The Mizar article:

The Ordering of Points on a Curve. Part III

by
Artur Kornilowicz

Received September 16, 2002

Copyright (c) 2002 Association of Mizar Users

MML identifier: JORDAN17
[ MML identifier index ]


environ

 vocabulary ARYTM, PRE_TOPC, EUCLID, BORSUK_1, RCOMP_1, RELAT_1, BOOLE,
      SUBSET_1, FUNCT_1, TOPREAL1, TOPS_2, COMPTS_1, JORDAN3, PSCOMP_1,
      TOPREAL2, JORDAN6, JORDAN17;
 notation XBOOLE_0, ORDINAL1, XREAL_0, REAL_1, NAT_1, RCOMP_1, STRUCT_0,
      RELAT_1, FUNCT_1, TOPREAL1, TOPREAL2, PRE_TOPC, TOPS_2, COMPTS_1,
      BORSUK_1, EUCLID, JORDAN5C, PSCOMP_1, JORDAN6;
 constructors RCOMP_1, TOPREAL2, CONNSP_1, TOPS_2, REAL_1, TOPREAL1, JORDAN5C,
      TREAL_1, PSCOMP_1, JORDAN6, SPPOL_1;
 clusters EUCLID, PSCOMP_1, XREAL_0, RELSET_1, JORDAN1B, MEMBERED;
 requirements NUMERALS, REAL, SUBSET;
 definitions TOPREAL1;
 theorems XBOOLE_0, JORDAN5C, JORDAN6, JORDAN7, REAL_1, TOPS_2, FUNCT_1,
      BORSUK_1, PRE_TOPC, TOPREAL5, JORDAN1, AXIOMS, XREAL_0, SPRECT_1,
      JORDAN16;

begin

reserve C, P for Simple_closed_curve,
        a, b, c, d, e for Point of TOP-REAL 2;

theorem Th1:
  for n being Nat,
      a, p1, p2 being Point of TOP-REAL n,
      P being Subset of TOP-REAL n st
    a in P & P is_an_arc_of p1,p2
  ex f being map of I[01], (TOP-REAL n)|P,
     r being Real st
   f is_homeomorphism & f.0 = p1 & f.1 = p2 & 0 <= r & r <= 1 & f.r = a
  proof
    let n be Nat,
        a, p1, p2 be Point of TOP-REAL n,
        P be Subset of TOP-REAL n such that
A1:   a in P;
    given f being map of I[01], (TOP-REAL n)|P such that
A2:   f is_homeomorphism and
A3:   f.0 = p1 and
A4:   f.1 = p2;
      rng f = [#]((TOP-REAL n)|P) by A2,TOPS_2:def 5
         .= the carrier of (TOP-REAL n)|P by PRE_TOPC:12
         .= P by JORDAN1:1;
    then consider r being set such that
A5:   r in dom f and
A6:   a = f.r by A1,FUNCT_1:def 5;
A7: dom f = [#]I[01] by A2,TOPS_2:def 5
         .= [.0,1.] by BORSUK_1:83,PRE_TOPC:12;
    then reconsider r as Real by A5;
    take f, r;
    thus f is_homeomorphism & f.0 = p1 & f.1 = p2 by A2,A3,A4;
    thus 0 <= r & r <= 1 by A5,A7,TOPREAL5:1;
    thus f.r = a by A6;
  end;

theorem
    LE W-min(P),E-max(P),P
  proof
      W-min(P) in Upper_Arc(P) &
    E-max(P) in Lower_Arc(P) &
    E-max(P) <> W-min(P) by JORDAN7:1,TOPREAL5:25;
    hence thesis by JORDAN6:def 10;
  end;

theorem
    LE a,E-max(P),P implies a in Upper_Arc(P)
  proof
    assume
A1:   LE a,E-max(P),P;
    per cases by A1,JORDAN6:def 10;
    suppose a in Upper_Arc(P) & E-max(P) in Lower_Arc(P) &
            not E-max(P) = W-min(P) or
            a in Upper_Arc(P) & E-max(P) in Upper_Arc(P) &
            LE a,E-max(P),Upper_Arc(P),W-min(P),E-max(P);
    hence thesis;
    suppose that
A2:         a in Lower_Arc(P) and
              E-max(P) in Lower_Arc(P) &
            not E-max(P) = W-min(P) and
A3:         LE a,E-max(P),Lower_Arc(P),E-max(P),W-min(P);
      Lower_Arc(P) is_an_arc_of E-max(P),W-min(P) by JORDAN6:def 9;
    then consider f being map of I[01], (TOP-REAL 2)|Lower_Arc(P),
                  r being Real such that
A4:   f is_homeomorphism and
A5:   f.0 = E-max(P) and
A6:   f.1 = W-min(P) and
A7:   0 <= r and
A8:   r <= 1 and
A9:   f.r = a by A2,Th1;
    thus thesis
    proof
      per cases;
      suppose r = 0;
      hence thesis by A5,A9,JORDAN7:1;
      suppose r <> 0;
      then r > 0 by A7,REAL_1:def 5;
      hence thesis by A3,A4,A5,A6,A8,A9,JORDAN5C:def 3;
    end;
  end;

theorem
    LE E-max(P),a,P implies a in Lower_Arc(P)
  proof
    assume
A1:   LE E-max(P),a,P;
    per cases by A1,JORDAN6:def 10;
    suppose E-max(P) in Upper_Arc(P) & a in Lower_Arc(P) & not a = W-min(P) or
            E-max(P) in Lower_Arc(P) & a in Lower_Arc(P) &
            not a = W-min(P) & LE E-max(P),a,Lower_Arc(P),E-max(P),W-min(P);
    hence thesis;
    suppose that E-max(P) in Upper_Arc(P) and
A2:         a in Upper_Arc(P) and
A3:         LE E-max(P),a,Upper_Arc(P),W-min(P),E-max(P);
      Upper_Arc(P) is_an_arc_of W-min(P),E-max(P) by JORDAN6:def 8;
    then consider f being map of I[01], (TOP-REAL 2)|Upper_Arc(P),
                  r being Real such that
A4:   f is_homeomorphism and
A5:   f.0 = W-min(P) and
A6:   f.1 = E-max(P) and
A7:   0 <= r and
A8:   r <= 1 and
A9:   f.r = a by A2,Th1;
    thus thesis
    proof
      per cases;
      suppose r = 1;
      hence thesis by A6,A9,JORDAN7:1;
      suppose r <> 1;
      then r < 1 by A8,REAL_1:def 5;
      hence thesis by A3,A4,A5,A6,A7,A9,JORDAN5C:def 3;
    end;
  end;

theorem
    LE a,W-min(P),P implies a in Lower_Arc(P)
  proof
    assume
A1:   LE a,W-min(P),P;
    per cases by A1,JORDAN6:def 10;
    suppose a in Upper_Arc(P) & W-min(P) in Lower_Arc(P) &
            not W-min(P) = W-min(P) or
            a in Lower_Arc(P) & W-min(P) in Lower_Arc(P) &
            not W-min(P) = W-min(P) &
            LE a,W-min(P),Lower_Arc(P),E-max(P),W-min(P);
    hence thesis;
    suppose that
A2:   a in Upper_Arc(P) and
        W-min(P) in Upper_Arc(P) and
A3:   LE a,W-min(P),Upper_Arc(P),W-min(P),E-max(P);
      Upper_Arc(P) is_an_arc_of W-min(P),E-max(P) by JORDAN6:def 8;
    then consider f being map of I[01], (TOP-REAL 2)|Upper_Arc(P),
                  r being Real such that
A4:   f is_homeomorphism and
A5:   f.0 = W-min(P) and
A6:   f.1 = E-max(P) and
A7:   0 <= r and
A8:   r <= 1 and
A9:   f.r = a by A2,Th1;
    thus thesis
    proof
      per cases;
      suppose r = 0;
      hence thesis by A5,A9,JORDAN7:1;
      suppose r <> 0;
      then r > 0 by A7,REAL_1:def 5;
      hence thesis by A3,A4,A5,A6,A8,A9,JORDAN5C:def 3;
    end;
  end;

