Copyright (c) 2003 Association of Mizar Users
environ vocabulary PRE_TOPC, ARYTM, FUNCT_1, FINSEQ_1, EUCLID, SQUARE_1, RLVECT_1, RVSUM_1, FINSEQ_2, ARYTM_1, RELAT_1, ARYTM_3, COMPLEX1, ABSVALUE, FUNCT_3, EUCLID_2, BHSP_1; notation SUBSET_1, FUNCT_1, ORDINAL1, NUMBERS, XCMPLX_0, XREAL_0, NAT_1, ABSVALUE, FINSEQ_1, FINSEQ_2, QUIN_1, PRE_TOPC, TOPRNS_1, RVSUM_1, EUCLID, SQUARE_1; constructors REAL_1, ABSVALUE, FINSEQOP, TOPRNS_1, SEQ_1, QUIN_1, SQUARE_1, MEMBERED; clusters FINSEQ_2, XREAL_0, NAT_1, RELSET_1, SEQ_1, QUIN_1, SQUARE_1, MEMBERED; requirements REAL, SUBSET, NUMERALS, ARITHM; theorems EUCLID, RVSUM_1, REAL_1, REAL_2, FINSEQ_2, AXIOMS, XREAL_0, FINSEQ_1, FINSEQ_3, SQUARE_1, JGRAPH_1, QUIN_1, ABSVALUE, TOPRNS_1, JORDAN2C, XCMPLX_0, XCMPLX_1; begin :: Preliminaries reserve i, n, j for Nat, x, y, a for real number, v for Element of n-tuples_on REAL, p, p1, p2, p3, q, q1, q2 for Point of TOP-REAL n; theorem Th1: for i holds i in Seg n implies mlt(v, 0*n).i = 0 proof let i; assume A1: i in Seg n; A2: 0*n = n |-> (0 qua set) by EUCLID:def 4; then A3: len 0*n = n by FINSEQ_2:69; set v1 = v.i, v0 = (0*n).i; A4: v0=0 by A1,A2,FINSEQ_2:70; reconsider z = 0*n as Element of n-tuples_on REAL by A3,FINSEQ_2:110; mlt(v, z).i = v1 * v0 by RVSUM_1:87 .= 0 by A4; hence thesis; end; theorem Th2: mlt(v, 0*n) = 0*n proof 0*n = n |-> (0 qua set) by EUCLID:def 4; then len 0*n = n by FINSEQ_2:69; then reconsider z= 0*n as Element of n-tuples_on REAL by FINSEQ_2:110; A1: len mlt(v, z) = n by FINSEQ_2:109; 0*n = n |-> (0 qua set) by EUCLID:def 4; then A2: len 0*n = n by FINSEQ_2:69; then A3: dom mlt(v, 0*n) = dom 0*n by A1,FINSEQ_3:31; A4: dom 0*n = Seg n by A2,FINSEQ_1:def 3; for j st j in dom 0*n holds mlt(v,0*n).j=(0*n).j proof let j; assume A5: j in dom 0*n; hence mlt(v,0*n).j = 0 by A4,Th1 .= (n |-> 0).j by A4,A5,FINSEQ_2:70 .= (0*n).j by EUCLID:def 4; end; hence thesis by A3,FINSEQ_1:17; end; theorem Th3: for x being FinSequence of REAL holds (-1)*x = -x proof let x be FinSequence of REAL; reconsider z = x as Element of REAL len x by JORDAN2C:52; reconsider w = z as Element of (len x)-tuples_on REAL by EUCLID:def 1; -w=(-1)*w by RVSUM_1:76; hence thesis; end; theorem Th4: for x,y being FinSequence of REAL st len x=len y holds x-y=x+(-y) proof let x,y be FinSequence of REAL; assume len x=len y; then reconsider z = x, z2 = y as Element of REAL len x by JORDAN2C:52; set n=len x; reconsider w = z, u = z2 as Element of n-tuples_on REAL by EUCLID:def 1; w-u=w+(-u) by RVSUM_1:52; hence thesis; end; theorem Th5: for x being FinSequence of REAL holds len (-x)=len x proof let x be FinSequence of REAL; dom (-x)=dom x by RVSUM_1:34; then Seg len(-x)=dom x by FINSEQ_1:def 3; hence thesis by FINSEQ_1:def 3; end; theorem Th6: for x1,x2 being FinSequence of REAL st len x1=len x2 holds len (x1+x2)=len x1 proof let x1,x2 be FinSequence of REAL; assume A1: len x1=len x2; set n=len x1; reconsider z1=x1 as Element of (len x1)-tuples_on REAL by FINSEQ_2:110; reconsider z2=x2 as Element of n-tuples_on REAL by A1,FINSEQ_2:110; dom (z1+z2)=Seg n by FINSEQ_2:144; hence thesis by FINSEQ_1:def 3; end; theorem Th7: for x1,x2 being FinSequence of REAL st len x1=len x2 holds len (x1-x2)=len x1 proof let x1,x2 be FinSequence of REAL; assume A1: len x1=len x2; set n=len x1; reconsider z1=x1 as Element of (len x1)-tuples_on REAL by FINSEQ_2:110; reconsider z2=x2 as Element of n-tuples_on REAL by A1,FINSEQ_2:110; dom (z1-z2)=Seg n by FINSEQ_2:144; hence thesis by FINSEQ_1:def 3; end; theorem Th8: for a being real number, x being FinSequence of REAL holds len (a*x)=len x proof let a be real number, x be FinSequence of REAL; set n=len x; reconsider z=x as Element of n-tuples_on REAL by FINSEQ_2:110; len (a*z)=n by FINSEQ_2:109; hence thesis; end; theorem Th9: for x,y,z being FinSequence of REAL st len x=len y & len y=len z holds mlt(x+y,z) = mlt(x,z)+mlt(y,z) proof let x,y,z be FinSequence of REAL; assume len x=len y & len y=len z; then reconsider x2=x, y2=y, z2=z as Element of (len x)-tuples_on REAL by FINSEQ_2:110; A1: dom (mlt(x+y,z))=Seg len(mlt(x2+y2,z2)) by FINSEQ_1:def 3 .=Seg len x by FINSEQ_2:109 .