Copyright (c) 1990 Association of Mizar Users
environ vocabulary DIRAF, ANALOAF, INCSP_1, AFF_1; notation TARSKI, STRUCT_0, ANALOAF, DIRAF; constructors DIRAF, XBOOLE_0; clusters STRUCT_0, ZFMISC_1, XBOOLE_0; requirements SUBSET, BOOLE; theorems DIRAF, TARSKI, XBOOLE_0; schemes SUBSET_1; begin reserve AS for AffinSpace; reserve a,a',b,b',c,d,o,p,q,r,s,x,y,z,t,u,w for Element of AS; definition let AS; let a,b,c; pred LIN a,b,c means :Def1: a,b // a,c; end; canceled 9; theorem Th10: for a ex b st a<>b proof let a; consider x,y such that A1: x<>y by DIRAF:47; a=x implies a<>y by A1; hence thesis; end; theorem Th11: x,y // y,x & x,y // x,y proof thus x,y // y,x by DIRAF:47; y,x // y,y by DIRAF:47; hence x,y // x,y by DIRAF:47; end; Lm1: x,y // z,t implies z,t // x,y proof assume A1: x,y // z,t; now assume x<>y; then x<>y & x,y // x,y by Th11; hence thesis by A1,DIRAF:47; end; hence thesis by DIRAF:47; end; theorem Th12: x,y // z,z & z,z // x,y proof thus x,y // z,z by DIRAF:47; hence z,z // x,y by Lm1; end; Lm2: x,y // z,t implies y,x // z,t proof assume x,y // z,t; then x,y // z,t & x,y // y,x by Th11; then y,x // z,t or x=y by DIRAF:47; hence thesis by Th12; end; Lm3: x,y // z,t implies x,y // t,z proof assume x,y // z,t; then z,t // x,y by Lm1; then t,z // x,y by Lm2; hence thesis by Lm1; end; theorem Th13: x,y // z,t implies x,y // t,z & y,x // z,t & y,x // t,z & z,t // x,y & z,t // y,x & t,z // x,y & t,z // y,x proof assume A1: x,y // z,t; hence x,y // t,z & y,x // z,t by Lm2,Lm3; hence y,x // t,z by Lm2; thus z,t // x,y by A1,Lm1; hence z,t // y,x & t,z // x,y by Lm2,Lm3; hence t,z // y,x by Lm3; end; theorem Th14: a<>b & ((a,b // x,y & a,b // z,t) or (a,b // x,y & z,t // a,b) or (x,y // a,b & z,t // a,b) or (x,y // a,b & a,b // z,t)) implies x,y // z,t proof assume a<>b & ((a,b // x,y & a,b // z,t) or (a,b // x,y & z,t // a,b) or (x,y // a,b & z,t // a,b) or (x,y // a,b & a,b // z,t)); then a<>b & a,b // x,y & a,b // z,t by Th13; hence thesis by DIRAF:47; end; Lm4: LIN x,y,z implies LIN x,z,y & LIN y,x,z proof assume LIN x,y,z; then x,y // x,z by Def1; then x,z // x,y & y,x // y,z by Th13,DIRAF:47; hence thesis by Def1; end; theorem Th15: LIN x,y,z implies LIN x,z,y & LIN y,x,z & LIN y,z,x & LIN z,x,y & LIN z,y,x proof assume LIN x,y,z; hence LIN x,z,y & LIN y,x,z by Lm4; hence LIN y,z,x & LIN z,x,y by Lm4; hence LIN z,y,x by Lm4; end; theorem Th16: LIN x,x,y & LIN x,y,y & LIN x,y,x proof x,x // x,y & x,y // x,y & x,y // x,x by Th11,Th12; hence thesis by Def1; end; theorem Th17: x<>y & LIN x,y,z & LIN x,y,t & LIN x,y,u implies LIN z,t,u proof assume A1: x<>y & LIN x,y,z & LIN x,y,t & LIN x,y,u; A2: now assume x=z; then z<>y & z,y // z,t & z,y // z,u by A1,Def1; then z,t // z,u by Th14; hence thesis by Def1; end; now assume A3: x<>z; x,y // x,z & x,y // x,t & x,y // x,u by A1,Def1; then x,z // x,t & x,z // x,u by A1,Th14; then z,x // z,t & z,x // z,u by DIRAF:47; then z,t // z,u by A3,Th14; hence thesis by Def1; end; hence thesis by A2; end; theorem Th18: x<>y & LIN x,y,z & x,y // z,t implies LIN x,y,t proof assume A1: x<>y & LIN x,y,z & x,y // z,t; now assume A2: z<>x; x,y // x,z by A1,Def1; then x,z // z,t by A1,Th14; then z,x // z,t by Th13; then LIN z,x,t