theorem Th6:
  for P being Subset of TOP-REAL 2 st
    a <> b &
    P is_an_arc_of c,d &
    LE a,b,P,c,d holds
  ex e st a <> e & b <> e & LE a,e,P,c,d & LE e,b,P,c,d
  proof
    let P be Subset of TOP-REAL 2;
    assume that
A1:   a <> b and
A2:   P is_an_arc_of c,d and
A3:   LE a,b,P,c,d;
A4: a in P by A3,JORDAN5C:def 3;
   b in P by A3,JORDAN5C:def 3;
    then consider f being map of I[01], (TOP-REAL 2)|P,
                  rb being Real such that
A5:   f is_homeomorphism and
A6:   f.0 = c and
A7:   f.1 = d and
A8:   0 <= rb and
A9:   rb <= 1 and
A10:   f.rb = b by A2,Th1;
A11: rng f = [#]((TOP-REAL 2)|P) by A5,TOPS_2:def 5
         .= the carrier of (TOP-REAL 2)|P by PRE_TOPC:12
         .= P by JORDAN1:1;
    then consider ra being set such that
A12:   ra in dom f and
A13:   a = f.ra by A4,FUNCT_1:def 5;
A14: dom f = [#]I[01] by A5,TOPS_2:def 5
         .= [.0,1.] by BORSUK_1:83,PRE_TOPC:12;
    then reconsider ra as Real by A12;
A15: 0 <= ra by A12,A14,TOPREAL5:1;
A16: ra <= 1 by A12,A14,TOPREAL5:1;
    then ra <= rb by A3,A5,A6,A7,A8,A9,A10,A13,A15,JORDAN5C:def 3;
    then ra < rb by A1,A10,A13,REAL_1:def 5;
    then consider re being real number such that
A17:   ra < re and
A18:   re < rb by REAL_1:75;
A19: re is Real by XREAL_0:def 1;
A20: 0 <= re & re <= 1 by A9,A15,A17,A18,AXIOMS:22;
    set e = f.re;
A21: re in dom f by A14,A20,TOPREAL5:1;
    then e in rng f by FUNCT_1:def 5;
    then reconsider e as Point of TOP-REAL 2 by A11;
    take e;
      now
      assume
A22:     a = e or b = e;
A23:   f is one-to-one by A5,TOPS_2:def 5;
        ra in dom f & rb in dom f by A8,A9,A12,A14,TOPREAL5:1;
      hence contradiction by A10,A13,A17,A18,A21,A22,A23,FUNCT_1:def 8;
    end;
    hence a <> e & b <> e;
    thus thesis by A2,A5,A6,A7,A8,A9,A10,A13,A15,A16,A17,A18,A19,A20,JORDAN5C:8
;
  end;

theorem Th7:
  a in P implies ex e st a <> e & LE a,e,P
  proof
    assume
A1:   a in P;
A2: E-max(P) <> W-min(P) by TOPREAL5:25;
A3: Lower_Arc(P) is_an_arc_of E-max(P),W-min(P) by JORDAN6:def 9;
    per cases;
    suppose
A4:   a = W-min(P);
    take E-max(P);
      E-max(P) in P by SPRECT_1:16;
    hence thesis by A4,JORDAN7:3,TOPREAL5:25;
    suppose
A5:   a <> W-min(P);
    thus thesis
    proof
      per cases;
      suppose
A6:     a in Upper_Arc(P);
      thus thesis
      proof
        per cases;
        suppose
A7:       a = E-max(P);
        consider e such that
A8:       e in Lower_Arc(P) & e <> E-max(P) & e <> W-min(P) by A3,JORDAN6:55;
        take e;
        thus thesis by A6,A7,A8,JORDAN6:def 10;
        suppose
A9:       a <> E-max(P);
        take E-max(P);
          E-max(P) in Lower_Arc(P) by JORDAN7:1;
        hence thesis by A2,A6,A9,JORDAN6:def 10;
      end;
      suppose
A10:     not a in Upper_Arc(P);
        Upper_Arc(P) \/ Lower_Arc(P) = P by JORDAN6:def 9;
      then A11:     a in Lower_Arc(P) by A1,A10,XBOOLE_0:def 2;
      then consider f being map of I[01], (TOP-REAL 2)|Lower_Arc(P),
                    r being Real such that
A12:     f is_homeomorphism and
A13:     f.0 = E-max(P) and
A14:     f.1 = W-min(P) and
A15:     0 <= r and
A16:     r <= 1 and
A17:     f.r = a by A3,Th1;
A18:   dom f = [#]I[01] by A12,TOPS_2:def 5
           .= [.0,1.] by BORSUK_1:83,PRE_TOPC:12;
then A19:   r in dom f by A15,A16,TOPREAL5:1;
A20:   1 in dom f by A18,TOPREAL5:1;
A21:   f is one-to-one by A12,TOPS_2:def 5;
        r < 1 by A5,A14,A16,A17,REAL_1:def 5;
      then consider s being real number such that
A22:     r < s & s < 1 by REAL_1:75;
A23:   s is Real by XREAL_0:def 1;
A24:   0 <= s & s <= 1 by A15,A22,AXIOMS:22;
then A25:   s in dom f by A18,TOPREAL5:1;
A26:   rng f = [#]((TOP-REAL 2)|Lower_Arc(P)) by A12,TOPS_2:def 5
           .= the carrier of (TOP-REAL 2)|Lower_Arc(P) by PRE_TOPC:12
           .= Lower_Arc(P) by JORDAN1:1;
A27:   f.s in rng f by A25,FUNCT_1:def 5;
      then reconsider e = f.s as Point of TOP-REAL 2 by A26;
      take e;
      thus a <> e by A17,A19,A21,A22,A25,FUNCT_1:def 8;
A28:   e <> W-min(P) by A14,A20,A21,A22,A25,FUNCT_1:def 8;
        LE a,e,Lower_Arc(P),E-max(P),W-min(P)
        by A3,A12,A13,A14,A15,A16,A17,A22,A23,A24,JORDAN5C:8;
      hence LE a,e,P by A11,A26,A27,A28,JORDAN6:def 10;
    end;
  end;

theorem Th8:
  a <> b & LE a,b,P implies
  ex c st c <> a & c <> b & LE a,c,P & LE c,b,P
  proof
    assume that
A1:   a <> b and
A2:   LE a,b,P;
A3: Upper_Arc(P) is_an_arc_of W-min(P),E-max(P) by JORDAN6:def 8;
A4: Lower_Arc(P) is_an_arc_of E-max(P),W-min(P) by JORDAN6:def 9;

    per cases by A2,JORDAN6:def 10;
    suppose that
A5:   a in Upper_Arc(P) and
A6:   b in Lower_Arc(P) and
A7:   not b = W-min(P);
A8: E-max(P) in Upper_Arc(P) by JORDAN7:1;
A9: E-max(P) in Lower_Arc(P) by JORDAN7:1;
A10: E-max(P) <> W-min(P) by TOPREAL5:25;

    thus thesis
    proof
         per cases;
         suppose that
A11:        a <> E-max(P) and
A12:        b <> E-max(P);
         take e = E-max(P);
         thus a <> e & b <> e by A11,A12;
         thus LE a,e,P & LE e,b,P by A5,A6,A7,A8,A9,A10,JORDAN6:def 10;

         suppose
A13:        a = E-max(P);
         then LE a,b,Lower_Arc(P),E-max(P),W-min(P) by A4,A6,JORDAN5C:10;
         then consider e such that
A14:        a <> e & b <> e and
A15:        LE a,e,Lower_Arc(P),E-max(P),W-min(P) and
A16:        LE e,b,Lower_Arc(P),E-max(P),W-min(P) by A1,A4,Th6;
         take e;
         thus e <> a & e <> b by A14;
A17:      e in Lower_Arc(P) by A15,JORDAN5C:def 3;
           e <> W-min(P) by A4,A7,A16,JORDAN6:70;
         hence LE a,e,P & LE e,b,P by A6,A7,A9,A13,A15,A16,A17,JORDAN6:def 10;

