The Mizar article:

Parallelity and Lines in Affine Spaces

by
Henryk Oryszczyszyn, and
Krzysztof Prazmowski

Received May 4, 1990

Copyright (c) 1990 Association of Mizar Users

MML identifier: AFF_1
[ MML identifier index ]


environ

 vocabulary DIRAF, ANALOAF, INCSP_1, AFF_1;
 notation TARSKI, STRUCT_0, ANALOAF, DIRAF;
 constructors DIRAF, XBOOLE_0;
 clusters STRUCT_0, ZFMISC_1, XBOOLE_0;
 requirements SUBSET, BOOLE;
 theorems DIRAF, TARSKI, XBOOLE_0;
 schemes SUBSET_1;

begin
  reserve AS for AffinSpace;
  reserve a,a',b,b',c,d,o,p,q,r,s,x,y,z,t,u,w
                             for Element of AS;

definition let AS; let a,b,c;
 pred LIN a,b,c means
  :Def1: a,b // a,c;
end;

canceled 9;

theorem Th10:
  for a ex b st a<>b
   proof let a; consider x,y such that A1: x<>y by DIRAF:47;
        a=x implies a<>y by A1;
    hence thesis;
   end;

theorem Th11:
 x,y // y,x & x,y // x,y
 proof thus x,y // y,x by DIRAF:47;
    y,x // y,y by DIRAF:47; hence x,y // x,y by DIRAF:47;
 end;

 Lm1:
 x,y // z,t implies z,t // x,y
  proof assume A1: x,y // z,t;
      now assume x<>y;
    then x<>y & x,y // x,y by Th11;
    hence thesis by A1,DIRAF:47; end;
   hence thesis by DIRAF:47;
  end;

theorem Th12:
 x,y // z,z & z,z // x,y
 proof thus x,y // z,z by DIRAF:47;
  hence z,z // x,y by Lm1;
 end;

Lm2:
 x,y // z,t implies y,x // z,t
 proof assume x,y // z,t; then x,y // z,t & x,y // y,x by Th11;
  then y,x // z,t or x=y by DIRAF:47;
  hence thesis by Th12;
 end;

Lm3:
 x,y // z,t implies x,y // t,z
  proof assume x,y // z,t; then z,t // x,y by Lm1;
   then t,z // x,y by Lm2;
   hence thesis by Lm1;
  end;

theorem Th13:
  x,y // z,t implies x,y // t,z & y,x // z,t & y,x // t,z &
        z,t // x,y & z,t // y,x & t,z // x,y & t,z // y,x
  proof assume A1: x,y // z,t;
   hence x,y // t,z & y,x // z,t by Lm2,Lm3;
   hence y,x // t,z by Lm2;
   thus z,t // x,y by A1,Lm1;
   hence z,t // y,x & t,z // x,y by Lm2,Lm3;
   hence t,z // y,x by Lm3;
  end;

theorem Th14:
  a<>b & ((a,b // x,y & a,b // z,t) or (a,b // x,y & z,t // a,b) or
        (x,y // a,b & z,t // a,b) or (x,y // a,b & a,b // z,t))
        implies x,y // z,t
   proof assume a<>b &
       ((a,b // x,y & a,b // z,t) or (a,b // x,y & z,t // a,b) or
        (x,y // a,b & z,t // a,b) or (x,y // a,b & a,b // z,t));
    then a<>b & a,b // x,y & a,b // z,t by Th13;
    hence thesis by DIRAF:47;
   end;

Lm4: LIN x,y,z implies LIN x,z,y & LIN y,x,z
 proof assume LIN x,y,z; then x,y // x,z by Def1;
  then x,z // x,y & y,x // y,z by Th13,DIRAF:47; hence thesis by Def1; end;

theorem Th15:
  LIN x,y,z implies LIN x,z,y & LIN y,x,z & LIN y,z,x & LIN z,x,y & LIN z,y,x
   proof assume LIN x,y,z;
    hence LIN x,z,y & LIN y,x,z by Lm4;
    hence LIN y,z,x & LIN z,x,y by Lm4;
    hence LIN z,y,x by Lm4;
   end;

theorem Th16:
 LIN x,x,y & LIN x,y,y & LIN x,y,x
  proof x,x // x,y & x,y // x,y & x,y // x,x by Th11,Th12;
   hence thesis by Def1;
  end;