by Def1; then LIN x,z,t & LIN x,z,y & LIN x,z,x by A1,Th15,Th16; hence thesis by A2,Th17; end; hence thesis by A1,Def1; end; theorem Th19: LIN x,y,z & LIN x,y,t implies x,y // z,t proof assume A1: LIN x,y,z & LIN x,y,t; now assume A2: x<>y; now A3: x,y // x,z & x,y // x,t by A1,Def1; then x,z // x,t by A2,Th14; then z,x // z,t by DIRAF:47; then x,z // z,t by Th13; hence thesis by A3,Th14; end; hence thesis; end; hence thesis by Th12; end; theorem Th20: u<>z & LIN x,y,u & LIN x,y,z & LIN u,z,w implies LIN x,y,w proof assume A1: u<>z & LIN x,y,u & LIN x,y,z & LIN u,z,w; now assume A2: x<>y; LIN x,y,y & LIN x,y,x by Th16; then LIN z,u,y & LIN z,u,x & LIN z,u,w by A1,A2,Th15,Th17; hence thesis by A1,Th17; end; hence thesis by Th16; end; theorem Th21: ex x,y,z st not LIN x,y,z proof consider x,y,z such that A1: not x,y // x,z by DIRAF:47; not LIN x,y,z by A1,Def1; hence thesis; end; theorem x<>y implies ex z st not LIN x,y,z proof assume A1: x<>y; assume A2: not thesis; consider a,b,c such that A3: not LIN a,b,c by Th21; LIN x,y,a & LIN x,y,b & LIN x,y,c by A2; hence contradiction by A1,A3,Th17 ; end; theorem not LIN o,a,b & LIN o,b,b' & a,b // a,b' implies b=b' proof assume A1: not LIN o,a,b & LIN o,b,b' & a,b // a,b'; assume A2: b<>b'; LIN a,b,b' by A1,Def1; then LIN b,b',a & LIN b,b',o & LIN b,b',b by A1,Th15,Th16; hence contradiction by A1,A2,Th17; end; :: :: Definition of the Line joining two points :: definition let AS,a,b; func Line(a,b) -> Subset of AS means :Def2: for x holds x in it iff LIN a,b,x; existence proof defpred P[set] means for y st y = $1 holds LIN a,b,y; consider X being Subset of AS such that A1: for x being set holds x in X iff x in the carrier of AS & P[x] from Subset_Ex; take X; let x; thus x in X implies LIN a,b,x by A1; assume LIN a,b,x; then x in the carrier of AS & for y st y = x holds LIN a,b,y; hence thesis by A1; end; uniqueness proof let X1,X2 be Subset of AS such that A2: for x holds x in X1 iff LIN a,b,x and A3: for x holds x in X2 iff LIN a,b,x; for x being set holds x in X1 iff x in X2 proof let x be set; thus x in X1 implies x in X2 proof assume A4: x in X1; then reconsider x' = x as Element of AS; LIN a,b,x' by A2,A4; hence thesis by A3; end; assume A5: x in X2; then reconsider x' = x as Element of AS; LIN a,b,x' by A3,A5; hence thesis by A2; end; hence thesis by TARSKI:2; end; end; reserve A,C,D,K for Subset of AS; Lm5: Line(a,b) c= Line(b,a) proof now let x be set; assume A1: x in Line(a,b); then reconsider x'=x as Element of AS; LIN a,b,x' by A1,Def2; then LIN b,a,x' by Th15; hence x in Line(b,a) by Def2; end; hence thesis by TARSKI:def 3; end; canceled; theorem Th25: Line(a,b)=Line(b,a) proof Line(a,b) c= Line(b,a) & Line(b,a) c= Line(a,b) by Lm5; hence thesis by XBOOLE_0:def 10; end; definition let AS,a,b; redefine func Line(a,b); commutativity by Th25; end; theorem Th26: a in Line(a,b) & b in Line(a,b) proof LIN a,b,a & LIN a,b,b by Th16; hence thesis by Def2; end; theorem Th27: c in Line(a,b) & d in Line(a,b) & c <>d implies Line(c,d) c= Line(a,b) proof assume A1: c in Line(a,b) & d in Line(a,b) & c <>d; then A2: LIN a,b,c & LIN a,b,d by Def2; now let x be set; assume A3: x in Line(c,d); then reconsider x'=x as Element of