Copyright (c) 2002 Association of Mizar Users
environ vocabulary ARYTM, PRE_TOPC, EUCLID, BORSUK_1, RCOMP_1, RELAT_1, BOOLE, SUBSET_1, FUNCT_1, TOPREAL1, TOPS_2, COMPTS_1, JORDAN3, PSCOMP_1, TOPREAL2, JORDAN6, JORDAN17; notation XBOOLE_0, ORDINAL1, XREAL_0, REAL_1, NAT_1, RCOMP_1, STRUCT_0, RELAT_1, FUNCT_1, TOPREAL1, TOPREAL2, PRE_TOPC, TOPS_2, COMPTS_1, BORSUK_1, EUCLID, JORDAN5C, PSCOMP_1, JORDAN6; constructors RCOMP_1, TOPREAL2, CONNSP_1, TOPS_2, REAL_1, TOPREAL1, JORDAN5C, TREAL_1, PSCOMP_1, JORDAN6, SPPOL_1; clusters EUCLID, PSCOMP_1, XREAL_0, RELSET_1, JORDAN1B, MEMBERED; requirements NUMERALS, REAL, SUBSET; definitions TOPREAL1; theorems XBOOLE_0, JORDAN5C, JORDAN6, JORDAN7, REAL_1, TOPS_2, FUNCT_1, BORSUK_1, PRE_TOPC, TOPREAL5, JORDAN1, AXIOMS, XREAL_0, SPRECT_1, JORDAN16; begin reserve C, P for Simple_closed_curve, a, b, c, d, e for Point of TOP-REAL 2; theorem Th1: for n being Nat, a, p1, p2 being Point of TOP-REAL n, P being Subset of TOP-REAL n st a in P & P is_an_arc_of p1,p2 ex f being map of I[01], (TOP-REAL n)|P, r being Real st f is_homeomorphism & f.0 = p1 & f.1 = p2 & 0 <= r & r <= 1 & f.r = a proof let n be Nat, a, p1, p2 be Point of TOP-REAL n, P be Subset of TOP-REAL n such that A1: a in P; given f being map of I[01], (TOP-REAL n)|P such that A2: f is_homeomorphism and A3: f.0 = p1 and A4: f.1 = p2; rng f = [#]((TOP-REAL n)|P) by A2,TOPS_2:def 5 .= the carrier of (TOP-REAL n)|P by PRE_TOPC:12 .= P by JORDAN1:1; then consider r being set such that A5: r in dom f and A6: a = f.r by A1,FUNCT_1:def 5; A7: dom f = [#]I[01] by A2,TOPS_2:def 5 .= [.0,1.] by BORSUK_1:83,PRE_TOPC:12; then reconsider r as Real by A5; take f, r; thus f is_homeomorphism & f.0 = p1 & f.1 = p2 by A2,A3,A4; thus 0 <= r & r <= 1 by A5,A7,TOPREAL5:1; thus f.r = a by A6; end; theorem LE W-min(P),E-max(P),P proof W-min(P) in Upper_Arc(P) & E-max(P) in Lower_Arc(P) & E-max(P) <> W-min(P) by JORDAN7:1,TOPREAL5:25; hence thesis by JORDAN6:def 10; end; theorem LE a,E-max(P),P implies a in Upper_Arc(P) proof assume A1: LE a,E-max(P),P; per cases by A1,JORDAN6:def 10; suppose a in Upper_Arc(P) & E-max(P) in Lower_Arc(P) & not E-max(P) = W-min(P) or a in Upper_Arc(P) & E-max(P) in Upper_Arc(P) & LE a,E-max(P),Upper_Arc(P),W-min(P),E-max(P); hence thesis; suppose that A2: a in Lower_Arc(P) and E-max(P) in Lower_Arc(P) & not E-max(P) = W-min(P) and A3: LE a,E-max(P),Lower_Arc(P),E-max(P),W-min(P); Lower_Arc(P) is_an_arc_of E-max(P),W-min(P) by JORDAN6:def 9; then consider f being map of I[01], (TOP-REAL 2)|Lower_Arc(P), r being Real such that A4: f is_homeomorphism and A5: f.0 = E-max(P) and A6: f.1 = W-min(P) and A7: 0 <= r and A8: r <= 1 and A9: f.r = a by A2,Th1; thus thesis proof per cases; suppose r = 0; hence thesis by A5,A9,JORDAN7:1; suppose r <> 0; then r > 0 by A7,REAL_1:def 5; hence thesis by A3,A4,A5,A6,A8,A9,JORDAN5C:def 3; end; end; theorem LE E-max(P),a,P implies a in Lower_Arc(P) proof assume A1: LE E-max(P),a,P; per cases by A1,JORDAN6:def 10; suppose E-max(P) in Upper_Arc(P) & a in Lower_Arc(P) & not a = W-min(P) or E-max(P) in Lower_Arc(P) & a in Lower_Arc(P) & not a = W-min(P) & LE E-max(P),a,Lower_Arc(P),E-max(P),W-min(P); hence thesis; suppose that E-max(P) in Upper_Arc(P) and A2: a in Upper_Arc(P) and A3: LE E-max(P),a,Upper_Arc(P),W-min(P),E-max(P); Upper_Arc(P) is_an_arc_of W-min(P),E-max(P) by JORDAN6:def 8; then consider f being map of I[01], (TOP-REAL 2)|Upper_Arc(P), r being Real such that A4: f is_homeomorphism and A5: f.0 = W-min(P) and A6: f.1 = E-max(P) and A7: 0 <= r and A8: r <= 1 and A9: f.r = a by A2,Th1; thus thesis proof per cases; suppose r = 1; hence thesis by A6,A9,JORDAN7:1; suppose r <> 1; then r < 1 by A8,REAL_1:def 5; hence thesis by A3,A4,A5,A6,A7,A9,JORDAN5C:def 3; end; end; theorem LE a,W-min(P),P implies a in Lower_Arc(P) proof assume A1: LE a,W-min(P),P; per cases by A1,JORDAN6:def 10; suppose a in Upper_Arc(P) & W-min(P) in Lower_Arc(P) & not W-min(P) = W-min(P) or a in Lower_Arc(P) & W-min(P) in Lower_Arc(P) & not W-min(P) = W-min(P) & LE a,W-min(P),Lower_Arc(P),E-max(P),W-min(P); hence thesis; suppose that A2: a in Upper_Arc(P) and W-min(P) in Upper_Arc(P) and A3: LE a,W-min(P),Upper_Arc(P),W-min(P),E-max(P); Upper_Arc(P) is_an_arc_of W-min(P),E-max(P) by JORDAN6:def 8; then consider f being map of I[01], (TOP-REAL 2)|Upper_Arc(P), r being Real such that A4: f is_homeomorphism and A5: f.0 = W-min(P) and A6: f.1 = E-max(P) and A7: 0 <= r and A8: r <= 1 and A9: f.r = a by A2,Th1; thus thesis proof per cases; suppose r = 0; hence thesis by A5,A9,JORDAN7:1; suppose r <> 0; then r > 0 by A7,REAL_1:def 5; hence thesis by A3,A4,A5,A6,A8,A9,JORDAN5C:def 3; end; end; theorem Th6: for P being Subset of TOP-REAL 2 st a <> b & P is_an_arc_of c,d & LE a,b,P,c,d holds ex e st a <> e & b <> e & LE a,e,P,c,d & LE e,b,P,c,d proof let P be Subset of TOP-REAL 2; assume that A1: a <> b and A2: P is_an_arc_of c,d and A3: LE a,b,P,c,d; A4: a in P by A3,JORDAN5C:def 3; b in P by A3,JORDAN5C:def 3; then consider f being map of I[01], (TOP-REAL 2)|P, rb being Real such that A5: f is_homeomorphism and A6: f.0 = c and A7: f.1 = d and A8: 0 <= rb and A9: rb <= 1 and A10: f.rb = b by A2,Th1; A11: rng f = [#]((TOP-REAL 2)|P) by A5,TOPS_2:def 5 .