Copyright (c) 1990 Association of Mizar Users
environ vocabulary SEQ_1, PARTFUN1, BOOLE, ARYTM, ARYTM_1, RELAT_1, ARYTM_3, LIMFUNC1, FUNCT_1, ABSVALUE, SEQ_2, ORDINAL2, RCOMP_1, SQUARE_1, LIMFUNC2, SEQM_3, RFUNCT_1, RFUNCT_2, FINSEQ_1, LATTICES, LIMFUNC3; notation TARSKI, XBOOLE_0, SUBSET_1, ORDINAL1, NUMBERS, XCMPLX_0, XREAL_0, REAL_1, NAT_1, RELAT_1, FUNCT_2, ABSVALUE, SEQ_1, PARTFUN1, SEQ_2, SEQM_3, RCOMP_1, RFUNCT_1, RFUNCT_2, LIMFUNC1, LIMFUNC2; constructors REAL_1, NAT_1, ABSVALUE, SEQ_2, SEQM_3, PROB_1, RCOMP_1, RFUNCT_1, RFUNCT_2, LIMFUNC1, LIMFUNC2, PARTFUN1, MEMBERED, XBOOLE_0; clusters RELSET_1, XREAL_0, SEQ_1, SEQM_3, NAT_1, MEMBERED, ZFMISC_1, XBOOLE_0, NUMBERS, ORDINAL2; requirements REAL, NUMERALS, SUBSET, BOOLE, ARITHM; definitions TARSKI, XBOOLE_0; theorems AXIOMS, TARSKI, REAL_1, NAT_1, FUNCT_1, FUNCT_2, ABSVALUE, SEQ_1, SEQ_2, SEQM_3, SEQ_4, PROB_1, SQUARE_1, RFUNCT_1, RCOMP_1, RFUNCT_2, LIMFUNC1, LIMFUNC2, RELSET_1, XREAL_0, XBOOLE_0, XBOOLE_1, XCMPLX_0, XCMPLX_1; schemes NAT_1, RECDEF_1, RCOMP_1; begin reserve r,r1,r2,g,g1,g2,x0 for Real; reserve n,k,m for Nat; reserve seq for Real_Sequence; reserve f,f1,f2 for PartFunc of REAL,REAL; Lm1: for X,Y,Z be set st X c=Y\Z holds X c=Y proof let X,Y,Z be set such that A1: X c=Y\Z; Y\Z c=Y by XBOOLE_1:36; hence thesis by A1,XBOOLE_1:1; end; Lm2: for g,r,r1 be real number holds 0<g & r<=r1 implies r-g<r1 & r<r1+g proof let g,r,r1 be real number; assume A1: 0<g & r<=r1; then r-g<r1-0 by REAL_1:92; hence r-g<r1; r+0<r1+g by A1,REAL_1:67; hence thesis; end; Lm3: for X be set st rng seq c=dom(f1(#)f2)\X holds rng seq c=dom(f1(#)f2) & dom(f1(#)f2)=dom f1/\dom f2 & rng seq c=dom f1 & rng seq c=dom f2 & rng seq c=dom f1\X & rng seq c=dom f2\X proof let X be set; assume A1: rng seq c=dom(f1(#)f2)\X; hence A2: rng seq c=dom(f1(#)f2) by Lm1; thus dom(f1(#)f2)=dom f1/\dom f2 by SEQ_1:def 5; then A3: dom(f1(#)f2)c=dom f1 & dom(f1(#)f2)c=dom f2 by XBOOLE_1:17; hence rng seq c=dom f1 & rng seq c=dom f2 by A2,XBOOLE_1:1; dom(f1(#)f2)\X c=dom f1\X & dom(f1(#)f2)\X c=dom f2\X by A3,XBOOLE_1:33; hence thesis by A1,XBOOLE_1:1; end; Lm4: r-1/(n+1)<r & r<r+1/(n+1) proof 0<n+1 by NAT_1:19; then 0<1/(n+1) by SEQ_2:6; hence thesis by Lm2; end; Lm5: 0<1/(n+1) proof 0<n+1 by NAT_1:19; hence thesis by SEQ_2:6; end; Lm6: for X be set st rng seq c=dom(f1+f2)\X holds rng seq c=dom(f1+f2) & dom(f1+f2)=dom f1/\dom f2 & rng seq c=dom f1 & rng seq c=dom f2 & rng seq c=dom f1\X & rng seq c=dom f2\X proof let X be set; assume A1: rng seq c=dom(f1+f2)\X; hence A2: rng seq c=dom(f1+f2) by Lm1; thus dom(f1+f2)=dom f1/\dom f2 by SEQ_1:def 3; then A3: dom(f1+f2)c=dom f1 & dom(f1+f2)c=dom f2 by XBOOLE_1:17; hence rng seq c=dom f1 & rng seq c=dom f2 by A2,XBOOLE_1:1; dom(f1+f2)\X c=dom f1\X & dom(f1+f2)\X c=dom f2\X by A3,XBOOLE_1:33; hence thesis by A1,XBOOLE_1:1; end; theorem Th1: (rng seq c= dom f /\ left_open_halfline(x0) or rng seq c= dom f /\ right_open_halfline(x0)) implies rng seq c= dom f \ {x0} proof assume A1: rng seq c=dom f/\left_open_halfline(x0) or rng seq c=dom f/\right_open_halfline(x0); let x be set; assume A2: x in rng seq; then consider n such that A3: seq.n=x by RFUNCT_2:9; now per cases by A1; suppose rng seq c=dom f/\left_open_halfline(x0); then A4: seq.n in dom f & seq.n in left_open_halfline(x0) by A2,A3,XBOOLE_0: def 3; then seq.n in {g1: g1<x0} by PROB_1:def 15; then ex g1 st g1=seq.n & g1<x0; then not x in {x0} by A3,TARSKI:def 1; hence x in dom f\{x0} by A3,A4,XBOOLE_0:def 4; suppose rng seq c=dom f/\right_open_halfline(x0); then A5: seq.n in dom f & seq.n in right_open_halfline(x0) by A2,A3,XBOOLE_0: def 3 ; then seq.n in {g1: x0<g1} by LIMFUNC1:def 3; then ex g1 st g1=seq.n & x0<g1 ; then not x in {x0} by A3,TARSKI:def 1; hence x in dom f\{x0} by A3,A5,XBOOLE_0:def 4; end; hence thesis; end; theorem Th2: (for n holds 0<abs(x0-seq.n) & abs(x0-seq.n)<1/(n+1) & seq.n in dom f) implies seq is convergent & lim seq=x0 & rng seq c=dom f & rng seq c= dom f \ {x0} proof assume A1: for n holds 0<abs(x0-seq.n) & abs(x0-seq.n)<1/(n+1) & seq.n in dom f; A2: now let r be real number such that A3: 0<r; consider n such that A4: r"<n by SEQ_4:10; take n; let k; assume n<=k; then A5: n+1<=k+1 by AXIOMS:24; 0<n+1 by NAT_1:19; then A6: 1/(k+1)<=1/(n+1) by A5,SEQ_4:1; n<=n+1 by NAT_1:37; then A7: r"<n+1 by A4,AXIOMS:22; 0<r" by A3,REAL_1:72; then 1/(n+1)<1/r" by A7,SEQ_2:10; then 1/(k+1)<1/r" by A6,AXIOMS:22; then A8: 1/(k+1)<r by XCMPLX_1:218 ; abs(x0-seq.k)<1/(k+1) by A1; then abs(x0-seq.k)<r by A8,AXIOMS:22; then abs(-(seq.k-x0))<r by XCMPLX_1:143 ; hence abs(seq.k-x0)<r by ABSVALUE:17; end; hence seq is convergent by SEQ_2:def 6; hence lim seq=x0 by A2,SEQ_2:def 7; thus A9: rng seq c=dom f proof let x be set; assume x in rng seq; then ex n st seq.n=x by RFUNCT_2:9; hence thesis by A1; end; let x be set; assume A10: x in rng seq; then consider n such that A11: seq.n=x by RFUNCT_2:9; 0<>abs(x0-seq.n) by A1; then x0-seq.n<>0 by ABSVALUE:7; then x0-seq.n+seq.n<>0+seq.n by XCMPLX_1:2; then seq.n<>x0 by XCMPLX_1:27; then not x in {x0} by A11,TARSKI:def 1; hence thesis by A9,A10,XBOOLE_0:def 4; end; theorem Th3: seq is convergent & lim seq=x0 & rng seq c= dom f \ {x0} implies for r st 0<r ex n st for k st n<=k holds 0<abs(x0-seq.k) & abs(x0-seq.k)<r & seq.k in dom f proof assume A1: seq is convergent & lim seq=x0 & rng seq c=dom f\{x0}; let r; assume 0<r; then consider n such that A2: for k st n<=k holds abs(seq.k-x0)<r by A1,SEQ_2:def 7; take n; A3: now let n; seq.n in rng seq by RFUNCT_2:10; then not seq.n in {x0} by A1,XBOOLE_0:def 4; then seq.n<>x0 by TARSKI:def 1; then seq.n+-x0<>x0+-x0 by XCMPLX_1:2; then seq.n+-x0<>0 by XCMPLX_0:def 6; hence seq.n-x0<>0 by XCMPLX_0:def 8; end; let k such that A4: n<=k; seq.k-x0<>0 by A3; then 0<abs(seq.k-x0) by ABSVALUE:6; then 0<abs(-(x0-seq.k)) by XCMPLX_1:143; hence 0<abs(x0-seq.k) by ABSVALUE:17; abs(seq.k-x0)<r by A2,A4; then abs(-(x0-seq.k))<r by XCMPLX_1:143; hence abs(x0-seq.k)<r by ABSVALUE:17; seq.k in rng seq by RFUNCT_2:10; hence thesis by A1,XBOOLE_0:def 4; end; theorem Th4: 0<r implies ].x0-r,x0+r.[ \ {x0} = ].x0-r,x0.[ \/ ].x0,x0+r.[ proof assume A1: 0<r; thus ].x0-r,x0+r.[\{x0}c=].x0-r,x0.[ \/ ].x0,x0+r.[ proof let x be set; assume x in ].x0-r,x0+r.[\{x0}; then A2: x in ].x0-r,x0+r.[ & not x in {x0} by XBOOLE_0:def 4; then consider r1 such that A3: r1=x; A4: r1<>x0 by A2,A3,TARSKI:def 1; x in {g2: x0-r<g2 & g2<x0+r} by A2,RCOMP_1:def 2; then A5: ex g2 st g2=x & x0-r<g2 & g2<x0+r; now per cases by A4,REAL_1:def 5; suppose r1<x0; then r1 in {g1: x0-r<g1 & g1<x0} by A3,A5; then x in ].x0-r,x0.[ by A3,RCOMP_1:def 2; hence thesis by XBOOLE_0:def 2; suppose x0<r1; then r1 in {g1: x0<g1 & g1<x0+r} by A3,A5; then x in ].x0,x0+r.[ by A3,RCOMP_1:def 2; hence thesis by XBOOLE_0:def 2; end; hence thesis; end; let x be set such that A6: x in ].x0-r,x0.[\/].x0,x0+r.[; now per cases by A6,XBOOLE_0:def 2; suppose x in ].x0-r,x0.[; then x in {g1: x0-r<g1 & g1<x0} by RCOMP_1:def 2; then consider g1 such that A7: g1=x & x0-r<g1 & g1<x0; A8: not x in {x0} by A7,TARSKI:def 1; g1<x0+r by A1,A7,Lm2; then x in {g2: x0-r<g2 & g2<x0+r} by A7; then x in ].x0-r,x0+r.[ by RCOMP_1: def 2; hence thesis by A8,XBOOLE_0:def 4; suppose x in ].x0,x0+r.[; then x in {g1: x0<g1 & g1<x0+r} by RCOMP_1:def 2; then consider g1 such that A9: g1=x & x0<g1 & g1<x0+r; A10: not x in {x0} by A9,TARSKI:def 1; x0-r<g1 by A1,A9,Lm2; then x in {g2: x0-r<g2 & g2<x0+r} by A9; then x in ].x0-r,x0+r.[ by RCOMP_1: def 2; hence thesis by A10,XBOOLE_0:def 4; end; hence thesis; end; theorem Th5: 0<r2 & ].x0-r2,x0.[ \/ ].x0,x0+r2.[ c= dom f implies for r1,r2 st r1<x0 & x0<r2 ex g1,g2 st r1<g1 & g1<x0 & g1 in dom f & g2<r2 & x0<g2 & g2 in dom f proof assume A1: 0<r2 & ].x0-r2,x0.[\/].x0,x0+r2.[c=dom f; ].x0-r2,x0.[c=].x0-r2,x0.[\/].x0,x0+r2.[ & ].x0,x0+r2.[c=].x0-r2,x0.[\/].x0,x0+r2.[ by XBOOLE_1:7; then A2: ].x0-r2,x0.[c=dom f & ].x0,x0+r2.[c=dom f by A1,XBOOLE_1:1; let r1,r2; assume A3: r1<x0 & x0<r2; then consider g1 such that A4: r1<g1 & g1<x0 & g1 in dom f by A1,A2,LIMFUNC2:3; take g1; consider g2 such that A5: g2<r2 & x0<g2 & g2 in dom f by A1,A2,A3,LIMFUNC2:4; take g2; thus thesis by A4,A5; end; theorem Th6: (for n holds x0-1/(n+1)<seq.n & seq.n<x0 & seq.n in dom f) implies seq is convergent & lim seq=x0 & rng seq c= dom f \ {x0} proof assume A1: for n holds x0-1/(n+1)<seq.n & seq.n<x0 & seq.n in dom f; hence seq is convergent & lim seq=x0 by LIMFUNC2:5; rng seq c=dom f/\left_open_halfline(x0) by A1,LIMFUNC2:5; hence rng seq c=dom f\{x0} by Th1; end; theorem Th7: seq is convergent & lim seq=x0 & 0<g implies ex k st for n st k<=n holds x0-g<seq.n & seq.n<x0+g proof assume A1: seq is convergent & lim seq=x0 & 0<g; then x0-g<lim seq by Lm2; then consider k1 be Nat such that A2: for n st k1<=n holds x0-g<seq.n by A1,LIMFUNC2:1; lim seq<x0+g by A1,Lm2; then consider k2 be Nat such that A3: for n st k2<= n holds seq.n<x0+g by A1,LIMFUNC2:2; take k=max(k1,k2); let n; assume A4: k<=n; k1<=k by SQUARE_1:46; then k1<=n by A4,AXIOMS:22; hence x0-g<seq.n by A2; k2<=k by SQUARE_1:46; then k2<=n by A4,AXIOMS:22; hence seq.n<x0+g by A3; end; theorem Th8: (for r1,r2 st r1<x0 & x0<r2 ex g1,g2 st r1<g1 & g1<x0 & g1 in dom f & g2<r2 & x0<g2 & g2 in dom f) iff (for r st r<x0 ex g st r<g & g<x0 & g in dom f) & (for r st x0<r ex g st g<r & x0<g & g in dom f) proof thus (for r1,r2 st r1<x0 & x0<r2 ex g1,g2 st r1<g1 & g1<x0 & g1 in dom f & g2<r2 & x0<g2 & g2 in dom f) implies (for r st r<x0 ex g st r<g & g<x0 & g in dom f) & (for r st x0<r ex g st g<r & x0<g & g in dom f) proof assume A1: for r1,r2 st r1<x0 & x0<r2 ex g1,g2 st r1<g1 & g1<x0 & g1 in dom f & g2<r2 & x0<g2 & g2 in dom f; thus for r st r<x0 ex g st r<g & g<x0 & g in dom f proof let r such that A2: r<x0; x0<x0+1 by Lm2; then consider g1,g2 such that A3: r<g1 & g1<x0 & g1 in dom f & g2<x0+1 & x0<g2 & g2 in dom f by A1,A2; take g1; thus r<g1 & g1<x0 & g1 in dom f by A3; end; let r such that A4: x0<r; x0-1<x0 by Lm2; then consider g1,g2 such that A5: x0-1<g1 & g1<x0 & g1 in dom f & g2<r & x0<g2 & g2 in dom f by A1,A4; take g2; thus g2<r & x0<g2 & g2 in dom f by A5; end; assume A6: (for r st r<x0 ex g st r<g & g<x0 & g in dom f) & for r st x0<r ex g st g<r & x0<g & g in dom f; let r1,r2; assume A7: r1<x0 & x0<r2; then consider g1 such that A8: r1<g1 & g1<x0 & g1 in dom f by A6; consider g2 such that A9: g2<r2 & x0<g2 & g2 in dom f by A6,A7; take g1; take g2; thus thesis by A8,A9; end; definition let f,x0; pred f is_convergent_in x0 means :Def1: (for r1,r2 st r1<x0 & x0<r2 ex g1,g2 st r1<g1 & g1<x0 & g1 in dom f & g2<r2 & x0<g2 & g2 in dom f) & ex g st for seq st seq is convergent & lim seq=x0 & rng seq c= dom f \ {x0} holds f*seq is convergent & lim(f*seq)=g; pred f is_divergent_to+infty_in x0 means :Def2: (for r1,r2 st r1<x0 & x0<r2 ex g1,g2 st r1<g1 & g1<x0 & g1 in dom f & g2<r2 & x0<g2 & g2 in dom f) & for seq st seq is convergent & lim seq=x0 & rng seq c= dom f \ {x0} holds f*seq is divergent_to+infty; pred f is_divergent_to-infty_in x0 means :Def3: (for r1,r2 st r1<x0 & x0<r2 ex g1,g2 st r1<g1 & g1<x0 & g1 in dom f & g2<r2 & x0<g2 & g2 in dom f) & for seq st seq is convergent & lim seq=x0 & rng seq c= dom f \ {x0} holds f*seq is divergent_to-infty; end; canceled 3; theorem f is_convergent_in x0 iff (for r1,r2 st r1<x0 & x0<r2 ex g1,g2 st r1<g1 & g1<x0 & g1 in dom f & g2<r2 & x0<g2 & g2 in dom f) & ex g st for g1 st 0<g1 ex g2 st 0<g2 & for r1 st 0<abs(x0-r1) & abs(x0-r1)<g2 & r1 in dom f holds abs(f.r1-g)<g1 proof thus f is_convergent_in x0 implies (for r1,r2 st r1<x0 & x0<r2 ex g1,g2 st r1<g1 & g1<x0 & g1 in dom f & g2<r2 & x0<g2 & g2 in dom f) & ex g st for g1 st 0<g1 ex g2 st 0<g2 & for r1 st 0<abs(x0-r1) & abs(x0-r1)<g2 & r1 in dom f holds abs(f.r1-g)<g1 proof assume that A1: f is_convergent_in x0 and A2: (not for r1,r2 st r1<x0 & x0<r2 ex g1,g2 st r1<g1 & g1<x0 & g1 in dom f & g2<r2 & x0<g2 & g2 in dom f) or for g ex g1 st 0<g1 & for g2 st 0<g2 ex r1 st 0<abs(x0-r1) & abs(x0-r1)<g2 & r1 in dom f & abs(f.r1-g)>=g1; consider g such that A3: for seq st seq is convergent & lim seq=x0 & rng seq c=dom f\{x0} holds f*seq is convergent & lim(f*seq)=g by A1,Def1; consider g1 such that A4: 0<g1 & for g2 st 0<g2 ex r1 st 0<abs(x0-r1) & abs(x0-r1)<g2 & r1 in dom f & abs(f.r1-g)>= g1 by A1,A2,Def1; defpred X[Nat,real number] means 0<abs(x0-$2) & abs(x0-$2)<1/($1+1) & $2 in dom f & abs(f.($2)-g)>=g1; A5: now let n; 0<1/(n+1) by Lm5; then consider r1 such that A6: 0<abs(x0-r1) & abs(x0-r1)<1/(n+1) & r1 in dom f & abs(f.r1-g)>=g1 by A4; reconsider r1 as real number; take r1; thus X[n,r1] by A6; end; consider s be Real_Sequence such that A7: for n holds X[n,s.n] from RealSeqChoice(A5); A8: s is convergent & lim s=x0 & rng s c=dom f & rng s c=dom f\{x0} by A7,Th2 ; then f*s is convergent & lim(f*s)=g by A3; then consider n such that A9: for k st n<=k holds abs((f*s).k-g)<g1 by A4,SEQ_2:def 7; abs((f*s).n-g)<g1 by A9; then abs(f.(s.n)-g)<g1 by A8,RFUNCT_2:21; hence contradiction by A7; end; assume A10: for r1,r2 st r1<x0 & x0<r2 ex g1,g2 st r1<g1 & g1<x0 & g1 in dom f & g2<r2 & x0<g2 & g2 in dom f; given g such that A11: for g1 st 0<g1 ex g2 st 0<g2 & for r1 st 0<abs(x0-r1) & abs(x0-r1)<g2 & r1 in dom f holds abs(f.r1-g)<g1; now let s be Real_Sequence; assume A12: s is convergent & lim s=x0 & rng s c=dom f\{x0}; then A13: rng s c=dom f by Lm1; A14: now let g1 be real number; A15: g1 is Real by XREAL_0:def 1; assume 0<g1; then consider g2 such that A16: 0<g2 & for r1 st 0<abs(x0-r1) & abs(x0-r1)<g2 & r1 in dom f holds abs(f.r1-g)<g1 by A11,A15; consider n such that A17: for k st n<=k holds 0<abs(x0-s.k) & abs(x0-s.k)<g2 & s.k in dom f by A12,A16,Th3; take n; let k; assume n<=k; then 0<abs(x0-s.k) & abs(x0-s.k)<g2 & s.k in dom f by A17; then abs(f.