AS; LIN c,d,x' by A3,Def2; then LIN a,b,x' by A1,A2,Th20; hence x in Line(a,b) by Def2; end; hence thesis by TARSKI:def 3; end; theorem Th28: c in Line(a,b) & d in Line(a,b) & a<>b implies Line(a,b) c= Line(c,d) proof assume A1: c in Line(a,b) & d in Line(a,b) & a<>b; then A2: LIN a,b,c & LIN a,b,d by Def2; now let x be set; assume A3: x in Line(a,b); then reconsider x'=x as Element of AS; LIN a,b,x' by A3,Def2; then LIN c,d,x' by A1,A2,Th17; hence x in Line(c,d) by Def2; end; hence thesis by TARSKI:def 3; end; :: :: Definition of the Line :: definition let AS; let A; attr A is being_line means :Def3: ex a,b st a<>b & A=Line(a,b); synonym A is_line; end; Lm6: for a,b,A holds A is_line & a in A & b in A & a<>b implies A=Line(a,b) proof let a,b,A; assume that A1: A is_line and A2: a in A & b in A & a<>b; A3: ex p,q st p<>q & A=Line(p,q) by A1,Def3; then A4: Line(a,b) c= A by A2,Th27; A c= Line(a,b) by A2,A3,Th28; hence thesis by A4,XBOOLE_0:def 10; end; :: Otrzymujemy stad zasadnicze stwierdzenie, ze kazda prosta :: jest jednoznacznie wyznaczona przez swoje dowolne dwa :: punkty. canceled; theorem Th30: for a,b,A,C holds A is_line & C is_line & a in A & b in A & a in C & b in C implies a=b or A=C proof let a,b,A,C; assume A1: A is_line & C is_line & a in A & b in A & a in C & b in C; assume a<>b; then A=Line(a,b) & C=Line(a,b) by A1,Lm6; hence thesis; end; theorem Th31: A is_line implies ex a,b st a in A & b in A & a<>b proof assume A is_line; then consider a,b such that A1: a<>b & A=Line(a,b) by Def3; a in A & b in A by A1,Th26; hence thesis by A1; end; theorem Th32: A is_line implies ex b st a<>b & b in A proof assume A is_line; then consider p,q such that A1: p in A & q in A & p<>q by Th31; a=p implies a<>q & q in A by A1; hence thesis by A1; end; theorem Th33: LIN a,b,c iff ex A st A is_line & a in A & b in A & c in A proof A1: LIN a,b,c implies ex A st A is_line & a in A & b in A & c in A proof assume A2: LIN a,b,c; A3:now assume A4: a=b & a=c; consider x such that A5: a<>x by Th10; set A=Line(a,x); A is_line & a in A & b in A & c in A by A4,A5,Def3,Th26; hence ex A st A is_line & a in A & b in A & c in A; end; A6:now assume A7:a<>b; set A=Line(a,b); A is_line & a in A & b in A & c in A by A2,A7,Def2,Def3,Th26; hence ex A st A is_line & a in A & b in A & c in A; end; now assume A8:a<>c; A9: LIN a,c,b by A2,Th15; set A=Line(a,c); A is_line & a in A & b in A & c in A by A8,A9,Def2,Def3,Th26; hence ex A st A is_line & a in A & b in A & c in A; end; hence thesis by A3,A6; end; (ex A st A is_line & a in A & b in A & c in A) implies LIN a,b,c proof given A such that A10: A is_line and A11: a in A & b in A & c in A; consider p,q such that A12: p<>q & A=Line(p,q) by A10,Def3; LIN p,q,a & LIN p,q,b & LIN p,q,c by A11,A12,Def2; hence thesis by A12,Th17; end; hence thesis by A1; end; :: :: Definition of the parallelity between segments and lines :: definition let AS; let a,b; let A; pred a,b // A means :Def4: ex c,d st c <>d & A=Line(c,d) & a,b // c,d; end; definition let AS,A,C; pred A // C means :Def5: ex a,b st A=Line(a,b) & a<>b & a,b // C; end; canceled 2; theorem Th36: (c in Line(a,b) & a<>b) implies (d in Line(a,b) iff a,b // c,d) proof assume A1: c in