= the carrier of (TOP-REAL 2)|P by PRE_TOPC:12 .= P by JORDAN1:1; then consider ra being set such that A12: ra in dom f and A13: a = f.ra by A4,FUNCT_1:def 5; A14: dom f = [#]I[01] by A5,TOPS_2:def 5 .= [.0,1.] by BORSUK_1:83,PRE_TOPC:12; then reconsider ra as Real by A12; A15: 0 <= ra by A12,A14,TOPREAL5:1; A16: ra <= 1 by A12,A14,TOPREAL5:1; then ra <= rb by A3,A5,A6,A7,A8,A9,A10,A13,A15,JORDAN5C:def 3; then ra < rb by A1,A10,A13,REAL_1:def 5; then consider re being real number such that A17: ra < re and A18: re < rb by REAL_1:75; A19: re is Real by XREAL_0:def 1; A20: 0 <= re & re <= 1 by A9,A15,A17,A18,AXIOMS:22; set e = f.re; A21: re in dom f by A14,A20,TOPREAL5:1; then e in rng f by FUNCT_1:def 5; then reconsider e as Point of TOP-REAL 2 by A11; take e; now assume A22: a = e or b = e; A23: f is one-to-one by A5,TOPS_2:def 5; ra in dom f & rb in dom f by A8,A9,A12,A14,TOPREAL5:1; hence contradiction by A10,A13,A17,A18,A21,A22,A23,FUNCT_1:def 8; end; hence a <> e & b <> e; thus thesis by A2,A5,A6,A7,A8,A9,A10,A13,A15,A16,A17,A18,A19,A20,JORDAN5C:8 ; end; theorem Th7: a in P implies ex e st a <> e & LE a,e,P proof assume A1: a in P; A2: E-max(P) <> W-min(P) by TOPREAL5:25; A3: Lower_Arc(P) is_an_arc_of E-max(P),W-min(P) by JORDAN6:def 9; per cases; suppose A4: a = W-min(P); take E-max(P); E-max(P) in P by SPRECT_1:16; hence thesis by A4,JORDAN7:3,TOPREAL5:25; suppose A5: a <> W-min(P); thus thesis proof per cases; suppose A6: a in Upper_Arc(P); thus thesis proof per cases; suppose A7: a = E-max(P); consider e such that A8: e in Lower_Arc(P) & e <> E-max(P) & e <> W-min(P) by A3,JORDAN6:55; take e; thus thesis by A6,A7,A8,JORDAN6:def 10; suppose A9: a <> E-max(P); take E-max(P); E-max(P) in Lower_Arc(P) by JORDAN7:1; hence thesis by A2,A6,A9,JORDAN6:def 10; end; suppose A10: not a in Upper_Arc(P); Upper_Arc(P) \/ Lower_Arc(P) = P by JORDAN6:def 9; then A11: a in Lower_Arc(P) by A1,A10,XBOOLE_0:def 2; then consider f being map of I[01], (TOP-REAL 2)|Lower_Arc(P), r being Real such that A12: f is_homeomorphism and A13: f.0 = E-max(P) and A14: f.1 = W-min(P) and A15: 0 <= r and A16: r <= 1 and A17: f.r = a by A3,Th1; A18: dom f = [#]I[01] by A12,TOPS_2:def 5 .= [.0,1.] by BORSUK_1:83,PRE_TOPC:12; then A19: r in dom f by A15,A16,TOPREAL5:1; A20: 1 in dom f by A18,TOPREAL5:1; A21: f is one-to-one by A12,TOPS_2:def 5; r < 1 by A5,A14,A16,A17,REAL_1:def 5; then consider s being real number such that A22: r < s & s < 1 by REAL_1:75; A23: s is Real by XREAL_0:def 1; A24: 0 <= s & s <= 1 by A15,A22,AXIOMS:22; then A25: s in dom f by A18,TOPREAL5:1; A26: rng f = [#]((TOP-REAL 2)|Lower_Arc(P)) by A12,TOPS_2:def 5 .= the carrier of (TOP-REAL 2)|Lower_Arc(P) by PRE_TOPC:12 .= Lower_Arc(P) by JORDAN1:1; A27: f.s in rng f by A25,FUNCT_1:def 5; then reconsider e = f.s as Point of TOP-REAL 2 by A26; take e; thus a <> e by A17,A19,A21,A22,A25,FUNCT_1:def 8; A28: e <> W-min(P) by A14,A20,A21,A22,A25,FUNCT_1:def 8; LE a,e,Lower_Arc(P),E-max(P),W-min(P) by A3,A12,A13,A14,A15,A16,A17,A22,A23,A24,JORDAN5C:8; hence LE a,e,P by A11,A26,A27,A28,JORDAN6:def 10; end; end; theorem Th8: a <> b & LE a,b,P implies ex c st c <> a & c <> b & LE a,c,P & LE c,b,P proof assume that A1: a <> b and A2: LE a,b,P; A3: Upper_Arc(P) is_an_arc_of W-min(P),E-max(P) by JORDAN6:def 8; A4: Lower_Arc(P) is_an_arc_of E-max(P),W-min(P) by JORDAN6:def 9; per cases by A2,JORDAN6:def 10; suppose that A5: a in Upper_Arc(P) and A6: b in Lower_Arc(P) and A7: not b = W-min(P); A8: E-max(P) in Upper_Arc(P) by JORDAN7:1; A9: E-max(P) in Lower_Arc(P) by JORDAN7:1; A10: E-max(P) <> W-min(P) by TOPREAL5:25; thus thesis proof per cases; suppose that A11: a <> E-max(P) and A12: b <> E-max(P); take e = E-max(P); thus a <> e & b <> e by A11,A12; thus LE a,e,P & LE e,b,P by A5,A6,A7,A8,A9,A10,JORDAN6:def 10; suppose A13: a = E-max(P); then LE a,b,Lower_Arc(P),E-max(P),W-min(P) by A4,A6,JORDAN5C:10; then consider e such that A14: a <> e & b <> e and A15: LE a,e,Lower_Arc(P),E-max(P),W-min(P) and A16: LE e,b,Lower_Arc(P),E-max(P),W-min(P) by A1,A4,Th6; take e; thus e <> a & e <> b by A14; A17: e in Lower_Arc(P) by A15,JORDAN5C:def 3; e <> W-min(P) by A4,A7,A16,JORDAN6:70; hence LE a,e,P & LE e,b,P by A6,A7,A9,A13,A15,A16,A17,JORDAN6:def 10; suppose A18: b = E-max(P); then LE