Copyright (c) 1991 Association of Mizar Users
environ vocabulary FDIFF_1, SEQ_1, SEQM_3, PARTFUN1, RCOMP_1, ARYTM_1, RELAT_1, FUNCT_1, ARYTM_3, SEQ_2, ORDINAL2, LIMFUNC1, BOOLE, ABSVALUE, SQUARE_1, FINSEQ_1, FDIFF_3, ARYTM; notation TARSKI, XBOOLE_0, ORDINAL1, NUMBERS, XCMPLX_0, XREAL_0, REAL_1, NAT_1, RELSET_1, PARTFUN1, SEQ_1, SEQ_2, SEQM_3, ABSVALUE, SQUARE_1, RFUNCT_1, RFUNCT_2, RCOMP_1, FDIFF_1, LIMFUNC1; constructors REAL_1, NAT_1, SEQ_2, SEQM_3, ABSVALUE, RFUNCT_1, RFUNCT_2, RCOMP_1, FDIFF_1, LIMFUNC1, PROB_1, PARTFUN1, MEMBERED, XBOOLE_0; clusters FDIFF_1, RELSET_1, XREAL_0, SEQ_1, SEQM_3, ARYTM_3, MEMBERED, ZFMISC_1, XBOOLE_0; requirements REAL, NUMERALS, SUBSET, BOOLE, ARITHM; definitions TARSKI, XBOOLE_0; theorems REAL_1, REAL_2, NAT_1, SEQ_1, SEQ_2, SEQM_3, SEQ_4, ABSVALUE, SQUARE_1, RFUNCT_1, RFUNCT_2, RCOMP_1, FDIFF_1, LIMFUNC2, FDIFF_2, TARSKI, SCHEME1, AXIOMS, PROB_1, ZFMISC_1, FCONT_3, LIMFUNC1, FUNCT_1, FUNCT_2, XREAL_0, XBOOLE_0, XBOOLE_1, XCMPLX_0, XCMPLX_1; schemes SEQ_1, SCHEME1, RCOMP_1, FDIFF_2; begin reserve h,h1,h2 for convergent_to_0 Real_Sequence, c,c1 for constant Real_Sequence, f,f1,f2 for PartFunc of REAL,REAL, x0,r,r0,r1,r2,g,g1,g2 for Real, n0,k,n,m for Nat, a,b,d for Real_Sequence, x for set; theorem Th1: (ex r st r>0 & [.x0-r,x0.] c= dom f) implies ex h,c st rng c ={x0} & rng (h+c) c= dom f & for n holds h.n < 0 proof given r such that A1: r>0 & [.x0-r,x0.] c= dom f; deffunc F(Nat) = x0; consider a such that A2: for n holds a.n = F(n) from ExRealSeq; now let n; a.(n+1) = x0 & a.n = x0 by A2; hence a.(n+1) = a.n; end; then reconsider a as constant Real_Sequence by SEQM_3:16; deffunc F(Nat) = (-r)/($1+2); consider b such that A3: for n holds b.n = F(n) from ExRealSeq; A4: b is convergent & lim b = 0 by A3,SEQ_4:46; A5: now let n; 0<=n by NAT_1:18; then 0+0 < n + 2 by REAL_1:67; then 0 < r/(n+2) by A1,SEQ_2:6; then -(r/(n+2)) < 0 by REAL_1:26,50; then (-r)/(n+2) < 0 by XCMPLX_1:188; hence b.n < 0 by A3; end; then for n holds 0 <> b.n; then b is_not_0 by SEQ_1:7; then reconsider b as convergent_to_0 Real_Sequence by A4,FDIFF_1:def 1; take b; take a; thus rng a = {x0} proof thus rng a c= {x0} proof let x; assume x in rng a; then ex n st x = a.n by RFUNCT_2:9; then x = x0 by A2; hence x in {x0} by TARSKI:def 1; end; let x; assume x in {x0}; then x = x0 by TARSKI:def 1 .= a.0 by A2; hence x in rng a by RFUNCT_2:10; end; thus rng (b+a) c= dom f proof let x; assume x in rng (b+a); then consider n such that A6: x = (b+a).n by RFUNCT_2:9; A7: x = b.n +a.n by A6,SEQ_1:11 .= (-r)/(n+2) + a.n by A3 .= x0 + (-r)/(n+2) by A2; 0<=n by NAT_1:18; then A8: 0+1 < n + 2 by REAL_1:67; then A9: r*1 < r*(n+2) by A1,SEQ_4:6; A10: 0 < n + 2 by A8,AXIOMS:22; A11: 0 <> n + 2 by A8; 0 < (n + 2)" by A10,REAL_1:72; then r * (n+2)" < r*(n + 2)*((n + 2)") by A9,REAL_1:70; then r * ((n+2)") < r*((n + 2)*(n + 2)") by XCMPLX_1:4; then r * (n+2)" < r * 1 by A11,XCMPLX_0:def 7; then r/(n+2) < r by XCMPLX_0:def 9; then x0 - r < x0 - r/(n+2) by REAL_1:92; then x0 - r < x0 + - r/(n+2) by XCMPLX_0:def 8; then A12: x0 - r <= x0 + (-r)/(n+2) by XCMPLX_1:188; 0 < r/(n+2) by A1,A10,SEQ_2:6; then x0 - r/(n+2) < x0 - 0 by REAL_1:92; then x0 + - r/(n+2) <= x0 by XCMPLX_0:def 8; then x0 + (-r)/(n+2) <= x0 by XCMPLX_1:188; then x0 + (-r)/(n+2) in {g1: x0 - r <= g1 & g1 <= x0 } by A12; then x in [.x0 - r, x0.] by A7,RCOMP_1:def 1; hence x in dom f by A1; end; thus thesis by A5; end; theorem Th2: (ex r st r>0 & [.x0,x0+r.] c= dom f) implies ex h,c st rng c ={x0} & rng (h+c) c= dom f & for n holds h.n > 0 proof given r such that A1: r>0 & [.x0,x0+r.] c= dom f; deffunc F(Nat) = x0; consider a such that A2: for n holds a.n = F(n) from ExRealSeq; now let n; a.(n+1) = x0 & a.n = x0 by A2; hence a.(n+1) = a.n; end; then reconsider a as constant Real_Sequence by SEQM_3:16; deffunc F(Nat) = r/($1+2); consider b such that A3: for n holds b.n = F(n) from ExRealSeq; A4: b is convergent & lim b = 0 by A3,SEQ_4:46; A5: now let n; 0<=n by NAT_1:18; then 0+0 < n + 2 by REAL_1:67; then 0 < r/(n+2) by A1,SEQ_2:6; hence 0 < b.n by A3; end; then for n holds 0<>b.n; then b is_not_0 by SEQ_1:7; then reconsider b as convergent_to_0 Real_Sequence by A4,FDIFF_1:def 1; take b; take a; thus rng a = {x0} proof thus rng a c= {x0} proof let x; assume x in rng a; then ex n st x = a.n by RFUNCT_2:9; then x = x0 by A2; hence x in {x0} by TARSKI:def 1; end; let x; assume x in {x0}; then x = x0 by TARSKI:def 1 .= a.0 by A2; hence x in rng a by RFUNCT_2:10; end; thus rng (b+a) c= dom f proof let x; assume x in rng (b+a); then consider n such that A6: x = (b+a).n by RFUNCT_2:9; A7: x = b.n +a.n by A6,SEQ_1:11 .= r/(n+2) + a.n by A3 .= r/(n+2) + x0 by A2; 0<=n by NAT_1:18; then A8: 0+1 < n + 2 by REAL_1:67; then A9: r*1 < r*(n+2) by A1,SEQ_4:6; A10: 0 < n + 2 by A8,AXIOMS:22; A11: 0 <> n + 2 by A8; 0 < (n + 2)" by A10,REAL_1:72; then r * (n+2)" < r*(n + 2)*((n + 2)") by A9,REAL_1:70; then r * (n+2)" < r*((n + 2)*(n + 2)") by XCMPLX_1:4; then r * (n+2)" < r * 1 by A11,XCMPLX_0:def 7; then r/(n+2) < r by XCMPLX_0:def 9; then A12: x0 + r/(n+2) <= x0 + r by AXIOMS:24; 0 < r/(n+2) by A1,A10,SEQ_2:6; then x0 + 0 < x0 + r/(n+2) by REAL_1:67; then x0 + r/(n+2) in {g1: x0 <= g1 & g1 <= x0 + r} by A12; then x in [.x0,x0 + r.] by A7,RCOMP_1:def 1; hence x in dom f by A1; end; thus thesis by A5; end; theorem Th3: (for h,c st rng c ={x0} & rng (h+c) c= dom f & (for n holds h.n < 0) holds h"(#)(f*(h + c) - f*c) is convergent) & {x0} c= dom f implies for h1,h2,c st rng c ={x0} & rng (h1+c) c= dom f & (for n holds h1.n < 0) & rng (h2+c) c= dom f & (for n holds h2.n < 0) holds lim (h1"(#)(f*(h1 + c) - f*c)) = lim (h2"(#)(f*(h2 + c) - f*c)) proof assume A1: (for h,c st rng c ={x0} & rng (h+c) c= dom f & (for n holds h.n < 0) holds h"(#)(f*(h + c) - f*c) is convergent) & {x0} c= dom f; let h1,h2,c such that A2: rng c ={x0} & rng (h1+c) c= dom f & (for n holds h1.n < 0) & rng (h2+c) c= dom f & (for n holds h2.n < 0); deffunc F(Nat) = h1.$1; deffunc G(Nat) = h2.$1; consider d such that A3: for n holds d.(2*n) = F(n) & d.(2*n + 1) = G(n) from ExRealSeq2; A4: h1 is convergent & lim h1 = 0 & h1 is_not_0 by FDIFF_1:def 1; A5: h2 is convergent & lim h2 = 0 & h2 is_not_0 by FDIFF_1:def 1; then A6: d is convergent & lim d = 0 by A3,A4,FDIFF_2:1; now let n; consider m such that A7: n = 2*m or n = 2*m + 1 by SCHEME1:1; now per cases by A7; suppose A8: n = 2*m; d.(2*m) = h1.m by A3; hence d.n <> 0 by A4,A8,SEQ_1:7; suppose A9: n = 2*m + 1; d.(2*m + 1) = h2.m by A3; hence d.n <> 0 by A5,A9,SEQ_1:7; end; hence d.n <> 0; end; then d is_not_0 by SEQ_1:7; then reconsider d as convergent_to_0 Real_Sequence by A6,FDIFF_1:def 1; A10: rng (d + c) c= dom f proof let x; assume x in rng (d + c); then consider n such that A11: x = (d + c).n by RFUNCT_2:9; A12: x = d.n + c.n by A11,SEQ_1:11; consider m such that A13: n = 2*m or n = 2*m + 1 by SCHEME1:1; now per cases by A13; suppose n = 2*m; then x = h1.m + c.(2*m) by A3,A12 .= h1.m + c.m by SEQM_3:18 .= (h1 + c).m by SEQ_1:11; then x in rng (h1 + c) by RFUNCT_2:10; hence x in dom f by A2; suppose n = 2*m + 1; then x = h2.m + c.(2*m +1) by A3,A12 .= h2.m + c.m by SEQM_3:18 .= (h2 + c).m by SEQ_1:11; then x in rng (h2 + c) by RFUNCT_2:10; hence x in dom f by A2; end; hence x in dom f; end; now let n; consider m such that A14: n = 2*m or n = 2*m + 1 by SCHEME1:1; now per cases by A14; suppose A15: n = 2*m; d.(2*m) = h1.m by A3; hence d.n < 0 by A2,A15; suppose A16: n = 2*m + 1; d.(2*m + 1) = h2.m by A3; hence d.n < 0 by A2,A16; end; hence d.n < 0; end; then A17: d"(#)(f*(d + c) - f*c) is convergent by A1,A2,A10; deffunc F(Nat) = 2*$1; consider a such that A18: for n holds a.n = F(n) from ExRealSeq; deffunc F(Nat) = 2*$1+1; consider b such that A19: for n holds b.n = F(n) from ExRealSeq; reconsider a as increasing Seq_of_Nat by A18,FDIFF_2:2; reconsider b as increasing Seq_of_Nat by A19,FDIFF_2:3; A20: (d"(#)(f*(d + c) - f*c))*a = h1"(#)(f*(h1 + c) - f*c) proof now let n; thus ((d"(#)(f*(d + c) - f*c))*a).n = (d"(#)(f*(d + c) - f*c)).(a.n ) by SEQM_3:31 .= (d"(#)(f*(d + c) - f*c)).(2*n) by A18 .= (d").(2*n)*(f*(d + c) - f*c).(2*n) by SEQ_1:12 .= (d").(2*n)*((f*(d + c)).(2*n) - (f*c).(2*n)) by RFUNCT_2:6 .= (d.(2*n))"*((f*(d + c)).(2*n) - (f*c).(2*n)) by SEQ_1:def 8 .= (h1.n)"*((f*(d + c)).(2*n) - (f*c).(2*n)) by A3 .= (h1").n*((f*(d + c)).(2*n) - (f*c).(2*n)) by SEQ_1:def 8 .= (h1").n*(f.((d + c).(2*n)) - (f*c).(2*n)) by A10,RFUNCT_2:21 .= (h1").n*(f.(d.(2*n) + c.(2*n)) - (f*c).(2*n)) by SEQ_1:11 .= (h1").n*(f.(h1.n + c.(2*n)) - (f*c).(2*n)) by A3 .= (h1").n*(f.(h1.n + c.n) - (f*c).(2*n)) by SEQM_3:18 .= (h1").n*(f.((h1 + c).n) - (f*c).(2*n)) by SEQ_1:11 .= (h1").n*((f*(h1 + c)).n - (f*c).(2*n)) by A2,RFUNCT_2:21 .= (h1").n*((f*(h1 + c)).n - f.(c.(2*n))) by A1,A2,RFUNCT_2:21 .= (h1").n*((f*(h1 + c)).n - f.(c.n)) by SEQM_3:18 .= (h1").n*((f*(h1 + c)).n - (f*c).n) by A1,A2,RFUNCT_2:21 .= (h1").n*(f*(h1 + c) - f*c).n by RFUNCT_2:6 .= (h1"(#)(f*(h1 + c) - f*c)).n by SEQ_1:12; end; hence thesis by FUNCT_2:113; end; A21: (d"(#)(f*(d + c) - f*c))*b = h2"(#)(f*(h2 + c) - f*c) proof now let n; thus ((d"(#)(f*(d + c) - f*c))*b).n=(d"(#)(f*(d + c) - f*c)).(b.n) by SEQM_3:31 .= (d"(#)(f*(d + c) - f*c)).(2*n + 1) by A19 .= (d").(2*n + 1)*(f*(d + c) - f*c).(2*n + 1) by SEQ_1:12 .= (d").(2*n +1)*((f*(d + c)).(2*n + 1) - (f*c).(2*n + 1)) by RFUNCT_2:6 .= (d.( 2*n + 1))"*((f*(d + c)).(2*n + 1) - (f*c).(2*n + 1)) by SEQ_1:def 8 .= (h2.n)"*((f*(d + c)).(2*n + 1) - (f*c).(2*n + 1)) by A3 .= (h2").n*((f*(d + c)).(2*n + 1) - (f*c).(2*n + 1)) by SEQ_1:def 8 .= (h2").n*(f.((d + c).(2*n + 1)) - (f*c).(2*n + 1)) by A10,RFUNCT_2:21 .= (h2").n*(f.(d.(2*n + 1) + c.(2*n + 1)) - (f*c).(2*n + 1)) by SEQ_1:11 .= (h2").n*(f.(h2.n + c.(2*n + 1)) - (f*c).(2*n + 1)) by A3 .= (h2").n*(f.(h2.n + c.n) - (f*c).(2*n + 1)) by SEQM_3:18 .= (h2").n*(f.((h2 + c).n) - (f*c).(2*n + 1)) by SEQ_1:11 .= (h2").n*((f*(h2 + c)).n - (f*c).(2*n + 1)) by A2,RFUNCT_2:21 .= (h2").n*((f*(h2 + c)).n - f.(c.(2*n + 1))) by A1,A2,RFUNCT_2:21 .= (h2").n*((f*(h2 + c)).n - f.(c.n)) by SEQM_3:18 .= (h2").n*((f*(h2 + c)).n - (f*c).n) by A1,A2,RFUNCT_2:21 .= (h2").n*(f*(h2 + c) - f*c).n by RFUNCT_2:6 .= (h2"(#)(f*(h2 + c) - f*c)).n by SEQ_1:12; end; hence thesis by FUNCT_2:113; end; h1"(#)(f*(h1 + c) - f*c) is_subsequence_of d"(#)(f*(d + c) - f*c) by A20,SEQM_3:def 10; then A22: lim (h1"(#)(f*(h1 + c) - f*c)) = lim (d"(#) (f*(d + c) - f*c)) by A17,SEQ_4:30; h2"(#)(f*(h2 + c) - f*c) is_subsequence_of d"(#)(f*(d + c) - f*c) by A21,SEQM_3:def 10; hence thesis by A17,A22,SEQ_4:30; end; theorem Th4: (for h,c st rng c ={x0} & rng (h+c) c= dom f & (for n holds h.n>0) holds h"(#)(f*(h+c) - f*c) is convergent) & {x0} c= dom f implies for h1,h2,c st rng c ={x0} & rng (h1 + c)c= dom f & rng (h2 + c) c= dom f & (for n holds h1.n >0) & (for n holds h2.n >0) holds lim (h1"(#)(f*(h1+c) - f*c)) = lim (h2"(#)(f*(h2+c) - f*c)) proof assume A1: (for h,c st rng c ={x0} & rng (h+c) c= dom f & (for n holds h.n>0) holds h"(#)(f*(h+c) - f*c) is convergent) & {x0} c= dom f; let h1,h2,c such that A2: rng c ={x0} & rng (h1 + c) c= dom f & rng (h2 + c) c= dom f & (for n holds h1.n >0) & (for n holds h2.n >0); deffunc F(Nat) = h1.$1; deffunc G(Nat) = h2.$1; consider d such that A3: for n holds d.(2*n)=F(n) & d.(2*n+1)=G(n) from ExRealSeq2; A4: h1 is convergent & lim h1 =0 & h1 is_not_0 by FDIFF_1:def 1; A5: h2 is convergent & lim h2 =0 & h2 is_not_0 by FDIFF_1:def 1; then A6: d is convergent & lim d =0 by A3,A4,FDIFF_2:1; d is_not_0 proof now let n; consider m such that A7: n = 2*m or n = 2*m+1 by SCHEME1:1; now per cases by A7; suppose n = 2*m; then d.n = h1.m by A3; hence d.n<>0 by A4,SEQ_1:7; suppose n = 2*m+1; then d.n = h2.m by A3; hence d.n<>0 by A5,SEQ_1:7; end; hence d.n<>0; end; hence thesis by SEQ_1:7; end; then reconsider d as convergent_to_0 Real_Sequence by A6,FDIFF_1:def 1; A8: rng (d+c) c= dom f proof let x;assume x in rng (d+c); then consider n such that A9: x = (d+c).n by RFUNCT_2:9; consider m such that A10: n=2*m or n=2*m+1 by SCHEME1:1; now per cases by A10; suppose n = 2*m; then x = d.(2*m) + c.(2*m) by A9,SEQ_1:11 .= h1.m + c.(2*m) by A3 .= h1.m + c.m by SEQM_3:18 .= (h1+c).m by SEQ_1:11; hence x in dom f by A2,RFUNCT_2:8; suppose n = 2*m+1; then x = d.(2*m+1) + c.(2*m+1) by A9,SEQ_1:11 .= h2.m + c.(2*m+1) by A3 .= h2.m + c.m by SEQM_3:18 .= (h2 + c).m by SEQ_1:11; hence x in dom f by A2,RFUNCT_2:8; end; hence x in dom f; end; for n holds d.n > 0 proof let n; consider m such that A11: n = 2*m or n = 2*m+1 by SCHEME1:1; now per cases by A11; suppose n = 2*m; then d.n = h1.m by A3; hence d.n>0 by A2; suppose n = 2*m+1; then d.n = h2.m by A3; hence d.n>0 by A2; end; hence d.n>0; end; then A12: d"(#)(f*(d+c) - f*c) is convergent by A1,A2,A8; deffunc F(Nat) = 2*$1; consider a such that A13: for n holds a.n = F(n) from ExRealSeq; reconsider a as increasing Seq_of_Nat by A13,FDIFF_2:2; deffunc F(Nat) = 2*$1+1; consider b such that A14: for n holds b.n = F(n) from ExRealSeq; reconsider b as increasing Seq_of_Nat by A14,FDIFF_2:3; A15: (d"(#)(f*(d+c) - f*c))*a = h1"(#)(f*(h1+c) - f*c) proof now let n; thus ((d"(#)(f*(d+c) - f*c))*a).n = (d"(#) (f*(d+c) - f*c)).(a.n) by SEQM_3:31 .= (d"(#)(f*(d+c) - f*c)).(2*n) by A13 .= (d").(2*n) * (f*(d+c) - f*c).(2*n) by SEQ_1:12 .= (d.(2*n))" * (f*(d+c) - f*c).(2*n) by SEQ_1:def 8 .= (h1.n)" * (f*(d+c) - f*c).(2*n) by A3 .= (h1").n * (f*(d+c) - f*c).(2*n) by SEQ_1:def 8 .= (h1").n *((f*(d+c)).(2*n) - (f*c).(2*n)) by RFUNCT_2:6 .= (h1").n *(f.((d+c).(2*n)) - (f*c).(2*n)) by A8,RFUNCT_2:21 .= (h1").n *(f.((d+c).(2*n)) - f.(c.(2*n))) by A1,A2,RFUNCT_2:21 .= (h1").n *(f.(d.(2*n)+c.(2*n)) - f.(c.(2*n))) by SEQ_1:11 .= (h1").n *(f.(h1.n+c.(2*n)) - f.(c.(2*n))) by A3 .= (h1").n *(f.(h1.n+c.(2*n)) - f.(c.n)) by SEQM_3:18 .= (h1").n *(f.(h1.n+c.n) - f.(c.n)) by SEQM_3:18 .= (h1").n *(f.((h1+c).n) - f.(c.n)) by SEQ_1:11 .= (h1").n *((f*(h1+c)).n - f.(c.n)) by A2,RFUNCT_2:21 .= (h1").n *((f*(h1+c)).n - (f*c).n) by A1,A2,RFUNCT_2:21 .= (h1").n *(f*(h1+c) - f*c).n by RFUNCT_2:6 .= (h1"(#)(f*(h1+c) - f*c)).n by SEQ_1:12; end; hence thesis by FUNCT_2:113; end; A16: (d"(#)(f*(d+c) - f*c))*b = h2"(#)(f*(h2+c) - f*c) proof now let n; thus ((d"(#)(f*(d+c) - f*c))*b).n = (d"(#) (f*(d+c) - f*c)).(b.n) by SEQM_3:31 .= (d"(#)(f*(d+c) - f*c)).(2*n+1) by A14 .= (d").(2*n+1) * (f*(d+c) - f*c).(2*n+1) by SEQ_1:12 .= (d.(2*n+1))" * (f*(d+c) - f*c).(2*n+1) by SEQ_1:def 8 .= (h2.n)" * (f*(d+c) - f*c).(2*n+1) by A3 .= (h2").n * (f*(d+c) - f*c).(2*n+1) by SEQ_1:def 8 .= (h2").n *((f*(d+c)).(2*n+1) - (f*c).(2*n+1)) by RFUNCT_2:6 .= (h2").n *(f.((d+c).(2*n+1)) - (f*c).(2*n+1)) by A8,RFUNCT_2:21 .= (h2").n *(f.((d+c).(2*n+1)) - f.(c.(2*n+1))) by A1,A2,RFUNCT_2:21 .= (h2").n *(f.(d.(2*n+1)+c.(2*n+1)) - f.(c.(2*n+1))) by SEQ_1:11 .= (h2").n *(f.