Copyright (c) 1990 Association of Mizar Users
environ vocabulary CQC_LANG, ZF_LANG, CQC_THE1; notation SUBSET_1, CQC_LANG, CQC_THE1; constructors CQC_THE1, XBOOLE_0; clusters CQC_LANG, ZFMISC_1, XBOOLE_0; theorems CQC_THE1, QC_LANG2, LUKASI_1; begin reserve p, q, r, s for Element of CQC-WFF; ::::::::::::::::::::::::::::: :: T A U T O L O G I E :: ::::::::::::::::::::::::::::: theorem Th1: 'not' ( p '&' 'not' p ) in TAUT proof p => p in TAUT by LUKASI_1:4; hence thesis by QC_LANG2:def 2; end; Lm1: p 'or' q = ( 'not' p => q ) proof 'not' p => q = 'not' ( 'not' p '&' 'not' q ) by QC_LANG2:def 2; hence thesis by QC_LANG2:def 3; end; theorem Th2: p 'or' 'not' p in TAUT proof 'not' p => 'not' p in TAUT by LUKASI_1:4; hence thesis by Lm1; end; theorem Th3: p => ( p 'or' q ) in TAUT proof p => ( 'not' p => q ) in TAUT by CQC_THE1:79; hence thesis by Lm1; end; theorem Th4: q => ( p 'or' q ) in TAUT proof q => ( 'not' p => q ) in TAUT by LUKASI_1:5; hence thesis by Lm1; end; theorem Th5: ( p 'or' q ) => ( 'not' p => q ) in TAUT proof ( 'not' p => q ) => ( 'not' p => q ) in TAUT by LUKASI_1:4; hence thesis by Lm1; end; theorem Th6: 'not' ( p 'or' q ) => ( 'not' p '&' 'not' q ) in TAUT proof 'not' ( p 'or' q ) = 'not' 'not' ( 'not' p '&' 'not' q ) by QC_LANG2:def 3; hence thesis by LUKASI_1:25; end; theorem Th7: ( 'not' p '&' 'not' q ) => 'not' ( p 'or' q ) in TAUT proof 'not' ( p 'or' q ) = 'not' 'not' ( 'not' p '&' 'not' q ) by QC_LANG2:def 3; hence thesis by LUKASI_1:27; end; theorem Th8: ( p 'or' q ) => ( q 'or' p ) in TAUT proof ( 'not' p => q ) => ( 'not' q => p ) in TAUT by LUKASI_1:31; then ( p 'or' q ) => ( 'not' q => p ) in TAUT by Lm1; hence thesis by Lm1; end; theorem 'not' p 'or' p in TAUT proof A1: ( p 'or' 'not' p ) => ( 'not' p 'or' p ) in TAUT by Th8; p 'or' 'not' p in TAUT by Th2; hence thesis by A1,CQC_THE1:82; end; theorem 'not' ( p 'or' q ) => 'not' p in TAUT proof A1: ( p => ( p 'or' q )) => ( 'not' ( p 'or' q ) => 'not' p ) in TAUT by LUKASI_1:26; ( p => ( p 'or' q )) in TAUT by Th3; hence thesis by A1,CQC_THE1:82; end; theorem Th11: ( p 'or' p ) => p in TAUT proof A1: ( p 'or' p ) => ( 'not' p => p ) in TAUT by Th5; ( 'not' p => p ) => p in TAUT by CQC_THE1:78; hence thesis by A1,LUKASI_1:3; end; theorem p => ( p 'or' p ) in TAUT by Th3; theorem ( p '&' 'not' p ) => q in TAUT proof 'not' ( p '&' 'not' p ) in TAUT by Th1; then 'not' q => 'not' ( p '&' 'not' p ) in TAUT by LUKASI_1:13; hence thesis by LUKASI_1:35; end; theorem ( p => q ) => ( 'not' p 'or' q ) in TAUT proof A1: ( 'not' 'not' p => q ) = ( 'not' p 'or' q ) by Lm1; A2: 'not' 'not' p => p in TAUT by LUKASI_1:25; ( 'not' 'not' p => p ) => (( p => q ) => ( 'not' 'not' p => q )) in TAUT by LUKASI_1:1; hence thesis by A1,A2,CQC_THE1:82; end; Lm2: ( p '&' q ) => ( 'not' 'not' p '&' q ) in TAUT proof A1: ( p => 'not' 'not' p ) => ('not' ( 'not' 'not' p '&' q ) => 'not' ( p '&' q )) in TAUT by CQC_THE1:80; p => 'not' 'not' p in TAUT by LUKASI_1:27; then 'not' ( 'not' 'not' p '&' q ) => 'not' ( p '&' q ) in TAUT by A1,CQC_THE1:82; hence thesis by LUKASI_1:35; end; Lm3: ( 'not' 'not' p '&' q ) => ( p '&' q ) in TAUT proof A1: ( 'not' 'not' p => p ) => ('not' ( p '&' q ) => 'not' ( 'not' 'not' p '&' q )) in TAUT by CQC_THE1:80; 'not' 'not' p => p in TAUT by LUKASI_1:25; then 'not' ( p '&' q ) => 'not' ( 'not' 'not' p '&' q ) in TAUT by A1,CQC_THE1:82; hence thesis by LUKASI_1:35; end; theorem Th15: ( p '&' q ) => 'not' ( p => 'not' q ) in TAUT proof A1: q '&' p => 'not' 'not' q '&' p in TAUT by Lm2; p '&' q => q '&' p in TAUT by CQC_THE1:81; then A2: p '&' q => 'not' 'not' q '&' p in TAUT by A1,LUKASI_1:3; 'not' 'not' q '&' p => p '&' 'not' 'not' q in TAUT by CQC_THE1:81; then A3: ( p '&' q ) => ( p '&' 'not' 'not' q ) in TAUT by A2,LUKASI_1:3; ( p '&' 