]|,|[s1,r]|) = {q: q`2 = r & r1<=q`1 & q`1<=s1} by Th16; then ex p1 st p1=p & p1`2 = r & r1<=p1`1 & p1`1<=s1 by A1; hence p`2=r; suppose r1=s1; then p in {|[r1,r]|} by A1,TOPREAL1:7; then p = |[r1,r]| by TARSKI:def 1; hence p`2 = r by EUCLID:56; suppose r1>s1; then LSeg(|[r1,r]|,|[s1,r]|) = {q: q`2 = r & s1<=q`1 & q`1<=r1} by Th16 ; then ex p1 st p1=p & p1`2 = r & s1<=p1`1 & p1`1<=r1 by A1; hence p`2=r; end; theorem p`1 <> q`1 & p`2 = q`2 implies |[(p`1+q`1)/2,p`2]| in LSeg(p,q) proof set p1 = |[(p`1+q`1)/2,p`2]|; assume A1: p`1 <> q`1 & p`2 = q`2; then A2: p = |[p`1,p`2]| & q = |[q`1,p`2]| & p1`1 = (p`1+q`1)/2 & p1`2 = p`2 by EUCLID:56,57; per cases by A1,REAL_1:def 5; suppose A3: p`1 < q`1; then p`1 <= (p`1+q`1)/2 & (p`1+q`1)/2 <= q`1 by Th3; then p1 in {p2: p2`2 = p`2 & p`1 <= p2`1 & p2`1 <= q`1} by A2; hence thesis by A2,A3,Th16; suppose A4: p`1 > q`1; then q`1 <= (p`1+q`1)/2 & (p`1+q`1)/2 <= p`1 by Th3; then p1 in {p2: p2`2 = p`2 & q`1 <= p2`1 & p2`1 <= p`1} by A2; hence thesis by A2,A4,Th16; end; theorem p`1 = q`1 & p`2 <> q`2 implies |[p`1,(p`2+q`2)/2]| in LSeg(p,q) proof set p1 = |[p`1,(p`2+q`2)/2]|; assume A1: p`1 = q`1 & p`2 <> q`2; then A2: p = |[p`1,p`2]| & q = |[p`1,q`2]| by EUCLID:57; A3: p1`1 = p`1 & p1`2 = (p`2+q`2)/2 by EUCLID:56; per cases by A1,REAL_1:def 5; suppose A4: p`2 < q`2; then p`2 <= (p`2+q`2)/2 & (p`2+q`2)/2 <= q`2 by Th3; then p1 in {p2: p2`1 = p`1 & p`2 <= p2`2 & p2`2 <= q`2} by A3; hence thesis by A2,A4,Th15; suppose A5: p`2 > q`2; then q`2 <= (p`2+q`2)/2 & (p`2+q`2)/2 <= p`2 by Th3; then p1 in {p2: p2`1 = p`1 & q`2 <= p2`2 & p2`2 <= p`2} by A3; hence thesis by A2,A5,Th15; end; theorem Th21: f = <* p,p1,q *> & i<>0 & j>i+1 implies LSeg(f,j) = {} proof assume A1: f = <* p,p1,q *> & i<>0 & j>i+1; then i>0 by NAT_1:19; then i>=0+1 by NAT_1:38; then 1+i>=1+1 & j>1+i by A1,REAL_1:55; then j>2 by AXIOMS:22; then j>=2+1 by NAT_1:38; then j+1 > 3 & len f = 3 by A1,FINSEQ_1:62,NAT_1:38; hence thesis by TOPREAL1:def 5; end; canceled; theorem f = <* p1,p2,p3 *> implies L~f = LSeg(p1,p2) \/ LSeg(p2,p3) proof set M = {LSeg(f,i) : 1 <= i & i+1 <= len f }; assume A1: f = <* p1,p2,p3 *>; then A2: len f = 2+1 & f/.1=p1 & f/.2=p2 & f/.3=p3 by FINSEQ_1:62,FINSEQ_4:27; A3: 1+1 in dom f by A1,Th6; A4: M = {LSeg(p1,p2),LSeg(p2,p3)} proof thus M c= {LSeg(p1,p2),LSeg(p2,p3)} proof let x; assume x in M; then consider j such that A5: x = LSeg(f,j) & 1<=j & j+1<=len f; A6: j <= 2 & j > 0 by A2,A5,AXIOMS:22,REAL_1:53; per cases by A6,CQC_THE1:3; suppose j=1; then x = LSeg(p1,p2) by A2,A5,TOPREAL1:def 5; hence x in {LSeg(p1,p2),LSeg(p2,p3)} by TARSKI:def 2; suppose j=2; then x = LSeg(p2,p3) by A2,A5,TOPREAL1:def 5; hence x in {LSeg(p1,p2),LSeg(p2,p3)} by TARSKI:def 2; end; let x such that A7: x in {LSeg(p1,p2),LSeg(p2,p3)}; per cases by A7,TARSKI:def 2; suppose x = LSeg(p1,p2); then A8: x=LSeg(f,1) by A2,A3,TOPREAL1:def 5; 1+1 <= len f by A2; hence thesis by A8; suppose x = LSeg(p2,p3); then x=LSeg(f,2) by A2,TOPREAL1:def 5; hence thesis by A2; end; thus L~f = union M by TOPREAL1:def 6 .= LSeg(p1,p2) \/ LSeg(p2,p3) by A4,ZFMISC_1:93; end; theorem Th24: i in dom f & j in dom(f|i) & j+1 in dom(f|i) implies LSeg(f,j) = LSeg(f|i,j) proof assume A1: i in dom f & j in dom(f|i) & j+1 in dom(f|i); set p1 = (f|i)/.j, p2 = (f|i)/.(j+1); A2: f|i = f|(Seg i) by TOPREAL1:def 1; A3: p1 = f/.j by A1,TOPREAL1:1; A4: p2 = f/.(j+1) by A1,TOPREAL1:1; j in dom f /\ (Seg i) & j+1 in dom f /\ (Seg i) by A1,A2,FUNCT_1:68; then j in dom f & j+1 in dom f by XBOOLE_0:def 3; then 1 <= j & j+1 <= len f by FINSEQ_3:27; then A5: LSeg(f,j) = LSeg(p1,p2) by A3,A4,TOPREAL1:def 5; 1 <= j & j+1 <= len(f|i) by A1,FINSEQ_3:27; hence thesis by A5,TOPREAL1:def 5; end; theorem j in dom f & j+1 in dom f implies LSeg(f^h,j) = LSeg(f,j) proof assume A1: j in dom f & j+1 in dom f; set p1 = f/.j, p2 = f/.(j+1); A2: p1 = (f^h)/.j by A1,GROUP_5:95; A3: p2 = (f^h)/.(j+1) by A1,GROUP_5:95; dom f c= dom(f^h) by FINSEQ_1:39; then 1 <= j & j+1 <= len(f^h) by A1,FINSEQ_3:27; then A4: LSeg(f^h,j) = LSeg(p1,p2) by A2,A3,TOPREAL1:def 5; 1 <= j & j+1 <= len f by A1,FINSEQ_3:27; hence thesis by A4,TOPREAL1:def 5; end; theorem Th26: for f being FinSequence of TOP-REAL n,i being Nat holds LSeg(f,i) c= L~f proof let f be FinSequence of TOP-REAL n,i be Nat; let x such that A1: x in LSeg(f,i); now per cases; case i < 1; hence contradiction by A1,TOPREAL1:def 5; case A2: i >= 1; now per cases; case i+1 > len f; hence contradiction by A1,TOPREAL1:def 5; case A3: i+1 <= len f; set M = {LSeg(f,j) : 1<=j & j+1<=len f}; LSeg(f,i) in M & L~f = union M by A2,A3,TOPREAL1:def 6; hence thesis by A1,TARSKI:def 4; end; hence thesis; end; hence thesis; end; theorem L~(f|i) c= L~f proof set h = f|i, Mh = {LSeg(h,n) : 1<=n & n+1<=len h}, Mf = {LSeg(f,m) : 1<=m & m+1<=len f}; let x; assume A1: x in L~h; then x in union Mh by TOPREAL1:def 6; then consider X be set such that A2: x in X & X in Mh by TARSKI:def 4; consider k such that A3: X = LSeg(h,k) & 1<=k & k+1<=len h by A2; A4: h = f|Seg i & dom f = Seg len f by FINSEQ_1:def 3,TOPREAL1:def 1; per cases; suppose A5: i in dom f; then A6: i<=len f by FINSEQ_3:27; then Seg i c= dom f & dom h=dom f /\ Seg i by A4,FINSEQ_1:7,RELAT_1:90; then dom h = Seg i by XBOOLE_1:28; then len h <= len f by A6,FINSEQ_1:def 3; then A7: k+1<=len f by A3,AXIOMS:22; k <= k+1 by NAT_1:37; then k <= len h by A3,AXIOMS:22; then A8: k in dom h by A3,FINSEQ_3:27; 1<=k+1 by NAT_1:37; then k+1 in dom h by A3,FINSEQ_3:27; then X = LSeg(f,k) by A3,A5,A8,Th24; then X in Mf by A3,A7; then x in union Mf by A2,TARSKI:def 4; hence thesis by TOPREAL1:def 6; suppose A9: not i in dom f; now per cases by A9,FINSEQ_3:27; case i<1; then i<0+1; then i<=0 & 0<=i by NAT_1:18,38; then Seg i = {} by AXIOMS:21,FINSEQ_1:4; then dom h = dom f /\ {} by A4,FUNCT_1:68; then len h = 0 by FINSEQ_1:4,def 3; hence contradiction by A1,TOPREAL1:28; case len f<i; then Seg len f c= Seg i by FINSEQ_1:7; then dom f c= Seg i by FINSEQ_1:def 3; then dom f = dom f /\ (Seg i) by XBOOLE_1:28; then dom f=dom h & for x st x in dom h holds h.x = f.x by A4,FUNCT_1:68; then h = f by FUNCT_1:9; then x in union Mf by A2,TARSKI:def 4; hence x in L~f by TOPREAL1:def 6; end; hence thesis; end; theorem Th28: for r being Real, p1,p2 being Point of TOP-REAL n, u being Point of Euclid n st p1 in Ball(u,r) & p2 in Ball(u,r) holds LSeg(p1,p2) c= Ball(u,r) proof let r be Real, p1,p2 be Point of TOP-REAL n, u be Point of Euclid n ; assume A1: p1 in Ball(u,r) & p2 in Ball(u,r); then reconsider p'=p1 as Point of Euclid n; A2:dist(p',u)<r by A1,METRIC_1:12; thus LSeg(p1,p2) c= Ball(u,r) proof let a be set; assume a in LSeg(p1,p2); then a in { (1-lambda)*p1 + lambda*p2 : 0 <= lambda & lambda <= 1 } by TOPREAL1:def 4; then consider lambda such that A3: (1-lambda)*p1 + lambda*p2=a and A4: 0 <= lambda & lambda <= 1; set p = (1-lambda)*p1 + lambda*p2; u in the carrier of Euclid n; then u in the carrier of TOP-REAL n by Th13; then reconsider q2'=u as Element of REAL n by EUCLID:25; reconsider q2=q2' as Point of TOP-REAL n by EUCLID:25; A5: q2 - p = 1*q2-((1-lambda)*p1 + lambda*p2) by EUCLID:33 .= (1-lambda+lambda)*q2-((1-lambda)*p1 + lambda*p2) by XCMPLX_1:27 .= (1-lambda)*q2+lambda*q2-((1-lambda)*p1 + lambda*p2) by EUCLID:37 .= (1-lambda)*q2+lambda*q2+-((1-lambda)*p1 + lambda*p2) by EUCLID:45 .= (1-lambda)*q2+lambda*q2+(-(1-lambda)*p1 + -lambda*p2) by EUCLID:42 .= (1-lambda)*q2+lambda*q2+-(1-lambda)*p1 + -lambda*p2 by EUCLID:30 .= (1-lambda)*q2+-(1-lambda)*p1+lambda*q2 + -lambda*p2 by EUCLID:30 .