Copyright (c) 1990 Association of Mizar Users
environ vocabulary RELAT_1, ANALOAF, PARSP_1, INCSP_1, REALSET1, DIRAF; notation TARSKI, XBOOLE_0, ZFMISC_1, SUBSET_1, DOMAIN_1, RELSET_1, STRUCT_0, ANALOAF, REALSET1; constructors DOMAIN_1, ANALOAF, MEMBERED, XBOOLE_0; clusters ANALOAF, RELSET_1, STRUCT_0, SUBSET_1, MEMBERED, ZFMISC_1, XBOOLE_0; requirements SUBSET, BOOLE; definitions ANALOAF, STRUCT_0; theorems ANALOAF, RELAT_1, ZFMISC_1, DOMAIN_1, REALSET1; schemes RELSET_1; begin reserve x,y for set; reserve X for non empty set; reserve a,b,c,d for Element of X; definition let X; let R be Relation of [:X,X:]; func lambda(R) -> Relation of [:X,X:] means :Def1: for a,b,c,d being Element of X holds [[a,b],[c,d]] in it iff ([[a,b],[c,d]] in R or [[a,b],[d,c]] in R); existence proof set XX = [:X,X:]; defpred P[set,set] means ex a,b,c,d being Element of X st $1=[a,b] & $2=[c,d] & ([[a,b],[c,d]] in R or [[a,b],[d,c]] in R); consider P being Relation of XX,XX such that A1: for x,y holds [x,y] in P iff x in XX & y in XX & P[x,y] from Rel_On_Set_Ex; take P; let a,b,c,d be Element of X; [[a,b],[c,d]] in P implies ([[a,b],[c,d]] in R or [[a,b],[d,c]] in R) proof assume [[a,b],[c,d]] in P; then consider a',b',c',d' being Element of X such that A2: [a,b]=[a',b'] & [c,d]=[c',d'] and A3: ([[a',b'],[c',d']] in R or [[a',b'],[d',c']] in R) by A1; a=a' & b=b' & c = c' & d=d' by A2,ZFMISC_1:33; hence thesis by A3; end; hence thesis by A1; end; uniqueness proof set XX = [:X,X:]; let P,Q be Relation of [:X,X:] such that A4: for a,b,c,d being Element of X holds [[a,b],[c,d]] in P iff ([[a,b],[c,d]] in R or [[a,b],[d,c]] in R) and A5: for a,b,c,d being Element of X holds [[a,b],[c,d]] in Q iff ([[a,b],[c,d]] in R or [[a,b],[d,c]] in R); for x,y holds [x,y] in P iff [x,y] in Q proof let x,y; A6: now assume A7: [x,y] in P; then A8: x in XX & y in XX by ZFMISC_1:106; then A9: ex a,b st x=[a,b] by DOMAIN_1:9; consider c,d such that A10: y=[c,d] by A8,DOMAIN_1:9; [x,y] in P iff [x,y] in R or [x,[d,c]] in R by A4,A9,A10; hence [x,y] in Q by A5,A7,A9,A10; end; now assume A11: [x,y] in Q; then A12: x in XX & y in XX by ZFMISC_1:106; then A13: ex a,b st x=[a,b] by DOMAIN_1:9; consider c,d such that A14: y=[c,d] by A12,DOMAIN_1:9; [x,y] in Q iff [x,y] in R or [x,[d,c]] in R by A5,A13,A14; hence [x,y] in P by A4,A11,A13,A14; end; hence thesis by A6; end; hence thesis by RELAT_1:def 2; end; end; definition let S be non empty AffinStruct; func Lambda(S) -> strict AffinStruct equals :Def2: AffinStruct (# the carrier of S, lambda(the CONGR of S) #); correctness; end; definition let S be non empty AffinStruct; cluster Lambda S -> non empty; coherence proof Lambda S = AffinStruct (# the carrier of S, lambda(the CONGR of S) #) by Def2; hence the carrier of Lambda S is non empty; end; end; reserve S for OAffinSpace; reserve a,b,c,d,p,q,r,x,y,z,t,u,w for Element of S; canceled 3; theorem Th4: x,y // x,y proof x,y // y,y by ANALOAF:def 5; hence x,y // x,y by ANALOAF:def 5; end; Lm1: x,y // z,t implies z,t // x,y proof