Copyright (c) 1990 Association of Mizar Users
environ vocabulary ANALOAF, DIRAF, INCSP_1, PARSP_2, FDIFF_1, SEMI_AF1; notation STRUCT_0, ANALOAF, DIRAF; constructors AFF_1, XBOOLE_0; clusters ANALOAF, ZFMISC_1, XBOOLE_0; theorems PARDEPAP, DIRAF; begin definition let IT be non empty AffinStruct; attr IT is Semi_Affine_Space-like means :Def1: (for a,b being Element of IT holds a,b // b,a) & (for a,b,c being Element of IT holds a,b // c,c) & (for a,b,p,q,r,s being Element of IT holds ( a<>b & a,b // p,q & a,b // r,s implies p,q // r,s )) & (for a,b,c being Element of IT holds ( a,b // a,c implies b,a // b,c )) & (ex a,b,c being Element of IT st not a,b // a,c) & (for a,b,p being Element of IT ex q being Element of IT st ( a,b // p,q & a,p // b,q )) & (for o,a being Element of IT holds (ex p being Element of IT st (for b,c being Element of IT holds o,a // o,p & (ex d being Element of IT st ( o,p // o,b implies o,c // o,d & p,c // b,d ))))) & (for o,a,a',b,b',c,c' being Element of IT holds ( not o,a // o,b & not o,a // o,c & o,a // o,a' & o,b // o,b' & o,c // o,c' & a,b // a',b' & a,c // a',c' implies b,c // b',c' )) & (for a,a',b,b',c,c' being Element of IT holds ( not a,a' // a,b & not a,a' // a,c & a,a' // b,b' & a,a' // c,c' & a,b // a',b' & a,c // a',c' implies b,c // b',c' )) & (for a1,a2,a3,b1,b2,b3 being Element of IT holds ( a1,a2 // a1,a3 & b1,b2 // b1,b3 & a1,b2 // a2,b1 & a2,b3 // a3,b2 implies a3,b1 // a1,b3 )) & (for a,b,c,d being Element of IT holds ( not a,b // a,c & a,b // c,d & a,c // b,d implies not a,d // b,c )); end; definition cluster Semi_Affine_Space-like (non empty AffinStruct); existence proof consider SAS being AffinPlane such that A1: for o,a,a',b,b',c,c' being Element of SAS holds ( not o,a // o,b & not o,a // o,c & o,a // o,a' & o,b // o,b' & o,c // o,c' & a,b // a',b' & a,c // a',c' implies b,c // b',c' ) and A2: for a,a',b,b',c,c' being Element of SAS holds ( not a,a' // a,b & not a,a' // a,c & a,a' // b,b' & a,a' // c,c' & a,b // a',b' & a,c // a',c' implies b,c // b',c' ) and A3: for a1,a2,a3,b1,b2,b3 being Element of SAS holds ( a1,a2 // a1,a3 & b1,b2 // b1,b3 & a1,b2 // a2,b1 & a2,b3 // a3,b2 implies a3,b1 // a1,b3 ) and A4: for a,b,c,d being Element of SAS holds ( not a,b // a,c & a,b // c,d & a,c // b,d implies not a,d // b,c ) by PARDEPAP:5; reconsider AS=SAS as non empty AffinStruct; take AS; thus for a,b being Element of AS holds a,b // b,a by DIRAF:47; thus thesis by A1,A2,A3,A4,DIRAF:47,PARDEPAP:6; end; end; definition mode Semi_Affine_Space is Semi_Affine_Space-like (non empty AffinStruct); end; :: :: AXIOMS OF SEMI_AFFINE SPACE :: reserve SAS for Semi_Affine_Space; reserve a,a',a1,a2,a3,a4,b,b',c,c',d,d',d1,d2,o,p,p1,p2,q,r,r1,r2,s,x, y,t,z for Element of SAS; canceled 11; theorem Th12: a,b // a,b proof b,a // b,b by Def1; hence a,b // a,b by Def1; end; theorem Th13: a,b // c,d implies c,d // a,b proof assume A1: a,b // c,d; a,b // a,b by Th12; then a<>b implies c,d // a,b by A1,Def1; hence thesis by Def1; end; theorem Th14: a,a // b,c proof b,c // a,a by Def1; hence a,a // b,c by Th13; end; theorem Th15: a,b // c,d implies b,a // c,d proof assume A1: a,b // c,d; a,b // b,a by Def1; then a<>b implies b,a // c,d by A1,Def1; hence thesis by A1; end; theorem Th16: a,b // c,d implies a,b // d,c proof assume a,b // c,d; then c,d // a,b by Th13; then d,c // a,b by Th15; hence a,b // d,c by Th13; end; theorem Th17: a,b // c,d implies b,a // c,d & a,b // d,c & b,a // d,c & c,d // a,b & d,c // a,b & c,d // b,a & d,c // b,a proof assume a,b // c,d; then c,d // a,b by Th13; then A1: d,c // a,b by Th15; then A2: d,c // b,a by Th16; then c,d // b,a by Th15; hence thesis by A1,A2,Th13,Th15; end; theorem Th18: a,b // a,c implies a,c // a,b & b,a // a,c & a,b // c,a & a,c // b,a & b,a // c,a & c,a // a,b & c,a // b,a & b,a // b,c & a,b // b,c & b,a // c,b & b,c // b,a & a,b // c,b & c,b // b,a & b,c // a,b & c,b // a,b & c,a // c,b & a,c // c,b & c,a // b,c & a,c // b,c & c,b // c,a & b,c // c,a & c,b // a,c & b,c // a,c proof assume A1: a,b // a,c; then A2: b,a // b,c by Def1; a,c // a,b by A1,Th13; then c,a // c,b by Def1; hence thesis by A1,A2,Th17; end; canceled; theorem Th20: a<>b & p,q // a,b & a,b // r,s implies p,q // r,s proof assume a<>b & p,q // a,b & a,b // r,s; then a<>b & a,b // p,q & a,b // r,s by Th17; hence thesis by Def1; end; theorem not a,b // a,d implies a<>b & b<>d & d<>a by Def1,Th12,Th14; theorem not a,b // p,q implies a<>b & p<>q by Def1,Th14; theorem a,b // a,x & b,c // b,x & c,a // c,x implies a,b // a,c proof assume A1: a,b // a,x & b,c // b,x & c,a // c,x; now assume a<>x; then a<>x & a,x // a,b & a,x // a,c by A1,Th18; hence thesis by Def1; end; hence thesis by A1,Th18; end; canceled; theorem Th25: not a,b // a,c & p<>q implies not p,q // p,a or not p,q // p,b or not p,q // p,c proof assume A1: not a,b // a,c & p<>q; now assume a<>p & p,q // p,a & p,q // p,b & p,q // p,c; then a<>p & p,a // p,b & p,a // p,c by A1,Def1; then a<>p & a,p // a,b & a,p // a,c by Def1; hence contradiction by A1,Def1; end; hence thesis by A1,Def1; end; theorem Th26: p<>q implies ex r st not p,q // p,r proof assume A1: p<>q; consider a,b,c such that A2: not a,b // a,c by Def1; not p,q // p,a or not p,q // p,b or not p,q // p,c by A1,A2,Th25; hence thesis; end; canceled; theorem Th28: not a,b // a,c implies not a,b // c,a & not b,a // a,c & not b,a // c,a & not a,c // a,b & not a,c // b,a & not c,a // a,b & not c,a // b,a & not b,a // b,c & not b,a // c,b & not a,b // b,c & not a,b // c,b & not b,c // b,a & not b,c // a,b & not c,b // a,b & not c,b // b,a & not c,b // c,a & not c,b // a,c & not b,c // c,a & not b,c // a,c & not c,a // c,b & not c,a // b,c & not a,c // b,c & not a,c // c,b proof assume A1: not a,b // a,c; assume A2: not thesis; A3: not b,a // b,c by A1,Th18; now assume a,c // c,b; then c,a // c,b by Th17; hence contradiction by A1,Th18; end; hence thesis by A1,A2,A3,Th17; end; theorem Th29: not a,b // c,d & a,b // p,q & c,d // r,s & p<>q & r<>s implies not p,q // r,s proof assume A1: not a,b // c,d & a,b // p,q & c,d // r,s & p<>q & r<>s; assume p,q // r,s; then a,b // r,s & c,d // r,s & r<>s by A1,Th20; then r<> s & r,s // a,b & r,s // c,d by Th17; hence contradiction by A1,Def1; end; theorem Th30: not a,b // a,c & a,b // p,q & a,c // p,r & b,c // q,r & p<>q implies not p,q // p,r proof assume A1: not a,b // a,c & a,b // p,q & a,c // p,r & b,c // q,r & p<>q; now assume p=r; then p<>q & p,q // a,b & p,q // b,c by A1,Th17 ; then a,b // b,c by Def1; then b,a // b,c by Th15; hence contradiction by A1,Th18; end; hence thesis by A1,Th29; end; theorem Th31: not a,b // a,c & a,c // p,r & b,c // p,r implies p=r proof assume not a,b // a,c & a,c // p,r & b,c // p,r; then not a,c // b,c & p,r // a,c & p,r // b,c by Th17,Th28; hence thesis by Def1; end; theorem Th32: not p,q // p,r1 & p,r1 // p,r2 & q,r1 // q,r2 implies r1=r2 proof assume not p,q // p,r1 & p,r1 // p,r2 & q,r1 // q,r2; then not r1,p // r1,q & r1,r2 // r1,p & r1,r2 // r1,q by Th28; hence thesis by Def1; end; theorem Th33: not a,b // a,c & a,b // p,q & a,c // p,r1 & a,c // p,r2 & b,c // q,r1 & b,c // q,r2 implies r1=r2 proof assume A1: not a,b // a,c & a,b // p,q & a,c // p,r1 & a,c // p,r2 & b,c // q,r1 & b,c // q,r2; A2: now assume p=q; then p=r1 & p=r2 by A1,Th31; hence thesis; end; now assume p<>q; then not p,q // p,r1 & a<>c & b<>c & a,c // p,r1 & a,c // p,r2 & b,c // q,r1 & b,c // q,r2 by A1,Def1,Th12,Th30; then not p,q // p,r1 & p,r1 // p,r2 & q,r1 // q,r2 by Def1; hence thesis by Th32; end; hence thesis by A2; end; theorem a=b or c =d or (a=c & b=d) or (a=d & b=c) implies a,b // c,d by Def1,Th12,Th14; theorem a=b or a=c or b=c implies a,b // a,c by Def1,Th12,Th14; :: :: BASIC FACTS ABOUT COLLINEARITY RELATION :: definition let SAS,a,b,c; pred a,b,c is_collinear means :Def2: a,b // a,c; end; canceled; theorem Th37: a1,a2,a3 is_collinear implies a1,a3,a2 is_collinear & a2,a1,a3 is_collinear & a2,a3,a1 is_collinear & a3,a1,a2 is_collinear & a3,a2,a1 is_collinear proof assume a1,a2,a3 is_collinear; then a1,a2 // a1,a3 by Def2; then a1,a3 // a1,a2 & a2,a1 // a2,a3 & a2,a3 // a2,a1 & a3,a2 // a3,a1 & a3,a1 // a3,a2 by Th18; hence thesis by Def2; end; canceled; theorem Th39: not a,b,c is_collinear & a,b // p,q & a,c // p,r & p<>q & p<>r implies not p,q,r is_collinear proof assume not a,b,c is_collinear & a,b // p,q & a,c // p,r & p<>q & p<>r; then not a,b // a,c & a,b // p,q & a,c // p,r & p<>q & p<>r by Def2; then not p,q // p,r by Th29; hence thesis by Def2; end; theorem Th40: a=b or b=c or c =a implies a,b,c is_collinear proof assume a=b or b=c or c =a; then a,b // a,c by Def1,Th12,Th14; hence thesis by Def2; end; theorem Th41: p<>q implies ex r st not p,q,r is_collinear proof assume p<>q; then consider r such that A1: not p,q // p,r by Th26; take r; thus not p,q,r is_collinear by A1,Def2; thus thesis; end; theorem Th42: a,b,c is_collinear & a,b,d is_collinear implies a,b // c,d proof assume A1: a,b,c is_collinear & a,b,d is_collinear; now assume a<>b & a<>c; then a<>b & a<>c & a,b // a,c & a,b // a,d by A1,Def2; then a<>c & a,b // a,c & a,c // a,d by Def1; then a<>c & a,b // a,c & a,c // c,d by Th18; hence thesis by Th20; end; hence thesis by A1,Def2,Th14; end; theorem Th43: not a,b,c is_collinear & a,b // c,d implies not a,b,d is_collinear proof assume A1: not a,b,c is_collinear & a,b // c,d; now assume A2:c <>d & a,b,d is_collinear; A3: not a,b // a,c & a,b // c,d & a,c // c,a by A1,Def1,Def2; then A4: c <>a & a<>b & a,b // d,c by Def1,Th14,Th17; a,b // a,d by A2,Def2; then a,b // d,a by Th17; then not c,d // c,a & d,c // d,a by A2,A3,A4,Def1,Th29; hence contradiction by Th18; end; hence thesis by A1; end; theorem Th44: not a,b,c is_collinear & a,b // c,d & c <>d & c,d,x is_collinear implies not a,b,x is_collinear proof assume A1: not a,b,c is_collinear & a,b // c,d & c <>d & c,d,x is_collinear; then c <>d & a,b // c,d & c,d // c,x by Def2; then not a,b,c is_collinear & a,b // c,x by A1,Th20;hence thesis by Th43; end ; theorem not o,a,b is_collinear & o,a,x is_collinear & o,b,x is_collinear implies o=x proof assume not o,a,b is_collinear & o,a,x is_collinear & o,b,x is_collinear; then not a,b,o is_collinear & o,a,x is_collinear & b,o,x is_collinear by Th37 ; then not a,b // a,o & o,a // o,x & b,o // b,x by Def2; then not a,b // a,o & a,o // a,x & b,o // b,x by Th28; hence thesis by Th32; end; theorem o<>a & o<>b & o,a,b is_collinear & o,a,a' is_collinear & o,b,b' is_collinear implies a,b // a',b' proof assume A1: o<>a & o<>b & o,a,b is_collinear & o,a,a' is_collinear & o,b, b' is_collinear; A2: now assume o=a'; then a'<>b & a',a // a',b & a',b // a',b' by A1,Def2; then a'<>b & a,b // a',b & a',b // a',b' by Th18; hence thesis by Th20 ; end; now