(h2.n+c.(2*n+1)) - f.(c.(2*n+1))) by A3 .= (h2").n *(f.(h2.n+c.(2*n+1)) - f.(c.n)) by SEQM_3:18 .= (h2").n *(f.(h2.n+c.n) - f.(c.n)) by SEQM_3:18 .= (h2").n *(f.((h2+c).n) - f.(c.n)) by SEQ_1:11 .= (h2").n *((f*(h2+c)).n - f.(c.n)) by A2,RFUNCT_2:21 .= (h2").n *((f*(h2+c)).n - (f*c).n) by A1,A2,RFUNCT_2:21 .= (h2").n *(f*(h2+c) - f*c).n by RFUNCT_2:6 .= (h2"(#)(f*(h2+c) - f*c)).n by SEQ_1:12; end; hence thesis by FUNCT_2:113; end; A17: h1"(#)(f*(h1+c) - f*c) is_subsequence_of d"(#)(f*(d+c) - f*c) by A15,SEQM_3:def 10; A18: h2"(#)(f*(h2+c) - f*c) is_subsequence_of d"(#)(f*(d+c) - f*c) by A16,SEQM_3:def 10; lim (h1"(#)(f*(h1+c) - f*c)) = lim (d"(#) (f*(d+c) -f*c)) by A12,A17,SEQ_4:30; hence thesis by A12,A18,SEQ_4:30; end; definition let f,x0; pred f is_Lcontinuous_in x0 means :Def1: x0 in dom f & for a st rng a c= left_open_halfline(x0) /\ dom f & a is convergent & lim a = x0 holds f*a is convergent & f.x0 = lim(f*a); pred f is_Rcontinuous_in x0 means :Def2: x0 in dom f & for a st rng a c= right_open_halfline(x0) /\ dom f & a is convergent & lim a = x0 holds f*a is convergent & f.x0 = lim(f*a); pred f is_right_differentiable_in x0 means :Def3: (ex r st r>0 & [.x0, x0+r.] c= dom f) & for h,c st rng c ={x0} & rng (h+c) c= dom f & (for n holds h.n > 0) holds h"(#)(f*(h + c) - f*c) is convergent; pred f is_left_differentiable_in x0 means :Def4: (ex r st r>0 & [.x0-r,x0.] c= dom f) & for h,c st rng c ={x0} & rng (h+c) c= dom f & (for n holds h.n<0) holds h"(#)(f*(h + c) - f*c) is convergent; end; theorem Th5: f is_left_differentiable_in x0 implies f is_Lcontinuous_in x0 proof assume A1: f is_left_differentiable_in x0; A2: x0 in dom f proof consider r such that A3: 0 < r & [.x0 - r,x0.] c= dom f by A1,Def4; x0 - r <= x0 by A3,SQUARE_1:29; then x0 in [.x0 - r,x0.] by RCOMP_1:15; hence x0 in dom f by A3; end; for a st rng a c= left_open_halfline(x0) /\ dom f & a is convergent & lim a = x0 holds f*a is convergent & f.x0 = lim(f*a) proof let a such that A4: rng a c= left_open_halfline(x0) /\ dom f & a is convergent & lim a = x0; consider r such that A5: 0 < r & [.x0 - r, x0.] c= dom f by A1,Def4; x0 - r < x0 by A5,SQUARE_1:29; then consider n0 such that A6: for k st k>=n0 holds x0 - r<a.k by A4,LIMFUNC2:1; A7: for n holds (a^\n0).n in [.x0 - r,x0.] proof let n; 0 <= n & 0 + n0 = n0 by NAT_1:18; then n0 <= n0 + n by AXIOMS:24; then x0 - r <= a.(n + n0) by A6; then A8: x0 - r <= (a^\n0).n by SEQM_3:def 9; a.(n + n0) in rng a by RFUNCT_2:10; then (a^\n0).n in rng a by SEQM_3:def 9; then (a^\n0).n in left_open_halfline(x0) by A4,XBOOLE_0:def 3; then (a^\n0).n in {g:g < x0} by PROB_1:def 15; then ex g st g = (a^\n0).n & g < x0; then (a^\n0).n in {g: x0 - r <= g & g <= x0} by A8; hence (a^\n0).n in [.x0 - r,x0.] by RCOMP_1:def 1; end; deffunc F(Nat) = x0; consider b such that A9: for n holds b.n = F(n) from ExRealSeq; deffunc F(Nat) = a.$1-b.$1; consider d such that A10: for n holds d.n = F(n) from ExRealSeq; A11: b is constant by A9,SEQM_3:def 6; then A12: b is convergent by SEQ_4:39; A13: lim b = b.0 by A11,SEQ_4:41 .= x0 by A9; A14: d = a - b by A10,RFUNCT_2:6; then A15: d is convergent by A4,A12,SEQ_2:25; lim d = x0 - x0 by A4,A12,A13,A14,SEQ_2:26 .= 0 by XCMPLX_1:14; then A16: d^\n0 is convergent & lim (d^\n0) = 0 by A15,SEQ_4:33; A17: for n holds d.n < 0 & d.n <> 0 proof let n; A18: d.n = a.n - b.n by A10; a.n in rng a by RFUNCT_2:10; then a.n in left_open_halfline(x0) by A4,XBOOLE_0:def 3; then a.n in { r1: r1 < x0 } by PROB_1:def 15; then ex r1 st r1 = a.n & r1 < x0; then a.n - x0 < x0 - x0 by REAL_1:54; then A19: d.n < x0 - x0 by A9,A18; hence d.n < 0 by XCMPLX_1:14; thus thesis by A19,XCMPLX_1:14; end; A20: for n holds (d^\n0).n < 0 proof let n; (d^\n0).n = d.(n + n0) by SEQM_3:def 9; hence (d^\n0).n < 0 by A17; end; then for n holds (d^\n0).n <>0; then d ^\n0 is_not_0 by SEQ_1:7; then reconsider h = d^\n0 as convergent_to_0 Real_Sequence by A16,FDIFF_1: def 1; A21: b^\n0 is_subsequence_of b by SEQM_3:47; b is constant by A9,SEQM_3:def 6; then reconsider c = b^\n0 as constant Real_Sequence by A21,SEQM_3:54; A22: rng c = {x0} proof thus rng c c= {x0} proof let x; assume x in rng c; then consider n such that A23: x = (b^\n0).n by RFUNCT_2:9; x = b.(n + n0) by A23,SEQM_3:def 9; then x = x0 by A9; hence x in {x0} by TARSKI:def 1; end; let x; assume x in {x0}; then A24: x = x0 by TARSKI:def 1; c.0 = b.(0 + n0) by SEQM_3:def 9 .= x by A9,A24; hence x in rng c by RFUNCT_2:9; end; rng (h + c) c= [.x0 - r,x0.] proof let x; assume x in rng(h + c); then consider n such that A25: x = (h+c).n by RFUNCT_2:9; (h+c).n=((a - b +b)^\n0).n by A14,SEQM_3:37 .= (a - b + b) .(n + n0) by SEQM_3:def 9 .= (a - b).(n + n0) + b.(n + n0) by SEQ_1:11 .= a.(n + n0) - b.(n + n0) + b.(n + n0) by RFUNCT_2:6 .= a.(n + n0) by XCMPLX_1:27 .= (a^\n0).n by SEQM_3:def 9; hence x in [.x0 - r,x0.] by A7,A25; end; then rng (h + c) c= dom f by A5,XBOOLE_1:1; then A26: h"(#)(f*(h+c) - f*c) is convergent by A1,A20,A22,Def4; then A27: lim (h(#)(h"(#)(f*(h+c) - f*c)))=0*lim(h"(#) (f*(h+c) - f*c)) by A16,SEQ_2:29 .=0; now let n; A28: h.n<>0 by A20; thus (h(#)(h"(#)(f*(h+c) - f*c))).n=h.n *(h"(#) (f*(h+c) - f*c)).n by SEQ_1:12 .= h.n*((h").n*(f*(h+c) - f*c).n) by SEQ_1:12 .= h.n*(((h.n)")*(f*(h+c) - f*c).n) by SEQ_1:def 8 .= h.n*((h.n)")*(f*(h+c) - f*c).n by XCMPLX_1:4 .= 1*(f*(h+c) - f*c).n by A28,XCMPLX_0:def 7 .= (f*(h+c) - f*c).n; end; then A29: h(#)(h"(#)(f*(h+c) - f*c))=f*(h+c)-f*c by FUNCT_2:113; then A30: f*(h+c)-f*c is convergent by A16,A26,SEQ_2:28; A31: now let g be real number such that A32: 0<g; take n=0; let m such that n<=m; x0 - r <= x0 by A5,SQUARE_1:29; then x0 in [.x0 - r,x0.] by RCOMP_1:15; then rng c c= dom f by A5,A22,ZFMISC_1:37; then abs((f*c).m-f.x0) = abs(f.(c.m)-f.x0) by RFUNCT_2:21 .= abs(f.(b.(m+n0))-f.x0) by SEQM_3:def 9 .= abs(f.x0-f.x0) by A9 .= abs(0) by XCMPLX_1:14 .= 0 by ABSVALUE:7; hence abs((f*c).m-f.x0)<g by A32; end; then A33: f*c is convergent by SEQ_2:def 6; then A34: lim(f*c)=f.x0 by A31,SEQ_2:def 7; A35: f*(h+c)-f*c+f*c is convergent by A30,A33,SEQ_2:19; A36: lim(f*(h+c)-f*c+f*c) = 0+f.x0 by A27,A29,A30,A33,A34,SEQ_2:20 .= f.x0; now let n; thus (f*(h+c)-f*c+f*c).n=(f*(h+c)-f*c).n+(f*c).n by SEQ_1:11 .= (f*(h+c)).n-(f*c).n+(f*c).n by RFUNCT_2:6 .= (f*(h+c)).n by XCMPLX_1:27; end; then A37: f*(h+c)-f*c+(f*c)=f*(h+c) by FUNCT_2:113; A38: rng a c= dom f proof let x; assume x in rng a; hence thesis by A4,XBOOLE_0:def 3; end; now let n; thus (h+c).n=((a-b+b)^\n0).n by A14,SEQM_3:37 .= (a-b+b).(n+n0) by SEQM_3:def 9 .= (a-b).(n+n0)+b.(n+n0) by SEQ_1:11 .= a.(n+n0)-b.(n+n0)+b.(n+n0) by RFUNCT_2:6 .= a.(n+n0) by XCMPLX_1:27 .= (a^\n0).n by SEQM_3:def 9; end; then A39: f*(h+c)-f*c+(f*c)=f*(a^\n0) by A37,FUNCT_2:113 .= (f*a)^\n0 by A38,RFUNCT_2:22; hence f*a is convergent by A35,SEQ_4:35; thus f.x0=lim(f*a) by A35,A36,A39,SEQ_4:36; end; hence thesis by A2,Def1; end; theorem Th6: f is_Lcontinuous_in x0 & f.x0<>g2 & (ex r st r>0 & [.x0-r,x0.] c= dom f) implies ex r1 st r1 > 0 & [.x0-r1,x0.] c= dom f & for g st g in [.x0-r1,x0.] holds f.g <> g2 proof assume A1: f is_Lcontinuous_in x0 & f.x0 <> g2; given r such that A2: r>0 & [.x0-r,x0.] c= dom f; assume A3: for r1 st r1>0 & [.x0-r1,x0.] c= dom f ex g st g in [.x0-r1,x0.] & f.g = g2; defpred P[Nat,set] means $2 in [.x0-r/($1+1),x0.] & $2 in dom f & f.$2 = g2; A4: for n ex g be real number st P[n,g] proof let n; A5: 0 <= n by NAT_1:18; then 0 < n + 1 by NAT_1:38; then A6: 0 < r/(n+1) by A2,SEQ_2:6; 0 + 1 <= n + 1 by A5,REAL_1:55; then r/(n+1) <= r/1 by A2,REAL_2:201; then A7: x0 - r <= x0 - r/(n+1) by REAL_1:92; x0 - r/(n+1) <= x0 by A6,SQUARE_1:29; then x0 - r/(n+1) in {g1: x0 - r <= g1 & g1 <= x0} by A7; then A8: x0 - r/(n+1) in [.x0 - r, x0.] by RCOMP_1:def 1; x0 - r <= x0 by A2,SQUARE_1:29; then x0 in [.x0 - r,x0.] by RCOMP_1:15; then [.x0 - r/(n+1),x0.] c= [.x0 - r,x0.] by A8,RCOMP_1:16; then A9: [.x0 - r/(n+1),x0.] c= dom f by A2,XBOOLE_1:1; then consider g such that A10: g in [.x0-r/(n+1),x0.] & f.g = g2 by A3,A6; take g; thus thesis by A9,A10; end; consider a such that A11: for n holds P[n,a.n] from RealSeqChoice(A4); deffunc F(Nat) = x0 - r/($1+1); consider b such that A12: for n holds b.n = F(n) from ExRealSeq; deffunc F(Nat) = x0; consider d such that A13: for n holds d.n = F(n) from ExRealSeq; A14: b is convergent & lim b = x0 by A12,FCONT_3:13; now let n; d.n = x0 & d.(n+1) = x0 by A13; hence d.n = d.(n+1); end; then A15: d is constant by SEQM_3:16; then A16: d is convergent by SEQ_4:39; A17: lim d = d.0 by A15,SEQ_4:41 .= x0 by A13; A18: now let n; a.n in [.x0 - r/(n+1), x0.] by A11; then a.n in {g1: x0 - r/(n+1) <= g1 & g1 <= x0} by RCOMP_1:def 1; then ex g1 st g1 = a.n & x0 - r/(n+1) <= g1 & g1 <=x0; hence b.n <= a.n & a.n <= d.n by A12,A13; end; then A19: a is convergent by A14,A16,A17,SEQ_2:33; A20: lim a = x0 by A14,A16,A17,A18,SEQ_2:34; A21: rng a c= left_open_halfline(x0) /\ dom f & rng a c= dom f proof thus A22: rng a c= left_open_halfline(x0) /\ dom f proof let x; assume x in rng a; then consider n such that A23: x=a.n by RFUNCT_2:9; A24: a.n in [.x0-r/(n+1),x0.] & a.n in dom f by A11; then a.n in {g1: x0 - r/(n+1) <= g1 & g1 <= x0} by RCOMP_1:def 1; then A25: ex g1 st g1 = a.n & x0 - r/(n+1) <= g1 & g1 <=x0; a.n <> x0 by A1,A11; then a.n < x0 by A25,REAL_1:def 5; then a.n in {g1: g1 < x0}; then a.n in left_open_halfline(x0) by PROB_1:def 15; hence thesis by A23,A24,XBOOLE_0:def 3; end; left_open_halfline(x0) /\ dom f c= dom f by XBOOLE_1:17; hence thesis by A22,XBOOLE_1:1; end; A26: for n holds (f*a).n = g2 proof let n; thus (f*a).n = f.(a.n) by A21,RFUNCT_2:21 .= g2 by A11; end; now let n; (f*a).n = g2 & (f*a).(n+1) = g2 by A26; hence (f*a).n =(f*a).(n+1); end; then f*a is constant by SEQM_3:16; then lim (f*a) = (f*a).0 by SEQ_4:41 .= g2 by A26; hence contradiction by A1,A19,A20,A21,Def1; end; theorem Th7: f is_right_differentiable_in x0 implies f is_Rcontinuous_in x0 proof assume A1: f is_right_differentiable_in x0; then consider r such that A2: r>0 & [.x0 ,x0 + r.] c= dom f by Def3; A3: x0 in dom f proof x0 + 0 <= x0 +r by A2,REAL_1:55; then x0 in [.x0 , x0 + r.] by RCOMP_1:15; hence x0 in dom f by A2; end; for a st rng a c= right_open_halfline(x0) /\ dom f & a is convergent & lim a = x0 holds f*a is convergent & f.x0 = lim(f*a) proof let a such that A4: rng a c= right_open_halfline(x0) /\ dom f & a is convergent & lim a = x0; consider r such that A5:r > 0 & [.x0 , x0 + r.] c= dom f by A1,Def3; x0 + 0 < x0 + r by A5,REAL_1:53; then consider n0 be Nat such that A6: for k st k>=n0 holds a.k < x0 +r by A4,LIMFUNC2:2; A7: for n holds (a^\n0).n in [.x0 , x0 + r.] proof let n; 0 <= n & 0 + n0 = n0 by NAT_1:18; then n0 <= n0 + n by AXIOMS:24; then a.(n + n0) <= x0 +r by A6; then A8:(a^\n0).n <= x0 + r by SEQM_3:def 9; a.(n + n0) in rng a by RFUNCT_2:10; then (a^\n0).n in rng a by SEQM_3:def 9; then (a^\n0).n in right_open_halfline(x0) by A4,XBOOLE_0:def 3; then (a^\n0).n in {g:x0 < g} by LIMFUNC1:def 3; then ex g st g = (a^\n0).n & x0 < g; then (a^\n0).n in {g: x0 <= g & g <= x0 + r} by A8; hence (a^\n0).n in [.x0 ,x0 + r.] by RCOMP_1:def 1; end; deffunc F(Nat) = x0; consider b such that A9: for n holds b.n = F(n) from ExRealSeq; deffunc F(Nat) = a.$1-b.$1; consider d such that A10: for n holds d.n = F(n) from ExRealSeq; A11: b is constant by A9,SEQM_3:def 6; then A12: b is convergent by SEQ_4:39; A13: lim b = b.0 by A11,SEQ_4:41 .= x0 by A9; A14: d = a - b by A10,RFUNCT_2:6; then A15: d is convergent by A4,A12,SEQ_2:25; lim d = x0 - x0 by A4,A12,A13,A14,SEQ_2:26 .= 0 by XCMPLX_1:14; then A16: d^\n0 is convergent & lim (d^\n0) = 0 by A15,SEQ_4:33; A17: for n holds d.n > 0 & d.n <> 0 proof let n; A18: d.n = a.n - b.n by A10; a.n in rng a by RFUNCT_2:10; then a.n in right_open_halfline(x0) by A4,XBOOLE_0:def 3; then a.n in { r1: x0 < r1 } by LIMFUNC1:def 3; then ex r1 st r1 = a.n & x0 < r1; then a.n - x0 > x0 - x0 by REAL_1:54; then A19: d.n > x0 - x0 by A9,A18; hence d.n > 0 by XCMPLX_1:14; thus thesis by A19,XCMPLX_1:14; end; A20: for n holds (d^\n0).n > 0 proof let n; (d^\n0).n = d.(n + n0) by SEQM_3:def 9; hence (d^\n0).n > 0 by A17; end; then for n holds (d^\n0).n <>0; then d ^\n0 is_not_0 by SEQ_1:7; then reconsider h = d^\n0 as convergent_to_0 Real_Sequence by A16,FDIFF_1: def 1; A21: b^\n0 is_subsequence_of b by SEQM_3:47; b is constant by A9,SEQM_3:def 6; then reconsider c = b^\n0 as constant Real_Sequence by A21,SEQM_3:54; A22: rng c = {x0} proof thus rng c c= {x0} proof let x; assume x in rng c; then consider n such that A23: x = (b^\n0).n by RFUNCT_2:9; x = b.(n + n0) by A23,SEQM_3:def 9; then x = x0 by A9; hence x in {x0} by TARSKI:def 1; end; let x; assume x in {x0}; then A24: x = x0 by TARSKI:def 1; c.0 = b.(0 + n0) by SEQM_3:def 9 .= x by A9,A24; hence x in rng c by RFUNCT_2:9; end; rng (h + c) c= [.x0,x0 + r.] proof let x; assume x in rng(h + c); then consider n such that A25: x = (h+c).n by RFUNCT_2:9; (h+c).n=((a - b +b)^\n0).n by A14,SEQM_3:37 .= (a - b + b) .(n + n0) by SEQM_3:def 9 .= (a - b).(n + n0) + b.(n + n0) by SEQ_1:11 .= a.(n + n0) - b.(n + n0) + b.(n + n0) by RFUNCT_2:6 .= a.(n + n0) by XCMPLX_1:27 .= (a^\n0).n by SEQM_3:def 9; hence x in [.x0 ,x0 + r.] by A7,A25; end; then rng (h + c) c= dom f by A5,XBOOLE_1:1; then A26: h"(#)(f*(h+c) - f*c) is convergent by A1,A20,A22,Def3; then A27: lim (h(#)(h"(#)(f*(h+c) - f*c)))=0*lim(h"(#) (f*(h+c) - f*c)) by A16,SEQ_2:29 .=0; now let n; A28: h.n<>0 by A20; thus (h(#)(h"(#)(f*(h+c) - f*c))).n=h.n *(h"(#) (f*(h+c) - f*c)).n by SEQ_1:12 .= h.n*((h").n*(f*(h+c) - f*c).n) by SEQ_1:12 .= h.n*(((h.n)")*(f*(h+c) - f*c).n) by SEQ_1:def 8 .= h.n*((h.n)")*(f*(h+c) - f*c).n by XCMPLX_1:4 .= 1*(f*(h+c) - f*c).n by A28,XCMPLX_0:def 7 .= (f*(h+c) - f*c).n; end; then A29: h(#)(h"(#)(f*(h+c) - f*c))=f*(h+c)-f*c by FUNCT_2:113; then A30: f*(h+c)-f*c is convergent by A16,A26,SEQ_2:28; A31: now let g be real number such that A32: 0<g; take n=0; let m such that n<=m; x0 + 0 <= x0 +r by A5,REAL_1:55; then x0 in [.x0 , x0 + r.] by RCOMP_1:15; then rng c c= dom f by A5,A22,ZFMISC_1:37; then abs((f*c).m-f.x0) = abs(f.(c.m)-f.x0) by RFUNCT_2:21 .= abs(f.(b.(m+n0))-f.x0) by SEQM_3:def 9 .= abs(f.x0-f.x0) by A9 .= abs(0) by XCMPLX_1:14 .= 0 by ABSVALUE:7; hence abs((f*c).m-f.x0)<g by A32; end; then A33: f*c is convergent by SEQ_2:def 6; then A34: lim(f*c)=f.x0 by A31,SEQ_2:def 7; A35: f*(h+c)-f*c+f*c is convergent by A30,A33,SEQ_2:19; A36: lim(f*(h+c)-f*c+f*c) = 0+f.x0 by A27,A29,A30,A33,A34,SEQ_2:20 .= f.x0; now let n; thus (f*(h+c)-f*c+f*c).n=(f*(h+c)-f*c).n+(f*c).n by SEQ_1:11 .= (f*(h+c)).n-(f*c).n+(f*c).n by RFUNCT_2:6 .= (f*(h+c)).n by XCMPLX_1:27; end; then A37: f*(h+c)-f*c+(f*c)=f*(h+c) by FUNCT_2:113; A38: rng a c= dom f proof let x; assume x in rng a; hence thesis by A4,XBOOLE_0:def 3; end; now let n; thus (h+c).n=((a-b+b)^\n0).n by A14,SEQM_3:37 .