Copyright (c) 1992 Association of Mizar Users
environ vocabulary RLVECT_1, ANALOAF, ANALMETR, ANALORT, SYMSP_1, DIRORT; notation STRUCT_0, RLVECT_1, ANALOAF, ANALMETR, ANALORT; constructors ANALMETR, ANALORT, XBOOLE_0; clusters ANALOAF, ANALORT, ZFMISC_1, XBOOLE_0; theorems ANALMETR, ANALORT; begin reserve V for RealLinearSpace; reserve x,y for VECTOR of V; definition let AS be non empty AffinStruct; let a,b,c,d be Element of AS; redefine pred a,b // c,d; synonym a,b '//' c,d; end; theorem Th1:Gen x,y implies (for u,u1,v,v1,w,w1,w2 being Element of CESpace(V,x,y) holds ((u,u '//' v,w) & (u,v '//' w,w) & (u,v '//' u1,v1 & u,v '//' v1,u1 implies u=v or u1=v1) & (u,v '//' u1,v1 & u,v '//' u1,w implies u,v '//' v1,w or u,v '//' w,v1) & (u,v '//' u1,v1 implies v,u '//' v1,u1) & (u,v '//' u1,v1 & u,v '//' v1,w implies u,v '//' u1,w) & (u,u1 '//' v,v1 implies v,v1 '//' u,u1 or v,v1 '//' u1,u))) & (for u,v,w being Element of CESpace(V,x,y) holds ex u1 being Element of CESpace(V,x,y) st w<>u1 & w,u1 '//' u,v ) & (for u,v,w being Element of CESpace(V,x,y) holds ex u1 being Element of CESpace(V,x,y) st w<>u1 & u,v '//' w,u1 ) proof assume A1:Gen x,y; set S=CESpace(V,x,y); A2: S=AffinStruct (# the carrier of V,CORTE(V,x,y) #) by ANALORT:def 7; thus (for u,u1,v,v1,w,w1,w2 being Element of S holds ((u,u '//' v,w) & (u,v '//' w,w) & (u,v '//' u1,v1 & u,v '//' v1,u1 implies u=v or u1=v1) & (u,v '//' u1,v1 & u,v '//' u1,w implies u,v '//' v1,w or u,v '//' w,v1) & (u,v '//' u1,v1 implies v,u '//' v1,u1) & (u,v '//' u1,v1 & u,v '//' v1,w implies u,v '//' u1,w) & (u,u1 '//' v,v1 implies v,v1 '//' u,u1 or v,v1 '//' u1,u))) proof let u,u1,v,v1,w,w1,w2 be Element of S; reconsider u'=u,v'=v,w'=w,u1'=u1,v1'=v1 as Element of V by A2; thus u,u '//' v,w proof u',u',v',w' are_COrte_wrt x,y by ANALORT:20; hence thesis by ANALORT:56; end; thus u,v '//' w,w proof u',v',w',w' are_COrte_wrt x,y by ANALORT:22; hence thesis by ANALORT:56; end; thus (u,v '//' u1,v1 & u,v '//' v1,u1 implies u=v or u1=v1) proof (u',v',u1',v1' are_COrte_wrt x,y & u',v',v1',u1' are_COrte_wrt x,y implies u'=v' or u1'=v1') by A1,ANALORT:30; hence thesis by ANALORT:56; end; thus (u,v '//' u1,v1 & u,v '//' u1,w implies u,v '//' v1,w or u,v '//' w,v1) proof (u',v',u1',v1' are_COrte_wrt x,y & u',v',u1',w' are_COrte_wrt x,y implies u',v',v1',w' are_COrte_wrt x,y or u',v',w',v1' are_COrte_wrt x,y) by A1,ANALORT:32; hence thesis by ANALORT:56; end; thus (u,v '//' u1,v1 implies v,u '//' v1,u1) proof (u',v',u1',v1' are_COrte_wrt x,y implies v',u',v1',u1' are_COrte_wrt x,y) by ANALORT:34; hence thesis by ANALORT:56; end; thus (u,v '//' u1,v1 & u,v '//' v1,w implies u,v '//' u1,w) proof (u',v',u1',v1' are_COrte_wrt x,y & u',v',v1',w' are_COrte_wrt x,y implies u',v',u1',w' are_COrte_wrt x,y) by A1,ANALORT:36; hence thesis by ANALORT:56; end; thus (u,u1 '//' v,v1 implies v,v1 '//' u,u1 or v,v1 '//' u1,u) proof (u',u1',v',v1' are_COrte_wrt x,y implies v',v1',u',u1' are_COrte_wrt x,y or v',v1',u1',u' are_COrte_wrt x,y) by A1,ANALORT:18; hence thesis by ANALORT:56; end; thus thesis; end; thus (for u,v,w being Element of S holds ex u1 being Element of S st w<>u1 & w,u1 '//' u,v ) proof let u,v,w be Element of S; reconsider u'=u,v'=v,w'=w as Element of V by A2; consider u1' being Element of V such that A3: w'<>u1' & w',u1',u',v' are_COrte_wrt x,y by A1,ANALORT:38; reconsider u1=u1' as Element of S by A2; w<>u1 & w,u1 '//' u,v by A3,ANALORT:56; hence thesis; end; let u,v,w be Element of S; reconsider u'=u,v'=v,w'=w as Element of V by A2; consider u1' being Element