'not' 'not' q ) => 'not' 'not' ( p '&' 'not' 'not' q ) in TAUT by LUKASI_1:27; then ( p '&' q ) => 'not' 'not' ( p '&' 'not' 'not' q ) in TAUT by A3,LUKASI_1:3; hence thesis by QC_LANG2:def 2; end; theorem Th16: 'not' ( p => 'not' q ) => ( p '&' q ) in TAUT proof A1: p '&' 'not' 'not' q => 'not' 'not' q '&' p in TAUT by CQC_THE1:81; 'not' 'not' q '&' p => q '&' p in TAUT by Lm3; then A2: p '&' 'not' 'not' q => q '&' p in TAUT by A1,LUKASI_1:3; q '&' p => p '&' q in TAUT by CQC_THE1:81; then A3: ( p '&' 'not' 'not' q ) => ( p '&' q ) in TAUT by A2,LUKASI_1:3; 'not' 'not' ( p '&' 'not' 'not' q ) => ( p '&' 'not' 'not' q ) in TAUT by LUKASI_1:25; then 'not' 'not' ( p '&' 'not' 'not' q ) => ( p '&' q ) in TAUT by A3,LUKASI_1:3; hence thesis by QC_LANG2:def 2; end; theorem Th17: 'not' ( p '&' q ) => ( 'not' p 'or' 'not' q ) in TAUT proof 'not' ( p => 'not' q ) => p '&' q in TAUT by Th16; then A1: 'not' ( p '&' q ) => 'not' 'not' ( p => 'not' q ) in TAUT by LUKASI_1: 34; 'not' 'not' ( p => 'not' q ) => ( p => 'not' q ) in TAUT by LUKASI_1:25; then A2: 'not' ( p '&' q ) => ( p => 'not' q ) in TAUT by A1,LUKASI_1:3; A3: 'not' 'not' p => p in TAUT by LUKASI_1:25; ( 'not' 'not' p => p ) => (( p => 'not' q ) => ( 'not' 'not' p => 'not' q )) in TAUT by LUKASI_1:1; then ( p => 'not' q ) => ( 'not' 'not' p => 'not' q ) in TAUT by A3,CQC_THE1:82; then 'not' ( p '&' q ) => ( 'not' 'not' p => 'not' q ) in TAUT by A2,LUKASI_1:3; hence thesis by Lm1; end; theorem Th18: ( 'not' p 'or' 'not' q ) => 'not' ( p '&' q ) in TAUT proof A1: ( 'not' p 'or' 'not' q ) = ( 'not' 'not' p => 'not' q ) by Lm1; A2: p => 'not' 'not' p in TAUT by LUKASI_1:27; ( p => 'not' 'not' p ) => (( 'not' 'not' p => 'not' q ) => ( p => 'not' q )) in TAUT by LUKASI_1:1; then A3: ( 'not' p 'or' 'not' q ) => ( p => 'not' q ) in TAUT by A1,A2,CQC_THE1 :82; p '&' q => 'not' ( p => 'not' q ) in TAUT by Th15; then A4: 'not' 'not' ( p => 'not' q ) => 'not' ( p '&' q ) in TAUT by LUKASI_1: 34; ( p => 'not' q ) => 'not' 'not' ( p => 'not' q ) in TAUT by LUKASI_1:27; then ( p => 'not' q ) => 'not' ( p '&' q ) in TAUT by A4,LUKASI_1:3; hence thesis by A3,LUKASI_1:3; end; theorem Th19: ( p '&' q ) => p in TAUT proof 'not' p => ( 'not' p 'or' 'not' q ) in TAUT by Th3; then A1: 'not' ( 'not' p 'or' 'not' q ) => 'not' 'not' p in TAUT by LUKASI_1:34 ; 'not' 'not' p => p in TAUT by LUKASI_1:25; then A2: 'not' ( 'not' p 'or' 'not' q ) => p in TAUT by A1,LUKASI_1:3; ( 'not' p 'or' 'not' q ) => 'not' ( p '&' q ) in TAUT by Th18; then A3: 'not' 'not' ( p '&' q ) => 'not' ( 'not' p 'or' 'not' q ) in TAUT by LUKASI_1:34; ( p '&' q ) => 'not' 'not' ( p '&' q ) in TAUT by LUKASI_1:27; then ( p '&' q ) => 'not' ( 'not' p 'or' 'not' q ) in TAUT by A3,LUKASI_1:3 ; hence thesis by A2,LUKASI_1:3; end; theorem Th20: ( p '&' q ) => ( p 'or' q ) in TAUT proof A1: p => ( p 'or' q ) in TAUT by Th3; ( p '&' q ) => p in TAUT by Th19; hence thesis by A1,LUKASI_1:3; end; theorem Th21: ( p '&' q ) => q in TAUT proof A1: ( q '&' p ) => q in TAUT by Th19; ( p '&' q ) => ( q '&' p ) in TAUT by CQC_THE1:81; hence thesis by A1,LUKASI_1:3; end; theorem p => p '&' p in TAUT proof A1: 'not' ( p '&' p ) => ( 'not' p 'or' 'not' p ) in TAUT by Th17; ( 'not' p 'or' 'not' p ) => 'not' p in TAUT by Th11; then 'not' ( p '&' p ) => 'not' p in TAUT by A1,LUKASI_1:3; hence thesis by LUKASI_1:35; end; theorem ( p <=> q ) => ( p => q ) in TAUT proof ( p <=> q ) = ( p => q ) '&' ( q => p ) by QC_LANG2:def 4; hence thesis by Th19; end; theorem ( p <=> q ) => ( q => p ) in TAUT proof ( p <=> q ) = ( p => q ) '&' ( q => p ) by QC_LANG2:def 4; hence thesis by Th21; end; theorem Th25: (( p 'or' q ) 'or' r ) => ( p 'or' ( q 'or' r )) in TAUT proof A1: (( p 'or' q ) 'or' r ) => ( r 'or' ( p 'or' q )) in TAUT by Th8; ( r 'or' ( p 'or' q )) => ( 'not' r => ( p 'or' q )) in TAUT by Th5; then (( p 'or' q ) 'or' r ) => ( 'not' r => ( p 'or' q )) in TAUT by A1,LUKASI_1:3; then A2: (( p 'or' q ) 'or' r ) => ( 'not' r => ( 'not' p => q )) in TAUT by Lm1; ( 'not' r => ( 'not' p => q )) => ( 'not' p => ( 'not' r => q )) in TAUT by LUKASI_1:8; then A3: (( p 'or' q ) 'or' r ) => ( 'not' p => ( 'not' r => q )) in TAUT by A2,LUKASI_1:3; ( 'not' r => q ) => ( 'not' q => r ) in TAUT by LUKASI_1:31; then A4: 'not' p => (( 'not' r => q ) => ( 'not' q => r )) in TAUT by LUKASI_1: 13; ( 'not' p => (( 'not' r => q ) => ( 'not' q => r ))) => (( 'not' p => ( 'not' r => q )) => ( 'not' p => ( 'not' q => r ))) in TAUT by LUKASI_1:11; then ( 'not' p => ( 'not' r => q )) => ( 'not' p => ( 'not' q => r )) in TAUT by A4,CQC_THE1:82; then (( p 'or' q ) 'or' r ) => ( 'not' p => ( 'not' q => r )) in TAUT by A3,LUKASI_1:3; then (( p 'or' q ) 'or' r ) => ( 'not' p => ( q 'or' r )) in TAUT by Lm1; hence thesis by Lm1; end; theorem (( p '&' q ) '&' r ) => ( p '&' ( q '&' r )) in TAUT proof A1: 'not' ( p '&' ( q '&' r )) => ( 'not' p 'or' 'not' ( q '&' r ))in TAUT by Th17; A2: 'not' ( q '&' r ) => ( 'not' q 'or' 'not' r ) in TAUT by Th17; ( 'not' q 'or' 'not' r ) => ( 'not' r 'or' 'not' q ) in TAUT by Th8; then 'not' ( q '&' r ) => ( 'not' r 'or' 'not' q ) in TAUT by A2,LUKASI_1:3; then A3: 'not' 'not' p => ( 'not' ( q '&' r ) => ( 'not' r 'or' 'not' q )) in TAUT by LUKASI_1:13; ( 'not' 'not' p => ( 'not' ( q '&' r ) => ( 'not' r 'or' 'not' q ))) => (( 'not' 'not' p => 'not' ( q '&' r )) => ( 'not' 'not' p => ( 'not' r 'or' 'not' q ))) in TAUT by LUKASI_1:11; then ( 'not' 'not' p => 'not' ( q '&' r )) => ( 'not' 'not' p => ( 'not' r 'or' 'not' q )) in TAUT by A3,CQC_THE1:82; then ( 'not' p 'or' 'not' ( q '&' r )) => ( 'not' 'not' p => ( 'not' r 'or' 'not' q )) in TAUT by Lm1; then ( 'not' p 'or' 'not' ( q '&' r )) => ( 'not' p 'or' ( 'not' r 'or' 'not' q )) in TAUT by Lm1; then A4: 'not' ( p '&' ( q '&' r )) => ( 'not' p 'or' ( 'not' r 'or' 'not' q )) in TAUT by A1,LUKASI_1:3; ( 'not' p 'or' ( 'not' r 'or' 'not' q )) => (( 'not' r 'or' 'not' q ) 'or' 'not' p ) in TAUT by Th8; then A5: 'not' ( p '&' ( q '&' r )) => (( 'not' r 'or' 'not' q ) 'or' 'not' p ) in TAUT by A4,LUKASI_1:3; (( 'not' r 'or' 'not' q ) 'or' 'not' p ) => ( 'not' r 'or' ( 'not' q 'or' 'not' p )) in TAUT by Th25; then A6: 'not' ( p '&' ( q '&' r )) => ( 'not' r 'or' ( 'not' q 'or' 'not' p )) in TAUT by A5,LUKASI_1:3; A7: ( 'not' q 'or' 'not' p ) => ( 'not' p 'or' 'not' q ) in TAUT by Th8; ( 'not' p 'or' 'not' q ) => 'not' ( p '&' q ) in TAUT by Th18; then ( 'not' q 'or' 'not' p ) => 'not' ( p '&' q ) in TAUT by A7,LUKASI_1:3; then A8: 'not' 'not' r => (( 'not' q 'or' 'not' p ) => 'not' ( p '&' q )) in TAUT by LUKASI_1:13; ( 'not' 'not' r => (( 'not' q 'or' 'not' p ) => 'not' ( p '&' q ))) => (( 'not' 'not' r => ( 'not' q 'or' 'not' p )) => ( 'not' 'not' r => 'not' ( p '&' q ))) in TAUT by LUKASI_1:11; then ( 'not' 'not' r => ( 'not' q 'or' 'not' p )) => ( 'not' 'not' r => 'not' ( p '&' q )) in TAUT by A8,CQC_THE1:82; then ( 'not' r 'or' ( 'not' q 'or' 'not' p )) => ( 'not' 'not' r => 'not' ( p '&' q )) in TAUT by Lm1; then A9: ( 'not' r 'or' ( 'not' q 'or' 'not' p )) => ( 'not' r 'or' 'not' ( p '&' q )) in TAUT by Lm1; ( 'not' r 'or' 'not' ( p '&' q )) => ( 'not' ( p '&' q ) 'or' 'not' r) in TAUT by Th8; then A10: ( 'not' r 'or' ( 'not' q 'or' 'not' p )) => ( 'not' ( p '&' q ) 'or' 'not' r) in TAUT by A9,LUKASI_1:3; ( 'not' ( p '&' q ) 'or' 'not' r) => 'not' (( p '&' q ) '&' r ) in TAUT by Th18; then ( 'not' r 'or' ( 'not' q 'or' 'not' p )) => 'not' (( p '&' q ) '&' r ) in TAUT by A10,LUKASI_1:3; then 'not' ( p '&' ( q '&' r )) => 'not' (( p '&' q ) '&' r ) in TAUT by A6,LUKASI_1:3; hence thesis by LUKASI_1:35; end; theorem