= (a-b+b).(n+n0) by SEQM_3:def 9 .= (a-b).(n+n0)+b.(n+n0) by SEQ_1:11 .= a.(n+n0)-b.(n+n0)+b.(n+n0) by RFUNCT_2:6 .= a.(n+n0) by XCMPLX_1:27 .= (a^\n0).n by SEQM_3:def 9; end; then A39: f*(h+c)-f*c+(f*c)=f*(a^\n0) by A37,FUNCT_2:113 .= (f*a)^\n0 by A38,RFUNCT_2:22; hence f*a is convergent by A35,SEQ_4:35; thus f.x0=lim(f*a) by A35,A36,A39,SEQ_4:36; end; hence thesis by A3,Def2; end; theorem Th8: f is_Rcontinuous_in x0 & f.x0 <> g2 & (ex r st r>0 & [.x0 , x0+r.] c= dom f) implies ex r1 st r1>0 & [.x0 , x0+r1.] c= dom f & for g st g in [.x0 , x0+r1.] holds f.g <> g2 proof assume A1: f is_Rcontinuous_in x0 & f.x0 <> g2; given r such that A2: r>0 & [.x0 , x0+r.] c= dom f; assume A3: for r1 st r1>0 & [.x0 , x0+r1.] c= dom f ex g st g in [.x0 , x0+r1.] & f.g = g2; defpred P[Nat,set] means $2 in [.x0, x0+r/($1+1).] & $2 in dom f & f.$2 = g2; A4: for n ex g be real number st P[n,g] proof let n; A5:0 <= n by NAT_1:18; then A6: 0 < n+1 by NAT_1:38; then A7: r/(n+1) > 0 by A2,SEQ_2:6; x0 + 0 <= x0 +r by A2,REAL_1:55; then A8: x0 in [.x0 , x0 + r.] by RCOMP_1:15; 0 + 1 <= n + 1 by A5,REAL_1:55; then r/(n+1) <= r/1 by A2,REAL_2:201; then A9: x0 + r/(n+1) <= x0 + r by REAL_1:55; 0 <= r/(n+1) & x0 + 0 =x0 by A2,A6,SEQ_2:6; then x0 <= x0 + r/(n+1) by REAL_1:55; then x0 + r/(n+1) in {g1:x0 <= g1 & g1 <= x0+r} by A9; then x0 +r/(n+1) in [.x0,x0+r.] by RCOMP_1:def 1; then [.x0,x0+r/(n+1).] c= [.x0,x0+r.] by A8,RCOMP_1:16; then A10: [.x0,x0+r/(n+1).] c= dom f by A2,XBOOLE_1:1; then consider g such that A11: g in [.x0,x0+r/(n+1).] & f.g = g2 by A3,A7; take g; thus thesis by A10,A11; end; consider a such that A12: for n holds P[n,a.n] from RealSeqChoice(A4); deffunc F(Nat) = x0; consider b such that A13:for n holds b.n = F(n) from ExRealSeq; now let n; b.n = x0 & b.(n+1) = x0 by A13; hence b.n = b.(n+1); end; then A14:b is constant by SEQM_3:16; then A15:b is convergent by SEQ_4:39; A16:lim b = b.0 by A14,SEQ_4:41 .=x0 by A13; deffunc F(Nat) = x0+r/($1+1); consider d such that A17:for n holds d.n = F(n) from ExRealSeq; A18:d is convergent & lim d = x0 by A17,FCONT_3:14; A19: now let n; a.n in [.x0 , x0 + r/(n+1).] by A12; then a.n in{g1: x0<=g1 & g1<=x0+ r/(n+1)} by RCOMP_1:def 1; then ex g1 st g1=a.n & x0<=g1 & g1<=x0+ r/(n+1); hence b.n <=a.n & a.n <= d.n by A13,A17; end; then A20: a is convergent by A15,A16,A18,SEQ_2:33; A21: lim a = x0 by A15,A16,A18,A19,SEQ_2:34; A22: rng a c= right_open_halfline(x0) /\ dom f & rng a c= dom f proof thus A23:rng a c= right_open_halfline(x0) /\ dom f proof let x; assume x in rng a; then consider n such that A24: x = a.n by RFUNCT_2:9; A25:a.n in [.x0 , x0 + r/(n+1).] & a.n in dom f by A12; then a.n in{g1: x0<=g1 & g1<=x0+ r/(n+1)} by RCOMP_1:def 1; then A26: ex g1 st g1=a.n & x0<=g1 & g1<=x0+ r/(n+1); x0 <> a.n by A1,A12; then x0 < a.n by A26,REAL_1:def 5; then a.n in {g1:x0 <g1}; then a.n in right_open_halfline(x0)by LIMFUNC1:def 3; hence thesis by A24,A25,XBOOLE_0:def 3; end; right_open_halfline(x0) /\ dom f c= dom f by XBOOLE_1:17; hence thesis by A23,XBOOLE_1:1; end; A27: for n holds (f*a).n = g2 proof let n;thus g2 =f.(a.n) by A12 .=(f*a).n by A22,RFUNCT_2:21; end; now let n; (f*a).n=g2 & (f*a).(n+1) = g2 by A27; hence (f*a).n=(f*a).(n+1); end; then f*a is constant by SEQM_3:16; then lim (f*a) = (f*a).0 by SEQ_4:41 .= g2 by A27; hence contradiction by A1,A20,A21,A22,Def2; end; definition let x0,f; assume A1:f is_left_differentiable_in x0; func Ldiff (f,x0) -> Real means: Def5: for h,c st rng c = {x0} & rng (h + c) c= dom f & (for n holds h.n <0) holds it =lim (h"(#)(f*(h + c) - f*c)); existence proof ex r st r > 0 & [.x0 - r, x0.] c= dom f by A1,Def4; then consider h1,c1 such that A2: rng c1 = {x0} & rng (h1 + c1) c= dom f & for n holds h1.n < 0 by Th1; take lim (h1"(#)(f*(h1 + c1) - f*c1)); A3: {x0} c= dom f proof let x; assume x in {x0}; then A4: x = x0 by TARSKI:def 1; consider r such that A5: r > 0 & [.x0 - r,x0.] c= dom f by A1,Def4; x0 - r <= x0 by A5,SQUARE_1:29; then x0 in [.x0 - r,x0.] by RCOMP_1:15; hence thesis by A4,A5; end; let h,c such that A6: rng c = {x0} & rng (h + c) c= dom f & (for n holds h.n <0); A7: for h,c st rng c = {x0} & rng (h + c) c= dom f & (for n holds h.n <0) holds h"(#)(f*(h + c) - f*c) is convergent by A1,Def4; c1 = c by A2,A6,FDIFF_2:5; hence thesis by A2,A3,A6,A7,Th3; end; uniqueness proof let g1,g2 such that A8: (for h,c st rng c = {x0} & rng (h + c) c= dom f & (for n holds h.n <0) holds g1=lim (h"(#)(f*(h + c) - f*c))) & for h,c st rng c = {x0} & rng (h + c) c= dom f & (for n holds h.n <0) holds g2=lim (h"(#)(f*(h + c) - f*c)); ex r st r > 0 & [.x0 - r, x0.] c= dom f by A1,Def4; then consider h,c such that A9: rng c = {x0} & rng (h + c) c= dom f & for n holds h.n < 0 by Th1; g1 = lim (h"(#)(f*(h + c) - f*c)) by A8,A9; hence thesis by A8,A9; end; end; definition let x0 ,f; assume A1: f is_right_differentiable_in x0; func Rdiff(f,x0) -> Real means :Def6: for h,c st rng c = {x0} & rng (h+c) c= dom f & (for n holds h.n > 0) holds it=lim (h"(#)(f*(h + c) - f*c)); existence proof ex r st r>0 & [.x0,x0+r.] c=dom f by A1,Def3; then consider h,c such that A2: rng c = {x0} & rng (h+c) c= dom f & for n holds h.n>0 by Th2; take lim(h"(#)(f*(h+c) - f*c)); let h1,c1 such that A3: rng c1 ={x0} & rng(h1 + c1) c=dom f & for n holds h1.n>0; A4: for h,c st rng c = {x0} & rng (h+c) c= dom f & (for n holds h.n>0) holds h"(#)(f*(h+c) - f*c) is convergent by A1,Def3; A5: {x0} c= dom f proof let x; assume x in {x0}; then A6: x = x0 by TARSKI:def 1; consider r such that A7: r>0 & [.x0,x0+r.] c= dom f by A1,Def3; x0 + 0 <= x0 + r by A7,REAL_1:55; then x0 in [.x0,x0+r.] by RCOMP_1:15; hence thesis by A6,A7; end; c1 = c by A2,A3,FDIFF_2:5; hence thesis by A2,A3,A4,A5,Th4; end; uniqueness proof let g1,g2 such that A8: (for h,c st rng c ={x0} & rng (h+c) c= dom f & (for n holds h.n > 0) holds g1=lim (h"(#)(f*(h + c) - f*c))) & for h,c st rng c ={x0} & rng (h+c) c= dom f & (for n holds h.n > 0) holds g2=lim (h"(#)(f*(h + c) - f*c)); ex r st r>0 & [.x0,x0 + r.] c=dom f by A1,Def3; then consider h,c such that A9: rng c ={x0} & rng (h+c) c= dom f & for n holds h.n >0 by Th2; g1 = lim (h"(#)(f*(h + c) - f*c)) by A8,A9; hence thesis by A8,A9; end; end; theorem Th9: f is_left_differentiable_in x0 & Ldiff(f,x0) = g iff (ex r st 0 < r & [.x0 -r,x0.] c= dom f) & for h,c st rng c = {x0} & rng (h+c) c= dom f & (for n holds h.n < 0) holds h"(#)(f*(h + c) - f*c) is convergent & lim(h"(#)(f*(h + c) - f*c)) = g proof thus f is_left_differentiable_in x0 & Ldiff(f,x0) = g implies (ex r st 0 < r & [.x0 -r,x0.] c= dom f) & for h,c st rng c = {x0} & rng (h+c) c= dom f & (for n holds h.n < 0) holds h"(#)(f*(h + c) - f*c) is convergent & lim(h"(#)(f*(h + c) - f*c)) = g by Def4,Def5; thus (ex r st 0 <r & [.x0 -r,x0.] c= dom f) & (for h,c st rng c = {x0} & rng (h+c) c= dom f & (for n holds h.n < 0) holds h"(#)(f*(h + c) - f*c) is convergent & lim(h"(#)(f*(h + c) - f*c)) = g) implies f is_left_differentiable_in x0 & Ldiff(f,x0) = g proof assume A1: (ex r st 0 < r & [.x0 -r,x0.] c= dom f) & for h,c st rng c = {x0} & rng (h+c) c= dom f & (for n holds h.n < 0) holds h"(#)(f*(h + c) - f*c) is convergent & lim(h"(#) (f*(h + c) - f*c)) = g; then for h,c holds ( rng c = {x0} & rng (h+c) c= dom f & (for n holds h.n < 0)) implies h"(#)(f*(h + c) - f*c) is convergent; hence A2: f is_left_differentiable_in x0 by A1,Def4; for h,c holds ( rng c = {x0} & rng (h+c) c= dom f & (for n holds h.n < 0 ) ) implies lim(h"(#)(f*(h + c) - f*c)) = g by A1; hence thesis by A2,Def5; end; end; theorem f1 is_left_differentiable_in x0 & f2 is_left_differentiable_in x0 implies f1 + f2 is_left_differentiable_in x0 & Ldiff(f1+f2,x0) = Ldiff(f1,x0) + Ldiff(f2,x0) proof assume A1: f1 is_left_differentiable_in x0 & f2 is_left_differentiable_in x0; then consider r1 such that A2: 0 < r1 & [.x0 -r1,x0.] c= dom f1 by Def4; consider r2 such that A3: 0 < r2 & [.x0 -r2,x0.] c= dom f2 by A1,Def4; set r = min(r1,r2); A4: 0 < r by A2,A3,SQUARE_1:38; then A5: x0 - r <= x0 by PROB_1:2; r <= r1 by SQUARE_1:35; then A6: x0 - r1 <= x0 - r by REAL_1:92; then x0 - r in { g: x0 - r1 <= g & g <= x0 } by A5; then A7: x0 - r in [.x0 - r1,x0.] by RCOMP_1:def 1; x0 - r1 <= x0 by A5,A6,AXIOMS:22; then x0 in [.x0 - r1,x0.] by RCOMP_1:15; then A8: [.x0 - r,x0.] c= [.x0 - r1,x0.] by A7,RCOMP_1:16; r <= r2 by SQUARE_1:35; then A9: x0 - r2 <= x0 - r by REAL_1:92; then x0 - r in { g: x0 - r2 <= g & g <= x0 } by A5; then A10: x0 - r in [.x0 - r2,x0.] by RCOMP_1:def 1; x0 - r2 <= x0 by A5,A9,AXIOMS:22; then x0 in [.x0 - r2,x0.] by RCOMP_1:15; then A11: [.x0 - r,x0.] c= [.x0 - r2,x0.] by A10,RCOMP_1:16; A12: [.x0 - r,x0.] c= dom f1 by A2,A8,XBOOLE_1:1; [.x0 - r,x0.] c= dom f2 by A3,A11,XBOOLE_1:1; then A13: [.x0 - r,x0.] c= dom f1 /\ dom f2 by A12,XBOOLE_1:19; then A14: [.x0 - r,x0.] c= dom (f1 + f2) by SEQ_1:def 3; for h,c st rng c = {x0} & rng (h+c) c= dom (f1 + f2) & (for n holds h.n < 0) holds h"(#)((f1 + f2)*(h + c) - (f1 + f2)*c) is convergent & lim(h"(#)((f1 + f2)*(h + c) - (f1 + f2)*c)) = Ldiff(f1,x0) + Ldiff(f2,x0) proof let h,c; assume that A15: rng c = {x0} and A16: rng (h+c) c= dom (f1 + f2) and A17: for n holds h.n < 0; A18: rng (h + c) c= dom f1 /\ dom f2 by A16,SEQ_1:def 3; dom f1 /\ dom f2 c= dom f1 & dom f1 /\ dom f2 c=dom f2 by XBOOLE_1:17 ; then A19: rng (h + c) c= dom f1 & rng (h + c) c= dom f2 by A18,XBOOLE_1:1; Ldiff(f1,x0) = Ldiff(f1,x0); then A20: h"(#)(f1*(h + c) - f1*c) is convergent & lim(h"(#)(f1*(h + c) - f1*c)) = Ldiff(f1,x0) by A1,A15,A17,A19,Th9; Ldiff(f2,x0) = Ldiff(f2,x0); then A21: h"(#)(f2*(h + c) - f2*c) is convergent & lim(h"(#)(f2*(h + c) - f2*c)) = Ldiff(f2,x0) by A1,A15,A17,A19,Th9; then A22: (h"(#)(f1*(h + c) - f1*c) + h"(#) (f2*(h + c) - f2*c)) is convergent by A20,SEQ_2:19; A23: (h"(#)(f1*(h + c) - f1*c) + h"(#)(f2*(h + c) - f2*c)) = h"(#)(f1*(h + c) - f1*c + (f2*(h + c) - f2*c)) by SEQ_1:24; A24: now let n; A25: rng c c= dom f1 /\ dom f2 proof let x; assume x in rng c; then A26: x = x0 by A15,TARSKI:def 1; x0 in [.x0 - r,x0.] by A5,RCOMP_1:15; hence thesis by A13,A26; end; thus (f1*(h + c) - f1*c + (f2*(h + c) - f2*c)).n = (f1*(h + c) - f1*c).n + (f2*(h + c) - f2*c).n by SEQ_1:11 .=(f1*(h+c) + (-(f1*c))).n + (f2*(h+c) - f2*c).n by SEQ_1:15 .=(f1*(h+c) + (-(f1*c))).n + (f2*(h+c) + (-(f2*c))).n by SEQ_1:15 .=(f1*(h+c)).n + (-(f1*c)).n + (f2*(h+c) + (-(f2*c))).n by SEQ_1:11 .=(f1*(h+c)).n + (-(f1*c)).n + ((f2*(h+c)).n + (-(f2*c)).n) by SEQ_1:11 .=(f1*(h+c)).n + ((-(f1*c)).n + ((f2*(h+c)).n + (-(f2*c)).n)) by XCMPLX_1: 1 .=(f1*(h+c)).n + (((f2*(h+c)).n + (-(f1*c)).n) + (-(f2*c)).n) by XCMPLX_1: 1 .=(f1*(h+c)).n + ((f2*(h+c)).n + (-(f1*c)).n) + (-(f2*c)).n by XCMPLX_1:1 .=(f1*(h+c)).n + (f2*(h+c)).n + (-(f1*c)).n + (-(f2*c)).n by XCMPLX_1:1 .=(f1*(h+c)).n + (f2*(h + c)).n+ ((-(f1*c)).n +(-(f2*c)).n) by XCMPLX_1:1 .=(f1*(h+c)).n + (f2*(h + c)).n + (-(f1*c).n + (-(f2*c)).n) by SEQ_1:14 .=(f1*(h+c)).n + (f2*(h + c)).n + (-(f1*c).n + -(f2*c).n) by SEQ_1:14 .=(f1*(h+c)).n + (f2*(h + c)).n + -((f1*c).n + (f2*c).n) by XCMPLX_1:140 .=(f1*(h+c)).n + (f2*(h + c)).n - ((f1*c).n + (f2*c).n) by XCMPLX_0:def 8 .=(f1*(h+c) + f2*(h + c)).n - ((f1*c).n + (f2*c).n) by SEQ_1:11 .=(f1*(h+c) + f2*(h + c)).n - ((f1*c + f2*c).n) by SEQ_1:11 .=(f1*(h+c) + f2*(h + c) - (f1*c + f2*c)).n by RFUNCT_2:6 .=((f1 + f2)*(h + c) - (f1*c + f2*c)).n by A18,RFUNCT_2:23 .=((f1 + f2)*(h + c) - (f1 + f2)*c).n by A25,RFUNCT_2:23; end; then A27: f1*(h + c) - f1*c + (f2*(h + c) - f2*c) = (f1 + f2)*(h + c) - (f1 + f2)*c by FUNCT_2:113; thus h"(#)((f1 + f2)*(h + c) - (f1 + f2)*c) is convergent by A22,A23,A24, FUNCT_2:113; thus lim (h"(#)((f1 + f2)*(h + c) - (f1 + f2)*c)) = Ldiff(f1,x0) + Ldiff(f2,x0) by A20,A21,A23,A27,SEQ_2:20; end; hence thesis by A4,A14,Th9; end; theorem f1 is_left_differentiable_in x0 & f2 is_left_differentiable_in x0 implies f1 - f2 is_left_differentiable_in x0 & Ldiff(f1-f2,x0) = Ldiff(f1,x0) - Ldiff(f2,x0) proof assume A1: f1 is_left_differentiable_in x0 & f2 is_left_differentiable_in x0; then consider r1 such that A2: 0 < r1 & [.x0 -r1,x0.] c= dom f1 by Def4; consider r2 such that A3: 0 < r2 & [.x0 -r2,x0.] c= dom f2 by A1,Def4; set r = min(r1,r2); A4: 0 < r by A2,A3,SQUARE_1:38; then A5: x0 - r <= x0 by PROB_1:2; r <= r1 by SQUARE_1:35; then A6: x0 - r1 <= x0 - r by REAL_1:92; then x0 - r in { g: x0 - r1 <= g & g <= x0 } by A5; then A7: x0 - r in [.x0 - r1,x0.] by RCOMP_1:def 1; x0 - r1 <= x0 by A5,A6,AXIOMS:22; then x0 in [.x0 - r1,x0.] by RCOMP_1:15; then A8: [.x0 - r,x0.] c= [.x0 - r1,x0.] by A7,RCOMP_1:16; r <= r2 by SQUARE_1:35; then A9: x0 - r2 <= x0 - r by REAL_1:92; then x0 - r in { g: x0 - r2 <= g & g <= x0 } by A5; then A10: x0 - r in [.x0 - r2,x0.] by RCOMP_1:def 1; x0 - r2 <= x0 by A5,A9,AXIOMS:22; then x0 in [.x0 - r2,x0.] by RCOMP_1:15; then A11: [.x0 - r,x0.] c= [.x0 - r2,x0.] by A10,RCOMP_1:16; A12: [.x0 - r,x0.] c= dom f1 by A2,A8,XBOOLE_1:1; [.x0 - r,x0.] c= dom f2 by A3,A11,XBOOLE_1:1; then A13: [.x0 - r,x0.] c= dom f1 /\ dom f2 by A12,XBOOLE_1:19; then A14: [.x0 - r,x0.] c= dom (f1 - f2) by SEQ_1:def 4; for h,c st rng c = {x0} & rng (h+c) c= dom (f1 - f2) & (for n holds h.n < 0) holds h"(#)((f1 - f2)*(h + c) - (f1 - f2)*c) is convergent & lim(h"(#)((f1 - f2)*(h + c) - (f1 - f2)*c)) = Ldiff(f1,x0) - Ldiff(f2,x0) proof let h,c; assume that A15: rng c = {x0} and A16: rng (h+c) c= dom (f1 - f2) and A17: for n holds h.n < 0; A18: rng (h + c) c= dom f1 /\ dom f2 by A16,SEQ_1:def 4; dom f1 /\ dom f2 c= dom f1 & dom f1 /\ dom f2 c=dom f2 by XBOOLE_1:17 ; then A19: rng (h + c) c= dom f1 & rng (h + c) c= dom f2 by A18,XBOOLE_1:1; Ldiff(f1,x0) = Ldiff(f1,x0); then A20: h"(#)(f1*(h + c) - f1*c) is convergent & lim(h"(#)(f1*(h + c) - f1*c)) = Ldiff(f1,x0) by A1,A15,A17,A19,Th9; Ldiff(f2,x0) = Ldiff(f2,x0); then A21: h"(#)(f2*(h + c) - f2*c) is convergent & lim(h"(#)(f2*(h + c) - f2*c)) = Ldiff(f2,x0) by A1,A15,A17,A19,Th9; then A22: (h"(#)(f1*(h + c) - f1*c) - h"(#) (f2*(h + c) - f2*c)) is convergent by A20,SEQ_2:25; A23: (h"(#)(f1*(h + c) - f1*c) - h"(#)(f2*(h + c) - f2*c)) = h"(#)(f1*(h + c) - f1*c - (f2*(h + c) - f2*c)) by SEQ_1:29; A24: now let n; A25: rng c c= dom f1 /\ dom f2 proof let x; assume x in rng c; then A26: x = x0 by A15,TARSKI:def 1; x0 in [.x0 - r,x0.] by A5,RCOMP_1:15; hence thesis by A13,A26; end; thus (f1*(h + c) - f1*c - (f2*(h + c) - f2*c)).n = (f1*(h + c) - f1*c).n - (f2*(h + c) - f2*c).n by RFUNCT_2:6 .=(f1*(h + c)).n - (f1*c).n - (f2*(h + c) - (f2*c)).n by RFUNCT_2:6 .=(f1*(h + c)).n - (f1*c).n - ((f2*(h + c)).n - (f2*c).n) by RFUNCT_2:6 .=(f1*(h + c)).n - (f1*c).n - (f2*(h + c)).n + (f2*c).n by XCMPLX_1:37 .=(f1*(h + c)).n - (f2*(h + c)).n - (f1*c).n + (f2*c).n by XCMPLX_1:21 .=(f1*(h + c)).n - (f2*(h + c)).n - ((f1*c).n - (f2*c).n) by XCMPLX_1:37 .