Copyright (c) 2003 Association of Mizar Users
environ vocabulary RLVECT_1, COMPLEX1, ARYTM_1, SQUARE_1, COMPLFLD, ARYTM, HAHNBAN1, FUNCT_1, RCOMP_1, SIN_COS, ARYTM_3, RELAT_1, COMPTRIG, COMPLEX2, PROB_2, XCMPLX_0, BOOLE, FINSEQ_6, INT_1, ABSVALUE; notation TARSKI, XBOOLE_0, SUBSET_1, STRUCT_0, SQUARE_1, NAT_1, RLVECT_1, RELAT_1, SEQ_1, RCOMP_1, SIN_COS, HAHNBAN1, COMPTRIG, XREAL_0, ORDINAL1, NUMBERS, ARYTM_0, INT_1, XCMPLX_0, REAL_1, COMPLEX1, COMPLFLD, ABSVALUE; constructors REAL_1, SQUARE_1, SEQ_1, RFUNCT_2, COMSEQ_3, GROUP_1, RCOMP_1, COMPLSP1, SIN_COS, HAHNBAN1, COMPTRIG, COMPLEX1, MEMBERED, ARYTM_0, ARYTM_3, FUNCT_4; clusters RELSET_1, SIN_COS, INT_1, COMPLEX1, XREAL_0, XCMPLX_0, MEMBERED, NUMBERS; requirements BOOLE, SUBSET, REAL, NUMERALS, ARITHM; theorems AXIOMS, REAL_1, REAL_2, SQUARE_1, JGRAPH_3, COMPLEX1, SIN_COS, COMPLFLD, HAHNBAN1, JORDAN6, COMPTRIG, XCMPLX_0, XCMPLX_1, RFUNCT_2, SIN_COS2, XREAL_0, XBOOLE_0, JGRAPH_5, INT_1, ABSVALUE, STRUCT_0, ARYTM_0; begin Lm1: now let a, b, c be complex number; thus a+b-c = a+b+-c by XCMPLX_0:def 8 .= a+(b+-c) by XCMPLX_1:1 .= a+(b-c) by XCMPLX_0:def 8; end; Lm2: now let a, b, c be complex number; assume a-b = -c; then a - b = -c-0; then a--c = b-0 by XCMPLX_1:24; hence a+c = b by XCMPLX_1:151; end; Lm3: now let a, b, c be complex number; assume a-b = c; then a-b=c-0; then a-c =b-0 by XCMPLX_1:24; hence a-c = b; end; theorem Th1: for a, b being Real holds -[*a,b*] = [*-a,-b*] proof let a, b be Real; Re [*a,b*] = a & Im [*a,b*] = b by COMPLEX1:7; hence -[*a,b*] = [*-a,-b*] by COMPLEX1:def 11; end; theorem Th2: for a, b being real number st b > 0 ex r being real number st r = b*-[\ a/b /]+a & 0 <= r & r < b proof let a, b be real number such that A1: b > 0; set ab = [\ a/b /]; set i = -ab; take r = b*i+a; thus r = b*i+a; A2: ab <= a/b & a/b-1 < ab by INT_1:def 4; then ab*b <= a/b*b by A1,AXIOMS:25; then ab*b <= a by A1,XCMPLX_1:88; then -(ab*b) >= -a by REAL_1:50; then i*b >= -a by XCMPLX_1:175; then b*i+a >= a+-a by AXIOMS:24; hence 0 <= r by XCMPLX_0:def 6; -(a/b-1) > i by A2,REAL_1:50; then (-(a/b-1))*b > i*b by A1,REAL_1:70; then (-(a/b)+1)*b > i*b by XCMPLX_1:162; then (-(a/b))*b+(1*b) > i*b by XCMPLX_1:8; then -(a/b*b)+b > i*b by XCMPLX_1:175; then -a+b > i*b by A1,XCMPLX_1:88; then -a+b+a > r by REAL_1:67; then a+-a+b > r by XCMPLX_1:1; then 0+b > r by XCMPLX_0:def 6; hence r < b; end; theorem Th3: for a, b, c being real number st a > 0 & b >= 0 & c >= 0 & b < a & c < a for i being Integer st b = c + a*i holds b = c proof let a, b, c be real number such that A1: a > 0 and A2: b >= 0 and A3: c >= 0 and A4: b < a and A5: c < a; let i be Integer such that A6: b = c + a*i; A7: 0+a <= c+a by A3,REAL_1:55; per cases; suppose i < 0; then i <= -1 by INT_1:21; then a*i <= a*(-1) by A1,AXIOMS:25; then a*i <= -a by XCMPLX_1:180; then c+a*i <= c+-a by REAL_1:55; hence b = c by A2,A5,A6,REAL_2:105; suppose i = 0; hence b = c by A6; suppose i > 0; then 0+1 <= i by INT_1:20; then a*i >= a by A1,REAL_2:146; then c+a*i >= c+a by REAL_1:55; hence b = c by A4,A6,A7,AXIOMS:22; end; theorem Th4: for a, b being Real holds sin(a-b) = sin(a)*cos(b)-cos(a)*sin(b) & cos(a-b) = cos(a)*cos(b)+sin(a)*sin(b) proof let th1, th2 be Real; thus sin(th1-th2)=sin(th1+(-th2)) by XCMPLX_0:def 8 .=sin.(th1+(-th2)) by SIN_COS:def 21 .=(sin.(th1)) *(cos.(-th2))+(cos.(th1)) * (sin.(-th2)) by SIN_COS:79 .=(sin.(th1)) *(cos.(th2))+(cos.(th1)) * (sin.(-th2)) by SIN_COS:33 .=(sin.(th1)) *(cos.(th2))+(cos.(th1)) * -(sin.(th2)) by SIN_COS:33 .=(sin.(th1)) *(cos.(th2))+-(cos.(th1)) *(sin.(th2)) by XCMPLX_1:175 .=(sin.(th1)) *(cos.(th2))-(cos.(th1)) *(sin.(th2)) by XCMPLX_0:def 8 .=(sin(th1)) *(cos.(th2))-(cos.(th1)) * (sin.(th2)) by SIN_COS:def 21 .=(sin(th1)) *(cos(th2))-(cos.(th1)) * (sin.(th2)) by SIN_COS:def 23 .=(sin(th1)) *(cos(th2))-(cos(th1)) * (sin.(th2)) by SIN_COS:def 23 .=(sin(th1)) *(cos(th2))-(cos(th1)) * (sin(th2)) by SIN_COS:def 21; thus cos(th1-th2)=cos(th1+(-th2)) by XCMPLX_0:def 8 .=cos.(th1+(-th2)) by SIN_COS:def 23 .=(cos.(th1)) *(cos.(-th2))-(sin.(th1)) * (sin.(-th2)) by SIN_COS:79 .=(cos.(th1)) *(cos.(th2))-(sin.(th1)) * (sin.(-th2)) by SIN_COS:33 .=(cos.(th1)) *(cos.(th2))-(sin.(th1)) * -(sin.(th2)) by SIN_COS:33 .=(cos.(th1)) *(cos.(th2))--(sin.(th1)) * (sin.(th2)) by XCMPLX_1:175 .=(cos.(th1)) *(cos.(th2))+--(sin.(th1)) * (sin.(th2))by XCMPLX_0:def 8 .=(cos(th1)) *(cos.(th2))+(sin.(th1)) * (sin.(th2)) by SIN_COS:def 23 .=(cos(th1)) *(cos(th2))+(sin.(th1)) * (sin.(th2)) by SIN_COS:def 23 .=(cos(th1)) *(cos(th2))+(sin(th1)) * (sin.(th2)) by SIN_COS:def 21 .=(cos(th1)) *(cos(th2))+(sin(th1)) * (sin(th2)) by SIN_COS:def 21; end; theorem for a being Real holds sin.(a-PI) = -sin.a & cos.(a-PI) = -cos.a proof let th be Real; thus sin.(th- PI) = sin.(th+(-PI)) by XCMPLX_0:def 8 .= (sin.(th))* (cos.(-PI)) + (cos.(th)) *( sin.(-PI)) by SIN_COS:79 .= (sin.(th))* (cos.(PI)) + (cos.(th)) *(sin.(-PI)) by SIN_COS:33 .= (sin.(th))* (cos.(PI)) + (cos.(th)) *(-(sin.(PI))) by SIN_COS:33 .= -(1)*sin.(th) by SIN_COS:81,XCMPLX_1:175 .= -sin.th; thus cos.(th- PI) = cos.(th+(-PI)) by XCMPLX_0:def 8 .= (cos.(th)) * (cos.(-PI)) - ( sin.(th)) *( sin.(-PI)) by SIN_COS:79 .= (cos.(th)) * (cos.(PI)) - ( sin.(th)) *( sin.(-PI)) by SIN_COS:33 .= (cos.(th)) * (cos.(PI)) - ( sin.(th)) *(-(sin.(PI))) by SIN_COS:33 .= -(1)*cos.(th) by SIN_COS:81,XCMPLX_1:175 .= -cos.th; end; theorem Th6: for a being Real holds sin(a-PI) = -sin a & cos(a-PI) = -cos a proof let r be Real; thus sin (r-PI) = sin(r)*cos(PI)-cos(r)*sin(PI) by Th4 .= -sin r by SIN_COS:82,XCMPLX_1:180; thus cos (r-PI) = cos(r)*cos(PI)+sin(r)*sin(PI) by Th4 .= -cos r by SIN_COS:82,XCMPLX_1:180; end; theorem Th7: for a, b being real number st a in ].0,PI/2.[ & b in ].0,PI/2.[ holds a < b iff sin a < sin b proof let a, b be real number such that A1: a in ].0,PI/2.[ & b in ].0,PI/2.[; A2: sin a = sin.a & sin b = sin.b by SIN_COS:def 21; a in REAL & b in REAL & dom sin = REAL by SIN_COS:def 20,XREAL_0:def 1; then A3: a in ].0,PI/2.[ /\ dom sin & b in ].0,PI/2.[ /\ dom sin by A1,XBOOLE_0:def 3; hence a < b implies sin a < sin b by A1,A2,RFUNCT_2:def 2,SIN_COS2:2; assume A4: sin a < sin b; assume a >= b; then a > b by A4,REAL_1:def 5; hence contradiction by A1,A2,A3,A4,RFUNCT_2:def 2,SIN_COS2:2; end; theorem Th8: for a, b being real number st a in ].PI/2,PI.[ & b in ].PI/2,PI.[ holds a < b iff sin a > sin b proof let a, b be real number such that A1: a in ].PI/2,PI.[ & b in ].PI/2,PI.[; A2: sin a = sin.a & sin b = sin.b by SIN_COS:def 21; a in REAL & b in REAL & dom sin = REAL by SIN_COS:def 20,XREAL_0:def 1; then A3: a in ].PI/2,PI.[ /\ dom sin & b in ].PI/2,PI.[ /\ dom sin by A1,XBOOLE_0:def 3; hence a < b implies sin a > sin b by A1,A2,RFUNCT_2:def 3,SIN_COS2:3; assume A4: sin a > sin b; assume a >= b; then a > b by A4,REAL_1:def 5; hence contradiction by A1,A2,A3,A4,RFUNCT_2:def 3,SIN_COS2:3; end; theorem Th9: for a being Real, i being Integer holds sin a = sin (2*PI*i+a) proof let r being Real, i being Integer; A1: sin.r = sin r by SIN_COS:def 21; A2: sin.(2*PI*i+r) = sin (2*PI*i+r) by SIN_COS:def 21; A3: sin.(2*PI*(-i)+(2*PI*i+r)) = sin (2*PI*(-i)+(2*PI*i+r)) by SIN_COS:def 21; per cases; suppose i >= 0; then reconsider iN = i as Nat by INT_1:16; sin r = sin (2*PI*iN+r) by A1,A2,SIN_COS2:10; hence sin r = sin (2*PI*i+r); suppose i < 0; then -i > 0 by REAL_1:66; then reconsider iN = -i as Nat by INT_1:16; A4: r = 2*PI*0+r .= 2*PI*(-i+i)+r by XCMPLX_0:def 6 .= 2*PI*iN+2*PI*i+r by XCMPLX_1:8 .= 2*PI*iN+(2*PI*i+r) by XCMPLX_1:1; reconsider aa = 2*PI*i+r as Real by XREAL_0:def 1; sin (aa) = sin (2*PI*iN+aa) by A2,A3,SIN_COS2:10; hence sin r = sin (2*PI*i+r) by A4; end; theorem Th10: for a being Real, i being Integer holds cos a = cos (2*PI*i+a) proof let r being Real, i being Integer; A1: cos.r = cos r by SIN_COS:def 23; A2: cos.(2*PI*i+r) = cos (2*PI*i+r) by SIN_COS:def 23; A3: cos.(2*PI*(-i)+(2*PI*i+r)) = cos (2*PI*(-i)+(2*PI*i+r)) by SIN_COS:def 23; per cases; suppose i >= 0; then reconsider iN = i as Nat by INT_1:16; cos r = cos (2*PI*iN+r) by A1,A2,SIN_COS2:11; hence cos r = cos (2*PI*i+r); suppose i < 0; then -i > 0 by REAL_1:66; then reconsider iN = -i as Nat by INT_1:16; A4: r = 2*PI*0+r .= 2*PI*(-i+i)+r by XCMPLX_0:def 6 .= 2*PI*iN+2*PI*i+r by XCMPLX_1:8 .= 2*PI*iN+(2*PI*i+r) by XCMPLX_1:1; reconsider aa = 2*PI*i+r as Real by XREAL_0:def 1; cos (aa) = cos (2*PI*iN+aa) by A2,A3,SIN_COS2:11; hence cos r = cos (2*PI*i+r) by A4; end; theorem Th11: for a being Real st sin a = 0 holds cos a <> 0 proof let a be Real; consider r being real number such that A1: r = 2*PI*-[\ a/(2*PI) /]+a and A2: 0 <= r & r < 2*PI by Th2,COMPTRIG:21; A3: sin a = sin r by A1,Th9; A4: cos a = cos r by A1,Th10; assume sin a = 0 & cos a = 0; then (r = 0 or r = PI) & (r = PI/2 or r = 3/2*PI) by A2,A3,A4,COMPTRIG:33,34 ; hence thesis by COMPTRIG:21; end; theorem Th12: for a, b being Real st 0 <= a & a < 2*PI & 0 <= b & b < 2*PI & sin a = sin b & cos a = cos b holds a = b proof let r, s be Real such that A1: 0 <= r and A2: r < 2*PI and A3: 0 <= s and A4: s < 2*PI and A5: sin r = sin s and A6: cos r = cos s; A7: cos(r-s)=(cos r)*(cos s)+(sin r)*(sin s) by Th4 .= 1 by A5,A6,SIN_COS:32; A8: cos (s-r)=(cos r)*(cos s)+(sin r)*(sin s) by Th4 .= 1 by A5,A6,SIN_COS:32; A9: sin(r-s)=(sin r)*(cos s)-(cos r)*(sin s) by Th4 .= 0 by A5,A6,XCMPLX_1:14; A10: sin (s-r)=(sin s)*(cos r)-(cos s)*(sin r) by Th4 .= 0 by A5,A6,XCMPLX_1:14 ; per cases by REAL_1:def 5; suppose r > s; then r > s+0; then A11: 0 <= r-s by REAL_1:86; r+0 < 2*PI+s by A2,A3,REAL_1:67; then r-s < 2*PI by REAL_1:84; then r-s = 0 or r-s = PI by A9,A11,COMPTRIG :33; hence r = s by A7,SIN_COS:82,XCMPLX_1:15; suppose r < s; then s > r+0; then A12: 0 <= s-r by REAL_1:86; s+0 < 2*PI+r by A1,A4,REAL_1:67; then s-r < 2*PI by REAL_1:84; then s-r = 0 or s-r = PI by A10,A12, COMPTRIG:33; hence r = s by A8,SIN_COS:82,XCMPLX_1:15; suppose r = s; hence thesis; end; Lm4: the carrier of F_Complex=COMPLEX by COMPLFLD:def 1; begin :: More on the argument of a complex number :: ALL these to be changed (mainly deleted) after the change in COMPTRIG definition cluster F_Complex -> non empty; coherence by Lm4,STRUCT_0:def 1; end; definition let z be Element of COMPLEX; func F_tize(z) -> Element of F_Complex equals :Def1: z; correctness by COMPLFLD:def 1; end; theorem Th13: for z being Element of COMPLEX holds Re z = Re F_tize z & Im z = Im F_tize z proof let z be Element of COMPLEX; z=F_tize(z) by Def1; hence thesis by HAHNBAN1:def 3,def 4; end; theorem for x, y being Element of COMPLEX holds F_tize(x+y) = F_tize(x)+F_tize(y) proof let z1, z2 be Element of COMPLEX; A1: F_tize(z1+z2)=z1+z2 by Def1;A2:F_tize(z1)=z1 by Def1; F_tize(z2)=z2 by Def1 ; hence thesis by A1,A2,COMPLFLD:3; end; theorem for z being Element of COMPLEX holds z = 0c iff F_tize z = 0.F_Complex by Def1,COMPLFLD:9; theorem Th16: for z being Element of COMPLEX holds |.z.