(s.k)-g)<g1 by A16; hence abs((f*s).k-g)<g1 by A13,RFUNCT_2:21; end; hence f*s is convergent by SEQ_2:def 6; hence lim(f*s)=g by A14,SEQ_2: def 7; end; hence thesis by A10,Def1; end; theorem f is_divergent_to+infty_in x0 iff (for r1,r2 st r1<x0 & x0<r2 ex g1,g2 st r1<g1 & g1<x0 & g1 in dom f & g2<r2 & x0<g2 & g2 in dom f) & for g1 ex g2 st 0<g2 & for r1 st 0<abs(x0-r1) & abs(x0-r1)<g2 & r1 in dom f holds g1<f.r1 proof thus f is_divergent_to+infty_in x0 implies (for r1,r2 st r1<x0 & x0<r2 ex g1,g2 st r1<g1 & g1<x0 & g1 in dom f & g2<r2 & x0<g2 & g2 in dom f) & for g1 ex g2 st 0<g2 & for r1 st 0<abs(x0-r1) & abs(x0-r1)<g2 & r1 in dom f holds g1<f.r1 proof assume that A1: f is_divergent_to+infty_in x0 and A2: (not for r1,r2 st r1<x0 & x0<r2 ex g1,g2 st r1<g1 & g1<x0 & g1 in dom f & g2<r2 & x0<g2 & g2 in dom f) or ex g1 st for g2 st 0<g2 ex r1 st 0<abs(x0-r1) & abs(x0-r1)<g2 & r1 in dom f & f.r1<=g1; consider g1 such that A3: for g2 st 0<g2 ex r1 st 0<abs(x0-r1) & abs(x0-r1)<g2 & r1 in dom f & f.r1<=g1 by A1,A2,Def2; defpred X[Nat,real number] means 0<abs(x0-$2) & abs(x0-$2)<1/($1+1) & $2 in dom f & f.($2)<=g1; A4: now let n; 0<1/(n+1) by Lm5; then consider r1 such that A5: 0<abs(x0-r1) & abs(x0-r1)<1/(n+1) & r1 in dom f & f.r1<=g1 by A3; reconsider r1 as real number; take r1; thus X[n,r1] by A5; end; consider s be Real_Sequence such that A6: for n holds X[n,s.n] from RealSeqChoice(A4); A7: s is convergent & lim s=x0 & rng s c=dom f & rng s c=dom f\{x0} by A6,Th2; then f*s is divergent_to+infty by A1,Def2; then consider n such that A8: for k st n<=k holds g1<(f*s).k by LIMFUNC1:def 4; g1<(f*s).n by A8; then g1<f.(s.n) by A7,RFUNCT_2:21; hence contradiction by A6; end; assume that A9: for r1,r2 st r1<x0 & x0<r2 ex g1,g2 st r1<g1 & g1<x0 & g1 in dom f & g2<r2 & x0<g2 & g2 in dom f and A10: for g1 ex g2 st 0<g2 & for r1 st 0<abs(x0-r1) & abs(x0-r1)<g2 & r1 in dom f holds g1<f.r1; now let s be Real_Sequence; assume A11: s is convergent & lim s=x0 & rng s c=dom f\{x0}; then A12: rng s c=dom f by Lm1; now let g1; consider g2 such that A13: 0<g2 & for r1 st 0<abs(x0-r1) & abs(x0-r1)<g2 & r1 in dom f holds g1<f.r1 by A10; consider n such that A14: for k st n<=k holds 0<abs(x0-s.k) & abs(x0-s.k)<g2 & s.k in dom f by A11,A13,Th3; take n; let k; assume n<=k; then 0<abs(x0-s.k) & abs(x0-s.k)<g2 & s.k in dom f by A14; then g1<f.(s.k) by A13; hence g1<(f*s).k by A12,RFUNCT_2:21; end; hence f*s is divergent_to+infty by LIMFUNC1:def 4; end; hence thesis by A9,Def2; end; theorem f is_divergent_to-infty_in x0 iff (for r1,r2 st r1<x0 & x0<r2 ex g1,g2 st r1<g1 & g1<x0 & g1 in dom f & g2<r2 & x0<g2 & g2 in dom f) & for g1 ex g2 st 0<g2 & for r1 st 0<abs(x0-r1) & abs(x0-r1)<g2 & r1 in dom f holds f.r1<g1 proof thus f is_divergent_to-infty_in x0 implies (for r1,r2 st r1<x0 & x0<r2 ex g1,g2 st r1<g1 & g1<x0 & g1 in dom f & g2<r2 & x0<g2 & g2 in dom f) & for g1 ex g2 st 0<g2 & for r1 st 0<abs(x0-r1) & abs(x0-r1)<g2 & r1 in dom f holds f.r1<g1 proof assume that A1: f is_divergent_to-infty_in x0 and A2: (not for r1,r2 st r1<x0 & x0<r2 ex g1,g2 st r1<g1 & g1<x0 & g1 in dom f & g2<r2 & x0<g2 & g2 in dom f) or ex g1 st for g2 st 0<g2 ex r1 st 0<abs(x0-r1) & abs(x0-r1)<g2 & r1 in dom f & g1<=f.r1; consider g1 such that A3: for g2 st 0<g2 ex r1 st 0<abs(x0-r1) & abs(x0-r1)<g2 & r1 in dom f & g1<=f.r1 by A1,A2,Def3; defpred X[Nat,real number] means 0<abs(x0-$2) & abs(x0-$2)<1/($1+1) & $2 in dom f & g1<=f.($2); A4: now let n; 0<1/(n+1) by Lm5; then consider r1 such that A5: 0<abs(x0-r1) & abs(x0-r1)<1/(n+1) & r1 in dom f & g1<=f.r1 by A3; reconsider r1 as real number; take r1; thus X[n,r1] by A5; end; consider s be Real_Sequence such that A6: for n holds X[n,s.n] from RealSeqChoice(A4); A7: s is convergent & lim s=x0 & rng s c=dom f & rng s c=dom f\{x0} by A6,Th2 ; then f*s is divergent_to-infty by A1,Def3; then consider n such that A8: for k st n<=k holds (f*s).k<g1 by LIMFUNC1:def 5; (f*s).n<g1 by A8; then f.(s.n)<g1 by A7,RFUNCT_2:21; hence contradiction by A6; end; assume that A9: for r1,r2 st r1<x0 & x0<r2 ex g1,g2 st r1<g1 & g1<x0 & g1 in dom f & g2<r2 & x0<g2 & g2 in dom f and A10: for g1 ex g2 st 0<g2 & for r1 st 0<abs(x0-r1) & abs(x0-r1)<g2 & r1 in dom f holds f.r1<g1; now let s be Real_Sequence; assume A11: s is convergent & lim s=x0 & rng s c=dom f\{x0}; then A12: rng s c=dom f by Lm1; now let g1; consider g2 such that A13: 0<g2 & for r1 st 0<abs(x0-r1) & abs(x0-r1)<g2 & r1 in dom f holds f.r1<g1 by A10; consider n such that A14: for k st n<=k holds 0<abs(x0-s.k) & abs(x0-s.k)<g2 & s.k in dom f by A11,A13,Th3; take n; let k; assume n<=k; then 0<abs(x0-s.k) & abs(x0-s.k)<g2 & s.k in dom f by A14; then f.(s.k)<g1 by A13; hence (f*s).k<g1 by A12,RFUNCT_2:21; end; hence f*s is divergent_to-infty by LIMFUNC1:def 5; end; hence thesis by A9,Def3; end; theorem Th15: f is_divergent_to+infty_in x0 iff f is_left_divergent_to+infty_in x0 & f is_right_divergent_to+infty_in x0 proof thus f is_divergent_to+infty_in x0 implies f is_left_divergent_to+infty_in x0 & f is_right_divergent_to+infty_in x0 proof assume A1: f is_divergent_to+infty_in x0; then A2: for r1,r2 st r1<x0 & x0<r2 ex g1,g2 st r1<g1 & g1<x0 & g1 in dom f & g2<r2 & x0<g2 & g2 in dom f by Def2; then A3: for r st r<x0 ex g st r<g & g<x0 & g in dom f by Th8; now let s be Real_Sequence; assume A4: s is convergent & lim s=x0 & rng s c=dom f/\left_open_halfline(x0); then rng s c=dom f\{x0} by Th1; hence f*s is divergent_to+infty by A1,A4, Def2; end; hence f is_left_divergent_to+infty_in x0 by A3,LIMFUNC2:def 2; A5: for r st x0<r ex g st g<r & x0<g & g in dom f by A2,Th8; now let s be Real_Sequence; assume A6: s is convergent & lim s=x0 & rng s c=dom f/\ right_open_halfline(x0); then rng s c=dom f\{x0} by Th1; hence f*s is divergent_to+infty by A1,A6, Def2; end; hence f is_right_divergent_to+infty_in x0 by A5,LIMFUNC2:def 5; end; assume A7: f is_left_divergent_to+infty_in x0 & f is_right_divergent_to+infty_in x0; then A8: for r st r<x0 ex g st r<g & g<x0 & g in dom f by LIMFUNC2:def 2; for r st x0<r ex g st g<r & x0<g & g in dom f by A7,LIMFUNC2:def 5; then A9: for r1,r2 st r1<x0 & x0<r2 ex g1,g2 st r1<g1 & g1<x0 & g1 in dom f & g2<r2 & x0<g2 & g2 in dom f by A8,Th8; now let s be Real_Sequence such that A10: s is convergent & lim s=x0 & rng s c=dom f\{x0}; now per cases; suppose ex k st for n st k<=n holds s.n<x0; then consider k such that A11: for n st k<=n holds s.n<x0; A12: s^\k is convergent & lim(s^\k)=x0 by A10,SEQ_4:33; A13: rng s c=dom f by A10,Lm1; rng(s^\k)c=dom f/\left_open_halfline(x0) proof let x be set; assume x in rng(s^\k); then consider n such that A14: (s^\k).n=x by RFUNCT_2:9; s.(n+k) in rng s by RFUNCT_2:10; then A15: x in rng s by A14,SEQM_3:def 9 ; k<=n+k by NAT_1:37; then s.(n+k)<x0 by A11; then s.(n+k) in {g1: g1<x0}; then s.(n+k) in left_open_halfline(x0) by PROB_1:def 15; then x in left_open_halfline(x0) by A14,SEQM_3:def 9; hence thesis by A13, A15,XBOOLE_0:def 3; end; then A16: f*(s^\k) is divergent_to+infty by A7,A12,LIMFUNC2:def 2; f*(s^\k) =(f*s)^\k by A13,RFUNCT_2:22; hence f*s is divergent_to+infty by A16,LIMFUNC1:34; suppose A17: for k ex n st k<=n & s.n>=x0; now per cases; suppose ex k st for n st k<=n holds x0<s.n; then consider k such that A18: for n st k<=n holds s.n>x0; A19: s^\k is convergent & lim(s^\k)=x0 by A10,SEQ_4:33; A20: rng s c=dom f by A10,Lm1; rng(s^\k)c=dom f/\right_open_halfline(x0) proof let x be set; assume x in rng(s^\k); then consider n such that A21: (s^\k).n=x by RFUNCT_2:9; s.(n+k) in rng s by RFUNCT_2:10; then A22: x in rng s by A21,SEQM_3:def 9 ; k<=n+k by NAT_1:37; then x0<s.(n+k) by A18; then s.(n+k) in {g1: x0<g1}; then s.(n+k) in right_open_halfline(x0) by LIMFUNC1:def 3; then x in right_open_halfline(x0) by A21,SEQM_3:def 9; hence thesis by A20,A22,XBOOLE_0:def 3; end; then A23: f*(s^\k) is divergent_to+infty by A7,A19,LIMFUNC2:def 5; f*(s^\k) =(f*s)^\k by A20,RFUNCT_2:22; hence f*s is divergent_to+infty by A23,LIMFUNC1:34; suppose A24: for k ex n st k<=n & x0>=s.n; A25: now let k; consider n such that A26: k<=n & s.n<=x0 by A24; take n; thus k<=n by A26; s.n in rng s by RFUNCT_2:10; then not s.n in {x0} by A10,XBOOLE_0:def 4; then s.n<>x0 by TARSKI:def 1; hence s.n<x0 by A26,REAL_1:def 5; end; then consider m1 be Nat such that A27: 0<=m1 & s.m1<x0; defpred X[Nat] means s.$1<x0; A28: ex m st X[m] by A27; consider M be Element of NAT such that A29: X[M] & for n st X[n] holds M <= n from Min(A28); A30: now let n; consider m such that A31: n+1<=m & s.m<x0 by A25; take m; thus n<m & s.m<x0 by A31,NAT_1:38; end; defpred P[set,set] means for n,m st $1=n & $2=m holds n<m & s.m<x0 & for k st n<k & s.k<x0 holds m<=k; defpred X[Nat,Nat,Nat] means P[$2,$3]; A32: for n for x be Element of NAT ex y be Element of NAT st X[n,x,y] proof let n; let x be Element of NAT; defpred X[Nat] means x<$1 & s.$1<x0; A33: ex m st X[m] by A30; consider l be Nat such that A34: X[l] & for k st X[k] holds l <= k from Min(A33); take l; thus thesis by A34; end; reconsider M'=M as Element of NAT qua non empty set; consider F be Function of NAT,NAT such that A35: F.0=M' & for n holds X[n,F.n,F.(n+1)] from RecExD(A32); A36: dom F=NAT & rng F c=NAT by FUNCT_2:def 1,RELSET_1:12; then rng F c=REAL by XBOOLE_1:1; then reconsider F as Real_Sequence by A36,FUNCT_2:def 1,RELSET_1:11; A37: now let n; F.n in rng F by A36,FUNCT_1:def 5;hence F.n is Nat by A36 ; end; now let n; F.n is Nat & F.(n+1) is Nat by A37; hence F.n<F.(n+1) by A35; end; then reconsider F as increasing Seq_of_Nat by A36,SEQM_3:def 8,def 11; A38: for n st s.n<x0 ex m st F.m=n proof defpred X[Nat] means s.$1<x0 & for m holds F.m<>$1; assume A39: ex n st X[n]; consider M1 be Nat such that A40: X[M1] & for n st X[n] holds M1<=n from Min(A39); defpred X[Nat] means $1<M1 & s.$1<x0 & ex m st F.m=$1; A41: ex n st X[n] proof take M; A42: M<=M1 by A29,A40; M <> M1 by A35,A40; hence M<M1 by A42,REAL_1:def 5; thus s.M<x0 by A29; take 0; thus thesis by A35; end; A43: for n st X[n] holds n<=M1; consider MX be Nat such that A44: X[MX] & for n st X[n] holds n<=MX from Max(A43,A41); A45: for k st MX<k & k<M1 holds s.k>=x0 proof given k such that A46: MX<k & k<M1 & s.k<x0; now per cases; suppose ex m st F.m=k; hence contradiction by A44,A46; suppose for m holds F.m<>k; hence contradiction by A40,A46; end; hence contradiction; end; consider m such that A47: F.m=MX by A44; A48: MX<F.(m+1) & s.(F.(m+1))<x0 & for k st MX<k & s.k<x0 holds F.(m+1)<=k by A35,A47; A49: F.(m+1)<=M1 by A35,A40,A44,A47; now assume F.(m+1)<>M1; then F.(m+1)<M1 by A49,REAL_1:def 5; hence contradiction by A45,A48; end; hence contradiction by A40; end; A50: for n holds (s*F).n<x0 proof defpred X[Nat] means (s*F).$1<x0; A51: X[0] by A29,A35,SEQM_3:31; A52: for k st X[k] holds X[k+1] proof let k such that (s*F).k<x0; P[F.k,F.(k+1)] by A35; then s.(F.(k+1))<x0; hence (s*F).(k+1)<x0 by SEQM_3:31; end; thus for k holds X[k] from Ind(A51,A52); end; A53: s*F is_subsequence_of s by SEQM_3:def 10; then A54: s*F is convergent by A10,SEQ_4:29; A55: lim(s*F)=x0 by A10,A53,SEQ_4:30; rng(s*F)c=rng s by A53,RFUNCT_2:11 ; then A56: rng(s*F)c=dom f\{x0} by A10,XBOOLE_1:1; rng(s*F)c=dom f/\left_open_halfline(x0) proof let x be set; assume A57: x in rng(s*F); then consider n such that A58: (s*F).n=x by RFUNCT_2:9; (s*F).n<x0 by A50; then x in {g1: g1<x0} by A58; then A59: x in left_open_halfline(x0) by PROB_1:def 15; x in dom f by A56,A57,XBOOLE_0:def 4; hence thesis by A59,XBOOLE_0:def 3; end; then A60: f*(s*F) is divergent_to+infty by A7,A54,A55,LIMFUNC2:def 2; defpred X[Nat] means s.$1>x0; A61: now let k; consider n such that A62: k<=n & s.n>=x0 by A17; take n; thus k<=n by A62; s.n in rng s by RFUNCT_2:10; then not s.n in {x0} by A10,XBOOLE_0:def 4; then s.n<>x0 by TARSKI:def 1; hence s.n>x0 by A62,REAL_1:def 5; end; then ex mn be Nat st 0<=mn & s.mn>x0; then A63: ex m st X[m]; consider N be Element of NAT such that A64: X[N] & for n st X[n] holds N<=n from Min(A63); A65: now let n; consider m such that A66: n+1<=m & s.m>x0 by A61; take m; thus n<m & s.m>x0 by A66,NAT_1:38; end; defpred P[set,set] means for n,m st $1=n & $2=m holds n<m & s.m>x0 & for k st n<k & s.k>x0 holds m<=k; defpred X[Nat,Nat,Nat] means P[$2,$3]; A67: for n for x be Element of NAT ex y be Element of NAT st X[n,x,y] proof let n; let x be Element of NAT; defpred X[Nat] means x<$1 & s.$1>x0; A68: ex m st X[m] by A65; consider l be Nat such that A69: X[l] & for k st X[k] holds l<= k from Min(A68); take l; thus P[x,l] by A69; end; reconsider N'=N as Element of NAT qua non empty set; consider G be Function of NAT,NAT such that A70: G.0=N' & for n holds X[n,G.n,G.(n+1)] from RecExD(A67); A71: dom G=NAT & rng G c=NAT by FUNCT_2:def 1,RELSET_1:12; then rng G c=REAL by XBOOLE_1:1; then reconsider G as Real_Sequence by A71,FUNCT_2:def 1,RELSET_1:11; A72: now let n; G.n in rng G by A71,FUNCT_1:def 5;hence G.n is Nat by A71 ; end; now let n; G.n is Nat & G.(n+1) is Nat by A72; hence G.n<G.(n+1) by A70; end; then reconsider G as increasing Seq_of_Nat by A71,SEQM_3:def 8,def 11; defpred X[Nat] means s.$1>x0 & for m holds G.m<>$1; A73: for n st s.n>x0 ex m st G.m=n proof assume A74: ex n st X[n]; consider N1 be Nat such that A75: X[N1] & for n st X[n] holds N1<=n from Min(A74); defpred X[Nat] means $1<N1 & s.$1>x0 & ex m st G.m=$1; A76: ex n st X[n] proof take N; A77: N<=N1 by A64,A75; N <> N1 by A70,A75; hence N<N1 by A77,REAL_1:def 5; thus s.N>x0 by A64; take 0; thus thesis by A70; end; A78: for n st X[n] holds n<=N1; consider NX be Nat such that A79: X[NX] & for n st X[n] holds n<=NX from Max(A78,A76); A80: for k st NX<k & k<N1 holds s.k<=x0 proof given k such that A81: NX<k & k<N1 & s.k>x0; now per cases; suppose ex m st G.m=k; hence contradiction by A79,A81; suppose for m holds G.m<>k; hence contradiction by A75,A81; end; hence contradiction; end; consider m such that A82: G.m=NX by A79; A83: NX<G.(m+1) & s.(G.(m+1))>x0 & for k st NX<k & s.k>x0 holds G.(m+1)<=k by A70,A82; A84: G.(m+1)<=N1 by A70,A75,A79,A82; now assume G.(m+1)<>N1; then G.(m+1)<N1 by A84,REAL_1:def 5; hence contradiction by A80,A83; end; hence contradiction by A75; end; A85: for n holds (s*G).n>x0 proof defpred X[Nat] means (s*G).$1>x0; A86: X[0] by A64,A70,SEQM_3:31; A87: for k st X[k] holds X[k+1] proof let k such that (s*G).k>x0; P[G.k,G.(k+1)] by A70; then s.(G.(k+1))>x0; hence (s*G).