assume A1: x,y // z,t; now assume A2: x<>y; x,y // x,y & x,y // z,t by A1,Th4; hence z,t // x,y by A2,ANALOAF:def 5; end; hence thesis by ANALOAF:def 5; end; theorem Th5: x,y // z,t implies y,x // t,z & z,t // x,y & t,z // y,x proof assume x,y // z,t; hence y,x // t,z & z,t // x,y by Lm1,ANALOAF:def 5; hence t,z // y,x by ANALOAF:def 5; end; theorem Th6: z<>t & x,y // z,t & z,t // u,w implies x,y // u,w proof assume A1: z<>t; assume x,y // z,t & z,t // u,w; then z,t // x,y & z,t // u,w by Th5; hence thesis by A1,ANALOAF:def 5; end; theorem Th7: x,x // y,z & y,z // x,x proof y,z // x,x by ANALOAF:def 5; hence thesis by Th5; end; theorem Th8: x,y // z,t & x,y // t,z implies x=y or z=t proof assume that A1: x,y // z,t & x,y // t,z and A2: x<>y and A3: z<>t; z,t // t,z by A1,A2,ANALOAF:def 5; hence contradiction by A3,ANALOAF:def 5; end; theorem Th9: x,y // x,z iff x,y // y,z or x,z // z,y proof now assume x,y // y,z or x,z // z,y; then x,y // x,z or x,z // x,y by ANALOAF:def 5; hence x,y // x,z by Th5; end; hence thesis by ANALOAF:def 5; end; definition let S be non empty AffinStruct; let a,b,c be Element of S; pred Mid a,b,c means :Def3: a,b // b,c; end; canceled; theorem Th11: x,y // x,z iff Mid x,y,z or Mid x,z,y proof x,y // x,z iff x,y // y,z or x,z // z,y by Th9; hence thesis by Def3; end; theorem Th12: Mid a,b,a implies a=b proof assume Mid a,b,a; then a,b // b,a by Def3; hence a=b by ANALOAF:def 5; end; theorem Mid a,b,c implies Mid c,b,a proof assume Mid a,b,c; then a,b // b,c by Def3; then c,b // b,a by Th5; hence Mid c,b,a by Def3; end; theorem Mid x,x,y & Mid x,y,y proof x,x // x,y & x,y // y,y by Th7; hence Mid x,x,y & Mid x,y,y by Def3; end; theorem Mid a,b,c & Mid a,c,d implies Mid b,c,d proof assume A1: Mid a,b,c & Mid a,c,d; now assume a<>c; then a<>c & a,b // b,c & a,c // c,d by A1,Def3; then a<>c & a,b // b,c & a,b // a,c & a,c // c,d by ANALOAF:def 5; then a<>c & (b,c // a,c or a=b) & a,c // c,d by ANALOAF:def 5; then b,c // c,d by Th6; hence Mid b,c,d by Def3; end; hence thesis by A1,Th12; end; theorem b<>c & Mid a,b,c & Mid b,c,d implies Mid a,c,d proof assume that A1: b<>c and A2: Mid a,b,c and A3: Mid b,c,d; now assume A4: a<>b; A5: a,b // b,c & b,c // c,d by A2,A3,Def3; then A6: a,b // c,d by A1,Th6; a,b // a,c by A5,ANALOAF:def 5; then a,c // c,d by A4,A6,ANALOAF:def 5; hence Mid a,c,d by Def3; end; hence Mid a,c,d by A3; end; theorem Th17: ex z st Mid x,y,z & y<>z proof consider z such that A1: x,y // y,z and x,y // y,z and A2: y<>z by ANALOAF:def 5; Mid x,y,z by A1,Def3; hence thesis by A2; end; theorem Mid x,y,z & Mid y,x,z implies x=y proof assume A1: Mid x,y,z & Mid y,x,z; then x,y // y,z & y,x // x,z by Def3; then A2: x,y // x,z & x,y // z,x by ANALOAF:def 5; x=z implies x=y by A1,Th12; hence x=y by A2,Th8; end; theorem x<>y & Mid x,y,z & Mid x,y,t implies Mid y,z,t or Mid y,t,z proof assume A1: x<>y; assume Mid x,y,z & Mid x,y,t; then x,y // y,z & x,y // y,t by Def3; then y,z // y,t by A1,ANALOAF:def 5; hence thesis by Th11; end; theorem x<>y & Mid x,y,z & Mid x,y,t implies Mid x,z,t or Mid x,t,z proof assume A1: x<>y; assume Mid x,y,z & Mid x,y,t; then x,y // y,z & x,y // y,t by Def3; then x,y // x,z & x,y // x,t by ANALOAF:def 5; then x,z // x,t by A1,ANALOAF:def 5; hence thesis by Th11; end; theorem Mid x,y,t & Mid x,z,t implies Mid x,y,z or Mid x,z,y proof assume A1: Mid x,y,t & Mid x,z,t; then A2: x,y // y,t & x,z // z,t by Def3; now assume A3: x<>t; x,y // x,t & x,z // x,t by A2,ANALOAF:def 5; then x,y // x,t & x,t // x,z by Th5; then x,y // x,z by A3,Th6; hence thesis by Th11; end; hence thesis by A1,Th12; end; definition let S be non empty AffinStruct; let a,b,c,d be Element of S; pred a,b '||' c,d means :Def4: a,b // c,d or a,b // d,c; end; canceled; theorem a,b '||' c,d iff [[a,b],[c,d]] in lambda(the CONGR of S) proof thus a,b '||' c,d implies [[a,b],[c,d]] in lambda(the CONGR of S) proof assume a,b // c,d or a,b // d,c; then [[a,b],[c,d]] in the CONGR of S or [[a,b],[d,c]] in the CONGR of S by ANALOAF:def 2; hence thesis by Def1; end; assume [[a,b],[c,d]] in lambda(the CONGR of S); then [[a,b],[c,d]] in the CONGR of S or [[a,b],[d,c]] in the CONGR of S by Def1; hence a,b // c,d or a,b // d,c by ANALOAF:def 2; end; theorem Th24: x,y '||' y,x & x,y '||' x,y proof x,y // x,y by Th4; hence thesis by Def4; end; theorem Th25: x,y '||' z,z & z,z '||' x,y proof x,y // z,z & z,z // x,y by Th7; hence thesis by Def4; end; Lm2: x<>y & x,y '||' z,t & x,y '||' u,w implies z,t '||' u,w proof assume that A1: x<>y and A2: x,y '||' z,t & x,y '||' u,w; A3: x,y // u,w or x,y // w,u by A2,Def4; A4: now assume x,y // z,t; then z,t // u,w or z,t // w,u by A1,A3,ANALOAF:def 5; hence z,t '||' u,w by Def4; end; now assume x,y // t,z; then t,z // u,w or t,z // w,u by A1,A3,ANALOAF:def 5; then z,t // w,u or z,t // u,w by ANALOAF:def 5; hence z,t '||' u,w by Def4; end; hence thesis by A2,A4,Def4; end; theorem Th26: x,y '||' x,z implies y,x '||' y,z proof assume A1: x,y '||' x,z; A2: now assume A3: x,y // x,z; A4: now assume x,y // y,z; then y,x // z,y by ANALOAF:def 5; hence y,x '||' y,z by Def4; end; now assume x,z // z,y; then y,z // z,x by Th5; then y,z // y,x by ANALOAF:def 5; then y,x // y,z by Th5; hence y,x '||' y,z by Def4; end; hence y,x '||' y,z by A3,A4,ANALOAF:def 5; end; now assume x,y // z,x; then y,x // x,z by ANALOAF:def 5; then y,x // y,z by ANALOAF:def 5; hence y,x '||' y,z by Def4; end; hence thesis by A1,A2,Def4; end; theorem Th27: x,y '||' z,t implies x,y '||' t,z & y,x '||' z,t & y,x '||' t,z & z,t '||' x,y & z,t '||' y,x & t,z '||' x,y & t,z '||' y,x proof assume x,y '||' z,t; then A1: x,y // z,t or x,y // t,z by Def4; hence x,y '||' t,z by Def4; y,x // t,z or y,x // z,t by A1,ANALOAF:def 5; hence y,x '||' z,t & y,x '||' t,z by Def4; z,t // x,y or z,t // y,x by A1,Th5; hence z,t '||' x,y & z,t '||' y,x by Def4; t,z // y,x or t,z // x,y by A1,Th5; hence t,z '||' x,y & t,z '||' y,x by Def4; end; theorem Th28: a<>b & ((a,b '||' x,y & a,b '||' z,t) or (a,b '||' x,y & z,t '||' a,b) or (x,y '||' a,b & z,t '||' a,b) or (x,y '||' a,b & a,b '||' z,t)) implies x,y '||' z,t proof assume a<>b & ((a,b '||' x,y & a,b '||' z,t) or (a,b '||' x,y & z,t '||' a,b) or (x,y '||' a,b & z,t '||' a,b) or (x,y '||' a,b & a,b '||' z,t)); then a<>b & a,b '||' x,y & a,b '||' z,t by Th27; hence thesis by Lm2; end; theorem Th29: ex x,y,z st not x,y '||' x,z proof consider x,y,z,t such that A1: not x,y // z,t & not x,y // t,z by ANALOAF:def 5; A2: x<>y & z<>t by A1,Th7; now assume A3: x,y '||' x,z; thus not x,y '||' x,t proof assume A4: x,y '||' x,t; then x,z '||' x,t by A2,A3,Th28; then z,x '||' z,t by Th26; then x,z '||' z,t by Th27; then x,y '||' z,t or x=z by A3,Th28; hence contradiction by A1,A4,Def4; end; end; hence thesis; end; theorem Th30: ex t st x,z '||' y,t & y<>t proof consider t such that A1: x,y // z,t & x,z // y,t & y<>t by ANALOAF:def 5; x,z '||' y,t by A1,Def4; hence thesis by A1; end; theorem Th31: ex t st x,y '||' z,t & x,z '||' y,t proof consider t such that A1: x,y // z,t & x,z // y,t & y<>t by ANALOAF:def 5; x,y '||' z,t & x,z '||' y,t by A1,Def4; hence thesis; end; theorem Th32: z,x '||' x,t & x<>z implies ex u st y,x '||' x,u & y,z '||' t,u proof assume A1: z,x '||' x,t & x<>z; A2: now assume z,x // x,t; then consider u such that A3: y,x // x,u & y,z // t,u by A1,ANALOAF:def 5; y,x '||' x,u & y,z '||' t,u by A3,Def4; hence thesis; end; now assume A4: z,x // t,x; consider p such that A5: Mid z,x,p & x<>p by Th17; A6: z,x // x,p by A5,Def3; then consider q such that A7: y,x // x,q & y,z // p,q by A1,ANALOAF:def 5; x,p // t,x by A1,A4,A6,ANALOAF:def 5; then p,x // x,t by Th5; then consider r such that A8: q,x // x,r & q,p // t,r by A5,ANALOAF:def 5; A9: now assume q=p; then x,p // z,x & x,p // y,x by A6,A7,Th5; then z,x // y,x by A5,ANALOAF:def 5; then y,x // t,x & y,z // t,t by A1,A4,ANALOAF:def 5; then y,x '||' x,t & y,z '||' t,t by Def4; hence thesis; end; A10: now assume q=x; then y,z // p,x & p,x // x,z by A6,A7,Th5; then y,z // x,z & x,z // x,t by A4,A5,Th5,Th6; then y,z // x,t & y,x // x,x by A1,Th6,Th7; then y,z '||' t,x & y,x '||' x,x by Def4; hence thesis; end; now assume A11: q<>p & q<>x; p,q // y,z & p,q // r,t & x,q // r,x by A7,A8,Th5; then y,z // r,t & y,x // r,x by A7,A11,Th6; then y,z '||' t,r & y,x '||' x,r by Def4; hence thesis; end; hence thesis by A9,A10; end; hence thesis by A1,A2,Def4; end; definition let S be non empty AffinStruct; let a,b,c be Element of S; pred LIN a,b,c means :Def5: a,b '||' a,c; synonym a,b,c is_collinear; end; canceled; theorem Mid a,b,c implies a,b,c is_collinear proof assume Mid a,b,c; then a,b // b,c by Def3; then a,b // a,c by ANALOAF:def 5; then a,b '||' a,c by Def4; hence thesis by Def5; end; theorem a,b,c is_collinear implies Mid a,b,c or Mid b,a,c or Mid a,c,b proof assume a,b,c is_collinear; then A1: a,b '||' a,c by Def5; A2: a,b // a,c implies ( Mid a,b,c or Mid a,c,b) by Th11; now assume a,b // c,a; then b,a // a,c by ANALOAF:def 5; hence Mid b,a,c by Def3; end; hence thesis by A1,A2,Def4; end; Lm3: x,y,z is_collinear implies