         suppose
A18:        b = E-max(P);
         then LE a,b,Upper_Arc(P),W-min(P),E-max(P) by A3,A5,JORDAN5C:10;
         then consider e such that
A19:        a <> e & b <> e and
A20:        LE a,e,Upper_Arc(P),W-min(P),E-max(P) and
             LE e,b,Upper_Arc(P),W-min(P),E-max(P) by A1,A3,Th6;
         take e;
         thus e <> a & e <> b by A19;
           e in Upper_Arc(P) by A20,JORDAN5C:def 3;
         hence LE a,e,P & LE e,b,P by A5,A7,A9,A18,A20,JORDAN6:def 10;
    end;

    suppose that
A21:   a in Upper_Arc(P) and
A22:   b in Upper_Arc(P) and
A23:   LE a,b,Upper_Arc(P),W-min(P),E-max(P);
    consider e such that
A24:   a <> e & b <> e and
A25:   LE a,e,Upper_Arc(P),W-min(P),E-max(P) &
      LE e,b,Upper_Arc(P),W-min(P),E-max(P) by A1,A3,A23,Th6;
    take e;
    thus e <> a & e <> b by A24;
      e in Upper_Arc(P) by A25,JORDAN5C:def 3;
    hence thesis by A21,A22,A25,JORDAN6:def 10;

    suppose that
A26:    a in Lower_Arc(P) and
A27:    b in Lower_Arc(P) and
A28:    not b = W-min(P) and
A29:    LE a,b,Lower_Arc(P),E-max(P),W-min(P);
    consider e such that
A30:   a <> e & b <> e and
A31:   LE a,e,Lower_Arc(P),E-max(P),W-min(P) and
A32:   LE e,b,Lower_Arc(P),E-max(P),W-min(P) by A1,A4,A29,Th6;
    take e;
    thus e <> a & e <> b by A30;
A33: e <> W-min(P) by A4,A28,A32,JORDAN6:70;
      e in Lower_Arc(P) by A31,JORDAN5C:def 3;
    hence thesis by A26,A27,A28,A31,A32,A33,JORDAN6:def 10;
  end;

definition
  let P be compact non empty Subset of TOP-REAL 2,
      a, b, c, d be Point of TOP-REAL 2;
  pred a,b,c,d are_in_this_order_on P means
:Def1:
  LE a,b,P & LE b,c,P & LE c,d,P or
  LE b,c,P & LE c,d,P & LE d,a,P or
  LE c,d,P & LE d,a,P & LE a,b,P or
  LE d,a,P & LE a,b,P & LE b,c,P;
end;

theorem
    a in P implies a,a,a,a are_in_this_order_on P
  proof
    assume a in P;
    then LE a,a,P by JORDAN6:71;
    hence thesis by Def1;
  end;

theorem
    a,b,c,d are_in_this_order_on P implies
  b,c,d,a are_in_this_order_on P
  proof
    assume
        LE a,b,P & LE b,c,P & LE c,d,P or
      LE b,c,P & LE c,d,P & LE d,a,P or
      LE c,d,P & LE d,a,P & LE a,b,P or
      LE d,a,P & LE a,b,P & LE b,c,P;
    hence
        LE b,c,P & LE c,d,P & LE d,a,P or
      LE c,d,P & LE d,a,P & LE a,b,P or
      LE d,a,P & LE a,b,P & LE b,c,P or
      LE a,b,P & LE b,c,P & LE c,d,P;
  end;

theorem
    a,b,c,d are_in_this_order_on P implies
  c,d,a,b are_in_this_order_on P
  proof
    assume
        LE a,b,P & LE b,c,P & LE c,d,P or
      LE b,c,P & LE c,d,P & LE d,a,P or
      LE c,d,P & LE d,a,P & LE a,b,P or
      LE d,a,P & LE a,b,P & LE b,c,P;
    hence
        LE c,d,P & LE d,a,P & LE a,b,P or
      LE d,a,P & LE a,b,P & LE b,c,P or
      LE a,b,P & LE b,c,P & LE c,d,P or
      LE b,c,P & LE c,d,P & LE d,a,P;
  end;

theorem
    a,b,c,d are_in_this_order_on P implies
  d,a,b,c are_in_this_order_on P
  proof
    assume
        LE a,b,P & LE b,c,P & LE c,d,P or
      LE b,c,P & LE c,d,P & LE d,a,P or
      LE c,d,P & LE d,a,P & LE a,b,P or
      LE d,a,P & LE a,b,P & LE b,c,P;
    hence
        LE d,a,P & LE a,b,P & LE b,c,P or
      LE a,b,P & LE b,c,P & LE c,d,P or
      LE b,c,P & LE c,d,P & LE d,a,P or
      LE c,d,P & LE d,a,P & LE a,b,P;
  end;

theorem
    a <> b & a,b,c,d are_in_this_order_on P
  implies
  ex e st e <> a & e <> b & a,e,b,c are_in_this_order_on P
  proof
    assume that
A1:   a <> b and
A2:   LE a,b,P & LE b,c,P & LE c,d,P or
      LE b,c,P & LE c,d,P & LE d,a,P or
      LE c,d,P & LE d,a,P & LE a,b,P or
      LE d,a,P & LE a,b,P & LE b,c,P;
    per cases by A2;
    suppose
A3:   LE a,b,P & LE b,c,P & LE c,d,P;
    then consider e such that
A4:   e <> a & e <> b & LE a,e,P & LE e,b,P by A1,Th8;
    take e;
    thus thesis by A3,A4,Def1;

    suppose that
A5:   LE b,c,P and
A6:   LE c,d,P and
A7:   LE d,a,P;
    thus thesis
    proof
A8:   LE c,a,P by A6,A7,JORDAN6:73;
      per cases;
      suppose
A9:     b = W-min(P);
        a in P by A7,JORDAN7:5;
      then consider e such that
A10:     e <> a and
A11:     LE a,e,P by Th7;
      take e;
      thus e <> a by A10;
      thus e <> b by A1,A9,A11,JORDAN7:2;
      thus thesis by A5,A8,A11,Def1;
      suppose
A12:     b <> W-min(P);
      take e = W-min(P);
        b in P by A5,JORDAN7:5;
then A13:   LE e,b,P by JORDAN7:3;
        now
        assume
A14:       e = a;
          LE b,d,P by A5,A6,JORDAN6:73;
        then LE b,a,P by A7,JORDAN6:73;
        hence contradiction by A1,A13,A14,JORDAN6:72;
      end;
      hence e <> a;
      thus e <> b by A12;
      thus thesis by A5,A8,A13,Def1;
    end;

    suppose that
A15:   LE c,d,P and
A16:   LE d,a,P & LE a,b,P;
    consider e such that
A17:   e <> a & e <> b & LE a,e,P & LE e,b,P by A1,A16,Th8;
    take e;
      LE c,a,P by A15,A16,JORDAN6:73;
    hence thesis by A17,Def1;

    suppose that
A18:   LE d,a,P & LE a,b,P and
A19:   LE b,c,P;
    consider e such that
A20:   e <> a & e <> b & LE a,e,P & LE e,b,P by A1,A18,Th8;
    take e;
    thus thesis by A19,A20,Def1;
  end;

theorem
    a <> b & a,b,c,d are_in_this_order_on P
  implies
  ex e st e <> a & e <> b & a,e,b,d are_in_this_order_on P
  proof
    assume that
A1:   a <> b and
A2:   LE a,b,P & LE b,c,P & LE c,d,P or
      LE b,c,P & LE c,d,P & LE d,a,P or
      LE c,d,P & LE d,a,P & LE a,b,P or
      LE d,a,P & LE a,b,P & LE b,c,P;
    per cases by A2;
    suppose that
A3:   LE a,b,P and
A4:   LE b,c,P & LE c,d,P;
    consider e such that
A5:   e <> a & e <> b & LE a,e,P & LE e,b,P by A1,A3,Th8;
    take e;
      LE b,d,P by A4,JORDAN6:73;
    hence thesis by A5,Def1;

    suppose that
A6:   LE b,c,P and
A7:   LE c,d,P and
A8:   LE d,a,P;
    thus thesis
    proof