(k+1)>x0 by SEQM_3:31; end; thus for k holds X[k] from Ind(A86,A87); end; A88: s*G is_subsequence_of s by SEQM_3:def 10; then A89: s*G is convergent by A10,SEQ_4:29; A90: lim(s*G)=x0 by A10,A88, SEQ_4:30; rng(s*G)c=rng s by A88,RFUNCT_2:11; then A91: rng(s*G)c=dom f\{x0} by A10,XBOOLE_1:1; rng(s*G)c=dom f/\right_open_halfline(x0) proof let x be set; assume A92: x in rng(s*G); then consider n such that A93: (s*G).n=x by RFUNCT_2:9; (s*G).n>x0 by A85; then x in {g1: x0<g1} by A93; then A94: x in right_open_halfline(x0) by LIMFUNC1:def 3; x in dom f by A91,A92,XBOOLE_0:def 4; hence thesis by A94,XBOOLE_0:def 3; end; then A95: f*(s*G) is divergent_to+infty by A7,A89,A90,LIMFUNC2:def 5 ; now let r;consider n1 be Nat such that A96: for k st n1<=k holds r<(f*(s*F)).k by A60,LIMFUNC1:def 4; consider n2 be Nat such that A97: for k st n2<=k holds r<(f*(s*G)).k by A95,LIMFUNC1:def 4; take n=max(F.n1,G.n2); let k; s.k in rng s by RFUNCT_2:9; then not s.k in {x0} by A10,XBOOLE_0:def 4; then A98: s.k<>x0 by TARSKI:def 1; assume A99: n<=k; now per cases by A98,REAL_1:def 5; suppose s.k<x0; then consider l be Nat such that A100: k=F.l by A38; F.n1<=n by SQUARE_1:46; then A101: F.n1<=k by A99,AXIOMS:22; dom f\{x0}c=dom f by XBOOLE_1:36; then A102: rng(s*F)c=dom f by A56,XBOOLE_1:1; A103: rng s c=dom f by A10 ,Lm1; l >= n1 by A100,A101,SEQM_3:7; then r<(f*(s*F)).l by A96; then r<f.((s*F).l) by A102,RFUNCT_2:21 ; then r<f.(s.k) by A100,SEQM_3:31; hence r<(f*s).k by A103,RFUNCT_2:21; suppose s.k>x0; then consider l be Nat such that A104: k=G.l by A73; G.n2<=n by SQUARE_1:46; then A105: G.n2<=k by A99,AXIOMS:22; dom f\{x0}c=dom f by XBOOLE_1:36; then A106: rng(s*G)c=dom f by A91, XBOOLE_1:1; A107: rng s c=dom f by A10,Lm1; l >= n2 by A104,A105,SEQM_3:7; then r<(f*(s*G)).l by A97; then r<f.((s*G).l) by A106,RFUNCT_2:21 ; then r<f.(s.k) by A104,SEQM_3:31; hence r<(f*s).k by A107,RFUNCT_2:21; end; hence r<(f*s).k; end; hence f*s is divergent_to+infty by LIMFUNC1:def 4; end; hence f*s is divergent_to+infty; end; hence f*s is divergent_to+infty; end; hence thesis by A9,Def2; end; theorem Th16: f is_divergent_to-infty_in x0 iff f is_left_divergent_to-infty_in x0 & f is_right_divergent_to-infty_in x0 proof thus f is_divergent_to-infty_in x0 implies f is_left_divergent_to-infty_in x0 & f is_right_divergent_to-infty_in x0 proof assume A1: f is_divergent_to-infty_in x0; then A2: for r1,r2 st r1<x0 & x0<r2 ex g1,g2 st r1<g1 & g1<x0 & g1 in dom f & g2<r2 & x0<g2 & g2 in dom f by Def3; then A3: for r st r<x0 ex g st r<g & g<x0 & g in dom f by Th8; now let s be Real_Sequence; assume A4: s is convergent & lim s=x0 & rng s c=dom f/\left_open_halfline(x0); then rng s c=dom f\{x0} by Th1; hence f*s is divergent_to-infty by A1,A4, Def3; end; hence f is_left_divergent_to-infty_in x0 by A3,LIMFUNC2:def 3; A5: for r st x0<r ex g st g<r & x0<g & g in dom f by A2,Th8; now let s be Real_Sequence; assume A6: s is convergent & lim s=x0 & rng s c=dom f/\ right_open_halfline(x0); then rng s c=dom f\{x0} by Th1; hence f*s is divergent_to-infty by A1,A6, Def3; end; hence f is_right_divergent_to-infty_in x0 by A5,LIMFUNC2:def 6; end; assume A7: f is_left_divergent_to-infty_in x0 & f is_right_divergent_to-infty_in x0; A8: now let r1,r2; assume A9: r1<x0 & x0<r2; then consider g1 such that A10: r1<g1 & g1<x0 & g1 in dom f by A7,LIMFUNC2:def 3; consider g2 such that A11: g2<r2 & x0<g2 & g2 in dom f by A7,A9,LIMFUNC2:def 6; take g1; take g2; thus r1<g1 & g1<x0 & g1 in dom f & g2<r2 & x0<g2 & g2 in dom f by A10,A11; end; now let s be Real_Sequence such that A12: s is convergent & lim s=x0 & rng s c=dom f\{x0}; now per cases; suppose ex k st for n st k<=n holds s.n<x0; then consider k such that A13: for n st k<=n holds s.n<x0; A14: s^\k is convergent & lim(s^\k)=x0 by A12,SEQ_4:33; A15: rng s c=dom f by A12,Lm1; rng(s^\k)c=dom f/\left_open_halfline(x0) proof let x be set; assume x in rng(s^\k); then consider n such that A16: (s^\k).n=x by RFUNCT_2:9; s.(n+k) in rng s by RFUNCT_2:10; then A17: x in rng s by A16,SEQM_3:def 9 ; k<=n+k by NAT_1:37; then s.(n+k)<x0 by A13; then s.(n+k) in {g1: g1<x0}; then s.(n+k) in left_open_halfline(x0) by PROB_1:def 15; then x in left_open_halfline(x0) by A16,SEQM_3:def 9; hence thesis by A15, A17,XBOOLE_0:def 3; end; then A18: f*(s^\k) is divergent_to-infty by A7,A14,LIMFUNC2:def 3; f*(s^\k) =(f*s)^\k by A15,RFUNCT_2:22; hence f*s is divergent_to-infty by A18,LIMFUNC1:34; suppose A19: for k ex n st k<=n & s.n>=x0; now per cases; suppose ex k st for n st k<=n holds x0<s.n; then consider k such that A20: for n st k<=n holds s.n>x0; A21: s^\k is convergent & lim(s^\k)=x0 by A12,SEQ_4:33; A22: rng s c=dom f by A12,Lm1; rng(s^\k)c=dom f/\right_open_halfline(x0) proof let x be set; assume x in rng(s^\k); then consider n such that A23: (s^\k).n=x by RFUNCT_2:9; s.(n+k) in rng s by RFUNCT_2:10; then A24: x in rng s by A23,SEQM_3:def 9 ; k<=n+k by NAT_1:37; then x0<s.(n+k) by A20; then s.(n+k) in {g1: x0<g1}; then s.(n+k) in right_open_halfline(x0) by LIMFUNC1:def 3; then x in right_open_halfline(x0) by A23,SEQM_3:def 9; hence thesis by A22,A24,XBOOLE_0:def 3; end; then A25: f*(s^\k) is divergent_to-infty by A7,A21,LIMFUNC2:def 6; f*(s^\k) =(f*s)^\k by A22,RFUNCT_2:22; hence f*s is divergent_to-infty by A25,LIMFUNC1:34; suppose A26: for k ex n st k<=n & x0>=s.n; A27: now let k; consider n such that A28: k<=n & s.n<=x0 by A26; take n; thus k<=n by A28; s.n in rng s by RFUNCT_2:10; then not s.n in {x0} by A12,XBOOLE_0:def 4; then s.n<>x0 by TARSKI:def 1; hence s.n<x0 by A28,REAL_1:def 5; end; then consider m1 be Nat such that A29: 0<=m1 & s.m1<x0; defpred X[Nat] means s.$1<x0; A30: ex m st X[m]by A29; consider M be Element of NAT such that A31: X[M] & for n st X[n] holds M<=n from Min(A30); A32: now let n; consider m such that A33: n+1<=m & s.m<x0 by A27; take m; thus n<m & s.m<x0 by A33,NAT_1:38; end; defpred P[set,set] means for n,m st $1=n & $2=m holds n<m & s.m<x0 & for k st n<k & s.k<x0 holds m<=k; defpred X[Nat,Nat,Nat] means P[$2,$3]; A34: for n for x be Element of NAT ex y be Element of NAT st X[n,x,y] proof let n; let x be Element of NAT; defpred X[Nat] means x<$1 & s.$1<x0; A35: ex m st X[m] by A32; consider l be Nat such that A36: X[l] & for k st X[k] holds l<=k from Min(A35); take l; thus thesis by A36; end; reconsider M'=M as Element of NAT qua non empty set; consider F be Function of NAT,NAT such that A37: F.0=M' & for n holds X[n,F.n,F.(n+1)] from RecExD(A34); A38: dom F=NAT & rng F c=NAT by FUNCT_2:def 1,RELSET_1:12; then rng F c=REAL by XBOOLE_1:1; then reconsider F as Real_Sequence by A38,FUNCT_2:def 1,RELSET_1:11; A39: now let n; F.n in rng F by A38,FUNCT_1:def 5;hence F.n is Nat by A38 ; end; now let n; F.n is Nat & F.(n+1) is Nat by A39; hence F.n<F.(n+1) by A37; end; then reconsider F as increasing Seq_of_Nat by A38,SEQM_3:def 8,def 11; defpred X[Nat] means s.$1<x0 & for m holds F.m<>$1; A40: for n st s.n<x0 ex m st F.m=n proof assume A41: ex n st X[n]; consider M1 be Nat such that A42: X[M1] & for n st X[n] holds M1<=n from Min(A41); defpred X[Nat] means $1<M1 & s.$1<x0 & ex m st F.m=$1; A43: ex n st X[n] proof take M; A44: M<=M1 by A31,A42; M <> M1 by A37,A42; hence M<M1 by A44,REAL_1:def 5; thus s.M<x0 by A31; take 0; thus thesis by A37; end; A45: for n st X[n] holds n<=M1; consider MX be Nat such that A46: X[MX] & for n st X[n] holds n<=MX from Max(A45,A43); A47: for k st MX<k & k<M1 holds s.k>=x0 proof given k such that A48: MX<k & k<M1 & s.k<x0; now per cases; suppose ex m st F.m=k; hence contradiction by A46,A48; suppose for m holds F.m<>k; hence contradiction by A42,A48; end; hence contradiction; end; consider m such that A49: F.m=MX by A46; A50: MX<F.(m+1) & s.(F.(m+1))<x0 & for k st MX<k & s.k<x0 holds F.(m+1)<=k by A37,A49; A51: F.(m+1)<=M1 by A37,A42,A46,A49; now assume F.(m+1)<>M1; then F.(m+1)<M1 by A51,REAL_1:def 5; hence contradiction by A47,A50; end; hence contradiction by A42; end; A52: for n holds (s*F).n<x0 proof defpred X[Nat] means (s*F).$1<x0; A53: X[0] by A31,A37,SEQM_3:31; A54: for k st X[k] holds X[k+1] proof let k such that (s*F).k<x0; P[F.k,F.(k+1)] by A37; then s.(F.(k+1))<x0; hence (s*F).(k+1)<x0 by SEQM_3:31; end; thus for k holds X[k] from Ind(A53,A54); end; A55: s*F is_subsequence_of s by SEQM_3:def 10; then A56: s*F is convergent by A12,SEQ_4:29; A57: lim(s*F)=x0 by A12,A55,SEQ_4:30; rng(s*F)c=rng s by A55,RFUNCT_2:11 ; then A58: rng(s*F)c=dom f\{x0} by A12,XBOOLE_1:1; rng(s*F)c=dom f/\left_open_halfline(x0) proof let x be set; assume A59: x in rng(s*F); then consider n such that A60: (s*F).n=x by RFUNCT_2:9; (s*F).n<x0 by A52; then x in {g1: g1<x0} by A60; then A61: x in left_open_halfline(x0) by PROB_1:def 15; x in dom f by A58,A59,XBOOLE_0:def 4; hence thesis by A61,XBOOLE_0:def 3; end; then A62: f*(s*F) is divergent_to-infty by A7,A56,A57,LIMFUNC2:def 3; defpred X[Nat] means s.$1>x0; A63: now let k; consider n such that A64: k<=n & s.n>=x0 by A19; take n; thus k<=n by A64; s.n in rng s by RFUNCT_2:10; then not s.n in {x0} by A12,XBOOLE_0:def 4; then s.n<>x0 by TARSKI:def 1; hence s.n>x0 by A64,REAL_1:def 5; end; then ex mn be Nat st 0<=mn & s.mn>x0; then A65: ex m st X[m]; consider N be Element of NAT such that A66: X[N] & for n st X[n] holds N<=n from Min(A65); A67: now let n; consider m such that A68: n+1<=m & s.m>x0 by A63; take m; thus n<m & s.m>x0 by A68,NAT_1:38; end; defpred P[set,set] means for n,m st $1=n & $2=m holds n<m & s.m>x0 & for k st n<k & s.k>x0 holds m<=k; defpred X[Nat,Nat,Nat] means P[$2,$3]; A69: for n for x be Element of NAT ex y be Element of NAT st X[n,x,y] proof let n; let x be Element of NAT; defpred X[Nat] means x<$1 & s.$1>x0; A70: ex m st X[m] by A67; consider l be Nat such that A71: X[l] & for k st X[k] holds l<=k from Min(A70); take l; thus thesis by A71; end; reconsider N'=N as Element of NAT qua non empty set; consider G be Function of NAT,NAT such that A72: G.0=N' & for n holds X[n,G.n,G.(n+1)] from RecExD(A69); A73: dom G=NAT & rng G c=NAT by FUNCT_2:def 1,RELSET_1:12; then rng G c=REAL by XBOOLE_1:1; then reconsider G as Real_Sequence by A73,FUNCT_2:def 1,RELSET_1:11; A74: now let n; G.n in rng G by A73,FUNCT_1:def 5;hence G.n is Nat by A73 ; end; now let n; G.n is Nat & G.(n+1) is Nat by A74; hence G.n<G.(n+1) by A72; end; then reconsider G as increasing Seq_of_Nat by A73,SEQM_3:def 8,def 11; defpred X[Nat] means s.$1>x0 & for m holds G.m<>$1; A75: for n st s.n>x0 ex m st G.m=n proof assume A76: ex n st X[n]; consider N1 be Nat such that A77: X[N1] & for n st X[n] holds N1<=n from Min(A76); defpred X[Nat] means $1<N1 & s.$1>x0 & ex m st G.m=$1; A78: ex n st X[n] proof take N; A79: N<=N1 by A66,A77; N <> N1 by A72,A77; hence N<N1 by A79,REAL_1:def 5; thus s.N>x0 by A66; take 0; thus thesis by A72; end; A80: for n st X[n] holds n<=N1; consider NX be Nat such that A81: X[NX] & for n st X[n] holds n<=NX from Max(A80,A78); A82: for k st NX<k & k<N1 holds s.k<=x0 proof given k such that A83: NX<k & k<N1 & s.k>x0; now per cases; suppose ex m st G.m=k; hence contradiction by A81,A83; suppose for m holds G.m<>k; hence contradiction by A77,A83; end; hence contradiction; end; consider m such that A84: G.m=NX by A81; A85: NX<G.(m+1) & s.(G.(m+1))>x0 & for k st NX<k & s.k>x0 holds G.(m+1)<=k by A72,A84; A86: G.(m+1)<=N1 by A72,A77,A81,A84; now assume G.(m+1)<>N1; then G.(m+1)<N1 by A86,REAL_1:def 5; hence contradiction by A82,A85; end; hence contradiction by A77; end; A87: for n holds (s*G).n>x0 proof defpred X[Nat] means (s*G).$1>x0; A88: X[0] by A66,A72,SEQM_3:31; A89: for k st X[k] holds X[k+1] proof let k such that (s*G).k>x0; P[G.k,G.(k+1)] by A72; then s.(G.(k+1))>x0; hence (s*G).(k+1)>x0 by SEQM_3:31; end; thus for k holds X[k] from Ind(A88,A89); end; A90: s*G is_subsequence_of s by SEQM_3:def 10; then A91: s*G is convergent by A12,SEQ_4:29; A92: lim(s*G)=x0 by A12,A90, SEQ_4:30; rng(s*G)c=rng s by A90,RFUNCT_2:11; then A93: rng(s*G)c=dom f\{x0} by A12,XBOOLE_1:1; rng(s*G)c=dom f/\right_open_halfline(x0) proof let x be set; assume A94: x in rng(s*G); then consider n such that A95: (s*G).n=x by RFUNCT_2:9; (s*G).n>x0 by A87; then x in {g1: x0<g1} by A95; then A96: x in right_open_halfline(x0) by LIMFUNC1:def 3; x in dom f by A93,A94,XBOOLE_0:def 4; hence thesis by A96,XBOOLE_0:def 3; end; then A97: f*(s*G) is divergent_to-infty by A7,A91,A92,LIMFUNC2:def 6; now let r; consider n1 be Nat such that A98: for k st n1<=k holds (f*(s*F)).k<r by A62,LIMFUNC1:def 5; consider n2 be Nat such that A99: for k st n2<=k holds (f*(s*G)).k<r by A97,LIMFUNC1:def 5; take n=max(F.n1,G.n2); let k; s.k in rng s by RFUNCT_2:9; then not s.k in {x0} by A12,XBOOLE_0:def 4; then A100: s.k<>x0 by TARSKI: def 1 ; assume A101: n<=k; now per cases by A100,REAL_1:def 5; suppose s.k<x0; then consider l be Nat such that A102: k=F.l by A40; F.n1<=n by SQUARE_1:46; then A103: F.n1<=k by A101,AXIOMS:22; dom f\{x0}c=dom f by XBOOLE_1:36; then A104: rng(s*F)c=dom f by A58,XBOOLE_1:1; A105: rng s c=dom f by A12 ,Lm1; l >= n1 by A102,A103,SEQM_3:7; then (f*(s*F)).l<r by A98; then f.((s*F).l)<r by A104,RFUNCT_2:21; then f.(s.k)<r by A102,SEQM_3:31; hence (f*s).k<r by A105,RFUNCT_2:21; suppose s.k>x0; then consider l be Nat such that A106: k=G.l by A75; G.n2<=n by SQUARE_1:46; then A107: G.n2<=k by A101,AXIOMS:22; dom f\{x0}c=dom f by XBOOLE_1:36; then A108: rng(s*G)c=dom f by A93,XBOOLE_1:1; A109: rng s c=dom f by A12 ,Lm1; l >= n2 by A106,A107,SEQM_3:7; then (f*(s*G)).l<r by A99; then f.((s*G).l)<r by A108,RFUNCT_2:21; then f.