=Seg len (mlt(x2,z2)+mlt(y2,z2)) by FINSEQ_2:109 .= dom (mlt(x2,z2)+mlt(y2,z2)) by FINSEQ_1:def 3; A2: dom (mlt(x,z))=Seg len(mlt(x2,z2)) by FINSEQ_1:def 3 .=Seg len x by FINSEQ_2:109 .=Seg len (mlt(x2,z2)+mlt(y2,z2)) by FINSEQ_2:109 .= dom (mlt(x2,z2)+mlt(y2,z2)) by FINSEQ_1:def 3; A3: dom (mlt(y,z))=Seg len(mlt(y2,z2)) by FINSEQ_1:def 3 .=Seg len x by FINSEQ_2:109 .=Seg len (mlt(x2,z2)+mlt(y2,z2)) by FINSEQ_2:109 .= dom (mlt(x2,z2)+mlt(y2,z2)) by FINSEQ_1:def 3; for i being Nat st i in dom (mlt(x+y,z)) holds mlt(x+y,z).i=(mlt(x,z)+mlt(y,z)).i proof let i be Nat; assume A4: i in dom mlt(x+y,z); len (x2+y2)=len x by FINSEQ_2:109; then A5: dom (x2+y2)=Seg len x by FINSEQ_1:def 3 .=Seg len(mlt(x2,z2)) by FINSEQ_2:109 .=dom (mlt(x,z)) by FINSEQ_1:def 3; set a=x.i, b=y.i, d=(x+y).i, e=z.i; A6: d=a+b by A1,A2,A4,A5,RVSUM_1:26; thus mlt(x+y,z).i=d*e by A4,RVSUM_1:86 .=a*e+b*e by A6,XCMPLX_1:8 .=mlt(x,z).i +b*e by A1,A2,A4,RVSUM_1:86 .=mlt(x,z).i +mlt(y,z).i by A1,A3,A4,RVSUM_1:86 .=(mlt(x,z)+mlt(y,z)).i by A1,A4,RVSUM_1:26; end; hence thesis by A1,FINSEQ_1:17; end; begin :: Inner Product of Finite Sequences definition let x1,x2 be FinSequence of REAL; func |( x1,x2 )| -> real number equals :Def1: Sum mlt(x1,x2); correctness; commutativity; end; theorem Th10: for y1,y2 being FinSequence of REAL, x1,x2 being Element of REAL n st x1=y1 & x2=y2 holds |(y1,y2)|=1/4*((|.(x1+x2).|)^2-(|.(x1-x2).|)^2) proof let y1,y2 be FinSequence of REAL,x1,x2 be Element of REAL n; assume A1: x1=y1 & x2=y2; set z1=x1+x2, z2=x1-x2; A2: 1/4*((|.(x1+x2).|)^2-(|.(x1-x2).|)^2) =1/4*((sqrt Sum sqr (z1))^2-(|.(z2).|)^2) by EUCLID:def 5 .=1/4*((sqrt Sum sqr (z1))^2-(sqrt Sum sqr (z2))^2) by EUCLID:def 5; Sum sqr (x1+x2)>=0 by RVSUM_1:116; then A3: (sqrt Sum sqr (x1+x2))^2 =Sum sqr (x1+x2) by SQUARE_1:def 4; Sum sqr (x1-x2)>=0 by RVSUM_1:116; then A4: (sqrt Sum sqr (x1-x2))^2=Sum sqr (x1-x2) by SQUARE_1:def 4; set v1=sqr (x1+x2), v2=sqr (x1-x2); reconsider w1=x1, w2=x2 as Element of n-tuples_on REAL by EUCLID:def 1; A5: Sum sqr (x1+x2)-Sum sqr (x1-x2)=Sum (v1 - v2) by RVSUM_1:120; v1-v2=sqr w1 + 2*mlt(w1,w2) + sqr w2 -sqr (w1-w2) by RVSUM_1:98 .=sqr w1 + 2*mlt(w1,w2) + sqr w2 -(sqr w1 - 2*mlt(w1,w2) + sqr w2) by RVSUM_1:99 .= 2*mlt(w1,w2) +sqr w2+ sqr w1 -(sqr w1 - 2*mlt(w1,w2) + sqr w2) by RVSUM_1:32 .= 2*mlt(w1,w2) +sqr w2+ sqr w1 -(sqr w1 - 2*mlt(w1,w2))- sqr w2 by RVSUM_1:60 .= 2*mlt(w1,w2) +sqr w2+ sqr w1 - sqr w1 + 2*mlt(w1,w2)- sqr w2 by RVSUM_1:62 .= 2*mlt(w1,w2) +sqr w2+ 2*mlt(w1,w2)- sqr w2 by RVSUM_1:63 .= 2*mlt(w1,w2)+2*mlt(w1,w2) +sqr w2 - sqr w2 by RVSUM_1:32 .= 2*mlt(w1,w2)+2*mlt(w1,w2) by RVSUM_1:63 .= (2+2)*mlt(w1,w2) by RVSUM_1:72 .= 4*mlt(w1,w2); then 1/4*((|.(x1+x2).|)^2-(|.(x1-x2).|)^2) = 1/4*(4*Sum(mlt(w1,w2))) by A2,A3,A4,A5,RVSUM_1:117 .= 1/4*4*Sum(mlt(w1,w2)) by XCMPLX_1:4 .= Sum(mlt(w1,w2)); hence thesis by A1,Def1; end; theorem Th11: for x being FinSequence of REAL holds |(x,x)| >= 0 proof let x be FinSequence of REAL; reconsider z = x as Element of REAL len x by JORDAN2C:52; set n=len x; reconsider w = z as Element of n-tuples_on REAL by EUCLID:def 1; |(x, x)| = Sum mlt(x, x) by Def1 .= Sum sqr(w) by RVSUM_1:97; hence thesis by RVSUM_1:116; end; theorem Th12: for x being FinSequence of REAL holds (|.x.|)^2=|(x,x)| proof let x be FinSequence of REAL; reconsider z=x as Element of (len x)-tuples_on REAL by FINSEQ_2:110; A1: |(x,x)| = Sum mlt(x, x) by Def1 .= Sum sqr z by RVSUM_1:97 .= Sum sqr x; A2: 0 <= |(x,x)| by Th11; |.x.|^2 = (sqrt Sum sqr x)^2 by EUCLID:def 5 .= |(x,x)| by A1,A2,SQUARE_1:def 4; hence thesis; end; theorem Th13: for x being FinSequence of REAL holds |.x.| = sqrt |(x,x)| proof let x be FinSequence of REAL; set n=len x; reconsider z=x as Element of (len x)-tuples_on REAL by FINSEQ_2:110; reconsider y=z as Element of REAL n by EUCLID:def 1; 0 <= |.y.| by EUCLID:12; then |.x.| = sqrt |.x.|^2 by SQUARE_1:89 .= sqrt |(x,x)| by Th12; hence thesis; end; theorem Th14: for x being FinSequence of REAL holds 0 <= |.x.| proof let x be FinSequence of REAL; A1: |.x.| = sqrt |(x,x)| by Th13; 0 <= |(x,x)| by Th11; hence thesis by A1,SQUARE_1:def 4; end; theorem Th15: for x being FinSequence of REAL holds |(x,x)|=0 iff x=0*(len x) proof let x be FinSequence of REAL; thus |(x,x)|=0 implies x=0*(len x) proof assume |(x,x)|=0; then |.x.