x,z,y is_collinear & y,x,z is_collinear proof assume x,y,z is_collinear; then x,y '||' x,z by Def5; then x,z '||' x,y & y,x '||' y,z by Th26,Th27; hence thesis by Def5; end; theorem Th36: x,y,z is_collinear implies x,z,y is_collinear & y,x,z is_collinear & y,z,x is_collinear & z,x,y is_collinear & z,y,x is_collinear proof assume x,y,z is_collinear; hence x,z,y is_collinear & y,x,z is_collinear by Lm3; hence y,z,x is_collinear & z,x,y is_collinear by Lm3; hence z,y,x is_collinear by Lm3; end; theorem Th37: x,x,y is_collinear & x,y,y is_collinear & x,y,x is_collinear proof x,x '||' x,y & x,y '||' x,y & x,y '||' x,x by Th24,Th25; hence thesis by Def5; end; theorem Th38: x<>y & x,y,z is_collinear & x,y,t is_collinear & x,y,u is_collinear implies z,t,u is_collinear proof assume A1: x<>y & x,y,z is_collinear & x,y,t is_collinear & x,y,u is_collinear; A2: now assume x=z; then z<>y & z,y '||' z,t & z,y '||' z,u by A1,Def5; then z,t '||' z,u by Th28; hence thesis by Def5; end; now assume A3: x<>z; x,y '||' x,z & x,y '||' x,t & x,y '||' x,u by A1,Def5; then x,z '||' x,t & x,z '||' x,u by A1,Th28; then z,x '||' z,t & z,x '||' z,u by Th26; then z,t '||' z,u by A3,Th28; hence thesis by Def5; end; hence thesis by A2; end; theorem x<>y & x,y,z is_collinear & x,y '||' z,t implies x,y,t is_collinear proof assume A1: x<>y & x,y,z is_collinear & x,y '||' z,t; now assume A2: z<>x; x,y '||' x,z by A1,Def5; then x,z '||' z,t by A1,Th28; then z,x '||' z,t by Th27; then z,x,t is_collinear by Def5; then x,z,t is_collinear & x,z,y is_collinear & x,z,x is_collinear by A1,Th36,Th37; hence thesis by A2,Th38; end; hence thesis by A1,Def5; end; theorem x,y,z is_collinear & x,y,t is_collinear implies x,y '||' z,t proof assume A1: x,y,z is_collinear & x,y,t is_collinear; now assume A2: x<>y; now A3: x,y '||' x,z & x,y '||' x,t by A1,Def5; then x,z '||' x,t by A2,Th28; then z,x '||' z,t by Th26; then x,z '||' z,t by Th27; hence thesis by A3,Th28; end; hence thesis; end; hence thesis by Th25; end; theorem u<>z & x,y,u is_collinear & x,y,z is_collinear & u,z,w is_collinear implies x,y,w is_collinear proof assume A1: u<>z & x,y,u is_collinear & x,y,z is_collinear & u,z,w is_collinear; now assume A2: x<>y; x,y,y is_collinear & x,y,x is_collinear by Th37; then z,u,y is_collinear & z,u,x is_collinear & z,u,w is_collinear by A1,A2,Th36,Th38; hence thesis by A1,Th38; end; hence thesis by Th37; end; theorem Th42: ex x,y,z st not x,y,z is_collinear proof consider x,y,z such that A1: not x,y '||' x,z by Th29; not x,y,z is_collinear by A1,Def5; hence thesis; end; theorem x<>y implies ex z st not x,y,z is_collinear proof assume A1: x<>y; assume A2: not thesis; consider a,b,c such that A3: not a,b,c is_collinear by Th42; x,y,a is_collinear & x,y,b is_collinear & x,y,c is_collinear by A2; hence contradiction by A1,A3,Th38; end; reserve AS for non empty AffinStruct; canceled; theorem Th45: AS=Lambda(S) implies for a,b,c,d being Element of S, a',b',c',d' being Element of AS st a=a' & b=b' & c =c' & d=d' holds a',b' // c',d' iff