(s.k)<r by A106,SEQM_3:31; hence (f*s).k<r by A109,RFUNCT_2:21; end; hence (f*s).k<r; end; hence f*s is divergent_to-infty by LIMFUNC1:def 5; end; hence f*s is divergent_to-infty; end; hence f*s is divergent_to-infty; end; hence thesis by A8,Def3; end; theorem f1 is_divergent_to+infty_in x0 & f2 is_divergent_to+infty_in x0 & (for r1,r2 st r1<x0 & x0<r2 ex g1,g2 st r1<g1 & g1<x0 & g1 in dom f1 /\ dom f2 & g2<r2 & x0<g2 & g2 in dom f1 /\ dom f2) implies f1+f2 is_divergent_to+infty_in x0 & f1(#)f2 is_divergent_to+infty_in x0 proof assume A1: f1 is_divergent_to+infty_in x0 & f2 is_divergent_to+infty_in x0 & for r1,r2 st r1<x0 & x0<r2 ex g1,g2 st r1<g1 & g1<x0 & g1 in dom f1/\dom f2 & g2<r2 & x0<g2 & g2 in dom f1/\dom f2; A2: now let r1,r2; assume r1<x0 & x0<r2; then consider g1,g2 such that A3: r1<g1 & g1<x0 & g1 in dom f1/\dom f2 & g2<r2 & x0<g2 & g2 in dom f1/\dom f2 by A1; take g1; take g2; thus r1<g1 & g1<x0 & g1 in dom(f1+f2) & g2<r2 & x0<g2 & g2 in dom(f1+f2) by A3,SEQ_1:def 3; end; now let s be Real_Sequence; assume A4: s is convergent & lim s=x0 & rng s c=dom(f1+f2)\{x0}; then A5: rng s c=dom(f1+f2) & dom(f1+f2)=dom f1/\dom f2 & rng s c=dom f1\{x0} & rng s c=dom f2\{x0} by Lm6; then A6: f1*s is divergent_to+infty by A1,A4,Def2 ; f2*s is divergent_to+infty by A1,A4,A5,Def2; then f1*s+f2*s is divergent_to+infty by A6,LIMFUNC1:35; hence (f1+f2)*s is divergent_to+infty by A5,RFUNCT_2:23; end; hence f1+f2 is_divergent_to+infty_in x0 by A2,Def2; A7: now let r1,r2; assume r1<x0 & x0<r2; then consider g1,g2 such that A8: r1<g1 & g1<x0 & g1 in dom f1/\dom f2 & g2<r2 & x0<g2 & g2 in dom f1/\dom f2 by A1 ; take g1; take g2; thus r1<g1 & g1<x0 & g1 in dom(f1(#)f2) & g2<r2 & x0<g2 & g2 in dom(f1(#)f2) by A8,SEQ_1:def 5; end; now let s be Real_Sequence; assume A9: s is convergent & lim s=x0 & rng s c=dom(f1(#)f2)\{x0}; then A10: rng s c=dom(f1(#)f2) & dom(f1(#) f2)=dom f1/\dom f2 & rng s c=dom f1\{x0} & rng s c=dom f2\{x0} by Lm3; then A11: f1*s is divergent_to+infty by A1,A9, Def2; f2*s is divergent_to+infty by A1,A9,A10,Def2; then (f1*s)(#)(f2*s) is divergent_to+infty by A11,LIMFUNC1:37; hence (f1(#)f2)*s is divergent_to+infty by A10,RFUNCT_2:23; end; hence thesis by A7,Def2; end; theorem f1 is_divergent_to-infty_in x0 & f2 is_divergent_to-infty_in x0 & (for r1,r2 st r1<x0 & x0<r2 ex g1,g2 st r1<g1 & g1<x0 & g1 in dom f1 /\ dom f2 & g2<r2 & x0<g2 & g2 in dom f1 /\ dom f2) implies f1+f2 is_divergent_to-infty_in x0 & f1(#) f2 is_divergent_to+infty_in x0 proof assume A1: f1 is_divergent_to-infty_in x0 & f2 is_divergent_to-infty_in x0 & for r1,r2 st r1<x0 & x0<r2 ex g1,g2 st r1<g1 & g1<x0 & g1 in dom f1/\dom f2 & g2<r2 & x0<g2 & g2 in dom f1/\dom f2; A2: now let r1,r2; assume r1<x0 & x0<r2; then consider g1,g2 such that A3: r1<g1 & g1<x0 & g1 in dom f1/\dom f2 & g2<r2 & x0<g2 & g2 in dom f1/\dom f2 by A1 ; take g1; take g2; thus r1<g1 & g1<x0 & g1 in dom(f1+f2) & g2<r2 & x0<g2 & g2 in dom(f1+f2) by A3,SEQ_1:def 3; end; now let s be Real_Sequence; assume A4: s is convergent & lim s=x0 & rng s c=dom(f1+f2)\{x0}; then A5: rng s c=dom(f1+f2) & dom(f1+f2)=dom f1/\dom f2 & rng s c=dom f1\{x0} & rng s c=dom f2\{x0} by Lm6; then A6: f1*s is divergent_to-infty by A1,A4,Def3; f2*s is divergent_to-infty by A1,A4,A5,Def3; then f1*s+f2*s is divergent_to-infty by A6,LIMFUNC1:38; hence (f1+f2)*s is divergent_to-infty by A5,RFUNCT_2:23; end; hence f1+f2 is_divergent_to-infty_in x0 by A2,Def3; A7: now let r1,r2; assume r1<x0 & x0<r2; then consider g1,g2 such that A8: r1<g1 & g1<x0 & g1 in dom f1/\dom f2 & g2<r2 & x0<g2 & g2 in dom f1/\dom f2 by A1 ; take g1; take g2; thus r1<g1 & g1<x0 & g1 in dom(f1(#)f2) & g2<r2 & x0<g2 & g2 in dom(f1(#)f2) by A8,SEQ_1:def 5; end; now let s be Real_Sequence; assume A9: s is convergent & lim s=x0 & rng s c=dom(f1(#)f2)\{x0}; then A10: rng s c=dom(f1(#)f2) & dom(f1(#) f2)=dom f1/\dom f2 & rng s c=dom f1\{x0} & rng s c=dom f2\{x0} by Lm3; then A11: f1*s is divergent_to-infty by A1,A9, Def3; f2*s is divergent_to-infty by A1,A9,A10,Def3; then (f1*s)(#)(f2*s) is divergent_to+infty by A11,LIMFUNC1:51; hence (f1(#)f2)*s is divergent_to+infty by A10,RFUNCT_2:23; end; hence thesis by A7,Def2; end; theorem f1 is_divergent_to+infty_in x0 & (for r1,r2 st r1<x0 & x0<r2 ex g1,g2 st r1<g1 & g1<x0 & g1 in dom(f1+f2) & g2<r2 & x0<g2 & g2 in dom(f1+f2)) & (ex r st 0<r & f2 is_bounded_below_on ].x0-r,x0.[ \/ ].x0,x0+r.[) implies f1+f2 is_divergent_to+infty_in x0 proof assume A1: f1 is_divergent_to+infty_in x0 & for r1,r2 st r1<x0 & x0<r2 ex g1,g2 st r1<g1 & g1<x0 & g1 in dom(f1+f2) & g2<r2 & x0<g2 & g2 in dom(f1+f2); given r such that A2: 0<r & f2 is_bounded_below_on ].x0-r,x0.[ \/ ].x0,x0+r.[; now let s be Real_Sequence; assume A3: s is convergent & lim s=x0 & rng s c=dom(f1+f2)\{x0}; then consider k such that A4: for n st k<=n holds x0-r<s.n & s.n<x0+r by A2,Th7; A5: s^\k is convergent & lim(s^\k)=x0 by A3,SEQ_4:33; rng(s^\k)c=rng s by RFUNCT_2:7; then A6: rng(s^\k)c=dom(f1+f2)\{x0} by A3,XBOOLE_1:1; then A7: rng(s^\k)c=dom(f1+f2) & rng(s^\k)c=dom f1 & rng(s^\k)c=dom f2 & rng(s^\k)c=dom f1\{x0} by Lm6; then A8: f1*(s^\k) is divergent_to+infty by A1,A5,Def2; A9: rng(s^\k)c=dom f1/\dom f2 by A7,SEQ_1:def 3; A10: rng s c=dom(f1+f2) by A3,Lm6; now consider r1 be real number such that A11: for g st g in (].x0-r,x0.[\/].x0,x0+r.[)/\dom f2 holds r1<=f2.g by A2,RFUNCT_1:def 10; take r2=r1-1; let n; k<=n+k by NAT_1:37; then x0-r<s.(n+k) & s.(n+k)<x0+r by A4; then x0-r<(s^\k).n & (s^\k).n<x0+r by SEQM_3:def 9; then (s^\k).n in {g2: x0-r<g2 & g2<x0+r}; then A12: (s^\k).n in ].x0-r,x0+r.[ by RCOMP_1:def 2; A13: (s^\k).n in rng(s ^\k) by RFUNCT_2:10; then not (s^\k).n in {x0} by A6,XBOOLE_0:def 4; then (s^\k).n in ].x0-r,x0+r.[\{x0} by A12,XBOOLE_0:def 4; then (s^\k).n in ].x0-r,x0.[\/].x0,x0+r.[ by A2,Th4; then (s^\k).n in (].x0-r,x0.[\/].x0,x0+r.[)/\dom f2 by A7,A13,XBOOLE_0:def 3; then r1<=f2.((s^\k).n) by A11; then r1-1<f2.((s^\k).n)-0 by REAL_1:92; hence r2<(f2*(s^\k)).n by A7,RFUNCT_2:21; end; then f2*(s^\k) is bounded_below by SEQ_2:def 4; then A14: f1*(s^\k)+f2*(s^\k) is divergent_to+infty by A8,LIMFUNC1:36; f1*(s^\k)+f2*(s^\k)=(f1+f2)*(s^\k) by A9,RFUNCT_2:23 .=((f1+f2)*s)^\k by A10,RFUNCT_2:22; hence (f1+f2)*s is divergent_to+infty by A14,LIMFUNC1:34; end; hence thesis by A1,Def2; end; theorem f1 is_divergent_to+infty_in x0 & (for r1,r2 st r1<x0 & x0<r2 ex g1,g2 st r1<g1 & g1<x0 & g1 in dom(f1(#)f2) & g2<r2 & x0<g2 & g2 in dom(f1(#)f2)) & (ex r,r1 st 0<r & 0<r1 & for g st g in dom f2 /\ (].x0-r,x0.[ \/ ].x0,x0+r.[) holds r1<=f2.g) implies f1(#)f2 is_divergent_to+infty_in x0 proof assume A1: f1 is_divergent_to+infty_in x0 & for r1,r2 st r1<x0 & x0<r2 ex g1,g2 st r1<g1 & g1<x0 & g1 in dom(f1(#)f2) & g2<r2 & x0<g2 & g2 in dom(f1(#)f2); given r,t be Real such that A2: 0<r & 0<t & for g st g in dom f2/\(].x0-r,x0.[\/ ].x0,x0+r.[) holds t<=f2.g; now let s be Real_Sequence; assume A3: s is convergent & lim s=x0 & rng s c=dom(f1(#)f2)\{x0}; then consider k such that A4: for n st k<=n holds x0-r<s.n & s.n<x0+r by A2,Th7; A5: s^\k is convergent & lim(s^\k)=x0 by A3,SEQ_4:33; rng(s^\k)c=rng s by RFUNCT_2:7; then A6: rng(s^\k)c=dom(f1(#)f2)\{x0} by A3,XBOOLE_1:1; then A7: rng(s^\k)c=dom(f1(#)f2) & dom(f1(#)f2)=dom f1/\dom f2 & rng(s^\k)c=dom f1 & rng(s^\k)c=dom f2 & rng(s^\k)c=dom f1\{x0} by Lm3; then A8: f1*(s^\k) is divergent_to+infty by A1,A5,Def2; A9: rng s c=dom(f1(#)f2) by A3,Lm3; now thus 0<t by A2; let n; k<=n+k by NAT_1:37; then x0-r<s.(n+k) & s.(n+k)<x0+r by A4; then x0-r<(s^\k).n & (s^\k).n<x0+r by SEQM_3:def 9; then (s^\k).n in {g2: x0-r<g2 & g2<x0+r}; then A10: (s^\k).n in ].x0-r,x0+r.[ by RCOMP_1:def 2; A11: (s^\k).n in rng(s ^\k) by RFUNCT_2:10; then not (s^\k).n in {x0} by A6,XBOOLE_0:def 4; then (s^\k).n in ].x0-r,x0+r.[\{x0} by A10,XBOOLE_0:def 4; then (s^\k).n in ].x0-r,x0.[\/].x0,x0+r.[ by A2,Th4; then (s^\k).n in dom f2/\(].x0-r,x0.[\/].x0,x0+r.[) by A7,A11,XBOOLE_0:def 3; then t<=f2.((s^\k).n) by A2; hence t<=(f2*(s^\k)).n by A7,RFUNCT_2:21; end; then A12: (f1*(s^\k))(#)(f2*(s^\k)) is divergent_to+infty by A8,LIMFUNC1:49; (f1*(s^\k))(#)(f2*(s^\k))=(f1(#)f2)*(s^\k) by A7,RFUNCT_2:23 .=((f1(#)f2)*s)^\k by A9,RFUNCT_2:22; hence (f1(#)f2)*s is divergent_to+infty by A12,LIMFUNC1:34; end; hence thesis by A1,Def2; end; theorem (f is_divergent_to+infty_in x0 & r>0 implies r(#) f is_divergent_to+infty_in x0)& (f is_divergent_to+infty_in x0 & r<0 implies r(#) f is_divergent_to-infty_in x0)& (f is_divergent_to-infty_in x0 & r>0 implies r(#) f is_divergent_to-infty_in x0)& (f is_divergent_to-infty_in x0 & r<0 implies r(#)f is_divergent_to+infty_in x0) proof thus f is_divergent_to+infty_in x0 & r>0 implies r(#)f is_divergent_to+infty_in x0 proof assume A1: f is_divergent_to+infty_in x0 & r>0; thus for r1,r2 st r1<x0 & x0<r2 ex g1,g2 st r1<g1 & g1<x0 & g1 in dom(r(#)f) & g2<r2 & x0<g2 & g2 in dom(r (#)f) proof let r1,r2; assume r1<x0 & x0<r2; then consider g1,g2 such that A2: r1<g1 & g1<x0 & g1 in dom f & g2<r2 & x0<g2 & g2 in dom f by A1,Def2; take g1; take g2; thus thesis by A2,SEQ_1:def 6; end; let seq; assume A3: seq is convergent & lim seq=x0 & rng seq c=dom(r(#)f)\{x0}; then A4: rng seq c=dom f\{x0} by SEQ_1:def 6 ; then f*seq is divergent_to+infty by A1,A3,Def2; then A5: r(#)(f*seq) is divergent_to+infty by A1,LIMFUNC1:40; rng seq c=dom f by A4,Lm1; hence thesis by A5,RFUNCT_2:24; end; thus f is_divergent_to+infty_in x0 & r<0 implies r(#)f is_divergent_to-infty_in x0 proof assume A6: f is_divergent_to+infty_in x0 & r<0; thus for r1,r2 st r1<x0 & x0<r2 ex g1,g2 st r1<g1 & g1<x0 & g1 in dom(r(#)f) & g2<r2 & x0<g2 & g2 in dom(r (#)f) proof let r1,r2; assume r1<x0 & x0<r2; then consider g1,g2 such that A7: r1<g1 & g1<x0 & g1 in dom f & g2<r2 & x0<g2 & g2 in dom f by A6,Def2; take g1; take g2; thus thesis by A7,SEQ_1:def 6; end; let seq; assume A8: seq is convergent & lim seq=x0 & rng seq c=dom(r(#)f)\{x0}; then A9: rng seq c=dom f\{x0} by SEQ_1:def 6 ; then f*seq is divergent_to+infty by A6,A8,Def2; then A10: r(#)(f*seq) is divergent_to-infty by A6,LIMFUNC1:40; rng seq c=dom f by A9,Lm1; hence thesis by A10,RFUNCT_2:24; end; thus f is_divergent_to-infty_in x0 & r>0 implies r(#)f is_divergent_to-infty_in x0 proof assume A11: f is_divergent_to-infty_in x0 & r>0; thus for r1,r2 st r1<x0 & x0<r2 ex g1,g2 st r1<g1 & g1<x0 & g1 in dom(r(#)f) & g2<r2 & x0<g2 & g2 in dom(r (#)f) proof let r1,r2; assume r1<x0 & x0<r2; then consider g1,g2 such that A12: r1<g1 & g1<x0 & g1 in dom f & g2<r2 & x0<g2 & g2 in dom f by A11,Def3; take g1; take g2; thus thesis by A12,SEQ_1:def 6; end; let seq; assume A13: seq is convergent & lim seq=x0 & rng seq c=dom(r(#)f)\{x0}; then A14: rng seq c=dom f\{x0} by SEQ_1:def 6 ; then f*seq is divergent_to-infty by A11,A13,Def3; then A15: r(#)(f*seq) is divergent_to-infty by A11,LIMFUNC1:41; rng seq c=dom f by A14,Lm1; hence thesis by A15,RFUNCT_2:24; end; assume A16: f is_divergent_to-infty_in x0 & r<0; thus for r1,r2 st r1<x0 & x0<r2 ex g1,g2 st r1<g1 & g1<x0 & g1 in dom(r(#)f) & g2<r2 & x0<g2 & g2 in dom(r (#)f) proof let r1,r2; assume r1<x0 & x0<r2; then consider g1,g2 such that A17: r1<g1 & g1<x0 & g1 in dom f & g2<r2 & x0<g2 & g2 in dom f by A16,Def3; take g1; take g2; thus thesis by A17,SEQ_1:def 6; end; let seq; assume A18: seq is convergent & lim seq=x0 & rng seq c=dom(r(#)f)\{x0}; then A19: rng seq c=dom f\{x0} by SEQ_1:def 6; then f*seq is divergent_to-infty by A16,A18,Def3; then A20: r(#)(f*seq) is divergent_to+infty by A16,LIMFUNC1:41; rng seq c=dom f by A19,Lm1; hence thesis by A20,RFUNCT_2:24; end; theorem (f is_divergent_to+infty_in x0 or f is_divergent_to-infty_in x0) implies abs(f) is_divergent_to+infty_in x0 proof assume A1: f is_divergent_to+infty_in x0 or f is_divergent_to-infty_in x0 ; now per cases by A1; suppose A2: f is_divergent_to+infty_in x0; A3: now let r1,r2; assume r1<x0 & x0<r2; then consider g1,g2 such that A4: r1<g1 & g1<x0 & g1 in dom f & g2<r2 & x0<g2 & g2 in dom f by A2,Def2; take g1; take g2; thus r1<g1 & g1<x0 & g1 in dom abs(f) & g2<r2 & x0<g2 & g2 in dom abs(f) by A4,SEQ_1:def 10; end; now let seq; assume A5: seq is convergent & lim seq=x0 & rng seq c=dom abs(f)\{x0}; then A6: rng seq c=dom f\{x0} by SEQ_1:def 10 ; then f*seq is divergent_to+infty by A2,A5,Def2; then A7: abs(f*seq) is divergent_to+infty by LIMFUNC1:52; rng seq c=dom f by A6,Lm1; hence abs(f)*seq is divergent_to+infty by A7,RFUNCT_2:25; end; hence thesis by A3,Def2; suppose A8: f is_divergent_to-infty_in x0; A9: now let r1,r2; assume r1<x0 & x0<r2; then consider g1,g2 such that A10: r1<g1 & g1<x0 & g1 in dom f & g2<r2 & x0<g2 & g2 in dom f by A8,Def3; take g1; take g2; thus r1<g1 & g1<x0 & g1 in dom abs(f) & g2<r2 & x0<g2 & g2 in dom abs(f) by A10,SEQ_1:def 10; end; now let seq; assume A11: seq is convergent & lim seq=x0 & rng seq c=dom abs(f)\{x0}; then A12: rng seq c=dom f\{x0} by SEQ_1:def 10 ; then f*seq is divergent_to-infty by A8,A11,Def3; then A13: abs(f*seq) is divergent_to+infty by LIMFUNC1:52; rng seq c=dom f by A12,Lm1; hence abs(f)*seq is divergent_to+infty by A13,RFUNCT_2:25; end; hence thesis by A9,Def2; end; hence thesis; end; theorem Th23: (ex r st 0<r & f is_non_decreasing_on ].x0-r,x0.[ & f is_non_increasing_on ].x0,x0+r.[ & not f is_bounded_above_on ].x0-r,x0.[ & not f is_bounded_above_on ].x0,x0+r.[) & (for r1,r2 st r1<x0 & x0<r2 ex g1,g2 st r1<g1 & g1<x0 & g1 in dom f & g2<r2 & x0<g2 & g2 in dom f) implies f is_divergent_to+infty_in x0 proof given r such that A1: 0<r & f is_non_decreasing_on ].x0-r,x0.[ & f is_non_increasing_on ].x0,x0+r.[ & not f is_bounded_above_on ].x0-r,x0.[ & not f is_bounded_above_on ].x0,x0+r.[; assume for r1,r2 st r1<x0 & x0<r2 ex g1,g2 st r1<g1 & g1<x0 & g1 in dom f & g2<r2 & x0<g2 & g2 in dom f; then A2: (for r st r<x0 ex g st r<g & g<x0 & g in dom f) & for r st x0<r ex g st g<r & x0<g & g in dom f by Th8; then A3: f is_left_divergent_to+infty_in x0 by A1,LIMFUNC2:31; f is_right_divergent_to+infty_in x0 by A1,A2,LIMFUNC2:35; hence thesis by A3,Th15; end; theorem (ex r st 0<r & f is_increasing_on ].x0-r,x0.[ & f is_decreasing_on ].x0,x0+r.[ & not f is_bounded_above_on ].x0-r,x0.[ & not f is_bounded_above_on ].x0,x0+r.[) & (for r1,r2 st r1<x0 & x0<r2 ex g1,g2 st r1<g1 & g1<x0 & g1 in dom f & g2<r2 & x0<g2 & g2 in dom f) implies f is_divergent_to+infty_in x0 proof given r such that A1: 0<r & f is_increasing_on ].x0-r,x0.[ & f is_decreasing_on ].x0,x0+r.[ & not f is_bounded_above_on ].x0-r,x0.[ & not f is_bounded_above_on ].x0,x0+r.[; assume A2: for r1,r2 st r1<x0 & x0<r2 ex g1,g2 st r1<g1 & g1<x0 & g1 in dom f & g2<r2 & x0<g2 & g2 in dom f; A3: f is_non_decreasing_on ].x0-r,x0.[ by A1,RFUNCT_2:55; f is_non_increasing_on ].x0,x0+r.[ by A1,RFUNCT_2:56; hence thesis by A1,A2,A3,Th23; end; theorem Th25: (ex r st 0<r & f is_non_increasing_on ].x0-r,x0.[ & f is_non_decreasing_on ].x0,x0+r.[ & not f is_bounded_below_on ].x0-r,x0.[ & not f is_bounded_below_on ].x0,x0+r.[) & (for r1,r2 st r1<x0 & x0<r2 ex g1,g2 st r1<g1 & g1<x0 & g1 in dom f & g2<r2 & x0<g2 & g2 in dom f) implies f is_divergent_to-infty_in x0 proof given r such that A1: 0<r & f is_non_increasing_on ].x0-r,x0.[ & f is_non_decreasing_on ].x0,x0+r.