A9:   LE b,d,P by A6,A7,JORDAN6:73;
      per cases;
      suppose
A10:     b = W-min(P);
        a in P by A8,JORDAN7:5;
      then consider e such that
A11:     e <> a and
A12:     LE a,e,P by Th7;
      take e;
      thus e <> a by A11;
      thus e <> b by A1,A10,A12,JORDAN7:2;
      thus thesis by A8,A9,A12,Def1;
      suppose
A13:     b <> W-min(P);
      take e = W-min(P);
        b in P by A6,JORDAN7:5;
then A14:   LE e,b,P by JORDAN7:3;
        now
        assume
A15:       e = a;
          LE b,d,P by A6,A7,JORDAN6:73;
        then LE b,a,P by A8,JORDAN6:73;
        hence contradiction by A1,A14,A15,JORDAN6:72;
      end;
      hence e <> a;
      thus e <> b by A13;
      thus thesis by A8,A9,A14,Def1;
    end;

    suppose that
        LE c,d,P and
A16:   LE d,a,P and
A17:   LE a,b,P;
    consider e such that
A18:   e <> a & e <> b & LE a,e,P & LE e,b,P by A1,A17,Th8;
    take e;
    thus thesis by A16,A18,Def1;

    suppose that
A19:   LE d,a,P and
A20:   LE a,b,P and
        LE b,c,P;
    consider e such that
A21:   e <> a & e <> b & LE a,e,P & LE e,b,P by A1,A20,Th8;
    take e;
    thus thesis by A19,A21,Def1;
  end;

theorem
    b <> c & a,b,c,d are_in_this_order_on P
  implies
  ex e st e <> b & e <> c & a,b,e,c are_in_this_order_on P
  proof
    assume that
A1:   b <> c and
A2:   LE a,b,P & LE b,c,P & LE c,d,P or
      LE b,c,P & LE c,d,P & LE d,a,P or
      LE c,d,P & LE d,a,P & LE a,b,P or
      LE d,a,P & LE a,b,P & LE b,c,P;
    per cases by A2;
    suppose
A3:   LE a,b,P & LE b,c,P & LE c,d,P;
    then consider e such that
A4:   e <> b & e <> c & LE b,e,P & LE e,c,P by A1,Th8;
    take e;
    thus thesis by A3,A4,Def1;

    suppose that
A5:   LE b,c,P and
A6:   LE c,d,P and
A7:   LE d,a,P;
    consider e such that
A8:   e <> b & e <> c & LE b,e,P & LE e,c,P by A1,A5,Th8;
    take e;
      LE c,a,P by A6,A7,JORDAN6:73;
    hence thesis by A8,Def1;

    suppose that
A9:   LE c,d,P and
A10:   LE d,a,P and
A11:   LE a,b,P;
    thus thesis
    proof
A12:   LE c,a,P by A9,A10,JORDAN6:73;
      per cases;
      suppose
A13:     c = W-min(P);
        b in P by A11,JORDAN7:5;
      then consider e such that
A14:     e <> b and
A15:     LE b,e,P by Th7;
      take e;
      thus e <> b by A14;
      thus e <> c by A1,A13,A15,JORDAN7:2;
      thus thesis by A11,A12,A15,Def1;
      suppose
A16:     c <> W-min(P);
      take e = W-min(P);
        c in P by A9,JORDAN7:5;
then A17:   LE e,c,P by JORDAN7:3;
        now
        assume
A18:       e = b;
          LE c,a,P by A9,A10,JORDAN6:73;
        then LE c,b,P by A11,JORDAN6:73;
        hence contradiction by A1,A17,A18,JORDAN6:72;
      end;
      hence e <> b;
      thus e <> c by A16;
      thus thesis by A11,A12,A17,Def1;
    end;

    suppose that
        LE d,a,P and
A19:   LE a,b,P & LE b,c,P;
    consider e such that
A20:   e <> b & e <> c & LE b,e,P & LE e,c,P by A1,A19,Th8;
    take e;
    thus thesis by A19,A20,Def1;
  end;

theorem
    b <> c & a,b,c,d are_in_this_order_on P
  implies
  ex e st e <> b & e <> c & b,e,c,d are_in_this_order_on P
  proof
    assume that
A1:   b <> c and
A2:   LE a,b,P & LE b,c,P & LE c,d,P or
      LE b,c,P & LE c,d,P & LE d,a,P or
      LE c,d,P & LE d,a,P & LE a,b,P or
      LE d,a,P & LE a,b,P & LE b,c,P;
    per cases by A2;
    suppose
A3:   LE a,b,P & LE b,c,P & LE c,d,P;
    then consider e such that
A4:   e <> b & e <> c & LE b,e,P & LE e,c,P by A1,Th8;
    take e;
    thus thesis by A3,A4,Def1;

    suppose
A5:   LE b,c,P & LE c,d,P & LE d,a,P;
    then consider e such that
A6:   e <> b & e <> c & LE b,e,P & LE e,c,P by A1,Th8;
    take e;
    thus thesis by A5,A6,Def1;

    suppose that
A7:   LE c,d,P and
A8:   LE d,a,P and
A9:   LE a,b,P;
    thus thesis
    proof
A10:   LE d,b,P by A8,A9,JORDAN6:73;
      per cases;
      suppose
A11:     c = W-min(P);
        b in P by A9,JORDAN7:5;
      then consider e such that
A12:     e <> b and
A13:     LE b,e,P by Th7;
      take e;
      thus e <> b by A12;
      thus e <> c by A1,A11,A13,JORDAN7:2;
      thus thesis by A7,A10,A13,Def1;
      suppose
A14:     c <> W-min(P);
      take e = W-min(P);
        c in P by A7,JORDAN7:5;
then A15:   LE e,c,P by JORDAN7:3;
        now
        assume
A16:       e = b;
          LE c,a,P by A7,A8,JORDAN6:73;
        then LE c,b,P by A9,JORDAN6:73;
        hence contradiction by A1,A15,A16,JORDAN6:72;
      end;
      hence e <> b;
      thus e <> c by A14;
      thus thesis by A7,A10,A15,Def1;
    end;

    suppose that
A17:   LE d,a,P and
A18:   LE a,b,P and
A19:   LE b,c,P;
    consider e such that
A20:   e <> b & e <> c & LE b,e,P & LE e,c,P by A1,A19,Th8;
    take e;
    thus e <> b & e <> c by A20;
      LE d,b,P by A17,A18,JORDAN6:73;
    hence thesis by A20,Def1;
  end;

theorem
    c <> d & a,b,c,d are_in_this_order_on P
  implies
  ex e st e <> c & e <> d & a,c,e,d are_in_this_order_on P
  proof
    assume that
A1:   c <> d and
A2:   LE a,b,P & LE b,c,P & LE c,d,P or
      LE b,c,P & LE c,d,P & LE d,a,P or
      LE c,d,P & LE d,a,P & LE a,b,P or
      LE d,a,P & LE a,b,P & LE b,c,P;
    per cases by A2;
    suppose that
A3:   LE a,b,P & LE b,c,P and
A4:   LE c,d,P;
    consider e such that
A5:   e <> c & e <> d & LE c,e,P & LE e,d,P by A1,A4,Th8;
    take e;
      LE a,c,P by A3,JORDAN6:73;
    hence thesis by A5,Def1;

    suppose that
A6:   LE b,c,P & LE c,d,P and
A7:   LE d,a,P;
    consider e such that
A8:   e <> c & e <> d & LE c,e,P & LE e,d,P by A1,A6,Th8;
    take e;
    thus thesis by A7,A8,Def1;

    suppose that
A9:   LE c,d,P and
A10:   LE d,a,P and
        LE a,b,P;
    consider e such that
A11:   e <> c & e <> d & LE c,e,P & LE e,d,P by A1,A9,Th8;
    take e;
    thus thesis by A10,A11,Def1;