|^2=0 by Th12; then A1: |.x.|=0 by SQUARE_1:73; reconsider y=x as Element of REAL len x by JORDAN2C:52; y=0*(len x) by A1,EUCLID:11; hence thesis; end; assume x=0*(len x); then |.x.|=0 by EUCLID:10; hence |(x,x)|=0 by Th12,SQUARE_1:60; end; theorem for x being FinSequence of REAL holds |(x,x)| = 0 iff |.x.| = 0 proof let x be FinSequence of REAL; |(x,x)| = 0 implies |.x.| = 0 proof assume |(x,x)| = 0; then x=0*(len x) by Th15; hence |.x.| = 0 by EUCLID:10; end; hence thesis by Th12,SQUARE_1:60; end; theorem Th17: for x being FinSequence of REAL holds |(x, 0*(len x))| = 0 proof let x be FinSequence of REAL; set n=len x; reconsider p1=x as Element of n-tuples_on REAL by FINSEQ_2:110; A1: 0*n = n |-> 0 by EUCLID:def 4; |(x, 0*n)| = Sum mlt(p1,0*n) by Def1 .= Sum 0*n by Th2 .= 0 by A1,RVSUM_1:111; hence thesis; end; theorem for x being FinSequence of REAL holds |(0*(len x),x)| = 0 by Th17; theorem Th19: for x,y,z being FinSequence of REAL st len x=len y & len y=len z holds |((x+y),z)| = |(x,z)| + |(y,z)| proof let x,y,z be FinSequence of REAL; assume A1: len x=len y & len y=len z; then reconsider x2=x,y2=y,z2=z as Element of (len x)-tuples_on REAL by FINSEQ_2:110; |((x+y),z)|= Sum mlt(x+y,z) by Def1 .= Sum(mlt(x,z)+mlt(y,z)) by A1,Th9 .= Sum(mlt(x2,z2))+Sum(mlt(y2,z2)) by RVSUM_1:119 .= |(x,z)| + Sum(mlt(y,z)) by Def1 .= |(x,z)| + |(y,z)| by Def1; hence thesis; end; theorem Th20: for x,y being FinSequence of REAL,a being real number st len x=len y holds |(a*x,y)| = a*|(x,y)| proof let x,y be FinSequence of REAL,a be real number; assume len x=len y; then reconsider x2=x, y2 = y as Element of (len x)-tuples_on REAL by FINSEQ_2:110; reconsider a2=a as Element of REAL by XREAL_0:def 1; |(a*x,y)| =Sum(mlt(a*x,y)) by Def1 .=Sum(a2*mlt(x2,y2)) by RVSUM_1:94 .=a2*Sum(mlt(x,y)) by RVSUM_1:117 .=a*|(x,y)| by Def1; hence thesis; end; theorem Th21: for x,y being FinSequence of REAL,a being real number st len x=len y holds |(x,a*y)| = a*|(x,y)| proof let x,y be FinSequence of REAL,a be real number; assume len x=len y; then reconsider x2=x, y2=y as Element of (len x)-tuples_on REAL by FINSEQ_2: 110; reconsider a2=a as Element of REAL by XREAL_0:def 1; |(x,a*y)| =Sum(mlt(x,a*y)) by Def1 .=Sum(a2*mlt(y2,x2)) by RVSUM_1:94 .=a2*Sum(mlt(x,y)) by RVSUM_1:117 .=a*|(x,y)| by Def1; hence thesis; end; theorem Th22: for x1,x2 being FinSequence of REAL st len x1=len x2 holds |(-x1, x2)| = -|(x1, x2)| proof let x1,x2 be FinSequence of REAL; assume A1: len x1=len x2; |(-x1, x2)| = |((-1)*x1, x2)| by Th3 .= (-1)*|(x1, x2)| by A1,Th20; hence thesis by XCMPLX_1:180; end; theorem for x1,x2 being FinSequence of REAL st len x1=len x2 holds |(x1, -x2)| = -|(x1, x2)| by Th22; theorem for x1,x2 being FinSequence of REAL st len x1=len x2 holds |(-x1, -x2)| = |(x1, x2)| proof let x1,x2 be FinSequence of REAL; assume A1: len x1=len x2; then len (-x2)=len x1 by Th5; then |(-x1, -x2)| = -|(x1, -x2)| by Th22 .= --|(x1, x2)| by A1,Th22; hence thesis; end; theorem Th25: for x1,x2,x3 being FinSequence of REAL st len x1=len x2 & len x2=len x3 holds |(x1-x2, x3)| = |(x1, x3)| - |(x2, x3)| proof let x1,x2,x3 be FinSequence of REAL; assume A1: len x1=len x2 & len x2=len x3; A2: len (-x2)=len x2 by Th5; |(x1 - x2, x3)| = |(x1 + -x2, x3)| by A1,Th4 .= |(x1, x3)| + |(-x2, x3)| by A1,A2,Th19 .= |(x1, x3)| + - |(x2, x3)| by A1,Th22; hence thesis by XCMPLX_0:def 8; end; theorem for x,y being real number,x1,x2,x3 being FinSequence of REAL st len x1=len x2 & len x2=len x3 holds |((x*x1+y*x2), x3)| = x*|(x1,x3)| + y*|(x2,x3)| proof let x,y be real number,x1,x2,x3 be FinSequence of REAL; assume A1: len x1=len x2 & len x2=len x3; A2: len (x*x1)=len x1 by Th8; len (y*x2)=len x2 by Th8; then |(x*x1 + y*x2, x3)| = |(x*x1, x3)| + |(y*x2, x3)| by A1,A2,Th19 .= x*|(x1,x3)| + |(y*x2,x3)| by A1,Th20 .