theorem Th17:
 x<>y & LIN x,y,z & LIN x,y,t & LIN x,y,u implies LIN z,t,u
  proof assume A1: x<>y & LIN x,y,z & LIN x,y,t & LIN x,y,u;
   A2: now assume x=z;
     then z<>y & z,y // z,t & z,y // z,u by A1,Def1;
     then z,t // z,u by Th14; hence thesis by Def1; end;
      now assume A3: x<>z;
      x,y // x,z & x,y // x,t & x,y // x,u by A1,Def1;
    then x,z // x,t & x,z // x,u by A1,Th14;
    then z,x // z,t & z,x // z,u by DIRAF:47;
    then z,t // z,u by A3,Th14;
    hence thesis by Def1; end;
   hence thesis by A2;
  end;

theorem Th18:
 x<>y & LIN x,y,z & x,y // z,t implies LIN x,y,t
  proof assume A1: x<>y & LIN x,y,z & x,y // z,t;

      now assume A2: z<>x; x,y // x,z by A1,Def1;
    then x,z // z,t by A1,Th14; then z,x // z,t by Th13;
    then LIN z,x,t by Def1;
    then LIN x,z,t & LIN x,z,y & LIN x,z,x by A1,Th15,Th16;
    hence thesis by A2,Th17; end;
   hence thesis by A1,Def1;
  end;

theorem Th19:
  LIN x,y,z & LIN x,y,t implies x,y // z,t
   proof assume A1: LIN x,y,z & LIN x,y,t;
       now assume A2: x<>y;
        now A3: x,y // x,z & x,y // x,t by A1,Def1;
      then x,z // x,t by A2,Th14; then z,x // z,t by DIRAF:47;
      then x,z // z,t by Th13; hence thesis by A3,Th14; end;
     hence thesis; end;
    hence thesis by Th12;
   end;

theorem Th20:
 u<>z & LIN x,y,u & LIN x,y,z & LIN u,z,w implies LIN x,y,w
  proof assume A1: u<>z & LIN x,y,u & LIN x,y,z & LIN u,z,w;
      now assume A2: x<>y;
      LIN x,y,y & LIN x,y,x by Th16;
    then LIN z,u,y & LIN z,u,x & LIN z,u,w by A1,A2,Th15,Th17;
    hence thesis by A1,Th17; end;
   hence thesis by Th16;
  end;

theorem Th21:
  ex x,y,z st not LIN x,y,z
  proof consider x,y,z such that A1: not x,y // x,z by DIRAF:47;
     not LIN x,y,z by A1,Def1;
   hence thesis;
  end;

theorem
    x<>y implies ex z st not LIN x,y,z
 proof assume A1: x<>y; assume A2: not thesis;
  consider a,b,c such that A3: not LIN a,b,c by Th21;
    LIN x,y,a & LIN x,y,b & LIN x,y,c by A2; hence contradiction by A1,A3,Th17
;
 end;

theorem
   not LIN o,a,b & LIN o,b,b' & a,b // a,b' implies b=b'
  proof assume A1: not LIN o,a,b & LIN o,b,b' & a,b // a,b';
   assume A2: b<>b';
     LIN a,b,b' by A1,Def1;
   then LIN b,b',a & LIN b,b',o & LIN b,b',b by A1,Th15,Th16;
   hence contradiction by A1,A2,Th17;
  end;

::
:: Definition of the Line joining two points
::

definition
 let AS,a,b;
 func Line(a,b) -> Subset of AS means
:Def2: for x holds x in it iff LIN a,b,x;
 existence
  proof
    defpred P[set] means for y st y = $1 holds LIN a,b,y;
    consider X being Subset of AS such that
A1:  for x being set holds x in X iff x in the carrier of AS &
       P[x] from Subset_Ex;
    take X;
    let x;
    thus x in X implies LIN a,b,x by A1;
    assume LIN a,b,x;
    then x in the carrier of AS & for y st y = x holds LIN a,b,y;
    hence thesis by A1;
  end;
 uniqueness
  proof
     let X1,X2 be Subset of AS such that
A2:    for x holds x in X1 iff LIN a,b,x and
A3:    for x holds x in X2 iff LIN a,b,x;
     for x being set holds x in X1 iff x in X2
    proof let x be set;
     thus x in X1 implies x in X2
      proof assume
A4:      x in X1;
       then reconsider x' = x as Element of AS;
         LIN a,b,x' by A2,A4;
       hence thesis by A3;
      end;
     assume
A5:     x in X2;
     then reconsider x' = x as Element of AS;
       LIN a,b,x' by A3,A5;
     hence thesis by A2;
    end;
   hence thesis by TARSKI:2;
  end;
end;

reserve A,C,D,K for Subset of AS;