of V such that A4: w'<>u1' & u',v',w',u1' are_COrte_wrt x,y by A1,ANALORT:40; reconsider u1=u1' as Element of S by A2; w<>u1 & u,v '//' w,u1 by A4,ANALORT:56; hence thesis; end; theorem Th2: Gen x,y implies (for u,u1,v,v1,w,w1,w2 being Element of CMSpace(V,x,y) holds ((u,u '//' v,w) & (u,v '//' w,w) & (u,v '//' u1,v1 & u,v '//' v1,u1 implies u=v or u1=v1) & (u,v '//' u1,v1 & u,v '//' u1,w implies u,v '//' v1,w or u,v '//' w,v1) & (u,v '//' u1,v1 implies v,u '//' v1,u1) & (u,v '//' u1,v1 & u,v '//' v1,w implies u,v '//' u1,w) & (u,u1 '//' v,v1 implies v,v1 '//' u,u1 or v,v1 '//' u1,u))) & (for u,v,w being Element of CMSpace(V,x,y) holds ex u1 being Element of CMSpace(V,x,y) st w<>u1 & w,u1 '//' u,v ) & (for u,v,w being Element of CMSpace(V,x,y) holds ex u1 being Element of CMSpace(V,x,y) st w<>u1 & u,v '//' w,u1 ) proof assume A1:Gen x,y; set S=CMSpace(V,x,y); A2: S=AffinStruct (# the carrier of V,CORTM(V,x,y) #) by ANALORT:def 8; thus (for u,u1,v,v1,w,w1,w2 being Element of S holds ((u,u '//' v,w) & (u,v '//' w,w) & (u,v '//' u1,v1 & u,v '//' v1,u1 implies u=v or u1=v1) & (u,v '//' u1,v1 & u,v '//' u1,w implies u,v '//' v1,w or u,v '//' w,v1) & (u,v '//' u1,v1 implies v,u '//' v1,u1) & (u,v '//' u1,v1 & u,v '//' v1,w implies u,v '//' u1,w) & (u,u1 '//' v,v1 implies v,v1 '//' u,u1 or v,v1 '//' u1,u))) proof let u,u1,v,v1,w,w1,w2 be Element of S; reconsider u'=u,v'=v,w'=w,u1'=u1,v1'=v1 as Element of V by A2; thus u,u '//' v,w proof u',u',v',w' are_COrtm_wrt x,y by ANALORT:21; hence thesis by ANALORT:57; end; thus u,v '//' w,w proof u',v',w',w' are_COrtm_wrt x,y by ANALORT:23; hence thesis by ANALORT:57; end; thus (u,v '//' u1,v1 & u,v '//' v1,u1 implies u=v or u1=v1) proof (u',v',u1',v1' are_COrtm_wrt x,y & u',v',v1',u1' are_COrtm_wrt x,y implies u'=v' or u1'=v1') by A1,ANALORT:31; hence thesis by ANALORT:57; end; thus (u,v '//' u1,v1 & u,v '//' u1,w implies u,v '//' v1,w or u,v '//' w,v1) proof (u',v',u1',v1' are_COrtm_wrt x,y & u',v',u1',w' are_COrtm_wrt x,y implies u',v',v1',w' are_COrtm_wrt x,y or u',v',w',v1' are_COrtm_wrt x,y) by A1,ANALORT:33; hence thesis by ANALORT:57; end; thus (u,v '//' u1,v1 implies v,u '//' v1,u1) proof (u',v',u1',v1' are_COrtm_wrt x,y implies v',u',v1',u1' are_COrtm_wrt x,y) by ANALORT:35; hence thesis by ANALORT:57; end; thus (u,v '//' u1,v1 & u,v '//' v1,w implies u,v '//' u1,w) proof (u',v',u1',v1' are_COrtm_wrt x,y & u',v',v1',w' are_COrtm_wrt x,y implies u',v',u1',w' are_COrtm_wrt x,y) by A1,ANALORT:37; hence thesis by ANALORT:57; end; thus (u,u1 '//' v,v1 implies v,v1 '//' u,u1 or v,v1 '//' u1,u) proof (u',u1',v',v1' are_COrtm_wrt x,y implies v',v1',u',u1' are_COrtm_wrt x,y or v',v1',u1',u' are_COrtm_wrt x,y) by A1,ANALORT:19; hence thesis by ANALORT:57; end; thus thesis; end; thus (for u,v,w being Element of S holds ex u1 being Element of S st w<>u1 & w,u1 '//' u,v ) proof let u,v,w be Element of S; reconsider u'=u,v'=v,w'=w as Element of V by A2; consider u1' being Element of V such that A3: w'<>u1' & w',u1',u',v' are_COrtm_wrt x,y by A1,ANALORT:39; reconsider u1=u1' as Element of S by A2; w<>u1 & w,u1 '//' u,v by A3,ANALORT:57; hence thesis; end; let u,v,w be Element of S; reconsider u'=u,v'=v,w'=w as Element of V by A2; consider u1' being Element of V such that A4: w'<>u1' & u',v',w',u1' are_COrtm_wrt x,y by A1,ANALORT:41; reconsider u1=u1' as Element of S by A2; w<>u1 & u,v '//' w,u1 by A4,ANALORT:57; hence thesis; end; definition let IT be non empty AffinStruct; attr IT is Oriented_Orthogonality_Space-like means :Def1: (for u,u1,v,v1,w,w1,w2 