Line(a,b) & a<>b; then A2: LIN a,b,c by Def2; A3: d in Line(a,b) implies a,b // c,d proof assume d in Line(a,b); then LIN a,b,d by Def2; hence thesis by A2,Th19; end; a,b // c,d implies d in Line(a,b) proof assume a,b // c,d; then LIN a,b,d by A1,A2,Th18; hence thesis by Def2; end; hence thesis by A3; end; theorem Th37: A is_line & a in A implies (b in A iff a,b // A ) proof assume A1: A is_line & a in A; A2: now assume A3: b in A; consider p,q such that A4: p<>q & A=Line(p,q) by A1,Def3; p,q // a,b by A1,A3,A4,Th36; then a,b // p,q by Th13; hence a,b // A by A4,Def4; end; now assume a,b // A; then consider p,q such that A5: p<>q & A=Line(p,q) & a,b // p,q by Def4; p,q // a,b by A5,Th13; hence b in A by A1,A5,Th36; end; hence thesis by A2; end; theorem (a<>b & A=Line(a,b)) iff (A is_line & a in A & b in A & a<>b) by Def3,Lm6,Th26; theorem Th39: A is_line & a in A & b in A & a<>b & LIN a,b,x implies x in A proof assume that A1: A is_line & a in A & b in A & a<>b and A2: LIN a,b,x; A=Line(a,b) by A1,Lm6; hence thesis by A2,Def2; end; theorem Th40: (ex a,b st a,b // A) implies A is_line proof given a,b such that A1: a,b // A; ex p,q st p<>q & A=Line(p,q) & a,b // p,q by A1,Def4; hence A is_line by Def3; end; theorem Th41: (c in A & d in A & A is_line & c <>d) implies (a,b // A iff a,b // c,d) proof assume that A1: c in A & d in A and A2: A is_line and A3: c <>d; A4: a,b // A implies a,b // c,d proof assume a,b // A; then consider p,q such that A5: p<>q & A=Line(p,q) & a,b // p,q by Def4; p,q // c,d by A1,A5,Th36; hence thesis by A5,Th14; end; a,b // c,d implies a,b // A proof assume A6: a,b // c,d; A=Line(c,d) by A1,A2,A3,Lm6; hence thesis by A3,A6,Def4; end; hence thesis by A4; end; canceled; theorem Th43: a<>b implies a,b // Line(a,b) proof assume A1: a<>b; a,b // a,b by Th11; hence thesis by A1,Def4; end; theorem Th44: A is_line implies (a,b // A iff (ex c,d st c <>d & c in A & d in A & a,b // c,d)) proof assume A1: A is_line; A2: a,b // A implies (ex c,d st c <>d & c in A & d in A & a,b // c,d) proof assume a,b // A; then consider c,d such that A3: c <>d & A=Line(c,d) & a,b // c,d by Def4; c <>d & c in A & d in A & a,b // c,d by A3,Th26; hence thesis; end; (ex c,d st c <>d & c in A & d in A & a,b // c,d) implies a,b // A proof assume (ex c,d st c <>d & c in A & d in A & a,b // c,d); then consider c,d such that A4: c <>d & c in A & d in A & a,b // c,d; A=Line(c,d) by A1,A4,Lm6; hence thesis by A4,Def4; end; hence thesis by A2; end; theorem (A is_line & a,b // A & c,d // A) implies a,b // c,d proof assume that A1: A is_line and A2: a,b // A & c,d // A; consider p,q such that A3: p<>q & A=Line(p,q) & a,b // p,q by A2,Def4; p in A & q in A by A3,Th26; then c,d // p,q by A1,A2,A3,Th41; hence thesis by A3,Th14; end; theorem Th46: (a,b // A & a,b // p,q & a<>b) implies p,q // A proof assume A1: a,b // A & a,b // p,q & a<>b; then A2:A is_line by Th40; then consider c,d such that A3: c <>d & c in A & d in A & a,b // c,d by A1,Th44; c <>d & c in A & d in A & p,q // c,d by A1,A3,Th14; hence thesis by A2,Th44; end; theorem Th47: A is_line implies a,a // A proof assume A is_line; then consider p,q such that A1: p<>q & A=Line(p,q) by Def3; a,a // p,q by Th12; hence thesis by