= x*|(x1,x3)| + y*|(x2,x3)| by A1,Th20; hence thesis; end; theorem for x,y1,y2 being FinSequence of REAL st len x=len y1 & len y1=len y2 holds |(x, y1+y2)| = |(x, y1)| + |(x, y2)| by Th19; theorem for x,y1,y2 being FinSequence of REAL st len x=len y1 & len y1=len y2 holds |(x, y1-y2)| = |(x, y1)| - |(x, y2)| by Th25; theorem Th29: for x1,x2,y1,y2 being FinSequence of REAL st len x1=len x2 & len x2=len y1 & len y1=len y2 holds |(x1+x2, y1+y2)| = |(x1, y1)| + |(x1, y2)| + |(x2, y1)| + |(x2, y2)| proof let x1,x2,y1,y2 be FinSequence of REAL; assume A1: len x1=len x2 & len x2=len y1 & len y1=len y2; then |(x1+x2, y2)| = |(x1, y2)| + |(x2, y2)| by Th19; then A2: |(x1+x2, y1)| +|(x1+x2, y2)| = (|(x1, y1)|+|(x2, y1)|) + (|(x1, y2)| + |(x2, y2)|) by A1,Th19; len (x1+x2)=len x1 by A1,Th6; then |(x1+x2, y1+y2)| =|(x1+x2, y1)| +|(x1+x2, y2)| by A1,Th19 .= |(x1, y1)|+|(x2, y1)|+(|(x1, y2)|+0)+|(x2, y2)| by A2,XCMPLX_1:1 .= |(x1, y1)|+|(x1, y2)|+|(x2, y1)|+|(x2, y2)| by XCMPLX_1:1; hence thesis; end; theorem Th30: for x1,x2,y1,y2 being FinSequence of REAL st len x1=len x2 & len x2=len y1 & len y1=len y2 holds |(x1-x2, y1-y2)| = |(x1, y1)| - |(x1, y2)| - |(x2, y1)| + |(x2, y2)| proof let x1,x2,y1,y2 be FinSequence of REAL; assume A1: len x1=len x2 & len x2=len y1 & len y1=len y2; then |(x1,y1-y2)| = |(x1,y1)| - |(x1,y2)| by Th25; then A2: |(x1,y1-y2)| - |(x2,y1-y2)| = (|(x1,y1)|-|(x1,y2)|)-(|(x2,y1)|-|(x2,y2)|) by A1,Th25; len (y1 - y2)=len y1 by A1,Th7; then |(x1-x2, y1-y2)| = |(x1, y1-y2)| - |(x2, y1-y2)| by A1,Th25 .= |(x1,y1)|-|(x1,y2)|-|(x2,y1)|+|(x2,y2)| by A2,XCMPLX_1:37; hence thesis; end; theorem Th31: for x,y being FinSequence of REAL st len x=len y holds |(x+y, x+y)| = |(x, x)| + 2*|(x, y)| + |(y, y)| proof let x,y be FinSequence of REAL; assume A1: len x=len y; |(x, x)| + |(x, y)| + |(x, y)| = |(x, x)| + (|(x, y)|+ |(x, y)|) by XCMPLX_1:1 .= |(x, x)| + 2*|(x, y)| by XCMPLX_1:11; hence thesis by A1,Th29; end; theorem Th32: for x,y being FinSequence of REAL st len x=len y holds |(x-y, x-y)| = |(x, x)| - 2*|(x, y)| + |(y, y)| proof let x,y be FinSequence of REAL; assume len x=len y; then |(x-y, x-y)| = |(x,x)| - |(x,y)| - |(y,x)| + |(y, y)| by Th30 .= |(x,x)| - (|(x,y)|+|(x,y)|) + |(y, y)| by XCMPLX_1:36 .= |(x,x)| - 2*|(x,y)| + |(y, y)| by XCMPLX_1:11; hence thesis; end; theorem Th33: for x,y being FinSequence of REAL st len x=len y holds |.x+y.|^2 = |.x.|^2 + 2*|(y, x)| + |.y.|^2 proof let x,y be FinSequence of REAL; assume A1: len x=len y; |.x+y.|^2 = |(x+y, x+y)| by Th12 .= |(x, x)| + 2*|(x, y)| + |(y, y)| by A1,Th31 .= |.x.|^2 + 2*|(y, x)| + |(y, y)| by Th12 .= |.x.|^2 + 2*|(y, x)| + |.y.|^2 by Th12; hence thesis; end; theorem Th34: for x,y being FinSequence of REAL st len x=len y holds |.x-y.|^2 = |.x.|^2 - 2*|(y, x)| + |.y.|^2 proof let x,y be FinSequence of REAL; assume A1: len x=len y; |.x-y.|^2 = |(x-y, x-y)| by Th12 .= |(x, x)| - 2*|(x, y)| + |(y, y)| by A1,Th32 .= |.x.|^2 - 2*|(y, x)| + |(y, y)| by Th12 .= |.x.|^2 - 2*|(y, x)| + |.y.|^2 by Th12; hence thesis; end; theorem for x,y being FinSequence of REAL st len x=len y holds |.x+y.|^2 + |.x-y.|^2 = 2*(|.x.|^2 + |.y.|^2) proof let x,y be FinSequence of REAL; assume A1: len x=len y; A2: (|.x.|^2 + 2*|(x, y)| + |.y.|^2) = (|.x.|^2 + |.y.|^2 + 2*|(x, y)|) by XCMPLX_1:1; A3: (|.x.|^2 - 2*|(x, y)| + |.y.|^2) = (|.x.|^2 +(-2*|(x, y)|) + |.y.|^2) by XCMPLX_0:def 8 .= (|.x.|^2 + |.y.|^2 +(-2*|(x, y)|)) by XCMPLX_1:1 .= (|.x.|^2 + |.y.|^2 -2*|(x, y)| ) by XCMPLX_0:def 8; |.x+y.|^2 + |.x-y.|^2 = (|.x.|^2 + 2*|(y, x)| + |.y.|^2) + |.x-y.|^2 by A1,Th33 .= (|.x.|^2 + 2*|(x, y)| + |.y.|^2) + (|.x.|^2 - 2*|(y, x)| + |.y.|^2) by A1,Th34 .= (|.x.|^2 + |.y.|^2) + (|.x.|^2 + |.y.|^2) by A2,A3,XCMPLX_1:28 .= 2*(|.x.|^2 + |.y.|^2) by XCMPLX_1:11; hence thesis; end; theorem for x,y being FinSequence of REAL st len x=len y holds |.x+y.|^2 - |.x-y.|^2 = 4* |(x,y)| proof let x,y be FinSequence of REAL; assume A1: len x=len y; then |.x+y.|^2 - |.x-y.|^2 = (|.x.|^2 + 2*|(y,x)| + |.y.|^2) - |.x-y.|^2 by Th33 .= (|.x.|^2 + 2*|(x, y)| + |.y.|^2) - (|.x.|^2 - 2*|(y, x)| + |.y.|^2) by A1,Th34 .= (|.x.|^2 + 2*|(x, y)|) - (|.x.|^2 - 2*|(x, y)|) by XCMPLX_1:32 .= 2*|(x, y)| + 2*|(x, y)| by XCMPLX_1:31 .= 2*(2*|(x, y)|) by XCMPLX_1:11 .= 2* (|(x, y)| + |(x, y)|) by XCMPLX_1:11 .= (|(x, y)| + |(x, y)|) + (|(x, y)| + |(x, y)|) by XCMPLX_1:11 .= (|(x, y)| + |(x, y)| + |(x, y)| + |(x, y)|) by XCMPLX_1:1 .