being Element of IT holds ((u,u '//' v,w) & (u,v '//' w,w) & (u,v '//' u1,v1 & u,v '//' v1,u1 implies u=v or u1=v1) & (u,v '//' u1,v1 & u,v '//' u1,w implies u,v '//' v1,w or u,v '//' w,v1) & (u,v '//' u1,v1 implies v,u '//' v1,u1) & (u,v '//' u1,v1 & u,v '//' v1,w implies u,v '//' u1,w) & (u,u1 '//' v,v1 implies v,v1 '//' u,u1 or v,v1 '//' u1,u))) & (for u,v,w being Element of IT holds ex u1 being Element of IT st w<>u1 & w,u1 '//' u,v ) & (for u,v,w being Element of IT holds ex u1 being Element of IT st w<>u1 & u,v '//' w,u1 ); end; definition cluster Oriented_Orthogonality_Space-like (non empty AffinStruct); existence proof consider V,x,y such that A1:Gen x,y by ANALMETR:7; take C = CESpace(V,x,y); thus (for u,u1,v,v1,w,w1,w2 being Element of C holds ((u,u '//' v,w) & (u,v '//' w,w) & (u,v '//' u1,v1 & u,v '//' v1,u1 implies u=v or u1=v1) & (u,v '//' u1,v1 & u,v '//' u1,w implies u,v '//' v1,w or u,v '//' w,v1) & (u,v '//' u1,v1 implies v,u '//' v1,u1) & (u,v '//' u1,v1 & u,v '//' v1,w implies u,v '//' u1,w) & (u,u1 '//' v,v1 implies v,v1 '//' u,u1 or v,v1 '//' u1,u))) & (for u,v,w being Element of C holds ex u1 being Element of C st w<>u1 & w,u1 '//' u,v ) & (for u,v,w being Element of C holds ex u1 being Element of C st w<>u1 & u,v '//' w,u1 ) by A1,Th1; end; end; definition mode Oriented_Orthogonality_Space is Oriented_Orthogonality_Space-like (non empty AffinStruct); end; canceled; theorem Th4:Gen x,y implies CMSpace(V,x,y) is Oriented_Orthogonality_Space proof assume Gen x,y; then (for u,u1,v,v1,w,w1,w2 being Element of CMSpace(V,x,y) holds ((u,u '//' v,w) & (u,v '//' w,w) & (u,v '//' u1,v1 & u,v '//' v1,u1 implies u=v or u1=v1) & (u,v '//' u1,v1 & u,v '//' u1,w implies u,v '//' v1,w or u,v '//' w,v1) & (u,v '//' u1,v1 implies v,u '//' v1,u1) & (u,v '//' u1,v1 & u,v '//' v1,w implies u,v '//' u1,w) & (u,u1 '//' v,v1 implies v,v1 '//' u,u1 or v,v1 '//' u1,u))) & (for u,v,w being Element of CMSpace(V,x,y) holds ex u1 being Element of CMSpace(V,x,y) st w<>u1 & w,u1 '//' u,v ) & (for u,v,w being Element of CMSpace(V,x,y) holds ex u1 being Element of CMSpace(V,x,y) st w<>u1 & u,v '//' w,u1 ) by Th2; hence thesis by Def1; end; theorem Th5:Gen x,y implies CESpace(V,x,y) is Oriented_Orthogonality_Space proof assume Gen x,y; then (for u,u1,v,v1,w,w1,w2 being Element of CESpace(V,x,y) holds ((u,u '//' v,w) & (u,v '//' w,w) & (u,v '//' u1,v1 & u,v '//' v1,u1 implies u=v or u1=v1) & (u,v '//' u1,v1 & u,v '//' u1,w implies u,v '//' v1,w or u,v '//' w,v1) & (u,v '//' u1,v1 implies v,u '//' v1,u1) & (u,v '//' u1,v1 & u,v '//' v1,w implies u,v '//' u1,w) & (u,u1 '//' v,v1 implies v,v1 '//' u,u1 or v,v1 '//' u1,u))) & (for u,v,w being Element of CESpace(V,x,y) holds ex u1 being Element of CESpace(V,x,y) st w<>u1 & w,u1 '//' u,v ) & (for u,v,w being Element of CESpace(V,x,y) holds ex u1 being Element of CESpace(V,x,y) st w<>u1 & u,v '//' w,u1 ) by Th1; hence thesis by Def1; end; reserve AS for Oriented_Orthogonality_Space; reserve u,u1,u2,u3,v,v1,v2,v3,w,w1 for Element of AS; theorem for u,v,w being Element of AS holds ex u1 being Element of AS st u1,w '//' u,v & u1<>w proof let u,v,w; consider u1 such that A1:u1<>w & w,u1 '//' v,u by Def1; u1,w '//' u,v by A1,Def1; hence thesis by A1; end; canceled; theorem for u,v,w being Element of AS holds ex u1 being Element of AS st u<>u1 & (v,w '//' u,u1 or v,w '//' u1,u) proof let u,v,w; consider u1 such that A1:u<>u1 & u,u1 '//' v,w by Def1; u<>u1 & (v,w '//' u,u1 or v,w '//' u1,u) by A1,Def1; hence thesis; end; definition let AS be Oriented_Orthogonality_Space; let