Copyright (c) 2000 Association of Mizar Users
environ vocabulary PARTFUN1, ARYTM, SQUARE_1, FINSEQ_2, RVSUM_1, FINSEQ_1, VECTSP_1, RELAT_1, FUNCT_1, ARYTM_1, RLVECT_1, RFUNCT_3, RCOMP_1, ARYTM_3, SEQ_1, BOOLE, MEASURE5, FCONT_1, SUPINF_1, ABSVALUE, RFUNCT_4; notation TARSKI, XBOOLE_0, SUBSET_1, ORDINAL1, XCMPLX_0, XREAL_0, RELAT_1, FUNCT_1, FINSEQ_1, REAL_1, NAT_1, ABSVALUE, FINSEQ_2, SQUARE_1, PARTFUN1, FINSEQOP, VECTSP_1, SEQ_1, RVSUM_1, RCOMP_1, RFUNCT_3, SUPINF_1, MEASURE5, FCONT_1; constructors MONOID_1, REAL_1, NAT_1, FINSEQOP, RCOMP_1, TOPREAL1, FINSEQ_4, RFUNCT_3, MEASURE5, FCONT_1, MEMBERED; clusters RELSET_1, FINSEQ_2, XREAL_0, ARYTM_3, MEMBERED; requirements NUMERALS, SUBSET, REAL, BOOLE, ARITHM; theorems RCOMP_1, REAL_1, REAL_2, AXIOMS, SQUARE_1, RFUNCT_3, TARSKI, PARTFUN1, SEQ_1, FINSEQ_1, FINSEQ_2, RVSUM_1, NAT_1, MEASURE5, MEASURE6, FCONT_1, ABSVALUE, FUNCT_1, XREAL_0, XBOOLE_1, XCMPLX_0, XCMPLX_1; schemes NAT_1; begin :: Some useful properties of n-tuples_on REAL reserve a,b,r,s,x0,x for Real; reserve f,g for PartFunc of REAL,REAL; reserve X,Y for set; reserve k for Nat; theorem Th1: for a, b being real number holds max(a,b) >= min(a,b) proof let a, b be real number; per cases by SQUARE_1:38; suppose min(a,b)=a; hence thesis by SQUARE_1:46; suppose min(a,b)=b; hence thesis by SQUARE_1:46; end; theorem Th2: for n being Nat, R1,R2 being Element of n-tuples_on REAL, r1,r2 being Real holds mlt(R1^<*r1*>,R2^<*r2*>)=mlt(R1,R2)^<*r1*r2*> proof let n be Nat; let R1,R2 be Element of n-tuples_on REAL; let r1,r2 be Real; A1:mlt(R1^<*r1*>,R2^<*r2*>) is Element of (n+1)-tuples_on REAL proof A2: len (R1^<*r1*>) = len R1 + 1 by FINSEQ_2:19 .= n+1 by FINSEQ_2:109 .= len R2 + 1 by FINSEQ_2:109 .= len (R2^<*r2*>) by FINSEQ_2:19; len(mlt(R1^<*r1*>,R2^<*r2*>)) =len(multreal.:(R1^<*r1*>,R2^<*r2*>)) by RVSUM_1:def 9 .= len (R1^<*r1*>) by A2,FINSEQ_2:86 .= len R1 + 1 by FINSEQ_2:19 .= n+1 by FINSEQ_2:109; hence thesis by FINSEQ_2:110; end; A3:mlt(R1,R2)^<*r1*r2*> is Element of (n+1)-tuples_on REAL proof A4: len R1 = n by FINSEQ_2:109 .= len R2 by FINSEQ_2:109; len(mlt(R1,R2))=len(multreal.:(R1,R2)) by RVSUM_1:def 9 .= len R1 by A4,FINSEQ_2:86 .= n by FINSEQ_2:109; then len(mlt(R1,R2)^<*r1*r2*>)= n+1 by FINSEQ_2:19; hence thesis by FINSEQ_2:110; end; for k being Nat st k in Seg (n+1) holds mlt(R1^<*r1*>,R2^<*r2*>).k = (mlt(R1,R2)^<*r1*r2*>).k proof let k be Nat such that A5: k in Seg (n+1); A6: 1<=k & k<=n+1 by A5,FINSEQ_1:3; now per cases by A6,REAL_1:def 5; suppose k<n+1; then 1<=k & k<=n by A5,FINSEQ_1:3,NAT_1:38; then A7: k in Seg n by FINSEQ_1:3; then k in Seg len R1 & k in Seg len R2 by FINSEQ_2:109; then k in dom R1 & k in dom R2 by FINSEQ_1:def 3; then A8: (R1^<*r1*>).k = R1.k & (R2^<*r2*>).k = R2.k by FINSEQ_1:def 7; k in Seg len (mlt(R1^<*r1*>,R2^<*r2*>)) by A1,A5,FINSEQ_2:109; then k in dom(mlt(R1^<*r1*>,R2^<*r2*>)) by FINSEQ_1:def 3; then A9: mlt(R1^<*r1*>,R2^<*r2*>).k = (R1.k)*(R2.k) by A8,RVSUM_1:86; n+1 = len (mlt(R1,R2)) + 1 by FINSEQ_2:109; then len (mlt(R1,R2)) = n+1-1 by XCMPLX_1:26 .= n by XCMPLX_1:26; then A10: k in dom mlt(R1,R2) by A7,FINSEQ_1:def 3; then (mlt(R1,R2)^<*r1*r2*>).k = mlt(R1,R2).k by FINSEQ_1:def 7; hence thesis by A9,A10,RVSUM_1:86; suppose A11:k=n+1; then k=len R1+1 & k=len R2+1 by FINSEQ_2:109; then A12: (R1^<*r1*>).k=r1 & (R2^<*r2*>).k=r2 by FINSEQ_1:59; k in Seg len (mlt(R1^<*r1*>,R2^<*r2*>)) by A1,A5,FINSEQ_2:109; then k in dom(mlt(R1^<*r1*>,R2^<*r2*>)) by FINSEQ_1:def 3; then A13: mlt(R1^<*r1*>,R2^<*r2*>).k = r1*r2 by A12,RVSUM_1:86; n+1 = len (mlt(R1,R2)) + 1 by FINSEQ_2:109; hence thesis by A11,A13,FINSEQ_1:59; end; hence thesis; end; hence thesis by A1,A3,FINSEQ_2:139; end; theorem Th3: for n being Nat, R being Element of n-tuples_on REAL st Sum R=0 & (for i being Nat st i in dom R holds 0 <= R.i) holds for i being Nat st i in dom R holds R.i = 0 proof let n be Nat, R be Element of n-tuples_on REAL such that A1:Sum R=0 & (for i being Nat st i in dom R holds 0 <= R.i); given k being Nat such that A2:k in dom R & R.k <> 0; 0 <= R.k by A1,A2; hence contradiction by A1,A2,RVSUM_1:115; end; theorem Th4: for n being Nat, R being Element of n-tuples_on REAL st (for i being Nat st i in dom R holds 0 = R.i) holds R = n |-> (0 qua Real) proof let n be Nat, R be Element of n-tuples_on REAL such that A1:for i being Nat st i in dom R holds 0 = R.i; A2:len R = n by FINSEQ_2:109 .= len (n |-> 0) by FINSEQ_2:69; for k st 1 <= k & k <= len R holds R.k = (n |-> 0).k proof let k such that A3: 1 <= k & k <= len R; A4: k in Seg len R by A3,FINSEQ_1:3; then k in dom R by FINSEQ_1:def 3; then A5: R.k = 0 by A1; k in Seg n by A4,FINSEQ_2:109; hence thesis by A5,FINSEQ_2:70; end; hence thesis by A2,FINSEQ_1:18; end; theorem Th5: for n being Nat, R being Element of n-tuples_on REAL holds mlt(n |-> (0 qua Real),R) = n |-> (0 qua Real) proof let n be Nat, R be Element of n-tuples_on REAL; A1:len (n |-> (0 qua Real)) = n by FINSEQ_2:69 .= len R by FINSEQ_2:109; A2:len(mlt(n |-> (0 qua Real),R)) =len(multreal.:(n |-> (0 qua Real),R)) by RVSUM_1:def 9 .=len (n |-> (0 qua Real)) by A1,FINSEQ_2:86 .