assume o<>a'; then o<>a' & o<>b & o<>a & o,a // o,b & o,a // o,a' & o,b // o,b' by A1,Def2; then o<>a' & o<>b & o,b // a,b & o,b // o,a' & o,b // o,b' by Def1,Th18; then o<>a' & o<>b & o,b // a,b & o,b // o,a' & o,a' // o,b' by Def1; then o<>a' & a,b // o,a' & o,a' // a',b' by Def1,Th18; hence thesis by Th20; end; hence thesis by A2; end; canceled; theorem not a,b // c,d & a,b,p1 is_collinear & a,b,p2 is_collinear & c,d,p1 is_collinear & c,d,p2 is_collinear implies p1=p2 proof assume not a,b // c,d & a,b,p1 is_collinear & a,b,p2 is_collinear & c,d,p1 is_collinear & c,d,p2 is_collinear; then not a,b // c,d & a,b // p1,p2 & c,d // p1,p2 by Th42; then not a,b // c,d & p1,p2 // a,b & p1,p2 // c,d by Th17 ; hence thesis by Def1; end; theorem Th49: a<>b & a,b,c is_collinear & a,b // c,d implies a,c // b,d proof assume A1: a<>b & a,b,c is_collinear & a,b // c,d; now assume b<>c; then b<>a & b<>c & a,b // a,c & a,b // c,d by A1,Def2; then b<>a & b<>c & b,c // a,c & a,b // c,b & a,b // c,d by Th18; then b<>c & b,c // a,c & c,b // c,d by Def1; then b<>c & b,c // a,c & b,c // b,d by Th18; hence thesis by Def1; end; hence thesis by A1; end; theorem Th50: a<>b & a,b,c is_collinear & a,b // c,d implies c,b // c,d proof assume A1: a<>b & a,b,c is_collinear & a,b // c,d; now assume a<>c; then a<>c & a<>b & a,b // a,c & a,b // c,d by A1,Def2; then a<>c & a,c // c,b & a,c // c,d by Def1,Th18; hence thesis by Def1; end; hence thesis by A1; end; theorem Th51: not o,a,c is_collinear & o,a,b is_collinear & o,c,d1 is_collinear & o,c,d2 is_collinear & a,c // b,d1 & a,c // b,d1 & a,c // b,d2 implies d1=d2 proof assume not o,a,c is_collinear & o,a,b is_collinear & o,c,d1 is_collinear & o,c,d2 is_collinear & a,c // b,d1 & a,c // b,d1 & a,c // b,d2; then not o,a // o,c & o,a // o,b & o,c // o,d1 & o,c // o,d2 & a,c // b,d1 & a,c // b,d2 by Def2; hence thesis by Th33; end; theorem a<>b & a,b,c is_collinear & a,b,d is_collinear implies a,c,d is_collinear proof assume a<>b & a,b,c is_collinear & a,b,d is_collinear; then a<>b & a,b // a,c & a,b // a,d by Def2; then a,c // a,d by Def1; hence thesis by Def2 ; end; :: :: PARALLELOGRAM :: definition let SAS,a,b,c,d; pred parallelogram a,b,c,d means :Def3: not a,b,c is_collinear & a,b // c,d & a,c // b,d; end; canceled; theorem Th54: parallelogram a,b,c,d implies a<>b & a<>c & c <>b & a<>d & b<>d & c <>d proof assume A1: parallelogram a,b,c,d; then not a,b,c is_collinear by Def3; hence a<>b & a<>c & c <>b by Th40; assume A2: not thesis; A3:now assume a=d; then not a,b,c is_collinear & a,b // c,a by A1,Def3 ; then not a,b,c is_collinear & a,b // a,c by Th17; hence contradiction by Def2 ; end; A4:now assume b=d; then not a,b,c is_collinear & a,b // c,b by A1,Def3 ; then not a,b,c is_collinear & b,a // b,c by Th17; then not a,b,c is_collinear & b,a,c is_collinear by Def2; hence contradiction by Th37; end; now assume c =d; then not a,b,c is_collinear & a,c // b,c by A1,Def3 ; then not a,b,c is_collinear & c,a // c,b by Th17; then not a,b,c is_collinear & c,a,b is_collinear by Def2; hence contradiction by Th37; end; hence contradiction by A2,A3,A4; end; theorem Th55: parallelogram a,b,c,d implies not a,b,c is_collinear & not b,a,d is_collinear & not c,d,a is_collinear & not d,c,b is_collinear proof assume A1: parallelogram a,b,c,d; hence not a,b,c is_collinear by Def3; not a,b,c is_collinear & a,b // b,a & a,c // b,d & b<>a & b<>d by A1,Def1,Def3,Th54 ; hence not b,a,d is_collinear by Th39; not a,b,c is_collinear & a,b // c,d & a,c // c,a & c <>d & c <>a by A1,Def1, Def3,Th54 ; hence not c,d,a is_collinear by Th39; not a,b,c is_collinear & a,b // c,d & a,c // b,d & c <>d & d<>b by A1,Def3,Th54 ; then not a,b,c is_collinear & a,b // d,c & a,c // d,b & c <>d & d<>b by Th17; hence thesis by Th39; end; theorem Th56: parallelogram a1,a2,a3,a4 implies not a1,a2,a3 is_collinear & not a1,a3,a2 is_collinear & not a1,a2,a4 is_collinear & not a1,a4,a2 is_collinear & not a1,a3,a4 is_collinear & not a1,a4,a3 is_collinear & not a2,a1,a3 is_collinear & not a2,a3,a1 is_collinear & not a2,a1,a4 is_collinear & not a2,a4,a1 is_collinear & not a2,a3,a4 is_collinear & not a2,a4,a3 is_collinear & not a3,a1,a2 is_collinear & not a3,a2,a1 is_collinear & not a3,a1,a4 is_collinear & not a3,a4,a1 is_collinear & not a3,a2,a4 is_collinear & not a3,a4,a2 is_collinear & not a4,a1,a2 is_collinear & not a4,a2,a1 is_collinear & not a4,a1,a3 is_collinear & not a4,a3,a1 is_collinear & not a4,a2,a3 is_collinear & not a4,a3,a2 is_collinear proof assume parallelogram a1,a2,a3,a4; then not a1,a2,a3 is_collinear & not a2,a1,a4 is_collinear & not a3,a4,a1 is_collinear & not a4,a3,a2 is_collinear by Th55; hence thesis by Th37; end; theorem Th57: parallelogram a,b,c,d implies not a,b,x is_collinear or not c,d,x is_collinear proof assume parallelogram a,b,c,d; then not a,b,c is_collinear & a,b // c,d & c <>d by Def3,Th54; hence thesis by Th44; end; theorem parallelogram a,b,c,d implies parallelogram a,c,b,d proof assume parallelogram a,b,c,d; then not a,c,b is_collinear & a,b // c,d & a,c // b,d by Def3,Th56; hence thesis by Def3; end; theorem parallelogram a,b,c,d implies parallelogram c,d,a,b proof assume parallelogram a,b,c,d; then not c,d,a is_collinear & a,b // c,d & a,c // b,d by Def3,Th56; then not c,d,a is_collinear & c,d // a,b & c,a // d,b by Th17; hence thesis by Def3; end; theorem parallelogram a,b,c,d