Copyright (c) 1990 Association of Mizar Users
environ vocabulary ANALMETR, SYMSP_1, ANALOAF, AFF_1, DIRAF, INCSP_1, AFF_2, CONAFFM, CONMETR; notation SUBSET_1, STRUCT_0, ANALOAF, AFF_1, ANALMETR, AFF_2, CONAFFM; constructors AFF_1, AFF_2, CONAFFM, XBOOLE_0; clusters ANALMETR, ZFMISC_1, XBOOLE_0; requirements SUBSET; definitions AFF_2; theorems AFF_1, AFF_2, ANALMETR, TRANSLAC, CONAFFM, DIRAF; begin reserve X for OrtAfPl; reserve o,a,a1,a2,a3,a4,b,b1,b2,b3,b4,c,c1,c2,c3,d,d1,d2,d3,d4,e1,e2 for Element of X; reserve a2',a3',b2',x' for Element of Af(X); reserve A,K,M,N for Subset of X; reserve A',K' for Subset of Af(X); definition let X; attr X is satisfying_OPAP means :Def1: for o,a1,a2,a3,b1,b2,b3,M,N st o in M & a1 in M & a2 in M & a3 in M & o in N & b1 in N & b2 in N & b3 in N & not b2 in M & not a3 in N & M _|_ N & o<>a1 & o<>a2 & o<>a3 & o<>b1 & o<>b2 & o<>b3 & a3,b2 // a2,b1 & a3,b3 // a1,b1 holds a1,b2 // a2,b3; synonym OPAP_holds_in X; attr X is satisfying_PAP means for o,a1,a2,a3,b1,b2,b3,M,N st M is_line & N is_line & o in M & a1 in M & a2 in M & a3 in M & o in N & b1 in N & b2 in N & b3 in N & not b2 in M & not a3 in N & o<>a1 & o<>a2 & o<>a3 & o<>b1 & o<>b2 & o<>b3 & a3,b2 // a2,b1 & a3,b3 // a1,b1 holds a1,b2 // a2,b3; synonym PAP_holds_in X; attr X is satisfying_MH1 means :Def3: for a1,a2,a3,a4,b1,b2,b3,b4,M,N st M _|_ N & a1 in M & a3 in M & b1 in M & b3 in M & a2 in N & a4 in N & b2 in N & b4 in N & not a2 in M & not a4 in M & a1,a2 _|_ b1,b2 & a2,a3 _|_ b2,b3 & a3,a4 _|_ b3,b4 holds a1,a4 _|_ b1,b4; synonym MH1_holds_in X; attr X is satisfying_MH2 means :Def4: for a1,a2,a3,a4,b1,b2,b3,b4,M,N st M _|_ N & a1 in M & a3 in M & b2 in M & b4 in M & a2 in N & a4 in N & b1 in N & b3 in N & not a2 in M & not a4 in M & a1,a2 _|_ b1,b2 & a2,a3 _|_ b2,b3 & a3,a4 _|_ b3,b4 holds a1,a4 _|_ b1,b4; synonym MH2_holds_in X; attr X is satisfying_TDES means :Def5: for o,a,a1,b,b1,c,c1 st o<>a & o<>a1 & o<>b & o<>b1 & o<>c & o<>c1 & not LIN b,b1,a & not LIN b,b1,c & LIN o,a,a1 & LIN o,b,b1 & LIN o,c,c1 & a,b // a1,b1 & a,b // o,c & b,c // b1,c1 holds a,c // a1,c1; synonym TDES_holds_in X; attr X is satisfying_SCH means for a1,a2,a3,a4,b1,b2,b3,b4,M,N st M is_line & N is_line & a1 in M & a3 in M & b1 in M & b3 in M & a2 in N & a4 in N & b2 in N & b4 in N & not a4 in M & not a2 in M & not b2 in M & not b4 in M & not a1 in N & not a3 in N & not b1 in N & not b3 in N & a3,a2 // b3,b2 & a2,a1 // b2,b1 & a1,a4 // b1,b4 holds a3,a4 // b3,b4; synonym SCH_holds_in X; attr X is satisfying_OSCH means :Def7: for a1,a2,a3,a4,b1,b2,b3,b4,M,N st M _|_ N & a1 in M & a3 in M & b1 in M & b3 in M & a2 in N & a4 in N & b2 in N & b4 in N & not a4 in M & not a2 in M & not b2 in M & not b4 in M & not a1 in N & not a3 in N & not b1 in N & not b3 in N & a3,a2 // b3,b2 & a2,a1 // b2,b1 & a1,a4 // b1,b4 holds a3,a4 // b3,b4; synonym OSCH_holds_in X; attr X is satisfying_des means :Def8: for a,a1,b,b1,c,c1 st not LIN a,a1,b & not LIN a,a1,c & a,a1 // b,b1 & a,a1 // c,c1 & a,b // a1,b1 & a,c // a1,c1 holds b,c // b1,c1; synonym des_holds_in X; end; theorem Th1: ex a,b,c st LIN a,b,c & a<>b & b<>c & c <>a proof consider a,p being Element of X such that A1: a<>p by ANALMETR:51; consider b such that A2: a,p _|_ p,b & p<>b by ANALMETR:51; consider c such that A3: p,c _|_ a,b & LIN a,b,c by ANALMETR:91; take a,b,c; thus LIN a,b,c by A3; thus a<>b proof assume not thesis; then a,p _|_ a,p by A2,ANALMETR:83; hence contradiction by A1,ANALMETR:51; end; reconsider a'=a,b'=b,p'=p as Element of Af(X) by ANALMETR:47; thus b<>c proof assume not thesis; then a,p // a,b by A2,A3,ANALMETR:85; then LIN a,p,b by ANALMETR:def 11; then LIN a',p',b' by ANALMETR:55; then LIN p',a',b' by AFF_1:15; then LIN p,a,b by ANALMETR:55; then p,a // p,b by ANALMETR:def 11; then a,p _|_ p,a by A2,ANALMETR:84; then a,p _|_ a,p by ANALMETR:83; hence contradiction by A1,ANALMETR:51; end; thus c <>a proof assume not thesis; then a,p _|_ a,b by A3,ANALMETR:83; then p,b // a,b by A1,A2,ANALMETR:85; then b,p // b,a by ANALMETR:81; then LIN b,p,a by ANALMETR:def 11; then LIN b',p',a' by ANALMETR:55; then LIN p',a',b' by AFF_1:15; then LIN p,a,b by ANALMETR:55; then p,a // p,b by ANALMETR:def 11; then a,p _|_ p,a by A2,ANALMETR:84; then a,p _|_ a,p by ANALMETR:83; hence contradiction by A1,ANALMETR:51; end; end; theorem Th2: for a,b st a<>b ex c st LIN a,b,c & a<>c & b<>c proof let a,b such that A1: a<>b; consider p,q,r being Element of X such that A2: LIN p,q,r & p<>q & q<>r & r<>p by Th1; reconsider a'=a,b'=b,p'=p,q'=q,r'=r as Element of Af(X) by ANALMETR:47; LIN p',q',r' by A2,ANALMETR:55; then consider c' being Element of the carrier of Af(X) such that A3: LIN a',b',c' & a'<>c' & b'<>c' by A1,A2,TRANSLAC:2; reconsider c =c' as Element of X by ANALMETR:47; LIN a,b,c by A3,ANALMETR:55; hence thesis by A3; end; theorem Th3: for A,a st A is_line ex K st a in K & A _|_ K proof let A,a; assume A is_line; then consider b,c such that A1: b<>c & A = Line(b,c) by ANALMETR:def 13; consider d such that A2: b,c _|_ a,d & a<>d by ANALMETR:51; take K = Line(a,d); reconsider a'=a,d'=d as Element of Af(X) by ANALMETR:47; K = Line(a',d') by ANALMETR:56; hence a in K by AFF_1:26; thus A _|_ K by A1,A2,ANALMETR:63; end; theorem Th4: A is_line & a in A & b in A & c in A implies LIN a,b,c proof assume that A1: A is_line and A2: a in A & b in A & c in A; reconsider A'=A as Subset of Af(X) by ANALMETR:57; reconsider a'=a,b'=b,c'=c as Element of Af(X) by ANALMETR:47; A' is_line by A1,ANALMETR:58; then LIN a',b',c' by A2,AFF_1:33; hence thesis by ANALMETR:55; end; theorem Th5: A is_line & M is_line & a in A & b in A & a in M & b in M implies a=b or A=M proof assume that A1: A is_line & M is_line and A2: a in A & b in A & a in M & b in M; assume A3: a<>b; reconsider A'=A,M'=M as Subset of the carrier of Af(X) by ANALMETR:57; A' is_line & M' is_line by A1,ANALMETR:58; hence A=M by A2,A3,AFF_1:30; end; theorem Th6: for a,b,c,d,M holds for M' being Subset of Af(X), c',d' being Element of Af(X) st c =c' & d=d' & M=M' & a in M & b in M & c',d' // M' holds c,d // a,b proof let a,b,c,d,M; let M' be Subset of Af(X),c',d' be Element of Af(X) such that A1: c =c' & d=d' & M=M' & a in M & b in M & c',d' // M'; reconsider a'=a,b'=b as Element of Af(X) by ANALMETR:47; A2: M' is_line by A1,AFF_1:40; then a',b' // M' by A1,AFF_1:66; then c',d' // a',b' by A1,A2,AFF_1:45; hence thesis by A1,ANALMETR:48; end; theorem Th7: TDES_holds_in X implies Af(X) satisfies_TDES proof assume A1: TDES_holds_in X; let K' be Subset of Af(X); let o',a',b',c',a1',b1',c1' be Element of Af(X); assume A2:K' is_line & o' in K' & c' in K' & c1' in K' & not a' in K' & o'<>c' & a'<>b' & LIN o',a',a1' & LIN o',b',b1' & a',b' // a1',b1' & a',c' // a1',c1' & a',b' // K'; reconsider o=o',a=a',a1=a1',b=b',b1=b1',c =c',c1=c1' as Element of the carrier of X by ANALMETR:47; reconsider K=K' as Subset of X by ANALMETR:57; A3:a,b // a1,b1 & a,c // a1,c1 by A2,ANALMETR:48; now assume A4:not b in K; A5:o=a1 implies o=b1 & o=c1 proof assume that A6:o=a1 and A7:o<>b1 or o<>c1; A8:now assume A9:o<>b1; o',c' // K' by A2,AFF_1:37; then a',b' // o',c' by A2,AFF_1:45; then o',c' // o',b1' by A2,A6,DIRAF:47; then LIN o',c',b1' by AFF_1:def 1; then A10:b1' in K' by A2,AFF_1:39; LIN o',b1',b' by A2,AFF_1:15 ; hence contradiction by A2,A4,A9,A10,AFF_1:39;end; now assume A11:o<>c1;A12:o',c1' // a',c' by A2,A6,AFF_1:13 ; K' // K' by A2,AFF_1:55; then o',c1' // o',c' by A2,AFF_1:53; then a',c' // o',c' by A11,A12,DIRAF:47; then c',a' // c',o' by AFF_1:13 ; then LIN c',a',o' by AFF_1:def 1; then LIN o',c',a' by AFF_1:15; hence contradiction by A2,AFF_1:39;end; hence contradiction by A7,A8;end; A13:now assume o=a1; then b,c // b1,c1 by A5,ANALMETR:51; hence thesis by ANALMETR:48;end; now assume A14:o<>a1; A15:o<>a & o<>b & o<>c & o<>c1 & o<>b1 proof assume A16:o=a or o=b or o=c or o=c1 or o=b1; A17:now assume o=c1; then A18:o',a1' // a',c' by A2,AFF_1:13; o',a' // o',a1' by A2,AFF_1:def 1; then o',a1' // a', o' by AFF_1:13; then a',c' // a',o' by A14,A18,DIRAF:47; then LIN a',c',o' by AFF_1:def 1; then LIN o',c',a' by AFF_1:15; hence contradiction by A2,AFF_1:39;end; now assume A19: o=b1; o',c' // K' by A2,AFF_1:37; then a',b' // o',c' by A2,AFF_1:45; then a1',o' // o',c' by A2,A19,DIRAF:47; then o',c' // o',a1' by AFF_1:13 ; then LIN o',c',a1' by AFF_1:def 1; then A20:a1' in K' by A2,AFF_1:39; LIN o',a1',a' by A2,AFF_1:15; hence contradiction by A2,A14,A20,AFF_1:39;end; hence contradiction by A2,A16,A17,AFF_1:49;end; A21:now assume A22:a=a1; not LIN o',a',b' proof assume LIN o',a',b'; then LIN a',b',o' by AFF_1:15 ; then A23:a',b' // a',o' by AFF_1:def 1; o',c' // K' by A2,AFF_1:37; then a',b' // o',c' by A2,AFF_1:45; then a',o' // o',c' by A2,A23,DIRAF:47 ; then o',c' // o',a' by AFF_1:13; then LIN o',c',a' by AFF_1:def 1; hence contradiction by A2,AFF_1:39;end; then A24:b'=b1' by A2,A22,AFF_1:23; A25:not LIN o',a',c' proof assume LIN o',a',c'; then LIN o',c',a' by AFF_1:15; hence contradiction by A2,AFF_1:39;end; LIN o',c',c1' proof K' // K' by A2,AFF_1:55; then o',c' // o',c1' by A2, AFF_1:53;hence thesis by AFF_1:def 1;end; then c'=c1' by A2,A22,A25,AFF_1:23; hence thesis by A24,AFF_1:11;end; now assume A26:a<>a1'; A27:not LIN a,a1,b & not LIN a,a1,c proof assume A28:LIN a,a1,b or LIN a,a1,c; A29:now assume LIN a,a1,b; then A30:a,a1 // a,b by ANALMETR:def 11; LIN a',a1',o' by A2,AFF_1:15; then a',a1' // a',o' by AFF_1:def 1; then a,a1 // a,o by ANALMETR:48; then a,b // a,o by A26,A30,ANALMETR:82; then A31:a,b // o,a by ANALMETR:81; a',b' // o',c' by A2,AFF_1:41; then a,b // o,c by ANALMETR:48; then o,c // o,a by A2,A31,ANALMETR:82; then LIN o,c,a by ANALMETR:def 11; then LIN o',c',a' by ANALMETR:55; hence contradiction by A2,AFF_1:39;end; now assume LIN a,a1,c; then A32:a,a1 // a,c by ANALMETR:def 11; LIN a',a1',o' by A2,AFF_1:15; then a',a1' // a',o' by AFF_1:def 1; then a,a1 // a,o by ANALMETR:48; then a,c // a,o by A26,A32,ANALMETR:82; then LIN a,c,o by ANALMETR:def 11; then LIN a',c',o' by ANALMETR:55; then LIN c',o',a' by AFF_1:15; hence contradiction by A2,AFF_1:39;end; hence contradiction by A28,A29;end; A33:LIN o,a,a1 & LIN o,b,b1 & LIN o,c,c1 proof K' // K' by A2,AFF_1:55; then o',c' // o',c1' by A2,AFF_1:53; then o,c // o,c1 by ANALMETR:48; hence thesis by A2,ANALMETR:55,def 11;end; A34:b,a // b1,a1 by A3,ANALMETR:81; b,a // o,c proof K' // K' by A2,AFF_1:55; then o',c' // K' by A2,AFF_1:54; then a',b' // o',c' by A2,AFF_1:45; then b',a' // o',c' by AFF_1:13; hence thesis by ANALMETR:48;end; then b,c // b1,c1 by A1,A3,A14,A15,A27,A33,A34,Def5; hence thesis by ANALMETR:48;end; hence thesis by A21;end; hence thesis by A13;end; hence thesis by A2,AFF_1:49;end; theorem Th8: Af(X) satisfies_des implies des_holds_in X proof assume A1:Af(X) satisfies_des; let a,a1,b,b1,c,c1; assume A2:not LIN a,a1,b & not LIN a,a1,c & a,a1 // b,b1 & a,a1 // c,c1 & a,b // a1,b1 & a,c // a1,c1; reconsider a'=a,a1'=a1,b'=b,b1'=b1,c'=c,c1'=c1 as Element of Af(X) by ANALMETR:47; LIN a',a1',a1' by AFF_1:16; then consider A' be Subset of Af(X) such that A3:A' is_line & a' in A' & a1' in A' & a1' in A' by AFF_1:33; LIN b',b1',b1' by AFF_1:16; then consider M' be Subset of Af(X) such that A4:M' is_line & b' in M' & b1' in M' & b1' in M' by AFF_1:33; LIN c',c1',c1' by AFF_1:16; then consider N' be Subset of Af(X) such that A5:N' is_line & c' in N' & c1' in N' & c1' in N' by AFF_1:33; A6:A' // M' proof A7:a'<>a1' proof assume a'=a1'; then LIN a',a1',b' by AFF_1:16;hence contradiction by A2,ANALMETR:55;end; A8:A'=Line(a',a1') proof for x' holds x' in A' iff LIN a',a1',x' by A3,A7,AFF_1:33,39; hence thesis by AFF_1:def 2;end; b',b1' // a',a1' proof b,b1 // a,a1 by A2,ANALMETR:81; hence thesis by ANALMETR:48;end; then A9:b',b1' // A' by A7,A8,AFF_1:def 4;A10:b'<>b1' proof assume b'=b1'; then b,a // b,a1 by A2,ANALMETR:81; then LIN b,a,a1 by ANALMETR:def 11 ; then LIN b',a',a1' by ANALMETR:55; then LIN a',a1',b' by AFF_1:15; hence contradiction by A2,ANALMETR:55;end; M'=Line(b',b1') proof for x' holds x' in M' iff LIN b',b1',x' by A4,A10,AFF_1:33,39; hence thesis by AFF_1:def 2;end; then M' // A' by A9,A10,AFF_1:def 5;hence thesis;end; A11:A' // N' proof A12:a'<>a1' proof assume a'=a1'; then LIN a',a1',b' by AFF_1:16;hence contradiction by A2,ANALMETR:55;end; A13:A'=Line(a',a1') proof for x' holds x' in A' iff LIN a',a1',x' by A3,A12,AFF_1:33,39; hence thesis by AFF_1:def 2;end; c',c1' // a',a1' proof c,c1 // a,a1 by A2,ANALMETR:81; hence thesis by ANALMETR:48;end; then A14:c',c1' // A' by A12,A13,AFF_1:def 4;A15:c'<>c1' proof assume c'=c1'; then c,a // c,a1 by A2,ANALMETR:81; then LIN c,a,a1 by ANALMETR:def 11 ; then LIN c',a',a1' by ANALMETR:55; then LIN a',a1',c' by AFF_1:15; hence contradiction by A2,ANALMETR:55;end; N'=Line(c',c1') proof for x' holds x' in N' iff LIN c',c1',x' by A5,A15,AFF_1:33,39; hence thesis by AFF_1:def 2;end; then N' // A' by A14,A15,AFF_1:def 5;hence thesis;end; A16:A'<>M' & A'<>N' proof assume A'=M' or A'=N'; then LIN a',a1',b' or LIN a',a1',c' by A3,A4,A5,AFF_1:33;hence contradiction by A2,ANALMETR:55;end; A17:a',b' // a1',b1' by A2,ANALMETR:48; a',c' // a1',c1' by A2,ANALMETR:48; then b',c' // b1',c1' by A1,A3,A4,A5,A6,A11,A16,A17,AFF_2:def 11; hence thesis by ANALMETR:48;end; theorem MH1_holds_in X implies OSCH_holds_in X proof assume A1:MH1_holds_in X; let a1,a2,a3,a4,b1,b2,b3,b4,M,N; assume A2:M _|_ N & a1 in M & a3 in M & b1 in M & b3 in M & a2 in N & a4 in N & b2 in N & b4 in N & not a4 in M & not a2 in M & not b2 in M & not b4 in M & not a1 in N & not a3 in N & not b1 in N & not b3 in N & a3,a2 // b3,b2 & a2,a1 // b2,b1 & a1,a4 // b1,b4; then A3:M is_line & N is_line by ANALMETR:62; reconsider b4'=b4,b1'=b1,b2'=b2,b3'=b3,a1'=a1,a2'=a2,a3'=a3,a4'=a4 as Element of Af(X) by ANALMETR:47; reconsider M'=M,N'=N as Subset of Af(X) by ANALMETR:57; A4:M' is_line & N' is_line by A3,ANALMETR:58; ex o st o in M & o in N proof not M' // N' proof assume M' // N'; then M // N by ANALMETR:64; then N _|_ N by A2,ANALMETR:73; hence contradiction by ANALMETR:72;end; then consider o' be Element of Af(X) such