    suppose that
A12:   LE d,a,P and
A13:   LE a,b,P and
A14:   LE b,c,P;
    thus thesis
    proof
A15:   LE a,c,P by A13,A14,JORDAN6:73;
      per cases;
      suppose
A16:     d = W-min(P);
        c in P by A14,JORDAN7:5;
      then consider e such that
A17:     e <> c and
A18:     LE c,e,P by Th7;
      take e;
      thus e <> c by A17;
      thus e <> d by A1,A16,A18,JORDAN7:2;
      thus thesis by A12,A15,A18,Def1;
      suppose
A19:     d <> W-min(P);
      take e = W-min(P);
        d in P by A12,JORDAN7:5;
then A20:   LE e,d,P by JORDAN7:3;
        now
        assume
A21:       e = c;
          LE d,b,P by A12,A13,JORDAN6:73;
        then LE d,c,P by A14,JORDAN6:73;
        hence contradiction by A1,A20,A21,JORDAN6:72;
      end;
      hence e <> c;
      thus e <> d by A19;
      thus thesis by A12,A15,A20,Def1;
    end;
  end;

theorem
    c <> d & a,b,c,d are_in_this_order_on P
  implies
  ex e st e <> c & e <> d & b,c,e,d are_in_this_order_on P
  proof
    assume that
A1:   c <> d and
A2:   LE a,b,P & LE b,c,P & LE c,d,P or
      LE b,c,P & LE c,d,P & LE d,a,P or
      LE c,d,P & LE d,a,P & LE a,b,P or
      LE d,a,P & LE a,b,P & LE b,c,P;
    per cases by A2;
    suppose that
A3:   LE a,b,P & LE b,c,P and
A4:   LE c,d,P;
    consider e such that
A5:   e <> c & e <> d & LE c,e,P & LE e,d,P by A1,A4,Th8;
    take e;
    thus thesis by A3,A5,Def1;

    suppose that
A6:   LE b,c,P and
A7:   LE c,d,P and
        LE d,a,P;
    consider e such that
A8:   e <> c & e <> d & LE c,e,P & LE e,d,P by A1,A7,Th8;
    take e;
    thus thesis by A6,A8,Def1;

    suppose that
A9:   LE c,d,P and
A10:   LE d,a,P and
A11:   LE a,b,P;
    consider e such that
A12:   e <> c & e <> d & LE c,e,P & LE e,d,P by A1,A9,Th8;
    take e;
      LE d,b,P by A10,A11,JORDAN6:73;
    hence thesis by A12,Def1;

    suppose that
A13:   LE d,a,P and
A14:   LE a,b,P and
A15:   LE b,c,P;
    thus thesis
    proof
A16:   LE d,b,P by A13,A14,JORDAN6:73;
      per cases;
      suppose
A17:     d = W-min(P);
        c in P by A15,JORDAN7:5;
      then consider e such that
A18:     e <> c and
A19:     LE c,e,P by Th7;
      take e;
      thus e <> c by A18;
      thus e <> d by A1,A17,A19,JORDAN7:2;
      thus thesis by A15,A16,A19,Def1;
      suppose
A20:     d <> W-min(P);
      take e = W-min(P);
        d in P by A13,JORDAN7:5;
then A21:   LE e,d,P by JORDAN7:3;
        now
        assume
A22:       e = c;
          LE d,c,P by A15,A16,JORDAN6:73;
        hence contradiction by A1,A21,A22,JORDAN6:72;
      end;
      hence e <> c;
      thus e <> d by A20;
      thus thesis by A15,A16,A21,Def1;
    end;
  end;

theorem
    d <> a & a,b,c,d are_in_this_order_on P
  implies
  ex e st e <> d & e <> a & a,b,d,e are_in_this_order_on P
  proof
    assume that
A1:   d <> a and
A2:   LE a,b,P & LE b,c,P & LE c,d,P or
      LE b,c,P & LE c,d,P & LE d,a,P or
      LE c,d,P & LE d,a,P & LE a,b,P or
      LE d,a,P & LE a,b,P & LE b,c,P;
    per cases by A2;
    suppose that
A3:   LE a,b,P and
A4:   LE b,c,P and
A5:   LE c,d,P;
    thus thesis
    proof
A6:   LE b,d,P by A4,A5,JORDAN6:73;
      per cases;
      suppose
A7:     a = W-min(P);
        d in P by A5,JORDAN7:5;
      then consider e such that
A8:     e <> d and
A9:     LE d,e,P by Th7;
      take e;
      thus e <> d by A8;
      thus e <> a by A1,A7,A9,JORDAN7:2;
      thus thesis by A3,A6,A9,Def1;
      suppose
A10:     a <> W-min(P);
      take e = W-min(P);
        a in P by A3,JORDAN7:5;
then A11:   LE e,a,P by JORDAN7:3;
        now
        assume
A12:       e = d;
          LE a,c,P by A3,A4,JORDAN6:73;
        then LE a,d,P by A5,JORDAN6:73;
        hence contradiction by A1,A11,A12,JORDAN6:72;
      end;
      hence e <> d;
      thus e <> a by A10;
      thus thesis by A3,A6,A11,Def1;
    end;

    suppose that
A13:   LE b,c,P and
A14:   LE c,d,P and
A15:   LE d,a,P;
    consider e such that
A16:   e <> d & e <> a & LE d,e,P & LE e,a,P by A1,A15,Th8;
    take e;
      LE b,d,P by A13,A14,JORDAN6:73;
    hence thesis by A16,Def1;

    suppose that
        LE c,d,P and
A17:   LE d,a,P and
A18:   LE a,b,P;
    consider e such that
A19:   e <> d & e <> a & LE d,e,P & LE e,a,P by A1,A17,Th8;
    take e;
    thus thesis by A18,A19,Def1;

    suppose that
A20:   LE d,a,P and
A21:   LE a,b,P and
        LE b,c,P;
    consider e such that
A22:   e <> d & e <> a & LE d,e,P & LE e,a,P by A1,A20,Th8;
    take e;
    thus thesis by A21,A22,Def1;
  end;

theorem
    d <> a & a,b,c,d are_in_this_order_on P
  implies
  ex e st e <> d & e <> a & a,c,d,e are_in_this_order_on P
  proof
    assume that
A1:   d <> a and
A2:   LE a,b,P & LE b,c,P & LE c,d,P or
      LE b,c,P & LE c,d,P & LE d,a,P or
      LE c,d,P & LE d,a,P & LE a,b,P or
      LE d,a,P & LE a,b,P & LE b,c,P;
    per cases by A2;
    suppose that
A3:   LE a,b,P and
A4:   LE b,c,P and
A5:   LE c,d,P;
    thus thesis
    proof
A6:   LE a,c,P by A3,A4,JORDAN6:73;
      per cases;
      suppose
A7:     a = W-min(P);
        d in P by A5,JORDAN7:5;
      then consider e such that
A8:     e <> d and
A9:     LE d,e,P by Th7;
      take e;
      thus e <> d by A8;
      thus e <> a by A1,A7,A9,JORDAN7:2;
      thus thesis by A5,A6,A9,Def1;
      suppose
A10:     a <> W-min(P);
      take e = W-min(P);
        a in P by A3,JORDAN7:5;
then A11:   LE e,a,P by JORDAN7:3;
        now
        assume
A12:       e = d;
          LE a,d,P by A5,A6,JORDAN6:73;
        hence contradiction by A1,A11,A12,JORDAN6:72;
      end;
      hence e <> d;
      thus e <> a by A10;
      thus thesis by A5,A6,A11,Def1;
    end;

    suppose that
        LE b,c,P and
A13:   LE c,d,P and
A14:   LE d,a,P;
    consider e such that
A15:   e <> d & e <> a & LE d,e,P & LE e,a,P by A1,A14,Th8;
    take e;
    thus thesis by A13,A15,Def1;

    suppose that
A16:   LE c,d,P and
A17:   LE d,a,P and
        LE a,b,P;
    consider e such that
A18:   e <> d & e <> a & LE d,e,P & LE e,a,P by A1,A17,Th8;
    take e;
    thus thesis by A16,A18,Def1;