| = |. F_tize z .| proof let z be Element of COMPLEX; consider z' be Element of COMPLEX such that A1: F_tize(z) = z' & |.F_tize(z).| = |.z'.| by COMPLFLD:def 3; thus |.z.|=|.F_tize(z).| by A1,Def1; end; definition let z be Element of COMPLEX; func Arg(z) -> Real equals :Def2: Arg(F_tize(z)); correctness; end; theorem Th17: for z being Element of COMPLEX, u being Element of F_Complex st z = u holds Arg z = Arg u proof let z be Element of COMPLEX, z1 be Element of F_Complex; assume z=z1; then z1=F_tize(z) by Def1; hence Arg(z)=Arg(z1) by Def2; end; theorem Th18: for z being Element of COMPLEX holds 0 <= Arg z & Arg z < 2*PI proof let z be Element of COMPLEX; 0<=Arg(F_tize(z)) & Arg(F_tize(z))<2*PI by COMPTRIG:52; hence thesis by Def2; end; L0: 0c = [*0,0*] by ARYTM_0:def 7; theorem Th19: for z being Element of COMPLEX holds z = [* |.z.|*cos Arg z, |.z.|*sin Arg z *] proof let a be Element of COMPLEX; set Fa = F_tize a; per cases; suppose a <> 0; then A1: Fa <> 0.F_Complex by Def1,COMPLFLD:9; A2: Fa = a by Def1; A3: Arg Fa = Arg a by Def2; consider z' being Element of COMPLEX such that A4: Fa = z' & |.Fa.| = |.z'.| by COMPLFLD:def 3; thus a = Fa by Def1 .= [** |.Fa.|*cos Arg Fa, |.Fa.|*sin Arg Fa **] by A1,COMPTRIG:def 1 .= [* |.a.|*cos Arg a, |.a.|*sin Arg a *] by A2,A3,A4,HAHNBAN1:def 1; suppose a = 0c; hence thesis by COMPLEX1:130,L0; end; theorem Th20: Arg 0c = 0 proof thus Arg(0c)=Arg F_tize(0c) by Def2 .=Arg(0.F_Complex) by Def1,COMPLFLD:9 .=0 by COMPTRIG:def 1; end; theorem Th21: for z being Element of COMPLEX, r being Real st z <> 0 & z = [* |.z.|*cos r, |.z.|*sin r *] & 0 <= r & r < 2*PI holds r = Arg z proof let z be Element of COMPLEX, r being Real such that A1: z <> 0 and A2: z = [* |.z.|*cos r, |.z.|*sin r *] and A3: 0 <= r and A4: r < 2*PI; set zf = F_tize(z); A5: z = zf by Def1; A6: |.z.| = |.zf.| by Th16; A7: zf <> 0.F_Complex by A1,Def1,COMPLFLD:9; zf = [** |.zf.|*cos r, |.zf.|*sin r **] by A2,A5,A6,HAHNBAN1:def 1; hence r = Arg zf by A3,A4,A7,COMPTRIG:def 1 .= Arg z by Def2; end; theorem Th22: for z being Element of COMPLEX st z <> 0c holds (Arg z < PI implies Arg -z = Arg z +PI) & (Arg z >= PI implies Arg -z = Arg z -PI) proof let z be Element of COMPLEX; assume A1: z <> 0c; then A2: |.z.| <> 0 by COMPLEX1:131; A3: -z <> 0c by A1,XCMPLX_1:135; A4: z = [* |.z.|*cos Arg z, |.z.|*sin Arg z *] by Th19; A5: -z = [* |.-z.|*cos Arg -z, |.-z.|*sin Arg -z *] by Th19; A6: -z = [* -|.z.|*cos Arg z, -|.z.|*sin Arg z *] by A4,Th1; A7: |.z.| = |.-z.| by COMPLEX1:138; then |.z.|*cos Arg -z = -|.z.|*cos Arg z by A5,A6,ARYTM_0:12; then |.z.|*cos Arg -z = |.z.|*-cos Arg z by XCMPLX_1:175; then cos Arg -z = -cos Arg z by A2,XCMPLX_1:5; then A8: cos Arg -z = cos (Arg z +PI) & cos Arg -z = cos (Arg z -PI) by Th6,SIN_COS:84; |.z.|*sin Arg -z = -|.z.|*sin Arg z by A5,A6,A7,ARYTM_0:12; then |.z.|*sin Arg -z = |.z.|*-sin Arg z by XCMPLX_1:175; then sin Arg -z = -sin Arg z by A2,XCMPLX_1:5; then A9: sin Arg -z = sin (Arg z +PI) & sin Arg -z = sin (Arg z -PI) by Th6,SIN_COS:84; hereby assume Arg z<PI; then Arg z+PI<PI+PI by REAL_1:67; then A10: Arg z +PI < 2*PI by XCMPLX_1:11; 0 <= Arg z by Th18; then 0+0 <= Arg z +PI by COMPTRIG:21,REAL_1:55; hence Arg -z = Arg z +PI by A3,A5,A8,A9,A10,Th21; end; assume Arg z >= PI; then Arg z -PI >= PI-PI by REAL_1:49; then A11: Arg z -PI >= 0 by XCMPLX_1:14; Arg z < 2*PI by Th18; then Arg z +0 < 2*PI+PI by COMPTRIG:21,REAL_1:67; then Arg z -PI < 2*PI by REAL_1:84; hence Arg -z = Arg z -PI by A3,A5,A8,A9,A11,Th21; end; theorem Th23: for r being Real st r >= 0 holds Arg [*r,0*] = 0 proof let r be Real such that A1: r >= 0; Re [*r,0*] = r & Im [*r,0*] = 0 by COMPLEX1:7; then A2: |.[*r,0*].| = abs(r) by COMPLEX1:136 .= r by A1,ABSVALUE:def 1; [*r,0*] = [*|.[*r,0*].|*cos Arg [*r,0*], |.[*r,0*].|*sin Arg [*r,0*] *] by Th19; then A3: r =|.[*r,0*].|*cos Arg[*r,0*]&0=|.[*r,0*].|*sin Arg [*r,0*] by ARYTM_0 :12; per cases by A1; suppose r = 0; hence Arg [*r,0*] = 0 by Th20,L0; suppose A4: r > 0; then A5: cos Arg [*r,0*] = 1 by A2,A3,XCMPLX_1:7; A6: sin Arg [*r,0*] = 0 by A2,A3,A4,XCMPLX_1:6; 0 <= Arg [*r,0*] & Arg [*r,0*] < 2*PI by Th18; hence Arg [*r,0*] = 0 by A5,A6,Th12,SIN_COS:34; end; theorem Th24: for z being Element of COMPLEX holds Arg z = 0 iff z = [* |.z.|,0 *] proof let z be Element of COMPLEX; hereby assume A1: Arg z=0; A2: z=F_tize(z) by Def1; A3: Arg(z)=Arg(F_tize(z)) by Def2; A4: |.z.|=|.F_tize(z).| by Th16; now per cases; case z<>0.F_Complex; then A5: z=[** |.z.|*cos 0,|.z.|*sin 0 **] by A1,A2,A3,A4,COMPTRIG:def 1; Im z=Im (F_tize(z)) by Th13; hence z=[* |.z.|,0 *] & Im z=0 by A2,A5,HAHNBAN1:15,def 1,SIN_COS:34; case z=0.F_Complex; hence z=[* |.z.|,0 *] & Im z=0 by COMPLEX1:12,130,L0,COMPLFLD:9; end; hence z=[* |.z.|,0 *]; end; assume A6: z=[* |.z.|,0 *]; |.z.| >= 0 by COMPLEX1:132; hence Arg z = 0 by A6,Th23; end; theorem Th25: for z being Element of COMPLEX st z <> 0c holds Arg(z) < PI iff Arg -z >= PI proof let z be Element of COMPLEX; assume A1: z<>0c; thus Arg(z)<PI implies Arg(-z)>=PI proof assume A2: Arg(z)<PI; Arg(z)>=0 by Th18; then PI+0<=PI+Arg(z) by REAL_1:55; hence Arg(-z)>=PI by A1,A2,Th22; end; thus Arg(-z)>=PI implies Arg(z)<PI proof assume Arg(-z)>=PI; then A3: Arg(--z)=Arg(-z)-PI by A1,Th22,REAL_1:26 ; 2*PI>Arg(-z) by Th18; then PI+PI>Arg(-z) by XCMPLX_1:11; then PI+PI-PI>Arg(-z)-PI by REAL_1:54 ; hence Arg(z)<PI by A3,XCMPLX_1:26; end; end; theorem Th26: for x, y being Element of COMPLEX st x <> y or x-y <> 0c holds Arg(x-y) < PI iff Arg(y-x) >= PI proof let z1,z2 be Element of COMPLEX; assume z1<>z2 or z1-z2<>0c; then z1-z2<>0c by XCMPLX_1:15; then (Arg(z1-z2)<PI iff Arg(-(z1-z2))>=PI) by Th25; hence (Arg(z1-z2)<PI iff Arg(z2-z1)>=PI) by XCMPLX_1:143; end; theorem Th27: for z being Element of COMPLEX holds Arg z in ].0,PI.[ iff Im z > 0 proof let z be Element of COMPLEX; A1: Arg(z)=Arg(F_tize(z)) by Def2; thus Arg z in ].0,PI.[ implies Im z > 0 proof assume Arg z in ].0,PI.[; then A2: 0<Arg(z) & Arg(z)<PI by JORDAN6:45; A3: Arg(z)<PI/2 or Arg(z)=PI/2 or Arg(z)>PI/2 by REAL_1:def 5; now per cases by A2,A3,JORDAN6:45; case Arg(z) in ].0,PI/2.[; then Im F_tize(z) >0 by A1,COMPTRIG:59; hence Im z>0 by Th13; case Arg(z)=PI/2; then Im (F_tize(z))>0 by A1,COMPTRIG:66,SIN_COS:82; hence Im z>0 by Th13; case Arg(z) in ].PI/2,PI.[; then Im F_tize(z) >0 by A1,COMPTRIG:60; hence Im z>0 by Th13; end; hence Im z>0; end; A4: ].0,PI/2.[ c= ].0,PI.[ by COMPTRIG:21,JGRAPH_3:9; A5: ].PI/2,PI.[ c= ].0,PI.[ by COMPTRIG:21,JGRAPH_3:9; thus Im z > 0 implies Arg z in ].0,PI.[ proof assume Im z >0; then A6: Im F_tize(z) >0 by Th13; now per cases; case Re F_tize(z)>0; then Arg(F_tize(z)) in ].0,PI/2.[ by A6,COMPTRIG:59; hence Arg(z) in ].0,PI.[ by A1,A4; case Re F_tize(z)=0; then F_tize(z)=[** 0,Im F_tize(z) **] by COMPTRIG:9; then Arg(F_tize(z))=PI/2 by A6,COMPTRIG:55; hence Arg(z) in ].0,PI.[ by A1,COMPTRIG:21,JORDAN6:45; case Re F_tize(z)<0; then Arg(F_tize(z)) in ].PI/2,PI.[ by A6,COMPTRIG:60; hence Arg(z) in ].0,PI.[ by A1,A5; end; hence Arg z in ].0,PI.[; end; end; theorem for z being Element of COMPLEX st Arg z <> 0 holds Arg z < PI iff sin Arg z > 0 proof let z be Element of COMPLEX; assume A1: Arg(z)<>0; A2: Arg(z)>=0 by Th18; A3: Arg(z)=Arg(F_tize(z)) by Def2; thus Arg(z)<PI implies sin (Arg(z))>0 proof assume Arg(z)<PI; then Arg(z) in ].0,PI.[ by A1,A2,JORDAN6:45; then Im (z)>0 by Th27; then Im (F_tize(z))>0 by Th13; hence sin (Arg(z))>0 by A3,COMPTRIG:63; end; A4: ].0,PI/2.[ c= ].0,PI.[ by COMPTRIG:21,JGRAPH_3:9; thus sin (Arg(z))>0 implies Arg(z)<PI proof assume sin (Arg(z))>0; then A5: Im (F_tize(z))>0 by A3,COMPTRIG:66; now per cases; case Re F_tize(z)>0; then Arg(F_tize(z)) in ].0,PI/2.[ by A5,COMPTRIG:59; hence Arg(z)<PI by A3,A4,JORDAN6:45; case Re F_tize(z)=0; then F_tize(z)=[** 0,Im F_tize(z) **] by COMPTRIG:9; hence Arg(z)<PI by A3,A5,COMPTRIG:21,55; case Re F_tize(z)<0; then Arg(F_tize(z)) in ].PI/2,PI.[ by A5,COMPTRIG:60; hence Arg(z)<PI by A3,JORDAN6:45; end; hence Arg(z)<PI; end; end; theorem for x, y being Element of COMPLEX st Arg x < PI & Arg y < PI holds Arg(x+y) < PI proof let z1,z2 be Element of COMPLEX; assume A1: Arg(z1)<PI & Arg(z2)<PI; A2: Arg(z1+z2)=Arg(F_tize(z1+z2)) by Def2; A3: z1+z2=F_tize(z1+z2) by Def1; now per cases by Th18; case Arg(z1)=0; then A4: z1=[* |.z1.|,0 *] by Th24; then A5: z1=[* |.z1.|,0 *] & Im z1=0 by COMPLEX1:7; now per cases by Th18; case Arg(z2)=0; then A6: z2=[* |.z2.|,0 *] by Th24; then A7: z2=[* |.z2.|,0 *] & Im z2=0 by COMPLEX1:7; A8: Im (z1+z2)=(Im z1)+(Im z2) by COMPLEX1:19; A9: Re z2=|.z2.| by A6,COMPLEX1:7; now per cases; case A10: z1+z2=0c; Arg (z1+z2)=Arg(F_tize(z1+z2)) by Def2 .=Arg(0.F_Complex) by A10,Def1, COMPLFLD:9 .=0 by COMPTRIG:def 1; hence Arg(z1+z2)<PI by COMPTRIG:21; case z1+z2<>0c; Re (z1+z2)=Re z1 + Re z2 by COMPLEX1:19 .=|.z1.| + |.z2.| by A4,A9, COMPLEX1:7; then z1+z2 = [* |.z1.| + |.z2.|,0 *] by A5,A7,A8,COMPLEX1:8; then A11: z1+z2=[** |.z1.| + |.z2.|,0 **] by HAHNBAN1:def 1; A12: 0<= |.z1.| by COMPLEX1:132; 0<= |.z2.| by COMPLEX1:132; then 0+0 <= |.z1.| + |.z2.| by A12,REAL_1:55; hence Arg(z1+z2)<PI by A2,A3,A11,COMPTRIG:21,53; end; hence Arg(z1+z2)<PI; case Arg(z2)>0; then Arg(z2) in ].0,PI.[ by A1,JORDAN6:45; then A13: Im z2>0 by Th27; Im (z1+z2)=(Im z1)+(Im z2) by COMPLEX1:19; then Arg(z1+z2) in ].0,PI.[ by A5,A13,Th27; hence Arg(z1+z2)<PI by JORDAN6:45; end; hence Arg(z1+z2)<PI; case Arg(z1)>0; then Arg(z1) in ].0,PI.[ by A1,JORDAN6:45; then A14: Im z1>0 by Th27; now per cases by Th18; case Arg(z2)=0; then z2=[* |.z2.|,0 *] by Th24; then A15: z2=[* |.z2.|,0 *] & Im z2=0 by COMPLEX1:7; Im (z1+z2)=(Im z1)+(Im z2) by COMPLEX1:19; then Arg(z1+z2) in ].0,PI.