a,b,c,d be Element of AS; pred a,b _|_ c,d means a,b '//' c,d or a,b '//' d,c; end; definition let AS be Oriented_Orthogonality_Space; let a,b,c,d be Element of AS; pred a,b // c,d means :Def3:ex e,f being Element of AS st ( e<>f & e,f '//' a,b & e,f '//' c,d); end; definition let IT be Oriented_Orthogonality_Space; attr IT is bach_transitive means :Def4: for u,u1,u2,v,v1,v2,w,w1 being Element of IT holds ( (u,u1 '//' v,v1 & w,w1 '//' v,v1 & w,w1 '//' u2,v2 ) implies (w=w1 or v=v1 or u,u1 '//' u2,v2) ); end; definition let IT be Oriented_Orthogonality_Space; attr IT is right_transitive means :Def5: for u,u1,u2,v,v1,v2,w,w1 being Element of IT holds ( (u,u1 '//' v,v1 & v,v1 '//' w,w1 & u2,v2 '//' w,w1 ) implies (w=w1 or v=v1 or u,u1 '//' u2,v2) ); end; definition let IT be Oriented_Orthogonality_Space; attr IT is left_transitive means :Def6: for u,u1,u2,v,v1,v2,w,w1 being Element of IT holds ( (u,u1 '//' v,v1 & v,v1 '//' w,w1 & u,u1 '//' u2,v2 ) implies (u=u1 or v=v1 or u2,v2 '//' w,w1) ); end; definition let IT be Oriented_Orthogonality_Space; attr IT is Euclidean_like means :Def7:for u,u1,v,v1 being Element of IT holds (u,u1 '//' v,v1 implies v,v1 '//' u1,u ); end; definition let IT be Oriented_Orthogonality_Space; attr IT is Minkowskian_like means :Def8:for u,u1,v,v1 being Element of IT holds (u,u1 '//' v,v1 implies v,v1 '//' u,u1 ); end; theorem u,u1 // w,w & w,w // u,u1 proof consider v; consider v1 such that A1: v1<>v & v,v1 '//' u,u1 by Def1; v,v1 '//' w,w by Def1; hence thesis by A1,Def3; end; theorem u,u1 // v,v1 implies v,v1 // u,u1 proof assume u,u1 // v,v1; then ex w,w1 st w<>w1 & w,w1 '//' u,u1 & w,w1 '//' v,v1 by Def3; hence thesis by Def3; end; theorem u,u1 // v,v1 implies u1,u // v1,v proof assume u,u1 // v,v1; then consider w,w1 such that A1:w<>w1 & w,w1 '//' u,u1 & w,w1 '//' v,v1 by Def3; w1<>w & w1,w '//' u1,u & w1,w '//' v1,v by A1,Def1; hence thesis by Def3;end; theorem AS is left_transitive iff (for v,v1,w,w1,u2,v2 holds (v,v1 // u2,v2 & v,v1 '//' w,w1 & v<>v1 implies u2,v2 '//' w,w1)) proof A1:AS is left_transitive implies (for v,v1,w,w1,u2,v2 holds (v,v1 // u2,v2 & v,v1 '//' w,w1 & v<>v1 implies u2,v2 '//' w,w1)) proof assume A2: AS is left_transitive; let v,v1,w,w1,u2,v2; assume A3:v,v1 // u2,v2 & v,v1 '//' w,w1 & v<>v1; then ex u,u1 st u<>u1 & u,u1 '//' v,v1 & u,u1 '//' u2,v2 by Def3; hence thesis by A2,A3,Def6; end; (for v,v1,w,w1,u2,v2 holds (v,v1 // u2,v2 & v,v1 '//' w,w1 & v<>v1 implies u2,v2 '//' w,w1)) implies AS is left_transitive proof (for v,v1,w,w1,u2,v2 holds (v,v1 // u2,v2 & v,v1 '//' w,w1 & v<>v1 implies u2,v2 '//' w,w1)) implies (for u,u1,u2,v,v1,v2,w,w1 being Element of AS holds ( (u,u1 '//' v,v1 & v,v1 '//' w,w1 & u,u1 '//' u2,v2 ) implies (u=u1 or v=v1 or u2,v2 '//' w,w1) ) ) proof assume A4: (for v,v1,w,w1,u2,v2 holds (v,v1 // u2,v2 & v,v1 '//' w,w1 & v<>v1 implies u2,v2 '//' w,w1)); let u,u1,u2,v,v1,v2,w,w1; assume A5: (u,u1 '//' v,v1 & v,v1 '//' w,w1 & u,u1 '//' u2,v2 ); now assume u<>u1 & v<>v1; then v,v1 // u2,v2 by A5,Def3; hence thesis by A4,A5; end; hence thesis; end; hence thesis by Def6; end; hence thesis by A1; end; theorem Th13: AS is bach_transitive iff (for u,u1,u2,v,v1,v2 holds (u,u1 '//' v,v1 & v,v1 // u2,v2 & v<>v1 implies u,u1 '//' u2,v2)) proof A1:AS is bach_transitive implies (for u,u1,u2,v,v1,v2 holds (u,u1 '//' v,v1 & v,v1 // u2,v2 & v<>v1 implies u,u1 '//' u2,v2)) proof assume A2: AS is bach_transitive; let u,u1,u2,v,v1,v2; assume A3:u,u1 '//' v,v1 & v,v1 // u2,v2 & v<>v1; then ex w,w1 st w<>w1 & w,w1 '//' v,v1 & w,w1 '//' u2,v2 by Def3; hence thesis by A2,A3,Def4; end; (for u,u1,u2,v,v1,v2 holds (u,u1 '//' v,v1 & v,v1 // u2,v2 & v<>v1 implies u,u1 '//' u2,v2)) implies AS is bach_transitive proof (for u,u1,u2,v,v1,v2 holds (u,u1 '//' v,v1 & v,v1 // u2,v2 & v<>v1 implies u,u1 '//' u2,v2)) implies for u,u1,u2,v,v1,v2,w,w1 being Element of AS holds ( (u,u1 '//' v,v1 & w,w1 '//' v,v1 & w,w1 '//' u2,v2 ) implies (w=w1 or v=v1 or u,u1 '//' u2,v2) ) proof assume A4: (for u,u1,u2,v,v1,v2 holds (u,u1 '//' v,v1 & v,v1 // u2,v2 & v<>v1 implies u,u1 '//' u2,v2)); let u,u1,u2,v,v1,v2,w,w1; assume A5:u,u1 '//' v,v1 & w,w1 '//' v,v1 & w,w1 '//' u2,v2; now assume w<>w1 & v<>v1; then v,v1 // u2,v2 by A5,Def3; hence thesis by A4,A5; end; hence thesis; end; hence thesis by Def4; end; hence thesis by A1; end; theorem AS is bach_transitive implies for u,u1,v,v1,w,w1 holds (u,u1 // v,v1 & v,v1 // w,w1 & v<>v1 implies u,u1 // w,w1) proof assume A1:AS is bach_transitive; let u,u1,v,v1,w,w1; assume that A2: u,u1 // v,v1 and A3: v,v1 // w,w1 and A4: v<>v1; consider v2,v3 such that A5: v2<>v3 and A6: v2,v3 '//' u,u1 and A7: v2,v3 '//' v,v1 by A2,Def3; v2,v3 '//' w,w1 by A1,A3,A4,A7,Th13; hence thesis by A5,A6,Def3; end; theorem Th15: Gen x,y & AS=CESpace(V,x,y) implies AS is Euclidean_like left_transitive right_transitive bach_transitive proof assume A1:Gen x,y & AS=CESpace(V,x,y); A2: CESpace(V,x,y)=AffinStruct (# the carrier of V,CORTE(V,x,y) #) by ANALORT:def 7; A3: now let u,u1,u2,v,v1,v2,w,w1 be Element of AS; thus ((u,u1 '//' v,v1 & w,w1 '//' v,v1 & w,w1 '//' u2,v2 ) implies (w=w1 or v=v1 or u,u1 '//' u2,v2 )) proof reconsider u'=u,v'=v,w'=w,u1'=u1,v1'=v1,w1'=w1,u2'=u2,v2'=v2 as Element of V by A1,A2; (u',u1',v',v1' are_COrte_wrt x,y & w',w1',v',v1' are_COrte_wrt x,y & w',w1',u2',v2' are_COrte_wrt x,y) implies (w'=w1' or v'=v1' or u',u1',u2',v2' are_COrte_wrt x,y) by A1,ANALORT:42; hence thesis by A1,ANALORT:56; end; end; A4: now let u,u1,u2,v,v1,v2,w,w1 be Element of AS; thus ((u,u1 '//' v,v1 & v,v1 '//' w,w1 & u2,v2 '//' w,w1 ) implies (w=w1 or v=v1 or u,u1 '//' u2,v2 )) proof reconsider u'=u,v'=v,w'=w,u1'=u1,v1'=v1,w1'=w1,u2'=u2,v2'=v2 as Element of V by A1,A2; (u',u1',v',v1' are_COrte_wrt x,y & v',v1',w',w1' are_COrte_wrt x,y & u2',v2',w',w1' are_COrte_wrt x,y) implies (w'=w1' or v'=v1' or u',u1',u2',v2' are_COrte_wrt x,y) by A1,ANALORT:46; hence thesis by A1,ANALORT:56; end; end; A5: now let u,u1,u2,v,v1,v2,w,w1 be Element of AS; thus ((u,u1 '//' v,v1 & v,v1 '//' w,w1 & u,u1 '//' u2,v2 ) implies (u=u1 or v=v1 or u2,v2 '//' w,w1 )) proof reconsider u'=u,v'=v,w'=w,u1'=u1,v1'=v1,w1'=w1,u2'=u2,v2'=v2 as Element of V by A1,A2; (u',u1',v',v1' are_COrte_wrt x,y & v',v1',w',w1' are_COrte_wrt x,y & u',u1',u2',v2' are_COrte_wrt x,y) implies (u'=u1' or v'=v1' or u2',v2',w',w1' are_COrte_wrt x,y) by A1,ANALORT:48; hence thesis by A1,ANALORT:56; end; end; now let u,u1,v,v1 be Element of AS; thus (u,u1 '//' v,v1 implies v,v1 '//' u1,u ) proof reconsider u'=u,v'=v,u1'=u1,v1'=v1 as Element of V by A1,A2; u',u1',v',v1' are_COrte_wrt x,y implies v',v1',u1',u' are_COrte_wrt x,y by A1,ANALORT:18; hence thesis by A1,ANALORT:56; end; end; hence thesis by A3,A4,A5,Def4,Def5,Def6,Def7; end; definition cluster Euclidean_like left_transitive right_transitive bach_transitive Oriented_Orthogonality_Space; existence proof consider V,x,y such that A1:Gen x,y by ANALMETR:7; reconsider AS=CESpace(V,x,y) as Oriented_Orthogonality_Space by A1,Th5; take AS; thus thesis by A1,Th15; end; end; theorem Th16:Gen x,y & AS=CMSpace(V,x,y) implies