implies parallelogram b,a,d,c proof assume parallelogram a,b,c,d; then not b,a,d is_collinear & a,b // c,d & a,c // b,d by Def3,Th56; then not b,a,d is_collinear & b,a // d,c & b,d // a,c by Th17; hence thesis by Def3; end; theorem Th61: parallelogram a,b,c,d implies parallelogram a,c,b,d & parallelogram c,d,a,b & parallelogram b,a,d,c & parallelogram c,a,d,b & parallelogram d,b,c,a & parallelogram b,d,a,c proof assume A1: parallelogram a,b,c,d; then not a,b,c is_collinear & a,b // c,d & a,c // b,d by Def3; then not a,c,b is_collinear & a,c // b,d & a,b // c,d & not c,d,a is_collinear & c,d // a,b & c,a // d,b & not b,a,d is_collinear & b,a // d,c & b,d // a,c & not c,a,d is_collinear & c,a // d,b & c,d // a,b & not d,b,c is_collinear & d,b // c,a & d,c // b,a & not b,d,a is_collinear & b,d // a,c & b,a // d,c by A1,Th17,Th56; hence thesis by Def3; end; theorem Th62: not a,b,c is_collinear implies ex d st parallelogram a,b,c,d proof assume A1: not a,b,c is_collinear; consider d such that A2: a,b // c,d & a,c // b,d by Def1; take d; thus thesis by A1,A2,Def3; end; theorem Th63: parallelogram a,b,c,d1 & parallelogram a,b,c,d2 implies d1=d2 proof assume parallelogram a,b,c,d1 & parallelogram a,b,c,d2; then not b,c,a is_collinear & a,b // c,d1 & a,c // b,d1 & a,b // c,d2 & a,c // b,d2 by Def3,Th56; then not b,c // b,a & b,c // c,b & b,a // c,d1 & b,a // c,d2 & c,a // b,d1 & c,a // b,d2 by Def1,Def2,Th17; hence thesis by Th33; end; theorem Th64: parallelogram a,b,c,d implies not a,d // b,c proof assume parallelogram a,b,c,d; then not a,b,c is_collinear & a,b // c,d & a,c // b,d by Def3; then not a,b // a,c & a,b // c,d & a,c // b,d by Def2; hence thesis by Def1; end; theorem Th65: parallelogram a,b,c,d implies not parallelogram a,b,d,c proof assume A1: parallelogram a,b,c,d; assume not thesis; then A2: not a,b,d is_collinear & a,b // d,c & a,d // b,c by Def3; not a,b,c is_collinear & a,b // c,d & a,c // b,d by A1,Def3; then not a,b // a,c & a,b // c,d & a,c // b,d by Def2;hence contradiction by A2 ,Def1 ; end; theorem Th66:a<>b implies ex c st a,b,c is_collinear & c <>a & c <>b proof assume a<>b; then consider p such that A1: not a,b,p is_collinear by Th41 ; consider q such that A2: parallelogram a,b,p,q by A1,Th62; not p,q,b is_collinear & parallelogram a,b,p,q by A2,Th56; then consider c such that A3: parallelogram p,q,b,c by Th62; take c; A4: p<>q & a,b // p,q & p,q // b,c & p,b // q,c by A2,A3,Def3,Th54; A5: not b,c,p is_collinear by A3, Th55; a,b // b,c by A4,Th20; then b,a // b,c & not a,q // b,p & c,q // b,p by A2,A4,Th17,Th64; then b,a,c is_collinear & a<>c by Def2; hence thesis by A5,Th37,Th40; end; theorem Th67: parallelogram a,a',b,b' & parallelogram a,a',c,c' implies b,c // b',c' proof assume parallelogram a,a',b,b' & parallelogram a,a',c,c'; then not a,a',b is_collinear & not a,a',c is_collinear & a,a' // b,b' & a,b // a',b' & a,a' // c,c' & a,c // a',c' by Def3; then not a,a' // a,b & not a,a' // a,c & a,a' // b,b' & a,b // a',b' & a,a' // c,c' & a,c // a',c' by Def2; hence thesis by Def1; end; theorem Th68: not b,b',c is_collinear & parallelogram a,a',b,b' & parallelogram a,a',c,c' implies parallelogram b,b',c,c' proof assume not b,b',c is_collinear & parallelogram a,a',b,b' & parallelogram a,a',c,c'; then not b,b',c is_collinear & a<>a' & a,a' // b,b' & a,a' // c,c' & b,c // b',c' by Def3,Th54,Th67; then not b,b',c is_collinear & b,b' // c,c' & b,c // b',c' by Def1; hence thesis by Def3; end; theorem Th69: a,b,c is_collinear & b<>c & parallelogram a,a',b,b' & parallelogram a,a',c,c' implies parallelogram b,b',c,c' proof assume a,b,c is_collinear & b<>c & parallelogram a,a',b,b' & parallelogram a,a',c,c'; then a,b // a,c & not a,a',b is_collinear & a,a' // b,b' & b<>b' & b<>c & parallelogram a,a',b,b' & parallelogram a,a',c,c' by Def2,Def3 ,Th54; then not a,a',b is_collinear & a,a' // b,b' & a,b // b,c & b<>b' & b<>c & parallelogram a,a',b,b' & parallelogram a,a',c,c' by Th18; then not b,b',c is_collinear & parallelogram a,a',b,b' & parallelogram a,a',c,c' by Th39; hence thesis by Th68; end; theorem Th70: parallelogram a,a',b,b' & parallelogram a,a',c,c' & parallelogram b,b',d,d' implies c,d // c',d' proof assume A1: parallelogram a,a',b,b' & parallelogram a,a',c,c' & parallelogram b,b',d,d'; A2: now assume not b,b',c is_collinear; then parallelogram b,b',c,c' & parallelogram b,b',d,d' by A1,Th68; hence thesis by Th67; end; A3: now assume not a,a',d is_collinear; then not a,a',d is_collinear & parallelogram b,b',a,a' & parallelogram b,b',d,d' & parallelogram a,a',c,c' by A1,Th61; then parallelogram a,a',d,d' & parallelogram a,a',c,c' by Th68; hence thesis by Th67; end; now assume A4: b,b',c is_collinear & a,a',d is_collinear; a<>b by A1,Th54; then consider x such that A5: a,b,x is_collinear & x<>a & x<>b by Th66; A6: a,b // a,x by A5,Def2; A7: not a,a',b is_collinear by A1,Th56; A8: a,a' // a,a' by Th12; a<>a' by A1,Th54; then not a,a',x is_collinear by A5,A6,A7,A8,Th39; then consider y such that A9: parallelogram a,a',x,y by Th62; A10: parallelogram b,b',x,y by A1,A5,A9,Th69; then not x,y,c is_collinear & not x,y,d is_collinear by A4,A9,Th57; then parallelogram x,y,c,c' & parallelogram x,y,d,d' by A1,A9,A10,Th68 ; hence thesis by Th67; end; hence thesis by A2,A3; end; Lm1: a<>b implies ex c,d st parallelogram a,b,c,d proof assume a<>b; then consider c such that A1: not a,b,c is_collinear by Th41; ex d st parallelogram a,b,c,d by A1,Th62; hence thesis; end; theorem a<>d implies ex b,c st parallelogram a,b,c,d proof assume a<>d; then consider b such that A1: not a,d,b is_collinear by Th41; not b,a,d is_collinear by A1,Th37; then consider c such that A2: parallelogram b,a,d,c by Th62; parallelogram a,b,c,d by A2,Th61; hence thesis; end; :: :: CONGRUENCE :: definition let SAS,a,b,r,s; pred congr a,b,r,s means :Def4: (a=b & r =s) or (ex p,q st parallelogram p,q,a,b & parallelogram p,q,r,s); end; canceled; theorem Th73: congr a,a,b,c implies b=c proof assume congr a,a,b,c; then (a=a & b=c) or (ex p,q st parallelogram p,q,a,a & parallelogram p,q,b,c) by Def4; hence thesis by Th54; end; theorem Th74: congr a,b,c,c implies a=b proof assume congr a,b,c,c; then (a=b & c =c) or (ex p,q st parallelogram p,q,a,b & parallelogram p,q,c,c) by Def4; hence thesis by Th54; end; theorem Th75: congr a,b,b,a implies a=b proof assume A1: congr a,b,b,a; now assume a<>b; then ex p,q st parallelogram p,q,a,b & parallelogram p,q,b,a by A1,Def4; hence contradiction by Th65; end; hence thesis; end; theorem Th76: congr a,b,c,d implies a,b // c,d proof assume A1: congr a,b,c,d; now assume a<>b; then consider p,q such that A2: parallelogram p,q,a,b & parallelogram p, q,c,d by A1,Def4; p<>q & p,q // a,b & p,q // c,d by A2,Def3,Th54; hence thesis by Def1; end; hence thesis by Th14; end; theorem Th77: congr a,b,c,d implies a,c // b,d proof assume A1: congr a,b,c,d; A2: now assume a=b; then a=b & c =d by A1,Th73; hence thesis by Th12; end; now assume a<>b; then ex p,q st parallelogram p,q,a,b & parallelogram p,q,c,d by A1,Def4; hence thesis by Th67; end; hence thesis by A2; end; theorem Th78: congr a,b,c,d & not a,b,c is_collinear implies parallelogram a,b,c,d proof assume congr a,b,c,d & not a,b,c is_collinear; then not a,b,c is_collinear & a,b // c,d & a,c // b,d by Th76,Th77; hence thesis by Def3; end; theorem Th79: parallelogram a,b,c,d implies congr a,b,c,d proof assume A1: parallelogram a,b,c,d; then a<>c by Th54; then consider p such that A2: a,c,p is_collinear & a<>p & c <>p by Th66; not a,c,b is_collinear & a,c // a,p & a,b // a,b & a<>p & a<>b by A1,A2,Def2,Th12,Th54,Th56; then not a,p,b is_collinear by Th39; then consider q such that A3: parallelogram a,p,b,q by Th62; parallelogram a,b,p,q by A3,Th61; then parallelogram c,d,p,q by A1,A2,Th69; then parallelogram p,q,a,b & parallelogram p,q,c,d by A3,Th61; hence thesis by Def4; end; theorem Th80: congr a,b,c,d & a,b,c is_collinear & parallelogram r,s,a,b implies parallelogram r,s,c,d proof assume A1: congr a,b,c,d & a,b,c is_collinear & parallelogram r,s,a,b; now assume A2: a<>b; then consider p,q such that A3: parallelogram p,q,a,b & parallelogram p, q,c,d by A1,Def4; A4: not r,s,c is_collinear by A1,Th57; a<>b & r,s // a,b & a,b // c,d by A1,A2,Def3,Th76; then A5: r,s // c,d by Th20; parallelogram a,b,r,s & parallelogram a,b,p,q & parallelogram p,q,c,d by A1,A3,Th61; then r,c // s,d by Th70; hence thesis by A4,A5,Def3; end; hence thesis by A1,Th54; end; theorem Th81: congr a,b,c,x & congr a,b,c,y implies x=y proof assume A1: congr a,b,c,x & congr a,b,c,y; A2: now assume a=b; then c =x & c =y by A1,Th73; hence thesis; end; A3: now assume A4: a<>b & a,b,c is_collinear; then consider p,q such that A5: parallelogram a,b,p,q by Lm1; parallelogram p,q,a,b by A5,Th61; then parallelogram p,q,c,x & parallelogram p,q,c,y by A1,A4,Th80; hence thesis by Th63; end; now assume a<>b & not a,b,c is_collinear; then parallelogram a,b,c,x & parallelogram a,b,c,y by A1,Th78; hence thesis by Th63; end; hence thesis by A2,A3; end; theorem Th82: ex d st congr a,b,c,d proof A1:now assume a=b; then congr a,b,c,c by Def4; hence thesis; end; A2: now assume A3: a<>b & a,b,c is_collinear; then consider p,q such that A4: parallelogram a,b,p,q by Lm1; A5: parallelogram p,q,a,b & not p,q,c is_collinear by A3,A4,Th57,Th61; then consider d such that A6: parallelogram p,q,c,d by Th62; congr a,b,c,d by A5,A6,Def4; hence thesis; end; now assume a<>b & not a,b,c is_collinear; then consider d such that A7: parallelogram a,b,c,d by Th62; congr a,b,c,d by A7,Th79; hence thesis; end; hence thesis by A1,A2; end; canceled; theorem Th84: congr a,b,a,b proof now assume a<>b; then consider p,q such that A1: parallelogram a,b,p,q by Lm1; parallelogram p,q,a,b & parallelogram p,q,a,b by A1,Th61; hence thesis by Def4; end; hence thesis by Def4; end; theorem Th85: congr r,s,a,b & congr r,s,c,d implies congr a,b,c,d proof assume A1: congr r,s,a,b & congr r,s,c,d; A2: now assume r=s; then a=b & c =d by A1,Th73; hence thesis by Def4; end; A3: now assume A4: r<>s & r,s,a is_collinear; then consider p,q such that A5: parallelogram p,q,r,s & parallelogram p,q,c,d by A1,Def4; parallelogram p,q,a,b by A1,A4,A5,Th80; hence thesis by A5,Def4; end; A6: now assume A7: r<>s & r,s,c is_collinear; then consider p,q such that A8: parallelogram p,q,r,s & parallelogram p, q,a,b by A1,Def4; parallelogram p,q,c,d by A1,A7,A8,Th80; hence thesis by A8,Def4; end; now assume r<>s & not r,s,a is_collinear & not r,s,c is_collinear; then parallelogram r,s,a,b & parallelogram r,s,c,d by A1,Th78; hence thesis by Def4; end; hence thesis by A2,A3,A6; end; theorem Th86: congr a,b,c,d implies congr c,d,a,b proof assume congr a,b,c,d; then congr a,b,c,d & congr a,b,a,b by Th84; hence thesis by