[ by A14,A15,Th27; hence Arg(z1+z2)<PI by JORDAN6:45; case Arg(z2)>0; then Arg(z2) in ].0,PI.[ by A1,JORDAN6:45; then A16: Im z2>0 by Th27; Im (z1+z2)=(Im z1)+(Im z2) by COMPLEX1:19; then Im (z1+z2)>0+0 by A14,A16,REAL_1:67; then Arg(z1+z2) in ].0,PI.[ by Th27; hence Arg(z1+z2)<PI by JORDAN6:45; end; hence Arg(z1+z2)<PI; end; hence Arg(z1+z2)<PI; end; theorem Th30: for x be Real st x > 0 holds Arg [*0,x*] = PI/2 proof let x be Real such that A1: x > 0; A2: F_tize [*0,x*] = [*0,x*] by Def1.= [** 0, x **] by HAHNBAN1:def 1; thus Arg [*0,x*] = Arg F_tize [*0,x*] by Def2 .= PI/2 by A1,A2,COMPTRIG:55; end; theorem Th31: for z be Element of COMPLEX holds Arg z in ].0,PI/2.[ iff Re z > 0 & Im z > 0 proof let z be Element of COMPLEX; A1: F_tize z = z by Def1; consider z' being Element of COMPLEX such that A2: F_tize z = z' & Re F_tize z = Re z' by HAHNBAN1:def 3; consider z'' being Element of COMPLEX such that A3: F_tize z = z'' & Im F_tize z = Im z'' by HAHNBAN1:def 4; Arg z = Arg F_tize z by Def2; hence Arg z in ].0,PI/2.[ iff Re z > 0 & Im z > 0 by A1,A2,A3,COMPTRIG:59; end; theorem Th32: for z be Element of COMPLEX holds Arg z in ].PI/2,PI.[ iff Re z < 0 & Im z > 0 proof let z be Element of COMPLEX; A1: F_tize z = z by Def1; consider z' being Element of COMPLEX such that A2: F_tize z = z' & Re F_tize z = Re z' by HAHNBAN1:def 3; consider z'' being Element of COMPLEX such that A3: F_tize z = z'' & Im F_tize z = Im z'' by HAHNBAN1:def 4; Arg z = Arg F_tize z by Def2; hence Arg z in ].PI/2,PI.[ iff Re z < 0 & Im z > 0 by A1,A2,A3,COMPTRIG:60; end; theorem Th33: for z be Element of COMPLEX st Im z > 0 holds sin Arg z > 0 proof let z be Element of COMPLEX; assume A1: Im z > 0; A2: F_tize z = z by Def1; consider z'' being Element of COMPLEX such that A3: F_tize z = z'' & Im F_tize z = Im z'' by HAHNBAN1:def 4; Arg z = Arg F_tize z by Def2; hence sin Arg z > 0 by A1,A2,A3,COMPTRIG:63; end; theorem Th34: for z being Element of COMPLEX holds Arg z = 0 iff Re z >= 0 & Im z = 0 proof let z being Element of COMPLEX; hereby assume Arg z = 0; then z = [*|.z.|,0*] by Th24; then Re z = |.z.| & Im z = 0 by COMPLEX1:7; hence Re z >= 0 & Im z = 0 by COMPLEX1:132; end; A1: Arg z = Arg F_tize z by Def2; assume A2: Re z >= 0 & Im z = 0; then z = [* Re z, 0 *] by COMPLEX1:8; then F_tize z = [*Re z,0*] by Def1.= [** Re z, 0 **] by HAHNBAN1:def 1; hence Arg z = 0 by A1,A2,COMPTRIG:53; end; theorem Th35: for z being Element of COMPLEX holds Arg z = PI iff Re z < 0 & Im z=0 proof let z be Element of COMPLEX; A1: z=F_tize(z) by Def1; A2: Arg(z)=Arg(F_tize(z)) by Def2; A3: |.z.|=|.F_tize(z).| by Th16; hereby assume A4: Arg z = PI; per cases; suppose A5: z<>0.F_Complex; then z=[** |.z.|*cos PI,|.z.|*sin PI **] by A1,A2,A3,A4,COMPTRIG:def 1; then z=[* |.z.|*-1,0 *] by HAHNBAN1:def 1,SIN_COS:82; then z=[* -|.z.|,0 *] by XCMPLX_1:180; then A6: Re z = -|.z.| & Im z = 0 by COMPLEX1:7; --|.z.| > 0 by A5,COMPLEX1 :133,COMPLFLD:9; hence Re z < 0 & Im z = 0 by A6,REAL_1:66; suppose z=0.F_Complex; hence Re z < 0 & Im z = 0 by A4,Th20,COMPLFLD:9,COMPTRIG:21; end; A7: Arg z = Arg F_tize z by Def2; assume A8: Re z < 0 & Im z=0; then z = [* Re z, 0 *] by COMPLEX1:8; then F_tize z = [*Re z,0*] by Def1.= [** Re z, 0 **] by HAHNBAN1:def 1; hence Arg z = PI by A7,A8,COMPTRIG:54; end; theorem Th36: for z being Element of COMPLEX holds Im z = 0 iff Arg z = 0 or Arg z = PI proof let z be Element of COMPLEX; hereby assume A1: Im z = 0; Re z >= 0 or Re z < 0; then A2: Arg [**Re z,0**] = 0 or Arg [**Re z,0**] = PI by COMPTRIG:53,54; [**Re z,0**] = [*Re z,0*] by HAHNBAN1:def 1 .= z by A1,COMPLEX1:8; hence Arg z = 0 or Arg z = PI by A2,Th17; end; assume Arg z = 0 or Arg z = PI; hence Im z = 0 by Th34,Th35; end; theorem Th37: for z being Element of COMPLEX st Arg z <= PI holds Im z >= 0 proof let z be Element of COMPLEX; assume A1: Arg z <= PI; per cases by A1,Th18,REAL_1:def 5; suppose Arg z = PI or Arg z = 0; hence Im z >= 0 by Th36; suppose 0 < Arg z & Arg z < PI; then Arg z in ].0,PI.[ by JORDAN6:45; hence Im z >= 0 by Th27; end; theorem Th38: for z being Element of COMPLEX st z <> 0 holds cos Arg -z = -cos Arg z & sin Arg -z = - sin Arg z proof let a be Element of COMPLEX; assume A1: a <> 0; A2: a = [*|.a.|*cos Arg a, |.a.|*sin Arg a*] by Th19; -a = [*|.-a.|*cos Arg -a, |.-a.|*sin Arg -a*] by Th19; then A3: Re a = |.a.|*cos Arg a & Im a = |.a.|*sin Arg a & Re -a = |.-a.|*cos Arg -a & Im -a = |.-a.|*sin Arg -a by A2,COMPLEX1:7; A4: |.-a.| = |.a.| by COMPLEX1:138; A5: [*0,0*] = a+-a by L0,XCMPLX_0:def 6 .= [* |.a.|*cos Arg a + (|.a.|*cos Arg -a), |.a.|*sin Arg a + (|.a.|*sin Arg -a)*] by A3,A4,COMPLEX1:def 9; then |.a.|*cos Arg a + |.a.|*cos Arg -a = 0 by ARYTM_0:12; then A6: |.a.|*(cos Arg a + cos Arg -a) = 0 by XCMPLX_1:8; |.a.|*sin Arg a + |.a.|*sin Arg -a = 0 by A5,ARYTM_0:12; then A7: |.a.|*(sin Arg a+sin Arg -a)= 0 by XCMPLX_1:8; |.a.|<>0 by A1,COMPLEX1 :131; then cos Arg a +--cos Arg -a = 0 & sin Arg a +--sin Arg -a = 0 by A6,A7, XCMPLX_1:6; hence cos Arg -a = - cos Arg a & sin Arg -a = - sin Arg a by XCMPLX_1:136; end; theorem Th39: for a being Element of COMPLEX st a <> 0 holds cos Arg a = Re a / |.a.| & sin Arg a = Im a / |.a.| proof let a be Element of COMPLEX; assume a <> 0; then A1: |.a.|<>0 by COMPLEX1:131; a = [* |.a.|*cos Arg a,|.a.|*sin Arg a*] by Th19; then Re a = |.a.|*cos Arg a & Im a = |.a.|*sin Arg a by COMPLEX1:7; hence cos Arg a = Re a / |.a.| & sin Arg a = Im a / |.a.| by A1,XCMPLX_1:90; end; theorem Th40: for a being Element of COMPLEX, r being Real st r > 0 holds Arg(a*[*r,0*]) = Arg a proof let a be Element of COMPLEX, r be Real such that A1: r > 0; per cases; suppose a = 0; hence Arg(a*[*r,0*]) = Arg a; suppose A2: a <> 0; set b = a*[*r,0*]; A3: Re [*r,0*] = r & Im [*r,0*] = 0 by COMPLEX1:7; then A4: Re b = Re a * r - 0*Im a by COMPLEX1:24 .= r*Re a; A5: Im b = Re a * 0 + r * Im a by A3,COMPLEX1:24 .= r*Im a; A6: |.b.| = |.a.|*|.[*r,0*].| by COMPLEX1:151 .= |.a.|*abs r by A3,COMPLEX1:136 .= |.a.|*r by A1,ABSVALUE:def 1; |.a.| <> 0 by A2,COMPLEX1:131; then A7: |.b.| <> 0 by A1,A6,XCMPLX_1:6; A8: cos Arg a = Re a/|.a.| & sin Arg a = Im a/|.a.| by A2,Th39; A9: cos Arg b = Re b/|.b.|by A7,Th39,COMPLEX1:130 .=cos Arg a by A1,A4,A6,A8, XCMPLX_1:92; A10: sin Arg b = Im b /|.b.| by A7,Th39,COMPLEX1:130 .=sin Arg a by A1,A5,A6, A8,XCMPLX_1:92; 0 <= Arg b & Arg b < 2*PI & 0 <= Arg a & Arg a < 2*PI by Th18; hence Arg(a*[*r,0*]) = Arg a by A9,A10,Th12; end; theorem Th41: for a being Element of COMPLEX, r being Real st r < 0 holds Arg(a*[*r,0*]) = Arg -a proof let a be Element of COMPLEX, r be Real such that A1: r < 0; per cases; suppose a = 0; hence Arg(a*[*r,0*]) = Arg -a; suppose A2: a <> 0; set b = a*[*r,0*]; A3: Re [*r,0*] = r & Im [*r,0*] = 0 by COMPLEX1:7; then A4: Re b = Re a * r - 0*Im a by COMPLEX1:24 .= r*Re a; A5: Im b = Re a * 0 + r * Im a by A3,COMPLEX1:24 .= r*Im a; A6: |.b.| = |.a.|*|.[*r,0*].| by COMPLEX1:151 .= |.a.|*abs r by A3,COMPLEX1:136 .= |.a.|*(-r) by A1,ABSVALUE:def 1; A7: -r > 0 by A1,REAL_1:66; |.a.| <> 0 by A2,COMPLEX1:131; then A8: |.b.| <> 0 by A6,A7,XCMPLX_1:6; A9: cos Arg a = Re a/|.a.| & sin Arg a = Im a/|.a.| by A2,Th39; A10: cos Arg b = r*Re a/(|.a.|*(-r)) by A4,A6,A8,Th39,COMPLEX1:130 .= r*Re a/(-|.a.|*r) by XCMPLX_1:175 .= -r*Re a/(|.a.|*r) by XCMPLX_1:189 .= -cos Arg a by A1,A9,XCMPLX_1:92 .= cos Arg -a by A2,Th38; A11: sin Arg b = r*Im a /(|.a.|*(-r)) by A5,A6,A8,Th39,COMPLEX1:130 .= r*Im a/(-|.a.|*r) by XCMPLX_1:175 .= -r*Im a/(|.a.|*r) by XCMPLX_1:189 .= -sin Arg a by A1,A9,XCMPLX_1:92 .= sin Arg -a by A2,Th38; 0 <= Arg b & Arg b < 2*PI & 0 <= Arg -a & Arg -a < 2*PI by Th18; hence Arg(a*[*r,0*]) = Arg -a by A10,A11,Th12; end; begin :: Inner product definition ::Inner product of complex numbers let x, y be Element of COMPLEX; func x .|. y -> Element of COMPLEX equals :Def3: x*(y*'); correctness; end; reserve a, b, c, d, x, y, z for Element of COMPLEX; theorem Th42: x.|.y = [* (Re x)*(Re y)+(Im x)*(Im y), -(Re x)*(Im y)+(Im x)*(Re y) *] proof A1: Re [* Re x,Im x *] = Re x & Im [* Re x,Im x *] = Im x & Re[* Re y,-Im y *]=Re y & Im [* Re y,-Im y *] = -Im y by COMPLEX1:7; thus x.|.y = x*y*' by Def3 .=[* Re x,Im x *]*y*' by COMPLEX1:8 .=[* Re x,Im x *]*[* Re y,-Im y*] by COMPLEX1:def 15 .=[*(Re x)*(Re y)-(Im x)*(-Im y),(Re x)*(-Im y)+(Im x)*(Re y)*] by A1,COMPLEX1:def 10 .=[* (Re x)*(Re y)--(Im x)*(Im y),(Re x)*(-Im y)+(Im x)*(Re y) *] by XCMPLX_1:175 .=[* (Re x)*(Re y)+(Im x)*(Im y),(Re x)*(-Im y)+(Im x)*(Re y) *] by XCMPLX_1:151 .=[*(Re x)*(Re y)+(Im x)*(Im y),-((Re x)*(Im y))+(Im x)*(Re y) *] by XCMPLX_1:175; end; theorem Th43: z.|.z = [* (Re z)*(Re z)+(Im z)*(Im z),0*] & z.|.z = [* (Re z)^2+(Im z)^2,0*] proof thus z.|.z = [* (Re z)*(Re z)+(Im z)*(Im z),-((Im z)*(Re z))+(Im z)*(Re z) *] by Th42 .= [* (Re z)*(Re z)+(Im z)*(Im z),0 *] by XCMPLX_0:def 6; hence z.|.z = [* (Re z)^2+(Im z)*(Im z),0 *] by SQUARE_1:def 3 .= [* (Re z)^2+(Im z)^2,0 *] by SQUARE_1:def 3; end; theorem Th44: z.|.z = [* |.z.|^2,0*] & |.z.|^2 = Re (z.|.z) proof A1: (Re z)^2>=0 by SQUARE_1:72; (Im z)^2>=0 by SQUARE_1:72; then A2: (Re z)^2 + (Im z)^2>=0+0 by A1,REAL_1:55; A3: |.z.|=sqrt((Re z)^2 + (Im z)^2) by COMPLEX1:def 16; thus z.|.z = [* (Re z)^2+(Im z)^2,0*] by Th43 .=[* |.z.|^2,0*] by A2,A3, SQUARE_1:def 4; hence thesis by COMPLEX1:7; end; theorem Th45: |. x.|.y .| = |.x.|*|.y.| proof thus |.(x.|.y).| = |.(x*(y*')).| by Def3 .=(|.x.|)*(|.y*'.|) by COMPLEX1:151 .=|.x.|*|.y.| by COMPLEX1:139; end; theorem x.|.x = 0 implies x = 0 proof assume x.|.x = 0; then 0c = [* (Re x)^2+(Im x)^2,0 *]&0c = [*0,0*] by Th43,L0; then (Re x)^2+(Im x)^2 = 0 by ARYTM_0:12; hence x = 0 by COMPLEX1:13; end; theorem Th47: y.|.x = (x.|.y)*' proof thus (y.|.x)=(y*x*')*'*' by Def3 .=((x*')*'*(y*'))*' by COMPLEX1:121 .=(x.|.y)*' by Def3; end; theorem Th48: (x+y).|.z = x.|.z + y.|.z proof thus (x + y).|.z =(x+y)*z*' by Def3 .=x*(z*')+y*(z*') by XCMPLX_1:8 .=(x.|.z)+y*(z*') by Def3 .=(x.|.z)+(y.|.z) by Def3; end; theorem Th49: x.|.(y+z) = x.|.y + x.|.z proof thus x.|.(y+z) =x*((y+z)*') by Def3 .=x*(y*'+z*') by COMPLEX1:118 .=x*(y*')+x*(z*') by XCMPLX_1:8 .=(x.|.y)+x*(z*') by Def3 .=(x.|.y)+(x.|.z) by Def3; end; theorem Th50: (a*x).|.y = a * x.|.y proof thus (a*x).|.y = a*x*(y*') by Def3 .=a*(x*(y*')) by XCMPLX_1:4 .