that A5:o' in M' & o' in N' by A4,AFF_1:72; reconsider o=o' as Element of X by ANALMETR:47; take o; thus thesis by A5;end; then consider o such that A6:o in M & o in N; reconsider o'=o as Element of Af(X) by ANALMETR:47; A7:now assume A8:b2=b4; A9:a1',a4' // a1',a2' proof b1,b2 // a1,a2 by A2,ANALMETR:81; then a1,a4 // a1,a2 by A2,A8,ANALMETR:82; hence thesis by ANALMETR:48;end; A10:LIN o',a4',a2' by A2,A4,A6,AFF_1:33; not LIN o',a1',a4' proof assume LIN o',a1',a4'; then ex A' st A' is_line & o' in A' & a1' in A' & a4' in A' by AFF_1:33; hence contradiction by A2,A4,A6,AFF_1:30;end; hence thesis by A2,A8,A9,A10,AFF_1:23;end; now assume A11:b2<>b4; A12:now assume A13:b1=b3; A14:not LIN o',a2',a1' proof assume LIN o',a2',a1'; then o',a2' // o',a1' by AFF_1:def 1; hence contradiction by A2,A4,A6,AFF_1:62;end; A15:LIN o',a1',a3' by A2,A4,A6,AFF_1:33; a2',a1' // a2',a3' proof A16:a2',a1' // b2',b1' by A2,ANALMETR:48; a2,a3 // b2,b1 by A2,A13,ANALMETR:81; then a2',a3' // b2',b1' by ANALMETR:48; hence thesis by A2,A16,AFF_1:14;end; hence thesis by A2,A13,A14,A15,AFF_1:23;end; now assume A17:b1<>b3; ex d4 st d4 in N & d4<>o proof consider d4' be Element of Af(X) such that A18:o'<>d4' & d4' in N' by A4,AFF_1:32; reconsider d4=d4' as Element of X by ANALMETR:47; take d4; thus thesis by A18;end; then consider d4 such that A19:d4 in N & d4 <> o; reconsider d4'=d4 as Element of Af(X) by ANALMETR:47; ex d1 st d1 in M & a1,a4 _|_ d1,d4 proof consider e1' be Element of Af(X) such that A20:o'<>e1' & e1' in M' by A4,AFF_1:32; reconsider e1=e1' as Element of X by ANALMETR:47; consider e2 such that A21:a1,a4 _|_ d4,e2 & e2<>d4 by ANALMETR:51; reconsider e2'=e2 as Element of Af(X) by ANALMETR:47; not o',e1' // d4',e2' proof assume o',e1' // d4',e2'; then o,e1 // d4,e2 by ANALMETR:48; then A22:o,e1 _|_ a1,a4 by A21,ANALMETR:84; M' // M' by A4,AFF_1:55; then o',e1' // a1',a3' by A2,A6,A20,AFF_1:53; then o,e1 // a1,a3 by ANALMETR:48; then A23:a1,a3 _|_ a1,a4 by A20,A22,ANALMETR:84; A24:a1<>a3 proof assume a1=a3; then a3,a2 // b2,b1 by A2,ANALMETR:81; then b3,b2 // b2,b1 by A2,ANALMETR:82; then b2,b3 // b2,b1 by ANALMETR:81; then LIN b2,b3,b1 by ANALMETR:def 11; then LIN b2',b3',b1' by ANALMETR:55; then LIN b1',b3',b2' by AFF_1:15; hence contradiction by A2,A4,A17,AFF_1:39;end; A25:a4'<>a2' proof assume a4'=a2'; then a2,a1 // b1,b4 by A2,ANALMETR:81; then b1,b4 // b2,b1 by A2,ANALMETR:82; then b1,b4 // b1,b2 by ANALMETR:81; then LIN b1,b4,b2 by ANALMETR:def 11; then LIN b1',b4',b2' by ANALMETR:55; then LIN b2',b4',b1' by AFF_1:15; hence contradiction by A2,A4,A11,AFF_1:39;end; a1,a3 _|_ a2,a4 by A2,ANALMETR:78; then a1,a4 // a2,a4 by A23,A24,ANALMETR:85; then a4,a2 // a4,a1 by ANALMETR:81; then LIN a4,a2,a1 by ANALMETR:def 11; then LIN a4',a2',a1' by ANALMETR:55; hence contradiction by A2,A4,A25,AFF_1:39;end; then consider d1' be Element of Af(X) such that A26:LIN o',e1',d1' & LIN d4',e2',d1' by AFF_1:74; reconsider d1=d1' as Element of X by ANALMETR:47;take d1; a1,a4 _|_ d1,d4 proof LIN d4,e2,d1 by A26,ANALMETR:55; then d4,e2 // d4,d1 by ANALMETR:def 11; then d1,d4 // d4,e2 by ANALMETR:81; hence thesis by A21,ANALMETR:84;end; hence thesis by A4,A6,A20,A26,AFF_1:39;end; then consider d1 such that A27:d1 in M & a1,a4 _|_ d1,d4; reconsider d1'=d1 as Element of Af(X) by ANALMETR:47; ex d2 st d2 in N & a2,a1 _|_ d2,d1 proof consider e1' be Element of Af(X) such that A28:o'<>e1' & e1' in N' by A4,AFF_1:32; reconsider e1=e1' as Element of X by ANALMETR:47; consider e2 such that A29:a2,a1 _|_ d1,e2 & e2<>d1 by ANALMETR:51; reconsider e2'=e2 as Element of Af(X) by ANALMETR:47; not o',e1' // e2',d1' proof assume o',e1' // e2',d1'; then A30:o,e1 // e2,d1 by ANALMETR:48; a2,a1 _|_ e2,d1 by A29,ANALMETR:83; then A31:o,e1 _|_ a2,a1 by A29,A30,ANALMETR:84; N' // N' by A4,AFF_1:55; then o',e1' // a2',a4' by A2,A6,A28,AFF_1:53; then o,e1 // a2,a4 by ANALMETR:48; then A32:a2,a1 _|_ a2,a4 by A28,A31,ANALMETR:84; A33:a2<>a4 proof assume a2=a4; then a2,a1 // b1,b4 by A2,ANALMETR:81; then b1,b4 // b2,b1 by A2,ANALMETR:82; then b1,b4 // b1,b2 by ANALMETR:81; then LIN b1,b4,b2 by ANALMETR:def 11; then LIN b1',b4',b2' by ANALMETR:55; then LIN b2',b4',b1' by AFF_1:15; hence contradiction by A2,A4,A11,AFF_1:39;end; A34:a1'<>a3' proof assume a1'=a3'; then a3,a2 // b2,b1 by A2,ANALMETR:81; then b3,b2 // b2,b1 by A2,ANALMETR:82; then b2,b3 // b2,b1 by ANALMETR:81; then LIN b2,b3,b1 by ANALMETR:def 11; then LIN b2',b3',b1' by ANALMETR:55; then LIN b1',b3',b2' by AFF_1:15; hence contradiction by A2,A4,A17,AFF_1:39;end; a3,a1 _|_ a2,a4 by A2,ANALMETR:78; then a3,a1 // a2,a1 by A32,A33,ANALMETR:85; then a1,a3 // a1,a2 by ANALMETR:81; then LIN a1,a3,a2 by ANALMETR:def 11; then LIN a1',a3',a2' by ANALMETR:55; hence contradiction by A2,A4,A34,AFF_1:39;end; then consider d2' be Element of Af(X) such that A35:LIN o',e1',d2' & LIN e2',d1',d2' by AFF_1:74; reconsider d2=d2' as Element of X by ANALMETR:47;take d2; a2,a1 _|_ d2,d1 proof LIN d1',d2',e2' by A35,AFF_1:15; then LIN d1,d2,e2 by ANALMETR:55; then d1,d2 // d1,e2 by ANALMETR:def 11; then A36:d2,d1 // e2,d1 by ANALMETR:81; a2,a1 _|_ e2,d1 by A29,ANALMETR:83; hence thesis by A29,A36,ANALMETR:84;end; hence thesis by A4,A6,A28,A35,AFF_1:39;end; then consider d2 be Element of X such that A37:d2 in N & a2,a1 _|_ d2,d1; reconsider d2'=d2 as Element of Af(X) by ANALMETR:47; ex d3 st d3 in M & a3,a2 _|_ d3,d2 proof consider e1' be Element of Af(X) such that A38:o'<>e1' & e1' in M' by A4,AFF_1:32; reconsider e1=e1' as Element of X by ANALMETR:47; consider e2 such that A39:a3,a2 _|_ d2,e2 & e2<>d2 by ANALMETR:51; reconsider e2'=e2 as Element of Af(X) by ANALMETR:47; not o',e1' // e2',d2' proof assume o',e1' // e2',d2'; then o,e1 // e2,d2 by ANALMETR:48; then o,e1 // d2,e2 by ANALMETR:81; then A40:a3,a2 _|_ o,e1 by A39,ANALMETR:84; o,e1 _|_ a2,a4 by A2,A6,A38,ANALMETR:78; then a3,a2 // a2,a4 by A38,A40,ANALMETR:85; then a2,a4 // a2,a3 by ANALMETR:81; then LIN a2,a4,a3 by ANALMETR:def 11; then A41:LIN a2',a4',a3' by ANALMETR:55; a2'<>a4' proof assume a2'=a4'; then a2,a1 // b1,b4 by A2,ANALMETR:81; then b1,b4 // b2,b1 by A2,ANALMETR:82; then b1,b4 // b1,b2 by ANALMETR:81; then LIN b1,b4,b2 by ANALMETR:def 11; then LIN b1',b4',b2' by ANALMETR:55; then LIN b2',b4',b1' by AFF_1:15; hence contradiction by A2,A4,A11,AFF_1:39;end; hence contradiction by A2,A4,A41,AFF_1:39;end; then consider d3' be Element of Af(X) such that A42:LIN o',e1',d3' & LIN e2',d2',d3' by AFF_1:74; reconsider d3=d3' as Element of X by ANALMETR:47;take d3; a3,a2 _|_ d3,d2 proof LIN d2',d3',e2' by A42,AFF_1:15; then LIN d2,d3,e2 by ANALMETR:55; then d2,d3 // d2,e2 by ANALMETR:def 11; then d3,d2 // d2,e2 by ANALMETR:81; hence thesis by A39,ANALMETR:84;end; hence thesis by A4,A6,A38,A42,AFF_1:39;end; then consider d3 such that A43:d3 in M & a3,a2 _|_ d3,d2; A44:a3,a4 _|_ d3,d4 by A1,A2,A19,A27,A37,A43,Def3; A45:b1,b4 _|_ d1,d4 by A2,A27,ANALMETR:84; A46:b2,b1 _|_ d2,d1 by A2,A37,ANALMETR:84; A47:b3,b2 _|_ d3,d2 by A2,A43,ANALMETR:84; A48:d3<>d4 by A2,A4,A6,A19,A43,AFF_1:30; b3,b4 _|_ d3,d4 by A1,A2,A19,A27,A37,A43,A45,A46,A47,Def3; hence thesis by A44,A48,ANALMETR:85;end; hence thesis by A12;end; hence thesis by A7;end; theorem MH2_holds_in X implies OSCH_holds_in X proof assume A1:MH2_holds_in X; let a1,a2,a3,a4,b1,b2,b3,b4,M,N; assume A2:M _|_ N & a1 in M & a3 in M & b1 in M & b3 in M & a2 in N & a4 in N & b2 in N & b4 in N & not a4 in M & not a2 in M & not b2 in M & not b4 in M & not a1 in N & not a3 in N & not b1 in N & not b3 in N & a3,a2 // b3,b2 & a2,a1 // b2,b1 & a1,a4 // b1,b4; then A3:M is_line & N is_line by ANALMETR:62; reconsider b4'=b4,b1'=b1,b2'=b2,b3'=b3,a1'=a1,a2'=a2,a3'=a3,a4'=a4 as Element of Af(X) by ANALMETR:47; reconsider M'=M,N'=N as Subset of Af(X) by ANALMETR:57; A4:M' is_line & N' is_line by A3,ANALMETR:58; ex o st o in M & o in N proof not M' // N' proof assume M' // N'; then M // N by ANALMETR:64; then N _|_ N by A2,ANALMETR:73; hence contradiction by ANALMETR:72;end; then consider o' be Element of Af(X) such that A5:o' in M' & o' in N' by A4,AFF_1:72; reconsider o=o' as Element of X by ANALMETR:47; take o; thus thesis by A5;end; then consider o such that A6:o in M & o in N; reconsider o'=o as Element of Af(X) by ANALMETR:47; A7:now assume A8:b2=b4; A9:not LIN o',a1',a2' by A2,A4,A6,AFF_1:39; A10:LIN o',a2',a4' proof N' // N' by A4,AFF_1:55; then o',a2' // o',a4' by A2,A6,AFF_1:53; hence thesis by AFF_1:def 1;end; a1',a2' // a1',a4' proof a1,a4 // b2,b1 by A2,A8,ANALMETR:81; then a2,a1 // a1,a4 by A2,ANALMETR:82; then a1,a2 // a1,a4 by ANALMETR:81; hence thesis by ANALMETR:48;end; hence thesis by A2,A8,A9,A10,AFF_1:23;end; now assume A11:b2<>b4; A12:now assume A13:b1=b3; A14:not LIN o',a2',a1' by A2,A4,A6,AFF_1:39; A15:LIN o',a1',a3' proof M' // M' by A4,AFF_1:55; then o',a1' // o',a3' by A2,A6,AFF_1:53; hence thesis by AFF_1:def 1;end; a2',a1' // a2',a3' proof a2,a1 // b3,b2 by A2,A13,ANALMETR:81; then a2,a1 // a3,a2 by A2,ANALMETR:82; then a2,a1 // a2,a3 by ANALMETR:81; hence thesis by ANALMETR:48;end; hence thesis by A2,A13,A14,A15,AFF_1:23;end; now assume A16:b1<>b3; A17:a1<>a3 & a2<>a4 proof assume a1=a3 or a2=a4; then a2,a1 // b3,b2 or a1,a4 // b2,b1 by A2,ANALMETR:81; then b3,b2 // b2,b1 or b2,b1 // b1,b4 by A2,ANALMETR:82; then b2,b3 // b2,b1 or b1,b2 // b1,b4 by ANALMETR:81; then LIN b2,b3,b1 or LIN b1,b2,b4 by ANALMETR:def 11; then LIN b2',b3',b1' or LIN b1',b2',b4' by ANALMETR:55; then LIN b1',b3',b2' or LIN b2',b4',b1' by AFF_1:15; hence contradiction by A2,A4,A11,A16,AFF_1:39;end; ex d3 st d3 in N & d3<>o proof consider d3' be Element of Af(X) such that A18:o'<>d3' & d3' in N' by A4,AFF_1:32; reconsider d3=d3' as Element of X by ANALMETR:47; take d3; thus thesis by A18;end; then consider d3 such that A19:d3 in N & d3 <>o; reconsider d3'=d3 as Element of Af(X) by ANALMETR:47; ex d2 st d2 in M & a3,a2 _|_ d3,d2 proof consider e1 such that A20:a3,a1 // a3,e1 & a3<>e1 by ANALMETR:51; consider e2 such that A21:a3,a2 _|_ d3,e2 & d3<>e2 by ANALMETR:def 10; reconsider e1'=e1,e2'=e2 as Element of Af(X) by ANALMETR:47; not a3',e1' // d3',e2' proof assume a3',e1' // d3',e2'; then a3,e1 // d3,e2 by ANALMETR:48; then a3,a1 // d3,e2 by A20,ANALMETR:82; then A22:a3,a2 _|_ a3,a1 by A21,ANALMETR:84; a3,a1 _|_ a2,a4 by A2,ANALMETR:78; then a3,a2 // a2,a4 by A17,A22,ANALMETR:85; then a2,a4 // a2,a3 by ANALMETR:81; then LIN a2,a4,a3 by ANALMETR:def 11; then LIN a2',a4',a3' by ANALMETR:55; hence contradiction by A2,A4,A17,AFF_1:39;end; then consider d2' be Element of Af(X) such that A23:LIN a3',e1',d2' & LIN d3',e2',d2' by AFF_1:74; reconsider d2=d2' as Element of X by ANALMETR:47;take d2; A24:d2 in M proof LIN a3,e1,d2 by A23,ANALMETR:55; then a3,e1 // a3,d2 by ANALMETR:def 11; then a3,a1 // a3,d2 by A20,ANALMETR:82; then LIN a3,a1,d2 by ANALMETR:def 11; then LIN a3',a1',d2' by ANALMETR:55; hence thesis by A2,A4,A17,AFF_1:39;end; a3,a2 _|_ d3,d2 proof LIN d3,e2,d2 by A23,ANALMETR:55; then d3,e2 // d3,d2 by ANALMETR:def 11; hence thesis by A21,ANALMETR:84;end; hence thesis by A24;end; then consider d2 such that A25:d2 in M & a3,a2 _|_ d3,d2; reconsider d2'=d2 as Element of Af(X) by ANALMETR:47; ex d1 st d1 in N & a2,a1 _|_ d2,d1 proof consider e1 such that A26:a2,a4 // a2,e1 & a2<>e1 by ANALMETR:51; consider e2 such that A27:a2,a1 _|_ d2,e2 & d2<>e2 by ANALMETR:def 10; reconsider e1'=e1,e2'=e2 as Element of Af(X) by ANALMETR:47; not a2',e1' // d2',e2' proof assume a2',e1' // d2',e2'; then a2,e1 // d2,e2 by ANALMETR:48; then a2,a4 // d2,e2 by A26,ANALMETR:82; then A28:a2,a4 _|_ a2,a1 by A27,ANALMETR:84; a1,a3 _|_ a2,a4 by A2,ANALMETR:78; then a1,a3 // a2,a1 by A17,A28,ANALMETR:85; then a1,a3 // a1,a2 by ANALMETR:81; then LIN a1,a3,a2 by ANALMETR:def 11; then LIN a1',a3',a2' by ANALMETR:55; hence contradiction by A2,A4,A17,AFF_1:39;end; then consider d1' be Element of Af(X) such that A29:LIN a2',e1',d1' & LIN d2',e2',d1' by AFF_1:74; reconsider d1=d1' as Element of X by ANALMETR:47;take d1; A30:d1 in N proof LIN a2,e1,d1 by A29,ANALMETR:55; then a2,e1 // a2,d1 by ANALMETR:def 11; then a2,a4 // a2,d1 by A26,ANALMETR:82; then LIN a2,a4,d1 by ANALMETR:def 11; then LIN a2',a4',d1' by ANALMETR:55; hence thesis by A2,A4,A17,AFF_1:39;end; a2,a1 _|_ d2,d1 proof LIN d2,e2,d1 by A29,ANALMETR:55; then d2,e2 // d2,d1 by ANALMETR:def 11; hence thesis by A27,ANALMETR:84;end; hence thesis by A30;end; then consider d1 such that A31:d1 in N & a2,a1 _|_ d2,d1; reconsider d1'=d1 as Element of Af(X) by ANALMETR:47; ex d4 st d4 in M & a1,a4 _|_ d1,d4 proof consider e1 such that A32:a1,a3 // a1,e1 & a1<>e1 by ANALMETR:51; consider e2 such that A33:a1,a4 _|_ d1,e2 & d1<>e2 by ANALMETR:51; reconsider e1'=e1,e2'=e2 as Element of Af(X) by ANALMETR:47; not a1',e1' // d1',e2' proof assume a1',e1' // d1',e2'; then a1,e1 // d1,e2 by ANALMETR:48; then a1,a3 // d1,e2 by A32,ANALMETR:82; then A34:a1,a3 _|_ a1,a4 by A33,ANALMETR:84; a1,a3 _|_ a2,a4 by A2,ANALMETR:78; then a2,a4 // a1,a4 by A17,A34,ANALMETR:85; then a4,a2 // a4,a1 by ANALMETR:81; then LIN a4,a2,a1 by ANALMETR:def 11; then LIN a4',a2',a1' by ANALMETR:55; hence contradiction by A2,A4,A17,AFF_1:39;end; then consider d4' be Element of Af(X) such that A35:LIN a1',e1',d4' & LIN d1',e2',d4' by AFF_1:74; reconsider d4=d4' as Element of X by ANALMETR:47;take d4; A36:d4 in M proof LIN a1,e1,d4 by A35,ANALMETR:55; then a1,e1 // a1,d4 by ANALMETR:def 11; then a1,a3 // a1,d4 by A32,ANALMETR:82; then LIN a1,a3,d4 by ANALMETR:def 11; then LIN a1',a3',d4' by ANALMETR:55; hence thesis by A2,A4,A17,AFF_1:39;end; a1,a4 _|_ d1,d4 proof LIN d1,e2,d4 by A35,ANALMETR:55; then d1,e2 // d1,d4 by ANALMETR:def 11; hence thesis by A33,ANALMETR:84;end; hence thesis by A36;end; then consider d4 such that A37:d4 in M & a1,a4 _|_ d1,d4; A38:a3,a4 _|_ d3,d4 by A1,A2,A19,A25,A31,A37,Def4; A39:b3,b2 _|_ d3,d2 by A2,A25,ANALMETR:84; A40:b2,b1 _|_ d2,d1 by A2,A31,ANALMETR:84; b1,b4 _|_ d1,d4 by A2,A37,ANALMETR:84; then A41:b3,b4 _|_ d3,d4 by A1,A2,A19,A25,A31,A37,A39,A40,Def4; d3<>d4 by A2,A4,A6,A19,A37,AFF_1:30; hence thesis by A38,A41,ANALMETR:85;end; hence thesis by