= 4*|(x, y)| by XCMPLX_1:13; hence thesis; end; theorem Th37: :: Schwartz for x,y being FinSequence of REAL st len x=len y holds abs |(x,y)| <= |.x.|*|.y.| proof let x,y be FinSequence of REAL; assume A1: len x=len y; A2: x = 0*(len x) implies abs(|(x,y)|) <= sqrt (|(x,x)|) * sqrt (|(y,y)|) proof assume A3: x = 0*(len x); then A4: |(x,y)| = 0 by A1,Th17; |(x,x)|=0 by A3,Th17; hence thesis by A4,ABSVALUE:7,SQUARE_1:82; end; A5: x <> 0*(len x) implies abs(|(x,y)|) <= sqrt (|(x,x)|) * sqrt (|(y,y)|) proof assume x <> 0*(len x); then A6: |(x,x)| <> 0 by Th15; A7: |(x,x)| >= 0 by Th11; then A8: |(x,x)| > 0 by A6,REAL_1:def 5; A9: for t be real number holds |(x,x)| * t^2 + (2 * (|(x,y)|)) * t + |(y,y)| >= 0 proof let t be real number; set s=t^2; A10: len (t * x)=len x by Th8; |((t * x + y),(t * x + y))| >= 0 by Th11; then |((t * x) , (t * x))| + 2 * (|((t*x),y)|) + |(y,y)| >= 0 by A1,A10,Th31; then t * ( |(t*x,x)|) + 2 * |((t*x),y)| + |(y,y)| >= 0 by A10,Th21; then t * ( t * |(x,x)|) + 2 * |((t*x),y)| + |(y,y)| >= 0 by A1,Th20; then (t * t) * |(x,x)| + 2 * |((t*x),y)| + |(y,y)| >= 0 by XCMPLX_1:4; then |(x,x)| * s + 2 * |((t*x),y)| + |(y,y)| >= 0 by SQUARE_1:def 3; then |(x,x)| * s + 2 * (|(x,y)| * t) + |(y,y)| >= 0 by A1,Th20; hence thesis by XCMPLX_1:4; end; set w=abs( |(x,y)| ), u=|(x,y)|; A11: 0 <= w^2 by SQUARE_1:72; A12: abs(|(x,y)|) >= 0 by ABSVALUE:5; A13: |(y,y)| >= 0 by Th11; delta(|(x,x)|,(2 * (|(x,y)|)),|(y,y)|) <= 0 by A8,A9,QUIN_1:10; then (2 * u)^2 - 4 * (|(x,x)|) * (|(y,y)|) <= 0 by QUIN_1:def 1; then 2^2 * ( u )^2 - 4 * (|(x,x)|) * (|(y,y)|) <= 0 by SQUARE_1:68; then (2 * 2) * ( u )^2 - 4 * (|(x,x)|) * (|(y,y)|) <= 0 by SQUARE_1:def 3; then 4 * (( u )^2) - 4 * ((|(x,x)|) * (|(y,y)|)) <= 0 by XCMPLX_1:4; then 4 * ((( u )^2) - (|(x,x)|) * (|(y,y)|)) <= 0 by XCMPLX_1:40; then ((|(x,y)|)^2) - (|(x,x)|) * (|(y,y)|) <= 0/4 by REAL_2:177; then (|(x,y)|)^2 <= (|(x,x)|) * (|(y,y)|) by SQUARE_1:11; then (abs(|(x,y)|))^2 <= (|(x,x)|) * (|(y,y)|) by SQUARE_1:62; then (sqrt (abs(|(x,y)|))^2) <= sqrt ((|(x,x)|) * (|(y,y)|)) by A11,SQUARE_1:94; then abs(|(x,y)|) <= sqrt (|(x,x)| * |(y,y)|) by A12,SQUARE_1:89; hence thesis by A7,A13,SQUARE_1:97; end; sqrt (|(x,x)|)=|.x.| by Th13; hence thesis by A2,A5,Th13; end; theorem :: Triangle for x,y being FinSequence of REAL st len x=len y holds |.x+y.| <= |.x.| + |.y.| proof let x,y be FinSequence of REAL; assume A1: len x=len y; A2: 0 <= |.x+y.| by Th14; A3: 0<= |.x.| by Th14; 0 <= |.y.| by Th14; then A4: 0+0 <= |.x.| + |.y.| by A3,REAL_1:55; A5: (|.x+y.|)^2 = (|.x.|)^2 + 2*|(y, x)| + (|.y.|)^2 by A1,Th33; A6: |(x,y)| <= abs(|(x,y)|) by ABSVALUE:11; abs(|(x,y)|) <= |.x.|*|.y.| by A1,Th37; then |(x,y)| <= |.x.|*|.y.| by A6,AXIOMS:22; then 2*|(x,y)| <= 2*(|.x.|*|.y.|) by AXIOMS:25; then (|.x.|)^2+ 2*|(x,y)|<=(|.x.|)^2 + 2*(|.x.|*|.y.|) by REAL_1:55; then (|.x.|)^2+ 2*|(x,y)| + (|.y.|)^2 <=(|.x.|)^2 + 2*(|.x.|*|.y.|)+ (|.y.|)^2 by REAL_1:55; then (|.x+y.|)^2 <= (|.x.|)^2 + 2*|.x.|*|.y.|+(|.y.|)^2 by A5,XCMPLX_1:4; then A7: (|.x+y.|)^2 <= (|.x.| + |.y.|)^2 by SQUARE_1:63; 0<= (|.x+y.|)^2 by SQUARE_1:72; then sqrt((|.x+y.|)^2) <= sqrt((|.x.| + |.y.|)^2) by A7,SQUARE_1:94; then |.x+y.| <= sqrt((|.x.| + |.y.|)^2) by A2,SQUARE_1:89; hence thesis by A4,SQUARE_1:89; end; begin :: Inner Product of Points of TOP-REAL n definition let n; let p,q be Point of TOP-REAL n; func |(p,q)| -> real number means :Def2: ex f,g being FinSequence of REAL st f = p & g = q & it = |(f,g)|; existence proof p is Element of REAL n & q is Element of REAL n by EUCLID:25; then reconsider f = p, g = q as FinSequence of REAL; take |(f,g)|; thus thesis; end; uniqueness; commutativity; end; theorem for n being Nat,p1,p2 being Point of TOP-REAL n holds |(p1,p2)| = 1/4*((|. p1+p2 .|)^2-(|. p1-p2 .|)^2) proof let n be Nat,p1,p2 be Point of TOP-REAL n; consider f1,f2 being FinSequence of REAL such that A1: f1 = p1 & f2 = p2 & |(p1,p2)| = |(f1,f2)| by Def2; reconsider q1= p1, q2= p2 as Element of REAL n by EUCLID:25; p1+p2=q1+q2 by EUCLID:def 10; then A2: |. p1+p2 .|=|. q1+q2 .| by JGRAPH_1:def 5; p1-p2=q1-q2 by EUCLID:def 13; then |. p1-p2 .|=|. q1-q2 .