=n by FINSEQ_2:109; A3:len (n |-> (0 qua Real)) = n by FINSEQ_2:69; for k st 1 <= k & k <= len mlt(n |-> (0 qua Real),R) holds mlt(n |-> (0 qua Real),R).k = (n |-> (0 qua Real)).k proof let k such that A4: 1 <= k & k <= len mlt(n |-> (0 qua Real),R); A5: k in Seg len mlt(n |-> (0 qua Real),R) by A4,FINSEQ_1:3; mlt(n |-> (0 qua Real),R).k = (n |-> (0 qua Real)).k*R.k by RVSUM_1:87 .=0*R.k by A2,A5,FINSEQ_2:70; hence thesis by A2,A5,FINSEQ_2:70; end; hence thesis by A2,A3,FINSEQ_1:18; end; begin :: Convex and strictly convex functions definition let f, X; pred f is_strictly_convex_on X means :Def1: X c= dom f & for p being Real st 0<p & p<1 holds for r,s being Real st r in X & s in X & p*r + (1-p)*s in X & r <> s holds f.(p*r + (1-p)*s) < p*f.r + (1-p)*f.s; end; theorem Th6: f is_strictly_convex_on X implies f is_convex_on X proof assume A1:f is_strictly_convex_on X; then A2:X c= dom f & for p being Real st 0<p & p<1 holds for r,s be Real st r in X & s in X & p*r + (1-p)*s in X & r <> s holds f.(p*r + (1-p)*s) < p*f.r + (1-p)*f.s by Def1; for p being Real st 0<=p & p<=1 holds for r,s being Real st r in X & s in X & p*r + (1-p)*s in X holds f.(p*r + (1-p)*s) <= p*f.r + (1-p)*f.s proof let p be Real; assume A3:0<=p & p<=1; for r,s being Real st r in X & s in X & p*r+(1-p)*s in X holds f.(p*r + (1-p)*s) <= p*f.r + (1-p)*f.s proof let r,s be Real; assume A4:r in X & s in X & p*r+(1-p)*s in X; now per cases by A3,REAL_1:def 5; suppose p=0; hence f.(p*r + (1-p)*s) <= p*f.r + (1-p)*f.s; suppose p=1; hence f.(p*r + (1-p)*s) <= p*f.r + (1-p)*f.s; suppose A5:0<p & p<1; now per cases; suppose A6:r=s; then A7: f.(p*r+(1-p)*s) = f.(1*r-p*r+p*r) by XCMPLX_1:40 .=f.(r-(p*r-p*r)) by XCMPLX_1:37 .=f.r by XCMPLX_1:17; p*f.r + (1-p)*f.s = 1*f.r-p*f.r+p*f.r by A6,XCMPLX_1:40 .=f.r-(p*f.r-p*f.r) by XCMPLX_1:37; hence f.(p*r + (1-p)*s) <= p*f.r + (1-p)*f.s by A7,XCMPLX_1:17; suppose r<>s; hence thesis by A1,A4,A5,Def1; end; hence thesis; end; hence thesis; end; hence thesis; end; hence thesis by A2,RFUNCT_3:def 13; end; theorem for a,b be Real, f be PartFunc of REAL,REAL holds f is_strictly_convex_on [.a,b.] iff [.a,b.] c= dom f & for p be Real st 0<p & p<1 holds for r,s be Real st r in [.a,b.] & s in [.a,b.] & r <> s holds f.(p*r+(1-p)*s) < p*f.r + (1-p)*f.s proof let a,b be Real, f be PartFunc of REAL,REAL; set ab = {r where r is Real: a<=r & r<=b}; A1: [.a,b.]= ab by RCOMP_1:def 1; thus f is_strictly_convex_on [.a,b.] implies [.a,b.] c= dom f & for p be Real st 0<p & p<1 holds for x,y be Real st x in [.a,b.] & y in [.a,b.] & x <> y holds f.(p*x + (1-p)*y) < p*f.x + (1-p)*f.y proof assume A2: f is_strictly_convex_on [.a,b.]; hence [.a,b.] c= dom f by Def1; let p be Real; assume A3: 0<p & p<1; then A4: 0<=1-p by SQUARE_1:12; let x,y be Real; assume A5: x in [.a,b.] & y in [.a,b.] & x <> y; then A6: (ex r1 be Real st r1=x & a<=r1 & r1<=b) & ex r2 be Real st r2=y & a<=r2 & r2<=b by A1; then A7: p*a<=p*x & p*x<=p*b by A3,AXIOMS:25; A8: (1-p)*a<=(1-p)*y & (1-p)*y<=(1-p)*b by A4,A6,AXIOMS:25; p*a+(1-p)*a=p*a+(1*a-p*a) by XCMPLX_1:40 .=a by XCMPLX_1:27; then A9: a<=p*x+(1-p)*y by A7,A8,REAL_1:55; p*b+(1-p)*b=p*b+(1*b-p*b) by XCMPLX_1:40 .=b by XCMPLX_1:27; then p*x+(1-p)*y<=b by A7,A8,REAL_1:55; then p*x+(1-p)*y in ab by A9; hence thesis by A1,A2,A3,A5,Def1; end; assume A10: [.a,b.] c= dom f & for p be Real st 0<p & p<1 holds for x,y be Real st x in [.a,b.] & y in [.a,b.] & x <> y holds f.(p*x + (1-p)*y) < p*f.x + (1-p)*f.y; hence [.a,b.] c= dom f; let p be Real; assume A11: 0<p & p<1; let x,y be Real; assume x in [.a,b.] & y in [.a,b.] & p*x + (1-p)*y in [.a,b.]; hence thesis by A10,A11; end; theorem for X being set, f being PartFunc of REAL,REAL holds f is_convex_on X iff X c= dom f & for a,b,c being Real st a in X & b in X & c in X & a<b & b<c holds f.b <=((c-b)/(c-a))*f.a + ((b-a)/(c-a))*f.c proof let X be set, f be PartFunc of REAL,REAL; A1:f is_convex_on X implies X c= dom f & for a,b,c being Real st a in X & b in X & c in X & a<b & b<c holds f.b <=((c-b)/(c-a))*f.a + ((b-a)/(c-a))*f.c proof assume A2:f is_convex_on X; for a,b,c being Real st a in X & b in X & c in X & a < b & b < c holds f.b <=((c-b)/(c-a))*f.a + ((b-a)/(c-a))*f.c proof let a,b,c be Real; assume A3:a in X & b in X & c in X & a < b & b < c; then A4: c-b < c-a & 0 < c-b by REAL_2:105,SQUARE_1:11; then 0 < c-a by AXIOMS:22; then A5: 0 < (c-b)/(c-a) & (c-b)/(c-a) < 1 by A4,REAL_2:127,142; set p = (c-b)/(c-a); 1-p = (b-a)/(c-a) & p*a + (1-p)*c = b proof p+(b-a)/(c-a) = ((c-b)+(b-a))/(c-a) by XCMPLX_1:63 .= (c-a)/(c-a) by XCMPLX_1:39 .= 1 by A4,XCMPLX_1:60; hence 1-p = (b-a)/(c-a) by XCMPLX_1:26; then p*a + (1-p)*c = (a*(c-b))/(c-a)+c*((b-a)/(c-a)) by XCMPLX_1:75 .= (a*(c-b))/(c-a)+(c*(b-a))/(c-a) by XCMPLX_1:75 .= ((c-b)*a + (b-a)*c)/(c-a) by XCMPLX_1:63 .= ((c*a-b*a)+(b-a)*c)/(c-a) by XCMPLX_1:40 .= ((c*a-b*a)+(b*c-a*c))/(c-a) by XCMPLX_1:40 .= (b*c-b*a)/(c-a) by XCMPLX_1:39 .= b*(c-a)/(c-a) by XCMPLX_1:40; hence thesis by A4,XCMPLX_1:90; end; hence thesis by A2,A3,A5,RFUNCT_3:def 13; end; hence thesis by A2,RFUNCT_3:def 13; end; (X c= dom f & for a,b,c being Real st a in X & b in X & c in X & a<b & b<c holds f.b <=((c-b)/(c-a))*f.a + ((b-a)/(c-a))*f.c) implies f is_convex_on X proof assume that A6:X c= dom f and A7:for a,b,c being Real st a in X & b in X & c in X & a<b & b<c holds f.b <=((c-b)/(c-a))*f.a + ((b-a)/(c-a))*f.c; for p being Real st 0<=p & p<=1 holds for r,s being Real st r in X & s in X & p*r + (1-p)*s in X holds f.