A12;end; hence thesis by A7;end; theorem AH_holds_in X implies TDES_holds_in X proof assume A1:AH_holds_in X; let o,a,a1,b,b1,c,c1; assume A2:o<>a & o<>a1 & o<>b & o<>b1 & o<>c & o<>c1 & not LIN b,b1,a & not LIN b,b1,c & LIN o,a,a1 & LIN o,b,b1 & LIN o,c,c1 & a,b // a1,b1 & a,b // o,c & b,c // b1,c1; consider c2 such that A3:o,c _|_ o,c2 & o<>c2 by ANALMETR:def 10; consider e1 such that A4:o,b _|_ o,e1 & o<>e1 by ANALMETR:def 10; consider e2 such that A5:b,c _|_ c2,e2 & c2<>e2 by ANALMETR:def 10; reconsider o'=o,a'=a,a1'=a1,b'=b,b1'=b1,c' = c,c1'= c1,c2'= c2,e1'=e1, e2'=e2 as Element of Af(X) by ANALMETR:47; A6:b1<>a1 proof assume b1=a1; then LIN o',b',a1' by A2,ANALMETR:55; then o',b' // o',a1' by AFF_1:def 1; then o',a1' // o',b' by AFF_1:13; then A7:o,a1 // o,b by ANALMETR:48; o,a // o,a1 by A2,ANALMETR:def 11; then o',a' // o',a1' by ANALMETR:48; then o',a1' // o',a' by AFF_1:13; then o,a1 // o,a by ANALMETR:48; then o,a // o,b by A2,A7,ANALMETR:82; then LIN o,a,b by ANALMETR:def 11; then A8: LIN o',a',b' by ANALMETR:55; then A9:LIN a',b',o' by AFF_1:15; LIN b',o',a' by A8,AFF_1:15; then b',o' // b',a' by AFF_1:def 1; then o',b' // a',b' by AFF_1:13; then A10:o,b // a,b by ANALMETR:48; o,b // o,b1 by A2,ANALMETR:def 11; then a,b // o,b1 by A2,A10,ANALMETR:82; then A11:a',b' // o',b1' by ANALMETR:48; a'<>b' proof assume a'=b'; then LIN b',b1',a' by AFF_1:16; hence contradiction by A2,ANALMETR:55;end; then LIN a',b',b1' by A9,A11,AFF_1:18; then LIN b',b1',a' by AFF_1:15; hence contradiction by A2,ANALMETR:55;end; A12:now assume A13:not LIN a,b,c; not o',e1' // c2',e2' proof assume o',e1' // c2',e2'; then o,e1 // c2,e2 by ANALMETR:48; then c2,e2 _|_ o,b by A4,ANALMETR:84; then c2,e2 _|_ b,o by ANALMETR:83; then b,c // b,o by A5,ANALMETR:85; then LIN b,c,o by ANALMETR:def 11; then LIN b',c',o' by ANALMETR:55; then LIN b',o',c' by AFF_1:15; then LIN b,o,c by ANALMETR:55; then A14:b,o // b,c by ANALMETR:def 11; LIN o',b',b1' by A2,ANALMETR:55; then LIN b',o',b1' by AFF_1:15; then LIN b,o,b1 by ANALMETR:55; then b,o // b,b1 by ANALMETR:def 11; then b,b1 // b,c by A2,A14,ANALMETR:82; hence contradiction by A2,ANALMETR:def 11;end; then consider b2' such that A15:LIN o',e1',b2' & LIN c2',e2',b2' by AFF_1:74; reconsider b2=b2' as Element of X by ANALMETR:47; LIN o,e1,b2 by A15,ANALMETR:55; then o,e1 // o,b2 by ANALMETR:def 11; then A16:o,b _|_ o,b2 by A4,ANALMETR:84; LIN c2,e2,b2 by A15,ANALMETR:55; then c2,e2 // c2,b2 by ANALMETR:def 11; then A17:b,c _|_ c2,b2 by A5,ANALMETR:84; consider e1 such that A18:o,a _|_ o,e1 & o<>e1 by ANALMETR:def 10; consider e2 such that A19:a,c _|_ c2,e2 & c2<>e2 by ANALMETR:def 10; reconsider e1'=e1,e2'=e2 as Element of Af(X) by ANALMETR:47; not o',e1' // c2',e2' proof assume o',e1' // c2',e2'; then o,e1 // c2,e2 by ANALMETR:48; then c2,e2 _|_ o,a by A18,ANALMETR:84; then a,c // o,a by A19,ANALMETR:85; then a',c' // o',a' by ANALMETR:48; then a',c' // a',o' by AFF_1:13; then LIN a',c',o' by AFF_1:def 1; then LIN c',o',a' by AFF_1:15; then LIN c,o,a by ANALMETR:55; then A20:c,o // c,a by ANALMETR:def 11; a',b' // o',c' by A2,ANALMETR:48; then c',o' // a',b' by AFF_1:13; then c,o // a,b by ANALMETR:48; then a,b // c,a by A2,A20,ANALMETR:82; then a',b' // c',a' by ANALMETR:48; then a',b' // a',c' by AFF_1:13; then a,b // a,c by ANALMETR:48; hence contradiction by A13,ANALMETR:def 11;end; then consider a2' such that A21:LIN o',e1',a2' & LIN c2',e2',a2' by AFF_1:74; reconsider a2=a2' as Element of X by ANALMETR:47; LIN o,e1,a2 by A21,ANALMETR:55; then o,e1 // o,a2 by ANALMETR:def 11; then A22:o,a _|_ o,a2 by A18,ANALMETR:84; LIN c2,e2,a2 by A21,ANALMETR:55; then c2,e2 // c2,a2 by ANALMETR:def 11; then A23:a,c _|_ c2,a2 by A19,ANALMETR:84; A24:c,b _|_ c2,b2 by A17,ANALMETR:83; a',b' // o',c' by A2,ANALMETR:48; then o',c' // b',a' by AFF_1:13; then A25:o,c // b,a by ANALMETR:48; A26:c,a _|_ c2,a2 by A23,ANALMETR:83; A27:not o,a // o,c proof assume o,a // o,c; then LIN o,a,c by ANALMETR:def 11; then LIN o',a',c' by ANALMETR:55; then LIN c',o',a' by AFF_1:15; then LIN c,o,a by ANALMETR:55; then A28:c,o // c,a by ANALMETR:def 11; a',b' // o',c' by A2,ANALMETR:48; then c',o' // a',b' by AFF_1:13; then c,o // a,b by ANALMETR:48; then a,b // c,a by A2,A28,ANALMETR:82; then a',b' // c',a' by ANALMETR:48; then a',b' // a',c' by AFF_1:13; then a,b // a,c by ANALMETR:48; hence contradiction by A13,ANALMETR:def 11;end; not o,c // o,b proof assume o,c // o,b; then LIN o,c,b by ANALMETR:def 11; then LIN o',c',b' by ANALMETR:55; then LIN c',o',b' by AFF_1:15; then c',o' // c',b' by AFF_1:def 1; then o',c' // b',c' by AFF_1:13; then A29:o,c // b,c by ANALMETR:48; a',b' // o',c' by A2,ANALMETR:48; then o',c' // b',a' by AFF_1:13; then o,c // b,a by ANALMETR:48; then b,a // b,c by A2,A29,ANALMETR:82; then LIN b,a,c by ANALMETR:def 11; then LIN b',a',c' by ANALMETR:55; then LIN a',b',c' by AFF_1:15; hence contradiction by A13,ANALMETR:55;end; then A30:b,a _|_ b2,a2 by A1,A3,A16,A22,A24,A25,A26,A27,CONAFFM:def 2; consider e1 such that A31:o,a1 _|_ o,e1 & o<>e1 by ANALMETR:def 10; consider e2 such that A32:a1,c1 _|_ c2,e2 & c2<>e2 by ANALMETR:def 10; reconsider e1'=e1,e2'=e2 as Element of Af(X) by ANALMETR:47; not o',e1' // c2',e2' proof assume o',e1' // c2',e2'; then o,e1 // c2,e2 by ANALMETR:48; then c2,e2 _|_ o,a1 by A31,ANALMETR:84; then a1,c1 // o,a1 by A32,ANALMETR:85; then a1',c1' // o',a1' by ANALMETR:48; then a1',c1' // a1',o' by AFF_1:13; then LIN a1',c1',o' by AFF_1:def 1; then LIN o',c1',a1' by AFF_1:15; then o',c1' // o',a1' by AFF_1:def 1; then A33:o,c1 // o,a1 by ANALMETR:48; LIN o',c',c1' by A2,ANALMETR:55; then o',c' // o',c1' by AFF_1:def 1; then o',c1' // o',c' by AFF_1:13; then o,c1 // o,c by ANALMETR:48; then A34:o,a1 // o,c by A2,A33,ANALMETR:82; LIN o',a',a1' by A2,ANALMETR:55; then o',a' // o',a1' by AFF_1:def 1; then o',a1' // o',a' by AFF_1:13; then o,a1 // o,a by ANALMETR:48; then o,a // o,c by A2,A34,ANALMETR:82; then LIN o,a,c by ANALMETR:def 11; then LIN o',a',c' by ANALMETR:55; then LIN c',o',a' by AFF_1:15; then c',o' // c',a' by AFF_1:def 1; then o',c' // a',c' by AFF_1:13; then o,c // a,c by ANALMETR:48; then a,b // a,c by A2,ANALMETR:82; hence contradiction by A13,ANALMETR:def 11;end; then consider a3' such that A35:LIN o',e1',a3' & LIN c2',e2',a3' by AFF_1:74; reconsider a3=a3' as Element of X by ANALMETR:47; A36:o,a1 _|_ o,a3 proof LIN o,e1,a3 by A35,ANALMETR:55; then o,e1 // o,a3 by ANALMETR:def 11; hence thesis by A31,ANALMETR:84;end; A37:a1,c1 _|_ c2,a3 proof LIN c2,e2,a3 by A35,ANALMETR:55; then c2,e2 // c2,a3 by ANALMETR:def 11; hence thesis by A32,ANALMETR:84;end; A38:o,c1 _|_ o,c2 proof o,c // o,c1 by A2,ANALMETR:def 11; hence thesis by A2,A3,ANALMETR:84;end; A39:o,b1 _|_ o,b2 proof o,b // o,b1 by A2,ANALMETR:def 11; hence thesis by A2,A16,ANALMETR:84;end; A40:c1,b1 _|_ c2,b2 proof b<>c proof assume b= c; then LIN a',b',c' by AFF_1:16; hence contradiction by A13,ANALMETR:55;end; then c2,b2 _|_ b1,c1 by A2,A17,ANALMETR:84; hence thesis by ANALMETR:83;end; A41:o,c1 // b1,a1 proof a<>b proof assume a=b; then LIN b',b1',a' by AFF_1:16; hence contradiction by A2,ANALMETR:55;end; then o,c // a1,b1 by A2,ANALMETR:82; then o',c' // a1',b1' by ANALMETR:48; then o',c' // b1',a1' by AFF_1:13; then A42:o,c // b1,a1 by ANALMETR:48; o,c // o,c1 by A2,ANALMETR:def 11; hence thesis by A2,A42,ANALMETR:82;end; A43:c1,a1 _|_ c2,a3 by A37,ANALMETR:83; A44:not o,a1 // o,c1 proof assume o,a1 // o,c1; then o',a1' // o',c1' by ANALMETR:48; then o',c1' // o',a1' by AFF_1:13; then A45:o,c1 // o,a1 by ANALMETR:48; o,c // o,c1 by A2,ANALMETR:def 11; then o',c' // o',c1' by ANALMETR:48; then o',c1' // o',c' by AFF_1:13; then o,c1 // o,c by ANALMETR:48; then A46:o,a1 // o,c by A2,A45,ANALMETR:82; o,a // o,a1 by A2,ANALMETR:def 11; then o',a' // o',a1' by ANALMETR:48; then o',a1' // o',a' by AFF_1:13; then o,a1 // o,a by ANALMETR:48; then o,a // o,c by A2,A46,ANALMETR:82; then LIN o,a,c by ANALMETR:def 11; then LIN o',a',c' by ANALMETR:55; then LIN c',a',o' by AFF_1:15; then c',a' // c',o' by AFF_1:def 1; then o',c'// a',c' by AFF_1:13; then o,c // a,c by ANALMETR:48; then a,b // a,c by A2,ANALMETR:82; hence contradiction by A13,ANALMETR:def 11;end; not o,c1 // o,b1 proof assume A47:o,c1 // o,b1; o,c // o,c1 & o,b // o,b1 by A2,ANALMETR:def 11; then o',c' // o',c1' & o',b' // o',b1' by ANALMETR:48; then o',c1' // o',c' & o',b1' // o',b' by AFF_1:13; then A48:o,c1 // o,c & o,b1 // o,b by ANALMETR:48; then o,b1 // o,c by A2,A47,ANALMETR:82; then o,b // o,c by A2,A48,ANALMETR:82; then LIN o,b,c by ANALMETR:def 11; then LIN o',b',c' by ANALMETR:55; then LIN c',o',b' by AFF_1:15; then c',o' // c',b' by AFF_1:def 1; then o',c' // b',c' by AFF_1:13; then A49:o,c // b,c by ANALMETR:48; a',b' // o',c' by A2,ANALMETR:48; then o',c' // b',a' by AFF_1:13; then o,c // b,a by ANALMETR:48; then b,a // b,c by A2,A49,ANALMETR:82; then LIN b,a,c by ANALMETR:def 11; then LIN b',a',c' by ANALMETR:55; then LIN a',b',c' by AFF_1:15; hence contradiction by A13,ANALMETR:55;end; then A50:b1,a1 _|_ b2,a3 by A1,A36,A38,A39,A40,A41,A43,A44,CONAFFM:def 2; A51:b2,a3 // b2,a2 proof A52:b<>a proof assume b=a; then LIN a',b',c' by AFF_1:16; hence contradiction by A13,ANALMETR:55;end; b2,a2 _|_ a,b by A30,ANALMETR:83; then b2,a2 _|_ a1,b1 by A2,A52,ANALMETR:84; then b1,a1 _|_ b2,a2 by ANALMETR:83; hence thesis by A6,A50,ANALMETR:85;end; A53:not LIN o',b2',a2' proof assume LIN o',b2',a2'; then LIN o,b2,a2 by ANALMETR:55; then A54:o,b2 // o,a2 by ANALMETR:def 11; o<>b2 proof assume o=b2; then o,c2 _|_ b,c by A17,ANALMETR:83; then A55:o,c // b,c by A3,ANALMETR:85; a',b' // o',c' by A2,ANALMETR:48; then o',c' // b',a' by AFF_1:13; then o,c // b,a by ANALMETR:48; then b,a // b,c by A2,A55,ANALMETR:82; then LIN b,a,c by ANALMETR:def 11; then LIN b',a',c' by ANALMETR:55; then LIN a',b',c' by AFF_1:15; hence contradiction by A13,ANALMETR:55;end; then A56:o,a2 _|_ o,b by A16,A54,ANALMETR:84; o<>a2 proof assume A57: o=a2; c2,o _|_ o,c by A3,ANALMETR:83; then o,c // c,a by A3,A26,A57,ANALMETR:85; then a,b // c,a by A2,ANALMETR:82; then a',b' // c',a' by ANALMETR:48; then a',b' // a',c' by AFF_1:13; then a,b // a,c by ANALMETR:48; hence contradiction by A13,ANALMETR:def 11;end; then o,a // o,b by A22,A56,ANALMETR:85; then LIN o,a,b by ANALMETR:def 11; then LIN o',a',b' by ANALMETR:55; then A58:LIN a',b',o' by AFF_1:15; A59:a'<>b' proof assume a'=b'; then LIN a',b',c' by AFF_1:16; hence contradiction by A13,ANALMETR:55;end; a',b' // o',c' by A2,ANALMETR:48; then LIN a',b',c' by A58,A59,AFF_1:18; hence contradiction by A13,ANALMETR:55;end; A60:LIN o',a2',a3' proof o,a // o,a1 by A2,ANALMETR:def 11; then o,a1 _|_ o,a2 by A2,A22,ANALMETR:84; then o,a2 // o,a3 by A2,A36,ANALMETR:85; then LIN o,a2,a3 by ANALMETR:def 11; hence thesis by ANALMETR:55;end; b2',a2' // b2',a3' proof b2',a3' // b2',a2' by A51,ANALMETR:48; hence thesis by AFF_1:13;end; then A61:a2'=a3' by A53,A60,AFF_1:23; a,c // a1,c1 proof c2<>a2 proof assume c2=a2; then o,c // o,a by A3,A22,ANALMETR:85; then LIN o,c,a by ANALMETR:def 11; then LIN o',c',a' by ANALMETR:55; then LIN c',a',o' by AFF_1:15; then c',a' // c',o' by AFF_1:def 1; then o',c' // a',c' by AFF_1:13; then o,c // a,c by ANALMETR:48; then a,b // a,c by A2,ANALMETR:82; hence contradiction by A13,ANALMETR:def 11;end; then c,a // a1,c1 by A26,A37,A61,ANALMETR:85; then c',a' // a1',c1' by ANALMETR:48; then a',c' // a1',c1' by AFF_1:13; hence thesis by ANALMETR:48;end; hence thesis;end; now assume A62:LIN a,b,c; then A63:LIN a',b',c' by ANALMETR:55; then LIN b',a',c' by AFF_1:15; then b',a' // b',c' by AFF_1:def 1; then a',b' // b',c' by AFF_1:13; then A64:a,b // b,c by ANALMETR:48; A65:a<>b proof assume a=b; then LIN b',b1',a' by AFF_1:16; hence contradiction by A2,ANALMETR:55;end; A66:b<>c proof assume b=c; then LIN b',b1',c' by AFF_1:16; hence contradiction by A2,ANALMETR:55;end; b,c // a1,b1 by A2,A64,A65,ANALMETR:82; then b1,c1 // a1,b1 by A2,A66,ANALMETR:82; then b1',c1' // a1',b1' by ANALMETR:48; then b1',a1' // b1',c1' by AFF_1:13; then LIN b1',a1',c1' by AFF_1:def 1; then LIN a1',b1',c1' by AFF_1:15; then LIN a1,b1,c1 by ANALMETR:55; then A67:a1,b1 // a1,c1 by ANALMETR:def 11; a',b' // a1',b1' by A2,ANALMETR:48; then a1',b1' // a',b' by AFF_1:13; then A68: a1,b1 // a,b by ANALMETR:48; A69:now assume a1,c1 // a,b; then a1',c1' // a',b' by ANALMETR:48; then a',b' // a1',c1' by AFF_1:13; then A70:a,b // a1,c1 by ANALMETR:48; a,b // a,c by A62,ANALMETR:def 11; hence thesis by A65,A70,ANALMETR:82;end; now assume A71:a1=b1; LIN c',b',a' by A63,AFF_1:15; then c',b' // c',a' by AFF_1:def 1; then b',c' // a',c' by AFF_1:13; then b,c // a,c by ANALMETR:48; hence thesis by A2,A66,A71,ANALMETR:82;end; hence thesis by A67,A68,A69,ANALMETR:82;end; hence thesis by A12;end; theorem OSCH_holds_in X & TDES_holds_in X implies SCH_holds_in X proof assume that A1:OSCH_holds_in X and A2:TDES_holds_in X; let a1,a2,a3,a4,b1,b2,b3,b4,M,N; assume that A3: M is_line & N is_line and A4: a1 in M & a3 in M & b1 in M & b3 in M & a2 in N & a4 in N & b2 in N & b4 in N & not a4 in M & not a2 in M & not b2 in M & not b4 in M & not a1 in N & not a3 in N & not b1 in N & not b3 in N & a3,a2 // b3,b2 & a2,a1 // b2,b1 & a1,a4 // b1,b4; reconsider a1'=a1,a2'=a2,a3'=a3,a4'=a4,b1'=b1,b2'=b2,b3'=b3,b4'=b4 as Element of Af(X) by ANALMETR:47; reconsider M'=M,N'=N as Subset of Af(X) by ANALMETR:57; A5:M' is_line & N' is_line by A3,ANALMETR:58; A6:a1=b1 implies a2=b2 & a3=b3 & a4=b4 proof assume A7:a1=b1; assume A8:a2<>b2 or a3<>b3 or a4<>b4; A9:now assume A10:a2<>b2; a1,a2 // a1,b2 by A4,A7,ANALMETR:81; then LIN a1,a2,b2 by ANALMETR:def 11; then LIN a1',a2',b2' by ANALMETR:55; then LIN a2',b2',a1' by AFF_1:15; hence contradiction by A4,A5,A10,AFF_1:39;end; A11:now assume A12:a4<>b4; LIN a1,a4,b4 by A4,A7,ANALMETR:def 11; then LIN a1',a4',b4' by ANALMETR:55; then LIN a4',b4',a1' by AFF_1:15; hence contradiction by A4,A5,A12,AFF_1:39;end; now assume A13:a3<>b3; a2,a3 // a2,b3 by A4,A9,ANALMETR:81; then LIN a2,a3,b3 by ANALMETR:def 11; then LIN a2',a3',b3' by ANALMETR:55; then LIN