Th27: ( p 'or' ( q 'or' r )) => (( p 'or' q ) 'or' r ) in TAUT proof ( p 'or' ( q 'or' r )) => ( 'not' p => ( q 'or' r )) in TAUT by Th5; then A1: ( p 'or' ( q 'or' r )) => ( 'not' p => ( 'not' q => r )) in TAUT by Lm1; ( 'not' q => r ) => ( 'not' r => q ) in TAUT by LUKASI_1:31; then A2: 'not' p => (( 'not' q => r ) => ( 'not' r => q )) in TAUT by LUKASI_1: 13; ( 'not' p => (( 'not' q => r ) => ( 'not' r => q ))) => (( 'not' p => ( 'not' q => r )) => ( 'not' p => ( 'not' r => q ))) in TAUT by LUKASI_1:11; then ( 'not' p => ( 'not' q => r )) => ( 'not' p => ( 'not' r => q )) in TAUT by A2,CQC_THE1:82; then A3: ( p 'or' ( q 'or' r )) => ( 'not' p => ( 'not' r => q )) in TAUT by A1,LUKASI_1:3; ( 'not' p => ( 'not' r => q )) => ( 'not' r => ( 'not' p => q )) in TAUT by LUKASI_1:8; then ( p 'or' ( q 'or' r )) => ( 'not' r => ( 'not' p => q )) in TAUT by A3,LUKASI_1:3; then A4: ( p 'or' ( q 'or' r )) => ( r 'or' ( 'not' p => q )) in TAUT by Lm1; ( r 'or' ( 'not' p => q )) => (( 'not' p => q ) 'or' r) in TAUT by Th8; then ( p 'or' ( q 'or' r )) => (( 'not' p => q ) 'or' r) in TAUT by A4,LUKASI_1:3; hence thesis by Lm1; end; theorem Th28: p => ( q => ( p '&' q )) in TAUT proof 'not' ( p '&' q ) => ( 'not' p 'or' 'not' q ) in TAUT by Th17; then A1: ( p '&' q ) 'or' ( 'not' p 'or' 'not' q ) in TAUT by Lm1; ( p '&' q ) 'or' ( 'not' p 'or' 'not' q ) => ((( p '&' q ) 'or' 'not' p ) 'or' 'not' q ) in TAUT by Th27; then A2: ((( p '&' q ) 'or' 'not' p ) 'or' 'not' q ) in TAUT by A1,CQC_THE1: 82; ((( p '&' q ) 'or' 'not' p ) 'or' 'not' q ) => ( 'not' q 'or' (( p '&' q ) 'or' 'not' p )) in TAUT by Th8; then ( 'not' q 'or' (( p '&' q ) 'or' 'not' p )) in TAUT by A2,CQC_THE1:82; then A3: ( 'not' 'not' q => (( p '&' q ) 'or' 'not' p )) in TAUT by Lm1; q => 'not' 'not' q in TAUT by LUKASI_1:27; then A4: ( q => (( p '&' q ) 'or' 'not' p )) in TAUT by A3,LUKASI_1:3; (( p '&' q ) 'or' 'not' p ) => ( 'not' p 'or' ( p '&' q )) in TAUT by Th8; then A5: q => ((( p '&' q ) 'or' 'not' p ) => ( 'not' p 'or' ( p '&' q ))) in TAUT by LUKASI_1:13; (q => ((( p '&' q ) 'or' 'not' p ) => ( 'not' p 'or' ( p '&' q )))) => ((q => ( p '&' q ) 'or' 'not' p ) => ( q => ( 'not' p 'or' ( p '&' q )))) in TAUT by LUKASI_1:11; then (q => ( p '&' q ) 'or' 'not' p ) => ( q => ( 'not' p 'or' ( p '&' q ))) in TAUT by A5,CQC_THE1:82; then ( q => ( 'not' p 'or' ( p '&' q ))) in TAUT by A4,CQC_THE1:82; then ( q => ( 'not' 'not' p => ( p '&' q ))) in TAUT by Lm1; then A6: 'not' 'not' p => ( q => ( p '&' q )) in TAUT by LUKASI_1:15; p => 'not' 'not' p in TAUT by LUKASI_1:27; hence thesis by A6,LUKASI_1:3; end; theorem ( p => q ) => (( q => p ) => ( p <=> q )) in TAUT proof ( p => q ) => (( q => p ) => (( p => q ) '&' ( q => p ))) in TAUT by Th28; hence thesis by QC_LANG2:def 4; end; Lm4: p in TAUT & q in TAUT implies p '&' q in TAUT proof assume that A1: p in TAUT and A2: q in TAUT; p => ( q => ( p '&' q )) in TAUT by Th28; then q => ( p '&' q ) in TAUT by A1,CQC_THE1:82; hence thesis by A2,CQC_THE1:82; end; theorem ( p 'or' q ) <=> ( q 'or' p ) in TAUT proof set P = p 'or' q; set Q = q 'or' p; A1: P => Q in TAUT by Th8; Q => P in TAUT by Th8; then ( P => Q ) '&' ( Q => P ) in TAUT by A1,Lm4; hence thesis by QC_LANG2:def 4; end; theorem (( p '&' q ) => r ) => ( p => ( q => r )) in TAUT proof ( q => ( p '&' q )) => ((( p '&' q ) => r ) => ( q => r )) in TAUT by LUKASI_1:1; then A1: p => (( q => ( p '&' q )) => ((( p '&' q ) => r ) => ( q => r ))) in TAUT by LUKASI_1:13; p => ( q => ( p '&' q )) in TAUT by Th28; then A2: p => ((( p '&' q ) => r ) => ( q => r )) in TAUT by A1,LUKASI_1:20; (p => ((( p '&' q ) => r ) => ( q => r ))) => ((( p '&' q ) => r ) => ( p => ( q => r ))) in TAUT by LUKASI_1:8; hence thesis by A2,CQC_THE1:82; end; theorem Th32: ( p => ( q => r )) => (( p '&' q ) => r ) in TAUT proof A1: ( p '&' q ) => q in TAUT by Th21; (( p '&' q ) => q) => (( q => r ) => (( p '&' q ) => r )) in TAUT by LUKASI_1:1; then ( q => r ) => (( p '&' q ) => r ) in TAUT by A1,CQC_THE1:82; then A2: p => (( q => r ) => (( p '&' q ) => r )) in TAUT by LUKASI_1:13; p => (( q => r ) => (( p '&' q ) => r )) => ((p => ( q => r )) => ( p => (( p '&' q ) => r ))) in TAUT by LUKASI_1:11; then A3: (p => ( q => r )) => ( p => (( p '&' q ) => r )) in TAUT by A2,CQC_THE1:82; ( p => (( p '&' q ) => r )) => ((p '&' q ) => ( p => r )) in TAUT by LUKASI_1:8; then A4: (p => ( q => r )) => ((p '&' q ) => ( p => r )) in TAUT by A3,LUKASI_1:3; A5: ((p '&' q ) => ( p => r )) => ((( p '&' q ) => p ) => (( p '&' q ) => r )) in TAUT by LUKASI_1:11; ( p '&' q ) => p in TAUT by Th19; then ((p '&' q ) => ( p => r )) => (( p '&' q ) => r ) in TAUT by A5,LUKASI_1:16; hence thesis by A4,LUKASI_1:3; end; theorem Th33: ( r => p ) => (( r => q ) => ( r => ( p '&' q ))) in TAUT proof p => ( q => ( p '&' q )) in TAUT by Th28; then A1: r => ( p => ( q => ( p '&' q ))) in TAUT by LUKASI_1:13; (r => ( p => ( q => ( p '&' q )))) => (( r => p ) => ( r => ( q => ( p '&' q )))) in TAUT by LUKASI_1:11; then A2: ( r => p ) => ( r => ( q => ( p '&' q ))) in TAUT by A1,CQC_THE1:82; ( r => ( q => ( p '&' q ))) => (( r => q ) => ( r => ( p '&' q ))) in TAUT by LUKASI_1:11; hence thesis by A2,LUKASI_1:3; end; theorem (( p 'or' q ) => r ) => (( p => r ) 'or' ( q => r )) in TAUT proof A1: q => ( p 'or' q ) in TAUT by Th4; ( q => ( p 'or' q )) => ((( p 'or' q ) => r ) => ( q => r )) in TAUT by LUKASI_1:1; then (( p 'or' q ) => r ) => ( q => r ) in TAUT by A1,CQC_THE1:82; then 'not' ( p => r ) => ((( p 'or' q ) => r ) => ( q => r )) in TAUT by LUKASI_1:13; then (( p 'or' q ) => r ) => ( 'not' ( p => r ) => ( q => r )) in TAUT by LUKASI_1:15; hence thesis by Lm1; end; theorem Th35: ( p => r ) => (( q => r ) => (( p 'or' q ) => r)) in TAUT proof set A = ( 'not' r => 'not' p ); set B = ( 'not' r => 'not' q ); set C = ( 'not' r => ( 'not' p '&' 'not' q )); set D = (( p 'or' q ) => r ); set E = q => r; A1: A => ( B => C) in TAUT by Th33; C => ('not' ( 'not' p '&' 'not' q ) => r ) in TAUT by LUKASI_1:31; then C => D in TAUT by QC_LANG2:def 3; then A2: B => ( C => D ) in TAUT by LUKASI_1:13; B => ( C => D ) => (( B => C ) => ( B => D )) in TAUT by LUKASI_1:11; then ( B => C ) => ( B => D ) in TAUT by A2,CQC_THE1:82; then A => ( B => D ) in TAUT by A1,LUKASI_1:3; then A3: B => ( A => D ) in TAUT by LUKASI_1:15; E => B in TAUT by LUKASI_1:26; then E => ( A => D ) in TAUT by A3,LUKASI_1:3; then A4: A => ( E => D ) in TAUT by LUKASI_1:15; (p => r) => A in TAUT by LUKASI_1:26; hence thesis by A4,LUKASI_1:3; end; theorem Th36: (( p => r ) '&' ( q => r )) => (( p 'or' q ) => r) in TAUT proof set P = ( p => r ); set Q = ( q => r ); set R = (( p 'or' q ) => r); A1: P => ( Q => R ) in TAUT by Th35; (P => ( Q => R )) => (( P '&' Q ) => R ) in TAUT by Th32; hence thesis by A1,CQC_THE1:82; end; theorem ( p => ( q '&' 'not' q )) => 'not' p in TAUT proof 'not' ( q '&' 'not' q ) in TAUT by Th1; then p => 'not' ( q '&' 'not' q ) in TAUT by LUKASI_1:13; then A1: 'not' 'not' ( q '&' 'not' q ) => 'not' p in TAUT by LUKASI_1:34; ( q '&' 'not' q ) => 'not' 'not' ( q '&' 'not' q ) in TAUT by LUKASI_1:27; then ( q '&' 'not' q ) => 'not' p in TAUT by A1,LUKASI_1:3; then A2: p => (( q '&' 'not' q ) => 'not' p) in TAUT by LUKASI_1:13; p => (( q '&' 'not' q ) => 'not' p) => (( p => ( q '&' 'not' q )) => ( p => 'not' p )) in TAUT by LUKASI_1:11; then A3: ( p => ( q '&' 'not' q )) => ( p => 'not' p ) in TAUT by A2,CQC_THE1:82; A4: ( 'not' 'not' p => 'not' p ) => 'not' p in TAUT by CQC_THE1:78; A5: 'not' 'not' p => p in TAUT by LUKASI_1:25; ( 'not' 'not' p => p ) => (( p => 