a,b,Upper_Arc(P),W-min(P),E-max(P) by A3,A5,JORDAN5C:10; then consider e such that A19: a <> e & b <> e and A20: LE a,e,Upper_Arc(P),W-min(P),E-max(P) and LE e,b,Upper_Arc(P),W-min(P),E-max(P) by A1,A3,Th6; take e; thus e <> a & e <> b by A19; e in Upper_Arc(P) by A20,JORDAN5C:def 3; hence LE a,e,P & LE e,b,P by A5,A7,A9,A18,A20,JORDAN6:def 10; end; suppose that A21: a in Upper_Arc(P) and A22: b in Upper_Arc(P) and A23: LE a,b,Upper_Arc(P),W-min(P),E-max(P); consider e such that A24: a <> e & b <> e and A25: LE a,e,Upper_Arc(P),W-min(P),E-max(P) & LE e,b,Upper_Arc(P),W-min(P),E-max(P) by A1,A3,A23,Th6; take e; thus e <> a & e <> b by A24; e in Upper_Arc(P) by A25,JORDAN5C:def 3; hence thesis by A21,A22,A25,JORDAN6:def 10; suppose that A26: a in Lower_Arc(P) and A27: b in Lower_Arc(P) and A28: not b = W-min(P) and A29: LE a,b,Lower_Arc(P),E-max(P),W-min(P); consider e such that A30: a <> e & b <> e and A31: LE a,e,Lower_Arc(P),E-max(P),W-min(P) and A32: LE e,b,Lower_Arc(P),E-max(P),W-min(P) by A1,A4,A29,Th6; take e; thus e <> a & e <> b by A30; A33: e <> W-min(P) by A4,A28,A32,JORDAN6:70; e in Lower_Arc(P) by A31,JORDAN5C:def 3; hence thesis by A26,A27,A28,A31,A32,A33,JORDAN6:def 10; end; definition let P be compact non empty Subset of TOP-REAL 2, a, b, c, d be Point of TOP-REAL 2; pred a,b,c,d are_in_this_order_on P means :Def1: LE a,b,P & LE b,c,P & LE c,d,P or LE b,c,P & LE c,d,P & LE d,a,P or LE c,d,P & LE d,a,P & LE a,b,P or LE d,a,P & LE a,b,P & LE b,c,P; end; theorem a in P implies a,a,a,a are_in_this_order_on P proof assume a in P; then LE a,a,P by JORDAN6:71; hence thesis by Def1; end; theorem a,b,c,d are_in_this_order_on P implies b,c,d,a are_in_this_order_on P proof assume LE a,b,P & LE b,c,P & LE c,d,P or LE b,c,P & LE c,d,P & LE d,a,P or LE c,d,P & LE d,a,P & LE a,b,P or LE d,a,P & LE a,b,P & LE b,c,P; hence LE b,c,P & LE c,d,P & LE d,a,P or LE c,d,P & LE d,a,P & LE a,b,P or LE d,a,P & LE a,b,P & LE b,c,P or LE a,b,P & LE b,c,P & LE c,d,P; end; theorem a,b,c,d are_in_this_order_on P implies c,d,a,b are_in_this_order_on P proof assume LE a,b,P & LE b,c,P & LE c,d,P or LE b,c,P & LE c,d,P & LE d,a,P or LE c,d,P & LE d,a,P & LE a,b,P or LE d,a,P & LE a,b,P & LE b,c,P; hence LE c,d,P & LE d,a,P & LE a,b,P or LE d,a,P & LE a,b,P & LE b,c,P or LE a,b,P & LE b,c,P & LE c,d,P or LE b,c,P & LE c,d,P & LE d,a,P; end; theorem a,b,c,d are_in_this_order_on P implies d,a,b,c are_in_this_order_on P proof assume LE a,b,P & LE b,c,P & LE c,d,P or LE b,c,P & LE c,d,P & LE d,a,P or LE c,d,P & LE d,a,P & LE a,b,P or LE d,a,P & LE a,b,P & LE b,c,P; hence LE d,a,P & LE a,b,P & LE b,c,P or LE a,b,P & LE b,c,P & LE c,d,P or LE b,c,P & LE c,d,P & LE d,a,P or LE c,d,P & LE d,a,P & LE a,b,P; end; theorem a <> b & a,b,c,d are_in_this_order_on P implies ex e st e <> a & e <> b & a,e,b,c are_in_this_order_on P proof assume that A1: a <> b and A2: LE a,b,P & LE b,c,P & LE c,d,P or LE b,c,P & LE c,d,P & LE d,a,P or LE c,d,P & LE d,a,P & LE a,b,P or LE d,a,P & LE a,b,P & LE b,c,P; per cases by A2; suppose A3: LE a,b,P & LE b,c,P & LE c,d,P; then consider e such that A4: e <> a & e <> b & LE a,e,P & LE e,b,P by A1,Th8; take e; thus thesis by A3,A4,Def1; suppose that A5: LE b,c,P and A6: LE c,d,P and A7: LE d,a,P; thus thesis proof A8: LE c,a,P by A6,A7,JORDAN6:73; per cases; suppose A9: b = W-min(P); a in P by A7,JORDAN7:5; then consider e such that A10: e <> a and A11: LE a,e,P by Th7; take e; thus e <> a by A10; thus e <> b by A1,A9,A11,JORDAN7:2; thus thesis by A5,A8,A11,Def1; suppose A12: b <> W-min(P); take e = W-min(P); b in P by A5,JORDAN7:5; then A13: LE e,b,P by JORDAN7:3; now assume A14: e = a; LE b,d,P by A5,A6,JORDAN6:73; then LE b,a,P by A7,JORDAN6:73; hence contradiction by A1,A13,A14,JORDAN6:72; end; hence e <> a; thus e <> b by A12; thus thesis by A5,A8,A13,Def1; end; suppose that A15: LE c,d,P and A16: LE d,a,P & LE a,b,P; consider e such that A17: e <> a & e <> b & LE a,e,P & LE e,b,P by A1,A16,Th8; take e; LE c,a,P by A15,A16,JORDAN6:73; hence thesis by A17,Def1; suppose that A18: LE d,a,P & LE a,b,P and A19: LE b,c,P; consider e such that A20: e <> a & e <> b & LE a,e,P & LE e,b,P by A1,A18,Th8; take e; thus thesis by A19,A20,Def1; end; theorem a <> b & a,b,c,d are_in_this_order_on P implies ex e st e <> a & e <> b & a,e,b,d are_in_this_order_on P proof assume that A1: a <> b and A2: LE a,b,P & LE b,c,P & LE c,d,P or LE b,c,P & LE c,d,P & LE d,a,P or LE c,d,P & LE d,a,P & LE a,b,P or LE d,a,P & LE a,b,P & LE b,c,P; per cases by A2; suppose that A3: LE a,b,P and A4: LE b,c,P & LE c,d,P; consider e such that A5: e <> a & e <> b & LE a,e,P & LE e,b,P by A1,A3,Th8; take e; LE b,d,P by A4,JORDAN6:73; hence thesis by A5,Def1; suppose that A6: LE b,c,P and A7: LE c,d,P and A8: LE d,a,P; thus thesis