= (1-lambda)*q2+(1-lambda)*(-p1)+lambda*q2 + -lambda*p2 by EUCLID:44 .= (1-lambda)*(q2+-p1)+lambda*q2 + -lambda*p2 by EUCLID:36 .= (1-lambda)*(q2+-p1)+(lambda*q2 + -lambda*p2) by EUCLID:30 .= (1-lambda)*(q2+-p1)+(lambda*q2 + lambda*(-p2)) by EUCLID:44 .= (1-lambda)*(q2+-p1)+(lambda*(q2 + -p2)) by EUCLID:36; reconsider p'=(1-lambda)*p1 + lambda*p2,p1'=p1,p2'=p2 as Element of REAL n by EUCLID:25; -p1 = -p1' by EUCLID:def 12; then q2+-p1 = q2'+-p1' by EUCLID:def 10; then A6: (1-lambda)*(q2+-p1)=(1-lambda)*(q2'+-p1') by EUCLID:def 11; -p2 = -p2' by EUCLID:def 12; then q2+-p2 = q2'+-p2' by EUCLID:def 10; then A7: lambda*(q2+-p2)=lambda*(q2'+(-p2')) by EUCLID:def 11; q2-p = q2' - p' by EUCLID:def 13; then q2' - p' = (1-lambda)*(q2'+-p1')+lambda*(q2' + -p2') by A5,A6,A7,EUCLID:def 10; then A8: |. q2'-p' .| <= |.(1-lambda)*(q2'+-p1').| + |.lambda*(q2' + -p2').| by EUCLID:15; A9: |.(1-lambda)*(q2'+-p1').| + |.lambda*(q2' + -p2').| = abs(1-lambda)*|.q2'+-p1'.| + |.lambda*(q2' + -p2').| by EUCLID:14 .= abs(1-lambda)*|.q2'+-p1'.| + abs(lambda)*|.q2' + -p2'.| by EUCLID:14; consider u3 being Point of Euclid n such that A10: u3=p1 & dist(u,u3)<r by A2; A11: (Pitag_dist n).(q2',p1')=|.q2'-p1'.| by EUCLID:def 6; A12: Euclid n = MetrStruct(#REAL n,Pitag_dist n#) by EUCLID:def 7; then A13: dist(u,u3) = |.q2'-p1'.| by A10,A11,METRIC_1:def 1; A14: n-tuples_on REAL = REAL n by EUCLID:def 1; then A15: |.q2'+-p1'.| <= r by A10,A13,RVSUM_1:52; p2 in {u4 where u4 is Point of Euclid n : dist(u,u4)<r} by A1,METRIC_1:18; then consider u4 be Point of Euclid n such that A16: u4=p2 & dist(u,u4)<r; (Pitag_dist n).(q2',p2')=|.q2'-p2'.| by EUCLID:def 6; then dist(u,u4)= |.q2'-p2'.| by A12,A16,METRIC_1:def 1; then A17: |.q2'+-p2'.| < r by A14,A16,RVSUM_1:52; A18: 0 <= 1-lambda by A4,SQUARE_1:12; then A19: 1-lambda= abs(1-lambda) & lambda=abs(lambda) by A4,ABSVALUE:def 1; abs(1-lambda)*|.q2'+-p1'.| < (1-lambda)*r & abs(lambda)*|.q2' + -p2'.| <= lambda*r or abs(1-lambda)*|.q2'+-p1'.| <= (1-lambda)*r & abs(lambda)*|.q2' + -p2'.| < lambda*r proof per cases by A4; suppose lambda=0; hence thesis by A10,A13,A14,A19,RVSUM_1:52; suppose lambda>0; hence thesis by A15,A17,A18,A19,AXIOMS:25,REAL_1:70; end; then A20: abs(1-lambda)*|.q2'+-p1'.| + abs(lambda)*|.q2' + -p2'.| < (1-lambda)*r + lambda*r by REAL_1:67; (1-lambda)*r + lambda*r = ((1-lambda)+lambda)*r by XCMPLX_1:8 .= 1*r by XCMPLX_1:27 .= r; then A21: |.q2'-p'.| < r by A8,A9,A20,AXIOMS:22; reconsider u5=(1-lambda)*p1 + lambda*p2 as Point of Euclid n by Th13; A22: (Pitag_dist n).(q2',p')=|.q2'-p'.| by EUCLID:def 6; (Pitag_dist n).(u,u5)=dist(u,u5) by A12,METRIC_1:def 1; then a in {u6 where u6 is Element of Euclid n:dist(u,u6)< r} by A3,A21,A22; hence thesis by METRIC_1:18; end; thus thesis; end; theorem u=p1 & p1=|[r1,s1]| & p2=|[r2,s2]| & p=|[r2,s1]| & p2 in Ball(u,r) implies p in Ball(u,r) proof assume that A1: u=p1 and A2: p1=|[r1,s1]| and A3: p2=|[r2,s2]| and A4: p=|[r2,s1]| and A5: p2 in Ball(u,r); p2 in {u6 where u6 is Element of Euclid 2:dist(u,u6)<r} by A5,METRIC_1:18; then A6: ex u5 st u5 = p2 & dist(u,u5)<r; reconsider p1'= p1, p2'= p2,p'=p as Element of REAL 2 by EUCLID:25; A7: (Pitag_dist 2).(p1',p2')=|.p1'-p2'.| by EUCLID:def 6; A8: (Pitag_dist 2).(p1',p')=|.p1'-p'.| by EUCLID:def 6; reconsider up=p as Point of Euclid 2 by Th13; A9: Euclid 2 = MetrStruct(#REAL 2,Pitag_dist 2#) by EUCLID:def 7; then A10: dist(u,up)=|.p1'-p'.| by A1,A8,METRIC_1:def 1; A11: |.p1'-p2'.| < r by A1,A6,A7,A9,METRIC_1:def 1; A12: |.p1'-p'.| = sqrt Sum sqr (p1'-p') by EUCLID:def 5; A13: p1'= <*r1,s1*> & p'= <*r2,s1*> & p2'=<*r2,s2*> by A2,A3,A4,EUCLID:def 16 ; p1'-p'=p1-p & p1'-p2'=p1-p2 by EUCLID:def 13; then A14: (p1'-p')=<*r1-r2,s1-s1*> & (p1'-p2')=<*r1-r2,s1-s2*> by A13,Th10; A15: sqr (p1'-p') = sqrreal*(p1'-p') by RVSUM_1:def 8 .= <* sqrreal.(r1-r2),sqrreal.(s1-s1)*> by A14,FINSEQ_2:40; A16: sqr (p1'-p2') = sqrreal*(p1'-p2') by RVSUM_1:def 8 .= <* sqrreal.(r1-r2),sqrreal.(s1-s2)*> by A14,FINSEQ_2:40; A17: Sum sqr (p1'-p') = sqrreal.(r1-r2) + sqrreal.(s1-s1) by A15,RVSUM_1:107 .= sqrreal.(r1-r2) + sqrreal.0 by XCMPLX_1:14 .= sqrreal.(r1-r2) + 0 by RVSUM_1:def 2,SQUARE_1:60 .= sqrreal.(r1-r2); (s1-s2)^2 >= 0 by SQUARE_1:72; then sqrreal.(s1-s2) >= 0 by RVSUM_1:def 2; then A18: sqrreal.(r1-r2)+0 <= sqrreal.(r1-r2) + sqrreal.(s1-s2) by REAL_1:55; (r1-r2)^2 >= 0 by SQUARE_1:72; then sqrreal.(r1-r2) >= 0 by RVSUM_1:def 2; then A19: |.p1'-p'.| <= sqrt(sqrreal.(r1-r2) + sqrreal.(s1-s2)) by A12,A17,A18,SQUARE_1:94; |.p1'-p2'.| = sqrt Sum <*sqrreal.(r1-r2),sqrreal.(s1-s2)*> by A16,EUCLID:def 5 .= sqrt (sqrreal.(r1-r2) + sqrreal.(s1-s2)) by RVSUM_1:107; then |.p1'-p'.| < r by A11,A19,AXIOMS:22; then p in {u6 where u6 is Element of Euclid 2:dist(u,u6)<r} by A10; hence thesis by METRIC_1:18; end; theorem |[s,r1]| in Ball(u,r) & |[s,s1]| in Ball(u,r) implies |[s,(r1+s1)/2]| in Ball(u,r) proof set p = |[s,r1]|, q = |[s,s1]|, p3 = |[s,(r1+s1)/2]|; assume |[s,r1]| in Ball(u,r) & |[s,s1]| in Ball(u,r); then A1: LSeg(|[s,r1]|,|[s,s1]|) c= Ball(u,r) & p`1 = s & p`2 = r1 & q`1 = s & q`2 = s1 & 2<>0 by Th28,EUCLID:56; A2: p3`1 = s by EUCLID:56 .= (p`1)/2 + (q`1)*1/2 by A1,XCMPLX_1:66 .= (p`1)*1/2 + (1/2)*(q`1) by XCMPLX_1:75 .= (1 - 1/2)*(p`1) + (1/2)*(q`1) by XCMPLX_1:75 .= ((1 - 1/2)*p)`1 + (1/2)*(q`1) by Th9 .= ((1 - 1/2)*p)`1 + ((1/2)*q)`1 by Th9 .= ((1 - 1/2)*p + (1/2)*q)`1 by Th7; p3`2 = (r1+s1)/2 by EUCLID:56 .= (p`2)/2 + (q`2)*1/2 by A1,XCMPLX_1:63 .= (p`2)*1/2 + (1/2)*(q`2) by XCMPLX_1:75 .= (1 - 1/2)*(p`2) + (1/2)*(q`2) by XCMPLX_1:75 .= ((1 - 1/2)*p)`2 + (1/2)*(q`2) by Th9 .= ((1 - 1/2)*p)`2 + ((1/2)*q)`2 by Th9 .= ((1 - 1/2)*p + (1/2)*q)`2 by Th7; then p3 = (1 - 1/2)*p + (1/2)*q by A2,Th11; then p3 in {(1-lambda)*p + lambda*q: 0<=lambda & lambda<=1 }; then p3 in LSeg(|[s,r1]|,|[s,s1]|) by TOPREAL1:def 4; hence thesis by A1; end; theorem |[r1,s]| in Ball(u,r) & |[s1,s]| in Ball(u,r) implies |[(r1+s1)/2,s]| in Ball(u,r) proof set p = |[r1,s]|, q = |[s1,s]|, p3 = |[(r1+s1)/2,s]|; assume |[r1,s]| in Ball(u,r) & |[s1,s]| in Ball(u,r); then A1: LSeg(|[r1,s]|,|[s1,s]|) c= Ball(u,r) & p`2 = s & p`1 = r1 & q`2 = s & q`1 = s1 & 2<>0 by Th28,EUCLID:56; A2: p3`2 = s by EUCLID:56 .= (p`2)/2 + (q`2)*1/2 by A1,XCMPLX_1:66 .= (p`2)*1/2 + (1/2)*(q`2) by XCMPLX_1:75 .= (1 - 1/2)*(p`2) + (1/2)*(q`2) by XCMPLX_1:75 .= ((1 - 1/2)*p)`2 + (1/2)*(q`2) by Th9 .= ((1 - 1/2)*p)`2 + ((1/2)*q)`2 by Th9 .= ((1 - 1/2)*p + (1/2)*q)`2 by Th7; p3`1 = (r1+s1)/2 by EUCLID:56 .= (p`1)/2 + (q`1)*1/2 by A1,XCMPLX_1:63 .= (p`1)*1/2 + (1/2)*(q`1) by XCMPLX_1:75 .= (1 - 1/2)*(p`1) + (1/2)*(q`1) by XCMPLX_1:75 .= ((1 - 1/2)*p)`1 + (1/2)*(q`1) by Th9 .= ((1 - 1/2)*p)`1 + ((1/2)*q)`1 by Th9 .