(p*r + (1-p)*s) <= p*f.r + (1-p)*f.s proof let p be Real; assume A8:0<=p & p<=1; for r,s being Real st r in X & s in X & p*r + (1-p)*s in X holds f.(p*r + (1-p)*s) <= p*f.r + (1-p)*f.s proof let r,s be Real; assume A9: r in X & s in X & p*r + (1-p)*s in X; f.(p*r + (1-p)*s) <= p*f.r + (1-p)*f.s proof now per cases by A8,REAL_1:def 5; suppose p=0; hence f.(p*r + (1-p)*s) <= p*f.r + (1-p)*f.s; suppose p=1; hence f.(p*r + (1-p)*s) <= p*f.r + (1-p)*f.s; suppose A10:0<p & p<1; then 1 < 1+p by REAL_1:69; then A11: 0 < 1-p & 1-p < 1 by A10,REAL_1:84,SQUARE_1:11; now per cases by REAL_1:def 5; suppose A12:r=s; then A13: p*r+(1-p)*s = 1*r-p*r+p*r by XCMPLX_1:40 .= r-(p*r-p*r) by XCMPLX_1:37 .= r by XCMPLX_1:17; p*f.r + (1-p)*f.s = 1*f.r-p*f.r+p*f.r by A12,XCMPLX_1:40 .= f.r-(p*f.r-p*f.r) by XCMPLX_1:37 .= f.r by XCMPLX_1:17; hence f.(p*r + (1-p)*s) <= p*f.r + (1-p)*f.s by A13; suppose r>s; then A14: r-s > 0 by SQUARE_1:11; set t = p*r + (1-p)*s; A15: t - s = p*r + ((1-p)*s - s) by XCMPLX_1:29 .=p*r + (1*s - p*s - s) by XCMPLX_1:40 .=p*r + (-p*s + s - s) by XCMPLX_0:def 8 .=p*r + (-p*s) by XCMPLX_1:26 .=p*r - p*s by XCMPLX_0:def 8 .=p*(r-s) by XCMPLX_1:40; then t - s > 0 by A10,A14,REAL_2:122; then A16: s < t by REAL_2:106; A17: r - t = 1*r - p*r - (1-p)*s by XCMPLX_1:36 .= (1-p)*r - (1-p)*s by XCMPLX_1:40 .= (1-p)*(r-s) by XCMPLX_1:40; then r - t > 0 by A11,A14,REAL_2:122; then A18: t < r by REAL_2:106; (r-t)/(r-s)=(1-p) & (t-s)/(r-s)=p by A14,A15,A17,XCMPLX_1:90 ; hence f.(p*r + (1-p)*s) <= p*f.r + (1-p)*f.s by A7,A9,A16,A18; suppose r<s; then A19: s-r > 0 by SQUARE_1:11; set t = p*r + (1-p)*s; A20: t - r = p*r - 1*r + (1-p)*s by XCMPLX_1:29 .= (p-1)*r + (1-p)*s by XCMPLX_1:40 .= -(1-p)*r + (1-p)*s by XCMPLX_1:186 .= (1-p)*s - (1-p)*r by XCMPLX_0:def 8 .= (1-p)*(s-r) by XCMPLX_1:40; then t - r > 0 by A11,A19,REAL_2:122; then A21: r < t by REAL_2:106; A22: s - t = 1*s - (1-p)*s - p*r by XCMPLX_1:36 .= (1-(1-p))*s - p*r by XCMPLX_1:40 .= (1-1+p)*s - p*r by XCMPLX_1:37 .= p*(s-r) by XCMPLX_1:40; then s - t > 0 by A10,A19,REAL_2:122; then A23: t < s by REAL_2:106; (s-t)/(s-r)=p & (t-r)/(s-r)=1-p by A19,A20,A22,XCMPLX_1:90; hence thesis by A7,A9,A21,A23; end; hence thesis; end; hence thesis; end; hence thesis; end; hence thesis; end; hence thesis by A6,RFUNCT_3:def 13; end; hence thesis by A1; end; theorem for X being set, f being PartFunc of REAL,REAL holds f is_strictly_convex_on X iff X c= dom f & for a,b,c being Real st a in X & b in X & c in X & a<b & b<c holds f.b < ((c-b)/(c-a))*f.a + ((b-a)/(c-a))*f.c proof let X be set; let f be PartFunc of REAL,REAL; A1:f is_strictly_convex_on X implies X c= dom f & for a,b,c being Real st a in X & b in X & c in X & a<b & b<c holds f.b < ((c-b)/(c-a))*f.a + ((b-a)/(c-a))*f.c proof assume A2:f is_strictly_convex_on X; for a,b,c being Real st a in X & b in X & c in X & a < b & b < c holds f.b <((c-b)/(c-a))*f.a + ((b-a)/(c-a))*f.c proof let a,b,c be Real; assume A3:a in X & b in X & c in X & a < b & b < c; then A4: c-b < c-a & 0 < c-b by REAL_2:105,SQUARE_1:11; then 0 < c-a by AXIOMS:22; then A5: 0 < (c-b)/(c-a) & (c-b)/(c-a) < 1 by A4,REAL_2:127,142; set p = (c-b)/(c-a); 1-p = (b-a)/(c-a) & p*a + (1-p)*c = b proof p+(b-a)/(c-a) = ((c-b)+(b-a))/(c-a) by XCMPLX_1:63 .= (c-a)/(c-a) by XCMPLX_1:39 .= 1 by A4,XCMPLX_1:60; hence 1-p = (b-a)/(c-a) by XCMPLX_1:26; then p*a + (1-p)*c = (a*(c-b))/(c-a)+c*((b-a)/(c-a)) by XCMPLX_1:75 .= (a*(c-b))/(c-a)+(c*(b-a))/(c-a) by XCMPLX_1:75 .= ((c-b)*a + (b-a)*c)/(c-a) by XCMPLX_1:63 .= ((c*a-b*a)+(b-a)*c)/(c-a) by XCMPLX_1:40 .= ((c*a-b*a)+(b*c-a*c))/(c-a) by XCMPLX_1:40 .= (b*c-b*a)/(c-a) by XCMPLX_1:39 .= b*(c-a)/(c-a) by XCMPLX_1:40; hence thesis by A4,XCMPLX_1:90; end; hence thesis by A2,A3,A5,Def1; end; hence thesis by A2,Def1; end; (X c= dom f & for a,b,c being Real st a in X & b in X & c in X & a<b & b<c holds f.b < ((c-b)/(c-a))*f.a + ((b-a)/(c-a))*f.c) implies f is_strictly_convex_on X proof assume that A6:X c= dom f and A7:for a,b,c being Real st a in X & b in X & c in X & a<b & b<c holds f.b < ((c-b)/(c-a))*f.a + ((b-a)/(c-a))*f.c; for p being Real st 0<p & p<1 holds for r,s being Real st r in X & s in X & p*r + (1-p)*s in X & r <> s holds f.(p*r + (1-p)*s) < p*f.r + (1-p)*f.s proof let p be Real; assume A8:0<p & p<1; for r,s being Real st r in X & s in X & p*r + (1-p)*s in X & r <> s holds f.(p*r + (1-p)*s) < p*f.r + (1-p)*f.s proof let r,s be Real; assume A9: r in X & s in X & p*r + (1-p)*s in X & r <> s; f.(p*r + (1-p)*s) < p*f.r + (1-p)*f.s proof now per cases by A8; suppose A10:0<p & p<1; then 1 < 1+p by REAL_1:69; then A11: 0 < 1-p & 1-p < 1 by A10,REAL_1:84,SQUARE_1:11; now per cases by A9,REAL_1:def 5; suppose r>s; then A12: r-s > 0 by SQUARE_1:11; set t = p*r + (1-p)*s; A13: t - s = p*r + ((1-p)*s - s) by XCMPLX_1:29 .=p*r + (1*s - p*s - s) by XCMPLX_1:40 .=p*r + (-p*s + s - s) by XCMPLX_0:def 8 .=p*r + (-p*s) by XCMPLX_1:26 .=p*r - p*s by XCMPLX_0:def 8 .=p*(r-s) by XCMPLX_1:40; then t - s > 0 by A10,A12,REAL_2:122; then A14: s < t by REAL_2:106; A15: r - t = 1*r - p*r - (1-p)*s by XCMPLX_1:36 .