[ & not f is_bounded_below_on ].x0-r,x0.[ & not f is_bounded_below_on ].x0,x0+r.[; assume for r1,r2 st r1<x0 & x0<r2 ex g1,g2 st r1<g1 & g1<x0 & g1 in dom f & g2<r2 & x0<g2 & g2 in dom f; then A2: (for r st r<x0 ex g st r<g & g<x0 & g in dom f) & for r st x0<r ex g st g<r & x0<g & g in dom f by Th8; then A3: f is_left_divergent_to-infty_in x0 by A1,LIMFUNC2:33; f is_right_divergent_to-infty_in x0 by A1,A2,LIMFUNC2:37; hence thesis by A3,Th16; end; theorem (ex r st 0<r & f is_decreasing_on ].x0-r,x0.[ & f is_increasing_on ].x0,x0+r.[ & not f is_bounded_below_on ].x0-r,x0.[ & not f is_bounded_below_on ].x0,x0+r.[) & (for r1,r2 st r1<x0 & x0<r2 ex g1,g2 st r1<g1 & g1<x0 & g1 in dom f & g2<r2 & x0<g2 & g2 in dom f) implies f is_divergent_to-infty_in x0 proof given r such that A1: 0<r & f is_decreasing_on ].x0-r,x0.[ & f is_increasing_on ].x0,x0+r.[ & not f is_bounded_below_on ].x0-r,x0.[ & not f is_bounded_below_on ].x0,x0+r.[; assume A2: for r1,r2 st r1<x0 & x0<r2 ex g1,g2 st r1<g1 & g1<x0 & g1 in dom f & g2<r2 & x0<g2 & g2 in dom f; A3: f is_non_increasing_on ].x0-r,x0.[ by A1,RFUNCT_2:56; f is_non_decreasing_on ].x0,x0+r.[ by A1,RFUNCT_2:55; hence thesis by A1,A2,A3,Th25; end; theorem Th27: f1 is_divergent_to+infty_in x0 & (for r1,r2 st r1<x0 & x0<r2 ex g1,g2 st r1<g1 & g1<x0 & g1 in dom f & g2<r2 & x0<g2 & g2 in dom f) & (ex r st 0<r & dom f /\ (].x0-r,x0.[ \/ ].x0,x0+r.[) c= dom f1 /\ (].x0-r,x0.[ \/ ].x0,x0+r.[) & for g st g in dom f /\ (].x0-r,x0.[ \/ ].x0,x0+r.[) holds f1.g<=f.g) implies f is_divergent_to+infty_in x0 proof assume A1: f1 is_divergent_to+infty_in x0 & for r1,r2 st r1<x0 & x0<r2 ex g1,g2 st r1<g1 & g1<x0 & g1 in dom f & g2<r2 & x0<g2 & g2 in dom f; given r such that A2: 0<r & dom f/\(].x0-r,x0.[\/].x0,x0+r.[)c=dom f1/\(].x0-r,x0.[\/ ].x0,x0+r.[) & for g st g in dom f/\(].x0-r,x0.[\/].x0,x0+r.[) holds f1.g<=f.g; thus for r1,r2 st r1<x0 & x0<r2 ex g1,g2 st r1<g1 & g1<x0 & g1 in dom f & g2<r2 & x0<g2 & g2 in dom f by A1; let s be Real_Sequence; assume A3: s is convergent & lim s=x0 & rng s c=dom f\{x0}; then consider k such that A4: for n st k<=n holds x0-r<s.n & s.n<x0+r by A2,Th7; A5: s^\k is convergent & lim(s^\k)=x0 by A3,SEQ_4:33; A6: rng s c=dom f by A3,Lm1; rng(s^\k)c= rng s by RFUNCT_2:7; then A7: rng(s^\k)c=dom f & rng(s^\k)c=dom f\{x0} by A3,A6,XBOOLE_1:1; now let x be set; assume x in rng(s^\k); then consider n such that A8: (s^\k).n=x by RFUNCT_2:9; k<=n+k by NAT_1:37; then x0-r<s.(n+k) & s.(n+k)<x0+r by A4; then x0-r<(s^\k).n & (s^\k).n<x0+r by SEQM_3:def 9; then (s^\k).n in {g1: x0-r<g1 & g1<x0+r}; then A9: (s^\k).n in ].x0-r,x0+r.[ by RCOMP_1:def 2; (s^\k).n in rng(s^\k) by RFUNCT_2:10; then not (s^\k).n in {x0} by A7,XBOOLE_0:def 4 ; then (s^\k).n in ].x0-r,x0+r.[\{x0} by A9,XBOOLE_0:def 4; hence x in ].x0-r,x0.[\/].x0,x0+r.[ by A2,A8,Th4; end; then rng(s^\k)c=].x0-r,x0.[\/].x0,x0+r.[ by TARSKI:def 3; then A10: rng(s^\k)c=dom f/\(].x0-r,x0.[\/].x0,x0+r.[) by A7,XBOOLE_1:19; then rng(s^\k)c=dom f1/\(].x0-r,x0.[\/].x0,x0+r.[) by A2,XBOOLE_1:1; then A11: rng(s^\k)c=dom f1 by XBOOLE_1:18; now let x be set; assume A12: x in rng(s^\k); then not x in {x0} by A7,XBOOLE_0:def 4; hence x in dom f1\{x0} by A11,A12, XBOOLE_0:def 4; end; then rng(s^\k)c=dom f1\{x0} by TARSKI:def 3; then A13: f1*(s^\k) is divergent_to+infty by A1,A5,Def2; now let n; (s^\k).n in rng(s^\k) by RFUNCT_2:10; then f1.((s^\k).n)<=f.((s^\k).n) by A2,A10; then (f1*(s^\k)).n<=f.((s^\k).n) by A11,RFUNCT_2:21; hence (f1*(s^\k)).n<=(f*(s^\k)).n by A7,RFUNCT_2:21; end; then f*(s^\k) is divergent_to+infty by A13,LIMFUNC1:69; then (f*s)^\k is divergent_to+infty by A6,RFUNCT_2:22; hence thesis by LIMFUNC1:34; end; theorem Th28: f1 is_divergent_to-infty_in x0 & (for r1,r2 st r1<x0 & x0<r2 ex g1,g2 st r1<g1 & g1<x0 & g1 in dom f & g2<r2 & x0<g2 & g2 in dom f) & (ex r st 0<r & dom f /\ (].x0-r,x0.[ \/ ].x0,x0+r.[) c= dom f1 /\ (].x0-r,x0.[ \/ ].x0,x0+r.[) & for g st g in dom f /\ (].x0-r,x0.[ \/ ].x0,x0+r.[) holds f.g<=f1.g) implies f is_divergent_to-infty_in x0 proof assume A1: f1 is_divergent_to-infty_in x0 & for r1,r2 st r1<x0 & x0<r2 ex g1,g2 st r1<g1 & g1<x0 & g1 in dom f & g2<r2 & x0<g2 & g2 in dom f; given r such that A2: 0<r & dom f/\(].x0-r,x0.[\/].x0,x0+r.[)c=dom f1/\(].x0-r,x0.[\/ ].x0,x0+r.[) & for g st g in dom f/\(].x0-r,x0.[\/].x0,x0+r.[) holds f.g<=f1.g; thus for r1,r2 st r1<x0 & x0<r2 ex g1,g2 st r1<g1 & g1<x0 & g1 in dom f & g2<r2 & x0<g2 & g2 in dom f by A1; let s be Real_Sequence; assume A3: s is convergent & lim s=x0 & rng s c=dom f\{x0}; then consider k such that A4: for n st k<=n holds x0-r<s.n & s.n<x0+r by A2,Th7; A5: s^\k is convergent & lim(s^\k)=x0 by A3,SEQ_4:33; A6: rng s c=dom f by A3,Lm1; rng(s^\k)c= rng s by RFUNCT_2:7; then A7: rng(s^\k)c=dom f & rng(s^\k)c=dom f\{x0} by A3,A6,XBOOLE_1:1; now let x be set; assume x in rng(s^\k); then consider n such that A8: (s^\k).n=x by RFUNCT_2:9; k<=n+k by NAT_1:37; then x0-r<s.(n+k) & s.(n+k)<x0+r by A4; then x0-r<(s^\k).n & (s^\k).n<x0+r by SEQM_3:def 9; then (s^\k).n in {g1: x0-r<g1 & g1<x0+r}; then A9: (s^\k).n in ].x0-r,x0+r.[ by RCOMP_1:def 2; (s^\k).n in rng(s^\k) by RFUNCT_2:10; then not (s^\k).n in {x0} by A7,XBOOLE_0:def 4 ; then (s^\k).n in ].x0-r,x0+r.[\{x0} by A9,XBOOLE_0:def 4; hence x in ].x0-r,x0.[\/].x0,x0+r.[ by A2,A8,Th4; end; then rng(s^\k)c=].x0-r,x0.[\/].x0,x0+r.[ by TARSKI:def 3; then A10: rng(s^\k)c=dom f/\(].x0-r,x0.[\/].x0,x0+r.[) by A7,XBOOLE_1:19; then rng(s^\k)c=dom f1/\(].x0-r,x0.[\/].x0,x0+r.[) by A2,XBOOLE_1:1; then A11: rng(s^\k)c=dom f1 by XBOOLE_1:18; now let x be set; assume A12: x in rng(s^\k); then not x in {x0} by A7,XBOOLE_0:def 4; hence x in dom f1\{x0} by A11,A12, XBOOLE_0:def 4; end; then rng(s^\k)c=dom f1\{x0} by TARSKI:def 3; then A13: f1*(s^\k) is divergent_to-infty by A1,A5,Def3; now let n; (s^\k).n in rng(s^\k) by RFUNCT_2:10; then f.((s^\k).n)<=f1.((s^\k).n) by A2,A10; then (f*(s^\k)).n<=f1.((s^\k).n) by A7,RFUNCT_2:21; hence (f*(s^\k)).n<=(f1*(s^\k)).n by A11,RFUNCT_2:21; end; then f*(s^\k) is divergent_to-infty by A13,LIMFUNC1:70; then (f*s)^\k is divergent_to-infty by A6,RFUNCT_2:22; hence thesis by LIMFUNC1:34; end; theorem f1 is_divergent_to+infty_in x0 & (ex r st 0<r & ].x0-r,x0.[ \/ ].x0,x0+r.[ c= dom f /\ dom f1 & for g st g in ].x0-r,x0.[ \/ ].x0,x0+r.[ holds f1.g<=f.g) implies f is_divergent_to+infty_in x0 proof assume A1: f1 is_divergent_to+infty_in x0; given r such that A2: 0<r & ].x0-r,x0.[\/].x0,x0+r.[c=dom f/\dom f1 & for g st g in ].x0-r,x0.[\/].x0,x0+r.[ holds f1.g<=f.g; A3: ].x0-r,x0.[\/].x0,x0+r.[c=dom f & ].x0-r,x0.[\/].x0,x0+r.[c=dom f1 by A2,XBOOLE_1:18; then A4: ].x0-r,x0.[\/].x0,x0+r.[=dom f/\(].x0-r,x0.[\/].x0,x0+r.[) & ].x0-r,x0.[\/].x0,x0+r.[=dom f1/\(].x0-r,x0.[\/].x0,x0+r.[) by XBOOLE_1:28; for r1,r2 st r1<x0 & x0<r2 ex g1,g2 st r1<g1 & g1<x0 & g1 in dom f & g2<r2 & x0<g2 & g2 in dom f by A2,A3,Th5; hence thesis by A1,A2,A4,Th27; end; theorem f1 is_divergent_to-infty_in x0 & (ex r st 0<r & ].x0-r,x0.[ \/ ].x0,x0+r.[ c= dom f /\ dom f1 & for g st g in ].x0-r,x0.[ \/ ].x0,x0+r.[ holds f.g<=f1.g) implies f is_divergent_to-infty_in x0 proof assume A1: f1 is_divergent_to-infty_in x0; given r such that A2: 0<r & ].x0-r,x0.[ \/ ].x0,x0+r.[c=dom f/\dom f1 & for g st g in ].x0-r,x0.[ \/ ].x0,x0+r.[ holds f.g<=f1.g; A3: ].x0-r,x0.[\/].x0,x0+r.[c=dom f & ].x0-r,x0.[\/].x0,x0+r.[c=dom f1 by A2,XBOOLE_1:18; then A4: ].x0-r,x0.[\/].x0,x0+r.[=dom f/\(].x0-r,x0.[\/].x0,x0+r.[) & ].x0-r,x0.[\/].x0,x0+r.[=dom f1/\(].x0-r,x0.[\/].x0,x0+r.[) by XBOOLE_1:28; for r1,r2 st r1<x0 & x0<r2 ex g1,g2 st r1<g1 & g1<x0 & g1 in dom f & g2<r2 & x0<g2 & g2 in dom f by A2,A3,Th5; hence thesis by A1,A2,A4,Th28; end; definition let f,x0; assume A1: f is_convergent_in x0; func lim(f,x0)->Real means :Def4: for seq st seq is convergent & lim seq=x0 & rng seq c= dom f \ {x0} holds f*seq is convergent & lim(f*seq)=it; existence by A1,Def1; uniqueness proof defpred X[Nat,real number] means x0-1/($1+1)<$2 & $2<x0 & $2 in dom f; A2: now let n; A3: x0-1/(n+1)<x0 by Lm4; x0+0<x0+1 by REAL_1:67; then consider g1,g2 such that A4: x0-1/(n+1)<g1 & g1<x0 & g1 in dom f & g2<x0+1 & x0<g2 & g2 in dom f by A1,A3,Def1; reconsider g1 as real number; take g1; thus X[n,g1] by A4; end; consider s be Real_Sequence such that A5: for n holds X[n,s.n] from RealSeqChoice(A2); A6: s is convergent & lim s=x0 & rng s c=dom f\{x0} by A5,Th6; let g1,g2 such that A7: for seq st seq is convergent & lim seq=x0 & rng seq c=dom f\{x0} holds f*seq is convergent & lim(f*seq)=g1 and A8: for seq st seq is convergent & lim seq=x0 & rng seq c=dom f\{x0} holds f*seq is convergent & lim(f*seq)=g2; lim(f*s)=g1 by A6,A7; hence thesis by A6,A8; end; end; canceled; theorem f is_convergent_in x0 implies (lim(f,x0)=g iff for g1 st 0<g1 ex g2 st 0<g2 & for r1 st 0<abs(x0-r1) & abs(x0-r1)<g2 & r1 in dom f holds abs(f.r1-g)<g1) proof assume A1: f is_convergent_in x0; thus lim(f,x0)=g implies for g1 st 0<g1 ex g2 st 0<g2 & for r1 st 0<abs(x0-r1) & abs(x0-r1)<g2 & r1 in dom f holds abs(f.r1-g)<g1 proof assume that A2: lim(f,x0)=g and A3: ex g1 st 0<g1 & for g2 st 0<g2 ex r1 st 0<abs(x0-r1) & abs(x0-r1)<g2 & r1 in dom f & g1<=abs(f.r1-g); consider g1 such that A4: 0<g1 & for g2 st 0<g2 ex r1 st 0<abs(x0-r1) & abs(x0-r1)<g2 & r1 in dom f & g1<=abs(f.r1-g) by A3; defpred X[Nat,real number] means 0<abs(x0-$2) & abs(x0-$2)<1/($1+1) & $2 in dom f & abs(f.($2)-g)>=g1; A5: now let n; 0<1/(n+1) by Lm5; then consider r1 such that A6: 0<abs(x0-r1) & abs(x0-r1)<1/(n+1) & r1 in dom f & abs(f.r1-g)>=g1 by A4; reconsider r1 as real number; take r1; thus X[n,r1] by A6; end; consider s be Real_Sequence such that A7: for n holds X[n,s.n] from RealSeqChoice(A5); A8: s is convergent & lim s=x0 & rng s c=dom f & rng s c=dom f\{x0} by A7,Th2 ; then f*s is convergent & lim(f*s)=g by A1,A2,Def4; then consider n such that A9: for k st n<=k holds abs((f*s).k-g)<g1 by A4,SEQ_2:def 7; abs((f*s).n-g)<g1 by A9; then abs(f.(s.n)-g)<g1 by A8,RFUNCT_2:21; hence contradiction by A7; end; assume A10: for g1 st 0<g1 ex g2 st 0<g2 & for r1 st 0<abs(x0-r1) & abs(x0-r1)<g2 & r1 in dom f holds abs(f.r1-g)<g1; now let s be Real_Sequence; assume A11: s is convergent & lim s=x0 & rng s c=dom f\{x0}; then A12: rng s c=dom f by Lm1; A13: now let g1 be real number; A14: g1 is Real by XREAL_0:def 1; assume 0<g1; then consider g2 such that A15: 0<g2 & for r1 st 0<abs(x0-r1) & abs(x0-r1)<g2 & r1 in dom f holds abs(f.r1-g)<g1 by A10,A14; consider n such that A16: for k st n<=k holds 0<abs(x0-s.k) & abs(x0-s.k)<g2 & s.k in dom f by A11,A15,Th3; take n; let k; assume n<=k; then 0<abs(x0-s.k) & abs(x0-s.k)<g2 & s.k in dom f by A16; then abs(f.(s.k)-g)<g1 by A15; hence abs((f*s).k-g)<g1 by A12,RFUNCT_2:21; end; hence f*s is convergent by SEQ_2:def 6; hence lim(f*s)=g by A13,SEQ_2: def 7; end; hence thesis by A1,Def4; end; theorem Th33: f is_convergent_in x0 implies f is_left_convergent_in x0 & f is_right_convergent_in x0 & lim_left(f,x0)=lim_right(f,x0) & lim(f,x0)=lim_left(f,x0) & lim(f,x0)=lim_right(f,x0) proof assume A1: f is_convergent_in x0; A2: lim(f,x0)=lim(f,x0); A3: for r1,r2 st r1<x0 & x0<r2 ex g1,g2 st r1<g1 & g1<x0 & g1 in dom f & g2<r2 & x0<g2 & g2 in dom f by A1,Def1; then A4: for r st r<x0 ex g st r<g & g<x0 & g in dom f by Th8; A5: now let s be Real_Sequence; assume A6: s is convergent & lim s=x0 & rng s c=dom f/\left_open_halfline(x0); then rng s c=dom f\{x0} by Th1; hence f*s is convergent & lim(f*s)=lim(f,x0) by A1,A2,A6,Def4; end; hence f is_left_convergent_in x0 by A4,LIMFUNC2:def 1; then A7: lim_left(f,x0)=lim(f,x0) by A5,LIMFUNC2:def 7; A8: for r st x0<r ex g st g<r & x0<g & g in dom f by A3,Th8; A9: now let s be Real_Sequence; assume A10: s is convergent & lim s=x0 & rng s c=dom f/\ right_open_halfline(x0); then rng s c=dom f\{x0} by Th1; hence f*s is convergent & lim(f*s)=lim(f,x0) by A1,A2,A10,Def4; end; hence f is_right_convergent_in x0 by A8,LIMFUNC2:def 4;hence thesis by A7 ,A9,LIMFUNC2:def 8; end; theorem f is_left_convergent_in x0 & f is_right_convergent_in x0 & lim_left(f,x0)=lim_right(f,x0) implies f is_convergent_in x0 & lim(f,x0)=lim_left(f,x0) & lim(f,x0)=lim_right(f,x0) proof assume A1: f is_left_convergent_in x0 & f is_right_convergent_in x0 & lim_left(f,x0)=lim_right(f,x0); A2: now let r1,r2; assume A3: r1<x0 & x0<r2; then consider g1 such that A4: r1<g1 & g1<x0 & g1 in dom f by A1,LIMFUNC2:def 1; consider g2 such that A5: g2<r2 & x0<g2 & g2 in dom f by A1,A3,LIMFUNC2:def 4; take g1; take g2; thus r1<g1 & g1<x0 & g1 in dom f & g2<r2 & x0<g2 & g2 in dom f by A4,A5; end; A6: now let s be Real_Sequence such that A7: s is convergent & lim s=x0 & rng s c=dom f\{x0}; now per cases; suppose ex k st for n st k<=n holds s.n<x0; then consider k such that A8: for n st k<=n holds s.n<x0; A9: s^\k is convergent & lim(s^\k)=x0 by A7,SEQ_4:33; A10: rng s c=dom f by A7,Lm1; rng(s^\k)c=dom f/\left_open_halfline(x0) proof let x be set; assume x in rng(s^\k); then consider n such that A11: (s^\k).n=x by RFUNCT_2:9; s.(n+k) in rng s by RFUNCT_2:10; then A12: x in rng s by A11,SEQM_3:def 9 ; k<=n+k by NAT_1:37; then s.(n+k)<x0 by A8; then s.(n+k) in {g1: g1<x0}; then s.(n+k) in left_open_halfline(x0) by PROB_1:def 15; then x in left_open_halfline(x0) by A11,SEQM_3:def 9; hence thesis by A10, A12,XBOOLE_0:def 3; end; then A13: f*(s^\k) is convergent & lim(f*(s^\k))=lim_left(f,x0) by A1,A9,LIMFUNC2:def 7; A14: f*(s^\k) =(f*s)^\k by A10,RFUNCT_2:22; hence f*s is convergent by A13,SEQ_4:35; thus lim(f*s)=lim_left(f,x0) by A13,A14,SEQ_4:36; suppose A15: for k ex n st k<=n & s.n>=x0; now per cases; suppose ex k st for n st k<=n holds x0<s.n; then consider k such that A16: for n st k<=n holds s.n>x0; A17: s^\k is convergent & lim(s^\k)=x0 by A7,SEQ_4:33; A18: rng s c=dom f by A7,Lm1; rng(s^\k)c=dom f/\right_open_halfline(x0) proof let x be set; assume x in rng(s^\k); then consider n such that A19: (s^\k).n=x by RFUNCT_2:9; s.(n+k) in rng s by RFUNCT_2:10; then A20: x in rng s by A19,SEQM_3:def 9 ; k<=n+k by NAT_1:37; then x0<s.(n+k) by A16; then s.(n+k) in {g1: x0<g1}; then s.