= ((1 - 1/2)*p + (1/2)*q)`1 by Th7; then p3 = (1 - 1/2)*p + (1/2)*q by A2,Th11; then p3 in {(1-lambda)*p + lambda*q: 0<=lambda & lambda<=1 }; then p3 in LSeg(|[r1,s]|,|[s1,s]|) by TOPREAL1:def 4; hence thesis by A1; end; theorem r1 <> s1 & s2 <> r2 & |[r1,r2]| in Ball(u,r) & |[s1,s2]| in Ball(u,r) implies |[r1,s2]| in Ball(u,r) or |[s1,r2]| in Ball(u,r) proof assume A1: r1<>s1 & s2<>r2 & |[r1,r2]| in Ball(u,r) & |[s1,s2]| in Ball(u,r); then A2: r > 0 by TBSP_1:17; per cases; suppose |[r1,s2]| in Ball(u,r); hence thesis; suppose A3: not |[r1,s2]| in Ball(u,r); set p1 = |[r1,s2]|, p2 = |[s1,r2]|, p3 = |[s1,s2]|, p4 = |[r1,r2]|; A4: p1`1 = r1 & p1`2 = s2 & p2`1 = s1 & p2`2 = r2 & p3`1 = s1 & p3`2 = s2 & p4`1 = r1 & p4`2 = r2 by EUCLID:56; reconsider u1 = p1, u2 = p2, u3 = p3, u4 = p4 as Point of Euclid 2 by Th13; reconsider p = u as Point of TOP-REAL 2 by Th13; set a = (p`1 - p1`1)^2 + (p`2 - p1`2)^2, b = (p`1 - p4`1)^2 + (p`2 - p4`2)^2, c = (p`1 - p3`1)^2 + (p`2 - p3`2)^2, d = (p`1 - p2`1)^2 + (p`2 - p2`2)^2; (p`1 - p1`1)^2 >= 0 & (p`2 - p1`2)^2 >= 0 by SQUARE_1:72; then A5: 0+0<=(p`1 - p1`1)^2 + (p`2 - p1`2)^2 by REAL_1:55; (p`1 - p4`1)^2 >= 0 & (p`2 - p4`2)^2 >= 0 by SQUARE_1:72; then A6: 0+0<=(p`1 - p4`1)^2 + (p`2 - p4`2)^2 by REAL_1:55; then A7: 0<=sqrt b & (p`1 - p3`1)^2 >= 0 & (p`2 - p3`2)^2 >= 0 by SQUARE_1:72,def 4; then A8: 0+0<=(p`1 - p3`1)^2 + (p`2 - p3`2)^2 by REAL_1:55; then A9: 0<=sqrt c & (p`1 - p2`1)^2 >= 0 & (p`2 - p2`2)^2 >= 0 by SQUARE_1:72,def 4; then A10: 0+0 <= (p`1 - p2`1)^2 + (p`2 - p2`2)^2 by REAL_1:55; A11: Euclid 2=MetrStruct (# REAL 2, Pitag_dist 2 #) by EUCLID:def 7; then A12: (Pitag_dist 2).(u,u1) = dist(u,u1) by METRIC_1:def 1; r <= dist(u,u1) by A3,METRIC_1:12; then r <= sqrt a by A12,Th12; then r * r <= (sqrt a)*sqrt a by A2,REAL_2:197; then r * r <= (sqrt a)^2 by SQUARE_1:def 3; then r^2 <= (sqrt a)^2 by SQUARE_1:def 3; then A13: r^2 <= a by A5,SQUARE_1:def 4; A14: c + b = (p`1 - p2`1)^2 + (p`2 - p1`2)^2 + (p`1 - p1`1)^2 + (p`2 - p2`2)^2 by A4,XCMPLX_1:1 .= (p`1 - p1`1)^2 + (p`2 - p1`2)^2 + (p`1 - p2`1)^2 + (p`2 - p2`2)^2 by XCMPLX_1:1 .= a + d by XCMPLX_1:1; A15: (Pitag_dist 2).(u,u4) = dist(u,u4) by A11,METRIC_1:def 1; dist(u,u4) < r by A1,METRIC_1:12; then sqrt b < r by A15,Th12; then (sqrt b)*sqrt b < r*r by A7,SEQ_2:7; then (sqrt b)^2 < r*r by SQUARE_1:def 3; then b < r*r by A6,SQUARE_1:def 4; then A16: b < r^2 by SQUARE_1:def 3; A17: (Pitag_dist 2).(u,u3) = dist(u,u3) by A11,METRIC_1:def 1; dist(u,u3) < r by A1,METRIC_1:12; then sqrt c < r by A17,Th12; then (sqrt c)*sqrt c < r*r by A9,SEQ_2:7; then (sqrt c)^2 < r*r by SQUARE_1:def 3; then c < r*r by A8,SQUARE_1:def 4; then c < r^2 by SQUARE_1:def 3; then A18: c+b <r^2 + r^2 by A16,REAL_1:67; r^2+d <= c + b by A13,A14,AXIOMS:24; then r^2+d < r^2+r^2 by A18,AXIOMS:22; then d < r^2+r^2 - r^2 by REAL_1:86; then d < r^2 by XCMPLX_1:26; then sqrt d < sqrt(r^2) by A10,SQUARE_1:95; then A19: sqrt d < r by A2,SQUARE_1:89; dist(u,u2) = (Pitag_dist 2).(u,u2) by A11,METRIC_1:def 1 .= sqrt d by Th12; hence thesis by A19,METRIC_1:12; end; theorem not f/.1 in Ball(u,r) & 1<=m & m<=len f - 1 & LSeg(f,m) meets Ball(u,r) & (for i st 1<=i & i<=len f - 1 & LSeg(f,i) /\ Ball(u,r) <> {} holds m<=i) implies not f/.m in Ball(u,r) proof assume A1: not f/.1 in Ball(u,r) & 1<=m & m<=len f - 1 & LSeg(f,m) /\ Ball(u,r) <> {} & for i st 1<=i & i<=len f - 1 & LSeg(f,i) /\ Ball(u,r) <> {} holds m<=i; assume A2: f/.m in Ball(u,r); per cases by A1,REAL_1:def 5; suppose 1=m; hence contradiction by A1,A2; suppose A3: 1<m; then 1+1<=m by NAT_1:38; then A4: 1<=m-1 by REAL_1:84; reconsider k=m-1 as Nat by A3,INT_1:18 ; m-1<=m by PROB_1:2; then A5: k<=len f - 1 by A1,AXIOMS:22; then k+1<=len f by REAL_1:84; then f/.(k+1) in LSeg(f,k) by A4,TOPREAL1:27; then f/.m in LSeg(f,k) by XCMPLX_1:27; then LSeg(f,k) /\ Ball(u,r) <> {} by A2,XBOOLE_0:def 3; then m<=k by A1,A4,A5; then m+1<=m by REAL_1:84; hence contradiction by NAT_1:38; end; theorem for q,p2,p st q`2 = p2`2 & p`2 <> p2`2 holds (LSeg(p2,|[p2`1,p`2]|) \/ LSeg(|[p2`1,p`2]|,p)) /\ LSeg(q,p2) = {p2} proof let q,p2,p such that A1: q`2 = p2`2 & p`2 <> p2`2; set p3 = |[(p2)`1,p`2]|; set l23 = LSeg(p2,p3), l3 = LSeg(p3,p), l = LSeg(q,p2); A2: l23 /\ l = {p2} proof thus l23 /\ l c= {p2} proof let x be set; assume x in l23 /\ l; then A3: x in l23 & x in l by XBOOLE_0:def 3; then x in {(1-lambda)*p2+lambda*p3: 0 <=lambda & lambda <= 1 } by TOPREAL1:def 4; then consider s1 such that A4: (1-s1)*p2 + s1*p3=x & 0<=s1 & s1<=1; set t = (1-s1)*p2 + s1*p3; A5: t`1 = ((1-s1)*p2) `1 + (s1*p3) `1 by Th7 .= (1-s1)*(p2 `1) + (s1*p3) `1 by Th9 .= (1-s1)*(p2 `1) + s1*(p3 `1) by Th9 .= (1-s1)*(p2 `1) + s1*(p2 `1) by EUCLID:56 .= (1-s1 + s1)*(p2 `1) by XCMPLX_1:8 .= 1*(p2 `1) by XCMPLX_1:27 .= p2 `1; x in {(1-lambda)*q+lambda*p2: 0 <=lambda & lambda <= 1 } by A3,TOPREAL1:def 4; then consider s2 such that A6: (1-s2)*q + s2*p2=x & 0 <= s2 & s2 <= 1; A7: ((1-s2)*q + s2*p2) `2 = ((1-s2)*q) `2 + (s2*p2) `2 by Th7 .= (1-s2)*(q`2) + (s2*p2) `2 by Th9 .= (1-s2)*(q `2) + s2*(p2 `2) by Th9 .= (1-s2 + s2)*(p2 `2) by A1,XCMPLX_1:8 .= 1*(p2 `2) by XCMPLX_1:27 .= p2 `2; t = |[t`1, t`2]| by EUCLID:57 .= p2 by A4,A5,A6,A7,EUCLID:57; hence x in {p2} by A4,TARSKI:def 1; end; let x be set; assume x in {p2}; then A8: x=p2 by TARSKI:def 1; p2 in l23 & p2 in l by TOPREAL1:6; hence x in l23 /\ l by A8,XBOOLE_0:def 3; end; A9: l3 /\ l = {} proof assume A10: l3 /\ l <> {}; consider x being Element of l3 /\ l; A11: x in l3 & x in l by A10,XBOOLE_0:def 3; then x in {(1-lambda)*p3+lambda*p: 0 <=lambda & lambda <= 1 } by TOPREAL1:def 4; then consider s1 such that A12: x = (1-s1)*p3 + s1*p & 0 <= s1 & s1 <= 1; A13: ((1-s1)*p3 + s1*p)`2 = ((1-s1)*p3) `2 + (s1*p) `2 by Th7 .= (1-s1)*(p3 `2) + (s1*p) `2 by Th9 .= (1-s1)*(p3 `2) + s1*(p `2) by Th9 .= (1-s1)*(p `2) + s1*(p `2) by EUCLID:56 .= (1-s1 + s1)*(p `2) by XCMPLX_1:8 .= 1*(p `2) by XCMPLX_1:27 .= p `2; x in {(1-lambda)*q+lambda*p2: 0 <=lambda & lambda <= 1 } by A11,TOPREAL1:def 4; then consider s2 such that A14: x = (1-s2)*q + s2*p2 & 0 <= s2 & s2 <= 1; ((1-s2)*q + s2*p2) `2 = ((1-s2)*q) `2 + (s2*p2) `2 by Th7 .= (1-s2)*(q`2) + (s2*p2) `2 by Th9 .= (1-s2)*(q `2) + s2*(p2 `2) by Th9 .= (1-s2 + s2)*(p2 `2) by A1,XCMPLX_1:8 .= 1*(p2 `2) by XCMPLX_1:27 .= p2 `2; hence contradiction by A1,A12,A13,A14; end; thus (l23 \/ l3) /\ l = l23 /\ l \/ l3 /\ l by XBOOLE_1:23 .= {p2} by A2,A9; end; theorem for q,p2,p st q`1 = p2`1 & p`1 <> p2`1 holds (LSeg(p2,|[p`1,p2`2]|) \/ LSeg(|[p`1,p2`2]|,p)) /\ LSeg(q,p2) = {p2} proof let q,p2,p such that A1: q`1 = (p2)`1 & p`1 <> (p2)`1; set p3 = |[p`1,(p2)`2]|; set l23 = LSeg(p2,p3), l3 = LSeg(p3,p), l = LSeg(q,p2); A2: l23 /\ l = {p2} proof thus l23 /\ l c= {p2} proof let x be set; assume x in l23 /\ l; then A3: x in l23 & x in l by XBOOLE_0:def 3; then x in {(1-lambda)*p2+lambda*p3: 0 <=lambda & lambda <= 1 } by TOPREAL1:def 4; then consider s1 such that A4: x = (1-s1)*p2 + s1*p3 & 0 <= s1 & s1 <= 1; set t = (1-s1)*p2 + s1*p3; A5: t`2 = ((1-s1)*p2) `2 + (s1*p3) `2 by Th7 .= (1-s1)*(p2 `2) + (s1*p3) `2 by Th9 .= (1-s1)*(p2 `2) + s1*(p3 `2) by Th9 .= (1-s1)*(p2 `2) + s1*(p2 `2) by EUCLID:56 .= (1-s1 + s1)*(p2 `2) by XCMPLX_1:8 .= 1*(p2 `2) by XCMPLX_1:27 .= p2 `2; x in {(1-lambda)*q+lambda*p2: 0 <=lambda & lambda <= 1 } by A3,TOPREAL1:def 4; then consider s2 such that A6: x = (1-s2)*q + s2*p2 & 0 <= s2 & s2 <= 1; A7: ((1-s2)*q + s2*p2) `1 = ((1-s2)*q) `1 + (s2*p2) `1 by Th7 .= (1-s2)*(q`1) + (s2*p2) `1 by Th9 .= (1-s2)*(q `1) + s2*(p2 `1) by Th9 .= (1-s2 + s2)*(p2 `1) by A1,XCMPLX_1:8 .= 1*(p2 `1) by XCMPLX_1:27 .= p2 `1; t = |[t`1, t`2]| by EUCLID:57 .= p2 by A4,A5,A6,A7,EUCLID:57; hence x in {p2} by A4,TARSKI:def 1; end; let x be set; assume x in {p2}; then A8: x=p2 by TARSKI:def 1; p2 in l23 & p2 in l by TOPREAL1:6; hence x in l23 /\ l by A8,XBOOLE_0:def 3; end; A9: l3 /\ l = {} proof assume A10: l3 /\ l <> {}; consider x being Element of l3 /\ l; A11: x in l3 & x in l by A10,XBOOLE_0:def 3; then x in {(1-lambda)*p3+lambda*p: 0 <=lambda & lambda <= 1 } by TOPREAL1:def 4; then consider d1 be Real such that A12: x = (1-d1)*p3 + d1*p & 0 <= d1 & d1 <= 1; A13: ((1-d1)*p3 + d1*p)`1 = ((1-d1)*p3) `1 + (d1*p) `1 by Th7 .= (1-d1)*(p3 `1) + (d1*p) `1 by Th9 .= (1-d1)*(p3 `1) + d1*(p `1) by Th9 .= (1-d1)*(p `1) + d1*(p `1) by EUCLID:56 .