    suppose that
A19:   LE d,a,P and
A20:   LE a,b,P and
A21:   LE b,c,P;
    consider e such that
A22:   e <> d & e <> a & LE d,e,P & LE e,a,P by A1,A19,Th8;
    take e;
      LE a,c,P by A20,A21,JORDAN6:73;
    hence thesis by A22,Def1;
  end;

theorem
    a <> c & a <> d & b <> d &
  a,b,c,d are_in_this_order_on P &
  b,a,c,d are_in_this_order_on P implies
  a = b
  proof
    assume that
A1:   a <> c and
A2:   a <> d and
A3:   b <> d and
A4:   a,b,c,d are_in_this_order_on P and
A5:   b,a,c,d are_in_this_order_on P;
    per cases by A4,Def1;
    suppose
A6:   LE a,b,P & LE b,c,P & LE c,d,P;
    then A7: LE b,d,P by JORDAN6:73;
    thus thesis
    proof
      per cases by A5,Def1;
      suppose LE b,a,P & LE a,c,P & LE c,d,P;
      hence thesis by A6,JORDAN6:72;
      suppose LE a,c,P & LE c,d,P & LE d,b,P;
      hence thesis by A3,A7,JORDAN6:72;
      suppose LE c,d,P & LE d,b,P & LE b,a,P;
      hence thesis by A6,JORDAN6:72;
      suppose LE d,b,P & LE b,a,P & LE a,c,P;
      hence thesis by A6,JORDAN6:72;
    end;
    suppose
A8:   LE b,c,P & LE c,d,P & LE d,a,P;
    then A9: LE b,d,P by JORDAN6:73;
    thus thesis
    proof
      per cases by A5,Def1;
      suppose
A10:     LE b,a,P & LE a,c,P & LE c,d,P;
        LE c,a,P by A8,JORDAN6:73;
      hence thesis by A1,A10,JORDAN6:72;
      suppose LE a,c,P & LE c,d,P & LE d,b,P;
      hence thesis by A3,A9,JORDAN6:72;
      suppose LE c,d,P & LE d,b,P & LE b,a,P;
      hence thesis by A3,A9,JORDAN6:72;
      suppose LE d,b,P & LE b,a,P & LE a,c,P;
      hence thesis by A3,A9,JORDAN6:72;
    end;
    suppose
A11:   LE c,d,P & LE d,a,P & LE a,b,P;
    then A12: LE c,a,P by JORDAN6:73;
    thus thesis
    proof
      per cases by A5,Def1;
      suppose LE b,a,P & LE a,c,P & LE c,d,P;
      hence thesis by A11,JORDAN6:72;
      suppose LE a,c,P & LE c,d,P & LE d,b,P;
      hence thesis by A1,A12,JORDAN6:72;
      suppose LE c,d,P & LE d,b,P & LE b,a,P;
      hence thesis by A11,JORDAN6:72;
      suppose LE d,b,P & LE b,a,P & LE a,c,P;
      hence thesis by A11,JORDAN6:72;
    end;
    suppose
A13:   LE d,a,P & LE a,b,P & LE b,c,P;
    thus thesis
    proof
      per cases by A5,Def1;
      suppose LE b,a,P & LE a,c,P & LE c,d,P;
      hence thesis by A13,JORDAN6:72;
      suppose LE a,c,P & LE c,d,P & LE d,b,P;
      then LE a,d,P by JORDAN6:73;
      hence thesis by A2,A13,JORDAN6:72;
      suppose LE c,d,P & LE d,b,P & LE b,a,P;
      hence thesis by A13,JORDAN6:72;
      suppose LE d,b,P & LE b,a,P & LE a,c,P;
      hence thesis by A13,JORDAN6:72;
    end;
  end;

theorem
    a <> b & b <> c & c <> d &
  a,b,c,d are_in_this_order_on P &
  c,b,a,d are_in_this_order_on P implies
  a = c
  proof
    assume that
A1:   a <> b and
A2:   b <> c and
A3:   c <> d and
A4:   a,b,c,d are_in_this_order_on P and
A5:   c,b,a,d are_in_this_order_on P;
    per cases by A4,Def1;
    suppose
A6:   LE a,b,P & LE b,c,P & LE c,d,P;
    thus thesis
    proof
      per cases by A5,Def1;
      suppose LE c,b,P & LE b,a,P & LE a,d,P;
      hence thesis by A1,A6,JORDAN6:72;
      suppose LE b,a,P & LE a,d,P & LE d,c,P;
      hence thesis by A3,A6,JORDAN6:72;
      suppose LE a,d,P & LE d,c,P & LE c,b,P;
      hence thesis by A3,A6,JORDAN6:72;
      suppose LE d,c,P & LE c,b,P & LE b,a,P;
      hence thesis by A3,A6,JORDAN6:72;
    end;
    suppose
A7:   LE b,c,P & LE c,d,P & LE d,a,P;
    thus thesis
    proof
      per cases by A5,Def1;
      suppose LE c,b,P & LE b,a,P & LE a,d,P;
      hence thesis by A2,A7,JORDAN6:72;
      suppose LE b,a,P & LE a,d,P & LE d,c,P;
      hence thesis by A3,A7,JORDAN6:72;
      suppose LE a,d,P & LE d,c,P & LE c,b,P;
      hence thesis by A3,A7,JORDAN6:72;
      suppose LE d,c,P & LE c,b,P & LE b,a,P;
      hence thesis by A3,A7,JORDAN6:72;
    end;
    suppose
A8:   LE c,d,P & LE d,a,P & LE a,b,P;
    thus thesis
    proof
      per cases by A5,Def1;
      suppose LE c,b,P & LE b,a,P & LE a,d,P;
      hence thesis by A1,A8,JORDAN6:72;
      suppose LE b,a,P & LE a,d,P & LE d,c,P;
      hence thesis by A3,A8,JORDAN6:72;
      suppose LE a,d,P & LE d,c,P & LE c,b,P;
      hence thesis by A3,A8,JORDAN6:72;
      suppose LE d,c,P & LE c,b,P & LE b,a,P;
      hence thesis by A3,A8,JORDAN6:72;
    end;
    suppose
A9:   LE d,a,P & LE a,b,P & LE b,c,P;
    thus thesis
    proof
      per cases by A5,Def1;
      suppose LE c,b,P & LE b,a,P & LE a,d,P;
      hence thesis by A2,A9,JORDAN6:72;
      suppose LE b,a,P & LE a,d,P & LE d,c,P;
      hence thesis by A1,A9,JORDAN6:72;
      suppose LE a,d,P & LE d,c,P & LE c,b,P;
      hence thesis by A2,A9,JORDAN6:72;
      suppose LE d,c,P & LE c,b,P & LE b,a,P;
      hence thesis by A1,A9,JORDAN6:72;
    end;
  end;