a3',b3',a2' by AFF_1:15; hence contradiction by A4,A5,A13,AFF_1:39;end; hence contradiction by A8,A9,A11;end; A14: now assume a1=b1; then a3',a4' // b3',b4' by A6,AFF_1:11; hence thesis by ANALMETR:48;end; A15: a1<>b1 implies a2<>b2 & a3<>b3 & a4<>b4 proof assume A16:a1<>b1; assume A17:a2=b2 or a3=b3 or a4=b4; A18:now assume a2=b2; then LIN a2,a1,b1 by A4,ANALMETR:def 11; then LIN a2',a1',b1' by ANALMETR:55; then LIN a1',b1',a2' by AFF_1:15; hence contradiction by A4,A5,A16,AFF_1:39; end; A19:now assume a4=b4; then a4,a1 // a4,b1 by A4,ANALMETR:81; then LIN a4,a1,b1 by ANALMETR:def 11; then LIN a4',a1',b1' by ANALMETR:55; then LIN a1',b1',a4' by AFF_1:15; hence contradiction by A4,A5,A16,AFF_1:39; end; now assume a3=b3; then LIN a3,a2,b2 by A4,ANALMETR:def 11; then LIN a3',a2',b2' by ANALMETR:55; then LIN a2',b2',a3' by AFF_1:15; hence contradiction by A4,A5,A18,AFF_1:39; end; hence contradiction by A17,A18,A19; end; now assume A20: a1<>b1; A21:now assume A22:a2=a4; A23:not LIN a2',b1',b2' proof assume LIN a2',b1',b2'; then LIN a2',b2',b1' by AFF_1:15; hence contradiction by A4,A5,A15,A20,AFF_1:39;end; A24:LIN a2',b2',b4' proof N' // N' by A5,AFF_1:55; then a2',b2' // a2',b4' by A4,AFF_1:53; hence thesis by AFF_1:def 1;end; b1',b2' // b1',b4' proof a2,a1 // b1,b4 by A4,A22,ANALMETR:81; then b2,b1 // b1,b4 by A4,ANALMETR:82; then b1,b2 // b1,b4 by ANALMETR:81; hence thesis by ANALMETR:48;end; hence thesis by A4,A22,A23,A24,AFF_1:23;end; A25:now assume A26:a1=a3; A27:not LIN a1',b2',b1' proof assume LIN a1',b2',b1'; then LIN a1',b1',b2' by AFF_1:15; hence contradiction by A4,A5,A20,AFF_1:39;end; A28:LIN a1',b1',b3' proof M' // M' by A5,AFF_1:55; then a1',b1' // a1',b3' by A4,AFF_1:53; hence thesis by AFF_1:def 1;end; b2',b1' // b2',b3' proof a2,a1 // b2,b3 by A4,A26,ANALMETR:81; then b2,b1 // b2,b3 by A4,ANALMETR:82; hence thesis by ANALMETR:48;end; hence thesis by A4,A26,A27,A28,AFF_1:23;end; now assume A29: a2<>a4 & a1<>a3; A30:now assume A31: M // N; consider x be Element of X such that A32:LIN a1,a2,x & a1<>x & a2<>x by A4,Th2; reconsider x'=x as Element of Af(X) by ANALMETR:47; ex y be Element of X st LIN b1,b2,y & a1,b1 // x,y proof consider e1 be Element of X such that A33:b1,b2 // b1,e1 & b1<>e1 by ANALMETR:51; consider e2 be Element of X such that A34:a1,b1 // x,e2 & x<>e2 by ANALMETR:51; reconsider e1'=e1,e2'=e2 as Element of Af(X) by ANALMETR:47; not b1',e1' // x',e2' proof assume b1',e1' // x',e2'; then b1,e1 // x,e2 by ANALMETR:48; then b1,b2 // x,e2 by A33,ANALMETR:82; then b1,b2 // a1,b1 by A34,ANALMETR:82; then b1,a1 // b1,b2 by ANALMETR:81; then LIN b1,a1,b2 by ANALMETR:def 11; then LIN b1',a1',b2' by ANALMETR:55; hence contradiction by A4,A5,A20,AFF_1:39;end; then consider y' be Element of Af(X) such that A35:LIN b1',e1',y' & LIN x',e2',y' by AFF_1:74; reconsider y=y' as Element of X by ANALMETR:47;take y; A36:LIN b1,b2,y proof LIN b1,e1,y by A35,ANALMETR:55; then b1,e1 // b1,y by ANALMETR:def 11; then b1,b2 // b1,y by A33,ANALMETR:82; hence thesis by ANALMETR:def 11;end; a1,b1 // x,y proof LIN x,e2,y by A35,ANALMETR:55; then x,e2 // x,y by ANALMETR:def 11;hence thesis by A34,ANALMETR:82;end; hence thesis by A36;end; then consider y be Element of X such that A37:LIN b1,b2,y & a1,b1 // x,y; reconsider y'=y as Element of Af(X) by ANALMETR:47; A38: TDES_holds_in X implies des_holds_in X proof assume TDES_holds_in X; then Af(X) satisfies_TDES by Th7; then Af(X) satisfies_des by AFF_2:28; hence thesis by Th8; end; A39:not LIN a1,b1,x proof assume LIN a1,b1,x; then LIN a1',b1',x' by ANALMETR:55; then A40:x' in M' by A4,A5,A20,AFF_1:39; LIN a1',a2',x' by A32,ANALMETR:55; then LIN a1',x',a2' by AFF_1:15; hence contradiction by A4,A5,A32,A40,AFF_1:39;end; A41:not LIN a1,b1,a4 proof assume LIN a1,b1,a4; then LIN a1',b1',a4' by ANALMETR:55; hence contradiction by A4,A5,A20,AFF_1:39;end; A42:a1,b1 // a4,b4 proof M' // N' by A31,ANALMETR:64; then a1',b1' // a4', b4' by A4,AFF_1:53;hence thesis by ANALMETR:48;end; A43:a1,x // b1,y proof A44:b1,b2 // b1,y by A37,ANALMETR:def 11; a1,a2 // b1 , b2 by A4,ANALMETR:81; then A45:a1,a2 // b1,y by A4,A44,ANALMETR:82; a1,a2 // a1,x by A32,ANALMETR:def 11; hence thesis by A4,A45,ANALMETR:82;end; then A46:x,a4 // y,b4 by A2,A4,A37,A38,A39,A41,A42,Def8; A47:not LIN a2,b2,x proof assume LIN a2,b2,x; then A48:LIN a2',b2',x' by ANALMETR:55; a2<>b2 proof assume a2=b2; then LIN a2,a1,b1 by A4,ANALMETR:def 11 ; then LIN a2',a1',b1' by ANALMETR:55; then LIN a1',b1',a2' by AFF_1:15; hence contradiction by A4,A5,A20,AFF_1:39;end; then A49:x' in N' by A4,A5,A48,AFF_1:39; LIN a1',a2',x' by A32,ANALMETR:55; then LIN a2',x',a1' by AFF_1:15; hence contradiction by A4,A5,A32,A49,AFF_1:39;end; A50:not LIN a2,b2,a3 proof assume LIN a2,b2,a3; then A51:LIN a2',b2',a3' by ANALMETR:55; a2<>b2 proof assume a2=b2; then LIN a2,a1,b1 by A4,ANALMETR:def 11 ; then LIN a2',a1',b1' by ANALMETR:55; then LIN a1',b1',a2' by AFF_1:15; hence contradiction by A4,A5,A20,AFF_1:39;end; hence contradiction by A4,A5,A51,AFF_1:39;end; A52:a2,b2 // x,y proof M' // N' by A31,ANALMETR:64; then a1',b1' // a2',b2' by A4,AFF_1:53; then a1,b1 // a2,b2 by ANALMETR:48; hence thesis by A20,A37,ANALMETR:82;end; A53:a2,b2 // a3,b3 proof M' // N' by A31,ANALMETR:64; then a3',b3' // a2', b2' by A4,AFF_1:53; then a3,b3 // a2,b2 by ANALMETR:48; hence thesis by ANALMETR:81;end; A54:a2,x // b2,y proof LIN a1',a2',x' by A32,ANALMETR:55; then LIN x',a1', a2' by AFF_1:15; then LIN x,a1,a2 by ANALMETR:55; then x,a1 // x,a2 by ANALMETR:def 11 ; then a1,x // a2,x by ANALMETR:81; then A55:a2,x // b1,y by A32,A43,ANALMETR:82; A56:b1 <> y proof assume b1=y; then b1,a1 // b1,x by A37,ANALMETR:81; then LIN b1,a1,x by ANALMETR:def 11; then LIN b1',a1', x' by ANALMETR:55; then A57:x' in M' by A4,A5,A20,AFF_1:39; LIN a1',a2',x' by A32,ANALMETR:55; then LIN a1',x',a2' by AFF_1:15;hence contradiction by A4,A5,A32,A57,AFF_1:39;end; LIN b1',b2',y' by A37,ANALMETR:55; then LIN y',b1',b2' by AFF_1:15; then LIN y,b1,b2 by ANALMETR:55; then y,b1 // y,b2 by ANALMETR:def 11; then b1,y // b2,y by ANALMETR:81;hence thesis by A55,A56,ANALMETR:82;end; a2,a3 // b2,b3 by A4,ANALMETR:81; then A58:x,a3 // y,b3 by A2,A38,A47,A50,A52,A53,A54,Def8; A59:not LIN x,y,a3 proof assume LIN x,y,a3; then A60:x,y // x,a3 by ANALMETR:def 11; A61:x<>y proof assume x=y; then x,a1 // x,b1 by A43,ANALMETR:81; then LIN x,a1,b1 by ANALMETR:def 11; then LIN x',a1',b1' by ANALMETR:55; then LIN a1',b1',x' by AFF_1:15; then A62:x' in M' by A4,A5,A20,AFF_1:39; LIN a1',a2',x' by A32,ANALMETR:55; then LIN x',a1', a2' by AFF_1:15; hence contradiction by A4,A5,A32,A62,AFF_1:39;end; M' // M' by A5,AFF_1:55; then a1',a3' // a1',b1' by A4,AFF_1:53; then a1,a3 // a1,b1 by ANALMETR:48; then x,y // a1,a3 by A20,A37,ANALMETR:82; then x,a3 // a1,a3 by A60,A61,ANALMETR:82; then a3,a1 // a3,x by ANALMETR:81; then LIN a3,a1,x by ANALMETR:def 11; then LIN a3',a1',x' by ANALMETR:55; then A63:x' in M' by A4,A5,A29,AFF_1:39; LIN a1',a2',x' by A32,ANALMETR:55; then LIN a1',x', a2' by AFF_1:15; hence contradiction by A4,A5,A32,A63,AFF_1:39;end; A64:not LIN x,y,a4 proof assume LIN x,y,a4; then A65:x,y // x,a4 by ANALMETR:def 11; A66:x<>y proof assume x=y; then x,a1 // x,b1 by A43,ANALMETR:81; then LIN x,a1,b1 by ANALMETR:def 11; then LIN x',a1',b1' by ANALMETR:55; then LIN a1',b1',x' by AFF_1:15; then A67:x' in M' by A4,A5,A20,AFF_1:39; LIN a1',a2',x' by A32,ANALMETR:55; then LIN x',a1', a2' by AFF_1:15; hence contradiction by A4,A5,A32,A67,AFF_1:39;end; M' // N' by A31,ANALMETR:64; then a1',b1' // a2',a4' by A4,AFF_1:53; then a1,b1 // a2,a4 by ANALMETR:48; then a2,a4 // x,y by A20,A37,ANALMETR:82 ; then a2,a4 // x,a4 by A65,A66,ANALMETR:82; then a4,a2 // a4,x by ANALMETR:81 ; then LIN a4,a2,x by ANALMETR:def 11 ; then LIN a4',a2',x' by ANALMETR:55; then A68:x' in N' by A4,A5,A29,AFF_1:39; LIN a1',a2',x' by A32,ANALMETR:55; then LIN a2',x' , a1' by AFF_1:15; hence contradiction by A4,A5,A32,A68,AFF_1:39;end; A69:x,y // a3,b3 proof M' // M' by A5,AFF_1:55; then a1',b1' // a3',b3' by A4,AFF_1:53; then a1,b1 // a3,b3 by ANALMETR:48; hence thesis by A20,A37,ANALMETR:82;end; x,y // a4,b4 proof M' // N' by A31,ANALMETR:64; then a1',b1' // a4',b4' by A4,AFF_1:53; then a1,b1 // a4,b4 by ANALMETR:48; hence thesis by A20,A37,ANALMETR:82;end; hence thesis by A2,A38,A46,A58,A59,A64,A69,Def8;end; now assume not M // N; then not M' // N' by ANALMETR:64; then consider o' being Element of the carrier of Af(X) such that A70: o' in M' & o' in N' by A5,AFF_1:72; reconsider o=o' as Element of X by ANALMETR:47; consider K such that A71: o in K & N _|_ K by A3,Th3; reconsider K'=K as Subset of Af(X) by ANALMETR:57; A72: K is_line by A71,ANALMETR:62; then A73: K' is_line & N' is_line by A3,ANALMETR:58; now assume A74: K<>M; A75: now let x' be Element of Af(X); consider D' being Subset of Af(X) such that A76: x' in D' & N' // D' by A5,AFF_1:63 ; reconsider D=D' as Subset of the carrier of X by ANALMETR:57; N // D by A76,ANALMETR:64; then K _|_ D by A71,ANALMETR:73; then consider y being Element of X such that A77: y in K & y in D by ANALMETR:88; reconsider y'=y as Element of Af(X) by ANALMETR:47; D' // N' by A76; then x',y' // N' by A76,A77,AFF_1:54; hence ex y' being Element of Af(X) st y' in K' & x',y' // N' by A77; end; then consider d1' be Element of Af(X) such that A78:d1' in K' & a1',d1' // N'; consider d3' be Element of Af(X) such that A79:d3' in K' & a3',d3' // N' by A75; consider e3' be Element of Af(X) such that A80:e3' in K' & b3',e3' // N' by A75; consider e1' be Element of Af(X) such that A81:e1' in K' & b1',e1' // N' by A75; reconsider d1=d1',d3=d3',e1=e1',e3=e3' as Element of X by ANALMETR:47; A82:o<>e1 & o<>e3 & o<>d1 & o<>d3 proof assume A83: not thesis; now let x,y be Element of X, x',y' be Element of the carrier of Af(X); assume that A84: x',y' // N' and A85: x=x' & y=y' and A86: x in M & y in K & not x in N; assume o=y; then o',x' // N' by A84,A85,AFF_1:48; hence contradiction by A5,A70,A85,A86,AFF_1:37; end; hence contradiction by A4,A78,A79,A80,A81,A83; end; A87:LIN o,a2,b2 & LIN o,a1,b1 & LIN o,a4,b4 & LIN o,a3,b3 by A3,A4,A70,Th4; A88:LIN o,d1,e1 & LIN o,d3,e3 by A71,A72,A78,A79,A80,A81,Th4; A89:not LIN a1,b1,d1 & not LIN a1,b1,a2 & not LIN a1,b1,a4 & not LIN a3,b3,d3 & not LIN a3,b3,a2 proof A90: now assume LIN a1,b1,d1; then LIN a1',b1',d1' by ANALMETR:55; then d1 in M by A4,A5,A20,AFF_1:39;hence contradiction by A3,A70,A71,A72,A74,A78,A82,Th5; end; A91:now assume LIN a1,b1,a2; then LIN a1',b1',a2' by ANALMETR:55; hence contradiction by A4,A5,A20,AFF_1:39; end; A92: now assume LIN a1,b1,a4; then LIN a1',b1',a4' by ANALMETR:55; hence contradiction by A4,A5,A20,AFF_1:39; end; A93: now assume LIN a3,b3,d3; then LIN a3',b3',d3' by ANALMETR:55; then d3 in M by A4,A5,A15,A20,AFF_1:39;hence contradiction by A3,A70,A71,A72,A74,A79,A82,Th5; end; now assume LIN a3,b3,a2; then LIN a3',b3',a2' by ANALMETR:55; hence contradiction by A4,A5,A15,A20,AFF_1:39; end; hence thesis by A90,A91,A92,A93; end; A94:d1,a1 // e1,b1 proof a1',d1' // b1',e1' by A5,A78,A81,AFF_1:45; then a1,d1 // b1,e1 by ANALMETR:48; hence thesis by ANALMETR:81; end; A95:d1,a1 // o,a2 proof a1,d1 // o,a2 by A4,A70,A78,Th6; hence thesis by ANALMETR:81; end; a1,a2 // b1,b2 by A4,ANALMETR:81; then d1,a2 // e1,b2 by A2,A4,A70,A82,A87,A88,A89,A94,A95,Def5; then A96:a2,d1 // b2,e1 by ANALMETR:81; d1,a1 // o,a4 proof a1,d1 // o,a4 by A4,A70,A78,Th6; hence thesis by ANALMETR:81; end; then A97:d1,a4 // e1,b4 by A2,A4,A70,A82,A87,A88,A89,A94,Def5; A98:d3,a3 // e3,b3 proof a3',d3' // b3',e3' by A5,A79,A80,AFF_1:45; then a3,d3 // b3,e3 by ANALMETR:48; hence thesis by ANALMETR:81; end; d3,a3 // o,a2 proof a3,d3 // o,a2 by A4,A70,A79,Th6; hence thesis by ANALMETR:81; end; then A99:d3,a2 // e3,b2 by A2,A4,A70,A82,A87,A88,A89,A98,Def5; A100:not d1 in N & not d3 in N & not e1 in N & not e3 in N by A4,A78,A79,A80,A81,AFF_1:49; not a2 in K & not a4 in K & not b2 in K & not b4 in K proof A101: now let x be Element of X; assume A102: x in N & o<>x; assume x in K; then o,x _|_ o,x by A70,A71,A102,ANALMETR:78; hence contradiction by A102,ANALMETR:51; end; assume not thesis; hence contradiction by A4,A70,A101; end; then A103:d3,a4 // e3,b4 by A1,A4,A71,A78,A79,A80,A81,A96,A97,A99,A100,Def7; A104:not LIN d3,e3,a3 & not LIN d3,e3,a4 proof A105: d3<>e3 proof assume not thesis; then LIN e3,a3,b3 by A98,ANALMETR:def 11; then LIN e3',a3',b3' by ANALMETR:55; then LIN a3',b3',e3' by AFF_1:15; then e3' in M' by A4,A5,A15,A20,AFF_1:39; hence contradiction by A5,A70,A71,A73,A74,A80,A82,AFF_1:30; end; assume not thesis; then LIN d3',e3',a3' or LIN d3',e3',a4' by ANALMETR:55; then a3' in K' or a4' in K' by A73,A79,A80,A105,AFF_1:39; then K'=N' by A4,A5,A70,A71,A73,A74,AFF_1:30 ; hence contradiction by A71,ANALMETR:72; end; A106:a3,d3 // b3,e3 by A98,ANALMETR:81; a3,d3 // o,a4 by A4,A70,A79,Th6; hence thesis by A2,A4,A70,A82,A87,A88,A103,A104,A106,Def5;end; hence thesis by A1,A4,A71,Def7;end; hence thesis by A30; end; hence thesis by A21,A25;end; hence thesis by A14; end; theorem OPAP_holds_in X & DES_holds_in X implies PAP_holds_in X proof assume that A1:OPAP_holds_in X and A2:DES_holds_in X; let o,a1,a2,a3,b1,b2,b3,M,N; assume that A3:M is_line & N is_line and A4:o in M & a1 in M & a2 in M & a3 in M & o in N & b1 in N & b2 in N & b3 in N & not b2 in M & not a3 in N & o<>a1 & o<>a2 & o<>a3 & o<>b1 & o<>b2 & o<>b3 & a3,b2 // a2,b1 & a3,b3 // a1,b1; reconsider o'=o,a1'=a1,a2'=a2,a3'=a3,b1'=b1,b2'=b2,b3'=b3 as Element of Af(X) by ANALMETR:47; reconsider M'=M,N'=N as Subset of Af(X) by ANALMETR:57; A5:M' is_line & N' is_line by A3,ANALMETR:58; then A6:M' // M' & N' // N' by AFF_1:55; now assume A7:not M _|_ N; A8:now assume A9:a1=a2; A10:not LIN o',a3',b2' by A4,A5,AFF_1:39; A11:LIN o',b2',b3' proof o',b2' // o',b3' by A4,A6,AFF_1:53; hence thesis by AFF_1:def 1;end; a3',b2' // a3',b3' proof a1<>b1 proof assume A12: a1=b1; o',a1' // o',a3' by A4,A6,AFF_1:53; then LIN o',a1',a3' by AFF_1:def 1 ;hence contradiction by A4,A5,A12,AFF_1:39;end; then a3,b2 // a3,b3 by A4,A9,ANALMETR:82; hence thesis by ANALMETR:48;end; then