= (1-d1 + d1)*(p `1) by XCMPLX_1:8 .= 1*(p `1) by XCMPLX_1:27 .= p `1; x in {(1-lambda)*q+lambda*p2: 0 <=lambda & lambda <= 1 } by A11,TOPREAL1:def 4; then consider d2 be Real such that A14: x = (1-d2)*q + d2*p2 & 0 <= d2 & d2 <= 1; ((1-d2)*q + d2*p2) `1 = ((1-d2)*q) `1 + (d2*p2) `1 by Th7 .= (1-d2)*(q`1) + (d2*p2) `1 by Th9 .= (1-d2)*(q `1) + d2*(p2 `1) by Th9 .= (1-d2 + d2)*(p2 `1) by A1,XCMPLX_1:8 .= 1*(p2 `1) by XCMPLX_1:27 .= p2 `1; hence contradiction by A1,A12,A13,A14; end; thus (l23 \/ l3) /\ l = l23 /\ l \/ l3 /\ l by XBOOLE_1:23 .= {p2} by A2,A9; end; theorem Th36: LSeg(p,|[p`1,q`2]|) /\ LSeg(|[p`1,q`2]|,q) ={|[p`1,q`2]|} proof set p3 = |[p`1,q`2]|; set l23 = LSeg(p,p3), l = LSeg(p3,q); thus l23 /\ l c= {p3} proof let x be set; assume x in l23 /\ l; then A1: x in l23 & x in l by XBOOLE_0:def 3; then x in {(1-lambda)*p+lambda*p3: 0 <=lambda & lambda <= 1 } by TOPREAL1:def 4; then consider d1 be Real such that A2: x = (1-d1)*p + d1*p3 & 0 <= d1 & d1 <= 1; set t = (1-d1)*p + d1*p3; A3: t`1 = ((1-d1)*p) `1 + (d1*p3) `1 by Th7 .= (1-d1)*(p `1) + (d1*p3) `1 by Th9 .= (1-d1)*(p `1) + d1*(p3 `1) by Th9 .= (1-d1)*(p `1) + d1*(p `1) by EUCLID:56 .= (1-d1 + d1)*(p `1) by XCMPLX_1:8 .= 1*(p `1) by XCMPLX_1:27 .= p3 `1 by EUCLID:56; x in {(1-lambda)*p3+lambda*q: 0 <=lambda & lambda <= 1} by A1,TOPREAL1:def 4; then consider d2 be Real such that A4: x = (1-d2)*p3 + d2*q & 0 <= d2 & d2 <= 1; t`2 = ((1-d2)*p3) `2 + (d2*q) `2 by A2,A4,Th7 .= (1-d2)*(p3 `2) + (d2*q) `2 by Th9 .= (1-d2)*(p3 `2) + d2*(q`2) by Th9 .= (1-d2)*(q`2) + d2*(q`2) by EUCLID:56 .= (1-d2 + d2)*(q`2) by XCMPLX_1:8 .= 1*(q`2) by XCMPLX_1:27 .= p3 `2 by EUCLID:56; then t = p3 by A3,Th11; hence x in {p3} by A2,TARSKI:def 1; end; let x be set; assume x in {p3}; then x=p3 & p3 in l23 & p3 in l by TARSKI:def 1,TOPREAL1:6; hence x in l23 /\ l by XBOOLE_0:def 3; end; theorem Th37: LSeg(p,|[q`1,p`2]|) /\ LSeg(|[q`1,p`2]|,q) ={|[q`1,p`2]|} proof set p3 = |[q`1,p`2]|; set l23 = LSeg(p,p3), l = LSeg(p3,q); thus l23 /\ l c= {p3} proof let x be set; assume x in l23 /\ l; then A1: x in l23 & x in l by XBOOLE_0:def 3; then x in {(1-lambda)*p+lambda*p3: 0 <=lambda & lambda <= 1} by TOPREAL1:def 4; then consider d1 be Real such that A2: x = (1-d1)*p + d1*p3 & 0 <= d1 & d1 <= 1; set t = (1-d1)*p + d1*p3; A3: t`2 = ((1-d1)*p) `2 + (d1*p3) `2 by Th7 .= (1-d1)*(p `2) + (d1*p3) `2 by Th9 .= (1-d1)*(p `2) + d1*(p3 `2) by Th9 .= (1-d1)*(p3 `2) + d1*(p3 `2) by EUCLID:56 .= (1-d1 + d1)*(p3 `2) by XCMPLX_1:8 .= 1*(p3 `2) by XCMPLX_1:27 .= p3 `2; x in {(1-lambda)*p3+lambda*q: 0 <=lambda & lambda <= 1} by A1,TOPREAL1:def 4; then consider d2 be Real such that A4: x = (1-d2)*p3 + d2*q & 0 <= d2 & d2 <= 1; t`1 = ((1-d2)*p3) `1 + (d2*q) `1 by A2,A4,Th7 .= (1-d2)*(p3 `1) + (d2*q) `1 by Th9 .= (1-d2)*(p3 `1) + d2*(q`1) by Th9 .= (1-d2)*(p3`1) + d2*(p3`1) by EUCLID:56 .= (1-d2 + d2)*(p3`1) by XCMPLX_1:8 .= 1*(p3`1) by XCMPLX_1:27 .= p3`1; then t = p3 by A3,Th11; hence x in {p3} by A2,TARSKI:def 1; end; let x be set; assume x in {p3}; then x=p3 & p3 in l23 & p3 in l by TARSKI:def 1,TOPREAL1:6; hence x in l23 /\ l by XBOOLE_0:def 3; end; theorem Th38: p`1 = q`1 & p`2 <> q`2 implies LSeg(p,|[p`1,(p`2+q`2)/2]|) /\ LSeg(|[p`1,(p`2+q`2)/2]|,q)={|[p`1,(p`2+q`2)/2]|} proof assume A1: p`1 = q`1 & p`2 <> q`2; set p3 = |[p`1,(p`2+q`2)/2]|; set l23 = LSeg(p,p3), l = LSeg(p3,q); thus l23 /\ l c= {p3} proof let x be set; assume x in l23 /\ l; then A2: x in l23 & x in l by XBOOLE_0:def 3; A3: l23 = LSeg(|[p`1,p`2]|,|[p`1,(p`2+q`2)/2]|) by EUCLID:57; A4: l = LSeg(|[q`1,(p`2+q`2)/2]|,|[q`1,q`2]|) by A1,EUCLID:57; now per cases by A1,REAL_1:def 5; suppose A5: p`2 < q`2; then p`2 < (p`2+q`2)/2 by Th3; then x in {p1: p1 `1 = p`1 & p`2 <= p1 `2 & p1 `2 <= (p`2+q`2)/2} by A2,A3,Th15; then consider t1 be Point of TOP-REAL 2 such that A6: t1 = x & t1 `1 = p`1 & p`2 <= t1 `2 & t1 `2 <= (p`2+q`2)/2; A7: t1`2 <= p3 `2 by A6,EUCLID:56; (p`2+q`2)/2 < q`2 by A5,Th3; then x in {p2: p2 `1 = q`1 & (p`2+q`2)/2 <= p2 `2 & p2 `2 <= q`2} by A2,A4,Th15; then ex t2 be Point of TOP-REAL 2 st t2 = x & t2 `1 = q`1 & (p`2+q`2)/2 <= t2 `2 & t2 `2 <= q`2; then t1`2 >= p3 `2 by A6,EUCLID:56; then t1`2 = p3 `2 & t1 `1 = p3 `1 by A6,A7,AXIOMS:21,EUCLID:56; hence x=p3 by A6,Th11; suppose A8: p`2 > q`2; then p`2 > (p`2+q`2)/2 by Th3; then x in {p11: p11 `1 = p`1 & (p`2+q`2)/2<=p11 `2 & p11 `2<= p`2} by A2,A3,Th15; then consider t1 be Point of TOP-REAL 2 such that A9: t1 = x & t1 `1 = p`1 & (p`2+q`2)/2 <= t1 `2 & t1 `2 <= p`2; A10: p3 `2 <= t1 `2 by A9,EUCLID:56; q`2 < (p`2+q`2)/2 by A8,Th3; then x in {p22: p22 `1=q`1 & q`2<=p22 `2 & p22 `2<=(p`2+q`2)/2} by A2,A4, Th15; then ex t2 be Point of TOP-REAL 2 st t2 = x & t2 `1 = q`1 & q`2 <= t2 `2 & t2 `2 <= (p`2+q`2)/2; then t1`2 <= p3 `2 by A9,EUCLID:56; then t1`2 = p3 `2 & t1 `1 = p3 `1 by A9,A10,AXIOMS:21,EUCLID:56; hence x=p3 by A9,Th11; end; hence x in {p3} by TARSKI:def 1; end; let x be set; assume x in {p3}; then x=p3 & p3 in l23 & p3 in l by TARSKI:def 1,TOPREAL1:6; hence x in l23 /\ l by XBOOLE_0:def 3; end; theorem Th39: p`1 <> q`1 & p`2 = q`2 implies LSeg(p,|[(p`1+q`1)/2,p`2]|) /\ LSeg(|[(p`1+q`1)/2,p`2]|,q)={|[(p`1+q`1)/2,p`2]|} proof assume A1: p`1 <> q`1 & p`2 = q`2; set p3 = |[(p`1+q`1)/2,p`2]|; set l23 = LSeg(p,p3), l = LSeg(p3,q); thus l23 /\ l c= {p3} proof let x be set; assume x in l23 /\ l; then A2: x in l23 & x in l by XBOOLE_0:def 3; A3: l23 = LSeg(|[p`1,p`2]|,|[(p`1+q`1)/2,p`2]|) by EUCLID:57; A4: l = LSeg(|[(p`1+q`1)/2,q`2]|,|[q`1,q`2]|) by A1,EUCLID:57; now per cases by A1,REAL_1:def 5; suppose A5: p`1 < q`1; then p`1 < (p`1+q`1)/2 by Th3; then x in {p1: p1 `2 = p`2 & p`1 <= p1 `1 & p1 `1 <= (p`1+q`1)/2} by A2,A3,Th16; then consider t1 be Point of TOP-REAL 2 such that A6: t1 = x & t1 `2 = p`2 & p`1 <= t1 `1 & t1 `1 <= (p`1+q`1)/2; A7: t1`1 <= p3 `1 by A6,EUCLID:56; (p`1+q`1)/2 < q`1 by A5,Th3; then x in {p2: p2 `2 = q`2 & (p`1+q`1)/2 <= p2 `1 & p2 `1 <= q`1} by A2,A4,Th16; then ex t2 be Point of TOP-REAL 2 st t2 = x & t2 `2 = q`2 & (p`1+q`1)/2 <= t2 `1 & t2 `1 <= q`1; then t1`1 >= p3 `1 by A6,EUCLID:56; then t1`2 = p3 `2 & t1 `1 = p3 `1 by A6,A7,AXIOMS:21,EUCLID:56; hence x=p3 by A6,Th11; suppose A8: p`1 > q`1; then p`1 > (p`1+q`1)/2 by Th3; then x in {p11: p11 `2 = p`2 & (p`1+q`1)/2 <= p11 `1 & p11 `1 <= p`1} by A2,A3,Th16; then consider t1 be Point of TOP-REAL 2 such that A9: t1 = x & t1 `2 = p`2 & (p`1+q`1)/2 <= t1 `1 & t1 `1 <= p`1; A10: p3 `1 <= t1 `1 by A9,EUCLID:56; q`1 < (p`1+q`1)/2 by A8,Th3; then x in {p22: p22 `2 = q`2 & q`1<=p22 `1 & p22 `1<= (p`1+q`1)/2} by A2,A4,Th16; then ex t2 be Point of TOP-REAL 2 st t2 = x & t2 `2 = q`2 & q`1 <= t2 `1 & t2 `1 <= (p`1+q`1)/2; then t1`1 <= p3 `1 by A9,EUCLID:56; then t1`2 = p3 `2 & t1 `1 = p3 `1 by A9,A10,AXIOMS:21,EUCLID:56; hence x=p3 by A9,Th11; end; hence x in {p3} by TARSKI:def 1; end; let x be set; assume x in {p3}; then x=p3 & p3 in l23 & p3 in l by TARSKI:def 1,TOPREAL1:6; hence x in l23 /\ l by XBOOLE_0:def 3; end; theorem i>2 & i in dom f & f is_S-Seq implies f|i is_S-Seq proof assume A1: i>2 & i in dom f & f is_S-Seq; then A2: f is s.n.c. by TOPREAL1:def 10; A3: f is unfolded by A1,TOPREAL1:def 10; A4: f is special by A1,TOPREAL1:def 10; A5: f|i = f|Seg i & Seg len f = dom f by FINSEQ_1:def 3,TOPREAL1:def 1; A6: i<=len f by A1,FINSEQ_3:27; then A7: Seg i c= dom f & dom(f|i)=dom f /\ Seg i by A5,FINSEQ_1:7,RELAT_1:90 ; then A8: dom (f|i) = Seg i by XBOOLE_1:28; thus f|i is one-to-one proof let x,y; assume A9: x in dom (f|i) & y in dom (f|i) & (f|i).x = (f|i).y; then A10: f.x = (f|i).x by A5,FUNCT_1:70 .