Th85; end; theorem Th87: congr a,b,c,d implies congr b,a,d,c proof assume A1: congr a,b,c,d; A2: now assume a=b; then a=b & c =d by A1,Th73; hence thesis by Def4; end; now assume a<>b; then consider p,q such that A3: parallelogram p,q,a,b & parallelogram p, q,c,d by A1,Def4; parallelogram q,p,b,a & parallelogram q,p,d,c by A3,Th61; hence thesis by Def4; end; hence thesis by A2; end; theorem Th88: congr a,b,c,d implies congr a,c,b,d proof assume A1: congr a,b,c,d; A2: now assume a=b; then a=b & c =d by A1,Th73; hence thesis by Th84; end; A3: now assume a=c; then a=c & congr a,b,a,d & congr a,b,a,b by A1,Th84; then a=c & b=d by Th81; hence thesis by Def4; end; A4: now assume A5: a<>b & a<>c & a,b,c is_collinear; then consider p,q such that A6: parallelogram p,q,a,b & parallelogram p, q,c,d by A1,Def4; not a,b,p is_collinear & a,b // a,c & a,p // a,p & a<>c & a<>p by A5,A6,Def2,Th12,Th54,Th56; then not a,c,p is_collinear by Th39; then consider r such that A7: parallelogram a,c,p,r by Th62; A8: parallelogram p,r,a,c by A7,Th61; a,c,b is_collinear by A5,Th37; then A9: not p,r,b is_collinear by A7, Th57; p<>q & p,q // a,b & p,q // c,d by A6,Def3,Th54; then A10: a,b // c,d by Def1; then a,c // b,d & a,c // p,r & a<>c by A5,A7,Def3,Th49; then A11: p,r // b,d by Def1; p,q // a,b by A6,Def3; then a<>b & a,b // a,c & a,b // p,q by A5,Def2,Th17; then a<>c & a,c // p,q & a,c // p,r by A5,A7,Def1,Def3; then p,q // p,r by Def1; then A12: r,q // r,p by Th18; c,b // c,d by A5,A10,Th50; then A13: b,c // b,d by Th18; p,a // r,c & p,a // q,b & p<>a by A6,A8,Def3,Th54; then A14: r,c // q,b by Def1; p,c // q,d by A6,Def3; then q,d // p,c by Th17; then p,b // r,d by A12,A13,A14,Def1; then parallelogram p,r,a,c & parallelogram p,r,b,d by A7,A9,A11,Def3, Th61; hence thesis by Def4; end; now assume a<>b & a<>c & not a,b,c is_collinear; then parallelogram a,b,c,d by A1,Th78; then parallelogram a,c,b,d by Th61; hence thesis by Th79; end; hence thesis by A2,A3,A4; end; theorem Th89: congr a,b,c,d implies congr c,d,a,b & congr b,a,d,c & congr a,c,b,d & congr d,c,b,a & congr b,d,a,c & congr c,a,d,b & congr d,b,c,a proof assume A1: congr a,b,c,d; then congr c,d,a,b & congr b,a,d,c & congr a,c,b,d by Th86,Th87,Th88; then congr d,c,b,a & congr b,d,a,c & congr c,a,d,b by Th87,Th88; hence thesis by A1,Th86; end; theorem Th90: congr a,b,p,q & congr b,c,q,s implies congr a,c,p,s proof assume congr a,b,p,q & congr b,c,q,s; then congr b,q,a,p & congr b,q,c ,s by Th89; then congr a,p,c,s by Th85; hence thesis by Th88; end; theorem Th91: congr b,a,p,q & congr c,a,p,r implies congr b,c,r,q proof assume A1: congr b,a,p,q & congr c,a,p,r; consider s such that A2: congr p,q,r,s by Th82; congr p,q,b,a & congr p,q,r,s & congr r,p,s,q & congr r,p,a,c by A1,A2,Th89; then congr b,a,r,s & congr a,c,s,q by Th85; hence thesis by Th90; end; theorem congr a,o,o,p & congr b,o,o,q implies congr a,b,q,p by Th91; theorem Th93: congr b,a,p,q & congr c,a,p,r implies b,c // q,r proof assume congr b,a,p,q & congr c,a,p,r; then congr b,c,r,q by Th91; then b,c // r,q by Th76; hence thesis by Th17; end; theorem congr a,o,o,p & congr b,o,o,q implies a,b // p,q by Th93; :: :: A VECTOR' GROUP :: definition let SAS,a,b,o; func sum(a,b,o) -> Element of SAS means :Def5: congr o,a,b,it; correctness by Th81,Th82; end; definition let SAS,a,o; func opposite(a,o) -> Element of SAS means :Def6: sum(a,it,o) = o; existence proof consider b being Element of SAS such that A1: congr a,o,o,b by Th82; A2: congr o,a,b,o by A1,Th87; take b; thus thesis by A2,Def5; end; uniqueness proof let b1,b2 be Element of SAS such that A3: sum(a,b1,o) = o and A4: sum(a,b2,o) = o; congr o,a,b1,o & congr o,a,b2,o by A3,A4,Def5; then congr a,o,o,b1 & congr a,o,o,b2 by Th87; hence thesis by Th81; end; end; definition let SAS,a,b,o; func diff(a,b,o) -> Element of SAS equals :Def7: sum(a,opposite(b,o),o); correctness; end; canceled 4; theorem Th99: sum(a,o,o)=a proof congr o,a,o,sum(a,o,o) & congr o,a,o,a by Def5,Th84; hence thesis by Th81; end; theorem ex x st sum(a,x,o)=o proof consider x such that A1: congr a,o,o,x by Th82; congr o,a,x,sum(a,x,o) & congr o,a,x,o by A1,Def5,Th89; then sum(a,x,o)=o by Th81; hence thesis; end; theorem sum(sum(a,b,o),c,o)=sum(a,sum(b,c,o),o) proof congr o,a,b,sum(a,b,o) & congr o,sum(a,b,o),c,sum(sum(a,b,o),c,o) & congr o,a,sum(b,c,o),sum(a,sum(b,c,o),o) & congr o,b,c,sum(b,c,o) by Def5 ; then congr b,sum(a,b,o),sum(b,c,o),sum(a,sum(b,c,o),o) & congr b,o,sum(b,c,o) ,c & congr o,sum(a,b,o),c,sum(sum(a,b,o),c,o) by Th85,Th89; then congr b,sum(a,b,o),sum(b,c,o),sum(a,sum(b,c,o),o) & congr b,sum(a,b,o),sum(b,c,o),sum(sum(a,b,o),c,o) by Th90; hence thesis by Th81; end; theorem Th102: sum(a,b,o)=sum(b,a,o) proof congr o,a,b,sum(a,b,o) & congr o,b,a,sum(b,a,o) by Def5; then congr o,a,b,sum(a,b,o) & congr o,a,b,sum(b,a,o) by Th89;hence thesis by Th81; end; theorem sum(a,a,o)=o implies a=o proof assume sum(a,a,o)=o; then congr o,a,a,o by Def5; hence thesis by Th75; end; theorem Th104: sum(a,x,o)=sum(a,y,o) implies x=y proof assume sum(a,x,o)=sum(a,y,o); then sum(a,x,o)=sum(a,y,o) & congr o,a,x,sum(a,x,o) & congr o,a,y,sum(a,y,o) by Def5; then congr a,o,sum(a,x,o),x & congr a,o,sum(a,x,o),y by Th89; hence thesis by Th81; end; canceled; theorem Th106: congr a,o,o,opposite(a,o) proof sum(a,opposite(a,o),o)=o & congr o,a,opposite(a,o),sum(a,opposite(a,o),o) by