= a * x.|.y by Def3; end; theorem Th51: x.|.(a*y) = (a*') * x.|.y proof thus x.|.(a*y) = x*((a*y)*') by Def3 .=x*((a*')*(y*')) by COMPLEX1:121 .=(a*')*(x*(y*')) by XCMPLX_1:4 .= (a*') * x.|.y by Def3; end; theorem (a*x).|.y = x.|.((a*')*y) proof thus (a*x).|.y =x*a*(y*') by Def3 .=x*((a*'*')*(y*')) by XCMPLX_1:4 .=x* (((a*')*y)*') by COMPLEX1:121 .= x.|.((a*')*y) by Def3; end; theorem (a*x+b*y).|.z = a * x.|.z + b * y.|.z proof thus (a*x+b*y).|.z = (a*x+b*y)*z*' by Def3 .= a * x *z*'+b*y*z*' by XCMPLX_1:8 .=a*(x*z*')+b*y*z*' by XCMPLX_1:4 .=a* x.|.z+b*y*z*' by Def3 .=a* x.|.z+b*(y*z*') by XCMPLX_1:4 .= a * x.|.z + b * y.|.z by Def3; end; theorem x.|.(a*y + b*z) = (a*') * x.|.y + (b*') * x.|.z proof thus x.|.(a*y + b*z) = x.|.(a*y) +x.|.(b*z) by Th49 .=(a*')*x.|.y + x.|.(b*z) by Th51 .=(a*') * x.|.y + (b*') * x.|.z by Th51; end; theorem Th55: (-x).|.y = x.|.(-y) proof thus (-x).|.y = ((-1r)*x).|.y by COMPLEX1:46 .= (-(1r*')) * x.|.y by Th50,COMPLEX1:115 .=((-1r)*')* x.|.y by COMPLEX1:119 .= x.|.((-1r)*y) by Th51 .=x.|.(-y) by COMPLEX1:46; end; theorem Th56: (-x).|.y = - x.|.y proof thus (-x).|.y = ((-1r)*x).|.y by COMPLEX1:46 .= (-1r) * x.|.y by Th50 .=- x.|.y by COMPLEX1:46; end; theorem Th57: - x.|.y = x.|.(-y) proof thus - x.|.y = (-x).|.y by Th56 .=x.|.(-y) by Th55;end; theorem (-x).|.(-y) = x.|.y proof (-x).|.(-y) = - x.|.(-y) by Th56 .= - ( - x.|.y ) by Th57; hence thesis; end; theorem Th59: (x - y).|.z = x.|.z - y.|.z proof thus (x - y).|.z =(x-y)*z*' by Def3 .=x*(z*')-y*(z*') by XCMPLX_1:40 .=(x.|.z)-y*(z*') by Def3 .=(x.|.z)-(y.|.z) by Def3; end; theorem Th60: x.|.(y - z) = x.|.y - x.|.z proof thus x.|.(y-z) =x*((y-z)*') by Def3 .=x*(y*'-z*') by COMPLEX1:120 .=x*(y*')-x*(z*') by XCMPLX_1:40 .=(x.|.y)-x*(z*') by Def3 .=(x.|.y)-(x.|.z) by Def3; end; theorem 0c.|.x = 0c & x.|.0c = 0c proof thus (0c).|.x =(0c)*(x*') by Def3 .=0c by COMPLEX1:28; thus x.|.0c = (x*0c*')*'*' by Def3 .= 0c by COMPLEX1:28,113; end; theorem (x + y).|.(x + y) = x.|.x + x.|.y + y.|.x + y.|.y proof (x + y).|.(x + y) = x.|.(x+y) + y.|.(x+y) by Th48 .= x.|.x + x.|.y + y.|.(x+y) by Th49 .= x.|.x + x.|.y + (y.|.x + y.|.y) by Th49 .= x.|.x + x.|.y + y.|.x + y.|.y by XCMPLX_1:1; hence thesis; end; theorem Th63: (x-y).|.(x-y) = x.|.x - x.|.y - y.|.x + y.|.y proof (x - y).|.(x - y) =x.|.(x - y) - y.|.(x - y) by Th59 .=x.|.x - x.|.y - y.|.(x - y) by Th60 .=x.|.x - x.|.y - (y.|.x - y.|.y) by Th60 .=x.|.x - x.|.y - y.|.x + y.|.y by XCMPLX_1:37; hence thesis; end; Lm5: (|.z.|)^2 = (Re z)^2 + (Im z)^2 proof thus (|.z.|)^2 = |.z.|*|.z.| by SQUARE_1:def 3 .=|.z*z.| by COMPLEX1:151 .= (Re z)^2 + (Im z)^2 by COMPLEX1:154; end; theorem Th64: Re (x.|.y) = 0 iff Im (x.|.y) = |.x.|*|.y.| or Im (x.|.y) = -|.x.|*|.y.| proof hereby assume A1: Re (x.|.y)=0; (|.x.|*|.y.|)^2=(|.(x.|.y).|)^2 by Th45 .=0+ (Im (x.|.y))^2 by A1,Lm5,SQUARE_1:60 .= (Im (x.|.y))^2; hence Im (x.|.y)=|.x.|*|.y.| or Im (x.|.y)= - (|.x.|*|.y.|) by JGRAPH_3:1; end; hereby assume Im (x.|.y)=|.x.|*|.y.| or Im (x.|.y)= - (|.x.|*|.y.|); then (Im (x.|.y))^2= (|.x.|*|.y.|)^2 by SQUARE_1:61 .= (|.(x.|.y).|)^2 by Th45 .=(Re (x.|.y))^2+(Im (x.|.y))^2 by Lm5; then 0= (Re (x.|.y))^2+(Im (x.|.y))^2 - (Im (x.|.y))^2 by XCMPLX_1:14 .= (Re (x.|.y))^2 by XCMPLX_1:26; hence Re (x.|.y)=0 by SQUARE_1:73; end; end; begin :: Rotation definition let a be Element of COMPLEX, r be Real; func Rotate(a, r) -> Element of COMPLEX equals :Def4: [* |.a.|*cos (r+Arg a), |.a.|*sin (r+Arg a) *]; correctness; end; reserve r for Real; theorem Th65: Rotate(a, 0) = a proof thus Rotate(a, 0) = [* |.a.|*cos (0+Arg a), |.a.|*sin (0+Arg a) *] by Def4 .= a by Th19; end; theorem Th66: Rotate(a, r) = 0c iff a = 0c proof A1: Rotate(a, r) = [* |.a.|*cos (r+Arg a), |.a.|*sin (r+Arg a) *] by Def4; hereby assume Rotate(a, r) = 0c; then A2: |.a.|*cos (r+Arg a) = 0 & |.a.|*sin (r+Arg a) = 0 by A1,ARYTM_0:12 ,L0; per cases by A2,XCMPLX_1:6; suppose |.a.| = 0; hence a = 0c by COMPLEX1:131; suppose cos (r+Arg a) = 0 & sin (r+Arg a) = 0; hence a = 0c by Th11; end; assume a = 0c; hence Rotate(a, r)= 0c by A1,COMPLEX1:130,L0; end; theorem Th67: |.Rotate(a,r).| = |.a.| proof A1: |.a.| >= 0 by COMPLEX1:132; Rotate(a,r) = [* |.a.|*cos (r+Arg a), |.a.|*sin (r+Arg a) *] by Def4; then Re Rotate(a,r) = |.a.|*cos (r+Arg a) & Im Rotate(a,r) = |.a.|*sin (r+ Arg a) by COMPLEX1:7; hence |.Rotate(a,r).| = sqrt((|.a.|*cos (r+Arg a))^2 + (|.a.|*sin (r+Arg a))^2) by COMPLEX1:def 16 .= sqrt(|.a.|^2*(cos (r+Arg a))^2 + (|.a.|*sin (r+Arg a))^2) by SQUARE_1:68 .= sqrt(|.a.|^2*(cos (r+Arg a))^2 + |.a.|^2*(sin (r+Arg a))^2) by SQUARE_1:68 .= sqrt(|.a.|^2*((cos (r+Arg a))^2 + (sin (r+Arg a))^2)) by XCMPLX_1:8 .= sqrt(|.a.|^2*1) by SIN_COS:32 .= |.a.| by A1,SQUARE_1:89; end; theorem Th68: a <> 0c implies ex i being Integer st Arg(Rotate(a,r)) = 2*PI*i+(r+Arg(a)) proof assume a <> 0c; then A1: Rotate(a, r) <> 0c by Th66; A2: |.a.| = |.Rotate(a,r).| by Th67; A3: Rotate(a, r) = [* |.a.|*cos (r+Arg a), |.a.|*sin (r+Arg a) *] by Def4; consider AR being real number such that A4: AR = 2*PI*-[\ (r+Arg a)/(2*PI) /]+(r+Arg a) and A5: 0 <= AR and A6: AR < 2*PI by Th2,COMPTRIG:21; reconsider ar = AR as Real by XREAL_0:def 1; A7: cos (r+Arg a) = cos ar by A4,Th10; A8: sin (r+Arg a) = sin ar by A4,Th9; take i = -[\ (r+Arg a)/(2*PI) /]; thus thesis by A1,A2,A3,A4,A5,A6,A7,A8,Th21 ; end; theorem Th69: Rotate(a,-Arg a) = [* |.a.|, 0 *] proof set r = -Arg a; A1: r+Arg a = 0 by XCMPLX_0:def 6; thus Rotate(a,r) = [* |.a.|*cos (r+Arg a), |.a.|*sin (r+Arg a) *] by Def4 .= [* |.a.|, 0 *] by A1,SIN_COS:34; end; theorem Th70: Re Rotate(a,r) = (Re a)*(cos r)-(Im a)*(sin r) & Im Rotate(a,r) = (Re a)*(sin r)+(Im a)*(cos r) proof set ra = Rotate(a,r); A1: ra = [* |.a.|*cos (r+Arg a), |.a.|*sin (r+Arg a) *] by Def4; a = [* |.a.|*cos Arg a, |.a.|*sin Arg a *] by Th19; then A2: Re a = |.a.|*cos Arg a & Im a = |.a.|*sin Arg a by COMPLEX1:7; thus Re Rotate(a,r) = |.a.|*cos (r+Arg a) by A1,COMPLEX1:7 .= |.a.|*((cos r)*cos(Arg a)-(sin r)*sin(Arg a)) by SIN_COS:80 .= |.a.|*((cos r)*cos(Arg a))-|.a.|*((sin r)*sin(Arg a)) by XCMPLX_1:40 .= |.a.|*cos(Arg a)*(cos r)-|.a.|*((sin r)*sin(Arg a)) by XCMPLX_1:4 .= (Re a)*(cos r)-(Im a)*(sin r) by A2,XCMPLX_1:4; thus Im Rotate(a,r) = |.a.|*sin(r+Arg a) by A1,COMPLEX1:7 .= |.a.|*((sin r)*cos(Arg a)+(cos r)*sin(Arg a)) by SIN_COS:80 .= |.a.|*((sin r)*cos(Arg a))+|.a.|*((cos r)*sin(Arg a)) by XCMPLX_1:8 .= |.a.|*cos(Arg a)*(sin r)+|.a.|*((cos r)*sin(Arg a)) by XCMPLX_1:4 .= (Re a)*(sin r)+(Im a)*(cos r) by A2,XCMPLX_1:4; end; theorem Th71: Rotate(a+b,r) = Rotate(a,r)+Rotate(b,r) proof set ab = a+b; set rab = Rotate(ab,r),ra = Rotate(a,r), rb = Rotate(b,r); A1: Re rab = (Re ab)*(cos r)-(Im ab)*(sin r) & Im rab = (Re ab)*(sin r)+(Im ab)*(cos r) by Th70; A2: Re ra = (Re a)*(cos r)-(Im a)*(sin r) & Im ra = (Re a)*(sin r)+(Im a)*(cos r) by Th70; A3: Re rb = (Re b)*(cos r)-(Im b)*(sin r) & Im rb = (Re b)*(sin r)+(Im b)*(cos r) by Th70; A4: Re ab = Re a + Re b & Im ab = Im a + Im b by COMPLEX1:19; A5: Re (ra+rb) = (Re a)*(cos r)-(Im a)*(sin r)+((Re b)*(cos r)-(Im b)*(sin r)) by A2,A3,COMPLEX1:19 .= (Re a)*(cos r)-(Im a)*(sin r)+(Re b)*(cos r)-(Im b)*(sin r) by Lm1 .= (Re a)*(cos r)+(Re b)*(cos r)-(Im a)*(sin r)-(Im b)*(sin r) by XCMPLX_1:29 .= (Re a + Re b)*(cos r)-(Im a)*(sin r)-(Im b)*(sin r) by XCMPLX_1:8 .= (Re a + Re b)*(cos r)-((Im a)*(sin r)+(Im b)*(sin r)) by XCMPLX_1:36 .= Re rab by A1,A4,XCMPLX_1:8; Im (ra+rb) = (Re a)*(sin r)+(Im a)*(cos r)+((Re b)*(sin r)+(Im b)*(cos r)) by A2,A3,COMPLEX1:19 .= (Re a)*(sin r)+(Im a)*(cos r)+(Re b)*(sin r)+(Im b)*(cos r) by XCMPLX_1:1 .= (Re a)*(sin r)+(Re b)*(sin r)+(Im a)*(cos r)+(Im b)*(cos r) by XCMPLX_1:1 .= (Re a + Re b)*(sin r)+(Im a)*(cos r)+(Im b)*(cos r) by XCMPLX_1:8 .= (Re a + Re b)*(sin r)+((Im a)*(cos r)+(Im b)*(cos r)) by XCMPLX_1:1 .= Im rab by A1,A4,XCMPLX_1:8; hence Rotate(a+b,r) = Rotate(a,r)+Rotate(b,r) by A5,COMPLEX1:9; end; theorem Th72: Rotate(-a,r) = -Rotate(a,r) proof per cases; suppose A1: a <> 0c; A2: -Rotate(a,r) = - [* |.a.|*cos (r+Arg a), |.a.|*sin (r+Arg a) *] by Def4 .= [* -|.a.|*cos (r+Arg a), -|.a.|*sin (r+Arg a) *] by Th1 .= [* (-|.a.|)*cos (r+Arg a), -|.a.|*sin (r+Arg a) *] by XCMPLX_1:175 .= [* (-|.a.|)*cos (r+Arg a), (-|.a.|)*sin (r+Arg a) *] by XCMPLX_1:175 .= [* |.a.|*-cos (r+Arg a), (-|.a.|)*sin (r+Arg a) *] by XCMPLX_1:176 .= [* |.a.|*-cos (r+Arg a), |.a.|*-sin (r+Arg a) *] by XCMPLX_1:176; A3: |.a.| = |.-a.| by COMPLEX1:138; cos (r+Arg-a) = -cos(r+Arg a) & sin (r+Arg-a) = -sin(r+Arg a) proof per cases; suppose Arg a < PI; then Arg -a = PI+Arg a by A1,Th22; then r+Arg-a = PI+(r+Arg a) by XCMPLX_1:1; hence thesis by SIN_COS:84; suppose Arg a >= PI; then Arg -a = (Arg a)-PI by A1,Th22; then r+Arg-a = (Arg a)+r-PI by Lm1; hence thesis by Th6; end; hence Rotate(-a,r) = -Rotate(a,r) by A2,A3,Def4; suppose A4: a = 0c; hence Rotate(-a,r) = -0 by Th66 .= -Rotate(a,r) by A4,Th66; end; theorem Th73: Rotate(a-b,r) = Rotate(a,r)-Rotate(b,r) proof thus Rotate(a-b,r) = Rotate(a+-b,r) by XCMPLX_0:def 8 .= Rotate(a,r)+Rotate(-b,r) by Th71 .= Rotate(a,r)+-Rotate(b,r) by Th72 .= Rotate(a,r)-Rotate(b,r) by XCMPLX_0:def 8; end; theorem Th74: Rotate(a, PI) = -a proof per cases; suppose a = 0.F_Complex; hence Rotate(a, PI) = -a by Th66,COMPLFLD:9,REAL_1:26; suppose a <> 0.F_Complex; A1: a = [* |.a.|*cos Arg a, |.a.|*sin Arg a *] by Th19; A2: |.a.|*-cos Arg a = -(|.a.|*cos Arg a) by XCMPLX_1:175 .= - Re a by A1, COMPLEX1:7; A3: |.a.|*-sin Arg a = -(|.a.|*sin Arg a) by XCMPLX_1:175 .= - Im a by A1, COMPLEX1:7; thus Rotate(a, PI) = [* |.a.|*cos (PI+Arg a), |.a.|*sin (PI+Arg a) *] by Def4 .= [* |.a.|*-cos Arg a, |.a.|*sin (PI+Arg a) *] by SIN_COS:84 .= [* |.a.|*-cos Arg a, |.a.|*-sin Arg a *] by SIN_COS:84 .= -a by A2,A3,COMPLEX1:def 11; end; begin :: Angles definition let a, b be Element of COMPLEX; func angle(a,b) -> Real equals :Def5: Arg(Rotate(b, -Arg a)) if Arg a = 0 or b <> 0 otherwise 2*PI - Arg a; correctness; end; theorem Th75: r >= 0 implies angle([*r,0*],a) = Arg a proof assume r >= 0; then Arg [*r,0*] = 0 by Th23; hence angle([*r,0*],a) = Arg(Rotate(a,-0)) by Def5 .