Lm5: Line(a,b) c= Line(b,a)
  proof
      now let x be set; assume A1: x in Line(a,b);
      then reconsider x'=x as Element of AS;
        LIN a,b,x' by A1,Def2;
      then LIN b,a,x' by Th15;
     hence x in Line(b,a) by Def2;
    end;
   hence thesis by TARSKI:def 3;
  end;

canceled;

theorem Th25:
Line(a,b)=Line(b,a)
  proof Line(a,b) c= Line(b,a) & Line(b,a) c= Line(a,b) by Lm5;
   hence thesis by XBOOLE_0:def 10;
  end;

definition let AS,a,b;
 redefine func Line(a,b);
 commutativity by Th25;
end;

theorem Th26:
 a in Line(a,b) & b in Line(a,b)
  proof LIN a,b,a & LIN a,b,b by Th16;
   hence thesis by Def2;
  end;

theorem Th27:
 c in Line(a,b) & d in Line(a,b) & c <>d implies Line(c,d) c= Line(a,b)
  proof assume A1: c in Line(a,b) & d in Line(a,b) & c <>d;
    then A2: LIN a,b,c & LIN a,b,d by Def2;
      now let x be set; assume A3: x in Line(c,d);
     then reconsider x'=x as Element of AS;
       LIN c,d,x' by A3,Def2;
     then LIN a,b,x' by A1,A2,Th20; hence x in Line(a,b) by Def2;
    end;
  hence thesis by TARSKI:def 3;
end;

theorem Th28:
  c in Line(a,b) & d in Line(a,b) & a<>b implies Line(a,b) c= Line(c,d)
  proof assume A1: c in Line(a,b) & d in Line(a,b) & a<>b;
    then A2: LIN a,b,c & LIN a,b,d by Def2;
      now let x be set; assume A3: x in Line(a,b);
     then reconsider x'=x as Element of AS;
       LIN a,b,x' by A3,Def2; then LIN c,d,x' by A1,A2,Th17;
     hence x in Line(c,d) by Def2;
    end;
  hence thesis by TARSKI:def 3;
end;

::
::                   Definition of the Line
::

definition let AS; let A;
 attr A is being_line means
  :Def3: ex a,b st a<>b & A=Line(a,b);
  synonym A is_line;
end;

Lm6: for a,b,A holds A is_line & a in A & b in A & a<>b
                                           implies A=Line(a,b)
  proof let a,b,A; assume that A1: A is_line and
    A2: a in A & b in A & a<>b;
 A3:    ex p,q st p<>q & A=Line(p,q) by A1,Def3;
    then A4: Line(a,b) c= A by A2,Th27;
      A c= Line(a,b) by A2,A3,Th28;
   hence thesis by A4,XBOOLE_0:def 10;
  end;

:: Otrzymujemy stad zasadnicze stwierdzenie, ze kazda prosta
:: jest jednoznacznie wyznaczona przez swoje dowolne dwa
:: punkty.

canceled;

theorem Th30:
  for a,b,A,C holds A is_line & C is_line &
          a in A & b in A & a in C & b in C implies a=b or A=C
  proof let a,b,A,C; assume A1: A is_line & C is_line &
    a in A & b in A & a in C & b in C;
    assume a<>b; then A=Line(a,b) & C=Line(a,b) by A1,Lm6;
   hence thesis;
  end;

theorem Th31:
 A is_line implies ex a,b st a in A & b in A & a<>b
  proof assume A is_line; then consider a,b such that
    A1: a<>b & A=Line(a,b) by Def3;
      a in A & b in A by A1,Th26;
   hence thesis by A1;
  end;