b2'=b3' by A10,A11,AFF_1:23; then a1',b2' // a2',b3' by A9,AFF_1:11; hence thesis by ANALMETR:48;end; A13:now assume A14:a2=a3; A15:not LIN o',a3',b2' by A4,A5,AFF_1:39; A16:LIN o',b2',b1' proof o',b2' // o',b1' by A4,A6,AFF_1:53; hence thesis by AFF_1:def 1;end; a3',b2' // a3',b1' by A4,A14,ANALMETR:48; then b2'=b1' by A15,A16,AFF_1:23; hence thesis by A4,A14,ANALMETR:81;end; A17:now assume A18:a1=a3; A19:not LIN o',a3',b3' proof assume LIN o',a3',b3'; then LIN o',b3',a3' by AFF_1:15; hence contradiction by A4,A5,AFF_1:39;end; A20:LIN o',b3',b1' proof o',b3' // o',b1' by A4,A6,AFF_1:53; hence thesis by AFF_1:def 1;end; a3',b3' // a3',b1' by A4,A18,ANALMETR:48; hence thesis by A4,A18,A19,A20,AFF_1:23;end; now assume A21:a1<>a2 & a2<>a3 & a1<>a3; A22:b1<>b2 & b2<>b3 & b1<>b3 proof assume A23:b1=b2 or b2=b3 or b1=b3; A24:now assume A25:b1=b2; A26:not LIN o',b2',a2' proof assume LIN o',b2',a2'; then LIN o',a2',b2' by AFF_1:15; hence contradiction by A4,A5,AFF_1:39;end; A27:LIN o',a2',a3' proof o',a2' // o',a3' by A4,A6,AFF_1:53; hence thesis by AFF_1:def 1;end; b2',a2' // b2',a3' proof b2,a2 // b2,a3 by A4,A25,ANALMETR:81; hence thesis by ANALMETR:48;end; hence contradiction by A21,A26,A27,AFF_1:23;end; A28:now assume A29:b2=b3; A30:not LIN o',b1',a1' proof assume LIN o',b1',a1'; then A31:a1' in N' by A4,A5,AFF_1:39; o',a1' // o',a3' by A4,A6,AFF_1:53; then LIN o',a1',a3' by AFF_1:def 1; hence contradiction by A4,A5,A31,AFF_1:39;end; A32:LIN o',a1',a2' proof o',a1' // o',a2' by A4,A6,AFF_1:53; hence thesis by AFF_1:def 1;end; b1',a1' // b1',a2' proof a1,b1 // a2,b1 by A4,A29,ANALMETR:82; then b1,a1 // b1,a2 by ANALMETR:81 ;hence thesis by ANALMETR:48;end; hence contradiction by A21,A30,A32,AFF_1:23;end; now assume A33:b1=b3; A34:not LIN o',b1',a1' proof assume LIN o',b1',a1'; then A35:a1' in N' by A4,A5,AFF_1:39; o',a1' // o',a3' by A4,A6,AFF_1:53; then LIN o',a1',a3' by AFF_1:def 1; hence contradiction by A4,A5,A35,AFF_1:39;end; A36:LIN o',a1',a3' proof o',a1' // o',a3' by A4,A6,AFF_1:53; hence thesis by AFF_1:def 1;end; b1',a1' // b1',a3' proof b1,a1 // b1,a3 by A4,A33,ANALMETR:81; hence thesis by ANALMETR:48;end; hence contradiction by A21,A34,A36,AFF_1:23;end; hence contradiction by A23,A24,A28;end; A37:now assume A38:a3,b3 _|_ o,b2; consider x be Element of X such that A39:o,b2 _|_ o,x & o<>x by ANALMETR:51; reconsider x'=x as Element of Af(X) by ANALMETR:47; LIN o',x',x' by AFF_1:16; then consider A' be Subset of Af(X) such that A40:A' is_line & o' in A' & x' in A' & x' in A' by AFF_1:33; reconsider A=A' as Subset of X by ANALMETR:57; A41:A _|_ N proof A42:A=Line(o,x) proof A43:for e1 holds e1 in A implies LIN o,x,e1 proof let e1 such that A44:e1 in A; reconsider e1'=e1 as Element of Af(X) by ANALMETR:47; A' // A' by A40,AFF_1:55; then o',x' // o',e1' by A40,A44,AFF_1:53; then LIN o',x',e1' by AFF_1:def 1;hence thesis by ANALMETR:55;end; for e1 holds LIN o,x,e1 implies e1 in A proof let e1 such that A45:LIN o,x,e1; reconsider e1'=e1 as Element of Af(X) by ANALMETR:47; LIN o',x',e1' by A45,ANALMETR:55; hence thesis by A39,A40,AFF_1:39;end; hence thesis by A43,ANALMETR:def 12;end; o,x _|_ N by A3,A4,A39,ANALMETR:77; hence thesis by A39,A42,ANALMETR:def 15;end; consider e1' be Element of Af(X) such that A46:a3',b2' // b3',e1' & b3'<> e1' by DIRAF:47; not b3',e1' // A' proof assume A47:b3',e1' // A'; consider d1',d2' be Element of Af(X) such that A48:d1'<>d2' & A'=Line(d1',d2') by A40,AFF_1:def 3; A49:d1' in A' & d2' in A' by A48,AFF_1:26; d1',d2' // d1',d2' by AFF_1:11; then d1',d2' // A' by A48,AFF_1:def 4; then A50:b3',e1' // d1',d2' by A40,A47,AFF_1:45; reconsider d1=d1',d2=d2' as Element of X by ANALMETR:47; a3',b2' // d1',d2' by A46,A50,AFF_1:14; then A51:a3,b2 // d1,d2 by ANALMETR:48; d1,d2 _|_ o,b2 by A4,A41,A49,ANALMETR:78; then a3,b2 _|_ o,b2 by A48,A51,ANALMETR:84; then a3,b2 // a3,b3 by A4,A38,ANALMETR:85; then LIN a3,b2,b3 by ANALMETR:def 11; then LIN a3',b2',b3' by ANALMETR:55 ; then LIN b2',b3',a3' by AFF_1:15; hence contradiction by A4,A5,A22,AFF_1:39;end; then consider c3' be Element of Af(X) such that A52:c3' in A' & LIN b3',e1',c3' by A40,AFF_1:73; reconsider c3=c3' as Element of X by ANALMETR:47; A53: b3',e1' // b3',c3' by A52,AFF_1:def 1 ; then A54: a3',b2' // b3',c3' by A46,AFF_1:14; consider e1' be Element of Af(X) such that A55:c3',a3' // a2',e1' & a2'<> e1' by DIRAF:47; not a2',e1' // A' proof assume A56:a2',e1' // A'; A' // A' by A40,AFF_1:55; then o',c3' // A' by A40,A52,AFF_1:54; then a2',e1' // o',c3' by A40,A56,AFF_1:45; then c3',a3' // o',c3' by A55,AFF_1:14; then c3',o' // c3',a3' by AFF_1: 13; then A57:LIN c3',o',a3' by AFF_1:def 1; c3'<>o' proof assume c3'=o'; then A58:a3',b2' // b3',o' by A46,A53,AFF_1:14; b3',o' // b3',b2' by A4,A6,AFF_1:53; then a3',b2' // b3',b2' by A4,A58 ,AFF_1:14; then b2',b3' // b2',a3' by AFF_1:13; then LIN b2',b3',a3' by AFF_1:def 1; hence contradiction by A4,A5,A22,AFF_1:39;end; then A59:a3' in A' by A40,A52,A57,AFF_1:39; o',a3' // o',a3' by AFF_1:11; then A' // M' by A4,A5,A40,A59,AFF_1:52; then A // M by ANALMETR:64; hence contradiction by A7,A41,ANALMETR:73;end; then consider c2' be Element of Af(X) such that A60:c2' in A' & LIN a2',e1',c2' by A40,AFF_1:73; reconsider c2=c2' as Element of X by ANALMETR:47; a2',e1' // a2',c2' by A60,AFF_1:def 1; then c3',a3' // a2',c2' by A55,AFF_1:14; then A61: c2 in A & c3,a3 // a2,c2 by A60,ANALMETR:48; then A62:c2 in A & a3,c3 // a2,c2 by ANALMETR:81; consider e1' be Element of Af(X) such that A63:c3',a3' // a1',e1' & a1'<> e1' by DIRAF:47; not a1',e1' // A' proof assume A64:a1',e1' // A'; A' // A' by A40,AFF_1:55; then o',c3' // A' by A40,A52,AFF_1:54; then a1',e1' // o',c3' by A40,A64,AFF_1:45; then c3',a3' // o',c3' by A63,AFF_1:14; then c3',o' // c3',a3' by AFF_1: 13; then A65:LIN c3',o',a3' by AFF_1:def 1; c3'<>o' proof assume c3'=o'; then A66:a3',b2' // b3',o' by A46,A53,AFF_1:14; b3',o' // b3',b2' by A4,A6,AFF_1:53; then a3',b2' // b3',b2' by A4,A66 ,AFF_1:14; then b2',b3' // b2',a3' by AFF_1:13; then LIN b2',b3',a3' by AFF_1:def 1; hence contradiction by A4,A5,A22,AFF_1:39;end; then A67:a3' in A' by A40,A52,A65,AFF_1:39; o',a3' // o',a3' by AFF_1:11; then A' // M' by A4,A5,A40,A67,AFF_1:52; then A // M by ANALMETR:64; hence contradiction by A7,A41,ANALMETR:73;end; then consider c1' be Element of Af(X) such that A68:c1' in A' & LIN a1',e1',c1' by A40,AFF_1:73; reconsider c1=c1' as Element of X by ANALMETR:47; a1',e1' // a1',c1' by A68,AFF_1:def 1; then c3',a3' // a1',c1' by A63,AFF_1:14; then A69: c1 in A & c3,a3 // a1,c1 by A68,ANALMETR:48; then A70:c1 in A & a3,c3 // a1,c1 by ANALMETR:81; A71:o<>c3 & o<>c2 & o<>c1 proof assume A72:o=c3 or o=c2 or o=c1; A73:now assume o=c3; then A74:a3,b2 // b3,o by A54,ANALMETR:48; b3',o' // b2',b3' by A4,A6,AFF_1:53; then b3,o // b2,b3 by ANALMETR: 48 ; then a3,b2 // b2,b3 by A4,A74,ANALMETR:82; then b2,b3 // b2,a3 by ANALMETR:81; then LIN b2,b3,a3 by ANALMETR:def 11; then LIN b2',b3',a3' by ANALMETR:55; hence contradiction by A4,A5,A22,AFF_1:39;end; now assume o=c2 or o=c1; then A75:a3,c3 // a2,o or a3,c3 // a1,o by A61 ,A69,ANALMETR:81; a2',o' // a2',a3' & a1',o' // a2',a3' by A4,A6,AFF_1:53; then a2,o // a2,a3 & a1,o // a2,a3 by ANALMETR:48; then a3,c3 // a2, a3 by A4,A75,ANALMETR:82; then a3,a2 // a3,c3 by ANALMETR:81; then LIN a3,a2,c3 by ANALMETR:def 11 ; then LIN a3',a2',c3' by ANALMETR:55; then A76:c3' in M' by A4,A5,A21,AFF_1:39 ; o',c3' // o',c3' by AFF_1:11; then A' // M' by A4,A5,A40,A52,A73,A76,AFF_1:52 ; then A // M by ANALMETR:64; hence contradiction by A7,A41,ANALMETR:73;end; hence contradiction by A72,A73;end; A77:not LIN b3,b1,a3 & not LIN b2,b1,a3 proof assume LIN b3,b1,a3 or LIN b2,b1,a3; then LIN b3',b1',a3' or LIN b2',b1',a3' by ANALMETR:55; hence contradiction by A4,A5,A22,AFF_1:39;end; A78:not LIN a3,a1,c3 & not LIN a3,a2,c3 proof assume LIN a3,a1,c3 or LIN a3,a2,c3; then LIN a3',a1',c3' or LIN a3',a2',c3' by ANALMETR:55; then A79:c3' in M' or c3' in M' by A4,A5,A21,AFF_1:39; o',c3' // o',c3' by AFF_1:11; then A' // M' by A4,A5,A40,A52,A71,A79, AFF_1:52; then A // M by ANALMETR:64; hence contradiction by A7,A41,ANALMETR:73;end; A80:LIN o,a3,a1 & LIN o,b3,b1 & LIN o,a3,a2 & LIN o,b2,b1 & LIN o,a1,a2 & LIN o,b2,b3 proof o',a3' // o',a1' & o',b3' // o',b1' & o',a3' // o',a2' & o',b2' // o',b1' & o',a1' // o',a2' & o',b2' // o',b3' by A4,A6,AFF_1:53; then LIN o',a3',a1' & LIN o',b3',b1' & LIN o',a3',a2' & LIN o',b2',b1' & LIN o',a1',a2' & LIN o',b2',b3' by AFF_1:def 1; hence thesis by ANALMETR:55;end; A81:LIN o,c3,c1 & LIN o,c3,c2 & LIN o,c1,c2 proof A' // A' by A40,AFF_1:55; then o',c3' // o',c1' & o',c3' // o',c2' & o',c1' // o',c2' by A40,A52,A60,A68,AFF_1:53; then LIN o',c3',c1' & LIN o',c3',c2' & LIN o',c1',c2' by AFF_1:def 1; hence thesis by ANALMETR:55;end; then b3,c3 // b1,c1 by A2,A4,A70,A71,A77,A78,A80,CONAFFM:def 1; then A82:c3,b3 // c1,b1 by ANALMETR:81; b2,c3 // b1,c2 by A2,A4,A62,A71,A77,A78,A80,A81,CONAFFM:def 1; then A83:c3,b2 // c2,b1 by ANALMETR:81; A84:not b2 in A proof assume A85:b2 in A; o',b2' // o',b2' by AFF_1:11; then A' // N' by A4,A5,A40,A85,AFF_1:52; then A // N by ANALMETR:64; hence contradiction by A41,ANALMETR:74;end; not c3 in N proof assume A86:c3 in N; o',c3' // o',c3' by AFF_1:11; then A' // N' by A4,A5,A40,A52,A71,A86,AFF_1:52; then A // N by ANALMETR: 64; hence contradiction by A41,ANALMETR:74;end; then A87:c1,b2 // c2,b3 by A1,A4,A40,A41,A52,A60,A68,A71,A82,A83,A84,Def1; A88:not LIN a1,a2,c1 proof assume LIN a1,a2,c1; then LIN a1',a2',c1' by ANALMETR:55; then A89:c1' in M' by A4,A5,A21,AFF_1:39; o',c1' // o',c1' by AFF_1:11; then A' // M' by A4,A5,A40,A68,A71,A89, AFF_1:52; then A // M by ANALMETR:64; hence contradiction by A7,A41,ANALMETR:73;end; A90:not LIN c1,c2,b2 proof assume LIN c1,c2,b2; then A91:LIN c1',c2',b2' by ANALMETR:55; c1'<>c2' proof assume A92:c1'=c2'; a3<>c3 proof assume A93: a3=c3; o',c3' // o',c3' by AFF_1:11; then A' // M' by A4,A5,A40,A52,A93,AFF_1: 52; then A // M by ANALMETR:64; hence contradiction by A7,A41,ANALMETR:73;end; then a2,c1 // a1,c1 by A62,A70,A92,ANALMETR:82 ; then c1,a1 // c1,a2 by ANALMETR:81; then LIN c1,a1,a2 by ANALMETR:def 11; then LIN c1',a1',a2' by ANALMETR:55; then LIN a1',a2',c1' by AFF_1:15; then A94:c1' in M' by A4,A5,A21,AFF_1: 39; o',c1' // o',c1' by AFF_1:11; then A' // M' by A4,A5,A40,A68,A71,A94, AFF_1:52; then A // M by ANALMETR:64; hence contradiction by A7,A41,ANALMETR:73;end; hence contradiction by A40,A60,A68,A84,A91,AFF_1:39;end; c1,a1 // c2,a2 proof a3<>c3 proof assume A95: a3=c3; o',a3' // o',a3' by AFF_1:11; then A' // M' by A4,A5,A40,A52,A95,AFF_1:52; then A // M by ANALMETR:64;hence contradiction by A7,A41,ANALMETR:73;end; then a2,c2 // a1,c1 by A62,A70,ANALMETR:82; hence thesis by ANALMETR:81;end; hence thesis by A2,A4,A71,A80,A81,A87,A88,A90,CONAFFM:def 1;end; now assume A96:not a3,b3 _|_ o,b2; consider x be Element of X such that A97:o,b2 _|_ o,x & o<>x by ANALMETR:51; reconsider x'=x as Element of Af(X) by ANALMETR:47; LIN o',x',x' by AFF_1:16; then consider A' be Subset of Af(X) such that A98:A' is_line & o' in A' & x' in A' & x' in A' by AFF_1:33; reconsider A=A' as Subset of X by ANALMETR:57; A99:A' // A' by A98,AFF_1:55; A100:A _|_ N proof A101:A=Line(o,x) proof A102:for e1 holds e1 in A implies LIN o,x,e1 proof let e1 such that A103:e1 in A; reconsider e1'=e1 as Element of Af(X) by ANALMETR:47; A' // A' by A98,AFF_1:55; then o',x' // o',e1' by A98,A103,AFF_1:53; then LIN o',x',e1' by AFF_1:def 1;hence thesis by ANALMETR:55;end; for e1 holds LIN o,x,e1 implies e1 in A proof let e1 such that A104:LIN o,x,e1; reconsider e1'=e1 as Element of Af(X) by ANALMETR:47; LIN o',x',e1' by A104,ANALMETR:55; hence thesis by A97,A98,AFF_1:39;end; hence thesis by A102,ANALMETR:def 12;end; o,x _|_ N by A3,A4,A97,ANALMETR:77; hence thesis by A97,A101,ANALMETR:def 15;end; consider e1' be Element of Af(X) such that A105:a3',b3' // b2',e1' & b2'<> e1' by DIRAF:47; not b2',e1' // A' proof assume A106:b2',e1' // A'; consider d1',d2' be Element of Af(X) such that A107:d1'<>d2' & A'=Line(d1',d2') by A98,AFF_1:def 3; A108:d1' in A' & d2' in A' by A107,AFF_1:26; d1',d2' // d1',d2' by AFF_1:11; then d1',d2' // A' by A107,AFF_1:def 4; then A109:b2',e1' // d1',d2' by A98,A106,AFF_1:45; reconsider d1=d1',d2=d2' as Element of X by ANALMETR:47; a3',b3' // d1',d2' by A105,A109,AFF_1:14; then A110:a3,b3 // d1,d2 by ANALMETR:48; d1,d2 _|_ o,b2 by A4,A100,A108,ANALMETR:78; hence contradiction by A96,A107,A110,ANALMETR:84;end; then consider c3' be Element of Af(X) such that A111:c3' in A' & LIN b2',e1',c3' by A98,AFF_1:73; reconsider c3=c3' as Element of X by ANALMETR:47; b2',e1' // b2',c3' by A111,AFF_1:def 1; then A112: a3',b3' // b2',c3' by A105,AFF_1:14; consider e1' be Element of Af(X) such that A113:c3',a3' // a1',e1' & a1'<> e1' by DIRAF:47; not a1',e1' // A' proof assume A114:a1',e1' // A'; A' // A' by A98,AFF_1:55; then o',c3' // A' by A98,A111,AFF_1:54; then a1',e1' // o',c3' by A98,A114,AFF_1:45; then c3',a3' // o',c3' by A113,AFF_1:14; then c3',o' // c3',a3' by AFF_1: 13; then A115:LIN c3',o',a3' by AFF_1:def 1; c3'<>o' proof assume c3'=o'; then A116:a3,b3 // b2,o by A112,ANALMETR: 48 ; b2',o' // b2',b3' by A4,A6,AFF_1:53; then b2,o // b2,b3 by ANALMETR:48 ; then a3,b3 // b2,b3 by A4,A116,ANALMETR:82; then b3,b2 // b3,a3 by ANALMETR:81; then LIN b3,b2,a3 by ANALMETR:def 11; then LIN b3',b2',a3' by ANALMETR:55; hence contradiction by A4,A5,A22,AFF_1:39;end; then A117:a3' in A' by A98,A111,A115,AFF_1:39; o',a3' // o',a3' by AFF_1:11; then A' // M' by A4,A5,A98,A117,AFF_1:52; then A // M by ANALMETR:64; hence contradiction by A7,A100,ANALMETR:73;end; then consider c1' be Element of Af(X) such that A118:c1' in A' & LIN a1',e1',c1' by A98,AFF_1:73; reconsider c1=c1' as Element of X by ANALMETR:47; a1',e1' // a1',c1' by A118,AFF_1:def 1; then A119: c3',a3' // a1',c1' by A113,AFF_1:14; then A120:c1 in A & c3,a3 // a1,c1 by A118,ANALMETR:48; consider e1' be Element of Af(X) such that A121:c3',a3' // a2',e1' & a2'<> e1' by DIRAF:47; not a2',e1' // A' proof assume A122:a2',e1' // A'; A' // A' by