proof A9: LE b,d,P by A6,A7,JORDAN6:73; per cases; suppose A10: b = W-min(P); a in P by A8,JORDAN7:5; then consider e such that A11: e <> a and A12: LE a,e,P by Th7; take e; thus e <> a by A11; thus e <> b by A1,A10,A12,JORDAN7:2; thus thesis by A8,A9,A12,Def1; suppose A13: b <> W-min(P); take e = W-min(P); b in P by A6,JORDAN7:5; then A14: LE e,b,P by JORDAN7:3; now assume A15: e = a; LE b,d,P by A6,A7,JORDAN6:73; then LE b,a,P by A8,JORDAN6:73; hence contradiction by A1,A14,A15,JORDAN6:72; end; hence e <> a; thus e <> b by A13; thus thesis by A8,A9,A14,Def1; end; suppose that LE c,d,P and A16: LE d,a,P and A17: LE a,b,P; consider e such that A18: e <> a & e <> b & LE a,e,P & LE e,b,P by A1,A17,Th8; take e; thus thesis by A16,A18,Def1; suppose that A19: LE d,a,P and A20: LE a,b,P and LE b,c,P; consider e such that A21: e <> a & e <> b & LE a,e,P & LE e,b,P by A1,A20,Th8; take e; thus thesis by A19,A21,Def1; end; theorem b <> c & a,b,c,d are_in_this_order_on P implies ex e st e <> b & e <> c & a,b,e,c are_in_this_order_on P proof assume that A1: b <> c and A2: LE a,b,P & LE b,c,P & LE c,d,P or LE b,c,P & LE c,d,P & LE d,a,P or LE c,d,P & LE d,a,P & LE a,b,P or LE d,a,P & LE a,b,P & LE b,c,P; per cases by A2; suppose A3: LE a,b,P & LE b,c,P & LE c,d,P; then consider e such that A4: e <> b & e <> c & LE b,e,P & LE e,c,P by A1,Th8; take e; thus thesis by A3,A4,Def1; suppose that A5: LE b,c,P and A6: LE c,d,P and A7: LE d,a,P; consider e such that A8: e <> b & e <> c & LE b,e,P & LE e,c,P by A1,A5,Th8; take e; LE c,a,P by A6,A7,JORDAN6:73; hence thesis by A8,Def1; suppose that A9: LE c,d,P and A10: LE d,a,P and A11: LE a,b,P; thus thesis proof A12: LE c,a,P by A9,A10,JORDAN6:73; per cases; suppose A13: c = W-min(P); b in P by A11,JORDAN7:5; then consider e such that A14: e <> b and A15: LE b,e,P by Th7; take e; thus e <> b by A14; thus e <> c by A1,A13,A15,JORDAN7:2; thus thesis by A11,A12,A15,Def1; suppose A16: c <> W-min(P); take e = W-min(P); c in P by A9,JORDAN7:5; then A17: LE e,c,P by JORDAN7:3; now assume A18: e = b; LE c,a,P by A9,A10,JORDAN6:73; then LE c,b,P by A11,JORDAN6:73; hence contradiction by A1,A17,A18,JORDAN6:72; end; hence e <> b; thus e <> c by A16; thus thesis by A11,A12,A17,Def1; end; suppose that LE d,a,P and A19: LE a,b,P & LE b,c,P; consider e such that A20: e <> b & e <> c & LE b,e,P & LE e,c,P by A1,A19,Th8; take e; thus thesis by A19,A20,Def1; end; theorem b <> c & a,b,c,d are_in_this_order_on P implies ex e st e <> b & e <> c & b,e,c,d are_in_this_order_on P proof assume that A1: b <> c and A2: LE a,b,P & LE b,c,P & LE c,d,P or LE b,c,P & LE c,d,P & LE d,a,P or LE c,d,P & LE d,a,P & LE a,b,P or LE d,a,P & LE a,b,P & LE b,c,P; per cases by A2; suppose A3: LE a,b,P & LE b,c,P & LE c,d,P; then consider e such that A4: e <> b & e <> c & LE b,e,P & LE e,c,P by A1,Th8; take e; thus thesis by A3,A4,Def1; suppose A5: LE b,c,P & LE c,d,P & LE d,a,P; then consider e such that A6: e <> b & e <> c & LE b,e,P & LE e,c,P by A1,Th8; take e; thus thesis by A5,A6,Def1; suppose that A7: LE c,d,P and A8: LE d,a,P and A9: LE a,b,P; thus thesis proof A10: LE d,b,P by A8,A9,JORDAN6:73; per cases; suppose A11: c = W-min(P); b in P by A9,JORDAN7:5; then consider e such that A12: e <> b and A13: LE b,e,P by Th7; take e; thus e <> b by A12; thus e <> c by A1,A11,A13,JORDAN7:2; thus thesis by A7,A10,A13,Def1; suppose A14: c <> W-min(P); take e = W-min(P); c in P by A7,JORDAN7:5; then A15: LE e,c,P by JORDAN7:3; now assume A16: e = b; LE c,a,P by A7,A8,JORDAN6:73; then LE c,b,P by A9,JORDAN6:73; hence contradiction by A1,A15,A16,JORDAN6:72; end; hence e <> b; thus e <> c by A14; thus thesis by A7,A10,A15,Def1; end; suppose that A17: LE d,a,P and A18: LE a,b,P and A19: LE b,c,P; consider e such that A20: e <> b & e <> c & LE b,e,P & LE e,c,P by A1,A19,Th8; take e; thus e <> b & e <> c by A20; LE d,b,P by A17,A18,JORDAN6:73; hence thesis by A20,Def1; end; theorem c <> d & a,b,c,d are_in_this_order_on P implies ex e st e <> c & e <> d & a,c,e,d are_in_this_order_on P proof assume that A1: c <> d and A2: LE a,b,P & LE b,c,P & LE c,d,P or LE b,c,P & LE c,d,P & LE d,a,P or LE c,d,P & LE d,a,P & LE a,b,P or LE d,a,P & LE a,b,P & LE b,c,P; per cases by A2; suppose that A3: LE a,b,P & LE b,c,P and A4: LE c,d,P; consider e such that A5: e <> c & e <> d & LE c,e,P & LE e,d,P by A1,A4,Th8; take e; LE a,c,P by A3,JORDAN6:73; hence thesis by A5,Def1; suppose that A6: LE b,c,P & LE c,d,P and A7: LE d,a,P; consider e such that A8: e <> c & e <> d & LE c,e,P & LE e,d,P by A1,A6,Th8; take e; thus thesis by A7,A8,Def1; suppose that A9: LE c,d,P and A10: LE d,a,P and LE a,b,P; consider e such that A11: e <> c & e <> d & LE c,e,P & LE e,d,P by A1,A9,Th8; take e; thus thesis by A10,A11,Def1; suppose that