A1,Def4; end; theorem Th48: a,b // A implies b,a // A proof assume A1: a,b // A; now assume A2: a<>b; a,b // b,a by Th11; hence thesis by A1,A2,Th46; end; hence thesis by A1; end; theorem a,b // A & not a in A implies not b in A proof assume A1: a,b // A & not a in A & b in A; then A2: A is_line by Th40; b,a // A by A1,Th48; hence contradiction by A1,A2,Th37; end; theorem Th50: A // C implies (A is_line & C is_line) proof assume A // C; then ex a,b st A=Line(a,b) & a<>b & a,b // C by Def5; hence thesis by Def3,Th40; end; theorem Th51: A // C iff (ex a,b,c,d st a<>b & c <>d & a,b // c,d & A=Line(a,b) & C=Line(c,d)) proof A1: A // C implies (ex a,b,c,d st a<>b & c <>d & a,b // c,d & A=Line(a,b) & C=Line(c,d)) proof assume A // C; then consider a,b such that A2: A=Line(a,b) & a<>b & a,b // C by Def5; ex c,d st c <>d & C=Line(c,d) & a,b // c,d by A2,Def4; hence thesis by A2; end; (ex a,b,c,d st a<>b & c <>d & a,b // c,d & A=Line(a,b) & C=Line(c,d)) implies A // C proof assume (ex a,b,c,d st a<>b & c <>d & a,b // c,d & A=Line(a,b) & C=Line(c,d)); then consider a,b,c,d such that A3: a<>b & c <>d & a,b // c,d & A=Line(a,b) & C=Line(c,d); a,b // C by A3,Def4; hence thesis by A3,Def5; end; hence thesis by A1; end; theorem Th52: (A is_line & C is_line & a in A & b in A & c in C & d in C & a<>b & c <>d) implies (A // C iff a,b // c,d) proof assume A1: A is_line & C is_line & a in A & b in A & c in C & d in C & a<>b & c <>d; A2: A // C implies a,b // c,d proof assume A // C; then consider p,q,r,s such that A3: p<>q & r<>s & p,q // r,s & A=Line(p,q) & C=Line(r,s) by Th51; p,q // a,b by A1,A3,Th36; then a,b // r,s & r,s // c,d by A1,A3,Th14,Th36; hence thesis by A3,Th14; end; a,b // c,d implies A // C proof assume A4: a,b // c,d; A=Line(a,b) & C=Line(c,d) by A1,Lm6; hence thesis by A1,A4,Th51; end; hence thesis by A2; end; theorem Th53: a in A & b in A & c in C & d in C & A // C implies a,b // c,d proof assume that A1: a in A & b in A & c in C & d in C and A2: A // C; now assume A3: a<>b & c <>d; A is_line & C is_line by A2,Th50; hence thesis by A1,A2,A3,Th52; end; hence thesis by Th12; end; theorem a in A & b in A & A // C implies a,b // C proof assume A1: a in A & b in A & A // C; then A2: A is_line & C is_line by Th50; now consider p,q such that A3: p in C & q in C & p<>q by A2,Th31; A4: C=Line(p,q) by A2,A3,Lm6; a,b // p,q by A1,A3,Th53; hence thesis by A3,A4,Def4; end; hence thesis; end; theorem Th55: A is_line implies A // A proof assume A is_line; then consider a,b such that A1: a<>b & A=Line(a,b) by Def3; a,b // a,b by Th11; hence thesis by A1,Th51; end; theorem Th56: A // C implies C // A proof assume A // C; then consider a,b,c,d such that A1: a<>b & c <>d & a,b // c,d & A=Line(a,b) & C=Line(c,d) by Th51; c,d // a,b by A1,Th13; hence thesis by A1,Th51; end; definition let AS,A,C; redefine pred A // C; symmetry by Th56; end; theorem Th57: a,b // A & A // C implies a,b // C proof assume A1: a,b // A & A // C; then consider p,q,c,d such that A2: p<>q & c <>d & p,q // c,d & A=Line(p,q) & C=Line(c,d) by Th51; A3: p in A & q in A by A2,Th26; A is_line by A1,Th50; then a,b // p,q by A1,A2,A3,Th41; then a,b // c,d by A2,Th14; hence thesis by A2,Def4; end; Lm7: A // C & C // D implies