theorem Th32:
 A is_line implies ex b st a<>b & b in A
  proof assume A is_line;
   then consider p,q such that
   A1: p in A & q in A & p<>q by Th31;
     a=p implies a<>q & q in A by A1;
   hence thesis by A1; end;

theorem Th33:
 LIN a,b,c iff ex A st A is_line & a in A & b in A & c in A
  proof A1: LIN a,b,c implies ex A st A is_line & a in A & b in A & c in A
    proof assume A2: LIN a,b,c;
           A3:now assume A4: a=b & a=c;
       consider x such that A5: a<>x by Th10;
       set A=Line(a,x);
         A is_line & a in A & b in A & c in A by A4,A5,Def3,Th26;
       hence ex A st A is_line & a in A & b in A & c in A; end;
           A6:now assume A7:a<>b;
       set A=Line(a,b);
         A is_line & a in A & b in A & c in A by A2,A7,Def2,Def3,Th26;
       hence ex A st A is_line & a in A & b in A & c in A; end;
             now assume A8:a<>c; A9: LIN a,c,b by A2,Th15;
       set A=Line(a,c);
         A is_line & a in A & b in A & c in A by A8,A9,Def2,Def3,Th26;
       hence ex A st A is_line & a in A & b in A & c in A; end;
       hence thesis by A3,A6; end;
            (ex A st A is_line & a in A & b in A & c in A)
                                                  implies LIN a,b,c
       proof given A such that
              A10: A is_line and
              A11: a in A & b in A & c in A;
       consider p,q such that A12: p<>q & A=Line(p,q) by A10,Def3;
          LIN p,q,a & LIN p,q,b & LIN p,q,c by A11,A12,Def2;
        hence thesis by A12,Th17; end;
   hence thesis by A1; end;

::
::   Definition of the parallelity between segments and lines
::

definition let AS; let a,b; let A;
   pred a,b // A means
                :Def4: ex c,d st c <>d & A=Line(c,d) & a,b // c,d;
end;

definition let AS,A,C;
   pred A // C means
                  :Def5: ex a,b st A=Line(a,b) & a<>b & a,b // C;
end;

canceled 2;

theorem Th36:
  (c in Line(a,b) & a<>b) implies (d in Line(a,b) iff a,b // c,d)
 proof assume A1: c in Line(a,b) & a<>b;
                              then A2: LIN a,b,c by Def2;
 A3: d in Line(a,b) implies a,b // c,d
  proof assume d in Line(a,b); then LIN a,b,d by Def2;
        hence thesis by A2,Th19; end;
    a,b // c,d implies d in Line(a,b)
  proof assume a,b // c,d; then LIN a,b,d by A1,A2,Th18;
        hence thesis by Def2; end;
 hence thesis by A3; end;

theorem Th37:
 A is_line & a in A implies (b in A iff a,b // A )
 proof assume A1: A is_line & a in A;
   A2: now assume A3: b in A; consider p,q such that
                A4: p<>q & A=Line(p,q) by A1,Def3;
           p,q // a,b by A1,A3,A4,Th36; then a,b // p,q by Th13;
        hence a,b // A by A4,Def4; end;
      now assume a,b // A; then consider p,q such that
                A5: p<>q & A=Line(p,q) & a,b // p,q by Def4;
           p,q // a,b by A5,Th13;
        hence b in A by A1,A5,Th36; end;
  hence thesis by A2;
 end;

theorem
  (a<>b & A=Line(a,b)) iff
                  (A is_line & a in A & b in A & a<>b) by Def3,Lm6,Th26;

theorem Th39:
 A is_line & a in A & b in A & a<>b & LIN a,b,x implies x in A
 proof assume that A1: A is_line & a in A & b in A & a<>b and
                   A2: LIN a,b,x;
    A=Line(a,b) by A1,Lm6; hence thesis by A2,Def2; end;

theorem Th40:
 (ex a,b st a,b // A) implies A is_line
  proof given a,b such that A1: a,b // A;
          ex p,q st p<>q & A=Line(p,q) & a,b // p,q by A1,Def4;
       hence A is_line by Def3; end;