(n+k) in right_open_halfline(x0) by LIMFUNC1:def 3; then x in right_open_halfline(x0) by A19,SEQM_3:def 9; hence thesis by A18,A20,XBOOLE_0:def 3; end; then A21: f*(s^\k) is convergent & lim(f*(s^\k))=lim_left(f,x0) by A1,A17,LIMFUNC2:def 8; A22: f*(s^\k) =(f*s)^\k by A18,RFUNCT_2:22; hence f*s is convergent by A21,SEQ_4:35; thus lim(f*s)=lim_left(f,x0) by A21,A22,SEQ_4:36; suppose A23: for k ex n st k<=n & x0>=s.n; A24: now let k; consider n such that A25: k<=n & s.n<=x0 by A23; take n; thus k<=n by A25; s.n in rng s by RFUNCT_2:10; then not s.n in {x0} by A7,XBOOLE_0:def 4; then s.n<>x0 by TARSKI:def 1; hence s.n<x0 by A25,REAL_1:def 5; end; then consider m1 be Nat such that A26: 0<=m1 & s.m1<x0; defpred X[Nat] means s.$1<x0; A27: ex m st X[m] by A26; consider M be Element of NAT such that A28: X[M] & for n st X[n] holds M<=n from Min(A27); A29: now let n; consider m such that A30: n+1<=m & s.m<x0 by A24; take m; thus n<m & s.m<x0 by A30,NAT_1:38; end; defpred P[set,set] means for n,m st $1=n & $2=m holds n<m & s.m<x0 & for k st n<k & s.k<x0 holds m<=k; defpred X[Nat,Nat,Nat] means P[$2,$3]; A31: for n for x be Element of NAT ex y be Element of NAT st X[n,x,y] proof let n; let x be Element of NAT; defpred X[Nat] means x<$1 & s.$1<x0; A32: ex m st X[m] by A29; consider l be Nat such that A33: X[l] & for k st X[k] holds l<=k from Min(A32); take l; thus thesis by A33; end; reconsider M'=M as Element of NAT qua non empty set; consider F be Function of NAT,NAT such that A34: F.0=M' & for n holds X[n,F.n,F.(n+1)] from RecExD(A31); A35: dom F=NAT & rng F c=NAT by FUNCT_2:def 1,RELSET_1:12; then rng F c=REAL by XBOOLE_1:1; then reconsider F as Real_Sequence by A35,FUNCT_2:def 1,RELSET_1:11; A36: now let n; F.n in rng F by A35,FUNCT_1:def 5;hence F.n is Nat by A35 ; end; now let n; F.n is Nat & F.(n+1) is Nat by A36; hence F.n<F.(n+1) by A34; end; then reconsider F as increasing Seq_of_Nat by A35,SEQM_3:def 8,def 11; defpred X[Nat] means s.$1<x0 & for m holds F.m<>$1; A37: for n st s.n<x0 ex m st F.m=n proof assume A38: ex n st X[n]; consider M1 be Nat such that A39: X[M1] & for n st X[n] holds M1<=n from Min(A38); defpred X[Nat] means $1<M1 & s.$1<x0 & ex m st F.m=$1; A40: ex n st X[n] proof take M; A41: M<=M1 by A28,A39; M <> M1 by A34,A39; hence M<M1 by A41,REAL_1:def 5; thus s.M<x0 by A28; take 0; thus thesis by A34; end; A42: for n st X[n] holds n<=M1; consider MX be Nat such that A43: X[MX] & for n st X[n] holds n<=MX from Max(A42,A40); A44: for k st MX<k & k<M1 holds s.k>=x0 proof given k such that A45: MX<k & k<M1 & s.k<x0; now per cases; suppose ex m st F.m=k; hence contradiction by A43,A45; suppose for m holds F.m<>k; hence contradiction by A39,A45; end; hence contradiction; end; consider m such that A46: F.m=MX by A43; A47: MX<F.(m+1) & s.(F.(m+1))<x0 & for k st MX<k & s.k<x0 holds F.(m+1)<=k by A34,A46; A48: F.(m+1)<=M1 by A34,A39,A43,A46; now assume F.(m+1)<>M1; then F.(m+1)<M1 by A48,REAL_1:def 5; hence contradiction by A44,A47; end; hence contradiction by A39; end; A49: for n holds (s*F).n<x0 proof defpred X[Nat] means (s*F).$1<x0; A50: X[0] by A28,A34,SEQM_3:31; A51: for k st X[k] holds X[k+1] proof let k such that (s*F).k<x0; P[F.k,F.(k+1)] by A34; then s.(F.(k+1))<x0; hence (s*F).(k+1)<x0 by SEQM_3:31; end; thus for k holds X[k] from Ind(A50,A51); end; A52: s*F is_subsequence_of s by SEQM_3:def 10; then A53: s*F is convergent by A7,SEQ_4:29; A54: lim(s*F)=x0 by A7,A52,SEQ_4:30; rng(s*F)c=rng s by A52,RFUNCT_2:11 ; then A55: rng(s*F)c=dom f\{x0} by A7,XBOOLE_1:1; rng(s*F)c=dom f/\left_open_halfline(x0) proof let x be set; assume A56: x in rng(s*F); then consider n such that A57: (s*F).n=x by RFUNCT_2:9; (s*F).n<x0 by A49; then x in {g1: g1<x0} by A57 ; then A58: x in left_open_halfline(x0) by PROB_1:def 15; x in dom f by A55,A56,XBOOLE_0:def 4; hence thesis by A58,XBOOLE_0:def 3; end; then A59: f*(s*F) is convergent & lim(f*(s*F))=lim_left(f,x0) by A1,A53,A54,LIMFUNC2:def 7; defpred X[Nat] means s.$1>x0; A60: now let k; consider n such that A61: k<=n & s.n>=x0 by A15; take n; thus k<=n by A61; s.n in rng s by RFUNCT_2:10; then not s.n in {x0} by A7,XBOOLE_0:def 4; then s.n<>x0 by TARSKI:def 1; hence s.n>x0 by A61,REAL_1:def 5; end; then ex mn be Nat st 0<=mn & s.mn>x0; then A62: ex m st X[m]; consider N be Element of NAT such that A63: X[N] & for n st X[n] holds N<=n from Min(A62); A64: now let n; consider m such that A65: n+1<=m & s.m>x0 by A60; take m; thus n<m & s.m>x0 by A65,NAT_1:38; end; defpred P[set,set] means for n,m st $1=n & $2=m holds n<m & s.m>x0 & for k st n<k & s.k>x0 holds m<=k; defpred X[Nat,Nat,Nat] means P[$2,$3]; A66: for n for x be Element of NAT ex y be Element of NAT st X[n,x,y] proof let n; let x be Element of NAT; defpred X[Nat] means x<$1 & s.$1>x0; A67: ex m st X[m] by A64; consider l be Nat such that A68: X[l] & for k st X[k] holds l<=k from Min(A67); take l; thus thesis by A68; end; reconsider N'=N as Element of NAT qua non empty set; consider G be Function of NAT,NAT such that A69: G.0=N' & for n holds X[n,G.n,G.(n+1)] from RecExD(A66); A70: dom G=NAT & rng G c=NAT by FUNCT_2:def 1,RELSET_1:12; then rng G c=REAL by XBOOLE_1:1; then reconsider G as Real_Sequence by A70,FUNCT_2:def 1,RELSET_1:11; A71: now let n; G.n in rng G by A70,FUNCT_1:def 5;hence G.n is Nat by A70 ; end; now let n; G.n is Nat & G.(n+1) is Nat by A71; hence G.n<G.(n+1) by A69; end; then reconsider G as increasing Seq_of_Nat by A70,SEQM_3:def 8,def 11; defpred X[Nat] means s.$1>x0 & for m holds G.m<>$1; A72: for n st s.n>x0 ex m st G.m=n proof assume A73: ex n st X[n]; consider N1 be Nat such that A74: X[N1] & for n st X[n] holds N1<=n from Min(A73); defpred X[Nat] means $1<N1 & s.$1>x0 & ex m st G.m=$1; A75: ex n st X[n] proof take N; A76: N<=N1 by A63,A74; N <> N1 by A69,A74; hence N<N1 by A76,REAL_1:def 5; thus s.N>x0 by A63; take 0; thus thesis by A69; end; A77: for n st X[n] holds n<=N1; consider NX be Nat such that A78: X[NX] & for n st X[n] holds n<=NX from Max(A77,A75); A79: for k st NX<k & k<N1 holds s.k<=x0 proof given k such that A80: NX<k & k<N1 & s.k>x0; now per cases; suppose ex m st G.m=k; hence contradiction by A78,A80; suppose for m holds G.m<>k; hence contradiction by A74,A80; end; hence contradiction; end; consider m such that A81: G.m=NX by A78; A82: NX<G.(m+1) & s.(G.(m+1))>x0 & for k st NX<k & s.k>x0 holds G.(m+1)<=k by A69,A81; A83: G.(m+1)<=N1 by A69,A74,A78,A81; now assume G.(m+1)<>N1; then G.(m+1)<N1 by A83,REAL_1:def 5; hence contradiction by A79,A82; end; hence contradiction by A74; end; A84: for n holds (s*G).n>x0 proof defpred X[Nat] means (s*G).$1>x0; A85: X[0]by A63,A69,SEQM_3:31; A86: for k st X[k] holds X[k+1] proof let k such that (s*G).k>x0; P[G.k,G.(k+1)] by A69; then s.(G.(k+1))>x0; hence (s*G).(k+1)>x0 by SEQM_3:31; end; thus for k holds X[k] from Ind(A85,A86); end; A87: s*G is_subsequence_of s by SEQM_3:def 10; then A88: s*G is convergent by A7,SEQ_4:29; A89: lim(s*G)=x0 by A7,A87, SEQ_4:30; rng(s*G)c=rng s by A87,RFUNCT_2:11; then A90: rng(s*G)c=dom f\{x0} by A7,XBOOLE_1:1; rng(s*G)c=dom f/\right_open_halfline(x0) proof let x be set; assume A91: x in rng(s*G); then consider n such that A92: (s*G).n=x by RFUNCT_2:9; (s*G).n>x0 by A84; then x in {g1: x0<g1} by A92; then A93: x in right_open_halfline(x0) by LIMFUNC1:def 3; x in dom f by A90,A91,XBOOLE_0:def 4; hence thesis by A93,XBOOLE_0:def 3; end; then A94: f*(s*G) is convergent & lim(f*(s*G))=lim_left(f,x0) by A1,A88,A89,LIMFUNC2:def 8; set GR=lim_left(f,x0); A95: now let r be real number; assume A96: 0<r; then consider n1 be Nat such that A97: for k st n1<=k holds abs((f*(s*F)).k-GR)<r by A59,SEQ_2:def 7; consider n2 be Nat such that A98: for k st n2<=k holds abs((f*(s*G)).k-GR)<r by A94,A96,SEQ_2:def 7; take n=max(F.n1,G.n2); let k; s.k in rng s by RFUNCT_2:9; then not s.k in {x0} by A7,XBOOLE_0:def 4; then A99: s.k<>x0 by TARSKI:def 1; assume A100: n<=k; now per cases by A99,REAL_1:def 5; suppose s.k<x0; then consider l be Nat such that A101: k=F.l by A37; F.n1<=n by SQUARE_1:46; then A102: F.n1<=k by A100,AXIOMS:22; dom f\{x0}c=dom f by XBOOLE_1:36; then A103: rng(s*F)c=dom f by A55,XBOOLE_1:1; A104: rng s c=dom f by A7, Lm1; l >= n1 by A101,A102,SEQM_3:7; then abs((f*(s*F)).l-GR)<r by A97; then abs(f.((s*F).l)-GR)<r by A103,RFUNCT_2:21; then abs(f.(s.k)-GR)<r by A101,SEQM_3:31; hence abs((f*s).k-GR)<r by A104,RFUNCT_2:21; suppose s.k>x0; then consider l be Nat such that A105: k=G.l by A72; G.n2<=n by SQUARE_1:46; then A106: G.n2<=k by A100,AXIOMS:22; dom f\{x0}c=dom f by XBOOLE_1:36; then A107: rng(s*G)c=dom f by A90,XBOOLE_1:1; A108: rng s c=dom f by A7, Lm1; l >= n2 by A105,A106,SEQM_3:7; then abs((f*(s*G)).l-GR)<r by A98; then abs(f.((s*G).l)-GR)<r by A107,RFUNCT_2:21; then abs(f.(s.k)-GR)<r by A105,SEQM_3:31; hence abs((f*s).k-GR)<r by A108,RFUNCT_2:21; end; hence abs((f*s).k-GR)<r; end; hence f*s is convergent by SEQ_2:def 6; hence lim(f*s)=lim_left(f,x0) by A95,SEQ_2:def 7; end; hence f*s is convergent & lim(f*s)=lim_left(f,x0); end; hence f*s is convergent & lim(f*s)=lim_left(f,x0); end; hence f is_convergent_in x0 by A2,Def1; hence thesis by A1,A6,Def4; end; theorem Th35: f is_convergent_in x0 implies r(#)f is_convergent_in x0 & lim(r(#)f,x0)=r*(lim(f,x0)) proof assume A1: f is_convergent_in x0; A2: now let r1,r2; assume r1<x0 & x0<r2; then consider g1,g2 such that A3: r1<g1 & g1<x0 & g1 in dom f & g2<r2 & x0<g2 & g2 in dom f by A1,Def1; take g1; take g2; thus r1<g1 & g1<x0 & g1 in dom(r(#)f) & g2<r2 & x0<g2 & g2 in dom(r(#)f) by A3,SEQ_1:def 6; end; A4: now let seq; A5: lim(f,x0)=lim(f,x0); assume A6: seq is convergent & lim seq=x0 & rng seq c=dom(r(#)f)\{x0}; then A7: rng seq c=dom f\{x0} by SEQ_1:def 6; then A8: f*seq is convergent & lim(f*seq)=lim(f,x0) by A1,A5,A6,Def4; then A9: r(#) (f*seq) is convergent by SEQ_2:21; A10:rng seq c=dom f by A7,Lm1; then A11: r(#)(f*seq)=(r(#)f)*seq by RFUNCT_2:24; thus (r(#) f)*seq is convergent by A9,A10,RFUNCT_2:24; thus lim((r(#)f)*seq)=r*(lim(f,x0)) by A8,A11,SEQ_2:22; end; hence r(#)f is_convergent_in x0 by A2,Def1; hence thesis by A4,Def4; end; theorem Th36: f is_convergent_in x0 implies -f is_convergent_in x0 & lim(-f,x0)=-(lim(f,x0)) proof assume A1: f is_convergent_in x0; A2: (-1)(#)f=-f by RFUNCT_1:38; hence -f is_convergent_in x0 by A1,Th35; thus lim(-f,x0)=(-1)*(lim(f,x0)) by A1,A2,Th35 .=-(1*(lim(f,x0))) by XCMPLX_1:175 .=-(lim(f,x0)); end; theorem Th37: f1 is_convergent_in x0 & f2 is_convergent_in x0 & (for r1,r2 st r1<x0 & x0<r2 ex g1,g2 st r1<g1 & g1<x0 & g1 in dom(f1+f2) & g2<r2 & x0<g2 & g2 in dom(f1+f2)) implies f1+f2 is_convergent_in x0 & lim(f1+f2,x0)=lim(f1,x0)+lim(f2,x0) proof assume A1: f1 is_convergent_in x0 & f2 is_convergent_in x0 & for r1,r2 st r1<x0 & x0<r2 ex g1,g2 st r1<g1 & g1<x0 & g1 in dom(f1+f2) & g2<r2 & x0<g2 & g2 in dom(f1+f2); A2: now A3: lim(f1,x0)=lim(f1,x0) & lim(f2,x0)=lim(f2,x0); let seq; assume A4: seq is convergent & lim seq=x0 & rng seq c=dom(f1+f2)\{x0}; then A5: rng seq c=dom(f1+f2) & dom(f1+f2)=dom f1/\dom f2 & rng seq c=dom f1\ {x0} & rng seq c=dom f2\{x0} by Lm6; then A6: f1*seq is convergent & lim(f1*seq)=lim(f1,x0) by A1,A3,A4,Def4; A7: f2*seq is convergent & lim(f2*seq)=lim(f2,x0) by A1,A3,A4,A5,Def4; A8: f1*seq+f2*seq=(f1+f2)*seq by A5,RFUNCT_2:23; hence (f1+f2)*seq is convergent by A6,A7,SEQ_2:19; thus lim((f1+f2)*seq)=lim(f1,x0)+lim(f2,x0) by A6,A7,A8,SEQ_2:20; end; hence f1+f2 is_convergent_in x0 by A1,Def1; hence thesis by A2,Def4; end; theorem f1 is_convergent_in x0 & f2 is_convergent_in x0 & (for r1,r2 st r1<x0 & x0<r2 ex g1,g2 st r1<g1 & g1<x0 & g1 in dom(f1-f2) & g2<r2 & x0<g2 & g2 in dom(f1-f2)) implies f1-f2 is_convergent_in x0 & lim(f1-f2,x0)=(lim(f1,x0))-(lim(f2,x0)) proof assume A1: f1 is_convergent_in x0 & f2 is_convergent_in x0 & for r1,r2 st r1<x0 & x0<r2 ex g1,g2 st r1<g1 & g1<x0 & g1 in dom(f1-f2) & g2<r2 & x0<g2 & g2 in dom(f1-f2); A2: f1-f2=f1+-f2 by RFUNCT_1:40; A3: -f2 is_convergent_in x0 by A1,Th36; hence f1-f2 is_convergent_in x0 by A1,A2,Th37; thus lim(f1-f2,x0)=lim(f1,x0)+lim(-f2,x0) by A1,A2,A3,Th37 .=(lim(f1,x0))+-lim(f2,x0) by A1,Th36 .=(lim(f1,x0))-lim(f2,x0) by XCMPLX_0:def 8; end; theorem f is_convergent_in x0 & f"{0}={} & lim(f,x0)<>0 implies f^ is_convergent_in x0 & lim(f^,x0)=(lim(f,x0))" proof assume A1: f is_convergent_in x0 & f"{0}={} & lim(f,x0)<>0; then A2: dom f=dom f\f"{0} .