= Arg a by Th65; end; theorem Th76: Arg a = Arg b & a <> 0 & b <> 0 implies Arg Rotate(a,r) = Arg Rotate(b,r) proof assume that A1: Arg a = Arg b and A2: a <> 0 and A3: b <> 0; consider i being Integer such that A4: Arg(Rotate(a,r)) = 2*PI*i+(r+Arg(a)) by A2,Th68; consider j being Integer such that A5: Arg(Rotate(b,r)) = 2*PI*j+(r+Arg(b)) by A3,Th68; Arg(Rotate(a,r))+0 = 2*PI*i+r+Arg(a) by A4,XCMPLX_1:1; then A6: Arg(Rotate(a,r))-(2*PI*i+r) = Arg(a)-0 by XCMPLX_1:33; A7: Arg(Rotate(b,r)) = 2*PI*j+r+Arg(b) by A5,XCMPLX_1:1 .= 2*PI*j+r+(Arg(Rotate(a,r))+-(2*PI*i+r)) by A1,A6,XCMPLX_0:def 8 .= 2*PI*j+r+-(2*PI*i+r)+Arg(Rotate(a,r)) by XCMPLX_1:1 .= 2*PI*j+r+(-2*PI*i+-r)+Arg(Rotate(a,r)) by XCMPLX_1:140 .= 2*PI*j+r+-2*PI*i+-r+Arg(Rotate(a,r)) by XCMPLX_1:1 .= 2*PI*j+-2*PI*i+r+-r+Arg(Rotate(a,r)) by XCMPLX_1:1 .= 2*PI*j-2*PI*i+r+-r+Arg(Rotate(a,r)) by XCMPLX_0:def 8 .= 2*PI*(j-i)+r+-r+Arg(Rotate(a,r)) by XCMPLX_1:40 .= 2*PI*(j-i)+(r+-r)+Arg(Rotate(a,r)) by XCMPLX_1:1 .= 2*PI*(j-i)+0+Arg(Rotate(a,r)) by XCMPLX_0:def 6 .= 2*PI*(j-i)+Arg(Rotate(a,r)); 0 <= Arg Rotate(a,r) & 0 <= Arg Rotate(b,r) & Arg Rotate(a,r) < 2*PI & Arg Rotate(b,r) < 2*PI by Th18; hence Arg Rotate(a,r) = Arg Rotate(b,r) by A7,Th3; end; theorem Th77: r > 0 implies angle(a,b) = angle(a*[*r,0*],b*[*r,0*]) proof assume that A1: r > 0; A2: Arg(b*[*r,0*]) = Arg b by A1,Th40; A3: Arg(a*[*r,0*]) = Arg a by A1,Th40; per cases; suppose A4: b <> 0; Re [*r,0*] <> 0 by A1,COMPLEX1:7; then A5: b*[*r,0*] <> 0 by A4,COMPLEX1:12,XCMPLX_1:6; thus angle(a,b) = Arg(Rotate(b,-Arg a)) by A4,Def5 .= Arg(Rotate(b*[*r,0*],-Arg(a*[*r,0*]))) by A2,A3,A4,A5,Th76 .= angle(a*[*r,0*],b*[*r,0*]) by A5,Def5; suppose A6: b = 0; thus thesis proof per cases; suppose A7: Arg a = 0; hence angle(a,b) = Arg(Rotate(b,-Arg a)) by Def5 .= Arg 0c by A6,Th66 .= Arg(Rotate(b*[*r,0*],-Arg(a*[*r,0*]))) by A6,Th66 .= angle(a*[*r,0*],b*[*r,0*]) by A3,A7,Def5; suppose A8: Arg a <> 0; hence angle(a,b) = 2*PI-Arg a by A6,Def5 .= angle(a*[*r,0*],b*[*r,0*]) by A3,A6,A8,Def5; end; end; theorem Th78: a <> 0 & b <> 0 & Arg a = Arg b implies Arg -a = Arg -b proof assume a <> 0 & b <> 0 & Arg a = Arg b; then Arg Rotate(a,PI) = Arg Rotate(b,PI) by Th76; then Arg -a = Arg Rotate(b,PI) by Th74; hence Arg -a = Arg -b by Th74; end; theorem Th79: a <> 0 & b <> 0 implies angle(a,b) = angle(Rotate(a,r),Rotate(b,r)) proof assume that A1: a <> 0 and A2: b <> 0; consider i being Integer such that A3: Arg(Rotate(b, -Arg a)) = 2*PI*i+(-(Arg a) + Arg(b)) by A2,Th68; Arg(Rotate(b, -Arg a)) = Arg(Rotate(b, -Arg a)) + 0; then A4: Arg(Rotate(b, -Arg a)) - 2*PI*i = -(Arg a) + Arg(b)-0 by A3,XCMPLX_1: 33; A5: Rotate(b,r) <> 0 by A2,Th66; then consider j being Integer such that A6: Arg(Rotate(Rotate(b,r), -Arg Rotate(a,r))) = 2*PI*j+(-(Arg Rotate(a, r)) + Arg(Rotate(b,r))) by Th68; consider k being Integer such that A7: Arg Rotate(a,r) = 2*PI*k+(r+Arg(a)) by A1,Th68; consider l being Integer such that A8: Arg Rotate(b,r) = 2*PI*l+(r+Arg(b)) by A2,Th68; A9: Arg(Rotate(Rotate(b,r), -Arg Rotate(a,r))) = 2*PI*j+(-2*PI*k+-(r+Arg(a))+(2*PI*l+(r+Arg(b)))) by A6,A7,A8,XCMPLX_1:140 .= 2*PI*j+(-2*PI*k+((2*PI*l+(r+Arg(b)))+-(r+Arg(a)))) by XCMPLX_1:1 .= 2*PI*j+-2*PI*k+((2*PI*l+(r+Arg(b)))+-(r+Arg(a))) by XCMPLX_1:1 .= 2*PI*j-2*PI*k+((2*PI*l+(r+Arg(b)))+-(r+Arg(a))) by XCMPLX_0:def 8 .= 2*PI*(j-k)+((2*PI*l+(r+Arg(b)))+-(r+Arg(a))) by XCMPLX_1:40 .= 2*PI*(j-k)+(2*PI*l+(r+Arg(b)))+-(r+Arg(a)) by XCMPLX_1:1 .= 2*PI*(j-k)+2*PI*l+(r+Arg(b))+-(r+Arg(a)) by XCMPLX_1:1 .= 2*PI*(j-k+l)+(r+Arg(b))+-(r+Arg(a)) by XCMPLX_1:8 .= 2*PI*(j-k+l)+Arg(b)+r+-(r+Arg(a)) by XCMPLX_1:1 .= 2*PI*(j-k+l)+Arg(b)+r+(-r+-Arg(a)) by XCMPLX_1:140 .= 2*PI*(j-k+l)+Arg(b)+r+-r+-Arg(a) by XCMPLX_1:1 .= 2*PI*(j-k+l)+Arg(b)+-Arg(a) by XCMPLX_1:137 .= 2*PI*(j-k+l)+(-Arg(a)+Arg(b)) by XCMPLX_1:1 .= 2*PI*(j-k+l)+Arg(Rotate(b, -Arg a)) - 2*PI*i by A4,Lm1 .= 2*PI*(j-k+l)-2*PI*i+Arg(Rotate(b, -Arg a)) by XCMPLX_1:29 .= 2*PI*(j-k+l-i)+Arg(Rotate(b, -Arg a)) by XCMPLX_1:40; A10: 0 <= Arg(Rotate(b, -Arg a)) & Arg(Rotate(b, -Arg a)) < 2*PI & 0 <= Arg(Rotate(Rotate(b,r), -Arg Rotate(a,r))) & Arg(Rotate(Rotate(b,r), -Arg Rotate(a,r))) < 2*PI by Th18; thus angle(a,b) = Arg(Rotate(b, -Arg a)) by A2,Def5 .= Arg(Rotate(Rotate(b,r), -Arg Rotate(a,r))) by A9,A10,Th3 .= angle(Rotate(a,r),Rotate(b,r)) by A5,Def5; end; theorem r < 0 & a <> 0 & b <> 0 implies angle(a,b) = angle(a*[*r,0*],b*[*r,0*]) proof assume that A1: r < 0 and A2: a <> 0 and A3: b <> 0; A4: Arg(b*[*r,0*]) = Arg -b by A1,Th41; A5: Arg(a*[*r,0*]) = Arg -a by A1,Th41; A6: -b <> 0 by A3,XCMPLX_1:135; then consider i being Integer such that A7: Arg(Rotate(-b, -Arg -a)) = 2*PI*i+(-Arg -a + Arg -b) by Th68; set br = b*[*r,0*], ar = a*[*r,0*]; Re [*r,0*] <> 0 by A1,COMPLEX1:7; then A8: br <> 0 by A3,COMPLEX1:12,XCMPLX_1:6; then consider j being Integer such that A9: Arg(Rotate(br,-Arg ar)) = 2*PI*j+(-Arg -a + Arg -b) by A4,A5,Th68; Arg(Rotate(-b, -Arg -a))+0 = 2*PI*i+(-Arg -a + Arg -b) by A7; then Arg(Rotate(-b,-Arg -a))-2*PI*i=(-Arg -a +Arg -b)-0 by XCMPLX_1:33; then A10: Arg(Rotate(br,-Arg ar)) = 2*PI*j+Arg(Rotate(-b,-Arg -a))-2*PI*i by A9,Lm1 .= 2*PI*j-2*PI*i+Arg(Rotate(-b,-Arg -a)) by XCMPLX_1:29 .= 2*PI*(j-i)+Arg(Rotate(-b,-Arg -a)) by XCMPLX_1:40; A11: 0 <= Arg(Rotate(br,-Arg ar)) & Arg(Rotate(br,-Arg ar)) < 2*PI & 0 <= Arg(Rotate(-b,-Arg -a)) & Arg(Rotate(-b,-Arg -a)) < 2*PI by Th18; thus angle(a,b) = angle(Rotate(a,PI),Rotate(b,PI)) by A2,A3,Th79 .= angle(-a,Rotate(b,PI)) by Th74 .= angle(-a,-b) by Th74 .= Arg(Rotate(-b,-Arg -a)) by A6,Def5 .= Arg(Rotate(br,-Arg ar)) by A10,A11,Th3 .= angle(a*[*r,0*],b*[*r,0*]) by A8,Def5; end; theorem a <> 0 & b <> 0 implies angle(a,b) = angle(-a,-b) proof assume a <> 0 & b <> 0; hence angle(a,b) = angle(Rotate(a,PI),Rotate(b,PI)) by Th79 .= angle(-a,Rotate(b,PI)) by Th74 .= angle(-a,-b) by Th74; end; theorem b <> 0 & angle(a,b) = 0 implies angle(a,-b) = PI proof assume that A1: b <> 0 and A2: angle(a,b) = 0; A3: -b <> 0 by A1,XCMPLX_1:135; A4: Arg(Rotate(b, -Arg a)) = 0 by A1,A2,Def5; A5: Rotate(b, -Arg a) <> 0 by A1,Th66; A6: Arg(Rotate(-b, -Arg a)) = Arg(-Rotate(b, -Arg a)) by Th72; Arg -Rotate(b, -Arg a) = Arg Rotate(b, -Arg a)+PI by A4,A5,Th22,COMPTRIG:21 .= PI by A4; hence angle(a,-b) = PI by A3,A6,Def5; end; theorem Th83: a <> 0 & b <> 0 implies cos angle(a,b) = Re (a.|.b)/(|.a.|*|.b.|) & sin angle(a,b) = - Im (a.|.b)/(|.a.|*|.b.|) proof assume that A1: a <> 0 and A2: b <> 0; A3: |.a.| <> 0 by A1,COMPLEX1:131; A4: |.b.| <> 0 by A2,COMPLEX1:131; set mab = (|.a.|*|.b.|); set mabi = (|.a.|*|.b.|)"; A5: |.a.| >= 0 & |.b.| >= 0 by COMPLEX1:132; then mab > 0*|.a.| by A3,A4,REAL_1:70; then A6: mabi > 0 by REAL_1:72; set ra = Rotate(a,-Arg a), rb = Rotate(b,-Arg a), r = -Arg a; A7: |.a.|*mabi > 0*mabi by A3,A5,A6,REAL_1:70; A8: ra = [*|.a.|,0*] by Th69; angle(a,b) = angle(ra,rb) by A1,A2,Th79; then A9: angle(a,b) = angle(ra*[*mabi,0*],rb*[*mabi,0*]) by A6,Th77; A10: Re ra = |.a.| & Im ra = 0 by A8,COMPLEX1:7; A11: Re [*mabi,0*] = mabi & Im [*mabi,0*] = 0 by COMPLEX1:7; then Re (ra*[*mabi,0*]) = |.a.|*mabi-0*0 & Im (ra*[*mabi,0*]) = |.a.|*0+0*mabi by A10,COMPLEX1:24; then ra*[*mabi,0*] = [*|.a.|*mabi,0*] by COMPLEX1:8; then A12: angle(a,b) = Arg(rb*[*mabi,0*]) by A7,A9,Th75; set IT = rb*[*mabi,0*]; A13: Re rb = (Re b)*(cos r)-(Im b)*(sin r) & Im rb = (Re b)*(sin r)+(Im b)*(cos r) by Th70; A14: IT = [* |.IT.|*cos Arg IT, |.IT.|*sin Arg IT *] by Th19; A15: Re IT = Re rb * mabi - (Im rb)*0 by A11,COMPLEX1:24 .= Re rb * mabi; A16: Im IT = Re rb * 0 + Im rb * mabi by A11,COMPLEX1:24 .= Im rb * mabi; a = [* |.a.|*cos Arg a, |.a.|*sin Arg a *] by Th19; then Re a = |.a.|*cos Arg a & Im a = |.a.|*sin Arg a by COMPLEX1:7; then A17: cos Arg a = (Re a)/|.a.| & sin Arg a = (Im a)/|.a.| by A3,XCMPLX_1: 90; A18: cos r = cos Arg a by SIN_COS:34; A19: a.|.b =[* (Re a)*(Re b)+(Im a)*(Im b),-((Re a)*(Im b))+(Im a)*(Re b) *] by Th42; then A20: Re (a.|.b) = (Re a)*(Re b)+(Im a)*(Im b) by COMPLEX1:7; A21: Re rb = (Re b)*(cos r)-(Im b)*(-sin Arg a) by A13,SIN_COS:34 .= (Re b)*(cos r)+(-(Im b)*(-sin Arg a)) by XCMPLX_0:def 8 .= (Re b)*(cos r)+((Im b)*sin Arg a) by XCMPLX_1:178 .= (Re b)*((Re a)/|.a.|)+(Im b)*((Im a)/|.a.|) by A17,SIN_COS:34 .= (Re b)*(Re a)/|.a.|+(Im b)*((Im a)/|.a.|) by XCMPLX_1:75 .= (Re b)*(Re a)/|.a.|+(Im b)*(Im a)/|.a.| by XCMPLX_1:75 .= Re (a.|.b) / |.a.| by A20,XCMPLX_1:63; A22: Im rb = (Re b)*(-sin Arg a)+(Im b)*(cos r) by A13,SIN_COS:34 .= (-(Re b))*((Im a)/|.a.|)+(Im b)*((Re a)/|.a.|) by A17,A18,XCMPLX_1:176 .= (-(Re b))*(Im a)/|.a.|+(Im b)*((Re a)/|.a.|) by XCMPLX_1:75 .= (-(Re b))*(Im a)/|.a.|+(Im b)*(Re a)/|.a.| by XCMPLX_1:75 .= --((-(Re b))*(Im a)+(Im b)*(Re a))/|.a.| by XCMPLX_1:63 .= -(-((-(Re b))*(Im a)+(Im b)*(Re a)))/|.a.| by XCMPLX_1:188 .= -(-((Im b)*(Re a))+-((-(Re b))*(Im a)))/|.a.| by XCMPLX_1:140 .= -(-((Im b)*(Re a))+((--(Re b))*(Im a)))/|.a.| by XCMPLX_1:175 .= - Im (a.|.b)/|.a.| by A19,COMPLEX1:7; A23: mabi^2 >= 0 by SQUARE_1:72; (Re rb)^2 >= 0 & (Im rb)^2 >= 0 & 0 = 0+0 by SQUARE_1:72; then A24: (Re rb)^2+(Im rb)^2 >= 0 by REAL_1:55; A25: |.IT.| = sqrt((Re rb * mabi)^2+(Im rb * mabi)^2) by A15,A16,COMPLEX1:def 16 .= sqrt((Re rb)^2*mabi^2 + ((Im rb)*mabi)^2) by SQUARE_1:68 .= sqrt((Re rb)^2*mabi^2 + (Im rb)^2*mabi^2) by SQUARE_1:68 .= sqrt(mabi^2*((Re rb)^2+(Im rb)^2)) by XCMPLX_1:8 .= sqrt(mabi^2)*sqrt((Re rb)^2+(Im rb)^2) by A23,A24,SQUARE_1:97 .= mabi*sqrt((Re rb)^2+(Im rb)^2) by A6,SQUARE_1:89 .= mabi*|.rb.| by COMPLEX1:def 16 .= mabi*|.b.| by Th67; then A26: |.IT.| <> 0 by A4,A6,XCMPLX_1:6; |.IT.|*cos Arg IT = Re rb * mabi by A14,A15,COMPLEX1:7; hence cos angle(a,b) = Re rb * mabi/|.IT.| by A12,A26,XCMPLX_1:90 .= Re rb *(mabi/|.IT.|) by XCMPLX_1:75 .= Re (a.|.b) / |.a.|*(mabi/mabi/|.b.|) by A21,A25,XCMPLX_1:79 .= Re (a.|.b) / |.a.|*(1/|.b.|) by A6,XCMPLX_1:60 .= Re (a.|.b)*1 / (|.a.|*|.b.|) by XCMPLX_1:77 .= Re (a.|.b)/mab; |.IT.|*sin Arg IT = Im rb * mabi by A14,A16,COMPLEX1:7; hence sin angle(a,b) = Im rb * mabi/|.IT.| by A12,A26,XCMPLX_1:90 .= Im rb * (mabi/|.IT.|) by XCMPLX_1:75 .= (- Im (a.|.b) / |.a.|)*(mabi/mabi/|.b.|) by A22,A25,XCMPLX_1:79 .= (- Im (a.|.b) / |.a.|)*(1/|.b.|) by A6,XCMPLX_1:60 .= ((- Im (a.|.b)) / |.a.|)*(1/|.b.|) by XCMPLX_1:188 .= (- Im (a.|.b))*1/(|.a.|*|.b.|) by XCMPLX_1:77 .= - Im (a.