= (1-p)*r - (1-p)*s by XCMPLX_1:40 .= (1-p)*(r-s) by XCMPLX_1:40; then r - t > 0 by A11,A12,REAL_2:122; then A16: t < r by REAL_2:106; (r-t)/(r-s)=(1-p) & (t-s)/(r-s)=p by A12,A13,A15,XCMPLX_1:90 ; hence f.(p*r + (1-p)*s) < p*f.r + (1-p)*f.s by A7,A9,A14,A16; suppose r<s; then A17: s-r > 0 by SQUARE_1:11; set t = p*r + (1-p)*s; A18: t - r = p*r - 1*r + (1-p)*s by XCMPLX_1:29 .= (p-1)*r + (1-p)*s by XCMPLX_1:40 .= -(1-p)*r + (1-p)*s by XCMPLX_1:186 .= (1-p)*s - (1-p)*r by XCMPLX_0:def 8 .= (1-p)*(s-r) by XCMPLX_1:40; then t - r > 0 by A11,A17,REAL_2:122; then A19: r < t by REAL_2:106; A20: s - t = 1*s - (1-p)*s - p*r by XCMPLX_1:36 .= (1-(1-p))*s - p*r by XCMPLX_1:40 .= (1-1+p)*s - p*r by XCMPLX_1:37 .= p*(s-r) by XCMPLX_1:40; then s - t > 0 by A10,A17,REAL_2:122; then A21: t < s by REAL_2:106; (s-t)/(s-r)=p & (t-r)/(s-r)=1-p by A17,A18,A20,XCMPLX_1:90; hence thesis by A7,A9,A19,A21; end; hence thesis; end; hence thesis; end; hence thesis; end; hence thesis; end; hence thesis by A6,Def1; end; hence thesis by A1; end; theorem f is_strictly_convex_on X & Y c= X implies f is_strictly_convex_on Y proof assume A1:f is_strictly_convex_on X & Y c= X; then X c= dom f & for p being Real st 0<p & p<1 holds for r,s being Real st r in X & s in X & p*r + (1-p)*s in X & r <> s holds f.(p*r + (1-p)*s) < p*f.r + (1-p)*f.s by Def1; then A2:Y c= dom f by A1,XBOOLE_1:1; for p being Real st 0<p & p<1 holds for r,s being Real st r in Y & s in Y & p*r + (1-p)*s in Y & r <> s holds f.(p*r + (1-p)*s) < p*f.r + (1-p)*f.s by A1,Def1; hence thesis by A2,Def1; end; Lm1: (1-a)*b+a*b = b & b-(1-a)*b=a*b & b-a*b=(1-a)*b proof (1-a)*b+a*b = 1*b-a*b+a*b by XCMPLX_1:40 .= b-(a*b-a*b) by XCMPLX_1:37; hence (1-a)*b+a*b = b by XCMPLX_1:17; hence thesis by XCMPLX_1:26; end; Lm2: f is_strictly_convex_on X implies f-r is_strictly_convex_on X proof assume A1:f is_strictly_convex_on X; then X c= dom f & for p being Real st 0<p & p<1 holds for r,s being Real st r in X & s in X & p*r + (1-p)*s in X & r <> s holds f.(p*r + (1-p)*s) < p*f.r + (1-p)*f.s by Def1; then A2:X c= dom(f-r) by RFUNCT_3:def 12; for p being Real st 0<p & p<1 holds for t,s being Real st t in X & s in X & p*t + (1-p)*s in X & t <> s holds (f-r).(p*t + (1-p)*s) < p*(f-r).t + (1-p)*(f-r).s proof let p be Real; assume A3:0<p & p<1; for t,s being Real st t in X & s in X & p*t + (1-p)*s in X & t <> s holds (f-r).(p*t + (1-p)*s) < p*(f-r).t + (1-p)*(f-r).s proof let t,s be Real; assume A4:t in X & s in X & p*t + (1-p)*s in X & t <> s; then f.(p*t + (1-p)*s) < p*f.t + (1-p)*f.s by A1,A3,Def1; then A5: f.(p*t + (1-p)*s)-r < p*f.t + (1-p)*f.s - r by REAL_1:54; (f-r).t = f.t-r & (f-r).s = f.s-r & (f-r).(p*t + (1-p)*s) = f.(p*t + (1-p)*s)-r by A2,A4,RFUNCT_3:def 12; then p*(f-r).t + (1-p)*(f-r).s = p*f.t-p*r + (1-p)*(f.s-r) by XCMPLX_1:40 .=(1-p)*(f.s-r)-p*r+p*f.t by XCMPLX_1:30 .=(1-p)*f.s-(1-p)*r-p*r+p*f.t by XCMPLX_1:40 .=(1-p)*f.s-((1-p)*r+p*r)+p*f.t by XCMPLX_1:36 .=(1-p)*f.s-r+p*f.t by Lm1 .=p*f.t + (1-p)*f.s - r by XCMPLX_1:29; hence thesis by A2,A4,A5,RFUNCT_3:def 12; end; hence thesis; end; hence thesis by A2,Def1; end; theorem f is_strictly_convex_on X iff f-r is_strictly_convex_on X proof A1:dom((f-r)-(-r))=dom(f-r) by RFUNCT_3:def 12; A2:dom(f-r) = dom f by RFUNCT_3:def 12; for x being Element of REAL st x in dom (f-r) holds ((f-r)-(-r)).x = f.x proof let x be Element of REAL; assume A3:x in dom (f-r); then ((f-r)-(-r)).x=(f-r).x-(-r) by A1,RFUNCT_3:def 12 .=(f-r).x+r by XCMPLX_1:151 .=f.x-r+r by A3,RFUNCT_3:def 12 .= f.x-(r-r) by XCMPLX_1:37; hence thesis by XCMPLX_1:17; end; then (f-r)-(-r) = f by A1,A2,PARTFUN1:34; hence thesis by Lm2; end; Lm3: 0<r implies (f is_strictly_convex_on X implies r(#)f is_strictly_convex_on X) proof assume A1:0<r; assume A2:f is_strictly_convex_on X; then X c= dom f & for p being Real st 0<p & p<1 holds for r,s being Real st r in X & s in X & p*r + (1-p)*s in X & r <> s holds f.(p*r + (1-p)*s) < p*f.r + (1-p)*f.s by Def1; then A3:X c= dom(r(#)f) by SEQ_1:def 6; for p being Real st 0<p & p<1 holds for t,s being Real st t in X & s in X & p*t + (1-p)*s in X & t <> s holds (r(#)f).(p*t + (1-p)*s) < p*(r(#)f).t + (1-p)*(r(#)f).s proof let p be Real; assume A4:0<p & p<1; for t,s being Real st t in X & s in X & p*t + (1-p)*s in X & t <> s holds (r(#)f).(p*t + (1-p)*s) < p*(r(#)f).t + (1-p)*(r(#)f).s proof let t,s be Real; assume A5:t in X & s in X & p*t + (1-p)*s in X & t <> s; then f.(p*t + (1-p)*s) < p*f.t + (1-p)*f.s by A2,A4,Def1; then r*(f.(p*t + (1-p)*s)) < r*(p*f.t + (1-p)*f.s) by A1,REAL_1:70; then r*(f.(p*t + (1-p)*s)) < p*f.t*r + (1-p)*f.s*r by XCMPLX_1:8; then A6: r*(f.(p*t + (1-p)*s)) < p*(r*f.t) + (1-p)*f.s*r by XCMPLX_1:4; (r(#)f).(p*t + (1-p)*s) = r*(f.(p*t + (1-p)*s)) & p*(r(#)f).t=p*(r*f.t) & (1-p)*(r(#) f).s = (1-p)*(r*f.s) by A3,A5,SEQ_1:def 6; hence thesis by A6,XCMPLX_1:4; end; hence thesis; end; hence thesis by A3,Def1; end; theorem Th12: 0<r implies (f is_strictly_convex_on X iff r(#)f is_strictly_convex_on X) proof assume A1:0<r; then A2:0 < 1/r by REAL_2:127; A3:dom((1/r)(#)(r(#)f))=dom(r(#)f) & dom(r(#)f) = dom f by SEQ_1:def 6; for x being Element of REAL st x in dom(r(#)f) holds ((1/r)(#)(r(#)f)).x = f.x proof let x be Element of REAL; assume A4:x in dom (r(#)f); then ((1/r)(#)(r(#)f)).x = (1/r)*(r(#)f).x by A3,SEQ_1:def 6 .