= f.y by A5,A9,FUNCT_1:70; f is one-to-one & x in dom f & y in dom f by A1,A7,A9,TOPREAL1:def 10,XBOOLE_0:def 3; hence x=y by A10,FUNCT_1:def 8; end; thus len (f|i) >= 2 by A1,A8,FINSEQ_1:def 3; thus f|i is unfolded proof let j such that A11: 1 <= j & j + 2 <= len (f|i); len(f|i) <= len f by A6,A8,FINSEQ_1:def 3; then A12: j + 2 <= len f by A11,AXIOMS:22; j <= j+2 by NAT_1:29; then j <= len(f|i) by A11,AXIOMS:22; then A13: j in dom(f|i) by A11,FINSEQ_3:27; j + 1 <= j + 2 by AXIOMS:24; then A14: j+1 <= len(f|i) by A11,AXIOMS:22; 1<=j+1 by NAT_1:37; then A15: j+1 in dom(f|i) by A14,FINSEQ_3:27; then A16: LSeg(f,j) = LSeg(f|i,j) & j+(1+1) = j + 1+ 1 by A1,A13,Th24,XCMPLX_1:1; 1<=j+1+1 by NAT_1:37; then j+1+1 in dom(f|i) by A11,A16,FINSEQ_3:27; then LSeg(f,j+1) = LSeg(f|i,j+1) by A1,A15,Th24; then LSeg(f|i,j) /\ LSeg(f|i,j+1) = {f/.(j+1)} by A3,A11,A12,A16,TOPREAL1:def 8; hence LSeg(f|i,j)/\ LSeg(f|i,j+1)={(f|i)/.(j+1)} by A15,TOPREAL1:1; end; thus f|i is s.n.c. proof let n,k; assume n+1 < k; then LSeg(f,n) misses LSeg(f,k) by A2,TOPREAL1:def 9; then A17: LSeg(f,n) /\ LSeg(f,k) = {} by XBOOLE_0:def 7; A18: k+1 >= 1 by NAT_1:29; A19: n+1 >= 1 by NAT_1:29; A20: k+1 >= k by NAT_1:29; A21: n+1 >= n by NAT_1:29; per cases; suppose A22: n in dom(f|i); now per cases; suppose n+1 in dom(f|i); then A23: LSeg(f,n)=LSeg(f|i,n) by A1,A22,Th24; now per cases; suppose A24: k in dom (f|i); now per cases; suppose k+1 in dom(f|i); hence LSeg(f|i,n) /\ LSeg(f|i,k) = {} by A1,A17,A23,A24,Th24; suppose not k+1 in dom(f|i); then k+1 > len(f|i) by A18,FINSEQ_3:27; then LSeg(f|i,k) = {} by TOPREAL1:def 5; hence LSeg(f|i,n) /\ LSeg(f|i,k) = {}; end; hence LSeg(f|i,n) /\ LSeg(f|i,k) = {}; suppose not k in dom (f|i); then k < 1 or k > len(f|i) by FINSEQ_3:27; then k < 1 or k+1 > len(f|i) by A20,AXIOMS:22; then LSeg(f|i,k) = {} by TOPREAL1:def 5; hence LSeg(f|i,n) /\ LSeg(f|i,k) = {}; end; hence LSeg(f|i,n) /\ LSeg(f|i,k) = {}; suppose not n+1 in dom(f|i); then n+1 > len(f|i) by A19,FINSEQ_3:27; then LSeg(f|i,n) = {} by TOPREAL1:def 5; hence LSeg(f|i,n) /\ LSeg(f|i,k) = {}; end; hence LSeg(f|i,n) /\ LSeg(f|i,k) = {}; suppose not n in dom(f|i); then n < 1 or n > len(f|i) by FINSEQ_3:27; then n < 1 or n+1 > len(f|i) by A21,AXIOMS:22; then LSeg(f|i,n) = {} by TOPREAL1:def 5; hence LSeg(f|i,n) /\ LSeg(f|i,k) = {}; end; let j such that A25: 1 <= j & j + 1 <= len (f|i); len(f|i) <= len f by A6,A8,FINSEQ_1:def 3; then A26: j + 1 <= len f by A25,AXIOMS:22; j <= j + 1 by NAT_1:29; then j <= len(f|i) by A25,AXIOMS:22; then j in dom (f|i) by A25,FINSEQ_3:27; then A27: (f|i)/.j=f/.j by TOPREAL1:1; 1<=j+1 by NAT_1:37; then j+1 in dom(f|i) by A25,FINSEQ_3:27; then (f|i)/.(j+1)=f/.(j+1) by TOPREAL1:1; hence ((f|i)/.j)`1 = ((f|i)/.(j+1))`1 or ((f|i)/.j)`2 = ((f|i)/.(j+1))`2 by A4,A25,A26,A27,TOPREAL1:def 7; end; theorem p`1 <> q`1 & p`2 <> q`2 & f = <* p,|[p`1,q`2]|,q *> implies f/.1 = p & f/.len f = q & f is_S-Seq proof set p1 = |[p`1,q`2]|; assume A1: p`1 <> q`1 & p`2 <> q`2 & f = <* p,p1,q *>; then A2: len f = 1 + 2 & f/.1 = p & f/.2 = p1 & f/.3 = q by FINSEQ_1:62,FINSEQ_4:27; hence f/.1 = p & f/.len f = q; p<>p1 & q<>p1 by A1,EUCLID:56; hence f is one-to-one & len f>=2 by A1,A2,FINSEQ_3:104; thus f is unfolded proof let i; assume A3: 1 <= i & i + 2 <= len f; then i <= 1 by A2,REAL_1:53; then A4: i = 1 by A3,AXIOMS:21; hence LSeg(f,i) /\ LSeg(f,i+1) = LSeg(p,p1) /\ LSeg(f,2) by A2,TOPREAL1:def 5 .= LSeg(p,p1) /\ LSeg(p1,q) by A2,TOPREAL1:def 5 .= {f/.(i+1)} by A2,A4,Th36; end; thus f is s.n.c. proof let i,j such that A5: i+1 < j; now per cases; suppose i=0; then LSeg(f,i)={} by TOPREAL1:def 5; then LSeg(f,i) /\ LSeg(f,j) = {}; hence thesis by XBOOLE_0:def 7; suppose i<>0; then LSeg(f,j)={} by A1,A5,Th21; then LSeg(f,i) /\ LSeg(f,j) = {}; hence thesis by XBOOLE_0:def 7; end; hence thesis; end; let i such that A6: 1 <= i & i + 1 <= len f; set p2 = f/.i, p3 = f/.(i+1); A7: i <= 2 & i > 0 by A2,A6,AXIOMS:22,REAL_1:53; per cases by A7,CQC_THE1:3; suppose i=1; hence p2`1 = p3`1 or p2`2 = p3`2 by A2,EUCLID:56; suppose i=2; hence p2 `1 = p3`1 or p2`2 = p3`2 by A2,EUCLID:56; end; theorem p`1 <> q`1 & p`2 <> q`2 & f = <* p,|[q`1,p`2]|,q *> implies f/.1 = p & f/.len f = q & f is_S-Seq proof set p1 = |[q`1,p`2]|; assume A1: p`1 <> q`1 & p`2 <> q`2 & f = <* p,p1,q *>; then A2: len f = 1 + 2 & f/.1 = p & f/.2 = p1 & f/.3 = q by FINSEQ_1:62,FINSEQ_4:27; hence f/.1 = p & f/.len f = q; p<>p1 & q<>p1 by A1,EUCLID:56; hence f is one-to-one & len f >= 2 by A1,A2,FINSEQ_3:104; thus f is unfolded proof let i; assume A3: 1 <= i & i + 2 <= len f; then i <= 1 by A2,REAL_1:53; then A4: i = 1 by A3,AXIOMS:21; hence LSeg(f,i) /\ LSeg(f,i+1) = LSeg(p,p1) /\ LSeg(f,2) by A2,TOPREAL1:def 5 .= LSeg(p,p1) /\ LSeg(p1,q) by A2,TOPREAL1:def 5 .= {f/.(i+1)} by A2,A4,Th37; end; thus f is s.n.c. proof let i,j such that A5: i+1 < j; now per cases; suppose i=0; then LSeg(f,i)={} by TOPREAL1:def 5; then LSeg(f,i) /\ LSeg(f,j) = {}; hence thesis by XBOOLE_0:def 7; suppose i<>0; then LSeg(f,j)={} by A1,A5,Th21; then LSeg(f,i) /\ LSeg(f,j) = {}; hence thesis by XBOOLE_0:def 7; end; hence thesis; end; let i such that A6: 1 <= i & i + 1 <= len f; set p2 = f/.i, p3 = f/.(i+1); A7: i <= 2 & i > 0 by A2,A6,AXIOMS:22,REAL_1:53; per cases by A7,CQC_THE1:3; suppose i=1; hence p2`1 = p3`1 or p2`2 = p3`2 by A2,EUCLID:56; suppose i=2; hence p2 `1 = p3`1 or p2`2 = p3`2 by A2,EUCLID:56; end; theorem p`1 = q`1 & p`2 <> q`2 & f = <* p,|[p`1,(p`2 + q`2)/2]|,q *> implies f/.1 = p & f/.len f = q & f is_S-Seq proof set p1 = |[p`1,(p`2 + q`2)/2]|; assume A1: p`1 = q`1 & p`2 <> q`2 & f = <* p,p1,q *>; then A2: len f = 1 + 2 & f/.1 = p & f/.2 = p1 & f/.3 = q by FINSEQ_1:62,FINSEQ_4:27; hence f/.1 = p & f/.len f = q; p`2 <> (p`2+q`2)/2 & q`2 <> (p`2+q`2)/2 & p1`2 = (p`2+q`2)/2 by A1,EUCLID:56,XCMPLX_1:67; hence f is one-to-one & len f >= 2 by A1,A2,FINSEQ_3:104; thus f is unfolded proof let i; assume A3: 1 <= i & i + 2 <= len f; then i <= 1 by A2,REAL_1:53; then A4: i = 1 by A3,AXIOMS:21; hence LSeg(f,i) /\ LSeg(f,i+1) = LSeg(p,p1) /\ LSeg(f,2) by A2,TOPREAL1:def 5 .= LSeg(p,p1) /\ LSeg(p1,q) by A2,TOPREAL1:def 5 .= {f/.(i+1)} by A1,A2,A4,Th38; end; thus f is s.n.c. proof let i,j such that A5: i+1 < j; now per cases; suppose i=0; then LSeg(f,i)={} by TOPREAL1:def 5; then LSeg(f,i) /\ LSeg(f,j) = {}; hence thesis by XBOOLE_0:def 7; suppose i<>0; then LSeg(f,j)={} by A1,A5,Th21; then LSeg(f,i) /\ LSeg(f,j) = {}; hence thesis by XBOOLE_0:def 7; end; hence thesis; end; let i such that A6: 1 <= i & i + 1 <= len f; set p2 = f/.i, p3 = f/.(i+1); A7: i <= 2 & i > 0 by A2,A6,AXIOMS:22,REAL_1:53; per cases by A7,CQC_THE1:3; suppose i=1; hence p2`1 = p3`1 or p2`2 = p3`2 by A2,EUCLID:56; suppose i=2; hence p2 `1 = p3`1 or p2`2 = p3`2 by A1,A2,EUCLID:56; end; theorem p`1 <> q`1 & p`2 = q`2 & f = <* p,|[(p`1 + q`1)/2,p`2]|,q *> implies f/.1 = p & f/.len f = q & f is_S-Seq proof set p1 = |[(p`1 + q`1)/2,p`2]|; assume A1: p`1 <> q`1 & p`2 = q`2 & f = <* p,p1,q *>; then A2: len f = 1 + 2 & f/.1 = p & f/.2 = p1 & f/.3 = q by FINSEQ_1:62,FINSEQ_4:27; hence f/.1 = p & f/.len f = q; p`1 <> (p`1 + q`1)/2 & q`1 <> (p`1 + q`1)/2 & p1`1 = (p`1 + q`1)/2 by A1,EUCLID:56,XCMPLX_1:67; hence f is one-to-one & len f >= 2 by A1,A2,FINSEQ_3:104; thus f is unfolded proof let i; assume A3: 1 <= i & i + 2 <= len f; then i <= 1 by A2,REAL_1:53; then A4: i = 1 by A3,AXIOMS:21; hence LSeg(f,i) /\ LSeg(f,i+1) = LSeg(p,p1) /\ LSeg(f,2) by A2,TOPREAL1:def 5 .