Def5,Def6;hence thesis by Th89; end; theorem Th107: opposite(a,o)=opposite(b,o) implies a=b proof assume opposite(a,o)=opposite(b,o); then congr a,o,o,opposite(a,o) & congr b,o,o,opposite(b,o) & opposite(a,o)= opposite(b,o) by Th106; then congr opposite(a,o),o,o,a & congr opposite(a,o),o,o,b by Th89; hence thesis by Th81; end; theorem a,b // opposite(a,o),opposite(b,o) proof sum(a,opposite(a,o),o)=o & sum(b,opposite(b,o),o)=o by Def6; then congr o,a,opposite(a,o),o & congr o,b,opposite(b,o),o by Def5; then congr a,o,o,opposite(a,o) & congr b,o,o,opposite(b,o) by Th89; hence thesis by Th93; end; theorem opposite(o,o)=o proof sum(o,opposite(o,o),o)=o by Def6; then sum(opposite(o,o),o,o)=o by Th102 ; hence thesis by Th99; end; theorem Th110: p,q // sum(p,r,o),sum(q,r,o) proof congr o,p,r,sum(p,r,o) & congr o,q,r,sum(q,r,o) by Def5; then congr p,o,sum(p,r,o),r & congr o,q,r,sum(q,r,o) by Th89; then congr p,q,sum(p,r,o),sum(q,r,o) by Th90; hence thesis by Th76; end; theorem p,q // r,s implies p,q // sum(p,r,o),sum(q,s,o) proof assume A1: p,q // r,s; now assume A2: p<>q & r<>s; consider t such that A3: congr o,q,r,t by Th82; congr o,q,r,t & congr o,q,s,sum(q,s,o) by A3,Def5; then congr r,t,s,sum(q,s,o) by Th85; then congr r,s,t,sum(q,s,o) by Th89; then t<>sum(q,s,o) & r,s // t,sum(q,s,o) by A2,Th74,Th76; then A4: t<>sum(q,s,o) & p,q // t,sum(q,s,o) by A1,A2,Th20; congr o,p,r,sum(p,r,o) by Def5; then congr p,o,sum(p,r,o),r & congr o,q,r,t by A3,Th89; then congr p,q,sum(p,r,o),t by Th90; then p,q // sum(p,r,o),t by Th76; then p,q // t,sum(p,r,o) by Th17; then t,sum(q,s,o) // t,sum(p,r,o) by A2,A4,Def1; then t,sum(q,s,o) // sum(p,r,o),sum(q,s,o) by Th18; hence thesis by A4,Th20;end; hence thesis by Th14,Th110; end; canceled; theorem Th113: diff(a,b,o)=o iff a=b proof A1: diff(a,b,o)=o implies a=b proof assume diff(a,b,o)=o; then sum(a,opposite(b,o),o)=o & sum(a,opposite(a,o),o)=o by Def6,Def7; then opposite(a,o)= opposite(b,o) by Th104; hence thesis by Th107; end; a=b implies diff(a,b,o)=o proof assume a=b; then diff(a,b,o)=sum(a,opposite(a,o),o) by Def7; hence thesis by Def6; end; hence thesis by A1; end; theorem Th114: o,diff(b,a,o) // a,b proof diff(b,a,o)=sum(b,opposite(a,o),o) & congr o,b,opposite(a,o),sum(b,opposite(a,o),o) by Def5,Def7; then congr o,opposite(a,o),b,diff(b,a,o) & congr a,o,o,opposite(a,o) by Th89, Th106 ; then congr o,opposite(a,o),b,diff(b,a,o) & congr o,opposite(a,o),a,o by Th89 ; then congr a,o,b,diff(b,a,o) by Th85; then congr o,diff(b,a,o),a,b by Th89; hence thesis by Th76; end; theorem o,diff(b,a,o),diff(d,c,o) is_collinear iff a,b // c,d proof A1: o,diff(b,a,o),diff(d,c,o) is_collinear implies a,b // c,d proof assume A2: o,diff(b,a,o),diff(d,c,o) is_collinear; A3: now assume o=diff(b,a,o) or o=diff(d,c,o); then a=b or c =d by Th113; hence thesis by Def1,Th14; end; now assume o<>diff(b,a,o) & o<>diff(d,c,o); then o<>diff(b,a,o) & o<>diff(d,c,o) & o,diff(b,a,o) // o,diff(d,c,o) & o,diff(b,a,o) // a,b & o,diff(d,c,o) // c,d & o<>diff(d,c,o) by A2,Def2, Th114 ; then o<>diff(d,c,o) & o,diff(d,c,o) // a,b & o,diff(d,c,o) // c,d by Def1; hence thesis by Def1; end; hence thesis by A3; end; a,b // c,d implies o,diff(b,a,o),diff(d,c,o) is_collinear proof assume A4: a,b // c,d; A5: now assume a=b or c =d; then o=diff(b,a,o) or o=diff(d,c,o) by Th113 ; then o,diff(b,a,o) // o,diff(d,c,o) by Def1,Th14; hence thesis by Def2; end; now assume a<>b & c <>d; then a<>b & c <>d & o,diff(b,a,o) // a,b & o,diff(d,c,o) // c,d by Th114; then a<>b & c <>d & a,b // o,diff(b,a,o) & c,d // o,diff(d,c,o) & a,b // c,d by A4,Th17; then o,diff(b,a,o) // c,d & c,d // o,diff(d,c,o) & c <>d by Def1; then o,diff(b,a,o) // o,diff(d,c,o) by Th20; hence thesis by Def2; end; hence thesis by A5; end; hence thesis by A1; end; :: :: A TRAPEZIUM RELATION :: definition let SAS,a,b,c,d,o; pred trap a,b,c,d,o means :Def8: not o,a,c is_collinear & o,a,b is_collinear & o,c,d is_collinear & a,c // b,d; end; definition let SAS,o,p; pred qtrap o,p means :Def9: for b,c holds (ex d st ( o,p,b is_collinear implies o,c,d is_collinear & p,c // b,d)); end; canceled 2; theorem Th118: trap a,b,c,d,o implies o<>a & a<>c & c <>o proof assume trap a,b,c,d,o; then not o,a,c is_collinear by Def8;hence thesis by Th40; end; theorem trap a,b,c,x,o & trap a,b,c,y,o implies x=y proof assume trap a,b,c,x,o & trap a,b,c,y,o; then not o,a,c is_collinear & o,a,b is_collinear & o,c,x is_collinear & o,c,y is_collinear & a,c // b,x & a,c // b,y by Def8; hence thesis by Th51; end; theorem not o,a,b is_collinear implies trap a,o,b,o,o proof assume A1: not o,a,b is_collinear; o,a,o is_collinear & o,b,o is_collinear & a,b // o,o by Def1,Th40; hence thesis by A1,Def8; end; theorem Th121: trap a,b,c,d,o implies trap c,d,a,b,o proof assume trap a,b,c,d,o; then not o,a,c is_collinear & o,a,b is_collinear & o,c,d is_collinear & a,c // b,d by Def8; then not o,c,a is_collinear & o,a,b is_collinear & o,c,d is_collinear & c,a // d,b by Th17,Th37; hence thesis by Def8; end; theorem Th122: o<>b & trap a,b,c,d,o implies o<>d proof assume o<>b & trap a,b,c,d,o; then A1: o<>b & not o,a,c is_collinear & o,a,b is_collinear & o,c,d is_collinear & a,c // b,d by Def8; assume not thesis; then o,a // o,b & a,c // b,o & o<>b by A1,Def2; then o<>b & o,b // a,o & o,b // a,c by Th17; then a,o // a,c by Def1; then o,a // o,c by Th18; hence contradiction by