theorem Th41:
 (c in A & d in A & A is_line & c <>d) implies
                                     (a,b // A iff a,b // c,d)
 proof assume that A1: c in A & d in A and A2: A is_line
                                                and A3: c <>d;
  A4: a,b // A implies a,b // c,d
   proof assume a,b // A;
        then consider p,q such that
                  A5: p<>q & A=Line(p,q) & a,b // p,q by Def4;
          p,q // c,d by A1,A5,Th36;
        hence thesis by A5,Th14; end;
     a,b // c,d implies a,b // A
   proof assume A6: a,b // c,d;
          A=Line(c,d) by A1,A2,A3,Lm6;
        hence thesis by A3,A6,Def4; end;
  hence thesis by A4; end;

canceled;

theorem Th43:
  a<>b implies a,b // Line(a,b)
 proof assume A1: a<>b; a,b // a,b by Th11;
       hence thesis by A1,Def4; end;

theorem Th44:
  A is_line implies (a,b // A iff
                (ex c,d st c <>d & c in A & d in A & a,b // c,d))
 proof assume A1: A is_line;
  A2: a,b // A implies
                (ex c,d st c <>d & c in A & d in A & a,b // c,d)
   proof assume a,b // A;
         then consider c,d such that
                      A3: c <>d & A=Line(c,d) & a,b // c,d by Def4;
           c <>d & c in A & d in A & a,b // c,d by A3,Th26;
         hence thesis; end;
     (ex c,d st c <>d & c in A & d in A & a,b // c,d) implies
                                                        a,b // A
   proof assume (ex c,d st c <>d & c in A & d in A & a,b // c,d);
         then consider c,d such that
                         A4: c <>d & c in A & d in A & a,b // c,d;
           A=Line(c,d) by A1,A4,Lm6;
         hence thesis by A4,Def4; end;
  hence thesis by A2; end;

theorem
   (A is_line & a,b // A & c,d // A) implies a,b // c,d
 proof assume that A1: A is_line and A2: a,b // A & c,d // A;
       consider p,q such that
                 A3: p<>q & A=Line(p,q) & a,b // p,q by A2,Def4;
         p in A & q in A by A3,Th26;
       then c,d // p,q by A1,A2,A3,Th41;
       hence thesis by A3,Th14; end;

theorem Th46:
 (a,b // A & a,b // p,q & a<>b) implies p,q // A
 proof assume A1: a,b // A & a,b // p,q & a<>b;
                                  then A2:A is_line by Th40;
       then consider c,d such that
         A3: c <>d & c in A & d in A & a,b // c,d by A1,Th44;
         c <>d & c in A & d in A & p,q // c,d by A1,A3,Th14;
       hence thesis by A2,Th44; end;

theorem Th47:
  A is_line implies a,a // A
 proof assume A is_line; then consider p,q such that
          A1: p<>q & A=Line(p,q) by Def3;
      a,a // p,q by Th12;
  hence thesis by A1,Def4;
 end;

theorem Th48:
 a,b // A implies b,a // A
 proof assume A1: a,b // A;

      now assume A2: a<>b; a,b // b,a by Th11;
        hence thesis by A1,A2,Th46; end;
  hence thesis by A1;
 end;

theorem
   a,b // A & not a in A implies not b in A
 proof assume A1: a,b // A & not a in A & b in A;
   then A2: A is_line by Th40; b,a // A by A1,Th48;
  hence contradiction by A1,A2,Th37;
 end;

theorem Th50:
 A // C implies (A is_line & C is_line)
  proof assume A // C; then ex a,b st A=Line(a,b) & a<>b & a,b // C by Def5;
   hence thesis by Def3,Th40; end;

theorem Th51:
 A // C iff (ex a,b,c,d st
               a<>b & c <>d & a,b // c,d & A=Line(a,b) & C=Line(c,d))
 proof A1: A // C implies (ex a,b,c,d st
                a<>b & c <>d & a,b // c,d & A=Line(a,b) & C=Line(c,d))
    proof assume A // C; then consider a,b such that
                       A2: A=Line(a,b) & a<>b & a,b // C by Def5;
             ex c,d st c <>d & C=Line(c,d) & a,b // c,d by A2,Def4;
          hence thesis by A2; end;
      (ex a,b,c,d st
       a<>b & c <>d & a,b // c,d & A=Line(a,b) & C=Line(c,d)) implies
                                                        A // C
    proof assume (ex a,b,c,d st
              a<>b & c <>d & a,b // c,d & A=Line(a,b) & C=Line(c,d));
          then consider a,b,c,d such that
             A3: a<>b & c <>d & a,b // c,d & A=Line(a,b) & C=Line(c,d);
            a,b // C by A3,Def4;
          hence thesis by A3,Def5; end;
 hence thesis by A1; end;