= LSeg(p,p1) /\ LSeg(p1,q) by A2,TOPREAL1:def 5 .= {f/.(i+1)} by A1,A2,A4,Th39; end; thus f is s.n.c. proof let i,j such that A5: i+1 < j; now per cases; suppose i=0; then LSeg(f,i)={} by TOPREAL1:def 5; then LSeg(f,i) /\ LSeg(f,j) = {}; hence thesis by XBOOLE_0:def 7; suppose i<>0; then LSeg(f,j)={} by A1,A5,Th21; then LSeg(f,i) /\ LSeg(f,j) = {}; hence thesis by XBOOLE_0:def 7; end; hence thesis; end; let i such that A6: 1 <= i & i + 1 <= len f; set p2 = f/.i, p3 = f/.(i+1); A7: i <= 2 & i > 0 by A2,A6,AXIOMS:22,REAL_1:53; per cases by A7,CQC_THE1:3; suppose i=1; hence p2`1 = p3`1 or p2`2 = p3`2 by A2,EUCLID:56; suppose i=2; hence p2 `1 = p3`1 or p2`2 = p3`2 by A1,A2,EUCLID:56; end; theorem i in dom f & i+1 in dom f implies L~(f|(i+1)) = L~(f|i) \/ LSeg(f/.i,f/.(i+1)) proof set M1={LSeg(f|(i+1),k): 1<=k & k+1<=len(f|(i+1))}, Mi={LSeg(f|i,n): 1<=n & n+1<=len(f|i)}; assume A1: i in dom f & i+1 in dom f; set p = f/.i, q= f/.(i+1); A2: Seg len(f|(i+1)) = dom(f|(i+1)) & Seg len f = dom f & f|(i+1) = f|Seg(i+1) & f|i = f|Seg i by FINSEQ_1:def 3,TOPREAL1:def 1; A3: 1<=i+1 & i+1<=len f & 1<=i & i<=len f by A1,FINSEQ_3:27; then Seg(i+1) c= Seg len f & Seg i c= Seg len f by FINSEQ_1:7; then Seg(i+1) c= dom f & Seg i c= dom f by FINSEQ_1:def 3; then Seg(i+1) = dom f /\ Seg(i+1) & dom f /\ Seg i = Seg i by XBOOLE_1:28; then A4: Seg(i+1)=dom(f|Seg(i+1)) & dom(f|(Seg i))=Seg i by FUNCT_1:68; then A5: i+1=len(f|(i+1)) & i=len(f|i) & i<=i+1 by A2,FINSEQ_1:def 3,NAT_1:29 ; then LSeg(f,i) = LSeg(p,q) & i+1 in dom(f|(i+1)) & i in dom(f|(i+1)) by A3,FINSEQ_3:27,TOPREAL1:def 5; then A6: LSeg(f|(i+1),i) = LSeg(p,q) by A1,Th24; then A7: LSeg(p,q) c= L~(f|(i+1)) by Th26; thus L~(f|(i+1)) c= L~(f|i) \/ LSeg(p,q) proof let x; assume x in L~(f|(i+1)); then x in union M1 by TOPREAL1:def 6; then consider X be set such that A8: x in X & X in M1 by TARSKI:def 4; consider m such that A9: X=LSeg(f|(i+1),m) & 1<=m & m+1<=len(f|(i+1)) by A8; A10: m <= i by A5,A9,REAL_1:53; per cases by A10,REAL_1:def 5; suppose m = i; then X c= L~(f|i) \/ LSeg(p,q) by A6,A9,XBOOLE_1:7; hence thesis by A8; suppose A11: m < i; then A12: m<=i & m+1<=i & m<=m+1 & i<=i+1 by NAT_1:38; A13: m+1<=len(f|i) & 1<=m+1 by A5,A9,A11,NAT_1:38; then A14: m in dom(f|i) & m+1 in dom(f|i) & m<=i+1 by A2,A4,A9,A12,AXIOMS:22,FINSEQ_1:3; then m in dom(f|(i+1)) & m+1 in dom(f|(i+1)) by A2,A4,A9,A13,FINSEQ_1:3; then X = LSeg(f,m) by A1,A9,Th24 .= LSeg(f|i,m) by A1,A14,Th24; then X in Mi by A5,A9,A12; then x in union Mi by A8,TARSKI:def 4; then x in L~(f|i) by TOPREAL1:def 6; hence thesis by XBOOLE_0:def 2; end; let x such that A15: x in L~(f|i) \/ LSeg(p,q); per cases by A15,XBOOLE_0:def 2; suppose x in L~(f|i); then x in union Mi by TOPREAL1:def 6; then consider X be set such that A16: x in X & X in Mi by TARSKI:def 4; consider m such that A17: X=LSeg(f|i,m) & 1<=m & m+1<=len(f|i) by A16; m<=m+1 by NAT_1:29; then A18: 1<=m & m<=len(f|i) & 1<=m+1 & m+1<=len(f|i) by A17,AXIOMS:22; then A19: m in dom(f|i) & m+1 in dom(f|i) & m<=len(f|(i+1)) & m+1<=len(f|(i +1)) by A5,AXIOMS:22,FINSEQ_3:27; then A20: m in dom(f|(i+1)) & m+1 in dom(f|(i+1)) & len(f|i) <= len(f|(i+1) ) by A5,A18,FINSEQ_3:27; X = LSeg(f,m) by A1,A17,A19,Th24 .= LSeg(f|(i+1),m) by A1,A20,Th24; then X in M1 by A17,A19; then x in union M1 by A16,TARSKI:def 4; hence thesis by TOPREAL1:def 6; suppose x in LSeg(p,q); hence thesis by A7; end; theorem len f>=2 & not p in L~f implies for n st 1<=n & n<=len f holds f/.n<>p proof assume A1: len f>=2 & not p in L~f; given n such that A2: 1<=n & n<=len f & f/.n=p; set Mf={LSeg(f,k): 1<=k & k+1<=len f}; per cases by A2,REAL_1:def 5; suppose A3: n=len f; len f>=1 by A1,AXIOMS:22; then reconsider j = len f - 1 as Nat by INT_1:18; 1+1<=len f by A1; then 1<=j & j+1<=len f by REAL_1:84; then f/.(j+1) in LSeg(f,j) & LSeg(f,j) in Mf by TOPREAL1:27; then f/.(j+1) in union Mf by TARSKI:def 4; then f/.n in union Mf by A3,XCMPLX_1:27; hence contradiction by A1,A2,TOPREAL1:def 6; suppose A4: n<len f; then n+1<=len f by NAT_1:38; then A5: LSeg(f,n) in Mf by A2; n+1<=len f & 1<=n by A2,A4,NAT_1:38; then f/.n in LSeg(f,n) by TOPREAL1:27; then f/.n in union Mf by A5,TARSKI:def 4; hence contradiction by A1,A2,TOPREAL1:def 6; end; theorem q<>p & LSeg(q,p) /\ L~f = {q} implies not p in L~f proof assume A1: q<>p & LSeg(q,p) /\ L~f = {q} & p in L~f; p in LSeg(q,p) by TOPREAL1:6; then p in {q} by A1,XBOOLE_0:def 3; hence contradiction by A1,TARSKI:def 1; end; theorem f is_S-Seq & not f/.1 in Ball(u,r) & q in Ball(u,r) & f/.len f in LSeg(f,m) & 1<=m & m + 1 <=len f & LSeg(f,m) meets Ball(u,r) implies m + 1 = len f proof assume A1: f is_S-Seq & not f/.1 in Ball(u,r) & q in Ball(u,r) & f/.len f in LSeg(f,m) & 1<=m & m + 1 <= len f & LSeg(f,m) /\ Ball(u,r) <> {}; then A2: len f >=2 by TOPREAL1:def 10; then A3: 1<=len f by AXIOMS:22; then reconsider k = len f - 1 as Nat by INT_1:18; A4: k+1 = len f by XCMPLX_1:27; set q= f/.len f; A5: f is s.n.c. by A1,TOPREAL1:def 10; A6: f is unfolded by A1,TOPREAL1:def 10; assume m + 1 <> len f; then A7: m+1<=k by A1,A4,NAT_1:26; A8: m+1+1=m+(1+1) by XCMPLX_1:1; A9: f is one-to-one by A1,TOPREAL1:def 10; A10: len f in dom f by A3,FINSEQ_3:27; per cases by A7,REAL_1:def 5; suppose A11: m+1=k; then A12: LSeg(f,m) /\ LSeg(f,m+1) = {f/.(m+1)} by A1,A4,A6,A8,TOPREAL1: def 8; A13: m+1+1<=len f & 1<=m+1 & m+1<=len f by A4,A11,NAT_1:29; then f/.(m+2) in LSeg(f,m+1) by A8,TOPREAL1:27; then q in LSeg(f,m+1) by A8,A11,XCMPLX_1:27; then q in {f/.(m+1)} by A1,A12,XBOOLE_0:def 3; then A14: f/.len f=f/.(m+1) by TARSKI:def 1; m+1 in dom f by A13,FINSEQ_3:27; then len f= len f -1 by A9,A10,A11,A14,PARTFUN2:17; hence contradiction by XCMPLX_1:16; suppose m+1<k; then LSeg(f,m) misses LSeg(f,k) by A5,TOPREAL1:def 9; then A15: LSeg(f,m) /\ LSeg(f,k) = {} by XBOOLE_0:def 7; A16: k+1 = len f by XCMPLX_1:27; (1+1)-1 = 1; then 1<=k by A2,REAL_1:92; then q in LSeg(f,k) by A16,TOPREAL1:27; hence contradiction by A1,A15,XBOOLE_0:def 3; end; theorem not p1 in Ball(u,r) & q in Ball(u,r) & p in Ball(u,r) & not p in LSeg(p1,q) & ((q`1=p`1 & q`2<>p`2) or (q`1<>p`1 & q`2=p`2)) & (p1`1=q`1 or p1`2=q`2) implies LSeg(p1,q) /\ LSeg(q,p) = {q} proof assume A1: not p1 in Ball(u,r) & q in Ball(u,r) & p in Ball(u,r) & not p in LSeg(p1,q); assume A2: (q`1=p`1 & q`2<>p`2) or (q`1<>p`1 & q`2=p`2); assume A3: p1`1=q`1 or p1`2=q`2; A4: now per cases by A3; suppose p1`1=q`1; hence (p1`1=q`1 & p1`2<>q`2) or (p1`1<>q`1 & p1`2=q`2) by A1,Th11; suppose p1`2=q`2; hence (p1`1=q`1 & p1`2<>q`2) or (p1`1<>q`1 & p1`2=q`2) by A1,Th11; end; A5: p=|[p`1,p`2]| & p1=|[p1`1,p1`2]| & q=|[q`1,q`2]| by EUCLID:57; A6: LSeg(p,q) c= Ball(u,r) by A1,Th28; now per cases by A2; suppose A7: q`1=p`1 & q`2<>p`2; set r = p`1, pq = {p2: p2`1=r & p`2<=p2`2 & p2`2<=q`2}, qp = {p3: p3`1=r & q`2<=p3`2 & p3`2<=p`2}, pp1 = {p11: p11`1=r & p`2<=p11`2 & p11`2<=p1`2}, p1p = {p22: p22`1=r & p1`2<=p22`2 & p22`2<=p`2}, qp1 = {q1: q1`1=r & q`2<=q1`2 & q1`2<=p1`2}, p1q = {q2: q2`1=r & p1`2<=q2`2 & q2`2<=q`2}; now per cases by A7,REAL_1:def 5; suppose A8: q`2>p`2; now per cases by A4; suppose A9: p1`1=q`1 & p1`2<>q`2; now per cases by A9,REAL_1:def 5; case p1`2>q`2; then q in pp1 & p1`2>p`2 by A7,A8,AXIOMS:22; then q in LSeg(p,p1) by A5,A7,A9,Th15; hence thesis by TOPREAL1:14; case A10: p1`2<q`2; now per cases by AXIOMS:21; suppose p1`2>p`2; then p1 in pq & p`2<q`2 by A7,A9,A10,AXIOMS:22; then p1 in LSeg(p,q) by A5,A7,Th15; hence contradiction by A1,A6; suppose p1`2=p`2;hence contradiction by