| by JGRAPH_1:def 5; hence thesis by A1,A2,Th10; end; theorem Th40: |(p1 + p2, p3)| = |(p1, p3)| + |(p2, p3)| proof consider f1,f3 being FinSequence of REAL such that A1: f1 = p1 & f3 = p3 & |(p1, p3)| = |(f1,f3)| by Def2; consider f2,f4 being FinSequence of REAL such that A2: f2 = p2 & f4 = p3 & |(p2, p3)| = |(f2,f4)| by Def2; consider f5,f6 being FinSequence of REAL such that A3: f5 = p1+p2 & f6 = p3 & |(p1+p2, p3)| = |(f5,f6)| by Def2; reconsider h1=f1 as Element of (len f1)-tuples_on REAL by FINSEQ_2:110; A4: len f1=n by A1,EUCLID:28; reconsider h2=f2 as Element of (len f2)-tuples_on REAL by FINSEQ_2:110; A5: len f2=n by A2,EUCLID:28; (len f1)-tuples_on REAL=REAL n by A4,EUCLID:def 1; then A6: p1+p2=h1+h2 by A1,A2,A4,A5,EUCLID:def 10 .=f1+f2; len f1=len f2 & len f2=len f3 by A1,A5,EUCLID:28; hence thesis by A1,A2,A3,A6,Th19; end; theorem Th41: for x being real number holds |(x*p1, p2)| = x*|(p1, p2)| proof let x be real number; consider f1,f2 being FinSequence of REAL such that A1: f1 = p1 & f2 = p2 & |(p1, p2)| = |(f1,f2)| by Def2; A2: len f1=n by A1,EUCLID:28; A3: len f2=n by A1,EUCLID:28; reconsider h1=f1 as Element of n-tuples_on REAL by A2,FINSEQ_2:110; consider f3,f21 being FinSequence of REAL such that A4: f3 = x*p1 & f21=p2 & |(x*p1, p2)| = |(f3,f21)| by Def2; n-tuples_on REAL=REAL n by EUCLID:def 1; then x*p1=x*h1 by A1,EUCLID:def 11 .=x*f1; hence thesis by A1,A2,A3,A4,Th20; end; theorem for x being real number holds |(p1, x*p2)| = x*|(p1, p2)| by Th41; theorem Th43: |(-p1, p2)| = -|(p1, p2)| proof |(-p1, p2)| = |((-1)*p1, p2)| by EUCLID:43 .= (-1)*|(p1, p2)| by Th41; hence thesis by XCMPLX_1:180; end; theorem |(p1, -p2)| = -|(p1, p2)| by Th43; theorem |(-p1, -p2)| = |(p1, p2)| proof |(-p1, -p2)| = -|(p1, -p2)| by Th43 .= --|(p1, p2)| by Th43; hence thesis; end; theorem Th46: |(p1-p2, p3)| = |(p1, p3)| - |(p2, p3)| proof |(p1 - p2, p3)| = |(p1 + -p2, p3)| by EUCLID:45 .= |(p1, p3)| + |(-p2, p3)| by Th40 .= |(p1, p3)| + - |(p2, p3)| by Th43; hence thesis by XCMPLX_0:def 8; end; theorem |((x*p1+y*p2), p3)| = x*|(p1,p3)| + y*|(p2,p3)| proof |(x*p1 + y*p2, p3)| = |(x*p1, p3)| + |(y*p2, p3)| by Th40 .= x*|(p1,p3)| + |(y*p2,p3)| by Th41 .= x*|(p1,p3)| + y*|(p2,p3)| by Th41; hence thesis; end; theorem |(p, q1+q2)| = |(p, q1)| + |(p, q2)| by Th40; theorem |(p, q1-q2)| = |(p, q1)| - |(p, q2)| by Th46; theorem Th50: |(p1+p2, q1+q2)| = |(p1, q1)| + |(p1, q2)| + |(p2, q1)| + |(p2, q2)| proof A1: |(p1+p2, q1)| = |(p1, q1)| + |(p2, q1)| by Th40; A2: |(p1+p2, q2)| = |(p1, q2)| + |(p2, q2)| by Th40; |(p1+p2, q1+q2)| = |(p1+p2, q1)| + |(p1+p2, q2)| by Th40 .= |(p1, q1)|+|(p2, q1)|+(|(p1, q2)|+0)+|(p2, q2)| by A1,A2,XCMPLX_1:1 .= |(p1, q1)|+|(p1, q2)|+|(p2, q1)|+|(p2, q2)| by XCMPLX_1:1; hence thesis; end; theorem Th51: |(p1-p2, q1-q2)| = |(p1, q1)| - |(p1, q2)| - |(p2, q1)| + |(p2, q2)| proof A1: |(p1,q1-q2)| = |(p1,q1)| - |(p1,q2)| by Th46; A2: |(p2,q1-q2)| = |(p2,q1)| - |(p2,q2)| by Th46; |(p1-p2, q1-q2)| = |(p1, q1-q2)| - |(p2, q1-q2)| by Th46 .= |(p1,q1)|-|(p1,q2)|-|(p2,q1)|+|(p2,q2)| by A1,A2,XCMPLX_1:37; hence thesis; end; theorem Th52: |(p+q, p+q)| = |(p, p)| + 2*|(p, q)| + |(q, q)| proof |(p, p)| + |(p, q)| + |(p, q)| = |(p, p)| + (|(p, q)|+ |(p, q)|) by XCMPLX_1:1 .= |(p, p)| + 2*|(p, q)| by XCMPLX_1:11; hence thesis by Th50; end; theorem Th53: |(p-q, p-q)| = |(p, p)| - 2*|(p, q)| + |(q, q)| proof |(p-q, p-q)| = |(p,p)| - |(p,q)| - |(p,q)| + |(q, q)| by Th51 .= |(p,p)| - (|(p,q)| + |(p,q)|) + |(q, q)| by XCMPLX_1:36 .= |(p,p)| - 2*|(p,q)| + |(q, q)| by XCMPLX_1:11; hence thesis; end; theorem Th54: |(p, 0.REAL n)| = 0 proof consider f1,f2 being FinSequence of REAL such that A1: f1 = p & f2 = 0.REAL n & |(p, 0.REAL n)| = |(f1,f2)| by Def2; A2: f2=0*n by A1,EUCLID:def 9; len f1=n by A1,EUCLID:28; hence thesis by A1,A2,Th17; end; theorem |(0.REAL n, p)| = 0 by Th54; theorem |(0.REAL n, 0.REAL n)| = 0 by Th54; theorem Th57: |(p,p)| >= 0 proof consider f1,f2 being FinSequence of REAL such that A1: f1 = p & f2 = p & |(p, p)| = |(f1,f2)| by Def2; thus thesis by A1,Th11; end; theorem Th58: |(p,p)| = |.p.|^2 proof consider f1,f2 being FinSequence of REAL such that A1: f1 = p & f2 = p & |(p, p)| = |(f1,f2)| by Def2; A2: |(f1,f1)| = |.f1.