A1,Def2; end; theorem Th123: o<>b & trap a,b,c,d,o implies not o,b,d is_collinear proof assume o<>b & trap a,b,c,d,o; then o<>b & o<>d & not o,a,c is_collinear & o,a,b is_collinear & o,c,d is_collinear by Def8,Th122; then o<>b & o<>d & not o,a,c is_collinear & o,a // o,b & o,c // o,d by Def2; hence thesis by Th39; end; theorem o<>b & trap a,b,c,d,o implies trap b,a,d,c,o proof assume o<>b & trap a,b,c,d,o; then not o,b,d is_collinear & o,a,b is_collinear & o,c,d is_collinear & a,c // b,d by Def8,Th123; then not o,b,d is_collinear & o,b,a is_collinear & o,d,c is_collinear & b,d // a,c by Th17,Th37; hence thesis by Def8; end; theorem Th125: (o=b or o=d) & trap a,b,c,d,o implies o=b & o=d proof assume (o=b or o=d) & trap a,b,c,d,o; then (o=b & trap c,d,a,b,o) or (o=d & trap a,b,c,d,o) by Th121; hence thesis by Th122; end; theorem Th126: trap a,p,b,q,o & trap a,p,c,r,o implies b,c // q,r proof assume trap a,p,b,q,o & trap a,p,c,r,o; then not o,a,b is_collinear & o,a,p is_collinear & o,b,q is_collinear & a,b // p,q & not o,a,c is_collinear & o,c,r is_collinear & a,c // p,r by Def8; then not o,a // o,b & o,a //o,p & o,b //o,q & a,b // p,q & not o,a //o,c & o,c //o,r & a,c // p,r by Def2; hence thesis by Def1; end; theorem Th127: trap a,p,b,q,o & trap a,p,c,r,o & not o,b,c is_collinear implies trap b,q,c,r,o proof assume trap a,p,b,q,o & trap a,p,c,r,o & not o,b,c is_collinear; then not o,b,c is_collinear & o,b,q is_collinear & o,c,r is_collinear & b,c // q,r by Def8,Th126; hence thesis by Def8; end; theorem trap a,p,b,q,o & trap a,p,c,r,o & trap b,q,d,s,o implies c,d // r,s proof assume A1: trap a,p,b,q,o & trap a,p,c,r,o & trap b,q,d,s,o; A2: now assume not o,b,c is_collinear; then trap b,q,d,s,o & trap b,q,c,r,o by A1,Th127; hence thesis by Th126; end; A3: now assume not o,a,d is_collinear; then not o,a,d is_collinear & trap b,q,a,p,o by A1,Th121; then trap a,p,d,s,o & trap a,p,c,r,o by A1,Th127; hence thesis by Th126 ; end; A4: now assume o=p; then o=p & o=q by A1,Th125; then o=r & o=s by A1,Th125 ; hence thesis by Def1; end; now assume A5: o<>p & o,b,c is_collinear & o,a,d is_collinear; then not o,a,b is_collinear & not o,p,q is_collinear by A1,Def8,Th123; then A6: not b,a,o is_collinear & not q,p,o is_collinear by Th37; then consider x such that A7: parallelogram b,a,o,x by Th62; consider y such that A8: parallelogram q,p,o,y by A6,Th62; a,b // p,q by A1,Def8; then b,a // q,p & b,a // o,x & q,p // o,y & b<>a & q<>p by A7,A8,Def3,Th17,Th54; then q<>p & q,p // o,x & q,p // o,y by Def1; then o,x // o,y by Def1; then A9: o,x,y is_collinear by Def2; o,b,q is_collinear by A1,Def8; then o,b // o,q by Def2; then b,o // q,o & b,o // a,x & q,o // p,y & b<>o & o<>q by A7,A8,Def3,Th17,Th54; then q,o // a,x & q,o // p,y & q<>o by Def1; then a,x // p,y & o,a,p is_collinear & not o,a,x is_collinear by A1,A7, Def1,Def8,Th56; then A10: trap a,p,x,y,o by A9,Def8; not o,b,x is_collinear by A7,Th56; then A11:trap b,q,x,y,o by A1,A10, Th127; o,b // o,c & o,a // o,d & o,a // o,a & not o,x,b is_collinear & o<>x & o<>d & o<>c & not o,x,a is_collinear & o,x // o,x by A1,A5,A7,Def2,Th12, Th54,Th56,Th118; then not o,x,c is_collinear & not o,x,d is_collinear by Th39 ; then trap x,y,c,r,o & trap x,y,d,s,o by A1,A10,A11,Th127 ; hence thesis by Th126; end; hence thesis by A2,A3,A4; end; theorem Th129: for o,a holds (ex p st o,a,p is_collinear & qtrap o,p) proof let o,a; consider p such that A1: for b,c holds o,a // o,p & ex d st o,p // o,b implies o,c // o,d & p,c // b,d by Def1; take p; now thus o,a,p is_collinear by A1,Def2; let b,c; consider d such that A2: o,p // o,b implies o,c // o,d & p,c // b,d by A1; take d; assume o,p,b is_collinear; hence o,c,d is_collinear & p,c // b,d by A2,Def2; end; hence thesis by Def9; end; theorem Th130: ex x,y,z st x<>y & y<>z & z<>x proof consider x,y,z such that A1: not x,y // x,z by Def1; take x,y,z; thus thesis by A1,Def1,Th12,Th14; end; theorem Th131: qtrap o,p implies o<>p proof assume A1: qtrap o,p; assume A2: not thesis; ex b st o<>b proof consider x,y,z such that A3: x<>y & y<>z & z<>x by Th130; o<>x or o<>y or o<>z by A3; hence thesis; end; then consider b such that A4: o<>b; consider c such that A5: not o,b // o,c by A4,Th26; consider d such that A6: o,p,b is_collinear implies o,c,d is_collinear & p,c // b,d by A1,Def9; o,o // o,b implies o,c // o,d & o,c // b,d by A2,A6,Def2; then A7: (b=d & not o,b // o,c & o,c // o,d) or (b<>d & o<>c & not o,b // o,c & o,c // o,d & o,c // b,d) by A5,Def1,Th14; now assume A8: b<>d & not o,b // o,c & o,d // b,d & o,c // b,d; then d,o // d,b by Th17; hence b<>d & not o,b // o,c & b,d // o,b & b,d // o,c by A8,Th17,Th18; end; hence contradiction by A7,Def1,Th17; end; theorem qtrap o,p implies ex q st not o,p,q is_collinear & qtrap o,q proof assume qtrap o,p; then A1: o<>p by Th131; then consider r such that A2: not o,p,r is_collinear by Th41; consider q such that A3: o,r,q is_collinear & qtrap o,q by Th129; take q; o<>q & not o,p,r is_collinear & o,p // o,p & o,r // o,q & qtrap o,q by A2,A3,Def2,Th12,Th131; hence thesis by A1,Th39; end; theorem not o,p,c is_collinear & o,p,b is_collinear & qtrap o,p implies ex d st trap p,b,c,d,o proof assume A1: not o,p,c is_collinear & o,p,b is_collinear & qtrap o,p; then consider d such that A2: o,p,b is_collinear implies o,c,d is_collinear & p,c // b,d by Def9; take d; thus thesis by A1,A2,Def8; end;