=dom(f^) by RFUNCT_1:def 8; then A3: for r1,r2 st r1<x0 & x0<r2 ex g1,g2 st r1<g1 & g1<x0 & g1 in dom(f^) & g2<r2 & x0<g2 & g2 in dom(f^) by A1,Def1; A4: now let seq; assume A5: seq is convergent & lim seq=x0 & rng seq c=dom(f^)\{x0}; then A6: f*seq is convergent & lim(f*seq)=lim(f,x0) by A1,A2,Def4; A7: rng seq c=dom f by A2,A5,Lm1; then A8: f*seq is_not_0 by A2,RFUNCT_2:26; A9: (f*seq)"=(f^)*seq by A2,A7,RFUNCT_2:27; hence (f^)*seq is convergent by A1,A6,A8,SEQ_2:35; thus lim((f^)*seq)=(lim(f,x0))" by A1,A6,A8,A9,SEQ_2:36; end; hence f^ is_convergent_in x0 by A3,Def1; hence thesis by A4,Def4; end; theorem f is_convergent_in x0 implies abs(f) is_convergent_in x0 & lim(abs(f),x0)=abs(lim(f,x0)) proof assume A1: f is_convergent_in x0; A2: now let r1,r2; assume r1<x0 & x0<r2; then consider g1,g2 such that A3: r1<g1 & g1<x0 & g1 in dom f & g2<r2 & x0<g2 & g2 in dom f by A1,Def1; take g1; take g2; thus r1<g1 & g1<x0 & g1 in dom abs(f) & g2<r2 & x0<g2 & g2 in dom abs(f) by A3,SEQ_1:def 10; end; A4: now A5: lim(f,x0)=lim(f,x0); let seq; assume A6: seq is convergent & lim seq=x0 & rng seq c=dom abs(f)\{x0}; then A7: rng seq c=dom f\{x0} by SEQ_1:def 10; then A8: f*seq is convergent & lim(f*seq)=lim(f,x0) by A1,A5,A6,Def4; rng seq c=dom f by A7,Lm1; then A9: abs(f*seq)=abs(f)*seq by RFUNCT_2:25; hence abs(f)*seq is convergent by A8,SEQ_4:26; thus lim(abs(f)*seq)=abs(lim(f,x0)) by A8,A9,SEQ_4:27; end; hence abs(f) is_convergent_in x0 by A2,Def1; hence thesis by A4,Def4; end; theorem Th41: f is_convergent_in x0 & lim(f,x0)<>0 & (for r1,r2 st r1<x0 & x0<r2 ex g1,g2 st r1<g1 & g1<x0 & g1 in dom f & g2<r2 & x0<g2 & g2 in dom f & f.g1<>0 & f.g2<>0) implies f^ is_convergent_in x0 & lim(f^,x0)=(lim(f,x0))" proof assume A1: f is_convergent_in x0 & lim(f,x0)<>0 & for r1,r2 st r1<x0 & x0<r2 ex g1,g2 st r1<g1 & g1<x0 & g1 in dom f & g2<r2 & x0<g2 & g2 in dom f & f.g1<>0 & f.g2<>0; A2: dom f\f"{0}=dom(f^) by RFUNCT_1:def 8; A3: now let r1,r2; assume r1<x0 & x0<r2; then consider g1,g2 such that A4: r1<g1 & g1<x0 & g1 in dom f & g2<r2 & x0<g2 & g2 in dom f & f.g1<>0 & f.g2<>0 by A1; take g1,g2; not f.g1 in {0} & not f.g2 in {0} by A4,TARSKI:def 1 ; then not g1 in f"{0} & not g2 in f"{0} by FUNCT_1:def 13; hence r1<g1 & g1<x0 & g1 in dom(f^) & g2<r2 & x0<g2 & g2 in dom(f^) by A2,A4,XBOOLE_0:def 4; end; A5: now let seq; assume A6: seq is convergent & lim seq=x0 & rng seq c=dom(f^)\{x0}; then A7: rng seq c=dom(f^) by Lm1; dom(f^)c=dom f by A2,XBOOLE_1:36; then A8: rng seq c=dom f by A7,XBOOLE_1:1 ; now let x be set; assume A9: x in rng seq; then not x in {x0} by A6,XBOOLE_0:def 4; hence x in dom f\{x0} by A8,A9,XBOOLE_0:def 4; end; then rng seq c=dom f\{x0} by TARSKI:def 3; then A10: f*seq is convergent & lim(f*seq)=lim(f,x0) by A1,A6,Def4; A11: f*seq is_not_0 by A7,RFUNCT_2:26; A12: (f*seq)"=(f^)*seq by A7,RFUNCT_2:27; hence (f^)*seq is convergent by A1,A10,A11,SEQ_2:35; thus lim((f^)*seq)=(lim(f,x0))" by A1,A10,A11,A12,SEQ_2:36; end; hence f^ is_convergent_in x0 by A3,Def1; hence thesis by A5,Def4; end; theorem Th42: f1 is_convergent_in x0 & f2 is_convergent_in x0 & (for r1,r2 st r1<x0 & x0<r2 ex g1,g2 st r1<g1 & g1<x0 & g1 in dom(f1(#)f2) & g2<r2 & x0<g2 & g2 in dom(f1(#) f2)) implies f1(#)f2 is_convergent_in x0 & lim(f1(#)f2,x0)=(lim(f1,x0))*(lim(f2,x0)) proof assume A1: f1 is_convergent_in x0 & f2 is_convergent_in x0 & for r1,r2 st r1<x0 & x0<r2 ex g1,g2 st r1<g1 & g1<x0 & g1 in dom(f1(#)f2) & g2<r2 & x0<g2 & g2 in dom(f1(#)f2); A2: now A3: lim(f1,x0)=lim(f1,x0) & lim(f2,x0)=lim(f2,x0); let seq; assume A4: seq is convergent & lim seq=x0 & rng seq c=dom(f1(#)f2)\{x0}; then A5: rng seq c=dom(f1(#)f2) & dom(f1(#) f2)=dom f1/\dom f2 & rng seq c=dom f1\{x0} & rng seq c=dom f2\{x0} by Lm3; then A6: f1*seq is convergent & lim(f1*seq)=lim(f1,x0) by A1,A3,A4,Def4; A7: f2*seq is convergent & lim(f2*seq)=lim(f2,x0) by A1,A3,A4,A5,Def4; A8: (f1*seq)(#)(f2*seq)=(f1(#)f2)*seq by A5,RFUNCT_2:23; hence (f1(#)f2)*seq is convergent by A6,A7,SEQ_2:28; thus lim((f1(#)f2)*seq)=lim(f1,x0)*lim(f2,x0) by A6,A7,A8,SEQ_2:29; end; hence f1(#)f2 is_convergent_in x0 by A1,Def1; hence thesis by A2,Def4; end; theorem f1 is_convergent_in x0 & f2 is_convergent_in x0 & lim(f2,x0)<>0 & (for r1,r2 st r1<x0 & x0<r2 ex g1,g2 st r1<g1 & g1<x0 & g1 in dom(f1/f2) & g2<r2 & x0<g2 & g2 in dom(f1/f2)) implies f1/f2 is_convergent_in x0 & lim(f1/f2,x0)=(lim(f1,x0))/(lim(f2,x0)) proof assume A1: f1 is_convergent_in x0 & f2 is_convergent_in x0 & lim(f2,x0)<>0 & for r1,r2 st r1<x0 & x0<r2 ex g1,g2 st r1<g1 & g1<x0 & g1 in dom(f1/f2) & g2<r2 & x0<g2 & g2 in dom(f1/f2); A2: f1/f2=f1(#)(f2^) by RFUNCT_1:47; now let r1,r2; assume r1<x0 & x0<r2; then consider g1,g2 such that A3: r1<g1 & g1<x0 & g1 in dom(f1/f2) & g2<r2 & x0<g2 & g2 in dom(f1/f2) by A1; take g1; take g2; thus r1<g1 & g1<x0 by A3; dom(f1/f2)=dom f1/\(dom f2\f2"{0}) by RFUNCT_1:def 4; then A4: g1 in dom f2\f2"{0} & g2 in dom f2\f2"{0} by A3,XBOOLE_0:def 3; then g1 in dom f2 & not g1 in f2"{0} & g2 in dom f2 & not g2 in f2"{0} by XBOOLE_0:def 4; then not f2.g1 in {0} & not f2.g2 in {0} by FUNCT_1:def 13; hence g1 in dom f2 & g2<r2 & x0<g2 & g2 in dom f2 & f2.g1<>0 & f2.g2<>0 by A3,A4,TARSKI:def 1,XBOOLE_0:def 4; end; then A5: f2^ is_convergent_in x0 & lim(f2^,x0)=(lim(f2,x0))" by A1,Th41; hence f1/f2 is_convergent_in x0 by A1,A2,Th42; thus lim(f1/f2,x0)=lim(f1,x0)*((lim(f2,x0))") by A1,A2,A5,Th42 .=lim(f1,x0)/(lim(f2,x0)) by XCMPLX_0:def 9; end; theorem f1 is_convergent_in x0 & lim(f1,x0)=0 & (for r1,r2 st r1<x0 & x0<r2 ex g1,g2 st r1<g1 & g1<x0 & g1 in dom(f1(#)f2) & g2<r2 & x0<g2 & g2 in dom(f1(#)f2)) & (ex r st 0<r & f2 is_bounded_on ].x0-r,x0.[ \/ ].x0,x0+r.[) implies f1(#)f2 is_convergent_in x0 & lim(f1(#)f2,x0)=0 proof assume A1: f1 is_convergent_in x0 & lim(f1,x0)=0 & for r1,r2 st r1<x0 & x0<r2 ex g1,g2 st r1<g1 & g1<x0 & g1 in dom(f1(#)f2) & g2<r2 & x0<g2 & g2 in dom(f1(#)f2); given r such that A2: 0<r & f2 is_bounded_on ].x0-r,x0.[\/].x0,x0+r.[; consider g be real number such that A3: for r1 st r1 in (].x0-r,x0.[\/].x0,x0+r.[)/\dom f2 holds abs(f2.r1)<=g by A2,RFUNCT_1:90; A4: now let s be Real_Sequence; assume A5: s is convergent & lim s=x0 & rng s c=dom(f1(#)f2)\{x0}; then A6: rng s c=dom(f1(#)f2) & dom(f1(#)f2)=dom f1/\dom f2 & rng s c=dom f1 & rng s c=dom f2 & rng s c=dom f1\{x0} & rng s c=dom f2\{x0} by Lm3; consider k such that A7: for n st k<= n holds x0-r<s.n & s.n<x0+r by A2,A5,Th7; A8: s^\k is convergent & lim(s^\k)=x0 by A5,SEQ_4:33; rng(s^\k)c=rng s by RFUNCT_2:7; then A9: rng(s^\k)c=dom f1/\dom f2 & rng(s^\k)c=dom f1 & rng(s^\k)c=dom f2 & rng(s^\k)c=dom f1\{x0} & rng(s^\k)c=dom f2\{x0} by A6,XBOOLE_1:1; then A10: f1*(s^\k) is convergent & lim(f1*(s^\k))=0 by A1,A8,Def4; now set t=abs(g)+1; 0<=abs(g) by ABSVALUE:5; hence 0<t by Lm2; let n; A11: (s^\k).n in rng(s^\k) by RFUNCT_2:10; k<=n+k by NAT_1:37; then x0-r<s.(n+k) & s.(n+k)<x0+r by A7; then x0-r<(s^\k).n & (s^\k).n<x0+r by SEQM_3:def 9; then (s^\k).n in {g1: x0-r<g1 & g1<x0+r}; then A12: (s^\k).n in ].x0-r,x0+r .[ by RCOMP_1:def 2; not (s^\k).n in {x0} by A9,A11,XBOOLE_0:def 4; then (s^\k).n in ].x0-r,x0+r.[\{x0} by A12,XBOOLE_0:def 4; then (s^\k).n in ].x0-r,x0.[\/].x0,x0+r.[ by A2,Th4; then (s^\k).n in (].x0-r,x0.[\/].x0,x0+r.[)/\dom f2 by A9,A11,XBOOLE_0:def 3 ; then abs(f2.((s^\k).n))<=g by A3; then A13: abs((f2*(s^\k)).n)<= g by A9,RFUNCT_2:21; g<=abs(g) by ABSVALUE:11; then g<t by Lm2; hence abs((f2*(s^\k)).n)<t by A13,AXIOMS:22; end; then A14: f2*(s^\k) is bounded by SEQ_2:15; then A15: (f1*(s^\k))(#)(f2*(s^\k)) is convergent by A10,SEQ_2:39; A16: lim((f1*(s^\k))(#)(f2*(s^\k)))=0 by A10,A14,SEQ_2:40; A17: (f1*(s^\k))(#)(f2*(s^\k))=(f1(#)f2)*(s^\k) by A9,RFUNCT_2:23 .=((f1(#)f2)*s)^\k by A6,RFUNCT_2:22; hence (f1(#)f2)*s is convergent by A15,SEQ_4:35; thus lim((f1(#)f2)*s)=0 by A15,A16,A17,SEQ_4:36; end; hence f1(#)f2 is_convergent_in x0 by A1,Def1; hence thesis by A4,Def4; end; theorem Th45: f1 is_convergent_in x0 & f2 is_convergent_in x0 & lim(f1,x0)=lim(f2,x0) & (for r1,r2 st r1<x0 & x0<r2 ex g1,g2 st r1<g1 & g1<x0 & g1 in dom f & g2<r2 & x0<g2 & g2 in dom f) & (ex r st 0<r & (for g st g in dom f /\ (].x0-r,x0.[ \/ ].x0,x0+r.[) holds f1.g<=f.g & f.g<=f2.g) & ((dom f1 /\ (].x0-r,x0.[ \/ ].x0,x0+r.[) c= dom f2 /\ (].x0-r,x0.[ \/ ].x0,x0+r.[) & dom f /\ (].x0-r,x0.[ \/ ].x0,x0+r.[) c= dom f1 /\ (].x0-r,x0.[ \/ ].x0,x0+r.[)) or (dom f2 /\ (].x0-r,x0.[ \/ ].x0,x0+r.[) c= dom f1 /\ (].x0-r,x0.[ \/ ].x0,x0+r.[) & dom f /\ (].x0-r,x0.[ \/ ].x0,x0+r.[) c= dom f2 /\ (].x0-r,x0.[ \/ ].x0,x0+r.[)))) implies f is_convergent_in x0 & lim(f,x0)=lim(f1,x0) proof assume A1: f1 is_convergent_in x0 & f2 is_convergent_in x0 & lim(f1,x0)=lim(f2,x0) & for r1,r2 st r1<x0 & x0<r2 ex g1,g2 st r1<g1 & g1<x0 & g1 in dom f & g2<r2 & x0<g2 & g2 in dom f; given r1 such that A2: 0<r1 & for g st g in dom f/\(].x0-r1,x0.[\/].x0,x0+r1.[) holds f1.g<=f.g & f.g<=f2.g and A3: (dom f1/\(].x0-r1,x0.[\/].x0,x0+r1.[)c=dom f2/\(].x0-r1,x0.[\/ ].x0,x0+r1.[) & dom f/\(].x0-r1,x0.[\/].x0,x0+r1.[)c=dom f1/\(].x0-r1,x0.[\/].x0,x0+r1.[)) or (dom f2/\(].x0-r1,x0.[\/].x0,x0+r1.[)c=dom f1/\(].x0-r1,x0.[\/].x0,x0+r1.[) & dom f/\(].x0-r1,x0.[\/].x0,x0+r1.[)c=dom f2/\(].x0-r1,x0.[\/].x0,x0+r1.[)); now per cases by A3; suppose A4:dom f1/\(].x0-r1,x0.[\/].x0,x0+r1.[)c=dom f2/\(].x0-r1,x0.[\/].x0,x0+r1.[) & dom f/\(].x0-r1,x0.[\/].x0,x0+r1.[)c=dom f1/\(].x0-r1,x0.[\/].x0,x0+r1.[); A5: now let s be Real_Sequence; assume A6: s is convergent & lim s=x0 & rng s c=dom f\{x0}; then consider k such that A7: for n st k<=n holds x0-r1<s.n & s.n<x0+r1 by A2,Th7; A8: s^\k is convergent & lim(s^\k)= x0 by A6,SEQ_4:33; A9: rng(s^\k)c=rng s by RFUNCT_2:7; A10: rng s c=dom f by A6,Lm1; then A11: rng(s^\k)c=dom f & rng(s^\k)c=dom f\{x0} by A6,A9,XBOOLE_1:1; A12: dom f1/\(].x0-r1,x0.[\/].x0,x0+r1.[)c=dom f1 by XBOOLE_1:17; A13: dom f2/\(].x0-r1,x0.[\/].x0,x0+r1.[)c=dom f2 by XBOOLE_1:17; now let x be set; assume A14: x in rng(s^\k); then consider n such that A15: x=(s^\k).n by RFUNCT_2:9; k<=n+k by NAT_1:37; then x0-r1<s.(n+k) & s.(n+k)<x0+r1 by A7; then x0-r1<(s^\k).n & (s^\k).n<x0+r1 by SEQM_3:def 9; then (s^\k).n in {g1: x0-r1<g1 & g1<x0+r1}; then A16: (s^\k).n in ].x0-r1,x0+r1.[ by RCOMP_1:def 2; not (s^\k).n in {x0} by A11,A14,A15,XBOOLE_0:def 4; then x in ].x0-r1,x0+r1.[\{x0} by A15,A16,XBOOLE_0:def 4; hence x in ].x0-r1,x0.[\/].x0,x0+r1.[ by A2,Th4; end; then rng(s^\k)c=].x0-r1,x0.[\/].x0,x0+r1.[ by TARSKI:def 3; then A17: rng(s^\k)c=dom f/\(].x0-r1,x0.[\/].x0,x0+r1.[) by A11,XBOOLE_1:19; then A18: rng(s^\k)c=dom f1/\(].x0-r1,x0.[\/].x0,x0+r1.[) by A4,XBOOLE_1:1; then A19: rng(s^\k)c=dom f1 by A12,XBOOLE_1:1; rng(s^\k)c=dom f2/\(].x0-r1,x0.[\/].x0,x0+r1.[) by A4,A18,XBOOLE_1:1; then A20: rng(s^\k)c=dom f2 by A13,XBOOLE_1:1; rng(s^\k)c=dom f1\{x0} proof let x be set; assume A21: x in rng(s^\k); then not x in {x0} by A11,XBOOLE_0:def 4; hence thesis by A19,A21,XBOOLE_0:def 4; end; then A22: f1*(s^\k) is convergent & lim(f1*(s^\k))=lim(f1,x0) by A1,A8,Def4; rng(s^\k) c=dom f2\{x0} proof let x be set; assume A23: x in rng(s^\k); then not x in {x0} by A11,XBOOLE_0:def 4; hence thesis by A20,A23,XBOOLE_0:def 4; end; then A24: f2*(s^\k) is convergent & lim(f2*(s^\k))=lim(f2,x0) by A1,A8,Def4; A25: now let n; (s^\k).n in rng(s^\k) by RFUNCT_2:10; then f1.((s^\k).n)<=f.((s^\k).n) & f.((s^\k).n)<=f2.((s^\k).n) by A2,A17; then f1.((s^\k).n)<=(f*(s^\k)).n & (f*(s^\k)).n<= f2.((s^\k).n) by A11,RFUNCT_2:21; hence (f1*(s^\k)).n<=(f*(s^\k)).n & (f*(s^\k)).n<=(f2*(s^\k)).n by A19,A20,RFUNCT_2:21; end; then A26: f*(s^\k) is convergent by A1,A22,A24,SEQ_2:33; lim(f*(s^\k))=lim(f1,x0) by A1,A22,A24,A25,SEQ_2:34; then A27: (f*s)^\k is convergent & lim((f*s)^\k)=lim(f1,x0) by A10,A26, RFUNCT_2:22; hence f*s is convergent by SEQ_4:35;thus lim(f*s)=lim(f1,x0) by A27,SEQ_4:36 ; end; hence f is_convergent_in x0 by A1,Def1; hence thesis by A5,Def4; suppose A28:dom f2/\(].x0-r1,x0.[\/].x0,x0+r1.[)c=dom f1/\(].x0-r1,x0.[\/].x0,x0+r1.[) & dom f/\(].x0-r1,x0.[\/].x0,x0+r1.[)c=dom f2/\(].x0-r1,x0.[\/].x0,x0+r1.[); A29: now let s be Real_Sequence; assume A30: s is convergent & lim s=x0 & rng s c=dom f\{x0}; then consider k such that A31: for n st k<=n holds x0-r1<s.n & s.n<x0+r1 by A2,Th7; A32: s^\k is convergent & lim(s^\k)= x0 by A30,SEQ_4:33; A33: rng(s^\k)c=rng s by RFUNCT_2:7; A34: rng s c=dom f by A30,Lm1; then A35: rng(s^\k)c=dom f & rng(s^\k)c=dom f\{x0} by A30,A33,XBOOLE_1:1; A36: dom f1/\(].x0-r1,x0.[\/].x0,x0+r1.[)c=dom f1 by XBOOLE_1:17; A37: dom f2/\(].x0-r1,x0.[\/].x0,x0+r1.[)c=dom f2 by XBOOLE_1:17; now let x be set; assume A38: x in rng(s^\k); then consider n such that A39: x=(s^\k).n by RFUNCT_2:9; k<=n+k by NAT_1:37; then x0-r1<s.(n+k) & s.(n+k)<x0+r1 by A31; then x0-r1<(s^\k).n & (s^\k).n<x0+r1 by SEQM_3:def 9; then (s^\k).n in {g1: x0-r1<g1 & g1<x0+r1}; then A40: (s^\k).n in ].x0-r1,x0+r1.[ by RCOMP_1:def 2; not (s^\k).n in {x0} by A35,A38,A39,XBOOLE_0:def 4; then x in ].x0-r1,x0+r1.[\{x0} by A39,A40,XBOOLE_0:def 4; hence x in ].x0-r1,x0.[\/].x0,x0+r1.[ by A2,Th4; end; then rng(s^\k)c=].x0-r1,x0.[\/].x0,x0+r1.[ by TARSKI:def 3; then A41: rng(s^\k)c=dom f/\(].x0-r1,x0.[\/].x0,x0+r1.[) by A35,XBOOLE_1:19; then A42: rng(s^\k)c=dom f2/\(].x0-r1,x0.[\/].x0,x0+r1.[) by A28,XBOOLE_1:1; then A43: rng(s^\k)c=dom f2 by A37,XBOOLE_1:1; rng(s^\k)c=dom f1/\(].x0-r1,x0.[\/].x0,x0+r1.[) by A28,A42,XBOOLE_1:1; then A44: rng(s^\k)c=dom f1 by A36,XBOOLE_1:1; rng(s^\k)c=dom f1\{x0} proof let x be set; assume A45: x in rng(s^\k); then not x in {x0} by A35,XBOOLE_0:def 4; hence thesis by A44,A45,XBOOLE_0:def 4; end; then A46: f1*(s^\k) is convergent & lim(f1*(s^\k))=lim(f1,x0) by A1,A32,Def4; rng(s^\k) c=dom f2\{x0} proof let x be set; assume A47: x in rng(s^\k); then not x in {x0} by A35,XBOOLE_0:def 4; hence thesis by A43,A47,XBOOLE_0:def 4; end; then A48: f2*(s^\k) is convergent & lim(f2*(s^\k))=lim(f2,x0) by A1,A32,Def4; A49: now let n; (s^\k).n in rng(s^\k) by RFUNCT_2:10; then f1.((s^\k).n)<=f.((s^\k).n) & f.((s^\k).n)<=f2.((s^\k).n) by A2,A41; then f1.((s^\k).n)<=(f*(s^\k)).n & (f*(s^\k)).n<= f2.((s^\k).n) by A35,RFUNCT_2:21; hence (f1*(s^\k)).n<=(f*(s^\k)).n & (f*(s^\k)).n<=(f2*(s^\k)).n by A43,A44,RFUNCT_2:21; end; then A50: f*(s^\k) is convergent by A1,A46,A48,SEQ_2:33; lim(f*(s^\k))=lim(f1,x0) by A1,A46,A48,A49,SEQ_2:34; then A51: (f*s)^\k is convergent & lim((f*s)^\k)=lim(f1,x0)by A34,A50, RFUNCT_2:22 ; hence f*s is convergent by SEQ_4:35;thus lim(f*s)=lim(f1,x0) by A51,SEQ_4:36 ; end; hence f is_convergent_in x0 by A1,Def1; hence thesis by A29,Def4; end; hence thesis; end; theorem f1 is_convergent_in x0 & f2 is_convergent_in x0 & lim(f1,x0)=lim(f2,x0) & (ex r st 0<r & ].x0-r,x0.[ \/ ].x0,x0+r.[ c= dom f1 /\ dom f2 /\ dom f & for g st g in ].x0-r,x0.[ \/ ].x0,x0+r.[ holds f1.g<=f.g & f.g<=f2.g) implies f is_convergent_in x0 & lim(f,x0)=lim(f1,x0) proof assume A1: f1 is_convergent_in x0 & f2 is_convergent_in x0 & lim(f1,x0)=lim(f2,x0); given r such that A2: 0<r & ].x0-r,x0.[\/].x0,x0+r.[c=dom f1/\dom f2/\dom f & for g st g in ].x0-r,x0.[\/].x0,x0+r.[ holds f1.g<=f.g & f.g<=f2.g; A3: ].x0-r,x0.[\/].x0,x0+r.[c=dom f & ].x0-r,x0.[\/].x0,x0+r.[c=dom f1/\dom f2 by A2,XBOOLE_1:18; then A4: dom f/\(].x0-r,x0.[\/].x0,x0+r.[)=].x0-r,x0.[\/].x0,x0+r.[ by XBOOLE_1:28; ].x0-r,x0.[\/].x0,x0+r.[c=dom f1 & ].x0-r,x0.[\/].x0,x0+r.[c=dom f2 by A3, XBOOLE_1:18; then A5: dom f1/\(].x0-r,x0.[\/].x0,x0+r.[)=].x0-r,x0.[\/].x0,x0+r.[ & dom f2/\(].x0-r,x0.[\/].x0,x0+r.[)=].x0-r,x0.[\/].x0,x0+r.[ by XBOOLE_1:28; for r1,r2 st r1<x0 & x0<r2 ex g1,g2 st r1<g1 & g1<x0 & g1 in dom f & g2<r2 & x0<g2 & g2 in dom f by A2,A3,Th5; hence thesis by A1,A2,A4,A5,Th45; end; theorem f1 is_convergent_in x0 & f2 is_convergent_in x0 & (ex r st 0<r & ((dom f1 /\ (].x0-r,x0.[ \/ ].x0,x0+r.[) c= dom f2 /\ (].x0-r,x0.[ \/ ].x0,x0+r.[) & for g st g in dom f1 /\ (].x0-r,x0.[ \/ ].x0,x0+r.[) holds f1.g<=f2.g) or (dom f2 /\ (].x0-r,x0.[ \/ ].x0,x0+r.[) c= dom f1 /\ (].x0-r,x0.[ \/ ].x0,x0+r.[) & for g st g in dom f2 /\ (].x0-r,x0.[ \/ ].x0,x0+r.[) holds f1.g<= f2.g))) implies lim(f1,x0)<=lim(f2,x0) proof assume A1: f1 is_convergent_in x0 & f2 is_convergent_in x0; given r such that A2: 0<r and A3: (dom f1/\(].x0-r,x0.