a,b '||' c,d proof assume AS=Lambda(S); then A1: AS = AffinStruct (#the carrier of S, lambda(the CONGR of S)#) by Def2 ; let a,b,c,d be Element of S; let a',b',c',d' be Element of AS; assume A2: a=a' & b=b' & c =c' & d=d'; thus a',b' // c',d' implies a,b '||' c,d proof assume A3: [[a',b'],[c',d']] in the CONGR of AS; assume not [[a,b],[c,d]] in the CONGR of S; hence [[a,b],[d,c]] in the CONGR of S by A1,A2,A3,Def1; end; assume a,b '||' c,d; then a,b // c,d or a,b // d,c by Def4; then [[a,b],[c,d]] in the CONGR of S or [[a,b],[d,c]] in the CONGR of S by ANALOAF:def 2; hence [[a',b'],[c',d']] in the CONGR of AS by A1,A2,Def1; end; theorem Th46: AS = Lambda(S) implies (ex x,y being Element of AS st x<>y) & (for x,y,z,t,u,w being Element of AS holds x,y // y,x & x,y // z,z & (x<>y & x,y // z,t & x,y // u,w implies z,t // u,w) & (x,y // x,z implies y,x // y,z)) & (ex x,y,z being Element of AS st not x,y // x,z) & (for x,y,z being Element of AS ex t being Element of AS st x,z // y,t & y<>t) & (for x,y,z being Element of AS ex t being Element of AS st x,y // z,t & x,z // y,t) & (for x,y,z,t being Element of AS st z,x // x,t & x<>z ex u being Element of AS st y,x // x,u & y,z // t,u) proof assume A1: AS = Lambda(S); then A2: AS = AffinStruct (#the carrier of S, lambda(the CONGR of S)#) by Def2 ; hence ex x,y being Element of AS st x<>y by REALSET1:def 20; thus for x,y,z,t,u,w being Element of AS holds x,y // y,x & x,y // z,z & (x<>y & x,y // z,t & x,y // u,w implies z,t // u,w) & (x,y // x,z implies y,x // y,z) proof let x,y,z,t,u,w be Element of AS; reconsider x'=x, y'=y, z'=z, t'=t, u'=u, w'=w as Element of S by A2; x',y' '||' y',x' & x',y' '||' z',z' by Th24,Th25; hence x,y // y,x & x,y // z,z by A1,Th45; x'<>y' & x',y' '||' z',t' & x',y' '||' u',w' implies z',t' '||' u',w' by Lm2; hence x<>y & x,y // z,t & x,y // u,w implies z,t // u,w by A1,Th45; x',y' '||' x',z' implies y',x' '||' y',z' by Th26; hence x,y // x,z implies y,x // y,z by A1,Th45; end; thus ex x,y,z being Element of AS st not x,y // x,z proof consider x',y',z' being Element of S such that A3: not x',y' '||' x',z' by Th29; reconsider x=x', y=y', z=z' as Element of AS by A2; not x,y // x,z by A1,A3,Th45; hence thesis; end; thus for x,y,z being Element of AS ex t being Element of AS st x,z // y,t & y<>t proof let x,y,z be Element of AS; reconsider x'=x, y'=y, z'=z as Element of S by A2; consider t' being Element of S such that A4: x',z' '||' y',t' & y'<>t' by Th30; reconsider t=t' as Element of AS by A2; x,z // y,t & y<>t by A1,A4,Th45; hence thesis; end; thus for x,y,z being Element of AS ex t being Element of AS st x,y // z,t & x,z // y,t proof let x,y,z be Element of AS; reconsider x'=x, y'=y, z'=z as Element of S by A2; consider t' being Element of S such that A5: x',y' '||' z',t' & x',z' '||' y',t' by Th31; reconsider t=t' as Element of AS by A2; x,y // z,t & x,z // y,t by A1,A5,Th45; hence thesis; end; thus for x,y,z,t being Element of AS st z,x // x,t & x<>z ex u being Element of AS st y,x // x,u & y,z // t,u proof let x,y,z,t be Element of AS such that A6: z,x // x,t & x<>z; reconsider x'=x, y'=y, z'=z, t'=t as Element of S by A2; z',x' '||' x',t' & x'<>z' by A1,A6,Th45; then consider u' being Element of S such that A7: y',x' '||' x',u' & y',z' '||' t',u' by Th32; reconsider u=u' as Element of AS by A2; y,x // x,u & y,z // t,u by A1,A7,Th45; hence thesis; end; end; definition let IT be non empty AffinStruct; canceled; attr IT is AffinSpace-like means :Def7: (for x,y,z,t,u,w being Element of IT holds x,y // y,x & x,y // z,z & (x<>y & x,y // z,t & x,y // u,w implies z,t // u,w) & (x,y // x,z implies y,x // y,z)) & (ex x,y,z being Element of IT st not x,y // x,z) & (for x,y,z being Element of IT ex t being Element of IT st x,z // y,t & y<>t) & (for x,y,z being Element of IT ex t being Element of IT st x,y // z,t & x,z // y,t) & (for x,y,z,t being Element of IT st z,x // x,t & x<>z ex u being Element of IT st y,x // x,u & y,z // t,u); end; definition cluster strict non trivial AffinSpace-like (non empty AffinStruct); existence proof consider S; (ex x,y being Element of Lambda(S) st x<>y) & (for x,y,z,t,u,w being Element of Lambda(S) holds x,y // y,x & x,y // z,z & (x<>y & x,y // z,t & x,y // u,w implies z,t // u,w) & (x,y // x,z implies y,x // y,z)) & (ex x,y,z being Element of Lambda(S) st not x,y // x,z) & (for x,y,z being Element of Lambda(S) ex t being Element of Lambda(S) st x,z // y,t & y<>t) & (for x,y,z being Element of Lambda(S) ex t being Element of Lambda(S) st x,y // z,t & x,z // y,t) & (for x,y,z,t being Element of Lambda(S) st z,x // x,t & x<>z ex u being Element of Lambda(S) st y,x // x,u & y,z // t,u) by Th46; then Lambda(S) is non trivial AffinSpace-like by Def7,REALSET1:def 20; hence thesis; end; end; definition mode AffinSpace is non trivial AffinSpace-like (non empty AffinStruct); end; theorem for AS being AffinSpace holds (ex x,y being Element of AS st x<>y) & (for x,y,z,t,u,w being Element of AS holds (x,y // y,x & x,y // z,z) & (x<>y & x,y // z,t & x,y // u,w implies z,t // u,w) & (x,y // x,z implies y,x // y,z)) & (ex x,y,z being Element of AS st not x,y // x,z) & (for x,y,z being Element of AS ex t being Element of AS st x,z // y,t & y<>t) & (for x,y,z being Element of AS ex t being Element of AS st x,y // z,t & x,z // y,t) & (for x,y,z,t being Element of AS st z,x // x,t & x<>z ex u being Element of AS st y,x // x,u & y,z // t,u) by Def7,REALSET1:def 20; theorem Th48: Lambda(S) is AffinSpace proof set AS=Lambda(S); (ex x,y being Element of AS st x<>y) & (for x,y,z,t,u,w being Element of AS holds x,y // y,x & x,y // z,z & (x<>y & x,y // z,t & x,y // u,w implies z,t // u,w) & (x,y // x,z implies y,x // y,z)) & (ex x,y,z being Element of AS st not x,y // x,z) & (for x,y,z being Element of AS ex t being Element of AS st x,z // y,t & y<>t) & (for x,y,z being Element of AS ex t being Element of AS st x,y // z,t & x,z // y,t) & (for x,y,z,t being Element of AS st z,x // x,t & x<>z ex u being Element of AS st y,x // x,u & y,z // t,u) by Th46; hence thesis