A // D proof assume that A1: A // C and A2: C // D; consider a,b,c,d such that A3: a<>b & c <>d & a,b // c,d & A=Line(a,b) & C=Line(c,d) by A1,Th51; A4: C is_line & D is_line by A2,Th50; then consider p,q such that A5: p<>q & D=Line(p,q) by Def3; A6: p in D & q in D by A5,Th26; c in C & d in C by A3,Th26; then c,d // p,q by A2,A3,A4,A5,A6,Th52; then a<>b & p<>q & a,b // p,q & A=Line(a,b) & D=Line(p,q) by A3,A5,Th14; hence thesis by Th51; end; theorem ((A // C & C // D) or (A // C & D // C) or (C // A & C // D) or (C // A & D // C)) implies A // D by Lm7; theorem Th59: A // C & p in A & p in C implies A=C proof assume A1: A // C & p in A & p in C; for A,C,p holds A // C & p in A & p in C implies A c= C proof let A,C,p; assume A2: A // C & p in A & p in C; then A3: A is_line & C is_line by Th50; now let x be set; assume A4: x in A; then reconsider x'=x as Element of AS; now assume A5: x'<>p; then A=Line(p,x') by A2,A3,A4,Lm6; then p,x' // A by A5,Th43; then A6: p,x' // C by A2,Th57; consider q such that A7: p<>q & q in C by A3,Th32; A8: C=Line(p,q) by A2,A3,A7,Lm6; p,x' // p,q by A2,A3,A6,A7,Th41; then p,q // p,x' by Th13; then LIN p,q,x' by Def1; hence x in C by A8,Def2; end; hence x in C by A2; end; hence A c= C by TARSKI:def 3; end; then A c= C & C c= A by A1; hence thesis by XBOOLE_0:def 10; end; theorem x in K & not a in K & a,b // K implies (a=b or not LIN x,a,b) proof assume A1: x in K & not a in K & a,b // K; assume that A2: a<>b and A3: LIN x,a,b; set A=Line(a,b); LIN a,b,x by A3,Th15; then A4: x in A by Def2; A5: a in A by Th26; A // K by A1,A2,Def5; hence contradiction by A1,A4,A5,Th59; end; theorem a,b // K & a',b' // K & LIN p,a,a' & LIN p,b,b' & p in K & not a in K & a=b implies a'=b' proof assume A1: a,b // K & a',b' // K & LIN p,a,a' & LIN p,b,b' & p in K & not a in K & a=b; set A=Line(p,a); A2: A is_line by A1,Def3; A3: a' in A & b' in A by A1,Def2; assume A4: a'<>b'; then A=Line(a',b') by A2,A3,Lm6; then A5: A // K by A1,A4,Def5; p in A by Th26; then A=K by A1,A5,Th59; hence contradiction by A1,Th26; end; theorem A is_line & a in A & b in A & c in A & a<>b & a,b // c,d implies d in A proof assume A1: A is_line & a in A & b in A & c in A & a<>b & a,b // c,d; now assume A2: c <>d; set C=Line(c,d); A3: C is_line & c in C & d in C by A2,Def3,Th26; then A // C by A1,A2,Th52; hence thesis by A1,A3,Th59; end; hence thesis by A1; end; theorem for a, A st A is_line ex C st a in C & A // C proof let a,A; assume A is_line; then consider p,q such that A1: p<>q & A=Line(p,q) by Def3; consider b such that A2: p,q // a,b & a<>b by DIRAF:47; set C=Line(a,b); A3: A // C by A1,A2,Th51; a in C by Th26; hence thesis by A3; end; theorem A // C & A // D & p in C & p in D implies C=D proof assume A1: A // C & A // D & p in C & p in D; then C // D by Lm7; hence thesis by A1,Th59; end; :: :: Additional theorems :: theorem A is_line & a in A & b in A & c in A & d in A implies a,b // c,d proof assume A1: A is_line & a in A & b in A & c in A & d in A; then A // A by Th55; hence thesis by A1,Th53; end; theorem A is_line & a in A & b in A implies a,b // A by Th37; theorem a,b // A & a,b // C & a<>b implies A // C proof assume A1: a,b // A & a,b // C & a<>b; then A2: A is_line & C is_line by Th40; then consider c,d such that A3: c <>d & c in A & d in A & a,b // c,d by A1,Th44; consider p,q such that A4: p<>q & p in C & q in C & a,b // p,q by A1,A2,Th44; c,d // p,q by A1,A3,A4,Th14; hence thesis by A2,A3,A4,Th52; end; theorem Th68: not LIN o,a,b & LIN o,a,a' & LIN o,b,b' & a,b // a',b' & a'=b' implies a'=o & b'=o proof assume A1: not LIN o,a,b & LIN o,a,a' & LIN o,b,b' & a,b // a',b' & a'=b'; then A2: o<>a & o<>b & a<>b by Th16; set A=Line(o,a), C=Line(o,b); A3: A is_line & C is_line & o in A & a in A & o in C & b in C by A2,Def3,Th26; then A4: A<>C by A1,Th33; b' in C & a' in A & b' in A & a' in C by A1,A2,A3,Th39; hence thesis by A3,A4,Th30; end; theorem Th69: not LIN o,a,b & LIN o,a,a' & LIN o,b,b' & a,b // a',b' & a'=o implies b'=o proof assume A1: not LIN o,a,b & LIN o,a,a' & LIN o,b,b' & a,b // a',b' & a'=o; then A2: a',b // a',b' by Def1; now assume a,b // a',b; then b,a // b,a' by Th13; then LIN b,a,a' by Def1; hence contradiction by A1,Th15; end; hence thesis by A1,A2,Th14; end; theorem not LIN o,a,b & LIN o,a,a' & LIN o,b,b' & LIN o,b,x & a,b // a',b' & a,b // a',x implies b'=x proof assume A1: not LIN o,a,b & LIN o,a,a' & LIN o,b,b' & LIN o,b,x & a,b // a',b' & a,b // a',x; then A2: o<>a & o<>b & a<>b by Th16; assume A3: b'<>x; A4: a'<>b' proof assume a'=b'; then a'=o & b'=o by A1,Th68; hence contradiction by A1,A3,Th69; end; A5: a'<>o proof assume a'=o; then b'=o & x=o by A1,Th69; hence contradiction by A3; end; a',b' // a',x by A1,A2,Th14; then A6: LIN a',b',x by Def1; set A=Line(o,a), C=Line(o,b), P=Line(a',b'); A7: A is_line & C is_line & P is_line & o in A & a in A & o in C & b in C & a' in P & b' in P by A2,A4,Def3,Th26; then A8: a' in A & b' in C & x in C & x in P by A1,A2,A4,A6,Th39; then a' in C by A3,A7,Th30; then b in A by A5,A7,A8,Th30; hence contradiction by A1,A7,Th33; end; theorem for a,b,A holds A is_line & a in A & b in A & a<>b implies A=Line(a,b) by Lm6; :: :: Facts about Affine Plane :: reserve AP for AffinPlane; reserve a,b,c,d,x,p,q for Element of AP; reserve A,C for Subset of AP; theorem Th72: A is_line & C is_line & not A // C implies ex x st x in A & x in C proof assume A1: A is_line & C is_line & not A // C; then consider a,b such that A2: a<>b & A=Line(a,b) by Def3; consider c,d such that A3: c <>d & C=Line(c,d) by A1,Def3; not a,b // c,d by A1,A2,A3,Th51; then consider x such that A4: a,b // a,x & c,d // c,x by DIRAF:54; LIN a,b,x & LIN c,d,x by A4,Def1; then x in A & x in C by A2,A3,Def2; hence thesis; end; theorem A is_line & not a,b // A implies ex x st x in A & LIN a,b,x proof assume that A1: A is_line and A2: not a,b // A; A3: a<>b by A1,A2,Th47; set C=Line(a,b); A4: C is_line by A3,Def3; not C // A proof assume C // A; then consider p,q such that A5: C=Line(p,q) & p<>q & p,q // A by Def5; a in C & b in C by Th26; then p,q // a,b by A5,Th36; hence contradiction by A2,A5,Th46; end; then consider x such that A6: x in C & x in A by A1,A4,Th72; LIN a,b,x by A6,Def2; hence thesis by A6; end; theorem not a,b // c,d implies ex p st LIN a,b,p & LIN c,d,p proof assume not a,b // c,d; then consider p such that A1: a,b // a,p & c,d // c,p by DIRAF:54; LIN a,b,p & LIN c,d,p by A1,Def1; hence thesis; end;