A12: LE d,a,P and A13: LE a,b,P and A14: LE b,c,P; thus thesis proof A15: LE a,c,P by A13,A14,JORDAN6:73; per cases; suppose A16: d = W-min(P); c in P by A14,JORDAN7:5; then consider e such that A17: e <> c and A18: LE c,e,P by Th7; take e; thus e <> c by A17; thus e <> d by A1,A16,A18,JORDAN7:2; thus thesis by A12,A15,A18,Def1; suppose A19: d <> W-min(P); take e = W-min(P); d in P by A12,JORDAN7:5; then A20: LE e,d,P by JORDAN7:3; now assume A21: e = c; LE d,b,P by A12,A13,JORDAN6:73; then LE d,c,P by A14,JORDAN6:73; hence contradiction by A1,A20,A21,JORDAN6:72; end; hence e <> c; thus e <> d by A19; thus thesis by A12,A15,A20,Def1; end; end; theorem c <> d & a,b,c,d are_in_this_order_on P implies ex e st e <> c & e <> d & b,c,e,d are_in_this_order_on P proof assume that A1: c <> d and A2: LE a,b,P & LE b,c,P & LE c,d,P or LE b,c,P & LE c,d,P & LE d,a,P or LE c,d,P & LE d,a,P & LE a,b,P or LE d,a,P & LE a,b,P & LE b,c,P; per cases by A2; suppose that A3: LE a,b,P & LE b,c,P and A4: LE c,d,P; consider e such that A5: e <> c & e <> d & LE c,e,P & LE e,d,P by A1,A4,Th8; take e; thus thesis by A3,A5,Def1; suppose that A6: LE b,c,P and A7: LE c,d,P and LE d,a,P; consider e such that A8: e <> c & e <> d & LE c,e,P & LE e,d,P by A1,A7,Th8; take e; thus thesis by A6,A8,Def1; suppose that A9: LE c,d,P and A10: LE d,a,P and A11: LE a,b,P; consider e such that A12: e <> c & e <> d & LE c,e,P & LE e,d,P by A1,A9,Th8; take e; LE d,b,P by A10,A11,JORDAN6:73; hence thesis by A12,Def1; suppose that A13: LE d,a,P and A14: LE a,b,P and A15: LE b,c,P; thus thesis proof A16: LE d,b,P by A13,A14,JORDAN6:73; per cases; suppose A17: d = W-min(P); c in P by A15,JORDAN7:5; then consider e such that A18: e <> c and A19: LE c,e,P by Th7; take e; thus e <> c by A18; thus e <> d by A1,A17,A19,JORDAN7:2; thus thesis by A15,A16,A19,Def1; suppose A20: d <> W-min(P); take e = W-min(P); d in P by A13,JORDAN7:5; then A21: LE e,d,P by JORDAN7:3; now assume A22: e = c; LE d,c,P by A15,A16,JORDAN6:73; hence contradiction by A1,A21,A22,JORDAN6:72; end; hence e <> c; thus e <> d by A20; thus thesis by A15,A16,A21,Def1; end; end; theorem d <> a & a,b,c,d are_in_this_order_on P implies ex e st e <> d & e <> a & a,b,d,e are_in_this_order_on P proof assume that A1: d <> a and A2: LE a,b,P & LE b,c,P & LE c,d,P or LE b,c,P & LE c,d,P & LE d,a,P or LE c,d,P & LE d,a,P & LE a,b,P or LE d,a,P & LE a,b,P & LE b,c,P; per cases by A2; suppose that A3: LE a,b,P and A4: LE b,c,P and A5: LE c,d,P; thus thesis proof A6: LE b,d,P by A4,A5,JORDAN6:73; per cases; suppose A7: a = W-min(P); d in P by A5,JORDAN7:5; then consider e such that A8: e <> d and A9: LE d,e,P by Th7; take e; thus e <> d by A8; thus e <> a by A1,A7,A9,JORDAN7:2; thus thesis by A3,A6,A9,Def1; suppose A10: a <> W-min(P); take e = W-min(P); a in P by A3,JORDAN7:5; then A11: LE e,a,P by JORDAN7:3; now assume A12: e = d; LE a,c,P by A3,A4,JORDAN6:73; then LE a,d,P by A5,JORDAN6:73; hence contradiction by A1,A11,A12,JORDAN6:72; end; hence e <> d; thus e <> a by A10; thus thesis by A3,A6,A11,Def1; end; suppose that A13: LE b,c,P and A14: LE c,d,P and A15: LE d,a,P; consider e such that A16: e <> d & e <> a & LE d,e,P & LE e,a,P by A1,A15,Th8; take e; LE b,d,P by A13,A14,JORDAN6:73; hence thesis by A16,Def1; suppose that LE c,d,P and A17: LE d,a,P and A18: LE a,b,P; consider e such that A19: e <> d & e <> a & LE d,e,P & LE e,a,P by A1,A17,Th8; take e; thus thesis by A18,A19,Def1; suppose that A20: LE d,a,P and A21: LE a,b,P and LE b,c,P; consider e such that A22: e <> d & e <> a & LE d,e,P & LE e,a,P by A1,A20,Th8; take e; thus thesis by A21,A22,Def1; end; theorem d <> a & a,b,c,d are_in_this_order_on P implies ex e st e <> d & e <> a & a,c,d,e are_in_this_order_on P proof assume that A1: d <> a and A2: LE a,b,P & LE b,c,P & LE c,d,P or LE b,c,P & LE c,d,P & LE d,a,P or LE c,d,P & LE d,a,P & LE a,b,P or LE d,a,P & LE a,b,P & LE b,c,P; per cases by A2; suppose that A3: LE a,b,P and A4: LE b,c,P and A5: LE c,d,P; thus thesis proof A6: LE a,c,P by A3,A4,JORDAN6:73; per cases; suppose A7: a = W-min(P); d in P by A5,JORDAN7:5; then consider e such that A8: e <> d and A9: LE d,e,P by Th7; take e; thus e <> d by A8; thus e <> a by A1,A7,A9,JORDAN7:2; thus thesis by A5,A6,A9,Def1; suppose A10: a <> W-min(P); take e = W-min(P); a in P by A3,JORDAN7:5; then A11: LE e,a,P by JORDAN7:3; now assume A12: e = d; LE a,d,P by A5,A6,JORDAN6:73; hence contradiction by A1,A11,A12,JORDAN6:72; end; hence e <> d; thus e <> a by A10; thus thesis by A5,A6,A11,Def1; end; suppose that LE b,c,P and A13: LE c,d,P and A14: LE d,a,P; consider e such that A15: e <> d & e <> a & LE d,e,P & LE e,a,P by A1,A14,Th8; take e; thus thesis by A13,A15,Def1; suppose that A16: LE c,d,P and A17: LE d,a,P and LE