AS is Minkowskian_like left_transitive right_transitive bach_transitive proof assume A1:Gen x,y & AS=CMSpace(V,x,y); A2: CMSpace(V,x,y)=AffinStruct (# the carrier of V,CORTM(V,x,y) #) by ANALORT:def 8; A3: now let u,u1,u2,v,v1,v2,w,w1 be Element of AS; thus ((u,u1 '//' v,v1 & w,w1 '//' v,v1 & w,w1 '//' u2,v2 ) implies (w=w1 or v=v1 or u,u1 '//' u2,v2 )) proof reconsider u'=u,v'=v,w'=w,u1'=u1,v1'=v1,w1'=w1,u2'=u2,v2'=v2 as Element of V by A1,A2; (u',u1',v',v1' are_COrtm_wrt x,y & w',w1',v',v1' are_COrtm_wrt x,y & w',w1',u2',v2' are_COrtm_wrt x,y) implies (w'=w1' or v'=v1' or u',u1',u2',v2' are_COrtm_wrt x,y) by A1,ANALORT:43; hence thesis by A1,ANALORT:57; end; end; A4: now let u,u1,u2,v,v1,v2,w,w1 be Element of AS; thus ((u,u1 '//' v,v1 & v,v1 '//' w,w1 & u2,v2 '//' w,w1 ) implies (w=w1 or v=v1 or u,u1 '//' u2,v2 )) proof reconsider u'=u,v'=v,w'=w,u1'=u1,v1'=v1,w1'=w1,u2'=u2,v2'=v2 as Element of V by A1,A2; (u',u1',v',v1' are_COrtm_wrt x,y & v',v1',w',w1' are_COrtm_wrt x,y & u2',v2',w',w1' are_COrtm_wrt x,y) implies (w'=w1' or v'=v1' or u',u1',u2',v2' are_COrtm_wrt x,y) by A1,ANALORT:47; hence thesis by A1,ANALORT:57; end; end; A5: now let u,u1,u2,v,v1,v2,w,w1 be Element of AS; thus ((u,u1 '//' v,v1 & v,v1 '//' w,w1 & u,u1 '//' u2,v2 ) implies (u=u1 or v=v1 or u2,v2 '//' w,w1 )) proof reconsider u'=u,v'=v,w'=w,u1'=u1,v1'=v1,w1'=w1,u2'=u2,v2'=v2 as Element of V by A1,A2; (u',u1',v',v1' are_COrtm_wrt x,y & v',v1',w',w1' are_COrtm_wrt x,y & u',u1',u2',v2' are_COrtm_wrt x,y) implies (u'=u1' or v'=v1' or u2',v2',w',w1' are_COrtm_wrt x,y) by A1,ANALORT:49; hence thesis by A1,ANALORT:57; end; end; now let u,u1,v,v1 be Element of AS; thus (u,u1 '//' v,v1 implies v,v1 '//' u,u1 ) proof reconsider u'=u,v'=v,u1'=u1,v1'=v1 as Element of V by A1,A2; u',u1',v',v1' are_COrtm_wrt x,y implies v',v1',u',u1' are_COrtm_wrt x,y by A1,ANALORT:19; hence thesis by A1,ANALORT:57; end; end; hence thesis by A3,A4,A5,Def4,Def5,Def6,Def8; end; definition cluster Minkowskian_like left_transitive right_transitive bach_transitive Oriented_Orthogonality_Space; existence proof consider V,x,y such that A1:Gen x,y by ANALMETR:7; reconsider AS=CMSpace(V,x,y) as Oriented_Orthogonality_Space by A1,Th4; take AS; thus thesis by A1,Th16; end; end; theorem Th17:AS is left_transitive implies AS is right_transitive proof (for u,u1,u2,v,v1,v2,w,w1 being Element of AS holds ( (u,u1 '//' v,v1 & v,v1 '//' w,w1 & u,u1 '//' u2,v2 ) implies (u=u1 or v=v1 or u2,v2 '//' w,w1 )))implies (for u,u1,u2,v,v1,v2,w,w1 being Element of AS holds ((u,u1 '//' v,v1 & v,v1 '//' w,w1 & u2,v2 '//' w,w1 ) implies (w=w1 or v=v1 or u,u1 '//' u2,v2 ))) proof assume A1:for u,u1,u2,v,v1,v2,w,w1 being Element of AS holds ( (u,u1 '//' v,v1 & v,v1 '//' w,w1 & u,u1 '//' u2,v2 ) implies (u=u1 or v=v1 or u2,v2 '//' w,w1 )); let u,u1,u2,v,v1,v2,w,w1; assume A2: (u,u1 '//' v,v1 & v,v1 '//' w,w1 & u2,v2 '//' w,w1 ); A3:( w=w1 or v=v1 or u,u1 '//' u2,v2 or u,u1 '//' v2,u2 ) implies (w=w1 or v=v1 or u,u1 '//' u2,v2 ) proof now A4: u=u1 implies thesis by Def1; now assume v2,u2 '//' w,w1; then u2,v2 '//' w1,w by Def1; then u2=v2 or w=w1 by A2,Def1; hence thesis; end; hence thesis by A1,A2,A4; end; hence thesis; end; A5:now assume w,w1 '//' v,v1 & v,v1 '//' u,u1 & w,w1 '//' u2,v2; then w=w1 or v=v1 or u2,v2 '//' u,u1 by A1; hence thesis by A3,Def1; end; A6:now assume w,w1 '//' v,v1 & v,v1 '//' u,u1 & w,w1 '//' v2,u2; then w=w1 or v=v1 or v2,u2 '//' u,u1 by A1; hence thesis by A3,Def1; end; A7:now assume w,w1 '//' v,v1 & v,v1 '//' u1,u & w,w1 '//' u2,v2; then w=w1 or v=v1 or