|^2 by Th12; p is Element of REAL n by EUCLID:25; hence thesis by A1,A2,JGRAPH_1:def 5; end; theorem Th59: |.p.| = sqrt |(p,p)| proof 0 <= |.p.| by TOPRNS_1:26; then |.p.| = sqrt |.p.|^2 by SQUARE_1:89 .= sqrt |(p,p)| by Th58; hence thesis; end; theorem Th60: 0 <= |.p.| proof A1: |.p.| = sqrt |(p,p)| by Th59; 0 <= |(p,p)| by Th57; hence thesis by A1,SQUARE_1:def 4; end; theorem Th61: |. 0.REAL n .| = 0 proof |. 0.REAL n .| = sqrt |(0.REAL n, 0.REAL n )| by Th59 .= 0 by Th54,SQUARE_1:82; hence thesis; end; theorem Th62: |(p,p)| = 0 iff |.p.| = 0 proof |(p,p)| = 0 implies |.p.| = 0 proof assume |(p,p)| = 0; then |.p.|^2 = 0 by Th58; hence |.p.| = 0 by SQUARE_1:73; end; hence thesis by Th58,SQUARE_1:60; end; theorem Th63: |(p,p)| = 0 iff p = 0.REAL n proof |(p,p)| = 0 implies p = 0.REAL n proof assume |(p,p)| = 0; then |.p.| = 0 by Th62; hence thesis by TOPRNS_1:25; end; hence thesis by Th54; end; theorem |.p.|=0 iff p= 0.REAL n by Th61,TOPRNS_1:25; theorem p <> 0.REAL n iff |(p, p)| > 0 proof p <> 0.REAL n implies |(p, p)| > 0 proof assume p <> 0.REAL n; then A1: |(p,p)| <> 0 by Th63; 0 <= |(p,p)| by Th57; hence thesis by A1,REAL_1:def 5; end; hence thesis by Th63; end; theorem p <> 0.REAL n iff |.p.| > 0 proof p <> 0.REAL n implies |.p.| > 0 proof assume p <> 0.REAL n; then A1: 0 <> |.p.| by TOPRNS_1:25; 0 <= |.p.| by Th60; hence thesis by A1,REAL_1:def 5; end; hence thesis by Th61; end; theorem Th67: |.p+q.|^2 = |.p.|^2 + 2*|(q, p)| + |.q.|^2 proof |.p+q.|^2 = |(p+q, p+q)| by Th58 .= |(p, p)| + 2*|(q, p)| + |(q, q)| by Th52 .= |.p.|^2 + 2*|(q, p)| + |(q, q)| by Th58 .= |.p.|^2 + 2*|(q, p)| + |.q.|^2 by Th58; hence thesis; end; theorem Th68: |.p-q.|^2 = |.p.|^2 - 2*|(q, p)| + |.q.|^2 proof |.p-q.|^2 = |(p-q, p-q)| by Th58 .= |(p, p)| - 2*|(q, p)| + |(q, q)| by Th53 .= |.p.|^2 - 2*|(q, p)| + |(q, q)| by Th58 .= |.p.|^2 - 2*|(q, p)| + |.q.|^2 by Th58; hence thesis; end; theorem |.p+q.|^2 + |.p-q.|^2 = 2*(|.p.|^2 + |.q.|^2) proof A1: (|.p.|^2 + 2*|(p, q)| + |.q.|^2) = (|.p.|^2 + |.q.|^2 + 2*|(p, q)|) by XCMPLX_1:1; A2: (|.p.|^2 - 2*|(p, q)| + |.q.|^2) = (|.p.|^2 +(-2*|(p, q)|) + |.q.|^2) by XCMPLX_0:def 8 .= (|.p.|^2 + |.q.|^2 +(-2*|(p, q)|)) by XCMPLX_1:1 .= (|.p.|^2 + |.q.|^2 -2*|(p, q)| ) by XCMPLX_0:def 8; |.p+q.|^2 + |.p-q.|^2 = (|.p.|^2 + 2*|(p, q)| + |.q.|^2) + |.p-q.|^2 by Th67 .= (|.p.|^2 + |.q.|^2 + 2*|(p, q)|) + (|.p.|^2 + |.q.|^2 - 2*|(p, q)|) by A1,A2,Th68 .= (|.p.|^2 + |.q.|^2) + (|.p.|^2 + |.q.|^2) by XCMPLX_1:28 .= 2*(|.p.|^2 + |.q.|^2) by XCMPLX_1:11; hence thesis; end; theorem |.p+q.|^2 - |.p-q.|^2 = 4* |(p,q)| proof |.p+q.|^2 - |.p-q.|^2 = (|.p.|^2 + 2*|(p,q)| + |.q.|^2) - |.p-q.|^2 by Th67 .= (|.p.|^2 + 2*|(p, q)| + |.q.|^2) - (|.p.|^2 - 2*|(p, q)| + |.q.|^2) by Th68 .= (|.p.|^2 + 2*|(p, q)|) - (|.p.|^2 - 2*|(p, q)|) by XCMPLX_1:32 .= 2*|(p, q)| + 2*|(p, q)| by XCMPLX_1:31 .= 2*(2*|(p, q)|) by XCMPLX_1:11 .= 2* (|(p, q)| + |(p, q)|) by XCMPLX_1:11 .= (|(p, q)| + |(p, q)|) + (|(p, q)| + |(p, q)|) by XCMPLX_1:11 .= (|(p, q)| + |(p, q)| + |(p, q)| + |(p, q)|) by XCMPLX_1:1 .= 4*|(p, q)| by XCMPLX_1:13; hence thesis; end; theorem |(p,q)| = (1/4)*(|.p+q.|^2 - |.p-q.|^2) proof |.p+q.|^2 - |.p-q.|^2 = (|.p.|^2 + 2*|(p,q)| + |.q.|^2) - |.p-q.|^2 by Th67 .= (|.p.|^2 + 2*|(p, q)| + |.q.|^2) - (|.p.|^2 - 2*|(p, q)| + |.q.|^2) by Th68 .= (|.p.|^2 + 2*|(p, q)|) - (|.p.|^2 - 2*|(p, q)|) by XCMPLX_1:32 .= 2*|(p, q)| + 2*|(p, q)| by XCMPLX_1:31 .= 2*(2*|(p, q)|) by XCMPLX_1:11 .= 2* (|(p, q)| + |(p, q)|) by XCMPLX_1:11 .= (|(p, q)| + |(p, q)|) + (|(p, q)| + |(p, q)|) by XCMPLX_1:11 .= (|(p, q)| + |(p, q)| + |(p, q)| + |(p, q)|) by XCMPLX_1:1 .= 4*|(p, q)| by XCMPLX_1:13; then (1/4)*(|.p+q.|^2 - |.p-q.|^2) = (4*|(p, q)|)/4 by XCMPLX_1:100 .= (|(p, q)|+|(p, q)|+|(p, q)|+|(p, q)|)/4 by XCMPLX_1:13 .= |(p, q)| by XCMPLX_1:70; hence thesis; end; theorem |(p,q)| <= |(p,p)| + |(q,q)| proof A1: |(p-q, p-q)| = |(p,p)| - 2*|(p,q)| + |(q,q)| by Th53 .