=(f1*(h + c) - f2*(h + c)).n - ((f1*c).n - (f2*c).n) by RFUNCT_2:6 .=(f1*(h + c) - f2*(h + c)).n - ((f1*c - f2*c).n) by RFUNCT_2:6 .=(f1*(h + c) - f2*(h + c) - (f1*c - f2*c)).n by RFUNCT_2:6 .=((f1 - f2)*(h + c) - (f1*c - f2*c)).n by A18,RFUNCT_2:23 .=((f1 - f2)*(h + c) - (f1 - f2)*c).n by A25,RFUNCT_2:23; end; then A27: f1*(h + c) - f1*c - (f2*(h + c) - f2*c) = (f1 - f2)*(h + c) - (f1 - f2)*c by FUNCT_2:113; thus h"(#)((f1 - f2)*(h + c) - (f1 - f2)*c) is convergent by A22,A23,A24, FUNCT_2:113; thus thesis by A20,A21,A23,A27,SEQ_2:26; end; hence thesis by A4,A14,Th9; end; theorem f1 is_left_differentiable_in x0 & f2 is_left_differentiable_in x0 implies f1(#)f2 is_left_differentiable_in x0 & Ldiff(f1(#)f2,x0) = Ldiff(f1,x0)*f2.x0 + Ldiff(f2,x0)*f1.x0 proof assume A1: f1 is_left_differentiable_in x0 & f2 is_left_differentiable_in x0; then consider r1 such that A2: 0 < r1 & [.x0 -r1,x0.] c= dom f1 by Def4; consider r2 such that A3: 0 < r2 & [.x0 -r2,x0.] c= dom f2 by A1,Def4; set r = min(r1,r2); A4: 0 < r by A2,A3,SQUARE_1:38; then A5: x0 - r <= x0 by PROB_1:2; r <= r1 by SQUARE_1:35; then A6: x0 - r1 <= x0 - r by REAL_1:92; then x0 - r in { g: x0 - r1 <= g & g <= x0 } by A5; then A7: x0 - r in [.x0 - r1,x0.] by RCOMP_1:def 1; x0 - r1 <= x0 by A5,A6,AXIOMS:22; then x0 in [.x0 - r1,x0.] by RCOMP_1:15; then A8: [.x0 - r,x0.] c= [.x0 - r1,x0.] by A7,RCOMP_1:16; r <= r2 by SQUARE_1:35; then A9: x0 - r2 <= x0 - r by REAL_1:92; then x0 - r in { g: x0 - r2 <= g & g <= x0 } by A5; then A10: x0 - r in [.x0 - r2,x0.] by RCOMP_1:def 1; x0 - r2 <= x0 by A5,A9,AXIOMS:22; then x0 in [.x0 - r2,x0.] by RCOMP_1:15; then A11: [.x0 - r,x0.] c= [.x0 - r2,x0.] by A10,RCOMP_1:16; A12: [.x0 - r,x0.] c= dom f1 by A2,A8,XBOOLE_1:1; A13: [.x0 - r,x0.] c= dom f2 by A3,A11,XBOOLE_1:1; then [.x0 - r,x0.] c= dom f1 /\ dom f2 by A12,XBOOLE_1:19; then A14: [.x0 - r,x0.] c= dom (f1(#)f2) by SEQ_1:def 5; for h,c st rng c = {x0} & rng (h+c) c= dom (f1(#)f2) & (for n holds h.n < 0) holds h"(#)((f1(#)f2)*(h + c) - (f1(#)f2)*c) is convergent & lim(h"(#)((f1(#)f2)*(h + c) - (f1(#)f2)*c)) = Ldiff(f1,x0)*f2.x0 + Ldiff(f2,x0)*f1.x0 proof let h,c; assume that A15: rng c = {x0} and A16: rng (h+c) c= dom (f1(#)f2) and A17: for n holds h.n < 0; A18: rng (h + c) c= dom f1 /\ dom f2 by A16,SEQ_1:def 5; dom f1 /\ dom f2 c= dom f1 & dom f1 /\ dom f2 c=dom f2 by XBOOLE_1:17 ; then A19: rng (h + c) c= dom f1 & rng (h + c) c= dom f2 by A18,XBOOLE_1:1; Ldiff(f1,x0) = Ldiff(f1,x0); then A20: h"(#)(f1*(h + c) - f1*c) is convergent & lim(h"(#)(f1*(h + c) - f1*c)) = Ldiff(f1,x0) by A1,A15,A17,A19,Th9; Ldiff(f2,x0) = Ldiff(f2,x0); then A21: h"(#)(f2*(h + c) - f2*c) is convergent & lim(h"(#)(f2*(h + c) - f2*c)) = Ldiff(f2,x0) by A1,A15,A17,A19,Th9; A22: for m holds c.m = x0 proof let m; c.m in rng c by RFUNCT_2:10; hence c.m = x0 by A15,TARSKI:def 1; end; 0 <= r by A2,A3,SQUARE_1:38; then x0 - r <= x0 by PROB_1:2; then A23: x0 in [.x0 -r,x0.] by RCOMP_1:15; then A24: x0 in dom f1 by A12; A25: rng c c= dom f1 proof let x; assume x in rng c; hence x in dom f1 by A15,A24,TARSKI:def 1; end; A26: for g be real number st 0 < g ex n st for m st n <=m holds abs((f1*c).m - f1.x0) < g proof let g be real number such that A27: 0 < g; take n = 0; let m such that n <= m; abs((f1*c).m - f1.x0) = abs(f1.(c.m) - f1.x0) by A25,RFUNCT_2:21 .= abs(f1.x0 - f1.x0) by A22 .= abs(0) by XCMPLX_1:14 .= 0 by ABSVALUE:def 1; hence abs((f1*c).m - f1.x0) < g by A27; end; A28: h is convergent & lim h = 0 by FDIFF_1:def 1; A29: f1*c is convergent by A26,SEQ_2:def 6; then A30: lim(f1*c) = f1.x0 by A26,SEQ_2:def 7; A31: h"(#)(f1*(h + c) - f1*c) is convergent by A1,A15,A17,A19,Def4; then A32: h(#)(h"(#)(f1*(h + c) - f1*c)) is convergent by A28,SEQ_2:28; A33: h(#)(h"(#)(f1*(h + c) - f1*c)) = (f1*(h + c) - f1*c) proof now let n; A34: h.n <> 0 by A17; thus (h(#)(h"(#)(f1*(h + c) - f1*c))).n = ((h(#)h")(#) (f1*(h + c) - f1*c)).n by SEQ_1:22 .= (h(#)h").n *(f1*(h + c) - f1*c).n by SEQ_1:12 .= h.n * (h").n *(f1*(h + c) - f1*c).n by SEQ_1:12 .= h.n * (h.n)" *(f1*(h + c) - f1*c).n by SEQ_1:def 8 .= 1*(f1*(h + c) - f1*c).n by A34,XCMPLX_0:def 7 .= (f1*(h + c) - f1*c).n; end; hence thesis by FUNCT_2:113; end; f1*c + (f1*(h + c) - f1*c) = f1*(h + c) proof now let n; thus (f1*c + (f1*(h + c) - f1*c)).n = (f1*c).n + (f1*(h + c) - f1*c). n by SEQ_1:11 .= (f1*c).n + ((f1*(h + c)).n - (f1*c).n) by RFUNCT_2:6 .= (f1*(h + c)).n by XCMPLX_1:27; end; hence thesis by FUNCT_2:113; end; then A35: f1*(h +c) is convergent by A29,A32,A33,SEQ_2:19; lim (h(#)(h"(#)(f1*(h + c) - f1*c))) = lim h *lim (h"(#) (f1*(h + c) - f1*c)) by A28,A31,SEQ_2:29 .= 0 by A28; then A36: 0 = lim (f1*(h + c)) - f1.x0 by A29,A30,A33,A35,SEQ_2:26; A37: x0 in dom f2 by A13,A23; A38: rng c c= dom f2 proof let x; assume x in rng c; hence x in dom f2 by A15,A37,TARSKI:def 1; end; A39: for g be real number st 0 < g ex n st for m st n <=m holds abs((f2*c).m - f2.x0) < g proof let g be real number such that A40: 0 < g; take n = 0; let m such that n <= m; abs((f2*c).m - f2.x0) = abs(f2.(c.m) - f2.x0) by A38,RFUNCT_2:21 .= abs(f2.x0 - f2.x0) by A22 .= abs(0) by XCMPLX_1:14 .= 0 by ABSVALUE:def 1; hence abs((f2*c).m - f2.x0) < g by A40; end; then A41: f2*c is convergent by SEQ_2:def 6; A42: rng c c= dom f1 /\ dom f2 by A25,A38,XBOOLE_1:19; A43: h"(#) (f2*(h + c) - f2*c)(#) (f1*(h + c)) is convergent by A21,A35,SEQ_2:28; A44: h"(#) (f1*(h + c) - f1*c)(#)(f2*c) is convergent by A20,A41,SEQ_2:28; A45: now let n; thus (h"(#)((f1(#)f2)*(h + c) - (f1(#)f2)*c)).n = ((h").n) * ((f1(#)f2)*(h + c) - (f1(#)f2)*c).n by SEQ_1:12 .= ((h").n) * (((f1(#)f2)*(h + c)).n - ((f1(#)f2)*c).n) by RFUNCT_2:6 .= h".n * (((f1*(h + c))(#)(f2*(h + c))).n - ((f1(#)f2)*c).n) by A18,RFUNCT_2:23 .= h".n * (((f1*(h + c))(#)(f2*(h + c))).n - ((f1*c)(#)(f2*c)).n) by A42,RFUNCT_2:23 .= h".n * ((f1*(h + c)).n * (f2*(h + c)).n - ((f1*c)(#)(f2*c)).n) by SEQ_1:12 .= h".n * ((f1*(h + c)).n * (f2*(h + c)).n - ((f1*c).n * (f2*c).n)) by SEQ_1:12 .= h".n * (((f1*(h+c)).n * (f2*(h + c)).n - (((f1*(h + c)).n)*(f2*c).n)) +(((f1*(h + c)).n*(f2*c).n) - ((f1*c).n*(f2*c).n))) by XCMPLX_1:39 .= h".n * (((f1*(h + c)).n*((f2*(h + c)).n - (f2*c).n)) +(((f1*(h + c)).n*(f2*c).n) - ((f1*c).n*(f2*c).n))) by XCMPLX_1:40 .= h".n * ((((f2*(h + c)).n - (f2*c).n)*(f1*(h + c)).n) +(((f1*(h + c)).n - (f1*c).n)*(f2*c).n)) by XCMPLX_1:40 .= h".n * (((f2*(h + c)).n - (f2*c).n)*(f1*(h + c)).n) + h".n * (((f1*(h + c)).n - (f1*c).n)*(f2*c).n) by XCMPLX_1:8 .= h".n * (((f2*(h + c)).n - (f2*c).n)*(f1*(h + c)).n) + (h".n * ((f1*(h + c)).n - (f1*c).n))*(f2*c).n by XCMPLX_1:4 .= h".n * ((f2*(h + c)).n - (f2*c).n)*(f1*(h + c)).n + (h".n * ((f1*(h + c)).n - (f1*c).n))*(f2*c).n by XCMPLX_1:4 .= h".n * (f2*(h + c) - f2*c).n * (f1*(h + c)).n + (h".n * ((f1*(h + c)).n - (f1*c).n))*(f2*c).n by RFUNCT_2:6 .= (h"(#) (f2*(h + c) - f2*c)).n * (f1*(h + c)).n + (h".n * ((f1*(h + c)).n - (f1*c).n))*(f2*c).n by SEQ_1:12 .= (h"(#) (f2*(h + c) - f2*c)).n * (f1*(h + c)).n + (h".n * (f1*(h + c) - (f1*c)).n)*(f2*c).n by RFUNCT_2:6 .= (h"(#) (f2*(h + c) - f2*c)).n * (f1*(h + c)).n + (h"(#) (f1*(h + c) - f1*c)).n*(f2*c).n by SEQ_1:12 .= (h"(#) (f2*(h + c) - f2*c) (#) (f1*(h + c))).n + (h"(#) (f1*(h + c) - f1*c)).n*(f2*c).n by SEQ_1:12 .= (h"(#) (f2*(h + c) - f2*c)(#)(f1*(h + c))).n + (h"(#) (f1*(h + c) - f1*c)(#)(f2*c)).n by SEQ_1:12 .= (h"(#) (f2*(h + c) - f2*c)(#)(f1*(h + c)) + h"(#) (f1*(h + c) - f1*c)(#)(f2*c)).n by SEQ_1:11; end; then A46: h"(#)((f1(#)f2)*(h + c) - (f1(#)f2)*c) = h"(#) (f2*(h + c) - f2*c)(#) (f1*(h+c)) + h"(#) (f1*(h + c) - f1*c)(#)(f2*c) by FUNCT_2:113; lim (h"(#)((f1(#)f2)*(h + c) - (f1(#)f2)*c)) = lim (h"(#) (f2*(h+c) - f2*c)(#)(f1*(h+c)) + h"(#) (f1*(h + c) - f1*c)(#) (f2*c)) by A45,FUNCT_2:113 .= lim (h"(#) (f2*(h + c) - f2*c)(#)(f1*(h + c))) + lim (h"(#) (f1*(h + c) - f1*c)(#)(f2*c)) by A43,A44,SEQ_2:20 .= lim (h"(#) (f2*(h + c) - f2*c))*lim(f1*(h + c)) + lim (h"(#) (f1*(h + c) - f1*c)(#)(f2*c)) by A21,A35,SEQ_2:29 .= lim (h"(#) (f2*(h + c) - f2*c))*lim(f1*(h + c)) + lim (h"(#) (f1*(h + c) - f1*c))*lim(f2*c) by A20,A41,SEQ_2:29 .= lim (h"(#) (f2*(h + c) - f2*c))* f1.x0 + lim (h"(#) (f1*(h + c) - f1*c))*lim(f2*c) by A36,XCMPLX_1:15 .= Ldiff(f1,x0) * f2.x0 + Ldiff(f2,x0) * f1.x0 by A20,A21,A39,A41,SEQ_2: def 7; hence thesis by A43,A44,A46,SEQ_2:19; end; hence thesis by A4,A14,Th9; end; Lm1: f1 is_left_differentiable_in x0 & f2 is_left_differentiable_in x0 & (ex r0 st r0 > 0 & for g st g in dom f2 & g in [.x0 - r0,x0.] holds f2.g <> 0) implies f1/f2 is_left_differentiable_in x0 & Ldiff(f1/f2,x0) = (Ldiff(f1,x0)*f2.x0 - Ldiff(f2,x0)*f1.x0)/(f2.x0)^2 proof assume A1: f1 is_left_differentiable_in x0 & f2 is_left_differentiable_in x0; given r0 such that A2: r0 > 0 & for g st g in dom f2 & g in [.x0 - r0,x0.] holds f2.g <> 0; consider r1 such that A3: 0 < r1 & [.x0 -r1,x0.] c= dom f1 by A1,Def4; consider r2 such that A4: 0 < r2 & [.x0 -r2,x0.] c= dom f2 by A1,Def4; set r3 = min(r0,r2); A5: 0 < r3 by A2,A4,SQUARE_1:38; then A6: x0 - r3 <= x0 by PROB_1:2; r3 <= r0 by SQUARE_1:35; then A7: x0 - r0 <= x0 - r3 by REAL_1:92; then x0 - r3 in { g: x0 - r0 <= g & g <= x0 } by A6; then A8: x0 - r3 in [.x0 - r0,x0.] by RCOMP_1:def 1; x0 - r0 <= x0 by A6,A7,AXIOMS:22; then A9: x0 in [.x0 - r0,x0.] by RCOMP_1:15; then A10: [.x0 - r3,x0.] c= [.x0 - r0,x0.] by A8,RCOMP_1:16; r3 <= r2 by SQUARE_1:35; then A11: x0 - r2 <= x0 - r3 by REAL_1:92; then x0 - r3 in { g: x0 - r2 <= g & g <= x0 } by A6; then A12: x0 - r3 in [.x0 - r2,x0.] by RCOMP_1:def 1; x0 - r2 <= x0 by A6,A11,AXIOMS:22; then A13: x0 in [.x0 - r2,x0.] by RCOMP_1:15; then [.x0 - r3,x0.] c= [.x0 - r2,x0.] by A12,RCOMP_1:16; then A14: [.x0 - r3,x0.] c= dom f2 by A4,XBOOLE_1:1; set r = min(r1,r3); A15: 0 < r by A3,A5,SQUARE_1:38; then A16: x0 - r <= x0 by PROB_1:2; r <= r1 by SQUARE_1:35; then A17: x0 - r1 <= x0 - r by REAL_1:92; then x0 - r in { g: x0 - r1 <= g & g <= x0 } by A16; then A18: x0 - r in [.x0 - r1,x0.] by RCOMP_1:def 1; x0 - r1 <= x0 by A16,A17,AXIOMS:22; then x0 in [.x0 - r1,x0.] by RCOMP_1:15; then A19: [.x0 - r,x0.] c= [.x0 - r1,x0.] by A18,RCOMP_1:16; r <= r3 by SQUARE_1:35; then A20: x0 - r3 <= x0 - r by REAL_1:92; then x0 - r in { g: x0 - r3 <= g & g <= x0 } by A16; then A21: x0 - r in [.x0 - r3,x0.] by RCOMP_1:def 1; x0 - r3 <= x0 by A16,A20,AXIOMS:22; then x0 in [.x0 - r3,x0.] by RCOMP_1:15; then A22: [.x0 - r,x0.] c= [.x0 - r3,x0.] by A21,RCOMP_1:16; A23: [.x0 - r,x0.] c= dom f1 by A3,A19,XBOOLE_1:1; [.x0 - r,x0.] c= dom(f2^) proof assume not thesis; then consider x such that A24: x in [.x0 - r ,x0.] & not x in dom (f2^) by TARSKI:def 3; reconsider x as Real by A24; A25: not x in dom f2 \ f2"{0} by A24,RFUNCT_1:def 8; A26: x in [.x0 - r3 ,x0.] by A22,A24; now per cases by A25,XBOOLE_0:def 4; suppose not x in dom f2; hence contradiction by A14,A26; suppose x in f2"{0}; then x in dom f2 & f2.x in {0} by FUNCT_1:def 13; then x in dom f2 & f2.x = 0 by TARSKI:def 1; hence contradiction by A2,A10,A26; end; hence contradiction; end; then A27: [.x0 - r,x0.] c= dom f2\f2"{0} by RFUNCT_1:def 8; then [.x0 - r,x0.] c= dom f1 /\ (dom f2\f2"{0}) by A23,XBOOLE_1:19; then A28: [.x0 - r,x0.] c= dom (f1/f2) by RFUNCT_1:def 4; for h,c st rng c = {x0} & rng (h+c) c= dom (f1/f2) & (for n holds h.n < 0) holds h"(#)((f1/f2)*(h + c) - (f1/f2)*c) is convergent & lim(h"(#)((f1/f2)*(h + c) - (f1/f2)*c)) = (Ldiff(f1,x0)*f2.x0 - Ldiff(f2,x0)*f1.x0)/(f2.x0)^2 proof let h,c; assume that A29: rng c = {x0} and A30: rng (h+c) c= dom (f1/f2) and A31: for n holds h.n < 0; A32: rng (h + c) c= dom f1 /\ (dom f2\f2"{0}) by A30,RFUNCT_1:def 4; dom f1 /\ (dom f2\f2"{0}) c= dom f1 & dom f1 /\ (dom f2\f2"{0}) c=(dom f2\f2"{0}) by XBOOLE_1:17; then A33: rng (h + c) c= dom f1 & rng (h + c) c= (dom f2\f2"{0}) by A32, XBOOLE_1:1; dom f2 \ f2"{0} c= dom f2 by XBOOLE_1:36; then A34: rng (h + c) c= dom f2 by A33,XBOOLE_1:1; Ldiff(f1,x0) = Ldiff(f1,x0); then A35: h"(#)(f1*(h + c) - f1*c) is convergent & lim(h"(#)(f1*(h + c) - f1*c)) = Ldiff(f1,x0) by A1,A29,A31,A33,Th9; Ldiff(f2,x0) = Ldiff(f2,x0); then A36: h"(#)(f2*(h + c) - f2*c) is convergent & lim(h"(#)(f2*(h + c) - f2*c)) = Ldiff(f2,x0) by A1,A29,A31,A34,Th9; A37: rng (h + c) c= dom (f2^) by A33,RFUNCT_1:def 8; then A38: rng (h + c) c= dom f1 /\ dom (f2^) by A33,XBOOLE_1:19; A39: f2*(h + c) is_not_0 by A37,RFUNCT_2:26; A40: for m holds c.m = x0 proof let m; c.m in rng c by RFUNCT_2:10; hence c.m = x0 by A29,TARSKI:def 1; end; 0 <= r by A3,A5,SQUARE_1:38; then x0 - r <= x0 by PROB_1:2; then A41: x0 in [.x0 -r,x0.] by RCOMP_1:15; then A42: x0 in dom f1 by A23; A43: rng c c= dom f1 proof let x be set; assume x in rng c; hence x in dom f1 by A29,A42,TARSKI:def 1; end; A44: for g be real number st 0 < g ex n st for m st n <=m holds abs((f1*c).m - f1.x0) < g proof let g be real number such that A45: 0 < g; take n = 0; let m such that n <= m; abs((f1*c).m - f1.x0) = abs(f1.(c.m) - f1.x0) by A43,RFUNCT_2:21 .=abs(f1.x0 - f1.x0) by A40 .=abs(0) by XCMPLX_1:14 .= 0 by ABSVALUE:def 1; hence abs((f1*c).m - f1.x0) < g by A45; end; A46: h is convergent & lim h = 0 by FDIFF_1:def 1; A47: f1*c is convergent by A44,SEQ_2:def 6; then A48: lim(f1*c) = f1.x0 by A44,SEQ_2:def 7; A49: h"(#)(f1*(h + c) - f1*c) is convergent & h"(#)(f2*(h + c) - f2*c) is convergent by A1,A29,A31,A33,A34,Def4; A50: x0 in (dom f2\f2"{0}) by A27,A41; rng c c= dom f2\f2"{0} proof let x be set; assume x in rng c; hence x in (dom f2\f2"{0}) by A29,A50,TARSKI:def 1; end; then A51: rng c c= dom (f2^) by RFUNCT_1:def 8; then A52: rng c c= dom f1 /\ dom (f2^) by A43,XBOOLE_1:19; A53: f2*c is_not_0 by A51,RFUNCT_2:26; then A54: (f2*(h + c)) (#) (f2*c) is_not_0 by A39,SEQ_1:43; dom (f2^) = dom f2 \ f2"{0} by RFUNCT_1:def 8; then dom (f2^) c= dom f2 by XBOOLE_1:36; then A55: rng c c= dom f2 by A51,XBOOLE_1:1; A56: for g be real number st 0 < g ex n st for m st n <=m holds abs((f2*c).m - f2.x0) < g proof let g be real number such that A57: 0 < g; take n = 0; let m such that n <= m; abs((f2*c).m - f2.x0) = abs(f2.(c.m) - f2.x0) by A55,RFUNCT_2:21 .=abs(f2.x0 - f2.x0) by A40 .=abs(0) by XCMPLX_1:14 .= 0 by ABSVALUE:def 1; hence abs((f2*c).m - f2.x0) < g by A57; end; then A58: f2*c is convergent by SEQ_2:def 6; then A59: lim(f2*c) = f2.x0 by A56,SEQ_2:def 7; A60: h(#)(h"(#)(f2*(h + c) - f2*c)) is convergent by A36,A46,SEQ_2:28; A61: h(#)(h"(#)(f2*(h + c) - f2*c)) = (f2*(h + c) - f2*c) proof now let n; A62: h.n <> 0 by A31; thus (h(#)(h"(#)(f2*(h + c) - f2*c))).n = ((h(#)h")(#)(f2*(h + c) - f2*c)). n by SEQ_1:22 .= (h(#)h").n *(f2*(h + c) - f2*c).n by SEQ_1:12 .= h.n * (h").n *(f2*(h + c) - f2*c).n by SEQ_1:12 .= h.n * (h.n)" *(f2*(h + c) - f2*c).n by SEQ_1:def 8 .= 1*(f2*(h + c) - f2*c).n by A62,XCMPLX_0:def 7 .= (f2*(h + c) - f2*c).n; end; hence thesis by FUNCT_2:113; end; f2*c + (f2*(h + c) - f2*c) = f2*(h + c) proof now let n; thus (f2*c + (f2*(h + c) - f2*c)).n = (f2*c).n + (f2*(h + c) - f2*c).n by SEQ_1:11 .