theorem
    a <> b & a <> c & b <> d &
  a,b,c,d are_in_this_order_on P &
  d,b,c,a are_in_this_order_on P implies
  a = d
  proof
    assume that
A1:   a <> b and
A2:   a <> c and
A3:   b <> d and
A4:   a,b,c,d are_in_this_order_on P and
A5:   d,b,c,a are_in_this_order_on P;
    per cases by A4,Def1;
    suppose
A6:   LE a,b,P & LE b,c,P & LE c,d,P;
    then A7: LE a,c,P by JORDAN6:73;
    thus thesis
    proof
      per cases by A5,Def1;
      suppose LE d,b,P & LE b,c,P & LE c,a,P;
      hence thesis by A2,A7,JORDAN6:72;
      suppose LE b,c,P & LE c,a,P & LE a,d,P;
      hence thesis by A2,A7,JORDAN6:72;
      suppose LE c,a,P & LE a,d,P & LE d,b,P;
      hence thesis by A2,A7,JORDAN6:72;
      suppose
A8:     LE a,d,P & LE d,b,P & LE b,c,P;
        LE b,d,P by A6,JORDAN6:73;
      hence thesis by A3,A8,JORDAN6:72;
    end;
    suppose
A9:   LE b,c,P & LE c,d,P & LE d,a,P;
    then A10: LE b,d,P by JORDAN6:73;
    thus thesis
    proof
      per cases by A5,Def1;
      suppose LE d,b,P & LE b,c,P & LE c,a,P;
      hence thesis by A3,A10,JORDAN6:72;
      suppose LE b,c,P & LE c,a,P & LE a,d,P;
      hence thesis by A9,JORDAN6:72;
      suppose LE c,a,P & LE a,d,P & LE d,b,P;
      hence thesis by A9,JORDAN6:72;
      suppose LE a,d,P & LE d,b,P & LE b,c,P;
      hence thesis by A9,JORDAN6:72;
    end;
    suppose
A11:   LE c,d,P & LE d,a,P & LE a,b,P;
    thus thesis
    proof
      per cases by A5,Def1;
      suppose LE d,b,P & LE b,c,P & LE c,a,P;
      then LE b,a,P by JORDAN6:73;
      hence thesis by A1,A11,JORDAN6:72;
      suppose LE b,c,P & LE c,a,P & LE a,d,P;
      hence thesis by A11,JORDAN6:72;
      suppose LE c,a,P & LE a,d,P & LE d,b,P;
      hence thesis by A11,JORDAN6:72;
      suppose LE a,d,P & LE d,b,P & LE b,c,P;
      hence thesis by A11,JORDAN6:72;
    end;
    suppose
A12:   LE d,a,P & LE a,b,P & LE b,c,P;
    thus thesis
    proof
      per cases by A5,Def1;
      suppose
A13:     LE d,b,P & LE b,c,P & LE c,a,P;
        LE a,c,P by A12,JORDAN6:73;
      hence thesis by A2,A13,JORDAN6:72;
      suppose LE b,c,P & LE c,a,P & LE a,d,P;
      hence thesis by A12,JORDAN6:72;
      suppose LE c,a,P & LE a,d,P & LE d,b,P;
      hence thesis by A12,JORDAN6:72;
      suppose LE a,d,P & LE d,b,P & LE b,c,P;
      hence thesis by A12,JORDAN6:72;
    end;
  end;

theorem
    a <> c & a <> d & b <> d &
  a,b,c,d are_in_this_order_on P &
  a,c,b,d are_in_this_order_on P implies
  b = c
  proof
    assume that
A1:   a <> c and
A2:   a <> d and
A3:   b <> d and
A4:   a,b,c,d are_in_this_order_on P and
A5:   a,c,b,d are_in_this_order_on P;
    per cases by A4,Def1;
    suppose
A6:   LE a,b,P & LE b,c,P & LE c,d,P;
    then A7: LE b,d,P by JORDAN6:73;
    thus thesis
    proof
      per cases by A5,Def1;
      suppose LE a,c,P & LE c,b,P & LE b,d,P;
      hence thesis by A6,JORDAN6:72;
      suppose LE c,b,P & LE b,d,P & LE d,a,P;
      hence thesis by A6,JORDAN6:72;
      suppose
A8:     LE b,d,P & LE d,a,P & LE a,c,P;
        LE a,d,P by A6,A7,JORDAN6:73;
      hence thesis by A2,A8,JORDAN6:72;
      suppose LE d,a,P & LE a,c,P & LE c,b,P;
      hence thesis by A6,JORDAN6:72;
    end;
    suppose
A9:   LE b,c,P & LE c,d,P & LE d,a,P;
    then A10: LE c,a,P by JORDAN6:73;
    thus thesis
    proof
      per cases by A5,Def1;
      suppose LE a,c,P & LE c,b,P & LE b,d,P;
      hence thesis by A9,JORDAN6:72;
      suppose LE c,b,P & LE b,d,P & LE d,a,P;
      hence thesis by A9,JORDAN6:72;
      suppose LE b,d,P & LE d,a,P & LE a,c,P;
      hence thesis by A1,A10,JORDAN6:72;
      suppose LE d,a,P & LE a,c,P & LE c,b,P;
      hence thesis by A9,JORDAN6:72;
    end;
    suppose
A11:   LE c,d,P & LE d,a,P & LE a,b,P;
    then A12: LE c,a,P by JORDAN6:73;
    thus thesis
    proof
      per cases by A5,Def1;
      suppose LE a,c,P & LE c,b,P & LE b,d,P;
      hence thesis by A1,A12,JORDAN6:72;
      suppose
A13:     LE c,b,P & LE b,d,P & LE d,a,P;
        LE d,b,P by A11,JORDAN6:73;
      hence thesis by A3,A13,JORDAN6:72;
      suppose LE b,d,P & LE d,a,P & LE a,c,P;
      hence thesis by A1,A12,JORDAN6:72;
      suppose LE d,a,P & LE a,c,P & LE c,b,P;
      hence thesis by A1,A12,JORDAN6:72;
    end;
    suppose
A14:   LE d,a,P & LE a,b,P & LE b,c,P;
    thus thesis
    proof
      per cases by A5,Def1;
      suppose LE a,c,P & LE c,b,P & LE b,d,P;
      hence thesis by A14,JORDAN6:72;
      suppose LE c,b,P & LE b,d,P & LE d,a,P;
      hence thesis by A14,JORDAN6:72;
      suppose
A15:     LE b,d,P & LE d,a,P & LE a,c,P;
        LE d,b,P by A14,JORDAN6:73;
      hence thesis by A3,A15,JORDAN6:72;
      suppose LE d,a,P & LE a,c,P & LE c,b,P;
      hence thesis by A14,JORDAN6:72;
    end;
  end;

theorem
    a <> b & b <> c & c <> d &
  a,b,c,d are_in_this_order_on P &
  a,d,c,b are_in_this_order_on P implies
  b = d
  proof
    assume that
A1:   a <> b and
A2:   b <> c and
A3:   c <> d and
A4:   a,b,c,d are_in_this_order_on P and
A5:   a,d,c,b are_in_this_order_on P;
    per cases by A4,Def1;
    suppose
A6:   LE a,b,P & LE b,c,P & LE c,d,P;
    thus thesis
    proof
      per cases by A5,Def1;
      suppose LE a,d,P & LE d,c,P & LE c,b,P;
      hence thesis by A2,A6,JORDAN6:72;
      suppose LE d,c,P & LE c,b,P & LE b,a,P;
      hence thesis by A3,A6,JORDAN6:72;
      suppose LE c,b,P & LE b,a,P & LE a,d,P;
      hence thesis by A2,A6,JORDAN6:72;
      suppose LE b,a,P & LE a,d,P & LE d,c,P;
      hence thesis by A3,A6,JORDAN6:72;
    end;
    suppose
A7:   LE b,c,P & LE c,d,P & LE d,a,P;
    thus thesis
    proof
      per cases by A5,Def1;
      suppose LE a,d,P & LE d,c,P & LE c,b,P;
      hence thesis by A3,A7,JORDAN6:72;
      suppose LE d,c,P & LE c,b,P & LE b,a,P;
      hence thesis by A3,A7,JORDAN6:72;
      suppose LE c,b,P & LE b,a,P & LE a,d,P;
      hence thesis by A2,A7,JORDAN6:72;
      suppose LE b,a,P & LE a,d,P & LE d,c,P;
      hence thesis by A3,A7,JORDAN6:72;
    end;
    suppose
A8:   LE c,d,P & LE d,a,P & LE a,b,P;
    thus thesis
    proof
      per cases by A5,Def1;
      suppose LE a,d,P & LE d,c,P & LE c,b,P;
      hence thesis by A3,A8,JORDAN6:72;
      suppose LE d,c,P & LE c,b,P & LE b,a,P;
      hence thesis by A1,A8,JORDAN6:72;
      suppose LE c,b,P & LE b,a,P & LE a,d,P;
      hence thesis by A1,A8,JORDAN6:72;
      suppose LE b,a,P & LE a,d,P & LE d,c,P;
      hence thesis by A1,A8,JORDAN6:72;
    end;
    suppose
A9:   LE d,a,P & LE a,b,P & LE b,c,P;
    thus thesis
    proof
      per cases by A5,Def1;
      suppose LE a,d,P & LE d,c,P & LE c,b,P;
      hence thesis by A2,A9,JORDAN6:72;
      suppose LE d,c,P & LE c,b,P & LE b,a,P;
      hence thesis by A2,A9,JORDAN6:72;
      suppose LE c,b,P & LE b,a,P & LE a,d,P;
      hence thesis by A2,A9,JORDAN6:72;
      suppose LE b,a,P & LE a,d,P & LE d,c,P;
      hence thesis by A1,A9,JORDAN6:72;
    end;
  end;