A98,AFF_1:55; then o',c3' // A' by A98,A111,AFF_1:54; then a2',e1' // o',c3' by A98,A122,AFF_1:45; then c3',a3' // o',c3' by A121,AFF_1:14; then c3',o' // c3',a3' by AFF_1: 13; then A123:LIN c3',o',a3' by AFF_1:def 1; c3'<>o' proof assume c3'=o'; then A124:a3,b3 // b2,o by A112,ANALMETR: 48 ; b2',o' // b2',b3' by A4,A6,AFF_1:53; then b2,o // b2,b3 by ANALMETR:48 ; then a3,b3 // b2,b3 by A4,A124,ANALMETR:82; then b3,b2 // b3,a3 by ANALMETR:81; then LIN b3,b2,a3 by ANALMETR:def 11; then LIN b3',b2',a3' by ANALMETR:55; hence contradiction by A4,A5,A22,AFF_1:39;end; then A125:a3' in A' by A98,A111,A123,AFF_1:39; o',a3' // o',a3' by AFF_1:11; then A' // M' by A4,A5,A98,A125,AFF_1:52; then A // M by ANALMETR:64; hence contradiction by A7,A100,ANALMETR:73;end; then consider c2' be Element of Af(X) such that A126:c2' in A' & LIN a2',e1',c2' by A98,AFF_1:73; reconsider c2=c2' as Element of X by ANALMETR:47; a2',e1' // a2',c2' by A126,AFF_1:def 1; then A127: c3',a3' // a2',c2' by A121,AFF_1:14; then A128:c2 in A & c3,a3 // a2,c2 by A126,ANALMETR:48; A129:o<>c3 & o<>c2 & o<>c1 proof assume A130:o=c3 or o=c2 or o=c1; A131:now assume A132: o=c3; b2',o' // b3',b2' by A4,A6,AFF_1:53; then a3',b3' // b3',b2' by A4, A112,A132,AFF_1:14; then b3',b2' // b3',a3' by AFF_1:13; then LIN b3',b2',a3' by AFF_1:def 1; hence contradiction by A4,A5,A22,AFF_1:39;end; now assume o=c2 or o=c1; then A133:c3,a3 // a1,o or c3,a3 // a2,o by A119,A127,ANALMETR:48; a1,o // a1,a3 & a2,o // a1,a3 proof a1',o' // a1',a3' & a2',o' // a1',a3' by A4,A6,AFF_1:53; hence thesis by ANALMETR:48;end; then c3,a3 // a1,a3 by A4,A133,ANALMETR:82; then a3,a1 // a3,c3 by ANALMETR:81; then LIN a3,a1,c3 by ANALMETR:def 11 ; then LIN a3',a1',c3' by ANALMETR:55; then A134:c3' in M' by A4,A5,A21,AFF_1:39; o',c3' // o',c3' by AFF_1:11; then A' // M' by A4,A5,A98,A111,A131, A134,AFF_1:52; then A // M by ANALMETR:64; hence contradiction by A7,A100,ANALMETR:73;end; hence contradiction by A130,A131;end; A135:not LIN a3,a1,c3 proof assume LIN a3,a1,c3; then LIN a3',a1',c3' by ANALMETR:55; then A136:c3' in M' by A4,A5,A21,AFF_1:39; o',c3' // o',c3' by AFF_1:11; then A' // M' by A4,A5,A98,A111,A129,A136,AFF_1:52; then A // M by ANALMETR:64; hence contradiction by A7,A100,ANALMETR:73;end; A137:not LIN b3,b1,a3 proof assume LIN b3,b1,a3; then LIN b3',b1',a3' by ANALMETR:55; hence contradiction by A4,A5,A22,AFF_1:39;end; A138:LIN o,a3,a1 & LIN o,b3,b1 & LIN o,a3,a2 & LIN o,b2,b1 & LIN o,a1,a2 & LIN o,b2,b3 proof o',a3' // o',a1' & o',b3' // o',b1' & o',a3' // o',a2' & o',b2' // o',b1' & o',a1' // o',a2' & o',b2' // o',b3' by A4,A6,AFF_1:53; then LIN o',a3',a1' & LIN o',b3',b1' & LIN o',a3',a2' & LIN o',b2',b1' & LIN o',a1',a2' & LIN o',b2',b3' by AFF_1:def 1; hence thesis by ANALMETR:55;end; A139:LIN o,c3,c1 & LIN o,c3,c2 & LIN o,c1,c2 proof o',c3' // o',c1' & o',c3' // o',c2' & o',c1' // o',c2' by A98,A99, A111,A118,A126,AFF_1:53; then LIN o',c3',c1' & LIN o',c3',c2' & LIN o',c1',c2' by AFF_1:def 1; hence thesis by ANALMETR:55;end; a3,c3 // a1,c1 by A120,ANALMETR:81; then b3,c3 // b1,c1 by A2,A4,A129,A135,A137,A138,A139,CONAFFM:def 1; then A140:c3,b3 // c1,b1 by ANALMETR:81; A141:not LIN b2,b1,a3 proof assume LIN b2,b1,a3; then LIN b2',b1',a3' by ANALMETR:55; hence contradiction by A4,A5,A22,AFF_1:39;end; A142:not LIN a3,a2,c3 proof assume LIN a3,a2,c3; then LIN a3',a2',c3' by ANALMETR:55; then A143:c3' in M' by A4,A5,A21,AFF_1:39; o',c3' // o',c3' by AFF_1:11; then A' // M' by A4,A5,A98,A111,A129,A143,AFF_1:52; then A // M by ANALMETR:64; hence contradiction by A7,A100,ANALMETR:73;end; a3,c3 // a2,c2 by A128,ANALMETR:81; then b2,c3 // b1,c2 by A2,A4,A129,A138,A139,A141,A142,CONAFFM:def 1; then A144:c3,b2 // c2,b1 by ANALMETR:81; A145:not b2 in A proof assume A146:b2 in A; o',b2' // o',b2' by AFF_1:11; then A' // N' by A4,A5,A98,A146,AFF_1:52; then A // N by ANALMETR:64; hence contradiction by A100,ANALMETR:74;end; not c3 in N proof assume A147:c3 in N; o',c3' // o',c3' by AFF_1:11; then A' // N' by A4,A5,A98,A111,A129,A147,AFF_1:52; then A // N by ANALMETR:64; hence contradiction by A100,ANALMETR:74;end; then A148:c1,b2 // c2,b3 by A1,A4,A98,A100,A111,A118,A126,A129,A140,A144, A145,Def1; A149:not LIN a1,a2,c1 proof assume LIN a1,a2,c1; then LIN a1',a2',c1' by ANALMETR:55; then A150:c1' in M' by A4,A5,A21,AFF_1:39; o',c1' // o',c1' by AFF_1:11; then M' // A' by A4,A5,A98,A118,A129,A150,AFF_1:52; then M // A by ANALMETR:64; hence contradiction by A7,A100,ANALMETR:73;end; A151:not LIN c1,c2,b2 proof assume LIN c1,c2,b2; then A152:LIN c1',c2',b2' by ANALMETR:55; c1'<>c2' proof assume A153:c1'=c2'; c3<>a3 proof assume A154: c3=a3; o',c3' // o',c3' by AFF_1:11; then A' // M' by A4,A5,A98,A111,A154,AFF_1:52; then A // M by ANALMETR:64; hence contradiction by A7,A100,ANALMETR:73;end; then a1,c1 // a2,c1 by A120,A128,A153,ANALMETR:82; then c1,a2 // c1,a1 by ANALMETR:81; then LIN c1,a2,a1 by ANALMETR:def 11; then LIN c1',a2',a1' by ANALMETR:55; then LIN a1',a2',c1' by AFF_1:15; then A155:c1' in M' by A4,A5, A21,AFF_1:39; o',c1' // o',c1' by AFF_1:11; then A' // M' by A4,A5,A98,A118, A129,A155,AFF_1:52; then A // M by ANALMETR:64; hence contradiction by A7,A100,ANALMETR:73;end; then b2' in A' by A98,A118,A126,A152,AFF_1:39; then A'=N' by A4,A5,A98,AFF_1:30; then A' // N' by A5,AFF_1:55; then A // N by ANALMETR:64; hence contradiction by A100,ANALMETR:74;end; c1,a1 // c2,a2 proof c3<>a3 proof assume A156: c3=a3; o',a3' // o',a3' by AFF_1:11; then A' // M' by A4,A5,A98,A111,A156,AFF_1:52; then A // M by ANALMETR:64; hence contradiction by A7,A100,ANALMETR:73;end; then a1,c1 // a2,c2 by A120,A128,ANALMETR:82; hence thesis by ANALMETR:81;end; hence thesis by A2,A4,A129,A138,A139,A148,A149,A151,CONAFFM:def 1;end; hence thesis by A37;end; hence thesis by A8,A13,A17;end; hence thesis by A1,A4,Def1;end; theorem MH1_holds_in X & MH2_holds_in X implies OPAP_holds_in X proof assume A1: MH1_holds_in X; assume A2: MH2_holds_in X; let o,a1,a2,a3,b1,b2,b3,M,N; assume A3:o in M & a1 in M & a2 in M & a3 in M & o in N & b1 in N & b2 in N & b3 in N & not b2 in M & not a3 in N & M _|_ N & o<>a1 & o<>a2 & o<>a3 & o<>b1 & o<>b2 & o<>b3 & a3,b2 // a2,b1 & a3,b3 // a1,b1; reconsider o'=o,a1'=a1,a2'=a2,a3'=a3,b1'=b1,b2'=b2,b3'=b3 as Element of Af(X) by ANALMETR:47; reconsider M'=M,N'=N as Subset of Af(X) by ANALMETR:57; M is_line & N is_line by A3,ANALMETR:62; then A4:M' is_line & N' is_line by ANALMETR:58; then A5:M' // M' & N' // N' by AFF_1:55; A6:now assume A7:a1=a2 or a2=a3 or a1=a3; A8:now assume A9:a1=a2; A10:not LIN o',a3',b2' by A3,A4,AFF_1:39; o',b2' // o',b3' by A3,A5,AFF_1:53; then A11:LIN o',b2',b3' by AFF_1:def 1; a3',b2' // a3',b3' proof a1<>b1 proof assume A12: a1=b1; o',a1' // o',a3' by A3,A5,AFF_1:53; then LIN o',a1',a3' by AFF_1:def 1; hence contradiction by A3,A4,A12,AFF_1:39;end; then a3,b2 // a3,b3 by A3,A9,ANALMETR:82; hence thesis by ANALMETR:48;end; then b2'=b3' by A10,A11,AFF_1:23; then a1',b2' // a2',b3' by A9,AFF_1:11; hence thesis by ANALMETR:48;end; A13:now assume A14:a2=a3; A15:not LIN o',a3',b1' proof assume LIN o',a3',b1'; then LIN o',b1',a3' by AFF_1:15; hence contradiction by A3,A4,AFF_1:39;end; o',b1' // o',b2' by A3,A5,AFF_1:53; then A16:LIN o',b1',b2' by AFF_1:def 1; a3,b1 // a3,b2 by A3,A14,ANALMETR:81; then a3',b1' // a3',b2' by ANALMETR:48; then a2,b3 // a1,b2 by A3,A14,A15,A16,AFF_1:23; hence thesis by ANALMETR:81;end; now assume A17:a1=a3; A18:not LIN o',a3',b1' proof assume LIN o',a3',b1'; then LIN o',b1',a3' by AFF_1:15; hence contradiction by A3,A4,AFF_1:39;end; o',b1' // o',b3' by A3,A5,AFF_1:53; then A19:LIN o',b1',b3' by AFF_1:def 1; a3,b1 // a3,b3 by A3,A17,ANALMETR:81; then a3',b1' // a3',b3' by ANALMETR:48; hence thesis by A3,A17,A18,A19,AFF_1:23;end; hence thesis by A7,A8,A13;end; now assume A20:a1<>a2 & a2<>a3 & a1<>a3; A21:b2<>b3 proof assume A22:b2=b3; A23:not LIN o',b1',a2' proof assume LIN o',b1',a2'; then A24:a2' in N' by A3,A4,AFF_1:39; o',a2' // o',a3' by A3,A5,AFF_1:53; then LIN o',a2',a3' by AFF_1:def 1; hence contradiction by A3,A4,A24,AFF_1:39;end; o',a2' // o',a1' by A3,A5,AFF_1:53; then A25:LIN o',a2',a1' by AFF_1:def 1; b1',a2' // b1',a1' proof a1,b1 // a2,b1 by A3,A22,ANALMETR:82; then b1,a2 // b1,a1 by ANALMETR:81; hence thesis by ANALMETR:48;end; hence contradiction by A20,A23,A25,AFF_1:23;end; A26: LIN o,a3,a1 & LIN a3,a1,a2 & LIN o,b2,b3 & LIN b2,b3,b1 & o<>a1 & o<>a2 & o<>a3 & o<>b1 & o<>b2 & o<>b3 & not LIN a3,a1,b2 & not LIN b2,a3,b3 & o,a3 _|_ o,b3 & a3,b2 // a2,b1 & a3,b3 // a1,b1 proof M is_line & N is_line by A3,ANALMETR:62; then A27:M' is_line & N' is_line by ANALMETR:58; then M' // M' & N' // N' by AFF_1:55; then o',a3' // o',a1' & a3',a1' // a3',a2' & o',b2' // o',b3' & b2',b3' // b2',b1' by A3,AFF_1:53; then A28: o,a3 // o,a1 & a3,a1 // a3,a2 & o,b2 // o,b3 & b2,b3 // b2,b1 by ANALMETR:48; A29:not LIN a3,a1,b2 proof assume LIN a3,a1,b2; then LIN a3',a1',b2' by ANALMETR:55; hence contradiction by A3,A20,A27,AFF_1:39;end; not LIN b2,a3,b3 proof assume LIN b2,a3,b3; then LIN b2',a3',b3' by ANALMETR:55; then LIN b2',b3',a3' by AFF_1:15; hence contradiction by A3,A21,A27,AFF_1:39;end; hence thesis by A3,A28,A29,ANALMETR:78,def 11;end; consider d1 such that A30: o,b3 // o,d1 & o<>d1 by ANALMETR:51; A31: LIN o,b3,d1 & o<>d1 by A30,ANALMETR:def 11; reconsider d1'=d1 as Element of Af(X) by ANALMETR:47; ex d2 st LIN o,a3,d2 & o<>d2 & a1,b3 _|_ d1,d2 proof consider e1 be Element of X such that A32:o,a3 // o,e1 & o<>e1 by ANALMETR:51; consider e2 be Element of X such that A33:a1,b3 _|_ d1,e2 & d1<>e2 by ANALMETR:51; A34:not o,e1 // d1,e2 proof assume A35:o,e1 // d1,e2; reconsider e1'=e1,e2'=e2 as Element of the carrier of Af(X) by ANALMETR:47; o',e1' // d1',e2' by A35,ANALMETR:48; then d1',e2' // o',e1' by AFF_1:13; then d1,e2 // o,e1 by ANALMETR:48; then o,e1 _|_ a1,b3 by A33,ANALMETR:84; then o,a3 _|_ a1,b3 by A32,ANALMETR:84; then o,b3 // a1,b3 by A26,ANALMETR:85; then o',b3' // a1',b3' by ANALMETR:48; then b3',o' // b3',a1' by AFF_1:13; then LIN b3',o',a1' by AFF_1:def 1; then LIN o',b3',a1' by AFF_1:15; then A36: o',b3'// o',a1' by AFF_1:def 1; LIN o',b2',b3' by A26,ANALMETR:55; then o',b2' // o',b3' by AFF_1:def 1; then o',b3' // o',b2' by AFF_1:13; then o',a1' // o',b2' by A26,A36,DIRAF:47; then LIN o',a1',b2' by AFF_1:def 1; then LIN a1',o',b2' by AFF_1:15; then A37: a1',o' // a1',b2' by AFF_1:def 1; LIN o',a3',a1' by A26,ANALMETR:55; then LIN a1',o',a3' by AFF_1:15; then a1',o' // a1',a3' by AFF_1:def 1; then a1',b2' // a1',a3' by A26,A37,DIRAF:47; then LIN a1',b2',a3' by AFF_1:def 1; then LIN a3',a1',b2' by AFF_1:15; hence contradiction by A26,ANALMETR:55; end; reconsider e1'=e1,e2'=e2 as Element of the carrier of Af(X) by ANALMETR:47; not o',e1' // d1',e2' by A34,ANALMETR:48; then consider d2' be Element of Af(X) such that A38: LIN o',e1',d2' & LIN d1',e2',d2' by AFF_1:74; reconsider d2=d2' as Element of X by ANALMETR:47; LIN d1,e2,d2 by A38,ANALMETR:55; then A39: d1,e2 // d1,d2 by ANALMETR:def 11; LIN o,e1,d2 by A38,ANALMETR:55; then o,e1 // o,d2 by ANALMETR:def 11; then A40: o,a3 // o,d2 by A32,ANALMETR:82; take d2; d2<>o proof assume d2=o; then A41: d1,o _|_ a1,b3 by A33,A39,ANALMETR:84; o,a3 _|_ o,d1 by A26,A30,ANALMETR:84; then d1,o _|_ o,a3 by ANALMETR:83; then A42: o,a3 // a1,b3 by A30,A41,ANALMETR:85; o,a3 // o,a1 by A26,ANALMETR:def 11; then a1,b3 // o,a1 by A26,A42,ANALMETR:82; then a1',b3' // o',a1' by ANALMETR:48; then a1',b3' // a1',o' by AFF_1:13; then LIN a1',b3',o' by AFF_1:def 1; then LIN o',b3',a1' by AFF_1:15; then A43: o',b3' // o',a1' by AFF_1:def 1; LIN o',b2',b3' by A26,ANALMETR:55; then LIN o',b3',b2' by AFF_1:15; then o',b3' // o',b2' by AFF_1:def 1; then o',a1' // o',b2' by A26,A43,DIRAF:47; then LIN o',a1',b2' by AFF_1:def 1; then LIN a1',o',b2' by AFF_1:15; then A44: a1',o' // a1',b2' by AFF_1:def 1; LIN o',a3',a1' by A26,ANALMETR:55; then LIN a1',o',a3' by AFF_1:15; then a1',o' // a1',a3' by AFF_1:def 1; then a1',b2' // a1',a3' by A26,A44,DIRAF:47; then LIN a1',b2',a3' by AFF_1:def 1; then LIN a3',a1',b2' by AFF_1:15; hence contradiction by A26,ANALMETR:55;end; hence thesis by A33,A39,A40,ANALMETR:84,def 11; end; then consider d2 such that A45:LIN o,a3,d2 & o<>d2 & a1,b3 _|_ d1,d2; reconsider d2'=d2 as Element of Af(X) by ANALMETR:47; ex d3 st LIN o,b3,d3 & b3,a3 _|_ d2,d3 & o<>d3 proof consider e1 be Element of X such that A46:o,b3 // o,e1 & o<>e1 by ANALMETR:51; consider e2 be Element of X such that A47:b3,a3 _|_ d2,e2 & d2<>e2 by ANALMETR:51; A48:not o,e1 // d2,e2 proof assume A49:o,e1 // d2,e2; reconsider e1'=e1,e2'=e2 as Element of the carrier of Af(X) by ANALMETR:47; o',e1' // d2',e2' by A49,ANALMETR:48; then d2',e2' // o',e1' by AFF_1:13; then d2,e2 // o,e1 by ANALMETR:48; then o,e1 _|_ b3,a3 by A47,ANALMETR:84; then o,b3 _|_ b3,a3 by A46,ANALMETR:84; then b3,a3 // o,a3 by A26,ANALMETR:85; then b3',a3' // o',a3' by ANALMETR:48; then a3',b3' // a3',o' by AFF_1:13; then LIN a3',b3',o' by AFF_1:def 1; then LIN b3',o',a3' by AFF_1:15; then A50: b3',o' // b3',a3' by AFF_1:def 1; LIN o',b2',b3' by A26,ANALMETR:55; then LIN b3',o',b2' by AFF_1:15; then b3',o' // b3',b2' by AFF_1:def 1; then b3',a3' // b3',b2' by A26,A50,DIRAF:47; then LIN b3',a3',b2' by AFF_1:def 1; then LIN b2',a3',b3' by AFF_1:15; hence contradiction by A26,ANALMETR:55;end; reconsider e1'=e1,e2'=e2 as Element of Af(X) by ANALMETR:47; not o',e1' // d2',e2' by A48,ANALMETR:48; then consider d3' be Element of Af(X) such that A51: LIN o',e1',d3' & LIN d2',e2',d3' by AFF_1:74; reconsider d3=d3' as Element of X by ANALMETR:47; LIN d2,e2,d3 by A51,ANALMETR:55; then A52: d2,e2 // d2,d3 by ANALMETR:def 11; LIN o,e1,d3 by A51,ANALMETR:55; then o,e1 // o,d3 by ANALMETR:def 11; then A53: o,b3 // o,d3 by A46,ANALMETR:82; take d3; o<>d3 proof assume d3=o; then A54: d2,o _|_ b3,a3 by A47,A52,ANALMETR:84; o,a3 // o,d2 by A45,ANALMETR:def 11; then o,b3 _|_ o,d2 by A26,ANALMETR:84; then d2,o _|_ o,b3 by ANALMETR:83; then o,b3 // b3,a3 by A45,A54,ANALMETR:85; then o',b3' // b3',a3' by ANALMETR:48; then A55: b3',o' // b3',a3' by AFF_1:13; LIN o',b2',b3' by A26,ANALMETR:55; then