a,b,P; consider e such that A18: e <> d & e <> a & LE d,e,P & LE e,a,P by A1,A17,Th8; take e; thus thesis by A16,A18,Def1; suppose that A19: LE d,a,P and A20: LE a,b,P and A21: LE b,c,P; consider e such that A22: e <> d & e <> a & LE d,e,P & LE e,a,P by A1,A19,Th8; take e; LE a,c,P by A20,A21,JORDAN6:73; hence thesis by A22,Def1; end; theorem a <> c & a <> d & b <> d & a,b,c,d are_in_this_order_on P & b,a,c,d are_in_this_order_on P implies a = b proof assume that A1: a <> c and A2: a <> d and A3: b <> d and A4: a,b,c,d are_in_this_order_on P and A5: b,a,c,d are_in_this_order_on P; per cases by A4,Def1; suppose A6: LE a,b,P & LE b,c,P & LE c,d,P; then A7: LE b,d,P by JORDAN6:73; thus thesis proof per cases by A5,Def1; suppose LE b,a,P & LE a,c,P & LE c,d,P; hence thesis by A6,JORDAN6:72; suppose LE a,c,P & LE c,d,P & LE d,b,P; hence thesis by A3,A7,JORDAN6:72; suppose LE c,d,P & LE d,b,P & LE b,a,P; hence thesis by A6,JORDAN6:72; suppose LE d,b,P & LE b,a,P & LE a,c,P; hence thesis by A6,JORDAN6:72; end; suppose A8: LE b,c,P & LE c,d,P & LE d,a,P; then A9: LE b,d,P by JORDAN6:73; thus thesis proof per cases by A5,Def1; suppose A10: LE b,a,P & LE a,c,P & LE c,d,P; LE c,a,P by A8,JORDAN6:73; hence thesis by A1,A10,JORDAN6:72; suppose LE a,c,P & LE c,d,P & LE d,b,P; hence thesis by A3,A9,JORDAN6:72; suppose LE c,d,P & LE d,b,P & LE b,a,P; hence thesis by A3,A9,JORDAN6:72; suppose LE d,b,P & LE b,a,P & LE a,c,P; hence thesis by A3,A9,JORDAN6:72; end; suppose A11: LE c,d,P & LE d,a,P & LE a,b,P; then A12: LE c,a,P by JORDAN6:73; thus thesis proof per cases by A5,Def1; suppose LE b,a,P & LE a,c,P & LE c,d,P; hence thesis by A11,JORDAN6:72; suppose LE a,c,P & LE c,d,P & LE d,b,P; hence thesis by A1,A12,JORDAN6:72; suppose LE c,d,P & LE d,b,P & LE b,a,P; hence thesis by A11,JORDAN6:72; suppose LE d,b,P & LE b,a,P & LE a,c,P; hence thesis by A11,JORDAN6:72; end; suppose A13: LE d,a,P & LE a,b,P & LE b,c,P; thus thesis proof per cases by A5,Def1; suppose LE b,a,P & LE a,c,P & LE c,d,P; hence thesis by A13,JORDAN6:72; suppose LE a,c,P & LE c,d,P & LE d,b,P; then LE a,d,P by JORDAN6:73; hence thesis by A2,A13,JORDAN6:72; suppose LE c,d,P & LE d,b,P & LE b,a,P; hence thesis by A13,JORDAN6:72; suppose LE d,b,P & LE b,a,P & LE a,c,P; hence thesis by A13,JORDAN6:72; end; end; theorem a <> b & b <> c & c <> d & a,b,c,d are_in_this_order_on P & c,b,a,d are_in_this_order_on P implies a = c proof assume that A1: a <> b and A2: b <> c and A3: c <> d and A4: a,b,c,d are_in_this_order_on P and A5: c,b,a,d are_in_this_order_on P; per cases by A4,Def1; suppose A6: LE a,b,P & LE b,c,P & LE c,d,P; thus thesis proof per cases by A5,Def1; suppose LE c,b,P & LE b,a,P & LE a,d,P; hence thesis by A1,A6,JORDAN6:72; suppose LE b,a,P & LE a,d,P & LE d,c,P; hence thesis by A3,A6,JORDAN6:72; suppose LE a,d,P & LE d,c,P & LE c,b,P; hence thesis by A3,A6,JORDAN6:72; suppose LE d,c,P & LE c,b,P & LE b,a,P; hence thesis by A3,A6,JORDAN6:72; end; suppose A7: LE b,c,P & LE c,d,P & LE d,a,P; thus thesis proof per cases by A5,Def1; suppose LE c,b,P & LE b,a,P & LE a,d,P; hence thesis by A2,A7,JORDAN6:72; suppose LE b,a,P & LE a,d,P & LE d,c,P; hence thesis by A3,A7,JORDAN6:72; suppose LE a,d,P & LE d,c,P & LE c,b,P; hence thesis by A3,A7,JORDAN6:72; suppose LE d,c,P & LE c,b,P & LE b,a,P; hence thesis by A3,A7,JORDAN6:72; end; suppose A8: LE c,d,P & LE d,a,P & LE a,b,P; thus thesis proof per cases by A5,Def1; suppose LE c,b,P & LE b,a,P & LE a,d,P; hence thesis by A1,A8,JORDAN6:72; suppose LE b,a,P & LE a,d,P & LE d,c,P; hence thesis by A3,A8,JORDAN6:72; suppose LE a,d,P & LE d,c,P & LE c,b,P; hence thesis by A3,A8,JORDAN6:72; suppose LE d,c,P & LE c,b,P & LE b,a,P; hence thesis by A3,A8,JORDAN6:72; end; suppose A9: LE d,a,P & LE a,b,P & LE b,c,P; thus thesis proof per cases by A5,Def1; suppose LE c,b,P & LE b,a,P & LE a,d,P; hence thesis by A2,A9,JORDAN6:72; suppose LE b,a,P & LE a,d,P & LE d,c,P; hence thesis by A1,A9,JORDAN6:72; suppose LE a,d,P & LE d,c,P & LE c,b,P; hence thesis by A2,A9,JORDAN6:72; suppose LE d,c,P & LE c,b,P & LE b,a,P; hence thesis by A1,A9,JORDAN6:72; end; end; theorem a <> b & a <> c & b <> d & a,b,c,d are_in_this_order_on P & d,b,c,a are_in_this_order_on P implies a = d proof assume that A1: a <> b and A2: a <> c and A3: b <> d and A4: a,b,c,d are_in_this_order_on P and A5: d,b,c,a are_in_this_order_on P; per cases by A4,Def1; suppose A6: LE a,b,P & LE b,c,P & LE c,d,P; then A7: LE a,c,P by JORDAN6:73; thus thesis proof per cases by A5,Def1; suppose LE d,b,P & LE b,c,P & LE c,a,P; hence thesis by A2,A7,JORDAN6:72; suppose LE b,c,P & LE c,a,P & LE a,d,P; hence thesis by A2,A7,JORDAN6:72; suppose LE c,a,P & LE a,d,P & LE d,b,P; hence thesis by A2,A7,JORDAN6:72; suppose A8: LE a,d,P & LE d,b,P & LE b,c,P; LE