A1,A7,A9,Th11; suppose p1`2<p`2; then p in p1q by A8; hence contradiction by A1,A5,A7,A9,A10,Th15; end; hence contradiction; end; hence thesis; suppose p1`1<>q`1 & p1`2=q`2; hence thesis by A5,A7,Th37; end; hence thesis; suppose A11: q`2<p`2; now per cases by A4; suppose A12: p1`1=q`1 & p1`2<>q`2; now per cases by A12,REAL_1:def 5; case A13: p1`2>q`2; now per cases by AXIOMS:21; suppose p1`2>p`2; then p in qp1 by A11; hence contradiction by A1,A5,A7,A12,A13,Th15; suppose p1`2=p`2;hence contradiction by A1,A7,A12,Th11; suppose p1`2<p`2; then p1 in qp by A7,A12,A13; then p1 in LSeg(p,q) by A5,A7,A11,Th15; hence contradiction by A1,A6; end; hence contradiction; case p1`2<q`2; then q in p1p & p1`2<p`2 by A7,A11,AXIOMS:22; then q in LSeg(p1,p) by A5,A7,A12,Th15; hence LSeg(p1,q) /\ LSeg(q,p) = {q} by TOPREAL1:14; end; hence thesis; suppose p1`1<>q`1 & p1`2=q`2; hence thesis by A5,A7,Th37; end; hence thesis; end; hence thesis; suppose A14: q`1<>p`1 & q`2=p`2; set r = p`2, pq = {p2: p2`2=r & p`1<=p2`1 & p2`1<=q`1}, qp = {p3: p3`2=r & q`1<=p3`1 & p3`1<=p`1}, pp1 = {p11: p11`2=r & p`1<=p11`1 & p11`1<=p1`1}, p1p = {p22: p22`2=r & p1`1<=p22`1 & p22`1<=p`1}, qp1 = {q1: q1`2=r & q`1<=q1`1 & q1`1<=p1`1}, p1q = {q2: q2`2=r & p1`1<=q2`1 & q2`1<=q`1}; now per cases by A14,REAL_1:def 5; suppose A15: q`1>p`1; now per cases by A4; suppose p1`1=q`1 & p1`2<>q`2; hence thesis by A5,A14,Th36; suppose A16: p1`1<>q`1 & p1`2=q`2; now per cases by A16,REAL_1:def 5; case p1`1>q`1; then q in pp1 & p1`1>p`1 by A14,A15,AXIOMS:22; then q in LSeg(p,p1) by A5,A14,A16,Th16; hence thesis by TOPREAL1:14; case A17: p1`1<q`1; now per cases by AXIOMS:21; suppose p1`1>p`1; then p1 in pq & p`1<q`1 by A14,A16,A17,AXIOMS:22; then p1 in LSeg(p,q) by A5,A14,Th16; hence contradiction by A1,A6; suppose p1`1=p`1; hence contradiction by A1,A14,A16,Th11; suppose p1`1<p`1; then p in p1q by A15; hence contradiction by A1,A5,A14,A16,A17,Th16; end; hence contradiction; end; hence thesis; end; hence thesis; suppose A18: q`1<p`1; now per cases by A4; suppose p1`1=q`1 & p1`2<>q`2; hence thesis by A5,A14,Th36; suppose A19: p1`1<>q`1 & p1`2=q`2; now per cases by A19,REAL_1:def 5; case A20: p1`1>q`1; now per cases by AXIOMS:21; suppose p1`1>p`1; then p in qp1 by A18; hence contradiction by A1,A5,A14,A19,A20,Th16; suppose p1`1=p`1; hence contradiction by A1,A14,A19,Th11; suppose p1`1<p`1; then p1 in qp by A14,A19,A20; then p1 in LSeg(p,q) by A5,A14,A18,Th16; hence contradiction by A1,A6; end; hence contradiction; case p1`1<q`1; then q in p1p & p1`1<p`1 by A14,A18,AXIOMS:22; then q in LSeg(p1,p) by A5,A14,A19,Th16; hence thesis by TOPREAL1:14; end; hence thesis; end; hence thesis; end; hence thesis; end; hence thesis; end; theorem not p1 in Ball(u,r) & p in Ball(u,r) & |[p`1,q`2]| in Ball(u,r) & q in Ball(u,r) & not |[p`1,q`2]| in LSeg(p1,p) & p1`1 = p`1 & p`1<>q`1 & p`2<>q`2 implies (LSeg(p,|[p`1,q`2]|) \/ LSeg(|[p`1,q`2]|,q)) /\ LSeg(p1,p) = {p} proof set v = |[p`1,q`2]|; assume A1: not p1 in Ball(u,r) & p in Ball(u,r) & v in Ball(u,r) & q in Ball(u,r) & not v in LSeg(p1,p) & p1`1=p`1 & p`1<>q`1 & p`2<>q`2; A2: p in LSeg(p,v) & p in LSeg(p1,p) by TOPREAL1:6; then A3: p in LSeg(p,v) \/ LSeg(v,q) by XBOOLE_0:def 2; A4: (LSeg(p,v) \/ LSeg(v,q)) /\ LSeg(p1,p) = LSeg(p,v) /\ LSeg(p1,p) \/ LSeg(v,q) /\ LSeg(p1,p) by XBOOLE_1:23; p in (LSeg(p,v) \/ LSeg(v,q)) /\ LSeg(p1,p) by A2,A3,XBOOLE_0:def 3; then A5: {p} c= (LSeg(p,v) \/ LSeg(v,q)) /\ LSeg(p1,p) by ZFMISC_1:37; A6: p1=|[p`1,p1`2]| & p=|[p`1,p`2]| & q=|[q`1,q`2]| & v`1=p`1 & v`2=q`2 by A1,EUCLID:56,57; A7: LSeg(p,v) c= Ball(u,r) by A1,Th28; per cases; suppose p1`2=p`2; hence thesis by A1,Th11; suppose A8: p1`2<>p`2; now per cases by A8,REAL_1:def 5; suppose A9: p1`2>p`2; now per cases by A1,REAL_1:def 5; suppose A10: p`1>q`1; now per cases by A1,REAL_1:def 5; case A11: p`2>q`2; then A12: p`2>=v`2 by EUCLID:56; (LSeg(p,v) \/ LSeg(v,q)) /\ LSeg(p1,p) c= {p} proof let x such that A13: x in (LSeg(p,v) \/ LSeg(v,q)) /\ LSeg(p1,p); now per cases by A4,A13,XBOOLE_0:def 2; case A14: x in LSeg(p,v) /\ LSeg(p1,p); A15: v`2<p1`2 by A6,A9,A11,AXIOMS:22; p in {q1: q1`1=p`1 & v`2<=q1`2 & q1`2<=p1`2} by A9,A12; then p in LSeg(p1,v) by A6,A15,Th15; hence x in {p} by A14,TOPREAL1:14; case x in LSeg(v,q) /\ LSeg(p1,p); then A16: x in LSeg(v,q) & x in LSeg(p1,p) by XBOOLE_0:def 3; then x in {q2: q2`1=p`1 & p`2<=q2`2 & q2`2<=p1`2} by A6,A9,Th15; then consider q2 such that A17: q2=x & q2`1=p`1 & p`2<=q2`2 & q2`2<=p1`2; x in {p2: p2`2=q`2 & q`1<=p2`1 & p2`1<=p`1} by A6,A10,A16,Th16; then ex p2 st p2=x & p2`2=q`2 & q`1<=p2`1 & p2`1<=p`1; hence contradiction by A11,A17; end; hence thesis; end; hence thesis by A5,XBOOLE_0:def 10; case A18: p`2<q`2; now per cases by AXIOMS:21; suppose A19: q`2>p1`2; then A20: p1 in {q2: q2`1=p`1 & p`2<=q2`2 & q2`2<=v`2} by A1,A6,A9; p`2<v`2 by A6,A9,A19,AXIOMS:22; then p1 in LSeg(p,v) by A6,A20,Th15; hence contradiction by A1,A7; suppose q`2=p1`2; hence contradiction by A1,EUCLID:57; suppose A21: q`2<p1`2; then A22: v in {p2: p2`1=p`1 & p`2<=p2`2 & p2`2<=p1`2} by A6,A18; p`2<p1`2 by A18,A21,AXIOMS:22; hence contradiction by A1,A6,A22,Th15; end; hence contradiction; end; hence thesis; suppose A23: p`1<q`1; now per cases by A1,REAL_1:def 5; case A24: p`2>q`2; then A25: p`2>=v`2 by EUCLID:56; (LSeg(p,v) \/ LSeg(v,q)) /\ LSeg(p1,p) c= {p} proof let x such that A26: x in (LSeg(p,v) \/ LSeg(v,q)) /\ LSeg(p1,p); now per cases by A4,A26,XBOOLE_0:def 2; case A27: x in LSeg(p,v) /\ LSeg(p1,p); A28: v`2<p1`2 by A6,A9,A24,AXIOMS:22; p in {q1: q1`1=p`1 & v`2<=q1`2 & q1`2<=p1`2} by A9,A25; then p in LSeg(p1,v) by A6,A28,Th15; hence x in {p} by A27,TOPREAL1:14; case x in LSeg(v,q) /\ LSeg(p1,p); then A29: x in LSeg(v,q) & x in LSeg(p1,p) by XBOOLE_0:def 3; then x in {q2: q2`1=p`1 & p`2<=q2`2 & q2`2<=p1`2} by A6,A9,Th15; then A30: ex q2 st q2=x & q2`1=p`1 & p`2<=q2`2 & q2`2<=p1`2; x in {p2: p2`2=q`2 & p`1<=p2`1 & p2`1<=q`1} by A6,A23,A29,Th16; then ex p2 st p2=x & p2`2=q`2 & p`1<=p2`1 & p2`1<=q`1; hence contradiction by A24,A30; end; hence thesis; end; hence thesis by A5,XBOOLE_0:def 10; case A31: p`2<q`2; now per cases by AXIOMS:21; suppose A32: q`2>p1`2; then A33: p1 in {q2: q2`1=p`1 & p`2<=q2`2 & q2`2<=v`2} by A1,A6,A9; p`2<v`2 by A6,A9,A32,AXIOMS:22; then p1 in LSeg(p,v) by A6,A33,Th15; hence contradiction by A1,A7; suppose q`2=p1`2; hence contradiction by A1,EUCLID:57; suppose A34: q`2<p1`2; then A35: v in {p2: p2`1=p`1 & p`2<=p2`2 & p2`2<=p1`2} by A6,A31; p`2<p1`2 by A31,A34,AXIOMS:22; hence contradiction by A1,A6,A35,Th15; end; hence contradiction; end; hence thesis; end; hence thesis; suppose A36: p1`2<p`2; now per cases by A1,REAL_1:def 5; suppose A37: p`1>q`1; now per cases by A1,REAL_1:def 5; case A38: p`2>q`2; now per cases by AXIOMS:21; suppose A39: q`2>p1`2; then A40: v in {p2: p2`1=p`1 & p1`2<=p2`2 & p2`2<=p`2} by A6,A38; p1`2<p`2 by A38,A39,AXIOMS:22; hence contradiction by A1,A6,A40,Th15; suppose q`2=p1`2; hence contradiction by A1,EUCLID:57; suppose A41: q`2<p1`2; then A42: p1 in {q2: q2`1=p`1 & v`2<=q2`2 & q2`2<=p`2} by A1,A6,A36 ; v`2<p`2 by A6,A36,A41,AXIOMS:22; then p1 in LSeg(p,v) by A6,A42,Th15; hence contradiction by A1,A7; end; hence contradiction; case A43: p`2<q`2; (LSeg(p,v) \/ LSeg(v,q)) /\ LSeg(p1,p) c= {p} proof let x such that A44: x in (LSeg(p,v) \/ LSeg(v,q)) /\ LSeg(p1,p); now per cases by A4,A44,XBOOLE_0:def 2; case A45: x in LSeg(p,v) /\ LSeg(p1,p); A46: p1`2<v`2 by A6,A36,A43,AXIOMS:22; p in {q1: q1`1=p`1 & p1`2<=q1`2 & q1`2<=v`2} by