u2,v2 '//' u1,u by A1; then w=w1 or v=v1 or u1,u '//' u2,v2 or u1,u '//' v2,u2 by Def1; hence thesis by A3,Def1; end; A8:now assume w,w1 '//' v,v1 & v,v1 '//' u1,u & w,w1 '//' v2,u2; then w=w1 or v=v1 or v2,u2 '//' u1,u by A1; then w=w1 or v=v1 or u1,u '//' u2,v2 or u1,u '//' v2,u2 by Def1; hence thesis by A3,Def1; end; A9:now assume w,w1 '//' v1,v & v,v1 '//' u,u1 & w,w1 '//' u2,v2; then w,w1 '//' v1,v & v1,v '//' u1,u & w,w1 '//' u2,v2 by Def1; then w=w1 or v=v1 or u2,v2 '//' u1,u by A1; then w=w1 or v=v1 or v2,u2 '//' u,u1 by Def1; hence thesis by A3,Def1; end; A10:now assume w,w1 '//' v1,v & v,v1 '//' u,u1 & w,w1 '//' v2,u2; then w,w1 '//' v1,v & v1,v '//' u1,u & w,w1 '//' v2,u2 by Def1; then w=w1 or v=v1 or v2,u2 '//' u1,u by A1; then w=w1 or v=v1 or u2,v2 '//' u,u1 by Def1; hence thesis by A3,Def1; end; A11:now assume w,w1 '//' v1,v & v,v1 '//' u1,u & w,w1 '//' u2,v2; then w,w1 '//' v1,v & v1,v '//' u,u1 & w,w1 '//' u2,v2 by Def1; then w=w1 or v1=v or u2,v2 '//' u,u1 by A1; hence thesis by A3,Def1; end; now assume w,w1 '//' v1,v & v,v1 '//' u1,u & w,w1 '//' v2,u2; then w,w1 '//' v1,v & v1,v '//' u,u1 & w,w1 '//' v2,u2 by Def1; then w=w1 or v=v1 or v2,u2 '//' u,u1 by A1; hence thesis by A3,Def1; end; hence thesis by A2,A5,A6,A7,A8,A9,A10,A11,Def1; end; hence thesis by Def5,Def6; end; theorem AS is left_transitive implies AS is bach_transitive proof (for u,u1,u2,v,v1,v2,w,w1 being Element of AS holds ( (u,u1 '//' v,v1 & v,v1 '//' w,w1 & u,u1 '//' u2,v2 ) implies (u=u1 or v=v1 or u2,v2 '//' w,w1 ))) implies (for u,u1,u2,v,v1,v2,w,w1 being Element of AS holds ((u,u1 '//' v,v1 & w,w1 '//' v,v1 & w,w1 '//' u2,v2 ) implies (w=w1 or v=v1 or u,u1 '//' u2,v2))) proof A1:AS is left_transitive implies AS is right_transitive by Th17; assume A2:for u,u1,u2,v,v1,v2,w,w1 being Element of AS holds ( (u,u1 '//' v,v1 & v,v1 '//' w,w1 & u,u1 '//' u2,v2 ) implies (u=u1 or v=v1 or u2,v2 '//' w,w1 )); let u,u1,u2,v,v1,v2,w,w1; assume A3: u,u1 '//' v,v1 & w,w1 '//' v,v1 & w,w1 '//' u2,v2; A4:( v=v1 or w=w1 or u,u1 '//' u2,v2 or u,u1 '//' v2,u2) implies (w=w1 or v=v1 or u,u1 '//' u2,v2) proof assume A5: v=v1 or w=w1 or u,u1 '//' u2,v2 or u,u1 '//' v2,u2; now assume A6:u,u1 '//' v2,u2 & u<>u1 & v<>v1 & w<>w1; then A7: v2,u2 '//' u,u1 or v2,u2 '//' u1,u by Def1; A8:now assume A9:u2,v2 '//' u1,u; then u2,v2 '//' u1,u & u1,u '//' v1,v & w1,w '//' v1,v by A3,Def1; then A10:u2,v2 '//' w1,w by A1,A2,A6,Def5,Def6; u2,v2 '//' u1,u & u1,u '//' u2,v2 & w,w1 '//' u2,v2 by A3,A6,A9,Def1; then A11:u2,v2 '//' w,w1 or u2=v2 by A1,A2,A6,Def5,Def6; now assume u2,v2 '//' w,w1; then w=w1 or u2=v2 by A10,Def1; hence thesis by A6; end; hence thesis by A11,Def1; end; now assume A12:u2,v2 '//' u,u1; then A13:u2,v2 '//' w,w1 by A1,A2,A3,A6,Def5,Def6; u2,v2 '//' u,u1 & u,u1 '//' v2,u2 & w1,w '//' v2,u2 by A3,A6,A12,Def1 ; then A14:u2,v2 '//' w1,w or u2=v2 by A1,A2,A6,Def5,Def6; now assume u2,v2 '//' w1,w; then w=w1 or u2=v2 by A13,Def1; hence thesis by A6; end; hence thesis by A14,Def1; end; hence thesis by A7,A8,Def1; end; hence thesis by A5,Def1; end; A15: u,u1 '//' v,v1 & v,v1 '//' w,w1 & u2,v2 '//' w,w1 implies thesis by A1,A2,Def5,Def6; A16:now assume u,u1 '//' v,v1 & v,v1 '//' w,w1 & u2,v2 '//' w1,w; then u,u1 '//' v,v1 & v,v1 '//' w,w1 & v2,u2 '//' w,w1 by Def1; hence thesis by A1,A2,A4,Def5,Def6; end; A17: u,u1 '//' v,v1 & v,v1 '//' w1,w & u2,v2 '//' w1,w implies thesis by A1,A2,Def5,Def6; now assume u,u1 '//' v,v1 & v,v1 '//' w1,w & u2,v2 '//' w,w1; then u,u1 '//' v,v1 & v,v1 '//' w1,w & v2,u2 '//' w1,w by Def1; hence