= (1/r)*(r*f.x) by A4,SEQ_1:def 6 .= (1/r)*r*f.x by XCMPLX_1:4 .= 1*f.x by A1,XCMPLX_1:107; hence thesis; end; then (1/r)(#)(r(#)f)=f by A3,PARTFUN1:34; hence thesis by A1,A2,Lm3; end; theorem Th13: f is_strictly_convex_on X & g is_strictly_convex_on X implies f+g is_strictly_convex_on X proof assume A1:f is_strictly_convex_on X & g is_strictly_convex_on X; then A2:X c= dom f & for p be Real st 0<p & p<1 holds for r,s be Real st r in X & s in X & p*r + (1-p)*s in X & r <> s holds f.(p*r + (1-p)*s) < p*f.r + (1-p)*f.s by Def1; X c= dom g & for p be Real st 0<p & p<1 holds for r,s be Real st r in X & s in X & p*r + (1-p)*s in X & r <> s holds g.(p*r + (1-p)*s) < p*g.r + (1-p)*g.s by A1,Def1; then X c= dom f /\ dom g by A2,XBOOLE_1:19; then A3:X c= dom (f+g) by SEQ_1:def 3; for p be Real st 0<p & p<1 holds for r,s be Real st r in X & s in X & p*r + (1-p)*s in X & r <> s holds (f+g).(p*r + (1-p)*s) < p*(f+g).r + (1-p)*(f+g).s proof let p be Real; assume A4:0<p & p<1; for r,s be Real st r in X & s in X & p*r + (1-p)*s in X & r <> s holds (f+g).(p*r + (1-p)*s) < p*(f+g).r + (1-p)*(f+g).s proof let r,s be Real; assume A5:r in X & s in X & p*r + (1-p)*s in X & r <> s; then A6: f.(p*r + (1-p)*s) < p*f.r + (1-p)*f.s & g.(p*r + (1-p)*s) < p*g.r + (1-p)*g.s by A1,A4,Def1; A7: (p*f.r+(1-p)*f.s)+(p*g.r+(1-p)*g.s) = p*f.r+ ((p*g.r+(1-p)*g.s)+(1-p)*f.s) by XCMPLX_1:1 .= p*f.r+ (p*g.r+ ((1-p)*g.s+(1-p)*f.s)) by XCMPLX_1:1 .= p*f.r+p*g.r+ ((1-p)*g.s+(1-p)*f.s) by XCMPLX_1:1 .= p*(f.r+g.r) + ((1-p)*g.s+(1-p)*f.s) by XCMPLX_1:8 .= p*(f.r+g.r) + (1-p)*(f.s+g.s) by XCMPLX_1:8; (f+g).(p*r + (1-p)*s) = f.(p*r+(1-p)*s)+g.(p*r+(1-p)*s) & (f+g).r = (f.r+g.r) & (f+g).s = (f.s+g.s) by A3,A5,SEQ_1:def 3; hence thesis by A6,A7,REAL_1:67; end; hence thesis; end; hence thesis by A3,Def1; end; theorem Th14: f is_strictly_convex_on X & g is_convex_on X implies f+g is_strictly_convex_on X proof assume A1:f is_strictly_convex_on X & g is_convex_on X; then X c= dom f & X c= dom g by Def1,RFUNCT_3:def 13; then X c= dom f /\ dom g by XBOOLE_1:19; then A2:X c= dom (f+g) by SEQ_1:def 3; for p being Real st 0<p & p<1 holds for r,s being Real st r in X & s in X & p*r + (1-p)*s in X & r <> s holds (f+g).(p*r + (1-p)*s) < p*(f+g).r + (1-p)*(f+g).s proof let p be Real; assume A3:0<p & p<1; for r,s being Real st r in X & s in X & p*r + (1-p)*s in X & r <> s holds (f+g).(p*r + (1-p)*s) < p*(f+g).r + (1-p)*(f+g).s proof let r,s be Real; assume A4:r in X & s in X & p*r + (1-p)*s in X & r <> s; then A5: f.(p*r+(1-p)*s) < p*f.r+(1-p)*f.s & g.(p*r+(1-p)*s) <= p*g.r+(1-p)*g.s by A1,A3,Def1,RFUNCT_3:def 13; A6: (p*f.r+(1-p)*f.s)+(p*g.r+(1-p)*g.s) = p*f.r+ ((p*g.r+(1-p)*g.s)+(1-p)*f.s) by XCMPLX_1:1 .= p*f.r+ (p*g.r+ ((1-p)*g.s+(1-p)*f.s)) by XCMPLX_1:1 .= p*f.r+p*g.r+ ((1-p)*g.s+(1-p)*f.s) by XCMPLX_1:1 .= p*(f.r+g.r) + ((1-p)*g.s+(1-p)*f.s) by XCMPLX_1:8 .= p*(f.r+g.r) + (1-p)*(f.s+g.s) by XCMPLX_1:8; (f+g).(p*r + (1-p)*s) = f.(p*r+(1-p)*s)+g.(p*r+(1-p)*s) & (f+g).r = (f.r+g.r) & (f+g).s = (f.s+g.s) by A2,A4,SEQ_1:def 3; hence thesis by A5,A6,REAL_1:67; end; hence thesis; end; hence thesis by A2,Def1; end; theorem f is_strictly_convex_on X & g is_strictly_convex_on X & ((a>0 & b>=0) or (a>=0 & b>0)) implies a(#)f+b(#)g is_strictly_convex_on X proof assume A1:f is_strictly_convex_on X & g is_strictly_convex_on X & ((a>0 & b>=0) or (a>=0 & b>0)); now per cases by A1; suppose a>0 & b>0; then a(#)f is_strictly_convex_on X & b(#)g is_strictly_convex_on X by A1, Th12; hence thesis by Th13; suppose A2:a>0 & b=0; then A3: a(#)f is_strictly_convex_on X by A1,Th12; g is_convex_on X & X c= dom g by A1,Def1,Th6; then b(#)g is_convex_on X by A2,RFUNCT_3:60; hence thesis by A3,Th14; suppose A4:a=0 & b>0; then A5: b(#)g is_strictly_convex_on X by A1,Th12; f is_convex_on X & X c= dom f by A1,Def1,Th6; then a(#)f is_convex_on X by A4,RFUNCT_3:60; hence thesis by A5,Th14; end; hence thesis; end; Lm4: for a,b,r be real number holds r*(a/b)=r*a/b proof let a,b,r be real number; thus r*(a/b)=r*(a*b") by XCMPLX_0:def 9 .=r*a*b" by XCMPLX_1:4 .=r*a/b by XCMPLX_0:def 9; end; theorem Th16: f is_convex_on X iff X c= dom f & (for a,b,r st a in X & b in X & r in X & a < r & r < b holds (f.r-f.a)/(r-a) <= (f.b-f.a)/(b-a) & (f.b-f.a)/(b-a) <= (f.b-f.r)/(b-r)) proof A1:f is_convex_on X implies X c= dom f & (for a,b,r st a in X & b in X & r in X & a < r & r < b holds (f.r-f.a)/(r-a) <= (f.b-f.a)/(b-a) & (f.b-f.a)/(b-a) <= (f.b-f.r)/(b-r)) proof assume A2:f is_convex_on X; X c= dom f & (for a,b,r st a in X & b in X & r in X & a < r & r < b holds (f.r-f.a)/(r-a) <= (f.b-f.a)/(b-a) & (f.b-f.a)/(b-a) <= (f.b-f.r)/(b-r)) proof thus X c= dom f by A2,RFUNCT_3:def 13; (for a,b,r st a in X & b in X & r in X & a < r & r < b holds (f.r-f.a)/(r-a) <= (f.b-f.a)/(b-a) & (f.b-f.a)/(b-a) <= (f.b-f.r)/(b-r)) proof let a,b,r; assume A3:a in X & b in X & r in X & a < r & r < b; then A4: b-r < b-a & 0 < b-r & 0 < r-a by REAL_2:105,SQUARE_1:11; then A5: 0 < b-a by AXIOMS:22; then A6: 0 < (b-r)/(b-a) & (b-r)/(b-a) < 1 by A4,REAL_2:127,142; set p = (b-r)/(b-a); A7: 1-p = (r-a)/(b-a) & p*a + (1-p)*b = r proof p+(r-a)/(b-a) = ((b-r)+(r-a))/(b-a) by XCMPLX_1:63 .