b,d,P by A6,JORDAN6:73; hence thesis by A3,A8,JORDAN6:72; end; suppose A9: LE b,c,P & LE c,d,P & LE d,a,P; then A10: LE b,d,P by JORDAN6:73; thus thesis proof per cases by A5,Def1; suppose LE d,b,P & LE b,c,P & LE c,a,P; hence thesis by A3,A10,JORDAN6:72; suppose LE b,c,P & LE c,a,P & LE a,d,P; hence thesis by A9,JORDAN6:72; suppose LE c,a,P & LE a,d,P & LE d,b,P; hence thesis by A9,JORDAN6:72; suppose LE a,d,P & LE d,b,P & LE b,c,P; hence thesis by A9,JORDAN6:72; end; suppose A11: LE c,d,P & LE d,a,P & LE a,b,P; thus thesis proof per cases by A5,Def1; suppose LE d,b,P & LE b,c,P & LE c,a,P; then LE b,a,P by JORDAN6:73; hence thesis by A1,A11,JORDAN6:72; suppose LE b,c,P & LE c,a,P & LE a,d,P; hence thesis by A11,JORDAN6:72; suppose LE c,a,P & LE a,d,P & LE d,b,P; hence thesis by A11,JORDAN6:72; suppose LE a,d,P & LE d,b,P & LE b,c,P; hence thesis by A11,JORDAN6:72; end; suppose A12: LE d,a,P & LE a,b,P & LE b,c,P; thus thesis proof per cases by A5,Def1; suppose A13: LE d,b,P & LE b,c,P & LE c,a,P; LE a,c,P by A12,JORDAN6:73; hence thesis by A2,A13,JORDAN6:72; suppose LE b,c,P & LE c,a,P & LE a,d,P; hence thesis by A12,JORDAN6:72; suppose LE c,a,P & LE a,d,P & LE d,b,P; hence thesis by A12,JORDAN6:72; suppose LE a,d,P & LE d,b,P & LE b,c,P; hence thesis by A12,JORDAN6:72; end; end; theorem a <> c & a <> d & b <> d & a,b,c,d are_in_this_order_on P & a,c,b,d are_in_this_order_on P implies b = c proof assume that A1: a <> c and A2: a <> d and A3: b <> d and A4: a,b,c,d are_in_this_order_on P and A5: a,c,b,d are_in_this_order_on P; per cases by A4,Def1; suppose A6: LE a,b,P & LE b,c,P & LE c,d,P; then A7: LE b,d,P by JORDAN6:73; thus thesis proof per cases by A5,Def1; suppose LE a,c,P & LE c,b,P & LE b,d,P; hence thesis by A6,JORDAN6:72; suppose LE c,b,P & LE b,d,P & LE d,a,P; hence thesis by A6,JORDAN6:72; suppose A8: LE b,d,P & LE d,a,P & LE a,c,P; LE a,d,P by A6,A7,JORDAN6:73; hence thesis by A2,A8,JORDAN6:72; suppose LE d,a,P & LE a,c,P & LE c,b,P; hence thesis by A6,JORDAN6:72; end; suppose A9: LE b,c,P & LE c,d,P & LE d,a,P; then A10: LE c,a,P by JORDAN6:73; thus thesis proof per cases by A5,Def1; suppose LE a,c,P & LE c,b,P & LE b,d,P; hence thesis by A9,JORDAN6:72; suppose LE c,b,P & LE b,d,P & LE d,a,P; hence thesis by A9,JORDAN6:72; suppose LE b,d,P & LE d,a,P & LE a,c,P; hence thesis by A1,A10,JORDAN6:72; suppose LE d,a,P & LE a,c,P & LE c,b,P; hence thesis by A9,JORDAN6:72; end; suppose A11: LE c,d,P & LE d,a,P & LE a,b,P; then A12: LE c,a,P by JORDAN6:73; thus thesis proof per cases by A5,Def1; suppose LE a,c,P & LE c,b,P & LE b,d,P; hence thesis by A1,A12,JORDAN6:72; suppose A13: LE c,b,P & LE b,d,P & LE d,a,P; LE d,b,P by A11,JORDAN6:73; hence thesis by A3,A13,JORDAN6:72; suppose LE b,d,P & LE d,a,P & LE a,c,P; hence thesis by A1,A12,JORDAN6:72; suppose LE d,a,P & LE a,c,P & LE c,b,P; hence thesis by A1,A12,JORDAN6:72; end; suppose A14: LE d,a,P & LE a,b,P & LE b,c,P; thus thesis proof per cases by A5,Def1; suppose LE a,c,P & LE c,b,P & LE b,d,P; hence thesis by A14,JORDAN6:72; suppose LE c,b,P & LE b,d,P & LE d,a,P; hence thesis by A14,JORDAN6:72; suppose A15: LE b,d,P & LE d,a,P & LE a,c,P; LE d,b,P by A14,JORDAN6:73; hence thesis by A3,A15,JORDAN6:72; suppose LE d,a,P & LE a,c,P & LE c,b,P; hence thesis by A14,JORDAN6:72; end; end; theorem a <> b & b <> c & c <> d & a,b,c,d are_in_this_order_on P & a,d,c,b are_in_this_order_on P implies b = d proof assume that A1: a <> b and A2: b <> c and A3: c <> d and A4: a,b,c,d are_in_this_order_on P and A5: a,d,c,b are_in_this_order_on P; per cases by A4,Def1; suppose A6: LE a,b,P & LE b,c,P & LE c,d,P; thus thesis proof per cases by A5,Def1; suppose LE a,d,P & LE d,c,P & LE c,b,P; hence thesis by A2,A6,JORDAN6:72; suppose LE d,c,P & LE c,b,P & LE b,a,P; hence thesis by A3,A6,JORDAN6:72; suppose LE c,b,P & LE b,a,P & LE a,d,P; hence thesis by A2,A6,JORDAN6:72; suppose LE b,a,P & LE a,d,P & LE d,c,P; hence thesis by A3,A6,JORDAN6:72; end; suppose A7: LE b,c,P & LE c,d,P & LE d,a,P; thus thesis proof per cases by A5,Def1; suppose LE a,d,P & LE d,c,P & LE c,b,P; hence thesis by A3,A7,JORDAN6:72; suppose LE d,c,P & LE c,b,P & LE b,a,P; hence thesis by A3,A7,JORDAN6:72; suppose LE c,b,P & LE b,a,P & LE a,d,P; hence thesis by A2,A7,JORDAN6:72; suppose LE b,a,P & LE a,d,P & LE d,c,P; hence thesis by A3,A7,JORDAN6:72; end; suppose A8: LE c,d,P & LE d,a,P & LE a,b,P; thus thesis proof per cases by A5,Def1; suppose LE a,d,P & LE d,c,P & LE c,b,P; hence thesis by A3,A8,JORDAN6:72; suppose LE d,c,P & LE c,b,P & LE b,a,P; hence thesis by A1,A8,JORDAN6:72; suppose LE c,b,P & LE b,a,P & LE a,d,P; hence thesis by A1,A8,JORDAN6:72; suppose LE b,a,P & LE a,d,P & LE d,c,P; hence thesis by A1,A8,JORDAN6:72; end; suppose A9: LE d,a,P & LE a,b,P & LE