LIN b3',o',b2' by AFF_1:15; then b3',o' // b3',b2' by AFF_1:def 1; then b3',a3' // b3',b2' by A26,A55,DIRAF:47; then LIN b3',a3',b2' by AFF_1:def 1; then LIN b2',a3',b3' by AFF_1:15; hence contradiction by A26,ANALMETR:55; end; hence thesis by A47,A52,A53,ANALMETR:84,def 11; end; then consider d3 such that A56: LIN o,b3,d3 & b3,a3 _|_ d2,d3 & o<>d3; reconsider d3'=d3 as Element of Af(X) by ANALMETR:47; ex d4 st LIN o,a3,d4 & a3,b2 _|_ d3,d4 & o<>d4 proof consider e1 be Element of X such that A57:o,a3 // o,e1 & o<>e1 by ANALMETR:51; consider e2 be Element of X such that A58:a3,b2 _|_ d3,e2 & d3<>e2 by ANALMETR:51; A59: not o,e1 // d3,e2 proof assume A60:o,e1 // d3,e2; reconsider e1'=e1,e2'=e2 as Element of the carrier of Af(X) by ANALMETR:47; o',e1' // d3',e2' by A60,ANALMETR:48; then d3',e2' // o',e1' by AFF_1:13; then d3,e2 // o,e1 by ANALMETR:48; then o,e1 _|_ a3,b2 by A58,ANALMETR:84; then o,a3 _|_ a3,b2 by A57,ANALMETR:84; then A61: o,b3 // a3,b2 by A26,ANALMETR:85; LIN o',b2',b3' by A26,ANALMETR:55; then LIN o',b3',b2' by AFF_1:15; then LIN o,b3,b2 by ANALMETR:55; then o,b3 // o,b2 by ANALMETR:def 11; then o,b2 // a3,b2 by A26,A61,ANALMETR:82; then o',b2' // a3',b2' by ANALMETR:48; then A62: b2',o' // b2',a3' by AFF_1:13; LIN o',b2',b3' by A26,ANALMETR:55; then LIN b2',o',b3' by AFF_1:15; then b2',o' // b2',b3' by AFF_1:def 1; then b2',a3' // b2',b3' by A26,A62,DIRAF:47; then LIN b2',a3',b3' by AFF_1:def 1; hence contradiction by A26,ANALMETR:55; end; reconsider e1'=e1,e2'=e2 as Element of Af(X) by ANALMETR:47; not o',e1' // d3',e2' by A59,ANALMETR:48; then consider d4' be Element of Af(X) such that A63: LIN o',e1',d4' & LIN d3',e2',d4' by AFF_1:74; reconsider d4=d4' as Element of X by ANALMETR:47; LIN d3,e2,d4 by A63,ANALMETR:55; then A64: d3,e2 // d3,d4 by ANALMETR:def 11; LIN o,e1,d4 by A63,ANALMETR:55; then o,e1 // o,d4 by ANALMETR:def 11; then A65: o,a3 // o,d4 by A57,ANALMETR:82; take d4; o<>d4 proof assume d4=o; then A66: d3,o _|_ a3,b2 by A58,A64,ANALMETR:84; o,b3 // o,d3 by A56,ANALMETR:def 11; then o,a3 _|_ o,d3 by A26,ANALMETR:84; then d3,o _|_ o,a3 by ANALMETR:83; then o,a3 // a3,b2 by A56,A66,ANALMETR:85; then o',a3' // a3',b2' by ANALMETR:48; then A67: a3',o' // a3',b2' by AFF_1:13; LIN o',a3',a1' by A26,ANALMETR:55; then LIN a3',o',a1' by AFF_1:15; then a3',o' // a3',a1' by AFF_1:def 1; then a3',b2' // a3',a1' by A26,A67,DIRAF:47; then LIN a3',b2',a1' by AFF_1:def 1; then LIN a3',a1',b2' by AFF_1:15; hence contradiction by A26,ANALMETR:55; end; hence thesis by A58,A64,A65,ANALMETR:84,def 11; end; then consider d4 such that A68: LIN o,a3,d4 & a3,b2 _|_ d3,d4 & o<>d4; reconsider d4'=d4 as Element of Af(X) by ANALMETR:47; A69: not LIN d1,d2,d3 proof assume A70: LIN d1,d2,d3; A71: d1<>d2 & d2<>d3 & a1<>a3 proof A72: d1<>d2 proof assume d1=d2; then o,a3 // o,d1 by A45,ANALMETR:def 11; then o',a3' // o',d1' by ANALMETR:48; then o',d1' // o',a3' by AFF_1:13; then o,d1 // o,a3 by ANALMETR:48; then o,b3 // o,a3 by A30,ANALMETR:82; then o',b3' // o',a3' by ANALMETR:48; then LIN o',b3',a3' by AFF_1:def 1; then LIN b3',o',a3' by AFF_1:15; then b3',o' // b3',a3' by AFF_1:def 1; then A73: b3,o // b3,a3 by ANALMETR:48; LIN o',b2',b3' by A26,ANALMETR:55; then LIN b3',o',b2' by AFF_1:15; then b3',o' // b3',b2' by AFF_1:def 1; then b3,o // b3,b2 by ANALMETR:48; then b3,b2 // b3,a3 by A26,A73,ANALMETR:82; then LIN b3,b2,a3 by ANALMETR:def 11; then LIN b3',b2',a3' by ANALMETR:55; then LIN b2',a3',b3' by AFF_1:15; hence contradiction by A26,ANALMETR:55;end; A74: d2<>d3 proof assume d2=d3; then o,b3 // o,d2 by A56,ANALMETR:def 11; then o',b3' // o',d2' by ANALMETR:48; then o',d2' // o',b3' by AFF_1:13; then A75: o,d2 // o,b3 by ANALMETR:48; o,a3 // o,d2 by A45,ANALMETR:def 11; then o',a3' // o',d2' by ANALMETR:48; then o',d2' // o',a3' by AFF_1:13; then o,d2 // o,a3 by ANALMETR:48; then o,b3 // o,a3 by A45,A75,ANALMETR:82; then o',b3' // o',a3' by ANALMETR:48; then LIN o',b3',a3' by AFF_1:def 1; then LIN b3',o',a3' by AFF_1:15; then b3',o' // b3',a3' by AFF_1:def 1; then A76: b3,o // b3,a3 by ANALMETR:48; LIN o',b2',b3' by A26,ANALMETR:55; then LIN b3',o',b2' by AFF_1:15; then b3',o' // b3',b2' by AFF_1:def 1; then b3,o // b3,b2 by ANALMETR:48; then b3,b2 // b3,a3 by A26,A76,ANALMETR:82; then LIN b3,b2,a3 by ANALMETR:def 11; then LIN b3',b2',a3' by ANALMETR:55; then LIN b2',a3',b3' by AFF_1:15; hence contradiction by A26,ANALMETR:55;end; a1<>a3 proof assume a1=a3; then LIN a3',a1',b2' by AFF_1:16; hence contradiction by A26,ANALMETR:55;end; hence thesis by A72,A74;end; LIN d1',d2',d3' by A70,ANALMETR:55; then LIN d2',d1',d3' by AFF_1:15; then d2',d1' // d2',d3' by AFF_1:def 1; then d1',d2' // d2',d3' by AFF_1:13; then d1,d2 // d2,d3 by ANALMETR:48; then d2,d3 _|_ a1,b3 by A45,A71,ANALMETR:84; then a1,b3 // b3,a3 by A56,A71,ANALMETR:85; then a1',b3' // b3',a3' by ANALMETR:48; then b3',a1' // b3',a3' by AFF_1:13; then LIN b3',a1',a3' by AFF_1:def 1; then LIN a1',a3',b3' by AFF_1:15; then a1',a3' // a1',b3' by AFF_1:def 1; then A77: a1,a3 // a1,b3 by ANALMETR:48; LIN o',a3',a1' by A26,ANALMETR:55; then LIN a1',a3',o' by AFF_1:15; then a1',a3' // a1',o' by AFF_1:def 1; then a1,a3 // a1,o by ANALMETR:48; then a1,o // a1,b3 by A71,A77,ANALMETR:82; then LIN a1,o,b3 by ANALMETR:def 11; then LIN a1',o',b3' by ANALMETR:55; then LIN o',b3',a1' by AFF_1:15; then A78: o',b3' // o',a1' by AFF_1:def 1; o,b2 // o,b3 & o<>b3 by A26,ANALMETR:def 11; then o',b2' // o',b3' by ANALMETR:48; then o',b3' // o',b2' by AFF_1:13; then o',a1' // o',b2' by A26,A78,DIRAF:47; then LIN o',a1',b2' by AFF_1:def 1; then LIN a1',o',b2' by AFF_1:15; then a1',o' // a1',b2' by AFF_1:def 1; then A79: a1,o // a1,b2 by ANALMETR:48; LIN o',a3',a1' by A26,ANALMETR:55; then LIN a1',o',a3' by AFF_1:15; then a1',o' // a1',a3' by AFF_1:def 1; then a1,o // a1,a3 by ANALMETR:48; then a1,b2 // a1,a3 by A26,A79,ANALMETR:82; then LIN a1,b2,a3 by ANALMETR:def 11; then LIN a1',b2',a3' by ANALMETR:55; then LIN a3',a1',b2' by AFF_1:15; hence contradiction by A26,ANALMETR:55;end; A80: LIN d1,d3,b3 & LIN d1,d3,b2 & LIN d2,d4,a1 & LIN d2,d4,a3 proof A81: LIN o',b3',d1' by A31,ANALMETR:55; A82: LIN o',b3',d3' by A56,ANALMETR:55; LIN o',b3',b3' by AFF_1:16; then A83: LIN d1',d3',b3' by A26,A81,A82,AFF_1:17; LIN o',b2',b3' by A26,ANALMETR:55; then LIN o',b3',b2' by AFF_1:15; then A84: LIN d1',d3',b2' by A26,A81,A82,AFF_1:17; A85: LIN o',a3',d2' by A45,ANALMETR:55; A86: LIN o',a3',d4' by A68,ANALMETR:55; LIN o',a3',a3' by AFF_1:16; then A87: LIN d2',d4',a3' by A26,A85,A86,AFF_1:17; LIN o',a3',a1' by A26,ANALMETR:55; then LIN d2',d4',a1' by A26,A85,A86,AFF_1:17; hence thesis by A83,A84,A87,ANALMETR:55; end; A88: d1,d3 _|_ d2,d4 proof LIN o',b3',d1' by A31,ANALMETR:55; then A89: o',b3' // o',d1' by AFF_1:def 1; then A90: o,b3 // o,d1 by ANALMETR:48; LIN o',b3',d3' by A56,ANALMETR:55; then o',b3' // o',d3' by AFF_1:def 1; then o',d1' // o',d3' by A26,A89,DIRAF:47; then LIN o',d1',d3' by AFF_1:def 1; then LIN d1',o',d3' by AFF_1:15; then d1',o' // d1',d3' by AFF_1:def 1; then o',d1' // d1',d3' by AFF_1:13; then A91: o,d1 // d1,d3 by ANALMETR:48; LIN o',a3',d2' by A45,ANALMETR:55; then A92: o',a3' // o',d2' by AFF_1:def 1; then A93: o,a3 // o,d2 by ANALMETR:48; LIN o',a3',d4' by A68,ANALMETR:55; then o',a3' // o',d4' by AFF_1:def 1; then o',d2' // o',d4' by A26,A92,DIRAF:47; then LIN o',d2',d4' by AFF_1:def 1; then LIN d2',o',d4' by AFF_1:15; then d2',o' // d2',d4' by AFF_1:def 1; then o',d2' // d2',d4' by AFF_1:13; then A94: o,d2 // d2,d4 by ANALMETR:48; o,d1 _|_ o,a3 by A26,A90,ANALMETR:84; then o,a3 _|_ d1,d3 by A30,A91,ANALMETR:84; then o,d2 _|_ d1,d3 by A26,A93,ANALMETR:84; hence thesis by A45,A94,ANALMETR:84;end; A95: d1,d2 _|_ a1,b3 by A45,ANALMETR:83; A96: d2,d3 _|_ b3,a3 by A56,ANALMETR:83; A97: d3,d4 _|_ a3,b2 by A68,ANALMETR:83; A98: not LIN d1,d4,d3 proof assume A99: LIN d1,d4,d3; A100: d1<>d3 proof assume A101: d1=d3; A102: d1<>d2 proof assume d1=d2; then o,a3 // o,d1 by A45,ANALMETR:def 11; then o',a3' // o',d1' by ANALMETR:48; then o',d1' // o',a3' by AFF_1:13; then o,d1 // o,a3 by ANALMETR:48; then o,b3 // o,a3 by A30,ANALMETR:82; then o',b3' // o',a3' by ANALMETR:48; then LIN o',b3',a3' by AFF_1:def 1; then LIN b3',o',a3' by AFF_1:15; then b3',o' // b3',a3' by AFF_1:def 1; then A103: b3,o // b3,a3 by ANALMETR:48; LIN o',b2',b3' by A26,ANALMETR:55; then LIN b3',o',b2' by AFF_1:15; then b3',o' // b3',b2' by AFF_1:def 1; then b3,o // b3,b2 by ANALMETR:48; then b3,b2 // b3,a3 by A26,A103,ANALMETR:82; then LIN b3,b2,a3 by ANALMETR:def 11; then LIN b3',b2',a3' by ANALMETR:55; then LIN b2',a3',b3' by AFF_1:15; hence contradiction by A26,ANALMETR:55;end; A104: a1<>a3 proof assume a1=a3; then LIN a3',a1',b2' by AFF_1:16; hence contradiction by A26,ANALMETR:55;end; a3,b3 _|_ d1,d2 by A56,A101,ANALMETR:83; then a1,b3 // a3,b3 by A45,A102,ANALMETR:85; then a1',b3' // a3',b3' by ANALMETR:48; then b3',a1' // b3',a3' by AFF_1:13; then LIN b3',a1',a3' by AFF_1:def 1; then LIN a1',a3',b3' by AFF_1:15; then a1',a3' // a1',b3' by AFF_1:def 1; then A105: a1,a3 // a1,b3 by ANALMETR:48; LIN o',a3',a1' by A26,ANALMETR:55; then LIN a1',a3',o' by AFF_1:15; then a1',a3' // a1',o' by AFF_1:def 1; then a1,a3 // a1,o by ANALMETR:48; then a1,o // a1,b3 by A104,A105,ANALMETR:82; then LIN a1,o,b3 by ANALMETR:def 11; then LIN a1',o',b3' by ANALMETR:55; then LIN o',b3',a1' by AFF_1:15; then A106: o',b3' // o',a1' by AFF_1:def 1; o,b2 // o,b3 & o<>b3 by A26,ANALMETR:def 11; then o',b2' // o',b3' by ANALMETR:48; then o',b3' // o',b2' by AFF_1:13; then o',a1' // o',b2' by A26,A106,DIRAF:47; then LIN o',a1',b2' by AFF_1:def 1; then LIN a1',o',b2' by AFF_1:15; then a1',o' // a1',b2' by AFF_1:def 1; then A107: a1,o // a1,b2 by ANALMETR:48; LIN o',a3',a1' by A26,ANALMETR:55; then LIN a1',o',a3' by AFF_1:15; then a1',o' // a1',a3' by AFF_1:def 1; then a1,o // a1,a3 by ANALMETR:48; then a1,b2 // a1,a3 by A26,A107,ANALMETR:82; then LIN a1,b2,a3 by ANALMETR:def 11; then LIN a1',b2',a3' by ANALMETR:55; then LIN a3',a1',b2' by AFF_1:15; hence contradiction by A26,ANALMETR:55;end; A108: LIN d1',d3',b2' by A80,ANALMETR:55; A109: LIN d1',d3',b3' by A80,ANALMETR:55; LIN d1',d4',d3' by A99,ANALMETR:55; then LIN d1',d3',d4' by AFF_1:15; then LIN b2',b3',d4' by A100,A108,A109,AFF_1:17; then A110: b2',b3' // b2',d4' by AFF_1:def 1; LIN o',b2',b3' by A26,ANALMETR:55; then LIN b2',b3',o' by AFF_1:15; then A111: b2',b3' // b2',o' by AFF_1:def 1; b2'<>b3' proof assume b2'=b3'; then LIN b2',a3',b3' by AFF_1:16; hence contradiction by A26,ANALMETR:55;end; then b2',o' // b2',d4' by A110,A111,DIRAF:47; then LIN b2',o',d4' by AFF_1:def 1; then LIN o',d4',b2' by AFF_1:15; then A112: o',d4' // o',b2' by AFF_1:def 1; o,a3 // o,d4 & o<>d4 by A68,ANALMETR:def 11; then o',a3' // o',d4' by ANALMETR:48; then o',d4' // o',a3' by AFF_1:13; then o',b2' // o',a3' by A68,A112,DIRAF:47; then LIN o',b2',a3' by AFF_1:def 1; then LIN b2',o',a3' by AFF_1:15; then A113: b2',o' // b2',a3' by AFF_1:def 1; LIN o',b2',b3' by A26,ANALMETR:55; then LIN b2',o',b3' by AFF_1:15; then b2',o' // b2',b3' by AFF_1:def 1; then b2',a3' // b2',b3' by A26,A113,DIRAF:47; then LIN b2',a3',b3' by AFF_1:def 1; hence contradiction by A26,ANALMETR:55; end; A114:d2<>d4 proof assume d2=d4; then A115:a3,b2 _|_ d2,d3 by A68,ANALMETR:83; d2<>d3 proof assume d2=d3; then LIN d1',d2',d3' by AFF_1:16; hence contradiction by A69,ANALMETR:55;end; then a3,b2 // b3,a3 by A56,A115,ANALMETR:85; then a3,b2 // a3,b3 by ANALMETR:81; then LIN a3,b2,b3 by ANALMETR:def 11; then LIN a3',b2',b3' by ANALMETR:55; then LIN b2',b3',a3' by AFF_1:15; hence contradiction by A3,A4,A21,AFF_1:39;end; ex A,K st A _|_ K & d1 in A & d3 in A & b3 in A & b2 in A & d2 in K & d4 in K & a1 in K & a3 in K & not d2 in A & not d4 in A proof A116:LIN d1',d3',b3' & LIN d1',d3',b2' & LIN d2',d4',a1' & LIN d2',d4',a3' by A80,ANALMETR:55; then consider A' such that A117:A' is_line & d1' in A' & d3' in A' & b3' in A' by AFF_1:33; reconsider A=A' as Subset of X by ANALMETR:57;take A; A118:d1'<>d3' proof assume d1'=d3'; then LIN d1',d2',d3' by AFF_1:16; hence contradiction by A69,ANALMETR:55;end; consider K' such that A119:K' is_line & d2' in K' & d4' in K' & a1' in K' by A116,AFF_1:33; reconsider K=K' as Subset of X by ANALMETR:57;take K; A120:not d2 in A proof assume A121:d2 in A; A' // A' by A117,AFF_1:55; then d1',d2' // d1',d3' by A117,A121,AFF_1:53; then LIN d1',d2',d3' by AFF_1:def 1; hence contradiction by A69,ANALMETR:55;end; A122:not d4 in A proof assume A123:d4 in A; A' // A' by A117,AFF_1:55; then d1',d4' // d1',d3' by A117,A123,AFF_1:53; then LIN d1',d4',d3' by AFF_1:def 1; hence contradiction by A98,ANALMETR:55;end; A _|_ K proof A'=Line(d1',d3') by A117,A118,AFF_1:38; then A124:A=Line(d1,d3) by ANALMETR:56; K'=Line(d2',d4') by A114,A119,AFF_1:38; then K=Line(d2,d4) by ANALMETR:56; hence thesis by A88,A114,A118,A124,ANALMETR:63;end; hence thesis by A114,A116,A117,A118,A119,A120,A122,AFF_1:39;end; then A125: d1,d4 _|_ a1,b2 by A2,A95,A96,A97,Def4; A126: d2,d3 _|_ a1,b1 & d3,d4 _|_ b1,a2 & d1,d2 _|_ b3,a1 proof A127: d2,d3 _|_ a3,b3 by A56,ANALMETR:83; A128: a3<>b3 proof assume a3=b3; then LIN b2',a3',b3' by AFF_1:16; hence contradiction by A26,ANALMETR:55;end; A129: d3,d4 _|_ a2,b1 or a3=b2 by A26,A68,ANALMETR:84; a3<>b2 proof assume a3=b2; then LIN a3',a1',b2' by AFF_1:16; hence contradiction by A26,ANALMETR:55;end; hence thesis by A26,A45,A127,A128,A129,ANALMETR:83,84;end; A130: LIN d1,d3,b3 & LIN d1,d3,b1 & LIN d2,d4,a1 & LIN d2,d4,a2 proof LIN b2',b3',b1' by A26,ANALMETR:55; then LIN b3',b2',b1' by AFF_1:15; then A131: b3',b2' // b3',b1' by AFF_1:def 1; LIN o',b2',b3' by A26,ANALMETR:55; then LIN b3',b2',o' by AFF_1:15; then A132: b3',b2' // b3',o' by AFF_1:def 1; b3'<>b2' proof assume b3'=b2'; then LIN b2',a3',b3' by AFF_1:16; hence contradiction by A26,ANALMETR:55;end; then b3',b1' // b3',o' by A131,A132,DIRAF:47; then LIN b3',b1',o' by AFF_1:def 1; then A133: LIN o',b3',b1' by AFF_1:15; A134: LIN o',b3',d1' by A31,ANALMETR:55; LIN o',b3',d3' by A56,ANALMETR:55; then A135: LIN d1',d3',b1' by