= (b-a)/(b-a) by XCMPLX_1:39 .= 1 by A4,XCMPLX_1:60; hence 1-p = (r-a)/(b-a) by XCMPLX_1:26; then p*a + (1-p)*b = (a*(b-r))/(b-a)+b*((r-a)/(b-a)) by XCMPLX_1:75 .= (a*(b-r))/(b-a)+(b*(r-a))/(b-a) by XCMPLX_1:75 .= ((b-r)*a + (r-a)*b)/(b-a) by XCMPLX_1:63 .= ((b*a-r*a)+(r-a)*b)/(b-a) by XCMPLX_1:40 .= ((b*a-r*a)+(r*b-a*b))/(b-a) by XCMPLX_1:40 .= (r*b-r*a)/(b-a) by XCMPLX_1:39 .= r*(b-a)/(b-a) by XCMPLX_1:40; hence thesis by A4,XCMPLX_1:90; end; then f.(p*a+(1-p)*b) <= p*f.a + (1-p)*f.b by A2,A3,A6,RFUNCT_3:def 13; then A8: (b-a)*f.r<=(b-a)*((b-r)/(b-a)*f.a + (r-a)/(b-a)*f.b) by A5,A7,AXIOMS :25; A9: (b-a)*((b-r)/(b-a)*f.a + (r-a)/(b-a)*f.b) = (b-a)*((b-r)/(b-a)*f.a) + (b-a)*((r-a)/(b-a)*f.b) by XCMPLX_1:8 .= (b-a)*((b-r)/(b-a))*f.a + (b-a)*((r-a)/(b-a)*f.b) by XCMPLX_1:4 .= (b-a)*((b-r)/(b-a))*f.a + (b-a)*((r-a)/(b-a))*f.b by XCMPLX_1:4 .= (b-r)*f.a + (b-a)*((r-a)/(b-a))*f.b by A4,XCMPLX_1:88 .= (b-r)*f.a + (r-a)*f.b by A4,XCMPLX_1:88; then (b-a)*f.r <= ((b-a)-(r-a))*f.a + (r-a)*f.b by A8,XCMPLX_1:22; then (b-a)*f.r <= (b-a)*f.a - (r-a)*f.a + (r-a)*f.b by XCMPLX_1:40; then (b-a)*f.r <= (b-a)*f.a - ((r-a)*f.a - (r-a)*f.b) by XCMPLX_1:37; then (b-a)*f.r <= (b-a)*f.a + ((r-a)*f.b - (r-a)*f.a) by XCMPLX_1:38; then (b-a)*f.r - (b-a)*f.a <= (r-a)*f.b - (r-a)*f.a by REAL_1:86; then (b-a)*(f.r-f.a) <= (r-a)*f.b - (r-a)*f.a by XCMPLX_1:40; then (b-a)*(f.r-f.a) <= (r-a)*(f.b-f.a) by XCMPLX_1:40; hence (f.r-f.a)/(r-a) <= (f.b-f.a)/(b-a) by A4,A5,REAL_2:187; (b-a)*f.r <= (b-r)*f.a + ((r-b)+(b-a))*f.b by A8,A9,XCMPLX_1:39; then (b-a)*f.r <= (b-r)*f.a + ((b-a)-(b-r))*f.b by XCMPLX_1:38; then (b-a)*f.r <= (b-a)*f.b-(b-r)*f.b+(b-r)*f.a by XCMPLX_1:40; then (b-a)*f.r <= (b-a)*f.b - ((b-r)*f.b - (b-r)*f.a) by XCMPLX_1:37; then ((b-r)*f.b-(b-r)*f.a)+(b-a)*f.r <= (b-a)*f.b by REAL_1:84; then (b-r)*f.b-(b-r)*f.a <= (b-a)*f.b-(b-a)*f.r by REAL_1:84; then (b-r)*(f.b-f.a) <= (b-a)*f.b-(b-a)*f.r by XCMPLX_1:40; then (b-r)*(f.b-f.a) <= (b-a)*(f.b-f.r) by XCMPLX_1:40; hence thesis by A4,A5,REAL_2:187; end; hence thesis; end; hence thesis; end; X c= dom f & (for a,b,r st a in X & b in X & r in X & a < r & r < b holds (f.r-f.a)/(r-a) <= (f.b-f.a)/(b-a) & (f.b-f.a)/(b-a) <= (f.b-f.r)/(b-r)) implies f is_convex_on X proof assume A10:X c= dom f & (for a,b,r st a in X & b in X & r in X & a < r & r < b holds (f.r-f.a)/(r-a) <= (f.b-f.a)/(b-a) & (f.b-f.a)/(b-a) <= (f.b-f.r)/(b-r)); for p being Real st 0<=p & p<=1 holds for r,s be Real st r in X & s in X & p*r + (1-p)*s in X holds f.(p*r + (1-p)*s) <= p*f.r + (1-p)*f.s proof let p be Real; assume A11:0<=p & p<=1; for s,t being Real st s in X & t in X & p*s+(1-p)*t in X holds f.(p*s+(1-p)*t) <= p*f.s + (1-p)*f.t proof let s,t be Real; assume A12:s in X & t in X & p*s+(1-p)*t in X; now per cases by A11,REAL_1:def 5; suppose p=0; hence thesis; suppose p=1; hence thesis; suppose A13:0<p & p<1; then A14: 1-p > 0 by SQUARE_1:11; now per cases by REAL_1:def 5; suppose A15:s=t; then p*s+(1-p)*t = s by Lm1; hence thesis by A15,Lm1; suppose s<t; then A16: t-s > 0 by SQUARE_1:11; A17: t-(p*s+(1-p)*t) = t-(1-p)*t - p*s by XCMPLX_1:36 .=p*t-p*s by Lm1 .=p*(t-s) by XCMPLX_1:40; then A18: t-(p*s+(1-p)*t) > 0 by A13,A16,REAL_2:122; then A19: (p*s+(1-p)*t) < t by REAL_2:106; A20: (p*s+(1-p)*t)-s = (1-p)*t+(p*s-s) by XCMPLX_1:29 .=(1-p)*t-(s-p*s) by XCMPLX_1:38 .=(1-p)*t-(1-p)*s by Lm1 .=(1-p)*(t-s) by XCMPLX_1:40; then A21: (p*s+(1-p)*t)-s > 0 by A14,A16,REAL_2:122; then (p*s+(1-p)*t) > s by REAL_2:106; then (f.(p*s+(1-p)*t)-f.s)/((p*s+(1-p)*t)-s) <= (f.t-f.s)/(t-s) & (f.t-f.s)/(t-s)<=(f.t-f.(p*s+(1-p)*t))/(t-(p*s+(1-p)*t)) by A10,A12,A19; then (f.(p*s+(1-p)*t)-f.s)/((p*s+(1-p)*t)-s) <= (f.t-f.(p*s+(1-p)*t))/(t-(p*s+(1-p)*t)) by AXIOMS:22; then (f.(p*s+(1-p)*t)-f.s)*(t-(p*s+(1-p)*t)) <= (f.t-f.(p*s+(1-p)*t))*((p*s+(1-p)*t)-s) by A18,A21,REAL_2:185; then (f.(p*s+(1-p)*t)-f.s)*(t-s)*p <= (f.t-f.(p*s+(1-p)*t))*((1-p)*(t-s)) by A17,A20,XCMPLX_1:4; then A22: (f.(p*s+(1-p)*t)-f.s)*(t-s)*p <= (f.t-f.(p*s+(1-p)*t))*(t-s)*(1-p) by XCMPLX_1:4; A23: (f.(p*s+(1-p)*t)-f.s)*(t-s)*p =((t-s)*f.(p*s+(1-p)*t)-(t-s)*f.s)*p by XCMPLX_1:40 .=p*((t-s)*f.(p*s+(1-p)*t))-p*((t-s)*f.s) by XCMPLX_1:40; (f.t-f.(p*s+(1-p)*t))*(t-s)*(1-p) =((t-s)*f.t-(t-s)*f.(p*s+(1-p)*t))*(1-p) by XCMPLX_1:40 .=(1-p)*((t-s)*f.t)-(1-p)*((t-s)*f.(p*s+(1-p)*t)) by XCMPLX_1:40; then p*((t-s)*f.(p*s+(1-p)*t))+(1-p)*((t-s)*f.(p*s+(1-p)*t)) <=(1-p)*((t-s)*f.t)+p*((t-s)*f.s) by A22,A23,REAL_2:169; then (t-s)*f.(p*s+(1-p)*t) <=(1-p)*((t-s)*f.t)+p*((t-s)*f.s) by Lm1; then (t-s)*f.(p*s+(1-p)*t) <=(1-p)*f.t*(t-s)+p*((t-s)*f.s) by XCMPLX_1:4; then (t-s)*f.(p*s+(1-p)*t) <=(1-p)*f.t*(t-s)+p*f.s*(t-s) by XCMPLX_1:4; then f.(p*s+(1-p)*t) <=((1-p)*f.t*(t-s)+p*f.s*(t-s))/(t-s) by A16,REAL_2:177; then f.(p*s+(1-p)*t) <=((1-p)*f.t*(t-s))/(t-s)+(p*f.s*(t-s))/(t-s) by XCMPLX_1:63; then f.(p*s+(1-p)*t) <=(1-p)*f.t+(p*f.s*(t-s))/(t-s) by A16,XCMPLX_1:90; hence thesis by A16,XCMPLX_1:90; suppose s>t; then A24: s-t > 0 by SQUARE_1:11; A25: s-(p*s+(1-p)*t) = s-p*s - (1-p)*t by XCMPLX_1:36 .=(1-p)*s-(1-p)*t by Lm1 .=(1-p)*(s-t) by XCMPLX_1:40; then A26: s-(p*s+(1-p)*t) > 0 by A14,A24,REAL_2:122; then A27: (p*s+(1-p)*t) < s by REAL_2:106; A28: (p*s+(1-p)*t)-t = p*s+((1-p)*t-t) by XCMPLX_1:29 .