|.b)/mab by XCMPLX_1:188; end; definition let x, y, z be Element of COMPLEX; func angle(x,y,z) -> real number equals :Def6: Arg(z-y)-Arg(x-y) if Arg(z-y)-Arg(x-y) >= 0 otherwise 2*PI+(Arg(z-y)-Arg(x-y)); correctness; end; theorem Th84: 0 <= angle(x,y,z) & angle(x,y,z) < 2*PI proof now per cases; case A1: Arg(z-y)-Arg(x-y)>=0; then A2: angle(x,y,z)=Arg(z-y)-Arg(x-y) by Def6; A3: Arg(z-y)<2*PI by Th18; Arg(x-y)>=0 by Th18; then Arg(z-y)+0<=Arg(z-y)+Arg(x-y) by REAL_1:55; then Arg(z-y)-Arg(x-y)<=Arg(z-y) by REAL_1:86; hence 0<=angle(x,y,z) & angle(x,y,z)<2*PI by A1,A2,A3,AXIOMS:22; case A4: Arg(z-y)-Arg(x-y)<0; then A5: angle(x,y,z)=2*PI+(Arg(z-y)-Arg(x-y)) by Def6; A6: Arg(z-y)-Arg(x-y) + 2*PI < 0 + 2*PI by A4,REAL_1:67; A7: Arg(x-y)<2*PI by Th18; Arg(z-y)>=0 by Th18; then Arg(x-y)+0<=Arg(x-y)+Arg(z-y) by REAL_1:55; then Arg(x-y)-Arg(z-y)<=Arg(x-y) by REAL_1:86; then (Arg(x-y)-Arg(z-y))<2*PI by A7,AXIOMS:22; then 2*PI-(Arg(x-y)-Arg(z-y))>0 by SQUARE_1:11; then 2*PI-Arg(x-y)+Arg(z-y)>0 by XCMPLX_1:37; then 2*PI+Arg(z-y)-Arg(x-y)>0 by XCMPLX_1:29; hence 0<=angle(x,y,z) & angle(x,y,z)<2*PI by A5,A6,XCMPLX_1:29; end; hence 0<=angle(x,y,z) & angle(x,y,z)<2*PI; end; theorem Th85: angle(x,y,z)=angle(x-y,0c,z-y) proof now per cases; case A1: Arg((z-y)-0c)-Arg((x-y)-0c)>=0; then angle(x-y,0c,z-y)=Arg(z-y)-Arg(x-y) by Def6; hence angle(x-y,0c,z-y)=angle(x,y,z) by A1,Def6; case A2: Arg((z-y)-0c)-Arg((x-y)-0c)<0; then angle(x-y,0c,z-y)=2*PI+(Arg(z-y)-Arg(x-y)) by Def6; hence angle(x-y,0c,z-y)=angle(x,y,z) by A2,Def6; end; hence angle(x,y,z)=angle(x-y,0c,z-y); end; theorem Th86: angle(a,b,c) = angle(a+d,b+d,c+d) proof thus angle(a,b,c) = angle(a-b,0c,c-b) by Th85 .= angle((a+d)-(b+d),0c,c-b) by XCMPLX_1:32 .= angle((a+d)-(b+d),0c,(c+d)-(b+d)) by XCMPLX_1:32 .= angle(a+d,b+d,c+d) by Th85; end; theorem Th87: angle(a,b) = angle(a,0c,b) proof set ab2 = angle(a,b); A1: 0 = 0c; A2: 0 <= Arg(Rotate(b,-Arg a)) & Arg(Rotate(b,-Arg a)) < 2*PI & 0 <= Arg b & Arg b < 2*PI by Th18; per cases; suppose A3: b <> 0; then A4: ab2 = Arg(Rotate(b, -Arg a)) by Def5; thus thesis proof per cases; suppose Arg(b-0c)-Arg(a-0c) >= 0; then A5: angle(a,0c,b) = Arg(b-0c)-Arg(a-0c) by Def6 .= -Arg(a)+Arg(b) by A1,XCMPLX_0:def 8; consider i being Integer such that A6: Arg(Rotate(b,-Arg a)) = 2*PI*i+(-Arg a + Arg(b)) by A3,Th68; 0 <= angle(a,0c,b) & angle(a,0c,b) < 2*PI by Th84; hence ab2 = angle(a,0c,b) by A2,A4,A5,A6,Th3; suppose Arg(b-0c)-Arg(a-0c) < 0; then A7: angle(a,0c,b) = 2*PI+(Arg(b)-Arg(a)) by Def6 .= 2*PI+(Arg(b)+-Arg(a )) by XCMPLX_0:def 8; consider i being Integer such that A8: Arg(Rotate(b,-Arg a)) = 2*PI*i+(-Arg a + Arg(b)) by A3,Th68; A9: 2*PI*i+(-Arg a + Arg(b)) = 2*PI*i-2*PI*1+2*PI+(-Arg a + Arg(b)) by XCMPLX_1:27 .= 2*PI*(i-1)+2*PI+(-Arg a + Arg(b)) by XCMPLX_1:40 .= 2*PI*(i-1)+(2*PI+(-Arg a + Arg(b))) by XCMPLX_1:1; 0 <= 2*PI+(-Arg a + Arg(b)) & 2*PI+(-Arg a + Arg(b)) < 2*PI by A7,Th84; hence thesis by A2,A4,A7,A8,A9,Th3; end; suppose A10: b = 0; thus thesis proof per cases; suppose A11: Arg a = 0; then A12: ab2=Arg(Rotate(b, -Arg a)) by Def5 .= 0 by A10,Th20,Th66; Arg(b-0c)-Arg(a-0c) = 0 by A10,A11,Th20; hence thesis by A12,Def6; suppose A13: Arg a <> 0; A14: Arg(b-0c)-Arg(a-0c) = - Arg a by A10,Th20,XCMPLX_1:150; 0 < --Arg a by A13,Th18; then 0 > - Arg a by REAL_1:66; then angle(a,0c,b) = 2*PI+(-Arg a) by A14,Def6 .= 2*PI-Arg a by XCMPLX_0:def 8; hence thesis by A10,A13,Def5; end; end; theorem Th88: angle(x,y,z) = 0 implies Arg(x-y) = Arg(z-y) & angle(z,y,x)=0 proof assume A1: angle(x,y,z) =0; now per cases; case Arg(z-y)-Arg(x-y)>=0; then Arg(z-y)-Arg(x-y)=0 by A1,Def6; then A2: Arg(z-y)=0+Arg(x-y) by XCMPLX_1:27 .=Arg(x-y); then Arg(x-y)-Arg(z-y)=0 by XCMPLX_1:14; hence Arg(x-y)=Arg(z-y) & angle(z,y,x)=0 by A2,Def6; case A3: Arg(z-y)-Arg(x-y)<0; then angle(x,y,z)=2*PI+(Arg(z-y)-Arg(x-y)) by Def6; then 0- (Arg(z-y)-Arg(x-y))=2*PI by A1,XCMPLX_1:26; then A4: 0+(Arg(x-y)-Arg(z-y))=2*PI by XCMPLX_1:38; -(Arg(z-y)-Arg(x-y))>0 by A3,REAL_1:66; then 0-(Arg(z-y)-Arg(x-y))>0 by XCMPLX_1:150; then 0+(Arg(x-y)-Arg(z-y))> 0 by XCMPLX_1:38; then angle(z,y,x)=Arg(x-y)-Arg(z-y) by Def6; hence contradiction by A4,Th84; end; hence Arg(x-y)=Arg(z-y)& angle(z,y,x)=0; end; theorem Th89: a <> 0c & b <> 0c implies (Re (a.|.b) = 0 iff angle(a,0c,b) = PI/2 or angle(a,0c,b) = 3/2*PI) proof assume that A1: a <> 0c and A2: b <> 0c; A3: cos angle(a,b) = Re (a.|.b)/(|.a.|*|.b.|) & sin angle(a,b) = - Im (a.|.b)/(|.a.|*|.b.|) by A1,A2,Th83; A4: angle(a,b) = angle(a,0c,b) by Th87; |.a.| <> 0 & |.b.| <> 0 by A1,A2,COMPLEX1:131; then A5: |.a.|*|.b.| <> 0 by XCMPLX_1:6; A6: 0 <= angle(a,0c,b) & angle(a,0c,b) < 2*PI by Th84; A7: PI/2 < 2*PI by AXIOMS:22,COMPTRIG:21; A8: -Im (a.|.b)/(|.a.|*|.b.|) = (-Im (a.|.b))/(|.a.|*|.b.|) by XCMPLX_1:188; hereby assume A9: Re (a.|.b) = 0; then Im (a.|.b)=|.a.|*|.b.| or Im (a.|.b)= - (|.a.|*|.b.|) by Th64; then sin angle(a,b) = 1 or sin angle(a,b) = -1 by A3,A5,A8,XCMPLX_1:60; hence angle(a,0c,b) = PI/2 or angle(a,0c,b) = 3/2*PI by A3,A4,A6,A7,A9,Th12,COMPTRIG:20,21,SIN_COS:82; end; assume angle(a,0c,b) = PI/2 or angle(a,0c,b) = 3/2*PI; then 0*(|.a.|*|.b.|) = Re (a.|.b) by A3,A4,A5,COMPTRIG:20,SIN_COS:82, XCMPLX_1:88; hence Re (a.|.b) = 0; end; theorem a <> 0c & b <> 0c implies (Im(a.|.b) = |.a.|*|.b.| or Im(a.|.b) = -|.a.|*|.b.| iff angle(a,0c,b) = PI/2 or angle(a,0c,b) = 3/2*PI) proof assume A1: a<>0c & b<>0c; hereby assume Im(a.|.b)=|.a.|*|.b.| or Im(a.|.b)=-(|.a.|*|.b.|); then Re (a.|.b)=0 by Th64; hence angle(a,0c,b)=PI/2 or angle(a,0c,b)=3/2*PI by A1,Th89; end; hereby assume angle(a,0c,b)=PI/2 or angle(a,0c,b)=3/2*PI; then Re (a.|.b)=0 by A1,Th89; hence Im(a.|.b)=|.a.|*|.b.| or Im(a.|.b)=-(|.a.|*|.b.|) by Th64; end; end; Lm6: for a, b, c being Element of COMPLEX st a <> b & c <> b holds Re ((a-b).|.(c-b)) = 0 iff angle(a,b,c) = PI/2 or angle(a,b,c) = 3/2*PI proof let x, y,z be Element of COMPLEX; assume A1: x<>y & z<>y; A2: now assume x-y=0c; then x=0c+y by XCMPLX_1:27; hence contradiction by A1,COMPLEX1:22; end; A3: now assume z-y=0c; then z=0c+y by XCMPLX_1:27; hence contradiction by A1,COMPLEX1:22; end; angle(x,y,z)=angle(x-y,0c,z-y) by Th85; hence (Re ((x-y).|.(z-y)) = 0 iff angle(x,y,z)=PI/2 or angle(x,y,z)=3/2*PI) by A2,A3,Th89; end; theorem x <> y & z <> y & (angle(x,y,z) = PI/2 or angle(x,y,z) = 3/2*PI) implies |.x-y.|^2+|.z-y.|^2 = |.x-z.|^2 proof assume A1: x<>y & z<>y & (angle(x,y,z)=PI/2 or angle(x,y,z)=3/2*PI); A2: |.x-y.|^2+|.z-y.|^2 =Re ((x-y).|.(x-y)) + |.z-y.|^2 by Th44 .=Re ((x-y).|.(x-y)) + Re ((z-y).|.(z-y)) by Th44 .=Re ((x-y).|.(x-y)+(z-y).|.(z-y)) by COMPLEX1:19; set x3=x-z; x3=x-z+y-y by XCMPLX_1:26 .=x+-z+y-y by XCMPLX_0:def 8 .=x+(-z+y)-y by XCMPLX_1:1 .=x+(-(z-y))-y by XCMPLX_1:162 .=x+(-(z-y))+(-y) by XCMPLX_0:def 8 .=x+(-y)+(-(z-y)) by XCMPLX_1:1 .=x-y+(-(z-y)) by XCMPLX_0:def 8 .=(x-y)-(z-y) by XCMPLX_0:def 8; then (x-z).|.(x-z) =(x-y).|.(x-y)-(x-y).|.(z-y)-(z-y).|.(x-y) +(z-y).|.(z-y) by Th63; then Re((x-z).|.(x-z)) =Re((x-y).|.(x-y)+-(x-y).|.(z-y)-(z-y).|.(x-y)+(z-y) .|.(z-y)) by XCMPLX_0:def 8 .=Re((x-y).|.(x-y)+-(x-y).|.(z-y)+-(z-y).|.(x-y) +(z-y).|.(z-y)) by XCMPLX_0:def 8 .=Re((x-y).|.(x-y)+(-(x-y).|.(z-y)+-(z-y).|.(x-y))+(z-y).|.(z-y))by XCMPLX_1:1 .=Re((x-y).|.(x-y)+(-((x-y).|.(z-y)+(z-y).|.(x-y)))+(z-y).|.(z-y)) by XCMPLX_1:140 .=Re((x-y).|.(x-y)+(z-y).|.(z-y)+(-((x-y).|.(z-y)+(z-y).|.(x-y)))) by XCMPLX_1:1 .=Re((x-y).|.(x-y)+(z-y).|.(z-y)-((x-y).|.(z-y)+(z-y).|.(x-y))) by XCMPLX_0:def 8 .=Re((x-y).|.(x-y)+(z-y).|.(z-y))-Re((x-y).|.(z-y)+(z-y).|.(x-y))by COMPLEX1:48 .=Re((x-y).|.(x-y)+(z-y).|.(z-y))-(Re((x-y).|.(z-y))+Re((z-y).|.(x-y))) by COMPLEX1:19 .=Re((x-y).|.(x-y)+(z-y).|.(z-y))-(Re((x-y).|.(z-y))+Re(((x-y).|.(z-y))*')) by Th47 .=Re((x-y).|.(x-y)+(z-y).|.(z-y))-(Re((x-y).|.(z-y))+Re((x-y).|.(z-y))) by COMPLEX1:112 .=Re((x-y).|.(x-y)+(z-y).|.(z-y))-(0+Re((x-y).|.(z-y))) by A1,Lm6 .=Re((x-y).|.(x-y)+(z-y).|.(z-y)) -0 by A1,Lm6 .=Re((x-y).|.(x-y)+(z-y).|.(z- y)); hence |.x-y.|^2+|.z-y.|^2=|.x-z.|^2 by A2,Th44; end; theorem Th92: a <> b & b <> c implies angle(a,b,c) = angle(Rotate(a,r), Rotate(b,r), Rotate(c,r)) proof set cb = c-b, ab = a-b; set rc = Rotate(c,r), rb = Rotate(b,r), ra = Rotate(a,r); set rcb = Rotate(c,r)-Rotate(b,r), rab = Rotate(a,r)-Rotate(b,r); A1: rcb = Rotate(cb,r) by Th73; A2: rab = Rotate(ab,r) by Th73; assume a <> b & b <> c; then A3: ab <> 0 & cb <> 0 by XCMPLX_1:15; then consider abi being Integer such that A4: Arg(Rotate(ab,r)) = 2*PI*abi+(r+Arg(ab)) by Th68; consider cbi being Integer such that A5: Arg(Rotate(cb,r)) = 2*PI*cbi+(r+Arg(cb)) by A3,Th68; A6: 0 <= angle(a,b,c) & angle(a,b,c) < 2*PI by Th84; A7: 0 <= angle(Rotate(a,r),Rotate(b,r), Rotate(c,r)) & angle(Rotate(a,r),Rotate(b,r), Rotate(c,r))< 2*PI by Th84; A8: Arg(rcb)-Arg(rab) = 2*PI*cbi+r+Arg(cb)-(2*PI*abi+(r+Arg(ab))) by A1,A2,A4,A5,XCMPLX_1:1 .= 2*PI*cbi+r+Arg(cb) - (2*PI*abi+r+Arg(ab)) by XCMPLX_1:1 .= 2*PI*cbi+r-(2*PI*abi+r+Arg(ab))+Arg(cb) by XCMPLX_1:29 .= 2*PI*cbi+r-(2*PI*abi+r)-Arg(ab)+Arg(cb) by XCMPLX_1:36 .= 2*PI*cbi+r-r-2*PI*abi-Arg(ab)+Arg(cb) by XCMPLX_1:36 .= 2*PI*cbi-2*PI*abi-Arg(ab)+Arg(cb) by XCMPLX_1:26 .= 2*PI*(cbi-abi)-Arg(ab)+Arg(cb) by XCMPLX_1:40 .= Arg(cb)-Arg(ab)+2*PI*(cbi-abi) by XCMPLX_1:30; per cases; suppose Arg(c-b)-Arg(a-b) >= 0; then A9: angle(a,b,c) = Arg(c-b)-Arg(a-b) by Def6; thus angle(a,b,c) = angle(Rotate(a,r),Rotate(b,r), Rotate(c,r)) proof per cases; suppose Arg(rcb)-Arg(rab) >= 0; then angle(ra,rb,rc) = Arg(rcb)-Arg(rab) by Def6; hence thesis by A6,A7,A8,A9,Th3; suppose Arg(rcb)-Arg(rab) < 0; then angle(ra,rb,rc) = Arg(cb)-Arg(ab)+2*PI*(cbi-abi)+2*PI by A8,Def6 .= Arg(cb)-Arg(ab)+(2*PI*(cbi-abi)+2*PI*1) by XCMPLX_1:1 .= Arg(cb)-Arg(ab)+2*PI*(cbi-abi+1) by XCMPLX_1:8; hence thesis by A6,A7,A9,Th3; end; suppose Arg(cb)-Arg(ab) < 0; then A10: angle(a,b,c) = 2*PI+(Arg(cb)-Arg(ab)) by Def6; thus thesis proof per cases; suppose Arg(rcb)-Arg(rab) >= 0; then angle(ra,rb,rc) = Arg(cb)-Arg(ab)+2*PI*(cbi-abi+(-1+1)) by A8,Def6 .= Arg(cb)-Arg(ab)+2*PI*(cbi-abi+-1+1) by XCMPLX_1:1 .= Arg(cb)-Arg(ab)+(2*PI*(cbi-abi+-1)+2*PI*1) by XCMPLX_1:8 .= 2*PI+(Arg(cb)-Arg(ab))+2*PI*(cbi-abi+-1) by XCMPLX_1:1; hence thesis by A6,A7,A10,Th3; suppose Arg(rcb)-Arg(rab) < 0; then angle(ra,rb,rc) = Arg(cb)-Arg(ab)+2*PI*(cbi-abi)+2*PI by A8,Def6 .