theorem Th52:
 (A is_line & C is_line & a in A & b in A & c in C
       & d in C & a<>b & c <>d) implies
                                      (A // C iff a,b // c,d)
 proof assume A1: A is_line & C is_line & a in A & b in A &
                               c in C & d in C & a<>b & c <>d;
    A2: A // C implies a,b // c,d
     proof assume A // C;
     then consider p,q,r,s such that
             A3: p<>q & r<>s & p,q // r,s & A=Line(p,q) & C=Line(r,s)
                                                      by Th51;
       p,q // a,b by A1,A3,Th36;
     then a,b // r,s & r,s // c,d by A1,A3,Th14,Th36;
     hence thesis by A3,Th14; end;
       a,b // c,d implies A // C
     proof assume A4: a,b // c,d;
        A=Line(a,b) & C=Line(c,d) by A1,Lm6;
      hence thesis by A1,A4,Th51; end;
 hence thesis by A2; end;

theorem Th53:
 a in A & b in A & c in C & d in C & A // C implies
                                                  a,b // c,d
 proof assume that A1: a in A & b in A & c in C & d in C and
                   A2: A // C;
     now assume A3: a<>b & c <>d;
          A is_line & C is_line by A2,Th50;
        hence thesis by A1,A2,A3,Th52; end;
  hence thesis by Th12; end;

theorem
   a in A & b in A & A // C implies a,b // C
  proof assume A1: a in A & b in A & A // C;
    then A2: A is_line & C is_line by Th50;
       now consider p,q such that
          A3: p in C & q in C & p<>q by A2,Th31;
          A4: C=Line(p,q) by A2,A3,Lm6;
            a,b // p,q by A1,A3,Th53;
         hence thesis by A3,A4,Def4;
        end;
   hence thesis;
  end;

theorem Th55:
 A is_line implies A // A
 proof assume A is_line;
       then consider a,b such that A1: a<>b & A=Line(a,b) by Def3;
         a,b // a,b by Th11;
   hence thesis by A1,Th51; end;

theorem Th56:
  A // C implies C // A
   proof assume A // C; then consider a,b,c,d such that
  A1: a<>b & c <>d & a,b // c,d & A=Line(a,b) & C=Line(c,d) by Th51;
     c,d // a,b by A1,Th13;
  hence thesis by A1,Th51;
 end;

definition let AS,A,C;
 redefine pred A // C;
 symmetry by Th56;
end;

theorem Th57:
 a,b // A & A // C implies a,b // C
  proof assume A1: a,b // A & A // C;
       then consider p,q,c,d such that
            A2: p<>q & c <>d & p,q // c,d & A=Line(p,q) & C=Line(c,d)
                                                     by Th51;
       A3: p in A & q in A by A2,Th26;
         A is_line by A1,Th50;
       then a,b // p,q by A1,A2,A3,Th41;
       then a,b // c,d by A2,Th14;
   hence thesis by A2,Def4; end;

Lm7:
 A // C & C // D implies A // D
 proof assume that A1: A // C and A2: C // D;
       consider a,b,c,d such that
       A3: a<>b & c <>d & a,b // c,d & A=Line(a,b) & C=Line(c,d) by A1,Th51;
       A4: C is_line & D is_line by A2,Th50;
       then consider p,q such that
                                  A5: p<>q & D=Line(p,q) by Def3;
       A6: p in D & q in D by A5,Th26;
         c in C & d in C by A3,Th26;
       then c,d // p,q by A2,A3,A4,A5,A6,Th52;
       then a<>b & p<>q & a,b // p,q & A=Line(a,b) & D=Line(p,q)
                                                      by A3,A5,Th14;
       hence thesis by Th51; end;

theorem
    ((A // C & C // D) or (A // C & D // C) or
   (C // A & C // D) or (C // A & D // C)) implies A // D by Lm7;