A6,A36,A43; then p in LSeg(p1,v) by A6,A46,Th15; hence x in {p} by A45,TOPREAL1:14; case x in LSeg(v,q) /\ LSeg(p1,p); then A47: x in LSeg(v,q) & x in LSeg(p1,p) by XBOOLE_0:def 3; then x in {q2: q2`1=p`1 & p1`2<=q2`2 & q2`2<=p`2} by A6,A36,Th15 ; then A48: ex q2 st q2=x & q2`1=p`1 & p1`2<=q2`2 & q2`2<=p`2; x in {p2: p2`2=q`2 & q`1<=p2`1 & p2`1<=p`1} by A6,A37,A47,Th16; then ex p2 st p2=x & p2`2=q`2 & q`1<=p2`1 & p2`1<=p`1; hence contradiction by A43,A48; end; hence thesis; end; hence thesis by A5,XBOOLE_0:def 10; end; hence thesis; suppose A49: p`1<q`1; now per cases by A1,REAL_1:def 5; case A50: p`2>q`2; now per cases by AXIOMS:21; suppose A51: q`2>p1`2; then A52: v in {p2: p2`1=p`1 & p1`2<=p2`2 & p2`2<=p`2} by A6,A50; p1`2<p`2 by A50,A51,AXIOMS:22; hence contradiction by A1,A6,A52,Th15; suppose q`2=p1`2; hence contradiction by A1,EUCLID:57; suppose A53: q`2<p1`2; then A54: p1 in {q2: q2`1=p`1 & v`2<=q2`2 & q2`2<=p`2} by A1,A6,A36 ; v`2<p`2 by A6,A36,A53,AXIOMS:22; then p1 in LSeg(p,v) by A6,A54,Th15; hence contradiction by A1,A7; end; hence contradiction; case A55: p`2<q`2; (LSeg(p,v) \/ LSeg(v,q)) /\ LSeg(p1,p) c= {p} proof let x such that A56: x in (LSeg(p,v) \/ LSeg(v,q)) /\ LSeg(p1,p); now per cases by A4,A56,XBOOLE_0:def 2; case A57: x in LSeg(p,v) /\ LSeg(p1,p); A58: p1`2<v`2 by A6,A36,A55,AXIOMS:22; p in {q1: q1`1=p`1 & p1`2<=q1`2 & q1`2<=v`2} by A6,A36,A55; then p in LSeg(p1,v) by A6,A58,Th15; hence x in {p} by A57,TOPREAL1:14; case x in LSeg(v,q) /\ LSeg(p1,p); then A59: x in LSeg(v,q) & x in LSeg(p1,p) by XBOOLE_0:def 3; then x in {q2: q2`1=p`1 & p1`2<=q2`2 & q2`2<=p`2} by A6,A36,Th15 ; then A60: ex q2 st q2=x & q2`1=p`1 & p1`2<=q2`2 & q2`2<=p`2; x in {p2: p2`2=q`2 & p`1<=p2`1 & p2`1<=q`1} by A6,A49,A59,Th16; then ex p2 st p2=x & p2`2=q`2 & p`1<=p2`1 & p2`1<=q`1; hence contradiction by A55,A60; end; hence thesis; end; hence thesis by A5,XBOOLE_0:def 10; end; hence thesis; end; hence thesis; end; hence thesis; end; theorem not p1 in Ball(u,r) & p in Ball(u,r) & |[q`1,p`2]| in Ball(u,r) & q in Ball(u,r) & not |[q`1,p`2]| in LSeg(p1,p) & p1`2 = p`2 & p`1<>q`1 & p`2<>q`2 implies (LSeg(p,|[q`1,p`2]|) \/ LSeg(|[q`1,p`2]|,q)) /\ LSeg(p1,p) = {p} proof set v = |[q`1,p`2]|; assume A1: not p1 in Ball(u,r) & p in Ball(u,r) & v in Ball(u,r) & q in Ball(u,r) & not v in LSeg(p1,p) & p1`2=p`2 & p`1<>q`1 & p`2<>q`2; A2: p in LSeg(p,v) & p in LSeg(p1,p) by TOPREAL1:6; then A3: p in LSeg(p,v) \/ LSeg(v,q) by XBOOLE_0:def 2; A4: (LSeg(p,v) \/ LSeg(v,q)) /\ LSeg(p1,p) = LSeg(p,v) /\ LSeg(p1,p) \/ LSeg(v,q) /\ LSeg(p1,p) by XBOOLE_1:23; p in (LSeg(p,v) \/ LSeg(v,q)) /\ LSeg(p1,p) by A2,A3,XBOOLE_0:def 3; then A5: {p} c= (LSeg(p,v) \/ LSeg(v,q)) /\ LSeg(p1,p) by ZFMISC_1:37; A6: p1=|[p1`1,p`2]| & p=|[p`1,p`2]| & q=|[q`1,q`2]| & v`1=q`1 & v`2=p`2 by A1,EUCLID:56,57; A7: LSeg(p,v) c= Ball(u,r) by A1,Th28; per cases; suppose p1`1=p`1; hence thesis by A1,Th11; suppose A8: p1`1<>p`1; now per cases by A8,REAL_1:def 5; suppose A9: p1`1>p`1; now per cases by A1,REAL_1:def 5; case A10: p`1>q`1; then A11: p`1>=v`1 by EUCLID:56; now per cases by A1,REAL_1:def 5; suppose A12: p`2>q`2; (LSeg(p,v) \/ LSeg(v,q)) /\ LSeg(p1,p) c= {p} proof let x such that A13: x in (LSeg(p,v) \/ LSeg(v,q)) /\ LSeg(p1,p); now per cases by A4,A13,XBOOLE_0:def 2; case A14: x in LSeg(p,v) /\ LSeg(p1,p); A15: v`1<p1`1 by A6,A9,A10,AXIOMS:22; p in {q1: q1`2=p`2 & v`1<=q1`1 & q1`1<=p1`1} by A9,A11; then p in LSeg(p1,v) by A6,A15,Th16; hence x in {p} by A14,TOPREAL1:14; case x in LSeg(v,q) /\ LSeg(p1,p); then A16: x in LSeg(q,v) & x in LSeg(p,p1) by XBOOLE_0:def 3; then x in {q2: q2`2=p`2 & p`1<=q2`1 & q2`1<=p1`1} by A6,A9,Th16; then A17: ex q2 st q2=x & q2`2=p`2 & p`1<=q2`1 & q2`1<=p1`1; x in {p2: p2`1=q`1 & q`2<=p2`2 & p2`2<=p`2} by A6,A12,A16,Th15; then ex p2 st p2=x & p2`1=q`1 & q`2<=p2`2 & p2`2<=p`2; hence contradiction by A10,A17; end; hence thesis; end; hence thesis by A5,XBOOLE_0:def 10; suppose A18: p`2<q`2; (LSeg(p,v) \/ LSeg(v,q)) /\ LSeg(p1,p) c= {p} proof let x such that A19: x in (LSeg(p,v) \/ LSeg(v,q)) /\ LSeg(p1,p); now per cases by A4,A19,XBOOLE_0:def 2; case A20: x in LSeg(p,v) /\ LSeg(p1,p); A21: v`1<p1`1 by A6,A9,A10,AXIOMS:22; p in {q1: q1`2=p`2 & v`1<=q1`1 & q1`1<=p1`1} by A9,A11; then p in LSeg(p1,v) by A6,A21,Th16; hence x in {p} by A20,TOPREAL1:14; case x in LSeg(v,q) /\ LSeg(p1,p); then A22: x in LSeg(v,q) & x in LSeg(p1,p) by XBOOLE_0:def 3; then x in {q2: q2`2=p`2 & p`1<=q2`1 & q2`1<=p1`1} by A6,A9,Th16; then A23: ex q2 st q2=x & q2`2=p`2 & p`1<=q2`1 & q2`1<=p1`1; x in {p2: p2`1=q`1 & v`2<=p2`2 & p2`2<=q`2} by A6,A18,A22,Th15; then ex p2 st p2=x & p2`1=q`1 & v`2<=p2`2 & p2`2<=q`2; hence contradiction by A10,A23; end; hence thesis; end; hence thesis by A5,XBOOLE_0:def 10; end; hence thesis; case A24: p`1<q`1; now per cases by AXIOMS:21; suppose A25: q`1>p1`1; then A26: p1 in {q2: q2`2=p`2 & p`1<=q2`1 & q2`1<=v`1} by A1,A6,A9; p`1<v`1 by A6,A9,A25,AXIOMS:22; then p1 in LSeg(p,v) by A6,A26,Th16; hence contradiction by A1,A7; suppose q`1=p1`1; hence contradiction by A1,EUCLID:57; suppose q`1<p1`1; then v in {p2: p2`2=p`2 & p`1<=p2`1 & p2`1<=p1`1} by A6,A24; hence contradiction by A1,A6,A9,Th16; end; hence contradiction; end; hence thesis; suppose A27: p1`1<p`1; now per cases by A1,REAL_1:def 5; case A28: p`1>q`1; now per cases by AXIOMS:21; suppose q`1>p1`1; then v in {q2: q2`2=p`2 & p1`1<=q2`1 & q2`1<=p`1} by A6,A28; hence contradiction by A1,A6,A27,Th16; suppose q`1=p1`1; hence contradiction by A1,EUCLID:57; suppose A29: q`1<p1`1; then A30: p1 in {p2: p2`2=p`2 & v`1<=p2`1 & p2`1<=p`1} by A1,A6,A27; v`1<p`1 by A6,A27,A29,AXIOMS:22; then p1 in LSeg(p,v) by A6,A30,Th16; hence contradiction by A1,A7; end; hence contradiction; case A31: p`1<q`1; then A32: p`1<=v`1 by EUCLID:56; now per cases by A1,REAL_1:def 5; suppose A33: p`2>q`2; (LSeg(p,v) \/ LSeg(v,q)) /\ LSeg(p1,p) c= {p} proof let x such that A34: x in (LSeg(p,v) \/ LSeg(v,q)) /\ LSeg(p1,p); now per cases by A4,A34,XBOOLE_0:def 2; case A35: x in LSeg(p,v) /\ LSeg(p1,p); A36: p1`1<v`1 by A6,A27,A31,AXIOMS:22; p in {q1: q1`2=p`2 & p1`1<=q1`1 & q1`1<=v`1} by A27,A32; then p in LSeg(p1,v) by A6,A36,Th16; hence x in {p} by A35,TOPREAL1:14; case x in LSeg(v,q) /\ LSeg(p1,p); then A37: x in LSeg(v,q) & x in LSeg(p1,p) by XBOOLE_0:def 3; then x in {q2: q2`2=p`2 & p1`1<=q2`1 & q2`1<=p`1} by A6,A27,Th16 ; then A38: ex q2 st q2=x & q2`2=p`2 & p1`1<=q2`1 & q2`1<=p`1; x in {p2: p2`1=q`1 & q`2<=p2`2 & p2`2<=p`2} by A6,A33,A37,Th15; then ex p2 st p2=x & p2`1=q`1 & q`2<=p2`2 & p2`2<=p`2; hence contradiction by A31,A38; end; hence thesis; end; hence thesis by A5,XBOOLE_0:def 10; suppose A39: p`2<q`2; (LSeg(p,v) \/ LSeg(v,q)) /\ LSeg(p1,p) c= {p} proof let x such that A40: x in (LSeg(p,v) \/ LSeg(v,q)) /\ LSeg(p1,p); now per cases by A4,A40,XBOOLE_0:def 2; case A41: x in LSeg(p,v) /\ LSeg(p1,p); A42: p1`1<v`1 by A6,A27,A31,AXIOMS:22; p in {q1: q1`2=p`2 & p1`1<=q1`1 & q1`1<=v`1} by A27,A32; then p in LSeg(p1,v) by A6,A42,Th16; hence x in {p} by A41,TOPREAL1:14; case x in LSeg(v,q) /\ LSeg(p1,p); then A43: x in LSeg(v,q) & x in LSeg(p1,p) by XBOOLE_0:def 3; then x in {q2: q2`2=p`2 & p1`1<=q2`1 & q2`1<=p`1} by A6,A27,Th16 ; then A44: ex q2 st q2=x & q2`2=p`2 & p1`1<=q2`1 & q2`1<=p`1; x in {p2: p2`1=q`1 & v`2<=p2`2 & p2`2<=q`2} by A6,A39,A43,Th15; then ex p2 st p2=x & p2`1=q`1 & v`2<=p2`2 & p2`2<=q`2; hence contradiction by A31,A44; end; hence thesis; end; hence thesis by A5,XBOOLE_0:def 10; end; hence thesis; end; hence thesis; end; hence thesis; end;