'not' p ) => ( 'not' 'not' p => 'not' p )) in TAUT by LUKASI_1:1; then ( p => 'not' p ) => ( 'not' 'not' p => 'not' p ) in TAUT by A5,CQC_THE1:82; then ( p => 'not' p ) => 'not' p in TAUT by A4,LUKASI_1:3; hence thesis by A3,LUKASI_1:3; end; theorem (( p 'or' q ) '&' ( p 'or' r )) => ( p 'or' ( q '&' r )) in TAUT proof ( 'not' p => q ) => (( 'not' p => r ) => ( 'not' p => ( q '&' r ))) in TAUT by Th33; then ( p 'or' q ) => (( 'not' p => r ) => ( 'not' p => ( q '&' r ))) in TAUT by Lm1; then ( p 'or' q ) => (( p 'or' r ) => ( 'not' p => ( q '&' r ))) in TAUT by Lm1; then A1: ( p 'or' q ) => (( p 'or' r ) => ( p 'or' ( q '&' r ))) in TAUT by Lm1 ; (( p 'or' q ) => (( p 'or' r ) => ( p 'or' ( q '&' r )))) => ((( p 'or' q ) '&' ( p 'or' r )) => ( p 'or' ( q '&' r ))) in TAUT by Th32; hence thesis by A1,CQC_THE1:82; end; theorem ( p '&' ( q 'or' r )) => (( p '&' q ) 'or' ( p '&' r )) in TAUT proof A1: ( p => 'not' q ) => (( p => 'not' r ) => ( p => ( 'not' q '&' 'not' r ))) in TAUT by Th33; ( p => ( 'not' q '&' 'not' r )) = 'not' ( p '&' 'not' ( 'not' q '&' 'not' r )) by QC_LANG2:def 2; then A2: ( p => 'not' q ) => (( p => 'not' r ) => 'not' ( p '&' ( q 'or' r ))) in TAUT by A1,QC_LANG2:def 3; A3: 'not' ( p => 'not' q ) => ( p '&' q ) in TAUT by Th16; ('not' ( p => 'not' q ) => ( p '&' q )) => ( 'not' ( p '&' q ) => ( p => 'not' q )) in TAUT by LUKASI_1:31; then 'not' ( p '&' q ) => ( p => 'not' q ) in TAUT by A3,CQC_THE1:82; then 'not' ( p '&' q ) => (( p => 'not' r ) => 'not' ( p '&' ( q 'or' r ))) in TAUT by A2,LUKASI_1:3; then A4: ( p => 'not' r ) => ( 'not' ( p '&' q ) => 'not' ( p '&' ( q 'or' r ))) in TAUT by LUKASI_1:15; A5: 'not' ( p => 'not' r ) => ( p '&' r ) in TAUT by Th16; ('not' ( p => 'not' r ) => ( p '&' r )) => ( 'not' ( p '&' r ) => ( p => 'not' r )) in TAUT by LUKASI_1:31; then 'not' ( p '&' r ) => ( p => 'not' r ) in TAUT by A5,CQC_THE1:82; then 'not' ( p '&' r ) => ('not' ( p '&' q ) => 'not' ( p '&' ( q 'or' r ))) in TAUT by A4,LUKASI_1:3; then A6: 'not' ( p '&' q ) => ('not' ( p '&' r ) => 'not' ( p '&' ( q 'or' r ))) in TAUT by LUKASI_1:15; ( 'not' ( p '&' q ) => ('not' ( p '&' r ) => 'not' ( p '&' ( q 'or' r )))) => ((( 'not' ( p '&' q ) '&' 'not' ( p '&' r )) => 'not' ( p '&' ( q 'or' r )))) in TAUT by Th32; then A7: ( 'not' ( p '&' q ) '&' 'not' ( p '&' r )) => 'not' ( p '&' ( q 'or' r )) in TAUT by A6,CQC_THE1:82; 'not' (( p '&' q ) 'or' ( p '&' r )) => ( 'not' ( p '&' q ) '&' 'not' ( p '&' r )) in TAUT by Th6; then 'not' (( p '&' q ) 'or' ( p '&' r )) => 'not' ( p '&' ( q 'or' r )) in TAUT by A7,LUKASI_1:3; hence thesis by LUKASI_1:35; end; theorem Th40: (( p 'or' r ) '&' ( q 'or' r )) => (( p '&' q ) 'or' r ) in TAUT proof (( 'not' p => r ) '&' ( 'not' q => r )) => (( 'not' p 'or' 'not' q ) => r) in TAUT by Th36; then (( p 'or' r ) '&' ( 'not' q => r )) => (( 'not' p 'or' 'not' q ) => r) in TAUT by Lm1; then A1: (( p 'or' r ) '&' ( q 'or' r )) => (( 'not' p 'or' 'not' q ) => r) in TAUT by Lm1; A2: 'not' ( p '&' q ) => ( 'not' p 'or' 'not' q ) in TAUT by Th17; ( 'not' ( p '&' q ) => ( 'not' p 'or' 'not' q )) => ((( 'not' p 'or' 'not' q ) => r) => ( 'not' ( p '&' q ) => r )) in TAUT by LUKASI_1:1; then (( 'not' p 'or' 'not' q ) => r) => ( 'not' ( p '&' q ) => r ) in TAUT by A2,CQC_THE1:82; then (( p 'or' r ) '&' ( q 'or' r )) => ( 'not' ( p '&' q ) => r ) in TAUT by A1,LUKASI_1:3; hence thesis by Lm1; end; Lm5: p => q in TAUT implies ( r '&' p ) => ( r '&' q ) in TAUT proof assume p => q in TAUT; then 'not' q => 'not' p in TAUT by LUKASI_1:34; then A1: r => ( 'not' q => 'not' p ) in TAUT by LUKASI_1:13; ( r => ( 'not' q => 'not' p )) => (( r => 'not' q ) => ( r => 'not' p )) in TAUT by LUKASI_1:11; then ( r => 'not' q ) => ( r => 'not' p ) in TAUT by A1,CQC_THE1:82; then A2: 'not' ( r => 'not' p ) => 'not' ( r => 'not' q ) in TAUT by LUKASI_1:34; ( r '&' p ) => 'not' ( r => 'not' p ) in TAUT by Th15; then A3: ( r '&' p ) => 'not' ( r => 'not' q ) in TAUT by A2,LUKASI_1:3 ; 'not' ( r => 'not' q ) => ( r '&' q ) in TAUT by Th16; hence thesis by A3,LUKASI_1:3; end; Lm6: p => q in TAUT implies ( p 'or' r ) => ( q 'or' r ) in TAUT proof assume p => q in TAUT; then A1: 'not' q => 'not' p in TAUT by LUKASI_1:34; ( 'not' q => 'not' p ) => (( 'not' p => r ) => ( 'not' q => r )) in TAUT by LUKASI_1:1; then ( 'not' p => r ) => ( 'not' q => r ) in TAUT by A1,CQC_THE1:82; then ( p 'or' r ) => ( 'not' q => r ) in TAUT by Lm1; hence thesis by Lm1; end; Lm7: p => q in TAUT implies ( r 'or' p ) => ( r 'or' q ) in TAUT proof assume p => q in TAUT; then A1: 'not' r => ( p => q ) in TAUT by LUKASI_1:13; 'not' r => ( p => q ) => (( 'not' r => p ) => ( 'not' r => q )) in TAUT by LUKASI_1:11; then ( 'not' r => p ) => ( 'not' r => q ) in TAUT by A1,CQC_THE1:82; then ( r 'or' p ) => ( 'not' r => q ) in TAUT by Lm1; hence thesis by Lm1; end; theorem (( p 'or' q ) '&' r ) => (( p '&' r ) 'or' ( q '&' r )) in TAUT proof (( 'not' p 'or' 'not' r ) '&' ( 'not' q 'or' 'not' r )) => (( 'not' p '&' 'not' q ) 'or' 'not' r ) in TAUT by Th40; then A1: 'not' (( 'not' p '&' 'not' q ) 'or' 'not' r ) => 'not' (( 'not' p 'or' 'not' r ) '&' ( 'not' q 'or' 'not' r )) in TAUT by LUKASI_1:34; ( 'not' ( 'not' p '&' 'not' q ) '&' 'not' 'not' r ) => 'not' (( 'not' p '&' 'not' q ) 'or' 'not' r ) in TAUT by Th7; then ( 'not' ( 'not' p '&' 'not' q ) '&' 'not' 'not' r ) => 'not' (( 'not' p 'or' 'not' r ) '&' ( 'not' q 'or' 'not' r )) in TAUT by A1,LUKASI_1:3; then A2: (( p 'or' q ) '&' 'not' 'not' r ) => 'not' (( 'not' p 'or' 'not' r ) '&' ( 'not' q 'or' 'not' r )) in TAUT by QC_LANG2:def 3; r => 'not' 'not' r in TAUT by LUKASI_1:27; then (( p 'or' q ) '&' r ) => (( p 'or' q ) '&' 'not' 'not' r ) in TAUT by Lm5; then A3: (( p 'or' q ) '&' r ) => 'not' (( 'not' p 'or' 'not' r ) '&' ( 'not' q 'or' 'not' r )) in TAUT by A2,LUKASI_1:3; 'not' (( 'not' p 'or' 'not' r ) '&' ( 'not' q 'or' 'not' r )) => ('not' ( 'not' p 'or' 'not' r ) 'or' 'not' ( 'not' q 'or' 'not' r )) in TAUT by Th17; then A4: (( p 'or' q ) '&' r ) => ('not' ( 'not' p 'or' 'not' r ) 'or' 'not' ( 'not' q 'or' 'not' r )) in TAUT by A3,LUKASI_1:3; A5: 'not' ( p '&' r ) => ( 'not' p 'or' 'not' r ) in TAUT by Th17; ( 'not' ( p '&' r ) => ( 'not' p 'or' 'not' r )) => ( 'not' ( 'not' p 'or' 'not' r ) => ( p '&' r )) in TAUT by LUKASI_1:31; then 'not' ( 'not' p 'or' 'not' r ) => ( p '&' r ) in TAUT by A5,CQC_THE1:82; then ( 'not' ( 'not' p 'or' 'not' r ) 'or' 'not' ( 'not' q 'or' 'not' r ) ) => (( p '&' r ) 'or' 'not' ( 'not' q 'or' 'not' r )) in TAUT by Lm6; then A6: (( p 'or' q ) '&' r ) => (( p '&' r ) 'or' 'not' ( 'not' q 'or' 'not' r )) in TAUT by A4,LUKASI_1:3; A7: 'not' ( q '&' r ) => ( 'not' q 'or' 'not' r ) in TAUT by Th17; ( 'not' ( q '&' r ) => ( 'not' q 'or' 'not' r )) => ( 'not' ( 'not' q 'or' 'not' r ) => ( q '&' r )) in TAUT by LUKASI_1:31; then 'not' ( 'not' q 'or' 'not' r ) => ( q '&' r ) in TAUT by A7,CQC_THE1:82; then (( p '&' r ) 'or' 'not' ( 'not' q 'or' 'not' r )) => (( p '&' r ) 'or' ( q '&' r )) in TAUT by Lm7; hence thesis by A6,LUKASI_1:3; end; :::::::::::::::::::::::::::::::::::::::::::: :: R E G U L Y D O W O D Z E N I A :: :::::::::::::::::::::::::::::::::::::::::::: theorem p in TAUT implies ( p 'or' q ) in TAUT proof assume A1: p in TAUT; p => ( p 'or' q ) in TAUT by Th3; hence thesis by A1,CQC_THE1:82; end; theorem q in TAUT implies ( p 'or' q ) in TAUT proof assume A1: q in TAUT; q => ( p 'or' q ) in TAUT by Th4; hence thesis by A1,CQC_THE1:82; end; theorem ( p '&' q ) in TAUT implies p in TAUT proof assume A1: ( p '&' q ) in TAUT; ( p '&' q ) => p in TAUT by Th19; hence