=p*s-(t-(1-p)*t) by XCMPLX_1:38 .=p*s-p*t by Lm1 .=p*(s-t) by XCMPLX_1:40; then A29: (p*s+(1-p)*t)-t > 0 by A13,A24,REAL_2:122; then (p*s+(1-p)*t) > t by REAL_2:106; then (f.(p*s+(1-p)*t)-f.t)/((p*s+(1-p)*t)-t) <= (f.s-f.t)/(s-t) & (f.s-f.t)/(s-t)<=(f.s-f.(p*s+(1-p)*t))/(s-(p*s+(1-p)*t)) by A10,A12,A27; then (f.(p*s+(1-p)*t)-f.t)/((p*s+(1-p)*t)-t) <= (f.s-f.(p*s+(1-p)*t))/(s-(p*s+(1-p)*t)) by AXIOMS:22; then (f.(p*s+(1-p)*t)-f.t)*(s-(p*s+(1-p)*t)) <= (f.s-f.(p*s+(1-p)*t))*((p*s+(1-p)*t)-t) by A26,A29,REAL_2:185; then (f.(p*s+(1-p)*t)-f.t)*(s-t)*(1-p) <= (f.s-f.(p*s+(1-p)*t))*(p*(s-t)) by A25,A28,XCMPLX_1:4; then A30: (f.(p*s+(1-p)*t)-f.t)*(s-t)*(1-p) <= (f.s-f.(p*s+(1-p)*t))*(s-t)*p by XCMPLX_1:4; A31: (f.(p*s+(1-p)*t)-f.t)*(s-t)*(1-p) =((s-t)*f.(p*s+(1-p)*t)-(s-t)*f.t)*(1-p) by XCMPLX_1:40 .=(1-p)*((s-t)*f.(p*s+(1-p)*t))-(1-p)*((s-t)*f.t) by XCMPLX_1:40; (f.s-f.(p*s+(1-p)*t))*(s-t)*p =((s-t)*f.s-(s-t)*f.(p*s+(1-p)*t))*p by XCMPLX_1:40 .=p*((s-t)*f.s)-p*((s-t)*f.(p*s+(1-p)*t)) by XCMPLX_1:40; then (1-p)*((s-t)*f.(p*s+(1-p)*t))+p*((s-t)*f.(p*s+(1-p)*t)) <=p*((s-t)*f.s)+(1-p)*((s-t)*f.t) by A30,A31,REAL_2:169; then (s-t)*f.(p*s+(1-p)*t) <=p*((s-t)*f.s)+(1-p)*((s-t)*f.t) by Lm1; then (s-t)*f.(p*s+(1-p)*t) <=p*f.s*(s-t)+(1-p)*((s-t)*f.t) by XCMPLX_1:4; then (s-t)*f.(p*s+(1-p)*t) <=p*f.s*(s-t)+(1-p)*f.t*(s-t) by XCMPLX_1:4; then f.(p*s+(1-p)*t) <=(p*f.s*(s-t)+(1-p)*f.t*(s-t))/(s-t) by A24,REAL_2:177; then f.(p*s+(1-p)*t) <=(p*f.s*(s-t))/(s-t)+((1-p)*f.t*(s-t))/(s-t) by XCMPLX_1:63; then f.(p*s+(1-p)*t) <=p*f.s+((1-p)*f.t*(s-t))/(s-t) by A24,XCMPLX_1:90; hence thesis by A24,XCMPLX_1:90; end; hence thesis; end; hence thesis; end; hence thesis; end; hence thesis by A10,RFUNCT_3:def 13; end; hence thesis by A1; end; theorem f is_strictly_convex_on X iff X c= dom f & (for a,b,r st a in X & b in X & r in X & a < r & r < b holds (f.r-f.a)/(r-a) < (f.b-f.a)/(b-a) & (f.b-f.a)/(b-a) < (f.b-f.r)/(b-r)) proof A1:f is_strictly_convex_on X implies X c= dom f & (for a,b,r st a in X & b in X & r in X & a < r & r < b holds (f.r-f.a)/(r-a) < (f.b-f.a)/(b-a) & (f.b-f.a)/(b-a) < (f.b-f.r)/(b-r)) proof assume A2:f is_strictly_convex_on X; X c= dom f & (for a,b,r st a in X & b in X & r in X & a < r & r < b holds (f.r-f.a)/(r-a) < (f.b-f.a)/(b-a) & (f.b-f.a)/(b-a) < (f.b-f.r)/(b-r)) proof (for a,b,r st a in X & b in X & r in X & a < r & r < b holds (f.r-f.a)/(r-a) < (f.b-f.a)/(b-a) & (f.b-f.a)/(b-a) < (f.b-f.r)/(b-r)) proof let a,b,r; assume A3:a in X & b in X & r in X & a < r & r < b; then A4: b-r < b-a & 0 < b-r & 0 < r-a by REAL_2:105,SQUARE_1:11; then A5: 0 < b-a by AXIOMS:22; then A6: 0 < (b-r)/(b-a) & (b-r)/(b-a) < 1 by A4,REAL_2:127,142; set p = (b-r)/(b-a); A7: 1-p = (r-a)/(b-a) & p*a + (1-p)*b = r proof p+(r-a)/(b-a) = ((b-r)+(r-a))/(b-a) by XCMPLX_1:63 .= (b-a)/(b-a) by XCMPLX_1:39 .= 1 by A4,XCMPLX_1:60; hence 1-p = (r-a)/(b-a) by XCMPLX_1:26; then p*a + (1-p)*b = (a*(b-r))/(b-a)+b*((r-a)/(b-a)) by XCMPLX_1:75 .= (a*(b-r))/(b-a)+(b*(r-a))/(b-a) by XCMPLX_1:75 .= ((b-r)*a + (r-a)*b)/(b-a) by XCMPLX_1:63 .= ((b*a-r*a)+(r-a)*b)/(b-a) by XCMPLX_1:40 .= ((b*a-r*a)+(r*b-a*b))/(b-a) by XCMPLX_1:40 .= (r*b-r*a)/(b-a) by XCMPLX_1:39 .= r*(b-a)/(b-a) by XCMPLX_1:40; hence thesis by A4,XCMPLX_1:90; end; then f.r < p*f.a + (1-p)*f.b by A2,A3,A6,Def1; then A8: f.r*(b-a) < (p*f.a + (1-p)*f.b)*(b-a) by A5,REAL_1:70; A9: (p*f.a+(1-p)*f.b)*(b-a)=(b-a)*(p*f.a)+(b-a)*((1-p)*f.b) by XCMPLX_1:8 .= (b-a)*p*f.a+(b-a)*((1-p)*f.b) by XCMPLX_1:4 .= (b-a)*p*f.a+(b-a)*(1-p)*f.b by XCMPLX_1:4 .= ((b-a)*(b-r)/(b-a))*f.a + ((b-a)*((r-a)/(b-a))*f.b) by A7,Lm4 .= ((b-r)*(b-a))/(b-a)*f.a + ((b-a)*(r-a)/(b-a))*f.b by Lm4 .= (b-r)*((b-a)/(b-a))*f.a + ((b-a)*(r-a)/(b-a))*f.b by Lm4 .= (b-r)*1*f.a + ((r-a)*(b-a))/(b-a)*f.b by A4,XCMPLX_1:60 .= (b-r)*f.a + (r-a)*((b-a)/(b-a))*f.b by Lm4 .= (b-r)*f.a + (r-a)*1*f.b by A4,XCMPLX_1:60; then f.r*(b-a) < ((b-a)-(r-a))*f.a + (r-a)*f.b by A8,XCMPLX_1:22; then f.r*(b-a) < (b-a)*f.a - (r-a)*f.a + (r-a)*f.b by XCMPLX_1:40; then f.r*(b-a) < (b-a)*f.a +(r-a)*f.b-(r-a)*f.a by XCMPLX_1:29; then f.r*(b-a) < (b-a)*f.a +((r-a)*f.b-(r-a)*f.a) by XCMPLX_1:29; then f.r*(b-a)-(b-a)*f.a < (r-a)*f.b-(r-a)*f.a by REAL_1:84; then (b-a)*(f.r-f.a) < (r-a)*f.b-(r-a)*f.a by XCMPLX_1:40; then (b-a)*(f.r-f.a) < (r-a)*(f.b-f.a) by XCMPLX_1:40; hence (f.r-f.a)/(r-a) < (f.b-f.a)/(b-a) by A4,A5,REAL_2:185; f.r*(b-a) < (b-r)*f.a + ((r-b)+(b-a))*f.b by A8,A9,XCMPLX_1:39; then f.r*(b-a) < (b-r)*f.a + ((r-b)*f.b + (b-a)*f.b) by XCMPLX_1:8; then f.r*(b-a) < (r-b)*f.b + (b-r)*f.a + (b-a)*f.b by XCMPLX_1:1; then f.r*(b-a)-((r-b)*f.b + (b-r)*f.a) < (b-a)*f.b by REAL_1:84; then f.r*(b-a)+(-((r-b)*f.b+(b-r)*f.a))<(b-a)*f.b by XCMPLX_0:def 8; then -((r-b)*f.b + (b-r)*f.a) < (b-a)*f.b - (b-a)*f.r by REAL_1:86; then -(r-b)*f.b -(b-r)*f.a < (b-a)*f.b - (b-a)*f.r by XCMPLX_1:161; then (-(r-b))*f.b -(b-r)*f.a < (b-a)*f.b - (b-a)*f.r by XCMPLX_1:175; then (b-r)*f.b - (b-r)*f.a < (b-a)*f.b - (b-a)*f.r by XCMPLX_1:143; then (b-r)*(f.b-f.a) < (b-a)*f.b - (b-a)*f.r by XCMPLX_1:40; then (b-r)*(f.b-f.a) < (b-a)*(f.b-f.r) by XCMPLX_1:40; hence thesis by A4,A5,REAL_2:185; end; hence thesis by A2,Def1; end; hence thesis; end; X c= dom f & (for a,b,r st a in X & b in X & r in X & a < r & r < b holds (f.r-f.a)/(r-a) < (f.b-f.a)/(b-a) & (f.b-f.a)/(b-a) < (f.b-f.r)/(b-r)) implies f is_strictly_convex_on X proof assume A10:X c= dom f & (for a,b,r st a in X & b in X & r in X & a<r & r<b holds (f.r-f.a)/(r-a) < (f.b-f.a)/(b-a) & (f.b-f.a)/(b-a) < (f.b-f.r)/(b-r)); f is_strictly_convex_on X proof for p being Real st 0<p & p<1 holds for r,s being Real st r in X & s in X & p*r + (1-p)*s in X & r <> s holds f.