= (f2*c).n + ((f2*(h + c)).n - (f2*c).n) by RFUNCT_2:6 .= (f2*(h + c)).n by XCMPLX_1:27; end; hence thesis by FUNCT_2:113; end; then A63: f2*(h +c) is convergent by A58,A60,A61,SEQ_2:19; lim (h(#)(h"(#)(f2*(h + c) - f2*c))) = lim h *lim (h"(#)(f2*(h + c) - f2*c) ) by A46,A49,SEQ_2:29 .= 0 by A46; then A64: 0 = lim (f2*(h + c)) - f2.x0 by A58,A59,A61,A63,SEQ_2:26; A65: f2*(h + c) (#) (f2*c) is convergent by A58,A63,SEQ_2:28; A66: lim(f2*(h + c) (#) (f2*c)) = (f2.x0)^2 proof thus lim(f2*(h + c) (#) (f2*c)) = lim(f2*(h + c)) *lim(f2*c) by A58,A63,SEQ_2:29 .= f2.x0 * f2.x0 by A59,A64,XCMPLX_1:15 .=(f2.x0)^2 by SQUARE_1:def 3; end; A67: lim(f2*(h + c) (#) (f2*c))<> 0 proof assume not thesis; then f2.x0 = 0 by A66,SQUARE_1:73; hence contradiction by A2,A4,A9,A13; end; A68: (f1*c)(#)(h"(#) (f2*(h + c) - f2*c)) is convergent by A36,A47,SEQ_2:28; A69: h"(#) (f1*(h + c) - f1*c)(#)(f2*c) is convergent by A35,A58,SEQ_2:28; A70: h"(#) ((f1/f2)*(h + c) - (f1/f2)*c)=h"(#)((f1(#) (f2^))*(h + c) - (f1/f2)*c) by RFUNCT_1:47 .=h"(#)((f1(#)(f2^))*(h + c) - (f1(#)(f2^))*c) by RFUNCT_1:47 .=h"(#)((f1*(h + c))(#)((f2^)*(h + c)) - (f1(#) (f2^))*c) by A38,RFUNCT_2:23 .=h"(#)((f1*(h + c))(#)(f2*(h + c))" - (f1(#)(f2^))*c) by A37,RFUNCT_2:27 .=h"(#)((f1*(h + c))/"(f2*(h + c)) - (f1(#)(f2^))*c) by SEQ_1:def 9 .=h"(#)((f1*(h + c))/"(f2*(h + c)) - (f1*c)(#) ((f2^)*c)) by A52,RFUNCT_2:23 .=h"(#)((f1*(h + c))/"(f2*(h + c)) - (f1*c)(#)(f2*c)") by A51,RFUNCT_2:27 .=h"(#)((f1*(h + c))/"(f2*(h + c)) - (f1*c)/"(f2*c)) by SEQ_1:def 9 .=h"(#)(((f1*(h + c))(#)(f2*c) - (f1*c)(#)(f2*(h + c)))/"((f2*(h + c))(#) (f2*c))) by A39,A53,SEQ_1:58 .=(h"(#)((f1*(h + c))(#)(f2*c) - (f1*c)(#)(f2*(h + c))))/"((f2*(h + c))(#) (f2*c)) by SEQ_1:49; A71: ((h"(#)(f1*(h + c) - (f1*c)))(#)(f2*c) - (f1*c)(#)(h"(#) (f2*(h + c)-(f2*c)))) is convergent by A68,A69,SEQ_2:25; now let n; thus (h"(#)((f1*(h + c))(#)(f2*c) - (f1*c)(#)(f2*(h + c)))).n = (h").n * ((f1*(h + c))(#)(f2*c) - (f1*c)(#)(f2*(h + c))).n by SEQ_1:12 .= (h").n * (((f1*(h + c))(#)(f2*c)).n - ((f1*c)(#) (f2*(h + c))).n) by RFUNCT_2:6 .= (h").n * ((f1*(h + c)).n * (f2*c).n - ((f1*c)(#)(f2*(h + c))).n) by SEQ_1:12 .= (h").n * ((f1*(h + c)).n * (f2*c).n - 0 - (f1*c).n * (f2*(h + c)).n) by SEQ_1:12 .= (h").n * ((f1*(h + c)).n * (f2*c).n - ((f1*c).n*(f2*c).n -(f1*c).n* (f2*c).n) - (f1*c).n * (f2*(h + c)).n) by XCMPLX_1:14 .= (h").n * (((f1*(h + c)).n * (f2*c).n - (f1*c).n*(f2*c).n) + (f1*c).n* (f2*c).n - (f1*c).n * (f2*(h + c)).n) by XCMPLX_1:37 .= (h").n * (((f1*(h + c)).n - (f1*c).n) * (f2*c).n + ((f1*c).n*(f2*c).n) - ((f1*c).n * (f2*(h + c)).n)) by XCMPLX_1:40 .= (h").n * (((f1*(h + c)).n - (f1*c).n) * (f2*c).n + (((f1*c).n*(f2*c).n) - ((f1*c).n * (f2*(h + c)).n))) by XCMPLX_1:29 .= (h").n * (((f1*(h + c)).n - (f1*c).n) * (f2*c).n - ((f1*c).n * (f2*(h + c)).n - (f1*c).n*(f2*c).n)) by XCMPLX_1:38 .= (h").n * (((f1*(h + c)).n - (f1*c).n) * (f2*c).n - (f1*c).n * ((f2*(h + c)).n - (f2*c).n)) by XCMPLX_1:40 .= (h").n * (((f1*(h + c)).n - (f1*c).n) * (f2*c).n) - ((h").n) * ((f1*c).n * ((f2*(h + c)).n - (f2*c).n)) by XCMPLX_1:40 .= (h").n * ((f1*(h + c)).n - (f1*c).n) * (f2*c).n - ((h").n) * ((f1*c).n * ((f2*(h + c)).n - (f2*c).n)) by XCMPLX_1:4 .= (h").n * ((f1*(h + c)).n - (f1*c).n) * (f2*c).n - (f1*c).n * ((h").n * ((f2*(h + c)).n - (f2*c).n)) by XCMPLX_1:4 .= (h").n * ((f1*(h + c)) - (f1*c)).n * (f2*c).n - (f1*c).n * ((h").n * ((f2*(h + c)).n - (f2*c).n)) by RFUNCT_2:6 .= (h").n * (f1*(h + c) - (f1*c)).n * (f2*c).n - (f1*c).n * ((h").n * (f2*(h + c) - (f2*c)).n) by RFUNCT_2:6 .= (h" (#) (f1*(h + c) - (f1*c))).n * (f2*c).n - (f1*c).n * ((h").n * (f2*(h + c) - (f2*c)).n) by SEQ_1:12 .= (h"(#)(f1*(h + c) - (f1*c))).n * (f2*c).n - (f1*c).n * (h"(#)(f2*(h + c) - (f2*c))).n by SEQ_1:12 .= (h"(#)(f1*(h + c) - (f1*c))(#)(f2*c)).n - (f1*c).n * (h"(#)(f2*(h + c) - (f2*c))).n by SEQ_1:12 .= (h"(#)(f1*(h + c) - (f1*c))(#)(f2*c)).n - ((f1*c)(#)(h"(#)(f2*(h + c)-(f2*c)))).n by SEQ_1:12 .= (h"(#)(f1*(h + c) - (f1*c))(#)(f2*c) - (f1*c)(#)(h"(#) (f2*(h + c)-(f2*c)))).n by RFUNCT_2:6; end; then A72: h"(#) ((f1/f2)*(h + c) - (f1/f2)*c) =((h"(#)(f1*(h + c) - (f1*c))) (#) (f2*c) - (f1*c)(#)(h"(#)(f2*(h + c)-(f2*c))))/"(f2*(h + c)(#) (f2*c)) by A70,FUNCT_2:113 ; then lim(h"(#) ((f1/f2)*(h + c) - (f1/f2)*c)) = lim((h"(#)(f1*(h + c) - (f1*c)))(#)(f2*c) - (f1*c)(#)(h"(#) (f2*(h + c)-(f2*c))))/ lim(f2*(h + c)(#)(f2*c)) by A54,A65,A67,A71,SEQ_2:38 .=(lim((h"(#)(f1*(h + c)-(f1*c)))(#)(f2*c))-lim((f1*c)(#)(h"(#)(f2*(h + c)- (f2*c)))))/lim(f2*(h + c)(#)(f2*c)) by A68,A69,SEQ_2:26 .=( lim(h"(#)(f1*(h + c)-(f1*c)))*lim(f2*c) - lim((f1*c) (#) (h"(#)(f2*(h + c)-(f2*c)))) ) / lim(f2*(h + c)(#)(f2*c)) by A49,A58,SEQ_2:29 .=(Ldiff(f1,x0) * f2.x0 - Ldiff(f2,x0) * f1.x0)/(f2.x0)^2 by A35,A36,A47,A48 ,A59,A66,SEQ_2:29; hence thesis by A54,A65,A67,A71,A72,SEQ_2:37; end; hence thesis by A15,A28,Th9; end; theorem f1 is_left_differentiable_in x0 & f2 is_left_differentiable_in x0 & f2.x0 <> 0 implies f1/f2 is_left_differentiable_in x0 & Ldiff(f1/f2,x0) = (Ldiff(f1,x0)*f2.x0 - Ldiff(f2,x0)*f1.x0)/(f2.x0)^2 proof assume A1: f1 is_left_differentiable_in x0 & f2 is_left_differentiable_in x0 & f2.x0 <> 0; then A2: f2 is_Lcontinuous_in x0 by Th5; ex r st r > 0 &[.x0-r,x0.] c= dom f2 by A1,Def4; then consider r1 such that A3: r1 > 0 & [.x0-r1,x0.] c= dom f2 & for g st g in [.x0-r1,x0.] holds f2.g <> 0 by A1,A2,Th6; now take r1; thus r1 > 0 by A3; let g; assume g in dom f2 & g in [.x0 - r1,x0.]; hence f2.g <> 0 by A3; end; hence thesis by A1,Lm1; end; Lm2: f is_left_differentiable_in x0 & (ex r0 st r0 > 0 & for g st g in dom f & g in [.x0 - r0,x0.] holds f.g <> 0) implies f^ is_left_differentiable_in x0 & Ldiff(f^,x0) = - Ldiff(f,x0)/(f.x0)^2 proof assume A1: f is_left_differentiable_in x0; given r0 such that A2: r0 > 0 & for g st g in dom f & g in [.x0 - r0,x0.] holds f.g <> 0; consider r2 such that A3: 0 < r2 & [.x0 -r2,x0.] c= dom f by A1,Def4; set r3 = min(r0,r2); A4: 0 < r3 by A2,A3,SQUARE_1:38; then A5: x0 - r3 <= x0 by PROB_1:2; then A6: x0 in [.x0 - r3,x0.] by RCOMP_1:15; r3 <= r0 by SQUARE_1:35; then A7: x0 - r0 <= x0 - r3 by REAL_1:92; then x0 - r3 in { g: x0 - r0 <= g & g <= x0 } by A5; then A8: x0 - r3 in [.x0 - r0,x0.] by RCOMP_1:def 1; x0 - r0 <= x0 by A5,A7,AXIOMS:22; then A9: x0 in [.x0 - r0,x0.] by RCOMP_1:15; then A10: [.x0 - r3,x0.] c= [.x0 - r0,x0.] by A8,RCOMP_1:16; r3 <= r2 by SQUARE_1:35; then A11: x0 - r2 <= x0 - r3 by REAL_1:92; then x0 - r3 in { g: x0 - r2 <= g & g <= x0 } by A5; then A12: x0 - r3 in [.x0 - r2,x0.] by RCOMP_1:def 1; x0 - r2 <= x0 by A5,A11,AXIOMS:22; then A13: x0 in [.x0 - r2,x0.] by RCOMP_1:15; then [.x0 - r3,x0.] c= [.x0 - r2,x0.] by A12,RCOMP_1:16; then A14: [.x0 - r3,x0.] c= dom f by A3,XBOOLE_1:1; A15: [.x0 - r3,x0.] c= dom(f^) proof assume not thesis; then consider x such that A16: x in [.x0 - r3 ,x0.] & not x in dom (f^) by TARSKI:def 3; reconsider x as Real by A16; A17: not x in dom f \ f"{0} by A16,RFUNCT_1:def 8; now per cases by A17,XBOOLE_0:def 4; suppose not x in dom f; hence contradiction by A14,A16; suppose x in f"{0}; then x in dom f & f.x in {0} by FUNCT_1:def 13; then x in dom f & f.x = 0 by TARSKI:def 1; hence contradiction by A2,A10,A16; end; hence contradiction; end; for h,c st rng c = {x0} & rng (h+c) c= dom (f^) & (for n holds h.n < 0) holds h"(#)((f^)*(h + c) - (f^)*c) is convergent & lim(h"(#)((f^)*(h + c) - (f^)*c)) = - Ldiff(f,x0)/(f.x0)^2 proof let h,c; assume that A18: rng c = {x0} and A19: rng (h+c) c= dom (f^) and A20: for n holds h.n < 0; A21: rng (h + c) c= dom f\f"{0} by A19,RFUNCT_1:def 8; A22: h is convergent & lim h = 0 & h is_not_0 by FDIFF_1:def 1; dom f \ f"{0} c= dom f by XBOOLE_1:36; then A23: rng (h + c) c= dom f by A21,XBOOLE_1:1; Ldiff(f,x0) = Ldiff(f,x0); then A24: h"(#)(f*(h + c) - f*c) is convergent & lim(h"(#)(f*(h + c) - f*c)) = Ldiff(f,x0) by A1,A18,A20,A23,Th9; A25: f*(h + c) is_not_0 by A19,RFUNCT_2:26; A26: for m holds c.m = x0 proof let m; c.m in rng c by RFUNCT_2:10; hence c.m = x0 by A18,TARSKI:def 1; end; x0 in dom (f^) by A6,A15; then A27: x0 in (dom f\f"{0}) by RFUNCT_1:def 8; rng c c= dom f\f"{0} proof let x; assume x in rng c; hence x in (dom f\f"{0}) by A18,A27,TARSKI:def 1; end; then A28: rng c c= dom (f^) by RFUNCT_1:def 8; then A29: f*c is_not_0 by RFUNCT_2:26; then A30: (f*(h + c)) (#) (f*c) is_not_0 by A25,SEQ_1:43; dom (f^) = dom f \ f"{0} by RFUNCT_1:def 8; then dom (f^) c= dom f by XBOOLE_1:36; then A31: rng c c= dom f by A28,XBOOLE_1:1; A32: for g be real number st 0 < g ex n st for m st n <=m holds abs((f*c).m - f.x0) < g proof let g be real number such that A33: 0 < g; take n = 0; let m such that n <= m; abs((f*c).m - f.x0) = abs(f.(c.m) - f.x0) by A31,RFUNCT_2:21 .=abs(f.x0 - f.x0) by A26 .=abs(0) by XCMPLX_1:14 .= 0 by ABSVALUE:def 1; hence abs((f*c).m - f.x0) < g by A33; end; then A34: f*c is convergent by SEQ_2:def 6; then A35: lim(f*c) = f.x0 by A32,SEQ_2:def 7; A36: h(#)(h"(#)(f*(h + c) - f*c)) is convergent by A22,A24,SEQ_2:28; A37: h(#)(h"(#)(f*(h + c) - f*c)) = (f*(h + c) - f*c) proof now let n; A38: h.n <> 0 by A20; thus (h(#)(h"(#)(f*(h+c) - f*c))).n = ((h(#)h")(#) (f*(h+c) - f*c)).n by SEQ_1:22 .= (h(#)h").n *(f*(h + c) - f*c).n by SEQ_1:12 .= h.n * (h").n *(f*(h + c) - f*c).n by SEQ_1:12 .= h.n * (h.n)" *(f*(h + c) - f*c).n by SEQ_1:def 8 .= 1*(f*(h + c) - f*c).n by A38,XCMPLX_0:def 7 .= (f*(h + c) - f*c).n; end; hence thesis by FUNCT_2:113; end; f*c + (f*(h + c) - f*c) = f*(h + c) proof now let n; thus (f*c + (f*(h + c) - f*c)).n = (f*c).n + (f*(h + c) - f*c).n by SEQ_1:11 .= (f*c).n + ((f*(h + c)).n - (f*c).n) by RFUNCT_2:6 .= (f*(h + c)).n by XCMPLX_1:27; end; hence thesis by FUNCT_2:113; end; then A39: f*(h +c) is convergent by A34,A36,A37,SEQ_2:19; lim (h(#)(h"(#)(f*(h + c) - f*c))) = lim h *lim (h"(#)(f*(h + c) - f*c)) by A22,A24,SEQ_2:29 .= 0 by A22; then A40: 0 = lim (f*(h + c)) - f.x0 by A34,A35,A37,A39,SEQ_2:26; A41: f*(h + c) (#) (f*c) is convergent by A34,A39,SEQ_2:28; A42: lim(f*(h + c) (#) (f*c)) = lim(f*(h + c)) *lim(f*c) by A34,A39,SEQ_2:29 .= f.x0 * f.x0 by A35,A40,XCMPLX_1:15 .=(f.x0)^2 by SQUARE_1:def 3; A43: lim(f*(h + c) (#) (f*c))<> 0 proof assume not thesis; then f.x0 = 0 by A42,SQUARE_1:73; hence contradiction by A2,A3,A9,A13; end; A44: -(h"(#)((f*(h+c)) - (f*c))) is convergent by A24,SEQ_2:23; now let n; A45: (f*(h+c)).n <>0 by A25,SEQ_1:7; A46: (f*c).n <>0 by A29,SEQ_1:7; thus (h"(#) ((f^)*(h+c) - (f^)*c)).n = (h").n* ((f^)*(h+c) - (f^)*c).n by SEQ_1:12 .= (h").n* (((f^)*(h+c)).n - ((f^)*c).n) by RFUNCT_2:6 .= (h").n* (((f*(h+c))").n - ((f^)*c).n) by A19,RFUNCT_2:27 .= (h").n* (((f*(h+c))").n - ((f*c)").n) by A28,RFUNCT_2:27 .= (h").n* (((f*(h+c)).n)" - ((f*c)").n) by SEQ_1:def 8 .= (h").n* (((f*(h+c)).n)" - ((f*c).n)") by SEQ_1:def 8 .= (h").n* (1/(f*(h+c)).n - ((f*c).n)") by XCMPLX_1:217 .= (h").n* (1/(f*(h+c)).n - 1/(f*c).n) by XCMPLX_1:217 .= (h").n* ((1*((f*c).n) - 1*((f*(h+c)).n))/((f*(h+c)).n*(f*c).n)) by A45,A46,XCMPLX_1:131 .= (h").n* (((f*c).n - (f*(h+c)).n)/((f*(h+c))(#)(f*c)).n) by SEQ_1:12 .= (h").n* ((-((f*(h+c)).n - (f*c).n))/((f*(h+c))(#)(f*c)).n) by XCMPLX_1:143 .= (h").n* ((-((f*(h+c) - (f*c)).n))/((f*(h+c))(#)(f*c)).n) by RFUNCT_2:6 .= (h").n*(-(((f*(h+c) - (f*c)).n)/((f*(h+c))(#)(f*c)).n)) by XCMPLX_1: 188 .= -((h").n*(((f*(h+c) - (f*c)).n)/(((f*(h+c))(#)(f*c)).n))) by XCMPLX_1: 175 .= -((h").n*((f*(h+c) - (f*c)).n))/((f*(h+c))(#)(f*c)).n by XCMPLX_1:75 .= -( ((h" (#) ((f*(h+c)) - (f*c))).n) )/((f*(h+c))(#)(f*c)).n by SEQ_1:12 .= -(((h"(#)((f*(h+c)) - (f*c))).n))*(((f*(h+c))(#) (f*c)).n)" by XCMPLX_0:def 9 .= -((((h"(#)((f*(h+c)) - (f*c))).n))*(((f*(h+c))(#) (f*c))").n) by SEQ_1:def 8 .= -((((h"(#)((f*(h+c)) - (f*c))))(#)(((f*(h+c))(#) (f*c))")).n) by SEQ_1:12 .= -(((h")(#)((f*(h+c)) - (f*c)))/"((f*(h+c))(#)(f*c))).n by SEQ_1:def 9 .= (-((h"(#)((f*(h+c)) - (f*c)))/"((f*(h+c))(#)(f*c)))).n by SEQ_1:14 .= ((-(h"(#)((f*(h+c)) - (f*c))))/"((f*(h+c))(#)(f*c))).n by SEQ_1:56; end; then A47: h"(#) ((f^)*(h+c) - (f^)*c) = (-(h"(#)((f*(h+c)) - (f*c))))/"((f*(h + c))(#) (f*c)) by FUNCT_2:113; then lim(h"(#) ((f^)*(h + c) - (f^)*c)) = lim (-(h"(#) ((f*(h+c)) - (f*c))))/(f.x0)^2 by A30,A41,A42,A43,A44,SEQ_2:38 .= (-Ldiff(f,x0))/(f.x0)^2 by A24,SEQ_2:24 .= -Ldiff(f,x0)/(f.x0)^2 by XCMPLX_1:188; hence thesis by A30,A41,A43,A44,A47,SEQ_2:37; end; hence thesis by A4,A15,Th9; end; theorem f is_left_differentiable_in x0 & f.x0 <> 0 implies f^ is_left_differentiable_in x0 & Ldiff(f^,x0) = - Ldiff(f,x0)/(f.x0)^2 proof assume A1: f is_left_differentiable_in x0 & f.x0 <> 0; then A2: f is_Lcontinuous_in x0 by Th5; ex r st r > 0 &[.x0-r,x0.] c= dom f by A1,Def4; then consider r1 such that A3: r1 > 0 & [.x0-r1,x0.] c= dom f & for g st g in [.x0-r1,x0.] holds f.g <> 0 by A1,A2,Th6; now take r1; thus r1 > 0 by A3; let g; assume g in dom f & g in [.x0 - r1,x0.]; hence f.g <> 0 by A3; end; hence thesis by A1,Lm2; end; theorem Th15: f is_right_differentiable_in x0 & Rdiff(f,x0) = g1 iff (ex r st r>0 & [.x0,x0+r.] c= dom f) & for h,c st rng c = {x0} & rng (h+c) c= dom f & (for n holds h.n > 0) holds h"(#)(f*(h+c) - f*c) is convergent & lim (h"(#)(f*(h+c) - f*c)) = g1 proof thus f is_right_differentiable_in x0 & Rdiff(f,x0) = g1 implies (ex r st r>0 & [.x0,x0+r.] c= dom f) & for h,c st rng c = {x0} & rng (h+c) c= dom f & (for n holds h.n > 0) holds h"(#)(f*(h+c) - f*c) is convergent & lim (h"(#)(f*(h+c) - f*c)) = g1 by Def3,Def6; assume A1: (ex r st r>0 & [.x0,x0+r.] c= dom f) & for h,c st rng c = {x0} & rng (h+c) c= dom f & (for n holds h.n > 0) holds h"(#)(f*(h+c) - f*c) is convergent & lim (h"(#)(f*(h+c) - f*c)) = g1; then for h,c holds ( rng c = {x0} & rng (h+c) c= dom f & for n holds h.n > 0 ) implies h"(#)(f*(h+c) - f*c) is convergent; hence A2: f is_right_differentiable_in x0 by A1,Def3; for h,c holds ( rng c = {x0} & rng (h+c) c= dom f & for n holds h.n > 0) implies lim (h"(#)(f*(h+c) - f*c)) = g1 by A1; hence thesis by A2,Def6; end; theorem f1 is_right_differentiable_in x0 & f2 is_right_differentiable_in x0 implies f1+f2 is_right_differentiable_in x0 & Rdiff(f1+f2,x0) = Rdiff(f1,x0)+Rdiff(f2,x0) proof assume A1: f1 is_right_differentiable_in x0 & f2 is_right_differentiable_in x0; then consider r1 such that A2: r1>0 & [.x0,x0+r1.] c= dom f1 by Def3; consider r2 such that A3: r2>0 & [.x0,x0+r2.] c=dom f2 by A1,Def3; set r = min (r1,r2); A4: 0<r by A2,A3,SQUARE_1:38; A5: 0 <= r & x0+0 = x0 by A2,A3,SQUARE_1:38; r<=r1 by SQUARE_1:35; then A6: x0 + r <= x0 + r1 by REAL_1:55; A7: x0 <= x0 + r by A5,REAL_1:55; then A8: x0 <= x0 + r1 by A6,AXIOMS:22; x0 + r in {g: x0 <= g & g <= x0 +r1} by A6,A7; then A9: x0 + r in [.x0,x0+r1.] by RCOMP_1:def 1; x0 in [.x0,x0+r1.] by A8,RCOMP_1:15; then A10: [.x0,x0+r.] c= [.x0,x0+r1.] by A9,RCOMP_1:16; r<=r2 by SQUARE_1:35; then A11: x0 + r <= x0 + r2 by REAL_1:55; then A12: x0 <= x0 + r2 by A7,AXIOMS:22; x0 + r in {g: x0 <= g & g <= x0 +r2} by A7,A11; then A13: x0 + r in [.x0,x0+r2.] by RCOMP_1:def 1; x0 in [.x0,x0+r2.] by A12,RCOMP_1:15; then A14: [.x0,x0+r.] c= [.x0,x0+r2.] by A13,RCOMP_1:16; A15: [.x0,x0+r.] c= dom f1 by A2,A10,XBOOLE_1:1; [.x0,x0+r.] c= dom f2 by A3,A14,XBOOLE_1:1; then A16: [.x0,x0+r.] c= dom f1 /\ dom f2 by A15,XBOOLE_1:19; then A17: [.x0,x0+r.] c= dom(f1 + f2) by SEQ_1:def 3; for h,c st rng c = {x0} & rng (h+c) c= dom (f1+f2) & (for n holds h.n > 0) holds h"(#)((f1+f2)*(h+c) - (f1+f2)*c) is convergent & lim (h"(#)((f1+f2)*(h+c) - (f1+f2)*c)) = Rdiff(f1,x0) + Rdiff(f2,x0) proof let h,c; assume that A18: rng c = {x0} and A19: rng (h+c) c= dom (f1+f2) and A20: (for n holds h.n > 0); A21: rng (h+c) c= dom f1 /\ dom f2 by A19,SEQ_1:def 3; dom f1 /\ dom f2 c= dom f1 & dom f1 /\dom f2 c= dom f2 by XBOOLE_1:17; then A22: rng (h+c) c= dom f1 & rng (h+c) c= dom f2 by A21,XBOOLE_1:1; Rdiff(f1,x0) = Rdiff(f1,x0); then A23: h"(#)(f1*(h+c) - f1*c) is convergent & lim(h"(#)(f1*(h+c) - f1*c)) = Rdiff(f1,x0) by A1,A18,A20,A22,Th15; Rdiff(f2,x0) = Rdiff(f2,x0); then A24: h"(#)(f2*(h+c) - f2*c) is convergent & lim(h"(#)(f2*(h+c) - f2*c)) = Rdiff(f2,x0) by A1,A18,A20,A22,Th15; then A25: (h"(#)(f1*(h+c) - f1*c) + h"(#)(f2*(h+c) - f2*c)) is convergent by A23,SEQ_2:19; A26: (h"(#)(f1*(h+c) - f1*c) +h"(#)(f2*(h+c) - f2*c)) = h"(#)(f1*(h+c) -f1*c + (f2*(h+c) - f2*c)) by SEQ_1:24; A27: now let n; A28: rng c c= dom f1 /\ dom f2 proof let x; assume x in rng c; then A29: x = x0 by A18,TARSKI:def 1; x0 in [.x0,x0 + r.] by A7,RCOMP_1:15; hence thesis by A16,A29; end; thus (f1*(h+c) - f1*c + (f2*(h+c) - f2*c)).n = (f1*(h+c) - f1*c).n + (f2*(h+c) - f2*c).n by SEQ_1:11 .