[\/].x0,x0+r.[)c=dom f2/\(].x0-r,x0.[\/].x0,x0+r.[) & for g st g in dom f1/\(].x0-r,x0.[\/].x0,x0+r.[) holds f1.g<=f2.g) or (dom f2/\(].x0-r,x0.[\/].x0,x0+r.[)c=dom f1/\(].x0-r,x0.[\/].x0,x0+r.[) & for g st g in dom f2/\(].x0-r,x0.[\/].x0,x0+r.[) holds f1.g<=f2.g); A4: lim(f1,x0)=lim(f1,x0) & lim(f2,x0)=lim(f2,x0); now per cases by A3; suppose A5: dom f1/\(].x0-r,x0.[\/].x0,x0+r.[)c=dom f2/\(].x0-r,x0.[\/].x0,x0+r.[) & for g st g in dom f1/\(].x0-r,x0.[\/].x0,x0+r.[) holds f1.g<=f2.g; defpred X[Nat,real number] means x0-1/($1+1)<$2 & $2<x0 & $2 in dom f1; A6: now let n; A7: x0-1/(n+1)<x0 by Lm4; x0<x0+1 by Lm2; then consider g1,g2 such that A8: x0-1/(n+1)<g1 & g1<x0 & g1 in dom f1 & g2<x0+1 & x0<g2 & g2 in dom f1 by A1,A7,Def1; reconsider g1 as real number; take g1; thus X[n,g1] by A8; end; consider s be Real_Sequence such that A9: for n holds X[n,s.n] from RealSeqChoice(A6); A10: s is convergent & lim s=x0 & rng s c=dom f1\{x0} by A9,Th6; x0-r<x0 by A2,Lm2; then consider k such that A11: for n st k<=n holds x0-r<s.n by A10,LIMFUNC2:1; A12: s^\k is convergent & lim(s^\k)=x0 by A10,SEQ_4:33; rng(s^\k)c=rng s by RFUNCT_2:7; then A13: rng(s^\k)c=dom f1\{x0} by A10,XBOOLE_1:1; then A14: f1*(s^\k) is convergent & lim(f1*(s^\k))=lim(f1,x0) by A1,A4,A12, Def4; now let x be set; assume x in rng(s^\k); then consider n such that A15: (s^\k).n=x by RFUNCT_2:9; k<=n+k by NAT_1:37; then x0-r<s.(n+k) by A11; then A16: x0-r<(s^\k).n by SEQM_3:def 9; s.(n+k)<x0 & s.(n+k) in dom f1 by A9; then A17: (s^\k).n<x0 & (s^\k).n in dom f1 by SEQM_3:def 9; then (s^\k).n in {g2: x0-r<g2 & g2<x0} by A16; then (s^\k).n in ].x0-r,x0 .[ by RCOMP_1:def 2; then (s^\k).n in ].x0-r,x0.[\/].x0,x0+r.[ by XBOOLE_0:def 2; hence x in dom f1/\(].x0-r,x0.[\/].x0,x0+r.[) by A15,A17,XBOOLE_0:def 3; end; then A18: rng(s^\k)c=dom f1/\(].x0-r,x0.[\/].x0,x0+r.[) by TARSKI:def 3 ; then rng(s^\k)c=dom f2/\(].x0-r,x0.[\/].x0,x0+r.[) by A5,XBOOLE_1:1; then A19: rng(s^\k)c=dom f2 by XBOOLE_1:18; rng(s^\k)c=dom f2\{x0} proof let x be set; assume A20: x in rng(s^\k); then not x in {x0} by A13,XBOOLE_0:def 4; hence thesis by A19,A20,XBOOLE_0:def 4; end; then A21: f2*(s^\k) is convergent & lim(f2*(s^\k))=lim(f2,x0) by A1,A4,A12, Def4; A22: rng(s^\k)c=dom f1 by A18,XBOOLE_1:18; now let n; (s^\k).n in rng(s^\k) by RFUNCT_2:10; then f1.((s^\k).n)<=f2.((s^\k).n) by A5,A18; then f1.((s^\k).n)<=(f2*(s^\k)).n by A19,RFUNCT_2:21; hence (f1*(s^\k)).n<=(f2*(s^\k)).n by A22,RFUNCT_2:21; end; hence thesis by A14,A21,SEQ_2:32; suppose A23: dom f2/\(].x0-r,x0.[\/].x0,x0+r.[)c=dom f1/\(].x0-r,x0.[\/].x0,x0+r.[) & for g st g in dom f2/\(].x0-r,x0.[\/].x0,x0+r.[) holds f1.g<=f2.g; defpred X[Nat,real number] means x0-1/($1+1)<$2 & $2<x0 & $2 in dom f2; A24: now let n; A25: x0-1/(n+1)<x0 by Lm4; x0<x0+1 by Lm2; then consider g1,g2 such that A26: x0-1/(n+1)<g1 & g1<x0 & g1 in dom f2 & g2<x0+1 & x0<g2 & g2 in dom f2 by A1,A25,Def1; reconsider g1 as real number; take g1; thus X[n,g1] by A26; end; consider s be Real_Sequence such that A27: for n holds X[n,s.n] from RealSeqChoice(A24 ); A28: s is convergent & lim s=x0 & rng s c=dom f2\{x0} by A27,Th6; x0-r<x0 by A2,Lm2; then consider k such that A29: for n st k<=n holds x0-r<s.n by A28,LIMFUNC2:1; A30: s^\k is convergent & lim(s^\k)=x0 by A28,SEQ_4:33; rng(s^\k)c=rng s by RFUNCT_2:7; then A31: rng(s^\k)c=dom f2\{x0} by A28,XBOOLE_1:1; then A32: f2*(s^\k) is convergent & lim(f2*(s^\k))=lim(f2,x0) by A1,A4,A30, Def4; A33: now let x be set; assume x in rng(s^\k); then consider n such that A34: (s^\k).n=x by RFUNCT_2:9; k<=n+k by NAT_1:37; then x0-r<s.(n+k) by A29; then A35: x0-r<(s^\k).n by SEQM_3:def 9; s.(n+k)<x0 & s.(n+k) in dom f2 by A27; then A36: (s^\k).n<x0 & (s^\k).n in dom f2 by SEQM_3:def 9; then (s^\k).n in {g2: x0-r<g2 & g2<x0} by A35; then (s^\k).n in ].x0-r,x0 .[ by RCOMP_1:def 2; then (s^\k).n in ].x0-r,x0.[\/].x0,x0+r.[ by XBOOLE_0:def 2; hence x in dom f2/\(].x0-r,x0.[\/].x0,x0+r.[) by A34,A36,XBOOLE_0:def 3; end; then A37: rng(s^\k)c=dom f2/\(].x0-r,x0.[\/].x0,x0+r.[) by TARSKI:def 3 ; then rng(s^\k)c=dom f1/\(].x0-r,x0.[\/].x0,x0+r.[) by A23,XBOOLE_1:1; then A38: rng(s^\k)c=dom f1 by XBOOLE_1:18; rng(s^\k)c=dom f1\{x0} proof let x be set; assume A39: x in rng(s^\k); then not x in {x0} by A31,XBOOLE_0:def 4; hence thesis by A38,A39,XBOOLE_0:def 4; end; then A40: f1*(s^\k) is convergent & lim(f1*(s^\k))=lim(f1,x0) by A1,A4,A30, Def4; A41: rng(s^\k)c=dom f2 by A37,XBOOLE_1:18; now let n; (s^\k).n in rng(s^\k) by RFUNCT_2:10; then (s^\k).n in dom f2/\(].x0-r,x0.[\/].x0,x0+r.[) by A33; then f1.((s^\k).n)<=f2.((s^\k).n) by A23; then f1.((s^\k).n)<=(f2*(s^\k)).n by A41,RFUNCT_2:21; hence (f1*(s^\k)).n<=(f2*(s^\k)).n by A38,RFUNCT_2:21; end; hence thesis by A32,A40,SEQ_2:32; end; hence thesis; end; theorem (f is_divergent_to+infty_in x0 or f is_divergent_to-infty_in x0) & (for r1,r2 st r1<x0 & x0<r2 ex g1,g2 st r1<g1 & g1<x0 & g1 in dom f & g2<r2 & x0<g2 & g2 in dom f & f.g1<>0 & f.g2<>0) implies f^ is_convergent_in x0 & lim(f^,x0)=0 proof assume A1: f is_divergent_to+infty_in x0 or f is_divergent_to-infty_in x0; assume A2: for r1,r2 st r1<x0 & x0<r2 ex g1,g2 st r1<g1 & g1<x0 & g1 in dom f & g2<r2 & x0<g2 & g2 in dom f & f.g1<>0 & f.g2<>0; A3: dom f\f"{0}=dom(f^) by RFUNCT_1:def 8; A4: now let r1,r2; assume r1<x0 & x0<r2; then consider g1,g2 such that A5: r1<g1 & g1<x0 & g1 in dom f & g2<r2 & x0<g2 & g2 in dom f & f.g1<>0 & f.g2<>0 by A2; take g1,g2; not f.g1 in {0} & not f.g2 in {0} by A5,TARSKI:def 1 ; then not g1 in f"{0} & not g2 in f"{0} by FUNCT_1:def 13; hence r1<g1 & g1<x0 & g1 in dom(f^) & g2<r2 & x0<g2 & g2 in dom(f^) by A3,A5,XBOOLE_0:def 4; end; A6: now let seq; assume A7: seq is convergent & lim seq=x0 & rng seq c=dom(f^)\{x0}; then A8: rng seq c=dom(f^) by Lm1; dom(f^)c=dom f by A3,XBOOLE_1:36; then A9: rng seq c=dom f by A8,XBOOLE_1:1; A10: rng seq c=dom f\{x0} proof let x be set; assume A11: x in rng seq; then not x in {x0} by A7,XBOOLE_0:def 4; hence thesis by A9,A11,XBOOLE_0:def 4; end; now per cases by A1; suppose f is_divergent_to+infty_in x0; then f*seq is divergent_to+infty by A7,A10, Def2 ; then (f*seq)" is convergent & lim((f*seq)")=0 by LIMFUNC1:61; hence (f^)*seq is convergent & lim((f^)*seq)=0 by A8,RFUNCT_2:27; suppose f is_divergent_to-infty_in x0; then f*seq is divergent_to-infty by A7,A10, Def3 ; then (f*seq)" is convergent & lim((f*seq)")=0 by LIMFUNC1:61; hence (f^)*seq is convergent & lim((f^)*seq)=0 by A8,RFUNCT_2:27; end; hence (f^)*seq is convergent & lim((f^)*seq)=0; end; hence f^ is_convergent_in x0 by A4,Def1; hence thesis by A6,Def4; end; theorem f is_convergent_in x0 & lim(f,x0)=0 & (for r1,r2 st r1<x0 & x0<r2 ex g1,g2 st r1<g1 & g1<x0 & g1 in dom f & g2<r2 & x0<g2 & g2 in dom f & f.g1<>0 & f.g2<>0) & (ex r st 0<r & for g st g in dom f /\ (].x0-r,x0.[ \/ ].x0,x0+r.[) holds 0<=f.g) implies f^ is_divergent_to+infty_in x0 proof assume A1: f is_convergent_in x0 & lim(f,x0)=0 & for r1,r2 st r1<x0 & x0<r2 ex g1,g2 st r1<g1 & g1<x0 & g1 in dom f & g2<r2 & x0<g2 & g2 in dom f & f.g1<>0 & f.g2<>0; given r such that A2: 0<r & for g st g in dom f/\(].x0-r,x0.[\/].x0,x0+r.[) holds 0<=f.g; thus for r1,r2 st r1<x0 & x0<r2 ex g1,g2 st r1<g1 & g1<x0 & g1 in dom(f^) & g2<r2 & x0<g2 & g2 in dom(f^) proof let r1,r2; assume r1<x0 & x0<r2; then consider g1,g2 such that A3: r1<g1 & g1<x0 & g1 in dom f & g2<r2 & x0<g2 & g2 in dom f & f.g1<>0 & f.g2<>0 by A1; take g1, g2; not f.g1 in {0} & not f.g2 in {0} by A3,TARSKI:def 1 ; then not g1 in f"{0} & not g2 in f"{0} by FUNCT_1:def 13; then g1 in dom f\f"{0} & g2 in dom f\f"{0} by A3,XBOOLE_0:def 4; hence r1<g1 & g1<x0 & g1 in dom(f^) & g2<r2 & x0<g2 & g2 in dom(f^) by A3,RFUNCT_1:def 8; end; let s be Real_Sequence; assume A4: s is convergent & lim s=x0 & rng s c=dom(f^)\{x0}; then consider k such that A5: for n st k<=n holds x0-r<s.n & s.n<x0+r by A2,Th7; A6: s^\k is convergent & lim(s^\k)=x0 by A4,SEQ_4:33; A7: rng s c=dom(f^) by A4,Lm1; dom(f^)=dom f\f"{0} by RFUNCT_1:def 8; then dom(f^)c=dom f by XBOOLE_1:36 ; then A8: rng s c=dom f by A7,XBOOLE_1:1; rng(s^\k)c=rng s by RFUNCT_2:7; then A9: rng(s^\k)c=dom (f^)\{x0} & rng(s^\k)c=dom(f^) & rng(s^\k)c=dom f by A4,A7,A8,XBOOLE_1:1; rng(s^\k)c=dom f\{x0} proof let x be set; assume A10: x in rng(s^\k); then not x in {x0} by A9,XBOOLE_0:def 4; hence thesis by A9,A10,XBOOLE_0:def 4; end; then A11: f*(s^\k) is convergent & lim(f*(s^\k))=0 by A1,A6,Def4; A12: f*(s^\k) is_not_0 by A9,RFUNCT_2:26; now let n; A13: (s^\k).n in rng(s^\k) by RFUNCT_2:10; k<=n+k by NAT_1:37; then x0-r<s.(n+k) & s.(n+k)<x0+r by A5; then x0-r<(s^\k).n & (s^\k).n<x0+r by SEQM_3:def 9; then (s^\k).n in {g1: x0-r<g1 & g1<x0+r}; then A14: (s^\k).n in ].x0-r,x0+r .[ by RCOMP_1:def 2; not (s^\k).n in {x0} by A9,A13,XBOOLE_0:def 4; then (s^\k).n in ].x0-r,x0+r.[\{x0} by A14,XBOOLE_0:def 4; then (s^\k).n in ].x0-r,x0.[\/].x0,x0+r.[ by A2,Th4; then (s^\k).n in dom f/\(].x0-r,x0.[\/].x0,x0+r.[) by A9,A13,XBOOLE_0:def 3; then A15: 0<=f.((s^\k).n) by A2; (f*(s^\k)).n<>0 by A12,SEQ_1:7; hence 0<(f*(s^\k)).n by A9,A15,RFUNCT_2:21 ; end; then for n holds 0<=n implies 0<(f*(s^\k)).n; then A16: (f*(s^\k))" is divergent_to+infty by A11,A12,LIMFUNC1:62; (f*(s^\k))"=((f*s)^\k)" by A8,RFUNCT_2:22 .=((f*s)")^\k by SEQM_3:41 .=((f^)*s)^\k by A7,RFUNCT_2:27; hence thesis by A16,LIMFUNC1:34; end; theorem f is_convergent_in x0 & lim(f,x0)=0 & (for r1,r2 st r1<x0 & x0<r2 ex g1,g2 st r1<g1 & g1<x0 & g1 in dom f & g2<r2 & x0<g2 & g2 in dom f & f.g1<>0 & f.g2<>0) & (ex r st 0<r & for g st g in dom f /\ (].x0-r,x0.[ \/ ].x0,x0+r.[) holds f.g<=0) implies f^ is_divergent_to-infty_in x0 proof assume A1: f is_convergent_in x0 & lim(f,x0)=0 & for r1,r2 st r1<x0 & x0<r2 ex g1,g2 st r1<g1 & g1<x0 & g1 in dom f & g2<r2 & x0<g2 & g2 in dom f & f.g1<>0 & f.g2<>0; given r such that A2: 0<r & for g st g in dom f/\(].x0-r,x0.[\/].x0,x0+r.[) holds f.g<=0; thus for r1,r2 st r1<x0 & x0<r2 ex g1,g2 st r1<g1 & g1<x0 & g1 in dom(f^) & g2<r2 & x0<g2 & g2 in dom(f^) proof let r1,r2; assume r1<x0 & x0<r2; then consider g1,g2 such that A3: r1<g1 & g1<x0 & g1 in dom f & g2<r2 & x0<g2 & g2 in dom f & f.g1<>0 & f.g2<>0 by A1; take g1,g2; not f.g1 in {0} & not f.g2 in {0} by A3,TARSKI:def 1 ; then not g1 in f"{0} & not g2 in f"{0} by FUNCT_1:def 13; then g1 in dom f\f"{0} & g2 in dom f\f"{0} by A3,XBOOLE_0:def 4; hence r1<g1 & g1<x0 & g1 in dom(f^) & g2<r2 & x0<g2 & g2 in dom(f^) by A3,RFUNCT_1:def 8; end; let s be Real_Sequence; assume A4: s is convergent & lim s=x0 & rng s c=dom(f^)\{x0}; then consider k such that A5: for n st k<=n holds x0-r<s.n & s.n<x0+r by A2,Th7; A6: s^\k is convergent & lim(s^\k)=x0 by A4,SEQ_4:33; A7: rng s c=dom(f^) by A4,Lm1; dom(f^)=dom f\f"{0} by RFUNCT_1:def 8; then dom(f^)c=dom f by XBOOLE_1:36 ; then A8: rng s c=dom f by A7,XBOOLE_1:1; rng(s^\k)c=rng s by RFUNCT_2:7; then A9: rng(s^\k)c=dom (f^)\{x0} & rng(s^\k)c=dom(f^) & rng(s^\k)c=dom f by A4,A7,A8,XBOOLE_1:1; rng(s^\k)c=dom f\{x0} proof let x be set; assume A10: x in rng(s^\k); then not x in {x0} by A9,XBOOLE_0:def 4; hence thesis by A9,A10,XBOOLE_0:def 4; end; then A11: f*(s^\k) is convergent & lim(f*(s^\k))=0 by A1,A6,Def4; A12: f*(s^\k) is_not_0 by A9,RFUNCT_2:26; now let n; A13: (s^\k).n in rng(s^\k) by RFUNCT_2:10; k<=n+k by NAT_1:37; then x0-r<s.(n+k) & s.(n+k)<x0+r by A5; then x0-r<(s^\k).n & (s^\k).n<x0+r by SEQM_3:def 9; then (s^\k).n in {g1: x0-r<g1 & g1<x0+r}; then A14: (s^\k).n in ].x0-r,x0+r .[ by RCOMP_1:def 2; not (s^\k).n in {x0} by A9,A13,XBOOLE_0:def 4; then (s^\k).n in ].x0-r,x0+r.[\{x0} by A14,XBOOLE_0:def 4; then (s^\k).n in ].x0-r,x0.[\/].x0,x0+r.[ by A2,Th4; then (s^\k).n in dom f/\(].x0-r,x0.[\/].x0,x0+r.[) by A9,A13,XBOOLE_0:def 3; then A15: f.((s^\k).n)<=0 by A2; (f*(s^\k)).n<>0 by A12,SEQ_1:7; hence (f*(s^\k)).n<0 by A9,A15,RFUNCT_2:21 ; end; then for n holds 0<=n implies (f*(s^\k)).n<0; then A16: (f*(s^\k))" is divergent_to-infty by A11,A12,LIMFUNC1:63; (f*(s^\k))"=((f*s)^\k)" by A8,RFUNCT_2:22 .=((f*s)")^\k by SEQM_3:41 .=((f^)*s)^\k by A7,RFUNCT_2:27; hence thesis by A16,LIMFUNC1:34; end; theorem f is_convergent_in x0 & lim(f,x0)=0 & (ex r st 0<r & for g st g in dom f /\ (].x0-r,x0.[ \/ ].x0,x0+r.[) holds 0<f.g) implies f^ is_divergent_to+infty_in x0 proof assume f is_convergent_in x0 & lim(f,x0)=0; then A1: f is_left_convergent_in x0 & f is_right_convergent_in x0 & lim_left(f,x0)=0 & lim_right(f,x0)=0 by Th33; given r such that A2: 0<r & for g st g in dom f/\(].x0-r,x0.[\/].x0,x0+r.[) holds 0<f.g; now let g; assume g in dom f/\].x0-r,x0.[; then A3: g in dom f & g in ].x0-r,x0.[ by XBOOLE_0:def 3; then g in ].x0-r,x0.[\/].x0,x0+r.[ by XBOOLE_0:def 2; then g in dom f/\(].x0-r,x0.[\/].x0,x0+r.[) by A3,XBOOLE_0:def 3 ; hence 0<f.g by A2; end; then A4: f^ is_left_divergent_to+infty_in x0 by A1,A2,LIMFUNC2:79; now let g; assume g in dom f/\].x0,x0+r.[; then A5: g in dom f & g in ].x0,x0+r.[ by XBOOLE_0:def 3; then g in ].x0-r,x0.[\/].x0,x0+r.[ by XBOOLE_0:def 2; then g in dom f/\(].x0-r,x0.[\/].x0,x0+r.[) by A5,XBOOLE_0:def 3 ; hence 0<f.g by A2; end; then f^ is_right_divergent_to+infty_in x0 by A1,A2,LIMFUNC2:81; hence thesis by A4,Th15; end; theorem f is_convergent_in x0 & lim(f,x0)=0 & (ex r st 0<r & for g st g in dom f /\ (].x0-r,x0.[ \/ ].x0,x0+r.[) holds f.g<0) implies f^ is_divergent_to-infty_in x0 proof assume f is_convergent_in x0 & lim(f,x0)=0; then A1: f is_left_convergent_in x0 & f is_right_convergent_in x0 & lim_left(f,x0)=0 & lim_right(f,x0)=0 by Th33; given r such that A2: 0<r & for g st g in dom f/\(].x0-r,x0.[\/].x0,x0+r.[) holds f.g<0; now let g; assume g in dom f/\].x0-r,x0.[; then A3: g in dom f & g in ].x0-r,x0.[ by XBOOLE_0:def 3; then g in ].x0-r,x0.[\/].x0,x0+r.[ by XBOOLE_0:def 2; then g in dom f/\(].x0-r,x0.[\/].x0,x0+r.[) by A3,XBOOLE_0:def 3 ; hence f.g<0 by A2; end; then A4: f^ is_left_divergent_to-infty_in x0 by A1,A2,LIMFUNC2:80; now let g; assume g in dom f/\].x0,x0+r.[; then A5: g in dom f & g in ].x0,x0+r.[ by XBOOLE_0:def 3; then g in ].x0-r,x0.[\/].x0,x0+r.[ by XBOOLE_0:def 2; then g in dom f/\(].x0-r,x0.[\/].x0,x0+r.[) by A5,XBOOLE_0:def 3 ; hence f.g<0 by A2; end; then f^ is_right_divergent_to-infty_in x0 by A1,A2,LIMFUNC2:82; hence thesis by A4,Th16; end;