= 2*PI+(Arg(cb)-Arg(ab))+2*PI*(cbi-abi) by XCMPLX_1:1; hence thesis by A6,A7,A10,Th3; end; end; theorem Th93: angle(a,b,a) = 0 proof Arg(a-b)-Arg(a-b) = 0 by XCMPLX_1:14; hence angle(a,b,a) = 0 by Def6; end; Lm7: angle(x,y,z) <> 0 implies angle(z,y,x)=2*PI-angle(x,y,z) proof assume A1: angle(x,y,z) <>0; now per cases; case A2: Arg(x-y)-Arg(z-y)>0; then A3: angle(z,y,x)= Arg(x-y)-Arg(z-y) by Def6; --(Arg(x-y)-Arg(z-y))>0 by A2; then -(Arg(x-y)-Arg(z-y))<0 by REAL_1:66; then -Arg(x-y)+Arg(z-y)<0 by XCMPLX_1:162; then Arg(z-y)-Arg(x-y)<0 by XCMPLX_0:def 8; then angle(x,y,z)=2*PI+(Arg(z-y)-Arg(x-y)) by Def6 .=2*PI -(Arg(x-y)-Arg(z-y)) by XCMPLX_1:38; then angle(x,y,z)+angle(z,y,x)=2*PI by A3,XCMPLX_1:27; hence angle(z,y,x)=2*PI-angle(x,y,z) by XCMPLX_1:26; case A4: Arg(x-y)-Arg(z-y)<=0; now assume Arg(x-y)-Arg(z-y)=0; then Arg(x-y)=0+Arg(z-y) by XCMPLX_1:27 .=Arg(z-y); then Arg(z-y)-Arg(x-y)=0 by XCMPLX_1:14; hence contradiction by A1,Def6; end; then A5: angle(z,y,x)=2*PI+(Arg(x-y)-Arg(z-y)) by A4,Def6 .=2*PI -(Arg(z-y)-Arg(x-y)) by XCMPLX_1:38; --(Arg(x-y)-Arg(z-y))<=0 by A4; then -(Arg(x-y)-Arg(z-y))>=0 by REAL_1:66 ; then -Arg(x-y)+Arg(z-y)>=0 by XCMPLX_1:162; then Arg(z-y)-Arg(x-y)>=0 by XCMPLX_0:def 8; then angle(x,y,z)+angle(z,y,x) =(2*PI -(Arg(z-y)-Arg(x-y)))+(Arg(z-y)-Arg(x-y)) by A5,Def6.=2*PI by XCMPLX_1:27; hence angle(z,y,x)=2*PI-angle(x,y,z) by XCMPLX_1:26; end; hence angle(z,y,x)=2*PI-angle(x,y,z); end; theorem Th94: :: COMPLEX2:47, 48 angle(a,b,c) <> 0 iff angle(a,b,c)+angle(c,b,a) = 2*PI proof hereby assume angle(a,b,c) <> 0; then angle(c,b,a) = 2*PI-angle(a,b,c) by Lm7; hence angle(a,b,c)+angle(c,b,a) = 2*PI by XCMPLX_1:27; end; assume angle(a,b,c)+angle(c,b,a) = 2*PI & angle(a,b,c) = 0; hence contradiction by Th84; end; theorem angle(a,b,c) <> 0 implies angle(c,b,a) <> 0 proof assume angle(a,b,c) <> 0; then A1: angle(a,b,c)+angle(c,b,a) = 2*PI by Th94; assume not thesis; hence contradiction by A1,Th84; end; theorem angle(a,b,c) = PI implies angle(c,b,a) = PI proof assume A1: angle(a,b,c) = PI; then angle(a,b,c)+angle(c,b,a) = 0+2*PI by Th94,COMPTRIG:21; then angle(c,b,a)-0 = 2*PI-PI by A1,XCMPLX_1:33; hence angle(c,b,a) = PI+PI-PI by XCMPLX_1:11 .= PI by XCMPLX_1:26; end; theorem Th97: a <> b & a <> c & b <> c implies angle(a,b,c) <> 0 or angle(b,c,a) <> 0 or angle(c,a,b) <> 0 proof assume that A1: a <> b and A2: a <> c and A3: b <> c; assume A4: not thesis; then A5: Arg(a-c) = Arg (b-c) by Th88; A6: Arg(b-a) = Arg (c-a) by A4,Th88; A7: a-b <> 0 & b-a <> 0 & a-c <> 0 & c-a <> 0 & b-c <> 0 & c-b <> 0 by A1,A2,A3,XCMPLX_1:15; A8: -(a-b) = b-a & -(b-a) = a-b by XCMPLX_1:143; A9: -(a-c) = c-a & -(c-a) = a-c by XCMPLX_1:143; A10: -(c-b) = b-c & -(b-c) = c-b by XCMPLX_1:143; A11: Arg(a-b) = Arg (a-c) by A6,A7,A8,A9,Th78; Arg(c-b) < PI iff Arg (-(c-b)) >= PI by A7,Th25; hence thesis by A4,A5,A10,A11,Th88; end; Lm8: Im a = 0 & Re a > 0 & 0 < Arg(b) & Arg(b) < PI implies angle(a,0c,b)+angle(0c,b,a)+angle(b,a,0c) = PI & 0 < angle(0c,b,a) & 0 < angle(b,a,0c) proof assume that A1: Im a = 0 and A2: Re a > 0 and A3: 0 < Arg(b) and A4: Arg(b) < PI; a = [*Re a, 0*] by A1,COMPLEX1:8; then A5: a = [**Re a, 0**] by HAHNBAN1:def 1; Arg [**Re a, 0**] = 0 by A2,COMPTRIG:53; then A6: Arg(a) = 0 by A5,Th17; then A7: Arg(-a) = Arg(a)+PI by A2,Th22,COMPLEX1:12,COMPTRIG:21 .= PI by A6; Arg b in ].0,PI.[ by A3,A4,JORDAN6:45; then A8: Im b > 0 by Th27; A9: Im (a-b) = Im a - Im b by COMPLEX1:48 .= - Im b by A1,XCMPLX_1:150; -- Im b = Im b; then A10: Im (a-b) < 0 by A8,A9,REAL_1:66; then A11: Arg(a-b) > PI by Th37; Arg(b-0c)-Arg(a-0c) >= 0 by A3,A6; then A12: angle(a,0c,b) = Arg(b)-Arg(a) by Def6; now let a, b be Element of COMPLEX such that A13: Im a = 0 and A14: Re a > 0 and A15: 0 < Arg(b) and A16: Arg(b) < PI; Arg b in ].0,PI.[ by A15,A16,JORDAN6:45; then A17: Im b > 0 by Th27; A18: Im (b-a) = Im b - Im a by COMPLEX1:48 .= Im b by A13; A19: Re (b-a) = Re b - Re a by COMPLEX1:48; --Re a = Re a; then - Re a < 0 by A14,REAL_1:66; then Re b + -Re a < Re b + 0 by REAL_1:67; then A20: Re (b-a) < Re b by A19,XCMPLX_0:def 8; set ba = b-a; set Rb = Re b, Rba = Re ba, Ib = Im b, Iba = Im ba; set B = Arg b, BA = Arg ba, mb = |.b.|, mba = |.b-a.|; b = [* mb*cos B, mb*sin B *] & b = [* Re b, Im b *] by Th19,COMPLEX1:8; then A21: Re b = mb*cos B & Im b = mb*sin B by ARYTM_0:12; b-a = [* mba*cos BA, mba*sin BA *] & b-a = [* Re ba, Im ba *] by Th19,COMPLEX1:8; then A22: Re ba = mba*cos BA & Im ba = mba*sin BA by ARYTM_0:12; A23: mb = sqrt(Rb^2+Ib^2) by COMPLEX1:def 16; A24: mba = sqrt(Rba^2+Ib^2) by A18,COMPLEX1:def 16; A25: mb >= 0 & mb <> 0 by A17,COMPLEX1:12,133; A26: mba >= 0 & mba <> 0 by A17,A18,COMPLEX1:12,133; Rba^2 >= 0 & Ib^2 >= 0 by SQUARE_1:72; then A27: Rba^2 + Ib^2 >= 0+0 by REAL_1:55; Rb^2 >= 0 & Ib^2 >= 0 by SQUARE_1:72; then A28: Rb^2 + Ib^2 >= 0+0 by REAL_1:55; A29: sin BA > 0 by A17,A18,Th33; then A30: mba/mb = (sin B)/sin BA by A18,A21,A22,A25,XCMPLX_1:95; per cases; suppose A31: 0 < Re ba; then Rb > 0 by A20,AXIOMS:22; then A32: B in ].0,PI/2.[ by A17,Th31; A33: BA in ].0,PI/2.[ by A17,A18,A31,Th31; Rb^2 > Rba^2 by A20,A31,SQUARE_1:78; then Rb^2 + Ib^2 > Rba^2 + Ib^2 by REAL_1:67; then mb > mba by A23,A24,A27,SQUARE_1:95; then mba/mb < 1 by A26,REAL_2:142; then ((sin B)/sin BA)*sin BA < 1*sin BA by A29,A30,REAL_1:70; then sin B < 1*sin BA by A29,XCMPLX_1:88; then BA > B by A32,A33,Th7; then BA+-B > B+-B by REAL_1:67; then BA-B > B+-B by XCMPLX_0:def 8; hence Arg ba - Arg b > 0 by XCMPLX_0:def 6; suppose A34: 0 = Rba; then ba = [* 0, Iba *] by COMPLEX1:8; then A35: BA = PI/2 by A17,A18,Th30; B in ].0,PI/2.[ by A17,A20,A34,Th31; then B < BA by A35,JORDAN6:45; then B+-B < BA+-B by REAL_1:67; then 0 < BA+-B by XCMPLX_0:def 6; hence Arg ba - Arg(b) > 0 by XCMPLX_0:def 8; suppose A36: 0 > Re ba; thus Arg ba - Arg(b) > 0 proof per cases; suppose 0 < Re b; then B in ].0,PI/2.[ by A17,Th31; then A37: B < PI/2 by JORDAN6:45; BA in ].PI/2,PI.[ by A17,A18,A36,Th32; then BA > PI/2 by JORDAN6:45; then BA > B by A37,AXIOMS:22; then B+-B < BA+-B by REAL_1:67; then 0 < BA+-B by XCMPLX_0:def 6; hence Arg ba - Arg(b) > 0 by XCMPLX_0:def 8; suppose 0 = Re b; then b = [* 0, Ib *] by COMPLEX1:8; then A38: B = PI/2 by A17,Th30; BA in ].PI/2,PI.[ by A17,A18,A36,Th32; then B < BA by A38,JORDAN6:45; then B+-B < BA+-B by REAL_1:67; then 0 < BA+-B by XCMPLX_0:def 6; hence Arg ba - Arg(b) > 0 by XCMPLX_0:def 8; suppose A39: 0 > Re b; then A40: B in ].PI/2,PI.[ by A17,Th32; A41: BA in ].PI/2,PI.[ by A17,A18,A36,Th32; Rb^2 < Rba^2 by A20,A39,JGRAPH_5:2; then Rb^2 + Ib^2 < Rba^2 + Ib^2 by REAL_1:67; then mb < mba by A23,A24,A28,SQUARE_1:95; then mba/mb > 1 by A25,REAL_2:142; then ((sin B)/sin BA)*sin BA > 1*sin BA by A29,A30,REAL_1:70; then sin B > 1*sin BA by A29,XCMPLX_1:88; then BA > B by A40,A41,Th8; then BA+-B > B+-B by REAL_1:67; then BA-B > B+-B by XCMPLX_0:def 8; hence Arg ba - Arg b > 0 by XCMPLX_0:def 6; end; end; then Arg(b-a)-Arg(b) > 0 by A1,A2,A3,A4; then Arg(-(a-b))-Arg(b) > 0 by XCMPLX_1:143; then Arg(a-b)-PI-Arg(b) > 0 by A10,A11,Th22,COMPLEX1:12; then Arg(a-b)-(Arg(b)+PI) > 0 by XCMPLX_1:36; then Arg(a-b)-Arg(-b) > 0 by A4,A8,Th22,COMPLEX1:12; then A42: Arg(a-b)-Arg(0c-b) > 0 by XCMPLX_1:150; then angle(0c,b,a) = Arg(a-b)-Arg(0c-b) by Def6; then A43: angle(0c,b,a) = Arg(a-b)-Arg(-b) by XCMPLX_1:150; Arg(b-a) <= PI by A10,A11,Th26,COMPLEX1:12; then -Arg(b-a) >= -PI by REAL_1:50; then Arg(-a)+-Arg(b-a) >= -PI+PI by A7,REAL_1:55; then Arg(-a)+-Arg(b-a) >= 0-PI+PI by XCMPLX_1:150; then Arg(-a)+-Arg(b-a) >= 0 by XCMPLX_1:27; then Arg(-a)-Arg(b-a) >= 0 by XCMPLX_0:def 8; then Arg(0c-a)-Arg(b-a) >= 0 by XCMPLX_1:150; then angle(b,a,0c) = Arg(0c-a)-Arg(b-a) by Def6; then A44: angle(b,a,0c) = Arg(-a)-Arg(b-a) by XCMPLX_1:150; A45: Arg(b)-Arg(-b) = Arg(b)-(Arg(b)+PI) by A4,A8,Th22,COMPLEX1:12 .= Arg(b)-Arg(b)-PI by XCMPLX_1:36 .= 0-PI by XCMPLX_1:14 .= -PI by XCMPLX_1:150; A46: Arg(a)-Arg(-a) = Arg(a)-(Arg(a)+PI) by A2,A6,Th22,COMPLEX1:12,COMPTRIG:21 .= Arg(a)-Arg(a)-PI by XCMPLX_1:36 .= 0-PI by XCMPLX_1:14 .= -PI by XCMPLX_1:150; A47: Arg(a-b)-Arg(b-a) = Arg(a-b)-Arg(-(a-b)) by XCMPLX_1:143 .= Arg(a-b)-(Arg(a-b)-PI) by A10,A11,Th22,COMPLEX1:12 .= PI by XCMPLX_1:18; thus angle(a,0c,b)+angle(0c,b,a)+angle(b,a,0c) = Arg(b)-Arg(a)+Arg(a-b)-Arg(-b)+(Arg(-a)-Arg(b-a)) by A12,A43,A44,Lm1 .= Arg(b)-Arg(a)-Arg(-b)+Arg(a-b)+(Arg(-a)-Arg(b-a)) by XCMPLX_1:29 .= Arg(b)-Arg(-b)-Arg(a)+Arg(a-b)+(Arg(-a)-Arg(b-a)) by XCMPLX_1:21 .= -PI-Arg(a)+Arg(a-b)+Arg(-a)-Arg(b-a) by A45,Lm1 .= -PI-Arg(a)+Arg(-a)+Arg(a-b)-Arg(b-a) by XCMPLX_1:1 .= -PI--PI+Arg(a-b)-Arg(b-a) by A46,XCMPLX_1:37 .= -PI+PI+Arg(a-b)-Arg(b-a) by XCMPLX_1:151 .= 0+Arg(a-b)-Arg(b-a) by XCMPLX_0:def 6 .= PI by A47; thus 0 < angle(0c,b,a) by A42,Def6; Arg(a)+PI = Arg(-a) by A46,Lm2; then A48: Arg(-a)-(Arg(a-b)-PI) = Arg(a)+PI-Arg(a-b)+PI by XCMPLX_1:37 .= Arg(a)+PI+PI-Arg(a-b) by XCMPLX_1:29 .= Arg(a)+(PI+PI)-Arg(a-b) by XCMPLX_1:1 .= Arg(a)+2*PI-Arg(a-b) by XCMPLX_1:11 .= Arg(a)+(2*PI-Arg(a-b)) by Lm1; 2*PI > 0+Arg(a-b) by Th18; then 2*PI-Arg(a-b) > 0 & Arg(a) >= 0 by Th18,REAL_1:86; then Arg(a)+(2*PI-Arg(a-b)) > 0+0 by REAL_1:67; hence 0 < angle(b,a,0c) by A44,A47,A48,Lm3; end; theorem Th98: a <> b & b <> c & 0 < angle(a,b,c) & angle(a,b,c) < PI implies angle(a,b,c)+angle(b,c,a)+angle(c,a,b) = PI & 0 < angle(b,c,a) & 0 < angle(c,a,b) proof assume that A1: a <> b and A2: b <> c and A3: 0 < angle(a,b,c) and A4: angle(a,b,c) < PI; A5: angle(a+-b,0c,c+-b) = angle(a+-b,b+-b,c+-b) by XCMPLX_0:def 6 .= angle(a,b,c) by Th86; set r = -Arg (a+-b); set A = Rotate(a+-b,r), B = Rotate(c+-b, r); A6: Rotate(0c,r) = 0c by Th66; a-b <> 0 by A1,XCMPLX_1:15; then A7: a+-b <> 0c by XCMPLX_0:def 8; A8: c+-b <> a+-b proof assume c+-b = a+-b; then c = a by XCMPLX_1:2; hence contradiction by A3,Th93; end; c-b <> 0 by A2,XCMPLX_1:15; then A9: c+-b <> 0 by XCMPLX_0:def 8; then A10: angle(a+-b,0c,c+-b) = angle(A,0c,B) by A6,A7,Th92; A11: A = [* |.a+-b.|, 0 *] by Th69; then A12: Im A = 0 by COMPLEX1:7; now assume a+-b = 0c; then a-b = 0c by XCMPLX_0:def 8; hence contradiction by A1,XCMPLX_1:15; end; then |.a+-b.| > 0 by COMPLEX1:133; then A13: Re A > 0 by A11,COMPLEX1:7; then A14: Arg A = 0c by A12,Th34; then Arg(B-0c)-Arg(A-0c)>= 0 by Th18; then A15: angle(a,b,c) = Arg B by A5,A10,A14,Def6; A16: angle(b,c,a) = angle(b+-b,c+-b,a+-b) by Th86 .= angle(0c,c+-b,a+-b) by XCMPLX_0:def 6.=angle(0c,B,A) by A6,A8,A9,Th92; A17: angle(c,a,b) = angle(c+-b,a+-b,b+-b) by Th86 .= angle(c+-b,a+-b,0c) by XCMPLX_0:def 6.