= (f1*(h+c) + (-(f1*c))).n + (f2*(h+c) - f2*c).n by SEQ_1:15 .= (f1*(h+c) + (-(f1*c))).n + (f2*(h+c) + (-(f2*c))).n by SEQ_1:15 .= (f1*(h+c)).n + (-(f1*c)).n + (f2*(h+c) + (-(f2*c))).n by SEQ_1:11 .= (f1*(h+c)).n + (-(f1*c)).n + ((f2*(h+c)).n + (-(f2*c)).n) by SEQ_1:11 .= (f1*(h+c)).n + ((-(f1*c)).n + ((f2*(h+c)).n + (-(f2*c)).n)) by XCMPLX_1:1 .= (f1*(h+c)).n + (((f2*(h+c)).n + (-(f1*c)).n) + (-(f2*c)).n) by XCMPLX_1:1 .= (f1*(h+c)).n + ((f2*(h+c)).n + (-(f1*c)).n) + (-(f2*c)).n by XCMPLX_1: 1 .= (f1*(h+c)).n + (f2*(h+c)).n + (-(f1*c)).n + (-(f2*c)).n by XCMPLX_1:1 .= (f1*(h+c)).n + (f2*(h+c)).n+ ((-(f1*c)).n +(-(f2*c)).n) by XCMPLX_1:1 .= (f1*(h+c)).n + (f2*(h+c)).n + (-(f1*c).n + (-(f2*c)).n) by SEQ_1:14 .= (f1*(h+c)).n + (f2*(h+c)).n + (-(f1*c).n + -(f2*c).n) by SEQ_1:14 .= (f1*(h+c)).n + (f2*(h+c)).n + -((f1*c).n + (f2*c).n) by XCMPLX_1:140 .= (f1*(h+c)).n + (f2*(h+c)).n - ((f1*c).n + (f2*c).n) by XCMPLX_0:def 8 .= (f1*(h+c) + f2*(h+c)).n - ((f1*c).n + (f2*c).n) by SEQ_1:11 .= (f1*(h+c) + f2*(h+c)).n - ((f1*c + f2*c).n) by SEQ_1:11 .= (f1*(h+c) + f2*(h+c) - (f1*c + f2*c)).n by RFUNCT_2:6 .= ((f1 + f2)*(h+c) - (f1*c + f2*c)).n by A21,RFUNCT_2:23 .= ((f1 + f2)*(h+c) - (f1 + f2)*c).n by A28,RFUNCT_2:23; end; then A30: f1*(h+c)-f1*c + (f2*(h+c) - f2*c)=(f1+f2)*(h+c) - (f1+f2)*c by FUNCT_2:113; thus h"(#)((f1 + f2)*(h+c) - (f1 + f2)*c) is convergent by A25,A26,A27, FUNCT_2:113; thus lim(h"(#)((f1 + f2)*(h+c) - (f1 + f2)*c)) = Rdiff(f1,x0) + Rdiff(f2,x0) by A23,A24,A26,A30,SEQ_2:20; end; hence thesis by A4,A17,Th15; end; theorem f1 is_right_differentiable_in x0 & f2 is_right_differentiable_in x0 implies f1 - f2 is_right_differentiable_in x0 & Rdiff(f1-f2,x0) = Rdiff(f1,x0) - Rdiff(f2,x0) proof assume A1: f1 is_right_differentiable_in x0 & f2 is_right_differentiable_in x0; then consider r1 such that A2: r1>0 & [.x0,x0+r1.] c= dom f1 by Def3; consider r2 such that A3: r2>0 & [.x0,x0+r2.] c=dom f2 by A1,Def3; set r = min (r1,r2); A4: 0<r by A2,A3,SQUARE_1:38; r<=r1 by SQUARE_1:35; then A5: x0 + r <= x0 + r1 by REAL_1:55; A6: x0 + 0 <= x0 + r by A4,REAL_1:55; then A7: x0 <= x0 + r1 by A5,AXIOMS:22; x0 + r in {g: x0 <= g & g <= x0 +r1} by A5,A6; then A8: x0 + r in [.x0,x0+r1.] by RCOMP_1:def 1; x0 in [.x0,x0+r1.] by A7,RCOMP_1:15; then A9: [.x0,x0+r.] c= [.x0,x0+r1.] by A8,RCOMP_1:16; r<=r2 by SQUARE_1:35; then A10: x0 + r <= x0 + r2 by REAL_1:55; then A11: x0 <= x0 + r2 by A6,AXIOMS:22; x0 + r in {g: x0 <= g & g <= x0 +r2} by A6,A10; then A12: x0 + r in [.x0,x0+r2.] by RCOMP_1:def 1; x0 in [.x0,x0+r2.] by A11,RCOMP_1:15; then A13: [.x0,x0+r.] c= [.x0,x0+r2.] by A12,RCOMP_1:16; A14: [.x0,x0+r.] c= dom f1 by A2,A9,XBOOLE_1:1; [.x0,x0+r.] c= dom f2 by A3,A13,XBOOLE_1:1; then A15: [.x0,x0+r.] c= dom f1 /\ dom f2 by A14,XBOOLE_1:19; then A16: [.x0,x0+r.] c= dom (f1 - f2) by SEQ_1:def 4; for h,c st rng c = {x0} & rng (h+c) c= dom (f1 - f2) & (for n holds h.n > 0 ) holds h"(#)((f1-f2)*(h+c) - (f1-f2)*c) is convergent & lim(h"(#)((f1-f2)*(h+c) - (f1-f2)*c)) = Rdiff(f1,x0) - Rdiff(f2,x0) proof let h,c; assume that A17: rng c ={x0} and A18: rng (h+c) c= dom(f1-f2) and A19: for n holds h.n > 0; A20: rng (h+c) c= dom f1 /\ dom f2 by A18,SEQ_1:def 4; dom f1 /\ dom f2 c= dom f1 & dom f1 /\ dom f2 c= dom f2 by XBOOLE_1:17 ; then A21: rng (h+c) c= dom f1 & rng (h+c) c= dom f2 by A20,XBOOLE_1:1; Rdiff(f1,x0) = Rdiff(f1,x0); then A22: h"(#)(f1*(h+c) - f1*c) is convergent & lim(h"(#)((f1*(h+c) - f1*c))) =Rdiff(f1,x0) by A1,A17,A19,A21,Th15; Rdiff(f2,x0) = Rdiff(f2,x0); then A23: h"(#)(f2*(h+c) - f2*c) is convergent & lim(h"(#)((f2*(h+c) - f2*c))) =Rdiff(f2,x0) by A1,A17,A19,A21,Th15; then A24: (h"(#)(f1*(h+c) - f1*c) - h"(#)(f2*(h+c) - f2*c)) is convergent by A22,SEQ_2:25; A25: (h"(#)(f1*(h+c) - f1*c) - h"(#)(f2*(h+c) - f2*c)) = h"(#)(f1*(h+c) -f1*c - (f2*(h+c) - f2*c)) by SEQ_1:29; A26: now let n; A27: rng c c= dom f1 /\ dom f2 proof let x; assume x in rng c; then A28: x = x0 by A17,TARSKI:def 1; x0 in [.x0,x0+r.] by A6,RCOMP_1:15; hence thesis by A15,A28; end; thus (f1*(h+c) - f1*c - (f2*(h+c) - f2*c)).n = (f1*(h+c) - f1*c).n - (f2*(h + c) - f2*c).n by RFUNCT_2:6 .= (f1*(h+c)).n - (f1*c).n - (f2*(h+c) - (f2*c)).n by RFUNCT_2:6 .= (f1*(h+c)).n - (f1*c).n - ((f2*(h+c)).n - (f2*c).n) by RFUNCT_2:6 .= (f1*(h+c)).n - (f1*c).n - (f2*(h+c)).n + (f2*c).n by XCMPLX_1:37 .= (f1*(h+c)).n - (f2*(h+c)).n - (f1*c).n + (f2*c).n by XCMPLX_1:21 .= (f1*(h+c)).n - (f2*(h+c)).n - ((f1*c).n - (f2*c).n) by XCMPLX_1:37 .= (f1*(h+c) - f2*(h+c)).n - ((f1*c).n - (f2*c).n) by RFUNCT_2:6 .= (f1*(h+c) - f2*(h+c)).n - ((f1*c - f2*c).n) by RFUNCT_2:6 .= (f1*(h+c) - f2*(h+c) - (f1*c - f2*c)).n by RFUNCT_2:6 .= ((f1 - f2)*(h+c) - (f1*c - f2*c)).n by A20,RFUNCT_2:23 .= ((f1 - f2)*(h+c) - (f1 - f2)*c).n by A27,RFUNCT_2:23; end; then A29: f1*(h+c) - f1*c - (f2*(h+c) - f2*c) = (f1 - f2)*(h+c) - (f1 - f2)*c by FUNCT_2:113; thus h"(#)((f1 - f2)*(h+c) - (f1 - f2)*c) is convergent by A24,A25,A26, FUNCT_2:113; thus thesis by A22,A23,A25,A29,SEQ_2:26; end; hence thesis by A4,A16,Th15; end; theorem f1 is_right_differentiable_in x0 & f2 is_right_differentiable_in x0 implies f1(#)f2 is_right_differentiable_in x0 & Rdiff(f1(#)f2,x0) = Rdiff(f1,x0)*f2.x0 + Rdiff(f2,x0)*f1.x0 proof assume A1: f1 is_right_differentiable_in x0 & f2 is_right_differentiable_in x0; then consider r1 such that A2: r1>0 & [.x0,x0+r1.] c= dom f1 by Def3; consider r2 such that A3: r2>0 & [.x0,x0+r2.] c=dom f2 by A1,Def3; set r = min (r1,r2); A4: 0<r by A2,A3,SQUARE_1:38; A5: 0 <= r & x0 + 0 =x0 by A2,A3,SQUARE_1:38; r<=r1 by SQUARE_1:35; then A6: x0 + r <= x0 + r1 by REAL_1:55; A7: x0 <= x0 + r by A5,REAL_1:55; then A8: x0 <= x0+r1 by A6,AXIOMS:22; x0 + r in {g: x0 <= g & g <= x0 +r1} by A6,A7; then A9: x0 + r in [.x0,x0+r1.] by RCOMP_1:def 1; x0 in [.x0,x0+r1.] by A8,RCOMP_1:15; then A10: [.x0,x0+r.] c= [.x0,x0+r1.] by A9,RCOMP_1:16; r<=r2 by SQUARE_1:35; then A11: x0 + r <= x0 + r2 by REAL_1:55; then A12: x0 <= x0 + r2 by A7,AXIOMS:22; x0 + r in {g: x0 <= g & g <= x0 +r2} by A7,A11; then A13: x0 + r in [.x0,x0+r2.] by RCOMP_1:def 1; x0 in [.x0,x0+r2.] by A12,RCOMP_1:15; then A14: [.x0,x0+r.] c= [.x0,x0+r2.] by A13,RCOMP_1:16; A15: [.x0,x0+r.] c= dom f1 by A2,A10,XBOOLE_1:1; A16: [.x0,x0+r.] c= dom f2 by A3,A14,XBOOLE_1:1; then [.x0,x0+r.] c= dom f1 /\ dom f2 by A15,XBOOLE_1:19; then A17: [.x0,x0+r.] c= dom (f1 (#) f2) by SEQ_1:def 5; for h,c st rng c = {x0} & rng (h+c) c= dom (f1(#)f2) & (for n holds h.n > 0 ) holds h"(#)((f1(#)f2)*(h+c) - (f1(#)f2)*c) is convergent & lim(h"(#)((f1(#)f2)*(h+c) - (f1(#) f2)*c))=Rdiff(f1,x0)*f2.x0 + Rdiff(f2,x0)*f1.x0 proof let h,c; assume that A18: rng c = {x0} and A19: rng (h+c) c= dom (f1(#)f2) and A20: for n holds h.n > 0; A21: rng (h + c) c= dom f1 /\ dom f2 by A19,SEQ_1:def 5; dom f1 /\ dom f2 c= dom f1 & dom f1 /\ dom f2 c=dom f2 by XBOOLE_1:17; then A22: rng (h + c) c= dom f1 & rng (h + c) c= dom f2 by A21,XBOOLE_1:1; Rdiff(f1,x0) = Rdiff(f1,x0); then A23: h"(#)(f1*(h + c) - f1*c) is convergent & lim(h"(#)(f1*(h + c) - f1*c)) = Rdiff(f1,x0) by A1,A18,A20,A22,Th15; Rdiff(f2,x0) = Rdiff(f2,x0); then A24: h"(#)(f2*(h + c) - f2*c) is convergent & lim(h"(#)(f2*(h + c) - f2*c)) = Rdiff(f2,x0) by A1,A18,A20,A22,Th15; A25: for m holds c.m = x0 proof let m; c.m in rng c by RFUNCT_2:10; hence c.m = x0 by A18,TARSKI:def 1; end; x0 + 0 <= x0 +r by A4,REAL_1:55; then A26: x0 in [.x0 ,x0+ r.] by RCOMP_1:15; then A27: x0 in dom f1 by A15; A28: rng c c=dom f1 proof let x; assume x in rng c; hence x in dom f1 by A18,A27,TARSKI:def 1; end; A29: for g be real number st 0<g ex n st for m st n <= m holds abs((f1*c).m - f1.x0 )<g proof let g be real number such that A30: 0<g; take n=0; let m such that n <= m; abs((f1*c).m - f1.x0 ) = abs(f1.(c.m) - f1.x0 ) by A28,RFUNCT_2:21 .=abs( f1.x0 - f1.x0 ) by A25 .=abs(0) by XCMPLX_1:14 .= 0 by ABSVALUE:def 1; hence abs((f1*c).m - f1.x0 )<g by A30; end; A31: h is convergent & lim h = 0 by FDIFF_1:def 1; A32: f1*c is convergent by A29,SEQ_2:def 6; A33: h"(#)(f1*(h + c) - f1*c) is convergent by A1,A18,A20,A22,Def3; then A34: h(#)(h"(#)(f1*(h + c) - f1*c)) is convergent by A31,SEQ_2:28; A35: h(#)(h"(#)(f1*(h + c) - f1*c)) =(f1*(h + c) - f1*c) proof now let n; A36: h.n <> 0 by A20; thus (h(#)(h"(#)(f1*(h+c) - f1*c))).n =((h(#)h")(#)(f1*(h+c) - f1*c)). n by SEQ_1:22 .= (h(#)h").n*(f1*(h+c) - f1*c).n by SEQ_1:12 .= h.n*(h").n*(f1*(h+c) - f1*c).n by SEQ_1:12 .= h.n*(h.n)"*(f1*(h+c) - f1*c).n by SEQ_1:def 8 .= 1*(f1*(h+c) - f1*c).n by A36,XCMPLX_0:def 7 .= (f1*(h+c) - f1*c).n; end; hence thesis by FUNCT_2:113; end; f1*c + (f1*(h + c) - f1*c) = f1*( h + c ) proof now let n; thus (f1*c + (f1*(h+c) - f1*c)).n = (f1*c).n + (f1*(h+c) - f1*c).n by SEQ_1:11 .= (f1*c).n + ((f1*(h+c)).n - (f1*c).n) by RFUNCT_2:6 .= (f1*(h+c)).n by XCMPLX_1:27; end; hence thesis by FUNCT_2:113; end; then A37: f1*(h+c) is convergent by A32,A34,A35,SEQ_2:19; lim(h(#)(h"(#)(f1*(h + c) - f1*c))) =lim h *lim(h"(#)(f1*(h+c) - f1*c)) by A31,A33,SEQ_2:29 .= 0 by A31; then A38: 0 = lim (f1*(h+c)) - lim(f1*c) by A32,A35,A37,SEQ_2:26 .= lim (f1*(h+c)) - f1.x0 by A29,A32,SEQ_2:def 7; A39: x0 in dom f2 by A16,A26; A40: rng c c=dom f2 proof let x; assume x in rng c; hence x in dom f2 by A18,A39,TARSKI:def 1; end; A41: for g be real number st 0<g ex n st for m st n <= m holds abs((f2*c).m - f2.x0 )<g proof let g be real number such that A42:0<g; take n=0; let m such that n <= m; abs((f2*c).m - f2.x0 ) = abs(f2.(c.m) - f2.x0 ) by A40,RFUNCT_2:21 .=abs( f2.x0 - f2.x0 ) by A25 .=abs(0) by XCMPLX_1:14 .= 0 by ABSVALUE:def 1; hence abs((f2*c).m - f2.x0 )<g by A42; end; then A43: f2*c is convergent by SEQ_2:def 6; A44: rng c c= dom f1 /\ dom f2 by A28,A40,XBOOLE_1:19; A45: h"(#) (f2*(h+c)-f2*c) (#) (f1*(h+c)) is convergent by A24,A37,SEQ_2:28; A46: h"(#) (f1*(h+c) - f1*c) (#) (f2*c) is convergent by A23,A43,SEQ_2:28; A47: now let n; thus (h"(#)((f1(#)f2)*(h+c) - (f1(#)f2)*c)).n = ((h").n) * ((f1(#)f2)*(h+c) - (f1(#)f2)*c).n by SEQ_1:12 .= ((h").n) * (((f1(#)f2)*(h+c)).n - ((f1(#)f2)*c).n) by RFUNCT_2:6 .= h".n * (((f1*(h+c))(#)(f2*(h+c))).n - ((f1(#)f2)*c).n) by A21,RFUNCT_2:23 .= h".n * (((f1*(h+c))(#)(f2*(h+c))).n - ((f1*c)(#)(f2*c)).n) by A44,RFUNCT_2:23 .= h".n * ((f1*(h+c)).n * (f2*(h+c)).n - ((f1*c)(#)(f2*c)).n) by SEQ_1:12 .= h".n * ((f1*(h+c)).n * (f2*(h+c)).n - ((f1*c).n * (f2*c).n)) by SEQ_1:12 .= h".n * (((f1*(h+c)).n * (f2*(h+c)).n - (((f1*(h+c)).n)*(f2*c).n)) +(((f1*(h+c)).n*(f2*c).n) - ((f1*c).n*(f2*c).n))) by XCMPLX_1:39 .= h".n * (((f1*(h+c)).n*((f2*(h+c)).n - (f2*c).n)) +(((f1*(h+c)).n*(f2*c).n) - ((f1*c).n*(f2*c).n))) by XCMPLX_1:40 .= h".n * ((((f2*(h+c)).n - (f2*c).n)*(f1*(h+c)).n) +(((f1*(h+c)).n - (f1*c).n)*(f2*c).n)) by XCMPLX_1:40 .= h".n * (((f2*(h+c)).n - (f2*c).n)*(f1*(h+c)).n) + h".n * (((f1*(h+c)).n - (f1*c).n)*(f2*c).n) by XCMPLX_1:8 .= h".n * (((f2*(h+c)).n - (f2*c).n)*(f1*(h+c)).n) + (h".n * ((f1*(h+c)).n - (f1*c).n))*(f2*c).n by XCMPLX_1:4 .= h".n * ((f2*(h+c)).n - (f2*c).n)*(f1*(h+c)).n + (h".n * ((f1*(h+c)).n - (f1*c).n))*(f2*c).n by XCMPLX_1:4 .= h".n * (f2*(h+c) - f2*c).n * (f1*(h+c)).n + (h".n * ((f1*(h+c)).n - (f1*c).n))*(f2*c).n by RFUNCT_2:6 .= (h"(#) (f2*(h+c) - f2*c)).n * (f1*(h+c)).n + (h".n * ((f1*(h+c)).n - (f1*c).n))*(f2*c).n by SEQ_1:12 .= (h"(#) (f2*(h+c) - f2*c)).n * (f1*(h+c)).n + (h".n * (f1*(h+c) - (f1*c)).n)*(f2*c).n by RFUNCT_2:6 .= (h"(#) (f2*(h+c) - f2*c)).n * (f1*(h+c)).n + (h"(#) (f1*(h+c) - f1*c)).n*(f2*c).n by SEQ_1:12 .= (h"(#) (f2*(h+c) - f2*c) (#) (f1*(h+c))).n + (h"(#) (f1*(h+c) - f1*c)).n*(f2*c).n by SEQ_1:12 .= (h"(#) (f2*(h+c) - f2*c)(#)(f1*(h+c))).n + (h"(#) (f1*(h+c) - f1*c)(#)(f2*c)).n by SEQ_1:12 .= (h"(#) (f2*(h+c) - f2*c)(#)(f1*(h + c)) + h"(#) (f1*(h+c) - f1*c)(#)(f2*c)).n by SEQ_1:11; end; then A48: h"(#)((f1(#)f2)*(h+c) - (f1(#)f2)*c) = h"(#) (f2*(h+c) - f2*c)(#) (f1*(h+c)) + h"(#) (f1*(h+c) - f1*c)(#)(f2*c) by FUNCT_2:113; lim (h"(#)((f1(#)f2)*(h+c) - (f1(#)f2)*c)) = lim (h"(#) (f2*(h+c) - f2*c)(#)(f1*(h+c)) + h"(#) (f1*(h+c) - f1*c)(#) (f2*c)) by A47,FUNCT_2:113 .= lim (h"(#) (f2*(h+c) - f2*c)(#)(f1*(h + c))) + lim (h"(#) (f1*(h+c) - f1*c)(#)(f2*c)) by A45,A46,SEQ_2:20 .= lim (h"(#) (f2*(h+c) - f2*c))*lim(f1*(h + c)) + lim (h"(#) (f1*(h+c) - f1*c)(#)(f2*c)) by A24,A37,SEQ_2:29 .= lim (h"(#) (f2*(h+c) - f2*c))*lim(f1*(h + c)) + lim (h"(#) (f1*(h+c) - f1*c))*lim(f2*c) by A23,A43,SEQ_2:29 .= lim (h"(#) (f2*(h+c) - f2*c))* f1.x0 + lim (h"(#) (f1*(h+c) - f1*c))*lim(f2*c) by A38,XCMPLX_1:15 .