theorem Th59:
  A // C & p in A & p in C implies A=C
 proof assume A1: A // C & p in A & p in C;
         for A,C,p holds
                  A // C & p in A & p in C implies A c= C
        proof let A,C,p;
              assume A2: A // C & p in A & p in C;
              then A3: A is_line & C is_line by Th50;
           now let x be set; assume A4: x in A;
          then reconsider x'=x as Element of AS;
                now assume A5: x'<>p;
         then A=Line(p,x') by A2,A3,A4,Lm6;
         then p,x' // A by A5,Th43;
         then A6: p,x' // C by A2,Th57;
         consider q such that
                           A7: p<>q & q in C by A3,Th32;
         A8: C=Line(p,q) by A2,A3,A7,Lm6;
           p,x' // p,q by A2,A3,A6,A7,Th41;
         then p,q // p,x' by Th13;
         then LIN p,q,x' by Def1;
         hence x in C by A8,Def2; end;
         hence x in C by A2; end;
         hence A c= C by TARSKI:def 3; end;
         then A c= C & C c= A by A1;
    hence thesis by XBOOLE_0:def 10; end;

theorem
   x in K & not a in K & a,b // K implies (a=b or not LIN x,a,b)
 proof assume A1: x in K & not a in K & a,b // K;
       assume that A2: a<>b and A3: LIN x,a,b; set A=Line(a,b);
         LIN a,b,x by A3,Th15; then A4: x in A by Def2;
       A5: a in A by Th26;
         A // K by A1,A2,Def5;
 hence contradiction by A1,A4,A5,Th59; end;

theorem
   a,b // K & a',b' // K & LIN p,a,a' & LIN p,b,b' & p in K &
                            not a in K & a=b implies a'=b'
 proof assume A1: a,b // K & a',b' // K & LIN p,a,a' & LIN p,b,b' &
                 p in K & not a in K & a=b;
       set A=Line(p,a); A2: A is_line by A1,Def3;
       A3: a' in A & b' in A by A1,Def2;
       assume A4: a'<>b'; then A=Line(a',b') by A2,A3,Lm6;
       then A5: A // K by A1,A4,Def5; p in A by Th26;
       then A=K by A1,A5,Th59;
 hence contradiction by A1,Th26; end;

theorem
   A is_line & a in A & b in A & c in A & a<>b & a,b // c,d implies d in A
 proof assume A1: A is_line & a in A & b in A & c in A &
                                    a<>b & a,b // c,d;

    now assume A2: c <>d; set C=Line(c,d);
   A3: C is_line & c in C & d in C by A2,Def3,Th26;
   then A // C by A1,A2,Th52;
   hence thesis by A1,A3,Th59; end;
  hence thesis by A1; end;

theorem
   for a, A st A is_line ex C st a in C & A // C
 proof let a,A; assume A is_line;
       then consider p,q such that A1: p<>q & A=Line(p,q) by Def3;
       consider b such that A2: p,q // a,b & a<>b by DIRAF:47;
       set C=Line(a,b);
       A3: A // C by A1,A2,Th51;
         a in C by Th26;
  hence thesis by A3; end;

theorem
    A // C & A // D & p in C & p in D implies C=D
 proof assume A1: A // C & A // D & p in C & p in D;
       then C // D by Lm7;
      hence thesis by A1,Th59;
end;

::
::                     Additional theorems
::

theorem
   A is_line & a in A & b in A & c in A & d in A implies a,b // c,d
  proof assume A1: A is_line & a in A & b in A & c in A & d in A;
   then A // A by Th55; hence thesis by A1,Th53;
  end;

theorem
    A is_line & a in A & b in A implies a,b // A by Th37;

theorem
   a,b // A & a,b // C & a<>b implies A // C
  proof assume A1: a,b // A & a,b // C & a<>b;
   then A2: A is_line & C is_line by Th40;
   then consider c,d such that
   A3: c <>d & c in A & d in A & a,b // c,d by A1,Th44;
   consider p,q such that
   A4: p<>q & p in C & q in C & a,b // p,q by A1,A2,Th44;
     c,d // p,q by A1,A3,A4,Th14;
   hence thesis by A2,A3,A4,Th52;
  end;