theorem
    a <> b & a <> c & b <> d &
  a,b,c,d are_in_this_order_on P &
  a,b,d,c are_in_this_order_on P implies
  c = d
  proof
    assume that
A1:   a <> b and
A2:   a <> c and
A3:   b <> d and
A4:   a,b,c,d are_in_this_order_on P and
A5:   a,b,d,c are_in_this_order_on P;
    per cases by A4,Def1;
    suppose
A6:   LE a,b,P & LE b,c,P & LE c,d,P;
    thus thesis
    proof
      per cases by A5,Def1;
      suppose LE a,b,P & LE b,d,P & LE d,c,P;
      hence thesis by A6,JORDAN6:72;
      suppose LE b,d,P & LE d,c,P & LE c,a,P;
      hence thesis by A6,JORDAN6:72;
      suppose LE d,c,P & LE c,a,P & LE a,b,P;
      hence thesis by A6,JORDAN6:72;
      suppose
A7:     LE c,a,P & LE a,b,P & LE b,d,P;
        LE a,c,P by A6,JORDAN6:73;
      hence thesis by A2,A7,JORDAN6:72;
    end;
    suppose
A8:   LE b,c,P & LE c,d,P & LE d,a,P;
    then A9: LE c,a,P by JORDAN6:73;
    thus thesis
    proof
      per cases by A5,Def1;
      suppose LE a,b,P & LE b,d,P & LE d,c,P;
      hence thesis by A8,JORDAN6:72;
      suppose LE b,d,P & LE d,c,P & LE c,a,P;
      hence thesis by A8,JORDAN6:72;
      suppose LE d,c,P & LE c,a,P & LE a,b,P;
      hence thesis by A8,JORDAN6:72;
      suppose
A10:     LE c,a,P & LE a,b,P & LE b,d,P;
        LE b,a,P by A8,A9,JORDAN6:73;
      hence thesis by A1,A10,JORDAN6:72;
    end;
    suppose
A11:   LE c,d,P & LE d,a,P & LE a,b,P;
    then A12: LE d,b,P by JORDAN6:73;
    thus thesis
    proof
      per cases by A5,Def1;
      suppose LE a,b,P & LE b,d,P & LE d,c,P;
      hence thesis by A11,JORDAN6:72;
      suppose LE b,d,P & LE d,c,P & LE c,a,P;
      hence thesis by A11,JORDAN6:72;
      suppose LE d,c,P & LE c,a,P & LE a,b,P;
      hence thesis by A11,JORDAN6:72;
      suppose LE c,a,P & LE a,b,P & LE b,d,P;
      hence thesis by A3,A12,JORDAN6:72;
    end;
    suppose
A13:   LE d,a,P & LE a,b,P & LE b,c,P;
    then A14:   LE d,b,P by JORDAN6:73;
    thus thesis
    proof
      per cases by A5,Def1;
      suppose LE a,b,P & LE b,d,P & LE d,c,P;
      hence thesis by A3,A14,JORDAN6:72;
      suppose LE b,d,P & LE d,c,P & LE c,a,P;
      hence thesis by A3,A14,JORDAN6:72;
      suppose
A15:     LE d,c,P & LE c,a,P & LE a,b,P;
        LE a,c,P by A13,JORDAN6:73;
      hence thesis by A2,A15,JORDAN6:72;
      suppose LE c,a,P & LE a,b,P & LE b,d,P;
      hence thesis by A3,A14,JORDAN6:72;
    end;
  end;

theorem
    a in C & b in C & c in C & d in C implies
  a,b,c,d are_in_this_order_on C or
  a,b,d,c are_in_this_order_on C or
  a,c,b,d are_in_this_order_on C or
  a,c,d,b are_in_this_order_on C or
  a,d,b,c are_in_this_order_on C or
  a,d,c,b are_in_this_order_on C
  proof
    assume
A1:   a in C & b in C & c in C & d in C;
    per cases;
    suppose LE a,b,C & LE b,c,C & LE c,d,C;
    hence thesis by Def1;

    suppose
A2:   LE a,b,C & LE b,c,C & not LE c,d,C;
    then A3: LE d,c,C by A1,JORDAN16:11;
    thus thesis
    proof
      per cases by A1,JORDAN16:11;
      suppose
A4:     LE a,d,C;
        LE b,d,C or LE d,b,C by A1,JORDAN16:11;
      hence thesis by A2,A3,A4,Def1;
      suppose LE d,a,C;
      hence thesis by A2,Def1;
    end;

    suppose
A5:   LE a,b,C & not LE b,c,C & LE c,d,C;
    then A6: LE c,b,C by A1,JORDAN16:11;
    thus thesis
    proof
      per cases by A1,JORDAN16:11;
      suppose
A7:     LE b,d,C;
        LE a,c,C or LE c,a,C by A1,JORDAN16:11;
      hence thesis by A5,A6,A7,Def1;
      suppose
A8:     LE d,b,C;
      thus thesis
      proof
        per cases by A1,JORDAN16:11;
        suppose LE a,c,C;
        hence thesis by A5,A8,Def1;
        suppose
A9:       LE c,a,C;
          LE a,d,C or LE d,a,C by A1,JORDAN16:11;
        hence thesis by A5,A8,A9,Def1;
      end;
    end;

    suppose
A10:   LE a,b,C & not LE b,c,C & not LE c,d,C;
    then A11: LE c,b,C & LE d,c,C by A1,JORDAN16:11;
    thus thesis
    proof
      per cases by A1,JORDAN16:11;
      suppose
A12:     LE a,c,C;
        LE a,d,C or LE d,a,C by A1,JORDAN16:11;
      hence thesis by A11,A12,Def1;
      suppose LE c,a,C;
      hence thesis by A10,A11,Def1;
    end;

    suppose
A13:   not LE a,b,C & LE b,c,C & LE c,d,C;
    then A14: LE b,a,C by A1,JORDAN16:11;
    thus thesis
    proof
      per cases by A1,JORDAN16:11;
      suppose
A15:     LE a,d,C;
        LE a,c,C or LE c,a,C by A1,JORDAN16:11;
      hence thesis by A13,A14,A15,Def1;
      suppose LE d,a,C;
      hence thesis by A13,Def1;
    end;

    suppose
A16:   not LE a,b,C & LE b,c,C & not LE c,d,C;
    then A17: LE b,a,C & LE d,c,C by A1,JORDAN16:11;
    thus thesis
    proof
      per cases by A1,JORDAN16:11;
      suppose LE a,d,C;
      hence thesis by A17,Def1;
      suppose
A18:     LE d,a,C;
        (LE a,c,C or LE c,a,C) & (LE b,d,C or LE d,b,C) by A1,JORDAN16:11;
      hence thesis by A16,A17,A18,Def1;
    end;

    suppose
A19:   not LE a,b,C & not LE b,c,C & LE c,d,C;
    then A20: LE b,a,C & LE c,b,C by A1,JORDAN16:11;
    thus thesis
    proof
      per cases by A1,JORDAN16:11;
      suppose LE a,d,C;
      hence thesis by A20,Def1;
      suppose
A21:     LE d,a,C;
        LE b,d,C or LE d,b,C by A1,JORDAN16:11;
      hence thesis by A19,A20,A21,Def1;
    end;

    suppose not LE a,b,C & not LE b,c,C & not LE c,d,C;
    then LE b,a,C & LE c,b,C & LE d,c,C by A1,JORDAN16:11;
    hence thesis by Def1;
  end;

Back to top