b,c,P; thus thesis proof per cases by A5,Def1; suppose LE a,d,P & LE d,c,P & LE c,b,P; hence thesis by A2,A9,JORDAN6:72; suppose LE d,c,P & LE c,b,P & LE b,a,P; hence thesis by A2,A9,JORDAN6:72; suppose LE c,b,P & LE b,a,P & LE a,d,P; hence thesis by A2,A9,JORDAN6:72; suppose LE b,a,P & LE a,d,P & LE d,c,P; hence thesis by A1,A9,JORDAN6:72; end; end; theorem a <> b & a <> c & b <> d & a,b,c,d are_in_this_order_on P & a,b,d,c are_in_this_order_on P implies c = d proof assume that A1: a <> b and A2: a <> c and A3: b <> d and A4: a,b,c,d are_in_this_order_on P and A5: a,b,d,c are_in_this_order_on P; per cases by A4,Def1; suppose A6: LE a,b,P & LE b,c,P & LE c,d,P; thus thesis proof per cases by A5,Def1; suppose LE a,b,P & LE b,d,P & LE d,c,P; hence thesis by A6,JORDAN6:72; suppose LE b,d,P & LE d,c,P & LE c,a,P; hence thesis by A6,JORDAN6:72; suppose LE d,c,P & LE c,a,P & LE a,b,P; hence thesis by A6,JORDAN6:72; suppose A7: LE c,a,P & LE a,b,P & LE b,d,P; LE a,c,P by A6,JORDAN6:73; hence thesis by A2,A7,JORDAN6:72; end; suppose A8: LE b,c,P & LE c,d,P & LE d,a,P; then A9: LE c,a,P by JORDAN6:73; thus thesis proof per cases by A5,Def1; suppose LE a,b,P & LE b,d,P & LE d,c,P; hence thesis by A8,JORDAN6:72; suppose LE b,d,P & LE d,c,P & LE c,a,P; hence thesis by A8,JORDAN6:72; suppose LE d,c,P & LE c,a,P & LE a,b,P; hence thesis by A8,JORDAN6:72; suppose A10: LE c,a,P & LE a,b,P & LE b,d,P; LE b,a,P by A8,A9,JORDAN6:73; hence thesis by A1,A10,JORDAN6:72; end; suppose A11: LE c,d,P & LE d,a,P & LE a,b,P; then A12: LE d,b,P by JORDAN6:73; thus thesis proof per cases by A5,Def1; suppose LE a,b,P & LE b,d,P & LE d,c,P; hence thesis by A11,JORDAN6:72; suppose LE b,d,P & LE d,c,P & LE c,a,P; hence thesis by A11,JORDAN6:72; suppose LE d,c,P & LE c,a,P & LE a,b,P; hence thesis by A11,JORDAN6:72; suppose LE c,a,P & LE a,b,P & LE b,d,P; hence thesis by A3,A12,JORDAN6:72; end; suppose A13: LE d,a,P & LE a,b,P & LE b,c,P; then A14: LE d,b,P by JORDAN6:73; thus thesis proof per cases by A5,Def1; suppose LE a,b,P & LE b,d,P & LE d,c,P; hence thesis by A3,A14,JORDAN6:72; suppose LE b,d,P & LE d,c,P & LE c,a,P; hence thesis by A3,A14,JORDAN6:72; suppose A15: LE d,c,P & LE c,a,P & LE a,b,P; LE a,c,P by A13,JORDAN6:73; hence thesis by A2,A15,JORDAN6:72; suppose LE c,a,P & LE a,b,P & LE b,d,P; hence thesis by A3,A14,JORDAN6:72; end; end; theorem a in C & b in C & c in C & d in C implies a,b,c,d are_in_this_order_on C or a,b,d,c are_in_this_order_on C or a,c,b,d are_in_this_order_on C or a,c,d,b are_in_this_order_on C or a,d,b,c are_in_this_order_on C or a,d,c,b are_in_this_order_on C proof assume A1: a in C & b in C & c in C & d in C; per cases; suppose LE a,b,C & LE b,c,C & LE c,d,C; hence thesis by Def1; suppose A2: LE a,b,C & LE b,c,C & not LE c,d,C; then A3: LE d,c,C by A1,JORDAN16:11; thus thesis proof per cases by A1,JORDAN16:11; suppose A4: LE a,d,C; LE b,d,C or LE d,b,C by A1,JORDAN16:11; hence thesis by A2,A3,A4,Def1; suppose LE d,a,C; hence thesis by A2,Def1; end; suppose A5: LE a,b,C & not LE b,c,C & LE c,d,C; then A6: LE c,b,C by A1,JORDAN16:11; thus thesis proof per cases by A1,JORDAN16:11; suppose A7: LE b,d,C; LE a,c,C or LE c,a,C by A1,JORDAN16:11; hence thesis by A5,A6,A7,Def1; suppose A8: LE d,b,C; thus thesis proof per cases by A1,JORDAN16:11; suppose LE a,c,C; hence thesis by A5,A8,Def1; suppose A9: LE c,a,C; LE a,d,C or LE d,a,C by A1,JORDAN16:11; hence thesis by A5,A8,A9,Def1; end; end; suppose A10: LE a,b,C & not LE b,c,C & not LE c,d,C; then A11: LE c,b,C & LE d,c,C by A1,JORDAN16:11; thus thesis proof per cases by A1,JORDAN16:11; suppose A12: LE a,c,C; LE a,d,C or LE d,a,C by A1,JORDAN16:11; hence thesis by A11,A12,Def1; suppose LE c,a,C; hence thesis by A10,A11,Def1; end; suppose A13: not LE a,b,C & LE b,c,C & LE c,d,C; then A14: LE b,a,C by A1,JORDAN16:11; thus thesis proof per cases by A1,JORDAN16:11; suppose A15: LE a,d,C; LE a,c,C or LE c,a,C by A1,JORDAN16:11; hence thesis by A13,A14,A15,Def1; suppose LE d,a,C; hence thesis by A13,Def1; end; suppose A16: not LE a,b,C & LE b,c,C & not LE c,d,C; then A17: LE b,a,C & LE d,c,C by A1,JORDAN16:11; thus thesis proof per cases by A1,JORDAN16:11; suppose LE a,d,C; hence thesis by A17,Def1; suppose A18: LE d,a,C; (LE a,c,C or LE c,a,C) & (LE b,d,C or LE d,b,C) by A1,JORDAN16:11; hence thesis by A16,A17,A18,Def1; end; suppose A19: not LE a,b,C & not LE b,c,C & LE c,d,C; then A20: LE b,a,C & LE c,b,C by A1,JORDAN16:11; thus thesis proof per cases by A1,JORDAN16:11; suppose LE a,d,C; hence thesis by A20,Def1; suppose A21: LE d,a,C; LE b,d,C or LE d,b,C by A1,JORDAN16:11; hence thesis by A19,A20,A21,Def1; end; suppose not LE a,b,C & not LE b,c,C & not LE c,d,C; then LE b,a,C & LE c,b,C & LE d,c,C by A1,JORDAN16:11; hence thesis by Def1; end;