= angle(B,A,0c) by A6,A7,A8,Th92; hence angle(a,b,c)+angle(b,c,a)+angle(c,a,b) = PI by A3,A4,A5,A10,A12,A13,A15 ,A16,Lm8; thus 0 < angle(b,c,a) by A3,A4,A12,A13,A15,A16,Lm8; thus 0 < angle(c,a,b) by A3,A4,A12,A13,A15,A17,Lm8; end; theorem Th99: a <> b & b <> c & angle(a,b,c) > PI implies angle(a,b,c)+angle(b,c,a)+angle(c,a,b) = 5*PI & angle(b,c,a) > PI & angle(c,a,b) > PI proof assume that A1: a <> b and A2: b <> c and A3: angle(a,b,c) > PI; A4: angle(a,b,c) + angle(c,b,a)= 2*PI+0 by A3,Th94,COMPTRIG:21; then A5: angle(a,b,c)-0 = 2*PI - angle(c,b,a) by XCMPLX_1:33; A6: 0 <= angle(c,b,a) by Th84; A7: angle(c,b,a) <> 0 by A4,Th84; A8: angle(c,b,a) < PI proof assume not thesis; then angle(a,b,c) + angle(c,b,a) > PI+PI by A3,REAL_1:67; then angle(a,b,c) + angle(c,b,a) > 2*PI by XCMPLX_1:11; hence contradiction by A3,Th94,COMPTRIG:21; end; then A9: angle(c,b,a)+angle(b,a,c)+angle(a,c,b) = PI by A1,A2,A6,A7,Th98; angle(a,c,b) > 0 by A1,A2,A6,A7,A8,Th98; then angle(b,c,a) + angle(a,c,b)= 2*PI+0 by Th94; then A10: angle(b,c,a)-0 = 2*PI - angle(a,c,b) by XCMPLX_1:33; angle(b,a,c) > 0 by A1,A2,A6,A7,A8,Th98; then angle(c,a,b)+angle(b,a,c)=2*PI+0 by Th94; then angle(c,a,b)-0 =2*PI - angle(b,a,c) by XCMPLX_1:33; then angle(a,b,c)+angle(b,c,a)+angle(c,a,b) = 2*PI+(2*PI - angle(c,b,a))-angle(a,c,b)+(2*PI - angle(b,a,c)) by A5,A10,Lm1 .= 2*PI+((2*PI - angle(c,b,a))-angle(a,c,b))+(2*PI - angle(b,a,c)) by Lm1 .= 2*PI+(2*PI - (angle(c,b,a)+angle(a,c,b)))+(2*PI - angle(b,a,c)) by XCMPLX_1:36 .= 2*PI+2*PI - (angle(c,b,a)+angle(a,c,b))+(2*PI - angle(b,a,c)) by Lm1 .= 2*PI+2*PI - (angle(c,b,a)+angle(a,c,b))+2*PI - angle(b,a,c) by Lm1 .= 2*PI+2*PI+2*PI - (angle(c,b,a)+angle(a,c,b)) - angle(b,a,c) by XCMPLX_1:29 .= 2*PI+2*PI+2*PI - (angle(c,b,a)+angle(a,c,b)+angle(b,a,c)) by XCMPLX_1:36 .= 2*PI+2*PI+2*PI - (angle(c,b,a)+angle(b,a,c)+angle(a,c,b)) by XCMPLX_1:1; hence A11: angle(a,b,c)+angle(b,c,a)+angle(c,a,b) = 2*PI+2*PI+(PI+PI)-PI by A9,XCMPLX_1:11 .= 2*PI+2*PI+PI+PI-PI by XCMPLX_1:1 .= 2*PI+2*PI+PI by XCMPLX_1:26 .= (2+2)*PI+1*PI by XCMPLX_1:8 .= (2+2+1)*PI by XCMPLX_1:8 .= 5*PI; A12: 2*PI+PI+2*PI = 2*PI+1*PI+2*PI .= (2+1)*PI+2*PI by XCMPLX_1:8 .= (3+2)*PI by XCMPLX_1:8 .= 5*PI; A13: 2*PI+2*PI+PI=(2+2)*PI+1*PI by XCMPLX_1:8.=(4+1)*PI by XCMPLX_1:8 .= 5*PI; A14: angle(a,b,c) < 2*PI by Th84; hereby assume A15: angle(b,c,a) <= PI; A16: angle(c,a,b) < 2*PI by Th84; angle(a,b,c)+angle(b,c,a) < 2*PI+PI by A14,A15,REAL_1:67; hence contradiction by A11,A12,A16,REAL_1:67; end; assume A17: angle(c,a,b) <= PI; angle(b,c,a) < 2*PI by Th84; then angle(a,b,c)+angle(b,c,a) < 2*PI+2*PI by A14,REAL_1:67; hence contradiction by A11,A13,A17,REAL_1:67; end; Lm9: Im a = 0 & Re a > 0 & Arg(b) = PI implies angle(a,0c,b)+angle(0c,b,a)+angle(b,a,0c) = PI & 0 = angle(0c,b,a) & 0 = angle(b,a,0c) proof assume that A1: Im a = 0 and A2: Re a > 0 and A3: Arg(b) = PI; a = [*Re a, 0*] by A1, COMPLEX1:8; then A4: a = [**Re a, 0**] by HAHNBAN1:def 1; Arg [**Re a, 0**] = 0 by A2,COMPTRIG:53; then A5: Arg(a) = 0 by A4,Th17; then A6: Arg(-a) = Arg(a)+PI by A2,Th22,COMPLEX1:12,COMPTRIG:21 .= PI by A5; A7: Re b < 0 & Im b = 0 by A3,Th35; A8: Im (a-b) = Im a - Im b by COMPLEX1:48 .= - Im b by A1,XCMPLX_1:150; A9: Re b +0 < Re a by A2,A7,AXIOMS:22; then Re a - Re b > 0 by REAL_1:86; then A10: Re (a-b) > 0 by COMPLEX1:48; then A11: Arg(a-b) = 0 by A7,A8,Th34; --(Re a - Re b) > 0 by A9,REAL_1:86; then -(Re a - Re b) < 0 by REAL_1:66 ; then Re b+-Re a <0 by XCMPLX_1:162; then Re b - Re a < 0 by XCMPLX_0:def 8; then A12: Re (b-a) < 0 by COMPLEX1:48; A13: Im (b-a) = Im b - Im a by COMPLEX1:48 .= 0 by A1,A3,Th35; then A14: Arg(b-a) = PI by A12,Th35; Arg(b-0c)-Arg(a-0c) > 0 by A3,A5,COMPTRIG: 21; then A15: angle(a,0c,b) = Arg(b)-Arg(a) by Def6; Arg -b = Arg b -PI by A3,Th20,Th22,COMPTRIG:21; then A16: Arg b = Arg -b + PI by XCMPLX_1:27; Arg (b-a) - Arg b = 0 by A3,A14,XCMPLX_1:14; then Arg(-(a-b))-Arg(b) = 0 by XCMPLX_1:143; then Arg(a-b)+PI-Arg(b) = 0 by A10,A11,Th22,COMPLEX1:12,COMPTRIG:21; then Arg(a-b)+PI-PI-Arg(-b) = 0 by A16,XCMPLX_1:36; then Arg(a-b)-Arg(-b) = 0 by XCMPLX_1:26; then A17: Arg(a-b)-Arg(0c-b) = 0 by XCMPLX_1:150; then A18: angle(0c,b,a) = Arg(a-b)-Arg(0c-b) by Def6; then A19: angle(0c,b,a) = Arg(a-b)-Arg(-b) by XCMPLX_1:150; -Arg(b-a) = -PI by A12,A13,Th35; then Arg(-a)+-Arg(b-a) = 0-PI+PI by A6,XCMPLX_1:150; then Arg(-a)+-Arg(b-a) = 0 by XCMPLX_1:27; then Arg(-a)-Arg(b-a) = 0 by XCMPLX_0:def 8; then Arg(0c-a)-Arg(b-a) = 0 by XCMPLX_1:150; then angle(b,a,0c) = Arg(0c-a)-Arg(b-a) by Def6; then A20: angle(b,a,0c) = Arg(-a)-Arg(b-a) by XCMPLX_1:150; Arg -b = Arg b -PI by A3,Th20,Th22,COMPTRIG:21; then PI+Arg -b=Arg b by XCMPLX_1:27; then A21: Arg(b)-Arg(-b) = PI by XCMPLX_1:26; A22: Arg(a)-Arg(-a) = Arg(a)-(Arg(a)+PI) by A2,A5,Th22,COMPLEX1:12,COMPTRIG:21 .= Arg(a)-Arg(a)-PI by XCMPLX_1:36.=0-PI by XCMPLX_1:14.=-PI by XCMPLX_1:150; thus A23: angle(a,0c,b)+angle(0c,b,a)+angle(b,a,0c) = Arg(b)-Arg(a)+Arg(a-b)-Arg(-b)+(Arg(-a)-Arg(b-a)) by A15,A19,A20,Lm1 .= Arg(b)-Arg(a)-Arg(-b)+Arg(a-b)+(Arg(-a)-Arg(b-a)) by XCMPLX_1:29 .= Arg(b)-Arg(-b)-Arg(a)+Arg(a-b)+(Arg(-a)-Arg(b-a)) by XCMPLX_1:21 .= PI-Arg(a)+Arg(a-b)+Arg(-a)-Arg(b-a) by A21,Lm1 .= PI-Arg(a)+Arg(-a)+Arg(a-b)-Arg(b-a) by XCMPLX_1:1 .= PI--PI+Arg(a-b)-Arg(b-a) by A22,XCMPLX_1:37 .= PI+PI+Arg(a-b)-Arg(b-a) by XCMPLX_1:151 .= PI+PI+(Arg(a-b)-Arg(b-a)) by Lm1 .= PI+PI+-PI by A11,A14,XCMPLX_1:150 .= PI+(PI+-PI) by XCMPLX_1:1 .= PI+0 by XCMPLX_0:def 6 .= PI; thus 0 = angle(0c,b,a) by A17,Def6; thus 0 = angle(b,a,0c) by A3,A5,A15,A17,A18,A23,XCMPLX_1:3; end; theorem Th100: a <> b & b <> c & angle(a,b,c) = PI implies angle(b,c,a) = 0 & angle(c,a,b) = 0 proof assume that A1: a <> b and A2: b <> c and A3: angle(a,b,c) = PI; A4: angle(a+-b,0c,c+-b) = angle(a+-b,b+-b,c+-b) by XCMPLX_0:def 6 .= angle(a,b,c) by Th86; set r = -Arg (a+-b); A5: Rotate(0c,r) = 0c by Th66; set A = Rotate(a+-b,r), B = Rotate(c+-b, r); a-b <> 0 by A1,XCMPLX_1:15; then A6: a+-b <> 0c by XCMPLX_0:def 8; A7: c+-b <> a+-b proof assume c+-b = a+-b; then c = a by XCMPLX_1:2; hence contradiction by A3,Th93,COMPTRIG:21; end; c-b <> 0 by A2,XCMPLX_1:15; then A8: c+-b <> 0 by XCMPLX_0:def 8; then A9: angle(a+-b,0c,c+-b) = angle(A,0c,B) by A5,A6,Th92; A10: A = [* |.a+-b.|, 0 *] by Th69; then A11: Im A = 0 by COMPLEX1:7; now assume a+-b = 0c; then a-b = 0c by XCMPLX_0:def 8; hence contradiction by A1,XCMPLX_1:15; end; then |.a+-b.| > 0 by COMPLEX1:133; then A12: Re A > 0 by A10,COMPLEX1:7; then A13: Arg A = 0c by A11,Th34; then Arg(B-0c)-Arg(A-0c)>=0 by Th18; then A14: angle(a,b,c) = Arg B by A4,A9,A13,Def6; A15: angle(b,c,a) = angle(b+-b,c+-b,a+-b) by Th86 .=angle(0c,c+-b,a+-b)by XCMPLX_0:def 6.= angle(0c,B,A) by A5,A7,A8,Th92; A16: angle(c,a,b) = angle(c+-b,a+-b,b+-b) by Th86 .=angle(c+-b,a+-b,0c) by XCMPLX_0:def 6.=angle(B,A,0c) by A5,A6,A7,Th92; thus angle(b,c,a) = 0 by A3,A11,A12,A14,A15,Lm9; thus angle(c,a,b) = 0 by A3,A11,A12,A14,A16,Lm9; end; theorem Th101: a <> b & a <> c & b <> c & angle(a,b,c) = 0 implies angle(b,c,a) = 0 & angle(c,a,b) = PI or angle(b,c,a) = PI & angle(c,a,b) = 0 proof assume that A1: a <> b & a <> c & b <> c & angle(a,b,c) = 0; per cases by A1,Th97; suppose A2: angle(b,c,a) <> 0; A3: 0 <= angle(b,c,a) by Th84; thus thesis proof per cases by REAL_1:def 5; suppose angle(b,c,a) < PI; hence thesis by A1,A2,A3,Th98; suppose angle(b,c,a) = PI; hence thesis by A1,Th100; suppose angle(b,c,a) > PI; hence thesis by A1,Th99,COMPTRIG:21; end; suppose A4: angle(c,a,b) <> 0; A5: 0 <= angle(c,a,b) by Th84; thus thesis proof per cases by REAL_1:def 5; suppose angle(c,a,b) < PI; hence thesis by A1,A4,A5,Th98; suppose angle(c,a,b) = PI; hence thesis by A1,Th100; suppose angle(c,a,b) > PI; hence thesis by A1,Th99,COMPTRIG:21; end; end; Lm10: a <> b & a <> c & b <> c & angle(a,b,c) = 0 implies angle(b,c,a)+angle(c,a,b) = PI proof assume A1: a <> b & a <> c & b <> c & angle(a,b,c) = 0; per cases by A1,Th101; suppose angle(b,c,a) = 0 & angle(c,a,b) = PI; hence angle(b,c,a)+angle(c,a,b) = PI; suppose angle(b,c,a) = PI & angle(c,a,b) = 0; hence angle(b,c,a)+angle(c,a,b) = PI; end; theorem angle(a,b,c)+angle(b,c,a)+angle(c,a,b) = PI or angle(a,b,c)+angle(b,c,a)+angle(c,a,b) = 5*PI iff a <> b & a <> c & b <> c proof hereby assume A1: angle(a,b,c)+angle(b,c,a)+angle(c,a,b) = PI or angle(a,b,c)+angle(b,c,a)+angle(c,a,b) = 5*PI; per cases by A1; suppose A2: angle(a,b,c)+angle(b,c,a)+angle(c,a,b) = PI; thus a <> b & a <> c & b <> c proof assume A3: not (a <> b & a <> c & b <> c); per cases by A3; suppose A4: a=b; A5: angle(a,c,a) = 0 by Th93; not (angle(a,a,c) = 0 & angle(c,a,a) = 0) by A2,A4,Th93,COMPTRIG:21; hence contradiction by A2,A4,A5,Th94,COMPTRIG:21; suppose A6: a=c; A7: angle(a,b,a) = 0 by Th93; not (angle(a,a,b) = 0 & angle(b,a,a) = 0) by A2,A6,Th93,COMPTRIG:21; hence contradiction by A2,A6,A7,Th94,COMPTRIG:21; suppose A8: b=c; A9: angle(b,a,b) = 0 by Th93; not (angle(a,b,b) = 0 & angle(b,b,a) = 0) by A2,A8,Th93,COMPTRIG:21; hence contradiction by A2,A8,A9,Th94,COMPTRIG:21; end; suppose A10: angle(a,b,c)+angle(b,c,a)+angle(c,a,b) = 5*PI; A11: (2+2)*PI < 5*PI by COMPTRIG:21,REAL_1:70; then A12: 2*PI+2*PI < 5*PI by XCMPLX_1:8; thus a <> b & a <> c & b <> c proof assume A13: not (a <> b & a <> c & b <> c); per cases by A13; suppose a=b; then A14: angle(b,c,a) = 0 by Th93; A15: angle(c,a,b) < 2*PI by Th84; angle(a,b,c)+angle(b,c,a) < 2*PI by A14,Th84; hence contradiction by A10,A12,A15,REAL_1:67; suppose b=c; then A16: angle(c,a,b) = 0 by Th93; angle(a,b,c) < 2*PI & angle(b,c,a) < 2*PI by Th84; then angle(a,b,c)+angle(b,c,a) < 2*PI+2*PI by REAL_1:67; hence contradiction by A10,A11,A16,XCMPLX_1:8; suppose a=c; then A17: angle(a,b,c) = 0 by Th93; A18: angle(c,a,b) < 2*PI by Th84; angle(a,b,c)+angle(b,c,a) < 2*PI by A17,Th84; hence contradiction by A10,A12,A18,REAL_1:67; end; end; assume A19: a <> b & a <> c & b <> c; per cases by REAL_1:def 5; suppose angle(a,b,c) = 0; hence thesis by A19,Lm10; suppose A20: 0 <> angle(a,b,c) & angle(a,b,c) < PI; 0 <= angle(a,b,c) by Th84; hence thesis by A19,A20,Th98; suppose A21: 0 <> angle(a,b,c) & angle(a,b,c) = PI; then angle(b,c,a) = 0 & angle(c,a,b) = 0 by A19,Th100; hence thesis by A21; suppose 0 <> angle(a,b,c) & angle(a,b,c) > PI; hence thesis by A19,Th99; end;