thesis by A1,CQC_THE1:82; end; theorem ( p '&' q ) in TAUT implies q in TAUT proof assume A1: ( p '&' q ) in TAUT; ( p '&' q ) => q in TAUT by Th21; hence thesis by A1,CQC_THE1:82; end; theorem ( p '&' q ) in TAUT implies ( p 'or' q ) in TAUT proof assume A1: ( p '&' q ) in TAUT; ( p '&' q ) => ( p 'or' q ) in TAUT by Th20; hence thesis by A1,CQC_THE1:82; end; theorem p in TAUT & q in TAUT implies p '&' q in TAUT by Lm4; theorem p => q in TAUT implies ( p 'or' r ) => ( q 'or' r ) in TAUT by Lm6; theorem p => q in TAUT implies ( r 'or' p ) => ( r 'or' q ) in TAUT by Lm7; theorem p => q in TAUT implies ( r '&' p ) => ( r '&' q ) in TAUT by Lm5; theorem Th51: p => q in TAUT implies ( p '&' r ) => ( q '&' r ) in TAUT proof assume A1: p => q in TAUT; ( p => q ) => (( q => 'not' r ) => ( p => 'not' r )) in TAUT by LUKASI_1:1; then ( q => 'not' r ) => ( p => 'not' r ) in TAUT by A1,CQC_THE1:82; then A2: 'not' ( p => 'not' r ) => 'not' ( q => 'not' r ) in TAUT by LUKASI_1:34; ( p '&' r ) => 'not' ( p => 'not' r ) in TAUT by Th15; then A3: ( p '&' r ) => 'not' ( q => 'not' r ) in TAUT by A2,LUKASI_1: 3; 'not' ( q => 'not' r ) => ( q '&' r ) in TAUT by Th16; hence thesis by A3,LUKASI_1:3; end; theorem r => p in TAUT & r => q in TAUT implies r => ( p '&' q ) in TAUT proof assume that A1: r => p in TAUT and A2: r => q in TAUT; ( r => p ) => (( r => q ) => ( r => ( p '&' q ))) in TAUT by Th33; then ( r => q ) => ( r => ( p '&' q )) in TAUT by A1,CQC_THE1: 82; hence thesis by A2,CQC_THE1:82; end; theorem p => r in TAUT & q => r in TAUT implies ( p 'or' q ) => r in TAUT proof assume p => r in TAUT & q => r in TAUT; then A1: ( p => r ) '&' ( q => r ) in TAUT by Lm4; (( p => r ) '&' ( q => r )) => (( p 'or' q ) => r) in TAUT by Th36; hence thesis by A1,CQC_THE1:82; end; theorem ( p 'or' q ) in TAUT & 'not' p in TAUT implies q in TAUT proof assume that A1: ( p 'or' q ) in TAUT and A2: 'not' p in TAUT; ( p 'or' q ) => ( 'not' p => q ) in TAUT by Th5; then 'not' p => q in TAUT by A1,CQC_THE1:82; hence thesis by A2,CQC_THE1:82; end; theorem ( p 'or' q ) in TAUT & 'not' q in TAUT implies p in TAUT proof assume that A1: ( p 'or' q ) in TAUT and A2: 'not' q in TAUT; A3: ( q 'or' p ) => ( 'not' q => p ) in TAUT by Th5; ( p 'or' q ) => ( q 'or' p ) in TAUT by Th8; then ( p 'or' q ) => ( 'not' q => p ) in TAUT by A3,LUKASI_1:3; then 'not' q => p in TAUT by A1,CQC_THE1:82; hence thesis by A2,CQC_THE1:82; end; theorem p => q in TAUT & r => s in TAUT implies ( p '&' r ) => ( q '&' s ) in TAUT proof assume that A1: p => q in TAUT and A2: r => s in TAUT; A3: ( p '&' r ) => ( q '&' r ) in TAUT by A1,Th51; ( q '&' r ) => ( q '&' s ) in TAUT by A2,Lm5; hence thesis by A3,LUKASI_1:3; end; theorem p => q in TAUT & r => s in TAUT implies ( p 'or' r ) => ( q 'or' s ) in TAUT proof assume that A1: p => q in TAUT and A2: r => s in TAUT; A3: ( p 'or' r ) => ( q 'or' r ) in TAUT by A1,Lm6; ( q 'or' r ) => ( q 'or' s ) in TAUT by A2,Lm7; hence thesis by A3,LUKASI_1:3; end; theorem ( p '&' 'not' q ) => 'not' p in TAUT implies p => q in TAUT proof assume ( p '&' 'not' q ) => 'not' p in TAUT; then A1: 'not' 'not' p => 'not' ( p '&' 'not' q ) in TAUT by LUKASI_1:34; p => 'not' 'not' p in TAUT by LUKASI_1:27; then A2: p => 'not' ( p '&' 'not' q ) in TAUT by A1,LUKASI_1:3; 'not' ( p '&' 'not' q ) = ( p => q ) by QC_LANG2:def 2; then 'not' ( p '&' 'not' q ) => ( p => q ) in TAUT by LUKASI_1:4; then A3: p => ( 'not' ( p '&' 'not' q ) => ( p => q )) in TAUT by LUKASI_1 :13; ( p => ( 'not' ( p '&' 'not' q ) => ( p => q ))) => (( p => 'not' ( p '&' 'not' q )) => ( p => ( p => q ))) in TAUT by LUKASI_1:11; then ( p => 'not' ( p '&' 'not' q )) => ( p => ( p => q )) in TAUT by A3,CQC_THE1:82; then p => ( p => q ) in TAUT by A2,CQC_THE1:82; hence thesis by LUKASI_1:18; end;