by Def7,REALSET1:def 20; end; theorem ((ex x,y being Element of AS st x<>y) & (for x,y,z,t,u,w being Element of AS holds x,y // y,x & x,y // z,z & (x<>y & x,y // z,t & x,y // u,w implies z,t // u,w) & (x,y // x,z implies y,x // y,z)) & (ex x,y,z being Element of AS st not x,y // x,z) & (for x,y,z being Element of AS ex t being Element of AS st x,z // y,t & y<>t) & (for x,y,z being Element of AS ex t being Element of AS st x,y // z,t & x,z // y,t) & (for x,y,z,t being Element of AS st z,x // x,t & x<>z ex u being Element of AS st y,x // x,u & y,z // t,u)) iff AS is AffinSpace by Def7,REALSET1:def 20; reserve S for OAffinPlane; reserve x,y,z,t,u for Element of S; theorem Th50: not x,y '||' z,t implies ex u st x,y '||' x,u & z,t '||' z,u proof assume not x,y '||' z,t; then not x,y // z,t & not x,y // t,z by Def4; then consider u such that A1: (x,y // x,u or x,y // u,x) & (z,t // z,u or z,t // u,z) by ANALOAF:def 6; x,y '||' x,u & z,t '||' z,u by A1,Def4; hence thesis; end; theorem Th51: AS = Lambda(S) implies for x,y,z,t being Element of AS st not x,y // z,t ex u being Element of AS st x,y // x,u & z,t // z,u proof assume A1: AS = Lambda(S); let x,y,z,t be Element of AS; assume A2: not x,y // z,t; A3: AS = AffinStruct (#the carrier of S, lambda(the CONGR of S)#) by A1,Def2; then reconsider x'=x, y'=y, z'=z, t'=t as Element of S; not x',y' '||' z',t' by A1,A2,Th45; then consider u' being Element of S such that A4: x',y' '||' x',u' & z',t' '||' z',u' by Th50; reconsider u=u' as Element of AS by A3; x,y // x,u & z,t // z,u by A1,A4,Th45; hence thesis; end; definition let IT be non empty AffinStruct; attr IT is 2-dimensional means :Def8: for x,y,z,t being Element of IT st not x,y // z,t ex u being Element of IT st x,y // x,u & z,t // z,u; end; definition cluster strict 2-dimensional AffinSpace; existence proof consider S; reconsider AS = Lambda(S) as AffinSpace by Th48; for x,y,z,t being Element of AS st not x,y // z,t ex u being Element of AS st x,y // x,u & z,t // z,u by Th51; then AS is 2-dimensional by Def8; hence thesis; end; end; definition mode AffinPlane is 2-dimensional AffinSpace; end; canceled; theorem Lambda(S) is AffinPlane proof set AS = Lambda(S); for x,y,z,t being Element of AS st not x,y // z,t ex u being Element of AS st x,y // x,u & z,t // z,u by Th51; hence thesis by Def8,Th48; end; theorem AS is AffinPlane iff ((ex x,y being Element of AS st x<>y) & (for x,y,z,t,u,w being Element of AS holds x,y // y,x & x,y // z,z & (x<>y & x,y // z,t & x,y // u,w implies z,t // u,w) & (x,y // x,z implies y,x // y,z)) & (ex x,y,z being Element of AS st not x,y // x,z) & (for x,y,z being Element of AS ex t being Element of AS st x,z // y,t & y<>t) & (for x,y,z being Element of AS ex t being Element of AS st x,y // z,t & x,z // y,t) & (for x,y,z,t being Element of AS st z,x // x,t & x<>z ex u being Element of AS st y,x // x,u & y,z // t,u) & (for x,y,z,t being Element of AS st not x,y // z,t ex u being Element of AS st x,y // x,u & z,t // z,u)) by Def7, Def8,REALSET1:def 20;