= Rdiff(f1,x0)*f2.x0 + Rdiff(f2,x0)*f1.x0 by A23,A24,A41,A43,SEQ_2:def 7; hence thesis by A45,A46,A48,SEQ_2:19; end; hence thesis by A4,A17,Th15; end; Lm3: f1 is_right_differentiable_in x0 & f2 is_right_differentiable_in x0 & ( ex r0 st r0 > 0 & for g st g in dom f2 & g in [.x0 , x0 + r0.] holds f2.g <> 0 ) implies f1/f2 is_right_differentiable_in x0 & Rdiff(f1/f2,x0) =(Rdiff(f1,x0)*f2.x0 - Rdiff(f2,x0)*f1.x0)/(f2.x0)^2 proof assume A1: f1 is_right_differentiable_in x0 & f2 is_right_differentiable_in x0; given r0 such that A2: r0 > 0 & for g st g in dom f2 & g in [.x0 ,x0 + r0.] holds f2.g <> 0; consider r1 such that A3: 0 < r1 & [.x0,x0 + r1.] c= dom f1 by A1,Def3; consider r2 such that A4: 0 < r2 & [.x0,x0 + r2.] c= dom f2 by A1,Def3; set r3 = min(r0,r2); A5: 0 < r3 by A2,A4,SQUARE_1:38; 0 <= r3 & 0 + x0 =x0 by A2,A4,SQUARE_1:38; then A6: x0 <= x0 +r3 by AXIOMS:24; r3 <= r0 by SQUARE_1:35; then A7: x0 + r3 <= x0 + r0 by REAL_1:55; then x0 + r3 in { g: x0 <= g & g<= x0 + r0 } by A6; then A8: x0 + r3 in [.x0,x0 + r0.] by RCOMP_1:def 1; x0 <= x0 +r0 by A6,A7,AXIOMS:22; then A9:x0 in [.x0,x0 + r0.] by RCOMP_1:15; then A10: [.x0,x0 +r3.] c= [.x0,x0 +r0.] by A8,RCOMP_1:16; r3 <= r2 by SQUARE_1:35; then A11: x0 + r3 <= x0 + r2 by REAL_1:55; then x0 + r3 in { g:x0 <= g & g <= x0 + r2 } by A6; then A12: x0 + r3 in [.x0,x0 +r2.] by RCOMP_1:def 1; x0 <= x0 + r2 by A6,A11,AXIOMS:22; then A13:x0 in [.x0,x0 + r2.] by RCOMP_1:15; then [.x0,x0 + r3.] c= [.x0,x0 + r2.] by A12,RCOMP_1:16; then A14: [.x0,x0 + r3.] c= dom f2 by A4,XBOOLE_1:1; set r = min(r1,r3); A15: 0 < r by A3,A5,SQUARE_1:38; 0 <= r & x0 +0 = x0 by A3,A5,SQUARE_1:38; then A16: x0 <= x0 + r by REAL_1:55; r <= r1 by SQUARE_1:35; then A17: x0 + r <= x0 + r1 by REAL_1:55; then x0 + r in { g:x0 <= g & g <= x0 + r1 } by A16; then A18: x0 + r in [.x0,x0 + r1.] by RCOMP_1:def 1; x0 <= x0 + r1 by A16,A17,AXIOMS:22; then x0 in [.x0,x0 +r1.] by RCOMP_1:15; then A19: [.x0,x0 +r.] c= [.x0 ,x0 + r1.] by A18,RCOMP_1:16; r <= r3 by SQUARE_1:35; then A20: x0 + r <= x0 + r3 by REAL_1:55; then x0 + r in {g:x0 <= g & g <= x0 + r3} by A16; then A21: x0 + r in [.x0,x0 +r3.] by RCOMP_1:def 1; x0 <= x0 + r3 by A16,A20,AXIOMS:22; then x0 in [.x0,x0 + r3.] by RCOMP_1:15; then A22: [.x0,x0 + r.] c= [.x0,x0 +r3.] by A21,RCOMP_1:16; A23: [.x0,x0 + r.] c= dom f1 by A3,A19,XBOOLE_1:1; [.x0,x0 + r.] c= dom(f2^) proof assume not thesis; then consider x such that A24: x in [.x0,x0 + r.] & not x in dom (f2^) by TARSKI:def 3; reconsider x as Real by A24; A25: not x in dom f2 \ f2"{0} by A24,RFUNCT_1:def 8; A26: x in [.x0,x0 + r3.] by A22,A24; now per cases by A25,XBOOLE_0:def 4; suppose not x in dom f2; hence contradiction by A14,A26; suppose x in f2"{0}; then x in dom f2 & f2.x in {0} by FUNCT_1:def 13; then x in dom f2 & f2.x = 0 by TARSKI:def 1; hence contradiction by A2,A10,A26; end; hence contradiction; end; then A27: [.x0,x0 + r.] c= dom f2\f2"{0} by RFUNCT_1:def 8; then [.x0,x0 + r.] c= dom f1 /\ (dom f2\f2"{0}) by A23,XBOOLE_1:19; then A28: [.x0,x0 + r.] c= dom (f1/f2) by RFUNCT_1:def 4; for h,c st rng c = {x0} & rng (h+c) c= dom (f1/f2) & (for n holds h.n > 0) holds h"(#)((f1/f2)*(h + c) - (f1/f2)*c) is convergent & lim(h"(#)((f1/f2)*(h + c) - (f1/f2)*c)) = (Rdiff(f1,x0)*f2.x0 - Rdiff(f2,x0)*f1.x0)/(f2.x0)^2 proof let h,c; assume that A29: rng c = {x0} and A30: rng (h+c) c= dom (f1/f2) and A31: for n holds h.n > 0; A32: rng (h + c) c= dom f1 /\ (dom f2\f2"{0}) by A30,RFUNCT_1:def 4; dom f1 /\ (dom f2\f2"{0}) c= dom f1 & dom f1 /\ (dom f2\f2"{0}) c=(dom f2\f2"{0}) by XBOOLE_1:17; then A33: rng (h + c) c= dom f1 & rng (h + c) c= (dom f2\f2"{0}) by A32, XBOOLE_1:1; dom f2 \ f2"{0} c= dom f2 by XBOOLE_1:36; then A34: rng (h + c) c= dom f2 by A33,XBOOLE_1:1; Rdiff(f1,x0) = Rdiff(f1,x0); then A35: h"(#)(f1*(h + c) - f1*c) is convergent & lim(h"(#)(f1*(h + c) - f1*c)) = Rdiff(f1,x0) by A1,A29,A31,A33,Th15; Rdiff(f2,x0) = Rdiff(f2,x0); then A36: h"(#)(f2*(h + c) - f2*c) is convergent & lim(h"(#)(f2*(h + c) - f2*c)) = Rdiff(f2,x0) by A1,A29,A31,A34,Th15; A37: rng (h + c) c= dom (f2^) by A33,RFUNCT_1:def 8; then A38: rng (h + c) c= dom f1 /\ dom (f2^) by A33,XBOOLE_1:19; A39: f2*(h + c) is_not_0 by A37,RFUNCT_2:26; A40: for m holds c.m = x0 proof let m; c.m in rng c by RFUNCT_2:10; hence c.m = x0 by A29,TARSKI:def 1; end; 0 <= r & x0 + 0 = x0 by A3,A5,SQUARE_1:38; then x0 <= x0 + r by REAL_1:55; then A41: x0 in [.x0,x0 + r.] by RCOMP_1:15; then A42: x0 in dom f1 by A23; A43: rng c c= dom f1 proof let x be set; assume x in rng c; hence x in dom f1 by A29,A42,TARSKI:def 1; end; A44: for g be real number st 0 < g ex n st for m st n <=m holds abs((f1*c).m - f1.x0) < g proof let g be real number such that A45: 0 < g; take n = 0; let m such that n <= m; abs((f1*c).m - f1.x0) = abs(f1.(c.m) - f1.x0) by A43,RFUNCT_2:21 .=abs(f1.x0 - f1.x0) by A40 .=abs(0) by XCMPLX_1:14 .= 0 by ABSVALUE:def 1; hence abs((f1*c).m - f1.x0) < g by A45; end; A46: h is convergent & lim h = 0 by FDIFF_1:def 1; A47: f1*c is convergent by A44,SEQ_2:def 6; then A48: lim(f1*c) = f1.x0 by A44,SEQ_2:def 7; A49: h"(#)(f1*(h + c) - f1*c) is convergent & h"(#)(f2*(h + c) - f2*c) is convergent by A1,A29,A31,A33,A34,Def3; A50: x0 in (dom f2\f2"{0}) by A27,A41; rng c c= (dom f2\f2"{0}) proof let x be set; assume x in rng c; hence x in (dom f2\f2"{0}) by A29,A50,TARSKI:def 1; end; then A51: rng c c= dom (f2^) by RFUNCT_1:def 8; then A52: rng c c= dom f1 /\ dom (f2^) by A43,XBOOLE_1:19; A53: f2*c is_not_0 by A51,RFUNCT_2:26; then A54: (f2*(h + c)) (#) (f2*c) is_not_0 by A39,SEQ_1:43; dom (f2^) = dom f2 \ f2"{0} by RFUNCT_1:def 8; then dom (f2^) c= dom f2 by XBOOLE_1:36; then A55: rng c c= dom f2 by A51,XBOOLE_1:1; A56: for g be real number st 0 < g ex n st for m st n <=m holds abs((f2*c).m - f2.x0) < g proof let g be real number such that A57: 0 < g; take n = 0; let m such that n <= m; abs((f2*c).m - f2.x0) = abs(f2.(c.m) - f2.x0) by A55,RFUNCT_2:21 .=abs(f2.x0 - f2.x0) by A40 .=abs(0) by XCMPLX_1:14 .= 0 by ABSVALUE:def 1; hence abs((f2*c).m - f2.x0) < g by A57; end; then A58: f2*c is convergent by SEQ_2:def 6; then A59: lim(f2*c) = f2.x0 by A56,SEQ_2:def 7; A60: h(#)(h"(#)(f2*(h + c) - f2*c)) is convergent by A36,A46,SEQ_2:28; A61: h(#)(h"(#)(f2*(h + c) - f2*c)) = (f2*(h + c) - f2*c) proof now let n; A62: h.n <> 0 by A31; thus (h(#)(h"(#)(f2*(h + c) - f2*c))).n = ((h(#)h")(#)(f2*(h + c) - f2*c)). n by SEQ_1:22 .= (h(#)h").n *(f2*(h + c) - f2*c).n by SEQ_1:12 .= h.n * (h").n *(f2*(h + c) - f2*c).n by SEQ_1:12 .= h.n * (h.n)" *(f2*(h + c) - f2*c).n by SEQ_1:def 8 .= 1*(f2*(h + c) - f2*c).n by A62,XCMPLX_0:def 7 .= (f2*(h + c) - f2*c).n; end; hence thesis by FUNCT_2:113; end; f2*c + (f2*(h + c) - f2*c) = f2*(h + c) proof now let n; thus (f2*c + (f2*(h + c) - f2*c)).n = (f2*c).n + (f2*(h + c) - f2*c).n by SEQ_1:11 .= (f2*c).n + ((f2*(h + c)).n - (f2*c).n) by RFUNCT_2:6 .= (f2*(h + c)).n by XCMPLX_1:27; end; hence thesis by FUNCT_2:113; end; then A63: f2*(h +c) is convergent by A58,A60,A61,SEQ_2:19; lim (h(#)(h"(#)(f2*(h + c) - f2*c))) = lim h *lim (h"(#)(f2*(h + c) - f2*c) ) by A46,A49,SEQ_2:29 .= 0 by A46; then A64: 0 = lim (f2*(h + c)) - f2.x0 by A58,A59,A61,A63,SEQ_2:26; A65: f2*(h + c) (#) (f2*c) is convergent by A58,A63,SEQ_2:28; A66: lim(f2*(h + c) (#) (f2*c)) = (f2.x0)^2 proof now let n; thus lim(f2*(h + c) (#) (f2*c)) = lim(f2*(h + c)) *lim(f2*c) by A58,A63,SEQ_2:29 .= f2.x0 * f2.x0 by A59,A64,XCMPLX_1:15 .=(f2.x0)^2 by SQUARE_1:def 3; end; hence thesis; end; A67: lim(f2*(h + c) (#) (f2*c))<> 0 proof assume not thesis; then f2.x0 = 0 by A66,SQUARE_1:73; hence contradiction by A2,A4,A9,A13; end; A68: (f1*c)(#)(h"(#) (f2*(h + c) - f2*c)) is convergent by A36,A47,SEQ_2:28; A69: h"(#) (f1*(h + c) - f1*c)(#)(f2*c) is convergent by A35,A58,SEQ_2:28; A70: h"(#) ((f1/f2)*(h + c) - (f1/f2)*c)=h"(#)((f1(#) (f2^))*(h + c) - (f1/f2)*c) by RFUNCT_1:47 .=h"(#)((f1(#)(f2^))*(h + c) - (f1(#)(f2^))*c) by RFUNCT_1:47 .=h"(#)((f1*(h + c))(#)((f2^)*(h + c)) - (f1(#) (f2^))*c) by A38,RFUNCT_2:23 .=h"(#)((f1*(h + c))(#)(f2*(h + c))" - (f1(#)(f2^))*c) by A37,RFUNCT_2:27 .=h"(#)((f1*(h + c))/"(f2*(h + c)) - (f1(#)(f2^))*c) by SEQ_1:def 9 .=h"(#)((f1*(h + c))/"(f2*(h + c)) - (f1*c)(#) ((f2^)*c)) by A52,RFUNCT_2:23 .=h"(#)((f1*(h + c))/"(f2*(h + c)) - (f1*c)(#)(f2*c)") by A51,RFUNCT_2:27 .=h"(#)((f1*(h + c))/"(f2*(h + c)) - (f1*c)/"(f2*c)) by SEQ_1:def 9 .=h"(#)(((f1*(h + c))(#)(f2*c) - (f1*c)(#)(f2*(h + c)))/"((f2*(h + c))(#) (f2*c))) by A39,A53,SEQ_1:58 .=(h"(#)((f1*(h + c))(#)(f2*c) - (f1*c)(#)(f2*(h + c))))/"((f2*(h + c))(#) (f2*c)) by SEQ_1:49; A71: ((h"(#)(f1*(h + c) - (f1*c)))(#)(f2*c) - (f1*c)(#)(h"(#) (f2*(h + c)-(f2*c)))) is convergent by A68,A69,SEQ_2:25; now let n; thus (h"(#)((f1*(h + c))(#)(f2*c) - (f1*c)(#)(f2*(h + c)))).n = (h").n * ((f1*(h + c))(#)(f2*c) - (f1*c)(#)(f2*(h + c))).n by SEQ_1:12 .= (h").n * (((f1*(h + c))(#)(f2*c)).n - ((f1*c)(#) (f2*(h + c))).n) by RFUNCT_2:6 .= (h").n * ((f1*(h + c)).n * (f2*c).n - ((f1*c)(#)(f2*(h + c))).n) by SEQ_1:12 .= (h").n * ((f1*(h + c)).n * (f2*c).n - 0 - (f1*c).n * (f2*(h + c)).n) by SEQ_1:12 .= (h").n * ((f1*(h + c)).n * (f2*c).n - ((f1*c).n*(f2*c).n -(f1*c).n* (f2*c).n) - (f1*c).n * (f2*(h + c)).n) by XCMPLX_1:14 .= (h").n * (((f1*(h + c)).n * (f2*c).n - (f1*c).n*(f2*c).n) + (f1*c).n* (f2*c).n - (f1*c).n * (f2*(h + c)).n) by XCMPLX_1:37 .= (h").n * (((f1*(h + c)).n - (f1*c).n) * (f2*c).n + ((f1*c).n*(f2*c).n) - ((f1*c).n * (f2*(h + c)).n)) by XCMPLX_1:40 .= (h").n * (((f1*(h + c)).n - (f1*c).n) * (f2*c).n + (((f1*c).n*(f2*c).n) - ((f1*c).n * (f2*(h + c)).n))) by XCMPLX_1:29 .= (h").n * (((f1*(h + c)).n - (f1*c).n) * (f2*c).n - ((f1*c).n * (f2*(h + c)).n - (f1*c).n*(f2*c).n)) by XCMPLX_1:38 .= (h").n * (((f1*(h + c)).n - (f1*c).n) * (f2*c).n - (f1*c).n * ((f2*(h + c)).n - (f2*c).n)) by XCMPLX_1:40 .= (h").n * (((f1*(h + c)).n - (f1*c).n) * (f2*c).n) - ((h").n) * ((f1*c).n * ((f2*(h + c)).n - (f2*c).n)) by XCMPLX_1:40 .= (h").n * ((f1*(h + c)).n - (f1*c).n) * (f2*c).n - ((h").n) * ((f1*c).n * ((f2*(h + c)).n - (f2*c).n)) by XCMPLX_1:4 .= (h").n * ((f1*(h + c)).n - (f1*c).n) * (f2*c).n - (f1*c).n * ((h").n * ((f2*(h + c)).n - (f2*c).n)) by XCMPLX_1:4 .= (h").n * ((f1*(h + c)) - (f1*c)).n * (f2*c).n - (f1*c).n * ((h").n * ((f2*(h + c)).n - (f2*c).n)) by RFUNCT_2:6 .= (h").n * (f1*(h + c) - (f1*c)).n * (f2*c).n - (f1*c).n * ((h").n * (f2*(h + c) - (f2*c)).n) by RFUNCT_2:6 .= (h" (#) (f1*(h + c) - (f1*c))).n * (f2*c).n - (f1*c).n * ((h").n * (f2*(h + c) - (f2*c)).n) by SEQ_1:12 .= (h"(#)(f1*(h + c) - (f1*c))).n * (f2*c).n - (f1*c).n * (h"(#)(f2*(h + c) - (f2*c))).n by SEQ_1:12 .= (h"(#)(f1*(h + c) - (f1*c))(#)(f2*c)).n - (f1*c).n * (h"(#)(f2*(h + c) - (f2*c))).n by SEQ_1:12 .= (h"(#)(f1*(h + c) - (f1*c))(#)(f2*c)).n - ((f1*c)(#)(h"(#)(f2*(h + c)-(f2*c)))).n by SEQ_1:12 .= (h"(#)(f1*(h + c) - (f1*c))(#)(f2*c) - (f1*c)(#)(h"(#) (f2*(h + c)-(f2*c)))).n by RFUNCT_2:6; end; then A72: h"(#) ((f1/f2)*(h + c) - (f1/f2)*c) =((h"(#)(f1*(h + c) - (f1*c))) (#) (f2*c) - (f1*c)(#)(h"(#)(f2*(h + c)-(f2*c))))/"(f2*(h + c)(#) (f2*c)) by A70,FUNCT_2:113 ; then lim(h"(#) ((f1/f2)*(h + c) - (f1/f2)*c)) = lim((h"(#)(f1*(h + c) - (f1*c)))(#)(f2*c) - (f1*c)(#)(h"(#) (f2*(h + c)-(f2*c))))/ lim(f2*(h + c)(#)(f2*c)) by A54,A65,A67,A71,SEQ_2:38 .=(lim((h"(#)(f1*(h + c)-(f1*c)))(#)(f2*c))-lim((f1*c)(#)(h"(#)(f2*(h + c)- (f2*c)))))/lim(f2*(h + c)(#)(f2*c)) by A68,A69,SEQ_2:26 .=( lim(h"(#)(f1*(h + c)-(f1*c)))*lim(f2*c) - lim((f1*c) (#) (h"(#)(f2*(h + c)-(f2*c)))) ) / lim(f2*(h + c)(#)(f2*c)) by A49,A58,SEQ_2:29 .=(Rdiff(f1,x0) * f2.x0 - Rdiff(f2,x0) * f1.x0)/(f2.x0)^2 by A35,A36,A47,A48 ,A59,A66,SEQ_2:29; hence thesis by A54,A65,A67,A71,A72,SEQ_2:37; end; hence thesis by A15,A28,Th15; end; theorem f1 is_right_differentiable_in x0 & f2 is_right_differentiable_in x0 & f2.x0 <> 0 implies f1/f2 is_right_differentiable_in x0 & Rdiff(f1/f2,x0) = (Rdiff(f1,x0)*f2.x0 - Rdiff(f2,x0)*f1.x0)/(f2.x0)^2 proof assume A1: f1 is_right_differentiable_in x0 & f2 is_right_differentiable_in x0 & f2.x0 <> 0; then A2: f2 is_Rcontinuous_in x0 by Th7; ex r st r > 0 & [.x0,x0 + r.] c= dom f2 by A1,Def3; then consider r1 such that A3: r1 > 0 & [.x0,x0 + r1.] c= dom f2 & for g st g in [.x0,x0 + r1.] holds f2.g <> 0 by A1,A2,Th8; now take r1; thus r1 > 0 by A3; let g; assume g in dom f2 & g in [.x0,x0+r1.]; hence f2.g <> 0 by A3; end; hence thesis by A1,Lm3; end; Lm4: f is_right_differentiable_in x0 & (ex r0 st r0 > 0 & for g st g in dom f & g in [.x0 , x0 + r0.] holds f.g <> 0) implies f^ is_right_differentiable_in x0 & Rdiff(f^,x0) = - Rdiff(f,x0)/(f.x0)^2 proof assume A1: f is_right_differentiable_in x0; given r0 such that A2: r0 > 0 & for g st g in dom f & g in [.x0 ,x0 + r0.] holds f.g <> 0; consider r2 such that A3: 0 < r2 & [.x0,x0 + r2.] c= dom f by A1,Def3; set r3 = min(r0,r2); A4: 0 < r3 by A2,A3,SQUARE_1:38; 0 <= r3 & 0 + x0 =x0 by A2,A3,SQUARE_1:38; then A5: x0 <= x0 +r3 by AXIOMS:24; then A6:x0 in [. x0 , x0 + r3 .] by RCOMP_1:15; r3 <= r0 by SQUARE_1:35; then A7: x0 + r3 <= x0 + r0 by REAL_1:55; then x0 + r3 in { g: x0 <= g & g<= x0 + r0 } by A5; then A8: x0 + r3 in [.x0,x0 + r0.] by RCOMP_1:def 1; x0 <= x0 +r0 by A5,A7,AXIOMS:22; then A9:x0 in [.x0,x0 + r0.] by RCOMP_1:15; then A10: [.x0,x0 +r3.] c= [.x0,x0 +r0.] by A8,RCOMP_1:16; r3 <= r2 by SQUARE_1:35; then A11: x0 + r3 <= x0 + r2 by REAL_1:55; then x0 + r3 in { g:x0 <= g & g <= x0 + r2 } by A5; then A12: x0 + r3 in [.x0,x0 +r2.] by RCOMP_1:def 1; x0 <= x0 + r2 by A5,A11,AXIOMS:22; then A13:x0 in [.x0,x0 + r2.] by RCOMP_1:15; then [.x0,x0 + r3.] c= [.x0,x0 + r2.] by A12,RCOMP_1:16; then A14: [.x0,x0 + r3.] c= dom f by A3,XBOOLE_1:1; A15: [.x0,x0 + r3.] c= dom(f^) proof assume not thesis; then consider x such that A16: x in [.x0,x0 + r3.] & not x in dom (f^) by TARSKI:def 3; reconsider x as Real by A16; A17: not x in dom f \ f"{0} by A16,RFUNCT_1:def 8; now per cases by A17,XBOOLE_0:def 4; suppose not x in dom f; hence contradiction by A14,A16; suppose x in f"{0}; then x in dom f & f.x in {0} by FUNCT_1:def 13; then x in dom f & f.x = 0 by TARSKI:def 1; hence contradiction by A2,A10,A16; end; hence contradiction; end; for h,c st rng c = {x0} & rng (h+c) c= dom (f^) & (for n holds h.n > 0) holds h"(#)((f^)*(h + c) - (f^)*c) is convergent & lim(h"(#)((f^)*(h + c) - (f^)*c)) = - Rdiff(f,x0)/(f.x0)^2 proof let h,c; assume that A18: rng c = {x0} and A19: rng (h+c) c= dom (f^) and A20: for n holds h.n > 0; A21: rng (h + c) c= dom f\f"{0} by A19,RFUNCT_1:def 8; A22: h is convergent & lim h = 0 & h is_not_0 by FDIFF_1:def 1; dom f \ f"{0} c= dom f by XBOOLE_1:36; then A23: rng (h + c) c= dom f by A21,XBOOLE_1:1; Rdiff(f,x0) = Rdiff(f,x0); then A24: h"(#)(f*(h + c) - f*c) is convergent & lim(h"(#)(f*(h + c) - f*c)) = Rdiff(f,x0) by A1,A18,A20,A23,Th15; A25: f*(h + c) is_not_0 by A19,RFUNCT_2:26; A26: for m holds c.m = x0 proof let m; c.m in rng c by RFUNCT_2:10; hence c.m = x0 by A18,TARSKI:def 1; end; x0 in dom (f^) by A6,A15; then A27: x0 in (dom f\f"{0}) by RFUNCT_1:def 8; rng c c= (dom f\f"{0}) proof let x be set; assume x in rng c; hence x in (dom f\f"{0}) by A18,A27,TARSKI:def 1; end; then A28: rng c c= dom (f^) by RFUNCT_1:def 8; then A29: f*c is_not_0 by RFUNCT_2:26; then A30: (f*(h + c)) (#) (f*c) is_not_0 by A25,SEQ_1:43; dom (f^) = dom f \ f"{0} by RFUNCT_1:def 8; then dom (f^) c= dom f by XBOOLE_1:36; then A31: rng c c= dom f by A28,XBOOLE_1:1; A32: for g be real number st 0 < g ex n st for m st n <=m holds abs((f*c).m - f.x0) < g proof let g be real number such that A33: 0 < g; take n = 0; let m such that n <= m; abs((f*c).m - f.x0) = abs(f.