thesis by A1,A2,A4,Def5,Def6; end; hence thesis by A3,A15,A16,A17,Def1; end; hence thesis by Def4,Def6; end; theorem AS is bach_transitive implies (AS is right_transitive iff (for u,u1,v,v1,u2,v2 holds ((u,u1 '//' u2,v2 & v,v1 '//' u2,v2 & u2<>v2) implies u,u1 // v,v1))) proof assume A1:AS is bach_transitive; (for u,u1,u2,v,v1,v2,w,w1 being Element of AS holds ((u,u1 '//' v,v1 & v,v1 '//' w,w1 & u2,v2 '//' w,w1 ) implies (w=w1 or v=v1 or u,u1 '//' u2,v2 ))) iff ((for u,u1,v,v1,u2,v2 holds ((u,u1 '//' u2,v2 & v,v1 '//' u2,v2 & u2<>v2) implies u,u1 // v,v1))) proof A2:(for u,u1,u2,v,v1,v2,w,w1 being Element of AS holds ((u,u1 '//' v,v1 & v,v1 '//' w,w1 & u2,v2 '//' w,w1 ) implies (w=w1 or v=v1 or u,u1 '//' u2,v2 ))) implies (for u,u1,v,v1,u2,v2 holds ((u,u1 '//' u2,v2 & v,v1 '//' u2,v2 & u2<>v2 ) implies u,u1 // v,v1)) proof assume A3:for u,u1,u2,v,v1,v2,w,w1 being Element of AS holds (u,u1 '//' v,v1 & v,v1 '//' w,w1 & u2,v2 '//' w,w1 ) implies (w=w1 or v=v1 or u,u1 '//' u2,v2 ); let u,u1,v,v1,u2,v2; assume A4:u,u1 '//' u2,v2 & v,v1 '//' u2,v2 & u2<>v2; consider w being Element of AS; consider w1 such that A5:w<>w1 & w,w1 '//' u,u1 by Def1; A6:now assume u<>u1; then w,w1 '//' v,v1 by A3,A4,A5; hence thesis by A5,Def3; end; now assume A7:u=u1; consider w being Element of AS; consider w1 such that A8:w<>w1 & w,w1 '//' v,v1 by Def1; w<>w1 & w,w1 '//' v,v1 & w,w1 '//' u,u by A8,Def1; hence thesis by A7,Def3; end; hence thesis by A6; end; (for u,u1,v,v1,u2,v2 holds ((u,u1 '//' u2,v2 & v,v1 '//' u2,v2 & u2<>v2) implies u,u1 // v,v1)) implies (for u,u1,u2,v,v1,v2,w,w1 being Element of AS holds ((u,u1 '//' v,v1 & v,v1 '//' w,w1 & u2,v2 '//' w,w1 ) implies (w=w1 or v=v1 or u,u1 '//' u2,v2 ))) proof assume A9: for u,u1,v,v1,u2,v2 holds (u,u1 '//' u2,v2 & v,v1 '//' u2,v2 & u2<>v2) implies u,u1 // v,v1; let u,u1,u2,v,v1,v2,w,w1; assume A10:u,u1 '//' v,v1 & v,v1 '//' w,w1 & u2,v2 '//' w,w1; now assume w<>w1 & v<>v1; then v,v1 // u2,v2 by A9,A10; then ex u3,v3 st u3<>v3 & u3,v3 '//' v,v1 & u3,v3 '//' u2,v2 by Def3; hence thesis by A1,A10,Def4; end; hence thesis; end; hence thesis by A2; end; hence thesis by Def5; end; theorem AS is right_transitive & (AS is Euclidean_like or AS is Minkowskian_like) implies AS is left_transitive proof assume A1:AS is right_transitive; (for u,u1,v,v1 being Element of AS holds (u,u1 '//' v,v1 implies v,v1 '//' u,u1 ) or for u,u1,v,v1 being Element of AS holds (u,u1 '//' v,v1 implies v,v1 '//' u1,u )) implies (for u,u1,u2,v,v1,v2,w,w1 being Element of AS holds ((u,u1 '//' v,v1 & v,v1 '//' w,w1 & u,u1 '//' u2,v2 ) implies (u=u1 or v=v1 or u2,v2 '//' w,w1 ))) proof assume A2: for u,u1,v,v1 being Element of AS holds (u,u1 '//' v,v1 implies v,v1 '//' u,u1 ) or for u,u1,v,v1 being Element of AS holds (u,u1 '//' v,v1 implies v,v1 '//' u1,u ); let u,u1,u2,v,v1,v2,w,w1; assume A3:u,u1 '//' v,v1 & v,v1 '//' w,w1 & u,u1 '//' u2,v2; A4:now assume A5: for u,u1,v,v1 being Element of AS holds (u,u1 '//' v,v1 implies v,v1 '//' u,u1 ); now assume A6:u<>u1 & v<>v1; v,v1 '//' u,u1 & w,w1 '//' v,v1 & u2,v2 '//' u,u1 by A3,A5; then w,w1 '//' u2,v2 by A1,A6,Def5; hence thesis by A5; end; hence thesis; end; now assume A7: for u,u1,v,v1 being Element of AS holds (u,u1 '//' v,v1 implies v,v1 '//' u1,u ); now assume A8:u<>u1 & v<>v1; v,v1 '//' u1,u & w,w1 '//' v1,v & u2,v2 '//' u1,u by A3,A7; then v,v1 '//' u1,u & w1,w '//' v,v1 & u2,v2 '//' u1,u by Def1; then w1,w '//' u2,v2 by A1,A8,Def5; hence thesis by A7; end; hence thesis; end; hence thesis by A2,A4; end; hence thesis by Def6,Def7,Def8; end;