A26,A133,A134,AFF_1:17; reconsider o'=o,a1'=a1,a2'=a2,a3'=a3,d2'=d2,d4'=d4 as Element of Af(X) by ANALMETR:47; LIN a3',a1',a2' by A26,ANALMETR:55; then A136: a3',a1' // a3',a2' by AFF_1:def 1; LIN o',a3',a1' by A26,ANALMETR:55; then LIN a3',a1',o' by AFF_1:15; then A137: a3',a1' // a3',o' by AFF_1:def 1; a3'<>a1' proof assume a1'=a3'; then LIN a3',a1',b2' by AFF_1:16; hence contradiction by A26,ANALMETR:55;end; then a3',a2' // a3',o' by A136,A137,DIRAF:47; then LIN a3',a2',o' by AFF_1:def 1; then A138: LIN o',a3',a2' by AFF_1:15; A139: LIN o',a3',d2' by A45,ANALMETR:55; LIN o',a3',d4' by A68,ANALMETR:55; then LIN d2',d4',a2' by A26,A138,A139,AFF_1:17; hence thesis by A80,A135,ANALMETR:55;end; ex A,K st A _|_ K & d1 in A & d3 in A & b3 in A & b1 in A & d2 in K & d4 in K & a1 in K & a2 in K & not d2 in A & not d4 in A proof reconsider d1'=d1,d2'=d2,d3'=d3,d4'=d4,b3'=b3,a1'=a1,b1'=b1,a2'=a2 as Element of Af(X) by ANALMETR:47; LIN d1',d3',b3' by A130,ANALMETR:55; then consider A' such that A140:A' is_line & d1' in A' & d3' in A' & b3' in A' by AFF_1:33; reconsider A=A' as Subset of X by ANALMETR:57;take A; A141:d1'<>d3' proof assume d1'=d3'; then LIN d1',d2',d3' by AFF_1:16; hence contradiction by A69,ANALMETR:55;end; A142: LIN d1',d3',b1' by A130,ANALMETR:55; A143:LIN d2',d4',a1' & LIN d2',d4',a2' by A130,ANALMETR:55; then consider K' such that A144:K' is_line & d2' in K' & d4' in K' & a1' in K' by AFF_1:33; reconsider K=K' as Subset of X by ANALMETR:57;take K; A145:not d2 in A proof assume A146:d2 in A; A' // A' by A140,AFF_1:55; then d1',d2' // d1',d3' by A140,A146,AFF_1:53; then d1,d2 // d1,d3 by ANALMETR:48; hence contradiction by A69,ANALMETR:def 11;end; A147:not d4 in A proof assume A148:d4 in A; A' // A' by A140,AFF_1:55; then d1',d4' // d1',d3' by A140,A148,AFF_1:53; then d1,d4 // d1,d3 by ANALMETR:48; hence contradiction by A98,ANALMETR:def 11;end; A _|_ K proof A'=Line(d1',d3') by A140,A141,AFF_1:38; then A149:A=Line(d1,d3) by ANALMETR:56; K'=Line(d2',d4') by A114,A144,AFF_1:38; then K=Line(d2,d4) by ANALMETR:56; hence thesis by A88,A114,A141,A149,ANALMETR:63;end; hence thesis by A114,A140,A141,A142,A143,A144,A145,A147,AFF_1:39;end; then d1,d4 _|_ b3,a2 by A1,A126,Def3; then A150: a1,b2 // b3,a2 or d1=d4 by A125,ANALMETR:85; d1<>d4 proof assume A151: d1=d4; A152: LIN o',b3',o' by AFF_1:16; A153: LIN o',b3',d1' by A31,ANALMETR:55; LIN o',b2',b3' by A26,ANALMETR:55; then LIN o',b3',b2' by AFF_1:15; then LIN o',d1',b2' by A26,A152,A153,AFF_1:17; then A154: o',d1' // o',b2' by AFF_1:def 1; LIN o',a3',d4' by A68,ANALMETR:55; then A155: LIN o',d4',a3' by AFF_1:15; A156: LIN o',a3',a1' by A26,ANALMETR:55; LIN o',d4',o' by AFF_1:16; then o',d4' // o',a3' by A155,AFF_1:19; then o',a3' // o',b2' by A68,A151,A154,DIRAF:47; then LIN o',a3',b2' by AFF_1:def 1; then LIN a3',b2',o' by AFF_1:15; then a3',b2' // a3',o' by AFF_1:def 1; then A157: a3',o' // a3',b2' by AFF_1:13; LIN a3',o',a1' by A156,AFF_1:15; then a3',o' // a3',a1' by AFF_1:def 1; then a3',b2' // a3',a1' by A26,A157,DIRAF:47; then LIN a3',b2',a1' by AFF_1:def 1; then LIN a3',a1',b2' by AFF_1:15; hence contradiction by A26,ANALMETR:55;end; then a1',b2' // b3',a2' by A150,ANALMETR:48; then a1',b2' // a2',b3' by AFF_1:13; hence thesis by ANALMETR:48;end; hence thesis by A6;end; theorem 3H_holds_in X implies OPAP_holds_in X proof assume A1:3H_holds_in X; let o,a1,a2,a3,b1,b2,b3,M,N; assume A2: o in M & a1 in M & a2 in M & a3 in M & o in N & b1 in N & b2 in N & b3 in N & not b2 in M & not a3 in N & M _|_ N & o<>a1 & o<>a2 & o<>a3 & o<>b1 & o<>b2 & o<>b3 & a3,b2 // a2,b1 & a3,b3 // a1,b1; reconsider o'=o,a1'=a1,a2'=a2,a3'=a3,b1'=b1,b2'=b2,b3'=b3 as Element of Af(X) by ANALMETR:47; reconsider M'=M,N'=N as Subset of Af(X) by ANALMETR:57; M is_line & N is_line by A2,ANALMETR:62; then A3:M' is_line & N' is_line by ANALMETR:58; then A4:M' // M' & N' // N' by AFF_1:55; A5:LIN a,b,c implies LIN a,c,b & LIN b,a,c & LIN b,c,a & LIN c,a,b & LIN c,b,a proof assume A6:LIN a,b,c; reconsider a'=a,b'=b,c' = c as Element of Af(X) by ANALMETR: 47; LIN a',b',c' by A6,ANALMETR:55; then LIN a',c',b' & LIN b',a',c' & LIN b',c',a' & LIN c',a',b' & LIN c',b' ,a' by AFF_1:15; hence thesis by ANALMETR:55;end; A7:now assume A8:a1=a3; A9:not LIN o',a1',b1' proof assume LIN o',a1',b1'; then A10:b1' in M' by A2,A3,AFF_1:39; o',b1' // o',b2' by A2,A4,AFF_1:53; then LIN o',b1',b2' by AFF_1:def 1; hence contradiction by A2,A3,A10,AFF_1:39;end; A11:LIN o',b1',b3' proof o',b1' // o',b3' by A2,A4,AFF_1:53; hence thesis by AFF_1:def 1;end; a1',b1' // a1',b3' proof a1,b1 // a1,b3 by A2,A8,ANALMETR:81; hence thesis by ANALMETR:48;end; hence thesis by A2,A8,A9,A11,AFF_1:23;end; A12:now assume A13:b2=b3; A14:not LIN o',b1',a1' proof assume LIN o',b1',a1'; then A15:a1' in N' by A2,A3,AFF_1:39; o',a1' // o',a3' by A2,A4,AFF_1:53; then LIN o',a1',a3' by AFF_1:def 1; hence contradiction by A2,A3,A15,AFF_1:39;end; A16:LIN o',a1',a2' proof o',a1' // o',a2' by A2,A4,AFF_1:53; hence thesis by AFF_1:def 1;end; b1',a1' // b1',a2' proof A17:b1,a1 // a3,b2 by A2,A13,ANALMETR:81; b1,a2 // a3,b2 by A2,ANALMETR:81; then b1,a1 // b1,a2 by A2,A17,ANALMETR:82; hence thesis by ANALMETR:48;end; then a1'=a2' by A14,A16,AFF_1:23; then a1',b2' // a2',b3' by A13,AFF_1:11; hence thesis by ANALMETR:48;end; now assume A18:a1<>a3 & b2<>b3; A19:LIN o,a3,a1 & LIN a3,a1,a2 & LIN o,b2,b3 & LIN b2,b3,b1 & o<>a1 & o<>a2 & o<>a3 & o<>b1 & o<>b2 & o<>b3 & not LIN a3,a1,b2 & not LIN b2,a3,b3 & o,a3 _|_ o,b3 & a3,b2 // a2,b1 & a3,b3 // a1,b1 proof A20:LIN o,a3,a1 & LIN a3,a1,a2 & LIN o,b2,b3 & LIN b2,b3,b1 proof o',a3' // o',a1' & a3',a1' // a3',a2' & o',b2' // o',b3' & b2',b3' // b2',b1' by A2,A4,AFF_1:53; then LIN o',a3',a1' & LIN a3',a1',a2' & LIN o',b2',b3' & LIN b2',b3', b1' by AFF_1:def 1; hence thesis by ANALMETR:55;end; not LIN a3,a1,b2 & not LIN b2,a3,b3 proof assume LIN a3,a1,b2 or LIN b2,a3,b3; then LIN a3',a1',b2' or LIN b2',a3',b3' by ANALMETR:55; then LIN a3',a1',b2' or LIN b2',b3',a3' by AFF_1:15; hence contradiction by A2,A3,A18,AFF_1:39;end; hence thesis by A2,A20,ANALMETR:78;end; A21:now assume A22:b2=b1; then b2,a3 // b2,a2 by A19,ANALMETR:81; then A23:b2',a3' // b2',a2' by ANALMETR:48; LIN a3,a1,o by A5,A19; then A24:a3,a1 // a3,o by ANALMETR:def 11; A25:a3<>a1 proof assume a3=a1; then LIN a3',a1',b2' by AFF_1:16; hence contradiction by A19,ANALMETR:55;end; a3,a1 // a3,a2 by A19,ANALMETR:def 11; then a3,o // a3,a2 by A24,A25,ANALMETR:82; then LIN a3,o,a2 by ANALMETR:def 11; then LIN o,a3,a2 by A5; then A26:LIN o',a3',a2' by ANALMETR:55; not LIN o',b2',a3' proof assume LIN o',b2',a3'; then LIN o,b2,a3 by ANALMETR:55; then LIN b2,o,a3 by A5; then A27:b2,o // b2,a3 by ANALMETR:def 11; LIN b2,o,b3 by A5,A19; then b2,o // b2,b3 by ANALMETR:def 11; then b2,a3 // b2,b3 by A19,A27,ANALMETR:82; hence contradiction by A19,ANALMETR:def 11;end; then a3'=a2' by A23,A26,AFF_1:23; hence thesis by A19,A22,ANALMETR:81;end; now assume A28:b2<>b1; not LIN a2,a3,b3 proof assume LIN a2,a3,b3; then LIN a3,a2,b3 by A5; then A29:a3,a2 // a3,b3 by ANALMETR:def 11; A30:a3<>a2 proof assume a3=a2; then LIN a3,b2,b1 by A19,ANALMETR:def 11; then LIN b2,b1,a3 by A5; then A31:b2,b1 // b2,a3 by ANALMETR:def 11; LIN b2,b1,b3 by A5,A19; then b2,b1 // b2,b3 by ANALMETR:def 11; then b2,a3 // b2,b3 by A28,A31,ANALMETR:82; hence contradiction by A19,ANALMETR:def 11;end; LIN a3,a2,a1 by A5,A19; then a3,a2 // a3,a1 by ANALMETR:def 11; then A32:a3,a1 // a3,b3 by A29,A30,ANALMETR:82; A33:a3<>a1 proof assume a3 = a1; then LIN a3',a1',b2' by AFF_1:16; hence contradiction by A19,ANALMETR:55;end; LIN a3,a1,o by A5,A19; then a3,a1 // a3,o by ANALMETR:def 11; then a3,o // a3,b3 by A32,A33,ANALMETR:82; then a3',o' // a3',b3' by ANALMETR:48; then A34:a3',b3' // a3',o' by AFF_1:13; A35:not LIN b2',a3',b3' by A19,ANALMETR:55; LIN b2,b3,o by A5,A19; then LIN b2',b3',o' by ANALMETR:55; hence contradiction by A19,A34,A35,AFF_1:23;end; then consider c1 such that A36:c1,a2 _|_ a3,b3 & c1,a3 _|_ a2,b3 & c1,b3 _|_ a2,a3 by A1,CONAFFM:def 3; reconsider c1' = c1 as Element of Af(X) by ANALMETR:47; A37:now assume A38:a2=a1; A39:not LIN o',a3',b2' by A2,A3,AFF_1:39; A40:LIN o',b2',b3' proof o',b2' // o',b3' by A2,A4,AFF_1:53; hence thesis by AFF_1:def 1;end; a3',b2' // a3',b3' proof a1<>b1 proof assume A41: a1=b1; o',b1' // o',b2' by A2,A4,AFF_1:53; then LIN o',b1',b2' by AFF_1:def 1; hence contradiction by A2,A3,A41,AFF_1:39;end; then a3,b2 // a3,b3 by A2,A38,ANALMETR:82; hence thesis by ANALMETR:48;end; then b2'=b3' by A39,A40,AFF_1:23; then a1',b2' // a2',b3' by A38,AFF_1:11; hence thesis by ANALMETR:48;end; now assume A42:a2<>a1; A43:a1<>b1 proof assume A44: a1=b1; LIN a1,a2,a3 by A5,A19; then a1,a2 // a1,a3 by ANALMETR:def 11; then a2,a1 // a3,a1 by ANALMETR:81; then a3,a1 // a3,b2 by A19,A42,A44,ANALMETR:82; hence contradiction by A19,ANALMETR:def 11;end; not LIN a2,a1,b1 proof assume LIN a2,a1,b1; then LIN b1,a1,a2 by A5; then b1,a1 // b1,a2 by ANALMETR:def 11; then A45:a1,b1 // a2,b1 by ANALMETR:81; A46:a2<>b1 proof assume A47: a2=b1; o',b1' // o',b2' by A2,A4,AFF_1:53; then LIN o',b1',b2' by AFF_1:def 1 ;hence contradiction by A2,A3,A47,AFF_1:39;end; a2,b1 // a3,b3 by A19,A43,A45,ANALMETR:82; then a3,b3 // a3,b2 by A19,A46,ANALMETR:82; then LIN a3,b3,b2 by ANALMETR:def 11; hence contradiction by A5,A19;end; then consider c2 such that A48:c2,a2 _|_ a1,b1 & c2,a1 _|_ a2,b1 & c2,b1 _|_ a2,a1 by A1,CONAFFM:def 3; reconsider c2' = c2 as Element of Af(X) by ANALMETR:47; A49:c1 = c2 proof A50:c1 in N & c2 in N proof A51:a2,a3 _|_ b2,b3 by A2,ANALMETR:78; a2<>a3 proof assume A52:a2=a3; A53:not LIN o',a3',b1' proof assume LIN o',a3',b1'; then LIN o',b1',a3' by AFF_1:15; hence contradiction by A2,A3,AFF_1:39;end; A54:LIN o',b1',b2' proof o',b1' // o',b2' by A2,A4,AFF_1:53; hence thesis by AFF_1:def 1;end; a3',b1' // a3',b2' proof a3',b2' // a3',b1' by A2,A52,ANALMETR:48; hence thesis by AFF_1:13;end; hence contradiction by A28,A53,A54,AFF_1:23;end; then b2,b3 // c1,b3 by A36,A51,ANALMETR:85; then b3,b2 // b3,c1 by ANALMETR:81; then LIN b3,b2,c1 by ANALMETR:def 11; then A55: LIN b3',b2',c1' by ANALMETR:55; a2,a1 _|_ b2,b1 by A2,ANALMETR:78; then b2,b1 // c2,b1 by A42,A48,ANALMETR:85; then b1,b2 // b1,c2 by ANALMETR:81; then LIN b1,b2,c2 by ANALMETR:def 11; then LIN b1',b2',c2' by ANALMETR:55; hence thesis by A2,A3,A18,A28,A55,AFF_1:39;end; then o',c1' // o',c2' by A2,A4,AFF_1:53; then A56:LIN o',c1',c2' by AFF_1:def 1; A57:not LIN o',a2',c1' proof assume LIN o',a2',c1'; then A58:LIN o',c1',a2' by AFF_1:15; o'<>c1' proof assume A59: o'=c1'; o,a2 _|_ b3,b2 by A2,ANALMETR:78; then b3,b2 // a3,b3 by A2,A36,A59,ANALMETR:85; then b3,b2 // b3,a3 by ANALMETR:81; then LIN b3,b2,a3 by ANALMETR:def 11; then LIN b3',b2',a3' by ANALMETR:55; hence contradiction by A2,A3,A18,AFF_1:39;end; then A60:a2' in N' by A2,A3,A50,A58,AFF_1:39; o',a2' // o',a3' by A2,A4,AFF_1:53; then LIN o',a2',a3' by AFF_1:def 1 ;hence contradiction by A2,A3,A60,AFF_1:39;end; a2',c1' // a2',c2' proof A61:a1<>b1 proof assume A62: a1=b1; o',b1' // o',b2' by A2,A4,AFF_1:53; then LIN o',b1',b2' by AFF_1:def 1; hence contradiction by A2,A3,A62,AFF_1:39;end; a1,b1 _|_ c1,a2 by A2,A36,ANALMETR:84; then c2,a2 // c1,a2 by A48,A61,ANALMETR:85; then a2,c1 // a2,c2 by ANALMETR:81; hence thesis by ANALMETR:48;end; hence thesis by A56,A57,AFF_1:23;end; not LIN a3,a1,b2 proof assume LIN a3,a1,b2; then LIN a3',a1',b2' by ANALMETR:55; hence contradiction by A2,A3,A18,AFF_1:39;end; then consider c3 such that A63:c3,a3 _|_ a1,b2 & c3,a1 _|_ a3,b2 & c3,b2 _|_ a3,a1 by A1,CONAFFM:def 3; reconsider c3' = c3 as Element of Af(X) by ANALMETR:47; A64:c2 = c3 proof A65:c2' in N' & c3' in N' proof a2,a1 _|_ b1,b2 by A2,ANALMETR:78; then b1,b2 // c2,b1 by A42,A48,ANALMETR:85; then b1,b2 // b1,c2 by ANALMETR:81; then LIN b1,b2,c2 by ANALMETR:def 11; then A66: LIN b1',b2',c2' by ANALMETR:55; a3,a1 _|_ b2,b3 by A2,ANALMETR:78; then c3,b2 // b2,b3 by A18,A63,ANALMETR:85; then b2,b3 // b2,c3 by ANALMETR:81; then LIN b2,b3,c3 by ANALMETR:def 11; then LIN b2',b3',c3' by ANALMETR:55; hence thesis by A2,A3,A18,A28,A66,AFF_1:39;end; A67:LIN o',c2',c3' proof o',c2' // o',c3' by A2,A4,A65,AFF_1:53; hence thesis by AFF_1:def 1;end; A68:not LIN o',a1',c2' proof assume A69:LIN o',a1',c2'; A70:o'<>c2' proof assume A71:o'=c2'; A72:a2<>b1 proof assume A73: a2=b1; o',b1' // o',b2' by A2,A4,AFF_1:53; then LIN o',b1',b2' by AFF_1:def 1 ;hence contradiction by A2,A3,A73,AFF_1:39;end; A74:o,a1 _|_ b3,b2 by A2,ANALMETR:78; o,a1 _|_ a3,b2 by A2,A48,A71,A72,ANALMETR:84; then b3,b2 // a3,b2 by A2,A74,ANALMETR:85 ; then b2,b3 // b2,a3 by ANALMETR:81; then LIN b2,b3,a3 by ANALMETR:def 11 ; then LIN b2',b3',a3' by ANALMETR:55;hence contradiction by A2,A3,A18,AFF_1:39 ;end; LIN o',c2',a1' by A69,AFF_1:15; then A75:a1' in N' by A2,A3,A65,A70, AFF_1:39; o',a1' // o',a3' by A2,A4,AFF_1:53; then LIN o',a1',a3' by AFF_1:def 1; hence contradiction by A2,A3,A75,AFF_1:39;end; a1',c2' // a1',c3' proof a2<>b1 proof assume A76: a2=b1; o',b1' // o',b2' by A2,A4,AFF_1:53; then LIN o',b1',b2' by AFF_1:def 1; hence contradiction by A2,A3,A76,AFF_1:39;end; then a3,b2 _|_ c2,a1 by A2,A48,ANALMETR:84; then c2,a1 // c3,a1 by A2,A63 ,ANALMETR:85; then a1,c2 // a1,c3 by ANALMETR:81; hence thesis by ANALMETR:48;end; hence thesis by A67,A68,AFF_1:23;end; c1<>a3 proof assume A77:c1=a3; A78:a2,a3 _|_ b2,b3 by A2,ANALMETR:78; a2<>a3 proof assume A79:a2=a3; A80:not LIN o',a3',b1' proof assume LIN o',a3',b1'; then LIN o',b1',a3' by AFF_1:15; hence contradiction by A2,A3,AFF_1:39;end; A81:LIN o',b1',b2' proof o',b1' // o',b2' by A2,A4,AFF_1:53; hence thesis by AFF_1:def 1;end; a3',b1' // a3',b2' proof a3',b2' // a3',b1' by A2,A79,ANALMETR:48; hence thesis by AFF_1:13;end; hence contradiction by A28,A80,A81,AFF_1:23;end; then a3,b3 // b2,b3 by A36,A77,A78,ANALMETR:85; then b3,b2 // b3,a3 by ANALMETR:81; then LIN b3,b2,a3 by ANALMETR:def 11; then LIN b3',b2',a3' by ANALMETR:55; hence contradiction by A2,A3,A18,AFF_1:39;end; hence thesis by A36,A49,A63,A64,ANALMETR:85;end; hence thesis by A37;end; hence thesis by A21;end; hence thesis by A7,A12;end;