(c.m) - f.x0) by A31,RFUNCT_2:21 .=abs(f.x0 - f.x0) by A26 .=abs(0) by XCMPLX_1:14 .= 0 by ABSVALUE:def 1; hence abs((f*c).m - f.x0) < g by A33; end; then A34: f*c is convergent by SEQ_2:def 6; then A35: lim(f*c) = f.x0 by A32,SEQ_2:def 7; A36: h(#)(h"(#)(f*(h + c) - f*c)) is convergent by A22,A24,SEQ_2:28; A37: h(#)(h"(#)(f*(h + c) - f*c)) = (f*(h + c) - f*c) proof now let n; A38: h.n <> 0 by A20; thus (h(#)(h"(#)(f*(h + c) - f*c))).n = ((h(#)h")(#)(f*(h + c) - f*c)).n by SEQ_1:22 .= (h(#)h").n *(f*(h + c) - f*c).n by SEQ_1:12 .= h.n * (h").n *(f*(h + c) - f*c).n by SEQ_1:12 .= h.n * (h.n)" *(f*(h + c) - f*c).n by SEQ_1:def 8 .= 1*(f*(h + c) - f*c).n by A38,XCMPLX_0:def 7 .= (f*(h + c) - f*c).n; end; hence thesis by FUNCT_2:113; end; f*c + (f*(h + c) - f*c) = f*(h + c) proof now let n; thus (f*c + (f*(h + c) - f*c)).n = (f*c).n + (f*(h + c) - f*c).n by SEQ_1:11 .= (f*c).n + ((f*(h + c)).n - (f*c).n) by RFUNCT_2:6 .= (f*(h + c)).n by XCMPLX_1:27; end; hence thesis by FUNCT_2:113; end; then A39: f*(h +c) is convergent by A34,A36,A37,SEQ_2:19; lim (h(#)(h"(#)(f*(h + c) - f*c))) = lim h *lim (h"(#)(f*(h + c) - f*c)) by A22,A24,SEQ_2:29 .= 0 by A22; then A40: 0 = lim (f*(h + c)) - f.x0 by A34,A35,A37,A39,SEQ_2:26; A41: f*(h + c) (#) (f*c) is convergent by A34,A39,SEQ_2:28; A42: lim(f*(h + c) (#) (f*c)) = (f.x0)^2 proof now let n; thus lim(f*(h + c) (#) (f*c)) = lim(f*(h + c)) *lim(f*c) by A34,A39,SEQ_2:29 .= f.x0 * f.x0 by A35,A40,XCMPLX_1:15 .=(f.x0)^2 by SQUARE_1:def 3; end; hence thesis; end; A43: lim(f*(h + c) (#) (f*c))<> 0 proof assume not thesis; then f.x0 = 0 by A42,SQUARE_1:73; hence contradiction by A2,A3,A9,A13; end; A44:-(h"(#)((f*(h + c)) - (f*c))) is convergent by A24,SEQ_2:23; now let n; A45: (f*(h+c)).n <>0 by A25,SEQ_1:7; A46: (f*c).n <>0 by A29,SEQ_1:7; thus (h"(#) ((f^)*(h+c) - (f^)*c)).n = (h").n* ((f^)*(h+c) - (f^)*c).n by SEQ_1:12 .= (h").n* (((f^)*(h+c)).n - ((f^)*c).n) by RFUNCT_2:6 .= (h").n* (((f*(h+c))").n - ((f^)*c).n) by A19,RFUNCT_2:27 .= (h").n* (((f*(h+c))").n - ((f*c)").n) by A28,RFUNCT_2:27 .= (h").n* (((f*(h+c)).n)" - ((f*c)").n) by SEQ_1:def 8 .= (h").n* (((f*(h+c)).n)" - ((f*c).n)") by SEQ_1:def 8 .= (h").n* (1/(f*(h+c)).n - ((f*c).n)") by XCMPLX_1:217 .= (h").n* (1/(f*(h+c)).n - 1/(f*c).n) by XCMPLX_1:217 .= (h").n* ((1*((f*c).n) - 1*((f*(h+c)).n))/((f*(h+c)).n*(f*c).n)) by A45,A46,XCMPLX_1:131 .= (h").n* (((f*c).n - (f*(h+c)).n)/((f*(h+c))(#)(f*c)).n) by SEQ_1:12 .= (h").n* ((-((f*(h+c)).n - (f*c).n))/((f*(h+c))(#)(f*c)).n) by XCMPLX_1:143 .= (h").n* ((-((f*(h+c) - (f*c)).n))/((f*(h+c))(#)(f*c)).n) by RFUNCT_2:6 .= (h").n*(-(((f*(h+c) - (f*c)).n)/((f*(h+c))(#)(f*c)).n)) by XCMPLX_1: 188 .= -((h").n*(((f*(h+c) - (f*c)).n)/(((f*(h+c))(#)(f*c)).n))) by XCMPLX_1: 175 .= -((h").n*((f*(h+c) - (f*c)).n))/((f*(h+c))(#)(f*c)).n by XCMPLX_1:75 .= -( ((h" (#) ((f*(h+c)) - (f*c))).n) )/((f*(h+c))(#)(f*c)).n by SEQ_1:12 .= -(((h"(#)((f*(h+c)) - (f*c))).n))*(((f*(h+c))(#) (f*c)).n)" by XCMPLX_0:def 9 .= -((((h"(#)((f*(h+c)) - (f*c))).n))*(((f*(h+c))(#) (f*c))").n) by SEQ_1:def 8 .= -((((h"(#)((f*(h+c)) - (f*c))))(#)(((f*(h+c))(#) (f*c))")).n) by SEQ_1:12 .= -(((h")(#)((f*(h+c)) - (f*c)))/"((f*(h+c))(#)(f*c))).n by SEQ_1:def 9 .= (-((h"(#)((f*(h+c)) - (f*c)))/"((f*(h+c))(#)(f*c)))).n by SEQ_1:14 .= ((-(h"(#)((f*(h+c)) - (f*c))))/"((f*(h+c))(#)(f*c))).n by SEQ_1:56; end; then A47:h"(#) ((f^)*(h+c) - (f^)*c) = (-(h"(#)((f*(h+c)) - (f*c))))/"((f*(h+c ))(#) (f*c)) by FUNCT_2:113; then lim(h"(#) ((f^)*(h + c) - (f^)*c)) = lim(-(h"(#) ((f*(h + c))- (f*c))))/(f.x0)^2 by A30,A41,A42,A43,A44,SEQ_2:38 .=(- Rdiff(f,x0)) /(f.x0)^2 by A24,SEQ_2:24 .=- Rdiff(f,x0) /(f.x0)^2 by XCMPLX_1:188; hence thesis by A30,A41,A43,A44,A47,SEQ_2:37; end; hence thesis by A4,A15,Th15; end; theorem f is_right_differentiable_in x0 & f.x0 <> 0 implies f^ is_right_differentiable_in x0 & Rdiff(f^,x0) = - Rdiff(f,x0)/(f.x0)^2 proof assume A1: f is_right_differentiable_in x0 & f.x0 <> 0; then A2: f is_Rcontinuous_in x0 by Th7; ex r st r > 0 & [.x0,x0 + r.] c= dom f by A1,Def3; then consider r1 such that A3: r1 > 0 & [.x0,x0 + r1.] c= dom f & for g st g in [.x0,x0 + r1.] holds f.g <> 0 by A1,A2,Th8; now take r1; thus r1 > 0 by A3; let g; assume g in dom f & g in [.x0,x0+r1.]; hence f.g <> 0 by A3; end; hence thesis by A1,Lm4; end; theorem f is_right_differentiable_in x0 & f is_left_differentiable_in x0 & Rdiff(f,x0) = Ldiff(f,x0) implies f is_differentiable_in x0 & diff(f,x0)=Rdiff(f,x0) & diff(f,x0)=Ldiff(f,x0) proof assume A1: f is_right_differentiable_in x0 & f is_left_differentiable_in x0 & Rdiff(f,x0) = Ldiff(f,x0); A2: ex N being Neighbourhood of x0 st N c= dom f proof consider r1 such that A3: r1>0 & [.x0-r1,x0.] c= dom f by A1,Def4; consider r2 such that A4: r2>0 & [.x0,x0+r2.] c= dom f by A1,Def3; set r = min(r1,r2); r > 0 by A3,A4,SQUARE_1:38; then reconsider N = ].x0 -r,x0+r.[ as Neighbourhood of x0 by RCOMP_1:def 7; take N; let x; assume x in N; then x in { g: x0 - r < g & g < x0 + r} by RCOMP_1:def 2; then consider g such that A5: g = x & x0 - r < g & g < x0 + r; now per cases; suppose A6: g <= x0; r <= r1 by SQUARE_1:35; then x0 - r1 <= x0 - r by REAL_1:92; then x0 - r1 <= g by A5,AXIOMS:22; then g in {g1: x0 - r1 <= g1 & g1 <= x0} by A6; then g in [.x0-r1,x0.] by RCOMP_1:def 1; hence x in dom f by A3,A5; suppose A7: g > x0; r <= r2 by SQUARE_1:35; then x0 + r <= x0 + r2 by REAL_1:55; then g <= x0 + r2 by A5,AXIOMS:22; then g in {g1: x0 <= g1 & g1 <= x0+r2} by A7; then g in [.x0,x0+r2.] by RCOMP_1:def 1; hence x in dom f by A4,A5; end; hence x in dom f; end; for h,c st rng c = {x0} & rng (h + c) c= dom f holds h"(#)(f*(h + c) - f*c) is convergent & lim (h"(#) (f*(h + c) - f*c)) = Ldiff(f,x0) proof let h,c; assume A8: rng c = {x0} & rng (h + c) c= dom f; A9: rng c c= dom f proof consider S being Neighbourhood of x0 such that A10: S c= dom f by A2; x0 in S by RCOMP_1:37; hence thesis by A8,A10,ZFMISC_1:37; end; now per cases; suppose ex N be Nat st for n st n >= N holds h.n > 0; then consider N be Nat such that A11: for n st n >= N holds h.n > 0; set h1 = h ^\N; set c1 = c ^\N; A12: rng c1 = {x0} proof thus rng c1 c= {x0} by A8,RFUNCT_2:7; let x; assume x in {x0}; then A13: x = x0 by TARSKI:def 1; A14: c1.0 = c.(0+N) by SEQM_3:def 9 .= c.N; c.N in rng c by RFUNCT_2:10; then c1.0 = x by A8,A13,A14,TARSKI:def 1; hence thesis by RFUNCT_2:10; end; A15: h1 + c1 = (h + c)^\N by SEQM_3:37; then rng (h1 + c1) c= rng (h + c) by RFUNCT_2:7; then A16: rng (h1 + c1) c= dom f by A8,XBOOLE_1:1; for n holds h1.n > 0 proof let n; A17: h1.n = h.(n+N) by SEQM_3:def 9; 0 <= n by NAT_1:18; then N + 0 <= n + N by REAL_1:55; hence thesis by A11,A17; end; then A18: h1"(#)(f*(h1 + c1) - f*c1) is convergent & lim (h1"(#)(f*(h1 + c1) - f*c1)) = Rdiff(f,x0) by A1,A12,A16,Th15; A19: h1"(#)(f*(h1 + c1) - f*c1) = h1"(#)((f*(h+c))^\N - f*c1) by A8,A15,RFUNCT_2:22 .= h1"(#)((f*(h+c))^\N - (f*c)^\N) by A9,RFUNCT_2:22 .= h1"(#)((f*(h+c) - f*c)^\N) by SEQM_3:39 .= ((h")^\N) (#)((f*(h+c) - f*c)^\N) by SEQM_3:41 .= (h"(#)(f*(h + c) - f*c))^\N by SEQM_3:42; hence h"(#)(f*(h + c) - f*c) is convergent by A18,SEQ_4:35; thus lim (h"(#)(f*(h + c) - f*c)) =Ldiff(f,x0) by A1,A18,A19,SEQ_4:36; suppose A20: for N be Nat ex n st n >= N & h.n <= 0; now per cases; suppose ex M be Nat st for m st m >= M holds h.m < 0; then consider M be Nat such that A21: for n st n >= M holds h.n < 0; set h1 = h ^\M; set c1 = c ^\M; A22: rng c1 = {x0} proof thus rng c1 c= {x0} by A8,RFUNCT_2:7; let x; assume x in {x0}; then A23: x = x0 by TARSKI:def 1; A24: c1.0 = c.(0+M) by SEQM_3:def 9 .= c.M; c.M in rng c by RFUNCT_2:10; then c1.0 = x by A8,A23,A24,TARSKI:def 1; hence thesis by RFUNCT_2:10; end; A25: h1 + c1 = (h + c)^\M by SEQM_3:37; then rng (h1 + c1) c= rng (h + c) by RFUNCT_2:7; then A26: rng (h1 + c1) c= dom f by A8,XBOOLE_1:1; for n holds h1.n < 0 proof let n; A27: h1.n = h.(n+M) by SEQM_3:def 9; 0 <= n by NAT_1:18; then M + 0 <= n + M by REAL_1:55; hence thesis by A21,A27; end; then A28: h1"(#)(f*(h1 + c1) - f*c1) is convergent & lim (h1"(#)(f*(h1 + c1) - f*c1)) = Ldiff(f,x0) by A1,A22,A26,Th9; A29: h1"(#)(f*(h1 + c1) - f*c1) = h1"(#)((f*(h+c))^\M - f*c1) by A8,A25,RFUNCT_2:22 .= h1"(#)((f*(h+c))^\M - (f*c)^\M) by A9,RFUNCT_2:22 .= h1"(#)((f*(h+c) - f*c)^\M) by SEQM_3:39 .= ((h")^\M) (#)((f*(h+c) - f*c)^\M) by SEQM_3:41 .= (h"(#)(f*(h + c) - f*c))^\M by SEQM_3:42; hence h"(#)(f*(h + c) - f*c) is convergent by A28,SEQ_4:35; thus lim (h"(#)(f*(h + c) - f*c)) =Ldiff(f,x0) by A28,A29,SEQ_4:36; suppose A30: for M be Nat ex m st m >= M & h.m >= 0; A31: h is_not_0 & h is convergent & lim h = 0 by FDIFF_1:def 1; defpred P[real number] means $1 < 0; defpred R[real number] means $1 > 0; A32: for N be Nat ex n st n >= N & P[h.n] proof let m; consider n such that A33: n >= m & h.n <= 0 by A20; take n; thus n >= m by A33; h.n <> 0 by A31,SEQ_1:7; hence thesis by A33; end; A34: for N be Nat ex n st n >= N & R[h.n] proof let m; consider n such that A35: n >= m & h.n >= 0 by A30; take n; thus n >= m by A35; h.n <> 0 by A31,SEQ_1:7; hence thesis by A35; end; consider q1 being increasing Seq_of_Nat such that A36: (for n holds P[(h*q1).n]) & for n st (for r st r = h.n holds P[r]) ex m st n = q1.m from ExInc_Seq_of_Nat(A32); consider q2 being increasing Seq_of_Nat such that A37: (for n holds R[(h*q2).n]) & for n st (for r st r = h.n holds R[r]) ex m st n = q2.m from ExInc_Seq_of_Nat(A34); set h1 = h*q1; set h2 = h*q2; set c1 = c*q1; set c2 = c*q2; A38: h1 is_subsequence_of h by SEQM_3:def 10; then A39: h1 is convergent by A31,SEQ_4:29; A40: lim h1 = 0 by A31,A38,SEQ_4:30; h1 is_not_0 by A31,A38,RFUNCT_2:12; then reconsider h1 as convergent_to_0 Real_Sequence by A39,A40,FDIFF_1: def 1; A41: h2 is_subsequence_of h by SEQM_3:def 10; then A42: h2 is convergent by A31,SEQ_4:29; A43: lim h2 = 0 by A31,A41,SEQ_4:30; h2 is_not_0 by A31,A41,RFUNCT_2:12; then reconsider h2 as convergent_to_0 Real_Sequence by A42,A43,FDIFF_1: def 1; A44: c1 is_subsequence_of c by SEQM_3:def 10; A45: c2 is_subsequence_of c by SEQM_3:def 10; A46: rng c1 = {x0} by A8,A44,SEQM_3:55; reconsider c1 as constant Real_Sequence by A44,SEQM_3:55; (h + c)*q1 is_subsequence_of (h + c) by SEQM_3:def 10; then rng ((h+c)*q1) c= rng (h+c) by RFUNCT_2:11; then rng ((h+c)*q1) c= dom f by A8,XBOOLE_1:1; then rng (h1+c1) c= dom f by RFUNCT_2:13; then A47: h1"(#)(f*(h1+c1)-f*c1) is convergent & lim(h1"(#)(f*(h1+c1)-f*c1))=Ldiff(f,x0) by A1,A36,A46,Th9; A48: rng c2 = {x0} by A8,A45,SEQM_3:55; reconsider c2 as constant Real_Sequence by A45,SEQM_3:55; (h + c)*q2 is_subsequence_of (h + c) by SEQM_3:def 10; then rng ((h+c)*q2) c= rng (h+c) by RFUNCT_2:11; then rng ((h+c)*q2) c= dom f by A8,XBOOLE_1:1; then rng (h2+c2) c= dom f by RFUNCT_2:13; then A49: h2"(#)(f*(h2+c2)-f*c2) is convergent & lim(h2"(#)(f*(h2+c2)-f*c2))=Ldiff(f,x0) by A1,A37,A48,Th15; A50: h1"(#)(f*(h1+c1)-f*c1) = h1"(#)(f*((h+c)*q1)-f*c1) by RFUNCT_2:13 .= h1"(#)(f*(h+c)*q1-f*c1) by A8,RFUNCT_2:28 .= ((h")*q1)(#)(f*(h+c)*q1-f*c1) by RFUNCT_2:16 .= ((h")*q1)(#)(f*(h+c)*q1-f*c*q1) by A9,RFUNCT_2:28 .= ((h")*q1)(#)((f*(h+c)-f*c)*q1) by RFUNCT_2:13 .= ((h")(#)(f*(h+c)-f*c))*q1 by RFUNCT_2:13; A51: h2"(#)(f*(h2+c2)-f*c2) = h2"(#)(f*((h+c)*q2)-f*c2) by RFUNCT_2:13 .= h2"(#)(f*(h+c)*q2-f*c2) by A8,RFUNCT_2:28 .= ((h")*q2)(#)(f*(h+c)*q2-f*c2) by RFUNCT_2:16 .= ((h")*q2)(#)(f*(h+c)*q2-f*c*q2) by A9,RFUNCT_2:28 .= ((h")*q2)(#)((f*(h+c)-f*c)*q2) by RFUNCT_2:13 .= ((h")(#)(f*(h+c)-f*c))*q2 by RFUNCT_2:13; set s = (h")(#)(f*(h+c)-f*c); A52: for g1 be real number st 0<g1 ex n st for m st n<=m holds abs(s.m - Ldiff(f,x0))<g1 proof let g1 be real number; assume A53: 0 < g1; then consider n1 be Nat such that A54: for m st n1 <= m holds abs((s*q1).m - Ldiff(f,x0))<g1 by A47,A50,SEQ_2:def 7; consider n2 be Nat such that A55: for m st n2 <= m holds abs((s*q2).m - Ldiff(f,x0))<g1 by A49,A51,A53,SEQ_2:def 7; take n = max(q1.n1,q2.n2); let m such that A56: n <= m; A57: n >= q1.n1 & n >= q2.n2 by SQUARE_1:46; now per cases; suppose h.m > 0; then for r st r = h.m holds r > 0; then consider k such that A58: m = q2.k by A37; q2.k >= q2.n2 by A56,A57,A58,AXIOMS:22; then not k < n2 by SEQM_3:7; then abs((s*q2).k - Ldiff(f,x0))<g1 by A55; hence abs(s.m - Ldiff(f,x0))<g1 by A58,SEQM_3:31; suppose A59: h.m <= 0; h.m <> 0 by A31,SEQ_1:7; then for r st r = h.m holds r < 0 by A59; then consider k such that A60: m = q1.k by A36; q1.k >= q1.n1 by A56,A57,A60,AXIOMS:22; then not k < n1 by SEQM_3:7; then abs((s*q1).k - Ldiff(f,x0))<g1 by A54; hence abs(s.m - Ldiff(f,x0))<g1 by A60,SEQM_3:31; end; hence thesis; end; hence s is convergent by SEQ_2:def 6; hence lim s = Ldiff(f,x0) by A52,SEQ_2:def 7; end; hence thesis; end; hence thesis; end; hence thesis by A1,A2,FDIFF_2:12; end; theorem f is_differentiable_in x0 implies f is_right_differentiable_in x0 & f is_left_differentiable_in x0 & diff(f,x0) = Rdiff(f,x0) & diff(f,x0) = Ldiff(f,x0) proof assume A1: f is_differentiable_in x0; A2: diff(f,x0) = diff(f,x0); consider N be Neighbourhood of x0 such that A3: N c= dom f by A1,FDIFF_2:11; consider g1 be real number such that A4: g1 > 0 & N = ].x0 - g1,x0 + g1.[ by RCOMP_1:def 7; A5: g1/2 > 0 by A4,REAL_2:127; A6: g1 > g1/2 by A4,SEQ_2:4; A7: ex r st r>0 & [.x0,x0+r.] c= dom f proof take r = g1/2; thus r is Real by XREAL_0:def 1; thus r > 0 by A4,SEQ_2:3; A8: x0 in ].x0 - g1, x0 + g1 .[ by A4,RCOMP_1:37; abs((x0 + g1/2) -x0 ) = abs((g1/2 + x0) + -x0 ) by XCMPLX_0:def 8 .= abs(g1/2 +( x0 + -x0) ) by XCMPLX_1:1 .= abs(g1/2 + 0 ) by XCMPLX_0:def 6 .= g1/2 by A5,ABSVALUE:def 1; then x0 + r in ].x0 -g1,x0 +g1.[ by A6,RCOMP_1:8; then [.x0 ,x0 +r.] c= ].x0 -g1,x0 +g1.[ by A8,RCOMP_1:17; hence thesis by A3,A4,XBOOLE_1:1; end; A9: for h,c st rng c = {x0} & rng (h+c) c= dom f & (for n holds h.n>0) holds h"(#)(f*(h+c) - f*c) is convergent & lim (h"(#) (f*(h+c) - f*c)) = diff(f,x0) by A1,A2,FDIFF_2:12; A10: ex r st 0 < r & [.x0 -r,x0.] c= dom f proof take r = g1/2; thus r is Real by XREAL_0:def 1; thus r > 0 by A4,SEQ_2:3; A11: x0 in ].x0 - g1, x0 + g1 .[ by A4,RCOMP_1:37; abs((x0 - g1/2) -x0 ) = abs((-g1/2 + x0) -x0 ) by XCMPLX_0:def 8 .=abs((-g1/2 + x0) + -x0 ) by XCMPLX_0:def 8 .=abs(-g1/2 +( x0 + -x0) ) by XCMPLX_1:1 .=abs(-g1/2 + 0 ) by XCMPLX_0:def 6 .=abs(g1/2 )by ABSVALUE:17 .=g1/2 by A5,ABSVALUE:def 1; then x0 - r in ].x0 -g1,x0 +g1.[ by A6,RCOMP_1:8; then [.x0 -r ,x0 .] c= ].x0 -g1,x0 +g1.[ by A11,RCOMP_1:17; hence thesis by A3,A4,XBOOLE_1:1; end; for h,c st rng c = {x0} & rng (h+c) c= dom f & (for n holds h.n < 0) holds h"(#)(f*(h+c) - f*c) is convergent & lim(h"(#)(f*(h+c) - f*c)) = diff(f,x0) by A1,A2,FDIFF_2:12; hence thesis by A7,A9,A10,Th9,Th15; end;