= |(p,p)| + |(q,q)| - 2*|(p,q)| by XCMPLX_1:29; 0 <= |(p,p)| & 0 <= |(q,q)| by Th57; then 0 + 0 <= |(p,p)| + |(q,q)| by REAL_1:55; then A2: 0/2 <= (|(p,p)| + |(q,q)|)/2 by REAL_1:73; 0 <= |(p-q,p-q)| by Th57; then 2*|(p,q)| <= |(p,p)| + |(q,q)| - 0 by A1,REAL_2:165; then (2*|(p,q)|)/2 <= (|(p,p)| + |(q,q)|)/2 by REAL_1:73; then |(p,q)| <= (|(p,p)| + |(q,q)|)/2 by XCMPLX_1:90; then 0 + |(p,q)| <= (|(p,p)| + |(q,q)|)/2 + (|(p,p)| + |(q,q)|)/2 by A2,REAL_1:55; then |(p,q)| <= 2*((|(p,p)| + |(q,q)|)/2) by XCMPLX_1:11; then |(p,q)| <= (|(p,p)| + |(q,q)|)/(2/2) by XCMPLX_1:82; hence thesis; end; theorem Th73: :: Schwartz for p,q being Point of TOP-REAL n holds abs( |(p,q)|) <= |.p.|*|.q.| proof let p,q be Point of TOP-REAL n; set x=p,y=q; A1:x = 0.REAL n implies abs(|(x,y)|) <= sqrt (|(x,x)|) * sqrt (|(y,y)|) proof assume A2: x = 0.REAL n; then A3: |(x,y)| = 0 by Th54; sqrt (|(x,x)|) = 0 by A2,Th54,SQUARE_1:82; hence thesis by A3,ABSVALUE:7; end; A4: x <> 0.REAL n implies abs(|(x,y)|) <= sqrt (|(x,x)|) * sqrt (|(y,y)|) proof assume x <> 0.REAL n; then A5: |(x,x)| <> 0 by Th63; A6: |(x,x)| >= 0 by Th57; then A7: |(x,x)| > 0 by A5,REAL_1:def 5; A8: for t be real number holds |(x,x)| * t^2 + (2 * (|(x,y)|)) * t + |(y,y)| >= 0 proof let t be real number; set s=t^2; |(t * x + y,t * x + y)| >= 0 by Th57; then |(t * x, t * x)| + 2 * (|(t*x,y)|) + |(y,y)| >= 0 by Th52; then t * ( |(t*x,x)|) + 2 * |(t*x,y)| + |(y,y)| >= 0 by Th41; then t * (t * |(x,x)|) + 2 * |(t*x,y)| + |(y,y)| >= 0 by Th41; then (t * t) * |(x,x)| + 2 * |(t*x,y)| + |(y,y)| >= 0 by XCMPLX_1:4; then |(x,x)| * s + 2 * |((t*x),y)| + |(y,y)| >= 0 by SQUARE_1:def 3; then |(x,x)| * s + 2 * (|(x,y)| * t) + |(y,y)| >= 0 by Th41; hence thesis by XCMPLX_1:4; end; set w=abs( |(x,y)| ),u=|(x,y)|; A9: 0 <= w^2 by SQUARE_1:72; A10: abs(|(x,y)|) >= 0 by ABSVALUE:5; A11: |(y,y)| >= 0 by Th57; delta(|(x,x)|,(2 * (|(x,y)|)),|(y,y)|) <= 0 by A7,A8,QUIN_1:10; then (2 * u)^2 - 4 * (|(x,x)|) * (|(y,y)|) <= 0 by QUIN_1:def 1; then 2^2 * u^2 - 4 * (|(x,x)|) * (|(y,y)|) <= 0 by SQUARE_1:68; then (2 * 2) * u^2 - 4 * (|(x,x)|) * (|(y,y)|) <= 0 by SQUARE_1:def 3; then 4 * (u^2) - 4 * ((|(x,x)|) * (|(y,y)|)) <= 0 by XCMPLX_1:4; then 4 * ((u^2) - (|(x,x)|) * (|(y,y)|)) <= 0 by XCMPLX_1:40; then ((|(x,y)|)^2) - (|(x,x)|) * (|(y,y)|) <= 0/4 by REAL_2:177; then (|(x,y)|)^2 <= (|(x,x)|) * (|(y,y)|) by SQUARE_1:11; then (abs(|(x,y)|))^2 <= (|(x,x)|) * (|(y,y)|) by SQUARE_1:62; then sqrt (abs(|(x,y)|))^2 <= sqrt ((|(x,x)|) * (|(y,y)|)) by A9,SQUARE_1:94; then abs(|(x,y)|) <= sqrt (|(x,x)| * |(y,y)|) by A10,SQUARE_1:89; hence thesis by A6,A11,SQUARE_1:97; end; sqrt (|(x,x)|)=|.x.| by Th59; hence thesis by A1,A4,Th59; end; theorem :: Triangle |.p+q.| <= |.p.| + |.q.| proof A1: 0 <= |.p+q.| by Th60; A2: 0<= |.p.| by Th60; 0<= |.q.| by Th60; then A3: 0+0 <= |.p.| + |.q.| by A2,REAL_1:55; A4: (|.p+q.|)^2 = (|.p.|)^2 + 2*|(q, p)| + (|.q.|)^2 by Th67; A5: |(p,q)| <= abs(|(p,q)|) by ABSVALUE:11; abs(|(p,q)|) <= |.p.|*|.q.| by Th73; then |(p,q)| <= |.p.|*|.q.| by A5,AXIOMS:22; then 2*|(p,q)| <= 2*(|.p.|*|.q.|) by AXIOMS:25; then (|.p.|)^2+ 2*|(p,q)|<=(|.p.|)^2 + 2*(|.p.|*|.q.|) by REAL_1:55; then (|.p.|)^2+ 2*|(p,q)| + (|.q.|)^2 <= (|.p.|)^2 + 2*(|.p.|*|.q.|)+ (|.q.|)^2 by REAL_1:55; then (|.p+q.|)^2 <= (|.p.|)^2 + 2*|.p.|*|.q.|+(|.q.|)^2 by A4,XCMPLX_1:4; then A6: (|.p+q.|)^2 <= (|.p.| + |.q.|)^2 by SQUARE_1:63; 0<= (|.p+q.|)^2 by SQUARE_1:72; then sqrt((|.p+q.|)^2) <= sqrt((|.p.| + |.q.|)^2) by A6,SQUARE_1:94; then |.p+q.| <= sqrt((|.p.| + |.q.|)^2) by A1,SQUARE_1:89; hence thesis by A3,SQUARE_1:89; end; definition let n, p, q; pred p,q are_orthogonal means :Def3: |(p,q)| = 0; symmetry; end; theorem Th75: p,0.REAL n are_orthogonal proof |(p,0.REAL n)|=0 by Th54; hence thesis by Def3; end; theorem 0.REAL n,p are_orthogonal by Th75; theorem Th77: p,p are_orthogonal iff p=0.REAL n proof p,p are_orthogonal iff |(p,p)|=0 by Def3; hence thesis by Th63; end; theorem Th78: p, q are_orthogonal implies a*p,q are_orthogonal proof assume p, q are_orthogonal; then |(p,q)|=0 by Def3; then a*(|(p,q)|)=0; then |(a*p,q)|=0 by Th41; hence thesis by Def3; end; theorem p, q are_orthogonal implies p,a*q are_orthogonal by Th78; theorem (for q holds p,q are_orthogonal) implies p=0.REAL n proof assume (for q holds p,q are_orthogonal); then p,p are_orthogonal; hence thesis by Th77; end;