theorem Th68:
 not LIN o,a,b & LIN o,a,a' & LIN o,b,b' & a,b // a',b' & a'=b'
                                            implies a'=o & b'=o
  proof assume A1:  not LIN o,a,b & LIN o,a,a' & LIN o,b,b' &
                                       a,b // a',b' & a'=b';
   then A2: o<>a & o<>b & a<>b by Th16;
   set A=Line(o,a), C=Line(o,b);
   A3: A is_line & C is_line &
     o in A & a in A & o in C & b in C by A2,Def3,Th26;
   then A4: A<>C by A1,Th33;
     b' in C & a' in A & b' in A & a' in C by A1,A2,A3,Th39;
   hence thesis by A3,A4,Th30;
  end;

theorem Th69:
 not LIN o,a,b & LIN o,a,a' & LIN o,b,b' & a,b // a',b' & a'=o implies b'=o
  proof assume A1:  not LIN o,a,b & LIN o,a,a' & LIN o,b,b' &
                                                a,b // a',b' & a'=o;
   then A2: a',b // a',b' by Def1;
     now assume a,b // a',b; then b,a // b,a' by Th13;
    then LIN b,a,a' by Def1; hence contradiction by A1,Th15; end;
   hence thesis by A1,A2,Th14;
  end;

theorem
   not LIN o,a,b & LIN o,a,a' & LIN o,b,b' & LIN o,b,x &
   a,b // a',b' & a,b // a',x implies b'=x
  proof assume A1: not LIN o,a,b & LIN o,a,a' & LIN o,b,b' & LIN o,b,x &
                                        a,b // a',b' & a,b // a',x;
   then A2: o<>a & o<>b & a<>b by Th16;
   assume A3: b'<>x;
   A4: a'<>b' proof assume a'=b'; then a'=o & b'=o by A1,Th68;
    hence contradiction by A1,A3,Th69; end;
   A5: a'<>o proof assume a'=o; then b'=o & x=o by A1,Th69;
    hence contradiction by A3; end;
     a',b' // a',x by A1,A2,Th14;
   then A6: LIN a',b',x by Def1;
   set A=Line(o,a), C=Line(o,b), P=Line(a',b');
   A7: A is_line & C is_line & P is_line & o in A & a in A & o in C &
    b in C & a' in P & b' in P by A2,A4,Def3,Th26;
   then A8: a' in A & b' in C & x in C & x in P by A1,A2,A4,A6,Th39;
   then a' in C by A3,A7,Th30;
   then b in A by A5,A7,A8,Th30;
   hence contradiction by A1,A7,Th33;
  end;

theorem
   for a,b,A holds A is_line & a in A & b in A & a<>b
                                           implies A=Line(a,b) by Lm6;

::
::                 Facts about Affine Plane
::

reserve AP for AffinPlane;
reserve a,b,c,d,x,p,q for Element of AP;
reserve A,C for Subset of AP;

theorem Th72:
 A is_line & C is_line & not A // C implies
                          ex x st x in A & x in C
 proof assume A1: A is_line & C is_line & not A // C;
  then consider a,b such that A2: a<>b & A=Line(a,b) by Def3;
  consider c,d such that A3: c <>d & C=Line(c,d) by A1,Def3;
    not a,b // c,d by A1,A2,A3,Th51;
  then consider x such that A4: a,b // a,x & c,d // c,x by DIRAF:54;
    LIN a,b,x & LIN c,d,x by A4,Def1;
  then x in A & x in C by A2,A3,Def2;
  hence thesis;
 end;

theorem
   A is_line & not a,b // A implies ex x st x in A & LIN a,b,x
  proof assume that A1: A is_line and A2: not a,b // A;
   A3: a<>b by A1,A2,Th47;
   set C=Line(a,b); A4: C is_line by A3,Def3;
     not C // A
    proof assume C // A; then consider p,q such that
     A5: C=Line(p,q) & p<>q & p,q // A by Def5;
       a in C & b in C by Th26;
     then p,q // a,b by A5,Th36;
     hence contradiction by A2,A5,Th46;
    end;
   then consider x such that A6: x in C & x in A by A1,A4,Th72;
     LIN a,b,x by A6,Def2;
   hence thesis by A6;
  end;

theorem
   not a,b // c,d implies ex p st LIN a,b,p & LIN c,d,p
  proof assume not a,b // c,d; then consider p such that
   A1: a,b // a,p & c,d // c,p by DIRAF:54;
     LIN a,b,p & LIN c,d,p by A1,Def1;
   hence thesis;
 end;

Back to top