(p*r + (1-p)*s) < p*f.r + (1-p)*f.s proof let p be Real; assume A11:0<p & p<1; then A12: 1-p > 0 by SQUARE_1:11; for s,t being Real st s in X & t in X & p*s+(1-p)*t in X & s <> t holds f.(p*s + (1-p)*t) < p*f.s + (1-p)*f.t proof let s,t be Real; assume A13:s in X & t in X & p*s+(1-p)*t in X & s <> t; now per cases by A13,REAL_1:def 5; suppose s<t; then A14: t-s > 0 by SQUARE_1:11; A15: t-(p*s+(1-p)*t) = t-(1-p)*t - p*s by XCMPLX_1:36 .=p*t-p*s by Lm1 .=p*(t-s) by XCMPLX_1:40; then A16: t-(p*s+(1-p)*t) > 0 by A11,A14,REAL_2:122; then A17: (p*s+(1-p)*t) < t by REAL_2:106; A18: (p*s+(1-p)*t)-s = (1-p)*t+(p*s-s) by XCMPLX_1:29 .=(1-p)*t-(s-p*s) by XCMPLX_1:38 .=(1-p)*t-(1-p)*s by Lm1 .=(1-p)*(t-s) by XCMPLX_1:40; then A19: (p*s+(1-p)*t)-s > 0 by A12,A14,REAL_2:122; then (p*s+(1-p)*t) > s by REAL_2:106; then (f.(p*s+(1-p)*t)-f.s)/((p*s+(1-p)*t)-s) < (f.t-f.s)/(t-s) & (f.t-f.s)/(t-s)<(f.t-f.(p*s+(1-p)*t))/(t-(p*s+(1-p)*t)) by A10,A13,A17; then (f.(p*s+(1-p)*t)-f.s)/((p*s+(1-p)*t)-s) < (f.t-f.(p*s+(1-p)*t))/(t-(p*s+(1-p)*t)) by AXIOMS:22; then (f.(p*s+(1-p)*t)-f.s)*(t-(p*s+(1-p)*t)) < (f.t-f.(p*s+(1-p)*t))*((p*s+(1-p)*t)-s) by A16,A19,REAL_2:187; then (f.(p*s+(1-p)*t)-f.s)*(t-s)*p < (f.t-f.(p*s+(1-p)*t))*((1-p)*(t-s)) by A15,A18,XCMPLX_1:4; then A20: (f.(p*s+(1-p)*t)-f.s)*(t-s)*p < (f.t-f.(p*s+(1-p)*t))*(t-s)*(1-p) by XCMPLX_1:4; A21: (f.(p*s+(1-p)*t)-f.s)*(t-s)*p =((t-s)*f.(p*s+(1-p)*t)-(t-s)*f.s)*p by XCMPLX_1:40 .=p*((t-s)*f.(p*s+(1-p)*t))-p*((t-s)*f.s) by XCMPLX_1:40; (f.t-f.(p*s+(1-p)*t))*(t-s)*(1-p) =((t-s)*f.t-(t-s)*f.(p*s+(1-p)*t))*(1-p) by XCMPLX_1:40 .=(1-p)*((t-s)*f.t)-(1-p)*((t-s)*f.(p*s+(1-p)*t)) by XCMPLX_1:40; then p*((t-s)*f.(p*s+(1-p)*t))+(1-p)*((t-s)*f.(p*s+(1-p)*t)) <(1-p)*((t-s)*f.t)+p*((t-s)*f.s) by A20,A21,REAL_2:170; then (t-s)*f.(p*s+(1-p)*t) <(1-p)*((t-s)*f.t)+p*((t-s)*f.s) by Lm1; then (t-s)*f.(p*s+(1-p)*t) <(1-p)*f.t*(t-s)+p*((t-s)*f.s) by XCMPLX_1:4; then (t-s)*f.(p*s+(1-p)*t) <(1-p)*f.t*(t-s)+p*f.s*(t-s) by XCMPLX_1:4; then f.(p*s+(1-p)*t) <((1-p)*f.t*(t-s)+p*f.s*(t-s))/(t-s) by A14,REAL_2:178; then f.(p*s+(1-p)*t) <((1-p)*f.t*(t-s))/(t-s)+(p*f.s*(t-s))/(t-s) by XCMPLX_1:63; then f.(p*s+(1-p)*t) <(1-p)*f.t+(p*f.s*(t-s))/(t-s) by A14,XCMPLX_1:90; hence thesis by A14,XCMPLX_1:90; suppose s>t; then A22: s-t > 0 by SQUARE_1:11; A23: s-(p*s+(1-p)*t) = s-p*s - (1-p)*t by XCMPLX_1:36 .=(1-p)*s-(1-p)*t by Lm1 .=(1-p)*(s-t) by XCMPLX_1:40; then A24: s-(p*s+(1-p)*t) > 0 by A12,A22,REAL_2:122; then A25: (p*s+(1-p)*t) < s by REAL_2:106; A26: (p*s+(1-p)*t)-t = p*s+((1-p)*t-t) by XCMPLX_1:29 .=p*s-(t-(1-p)*t) by XCMPLX_1:38 .=p*s-p*t by Lm1 .=p*(s-t) by XCMPLX_1:40; then A27: (p*s+(1-p)*t)-t > 0 by A11,A22,REAL_2:122; then (p*s+(1-p)*t) > t by REAL_2:106; then (f.(p*s+(1-p)*t)-f.t)/((p*s+(1-p)*t)-t) < (f.s-f.t)/(s-t) & (f.s-f.t)/(s-t)<(f.s-f.(p*s+(1-p)*t))/(s-(p*s+(1-p)*t)) by A10,A13,A25; then (f.(p*s+(1-p)*t)-f.t)/((p*s+(1-p)*t)-t) < (f.s-f.(p*s+(1-p)*t))/(s-(p*s+(1-p)*t)) by AXIOMS:22; then (f.(p*s+(1-p)*t)-f.t)*(s-(p*s+(1-p)*t)) < (f.s-f.(p*s+(1-p)*t))*((p*s+(1-p)*t)-t) by A24,A27,REAL_2:187; then (f.(p*s+(1-p)*t)-f.t)*(s-t)*(1-p) < (f.s-f.(p*s+(1-p)*t))*(p*(s-t)) by A23,A26,XCMPLX_1:4; then A28: (f.(p*s+(1-p)*t)-f.t)*(s-t)*(1-p) < (f.s-f.(p*s+(1-p)*t))*(s-t)*p by XCMPLX_1:4; A29: (f.(p*s+(1-p)*t)-f.t)*(s-t)*(1-p) =((s-t)*f.(p*s+(1-p)*t)-(s-t)*f.t)*(1-p) by XCMPLX_1:40 .=(1-p)*((s-t)*f.(p*s+(1-p)*t))-(1-p)*((s-t)*f.t) by XCMPLX_1:40; (f.s-f.(p*s+(1-p)*t))*(s-t)*p =((s-t)*f.s-(s-t)*f.(p*s+(1-p)*t))*p by XCMPLX_1:40 .=p*((s-t)*f.s)-p*((s-t)*f.(p*s+(1-p)*t)) by XCMPLX_1:40; then (1-p)*((s-t)*f.(p*s+(1-p)*t))+p*((s-t)*f.(p*s+(1-p)*t)) <p*((s-t)*f.s)+(1-p)*((s-t)*f.t) by A28,A29,REAL_2:170; then (s-t)*f.(p*s+(1-p)*t) <p*((s-t)*f.s)+(1-p)*((s-t)*f.t) by Lm1; then (s-t)*f.(p*s+(1-p)*t) <p*f.s*(s-t)+(1-p)*((s-t)*f.t) by XCMPLX_1:4; then (s-t)*f.(p*s+(1-p)*t) <p*f.s*(s-t)+(1-p)*f.t*(s-t) by XCMPLX_1:4; then f.(p*s+(1-p)*t) <(p*f.s*(s-t)+(1-p)*f.t*(s-t))/(s-t) by A22,REAL_2:178; then f.(p*s+(1-p)*t) <(p*f.s*(s-t))/(s-t)+((1-p)*f.t*(s-t))/(s-t) by XCMPLX_1:63; then f.(p*s+(1-p)*t) <p*f.s+((1-p)*f.t*(s-t))/(s-t) by A22,XCMPLX_1:90; hence thesis by A22,XCMPLX_1:90; end; hence thesis; end; hence thesis; end; hence thesis by A10,Def1; end; hence thesis; end; hence thesis by A1; end; :: Jensen's Inequality theorem for f being PartFunc of REAL,REAL st f is total holds (for n being Nat, P,E,F being Element of n-tuples_on REAL st Sum P=1 & (for i being Nat st i in dom P holds P.i >=0 & F.i=f.(E.i)) holds f.Sum(mlt(P,E))<=Sum(mlt(P,F))) iff f is_convex_on REAL proof let f be PartFunc of REAL,REAL; assume f is total; then A1:REAL c= dom f by PARTFUN1:def 4; A2:(for n being Nat, P,E,F being Element of n-tuples_on REAL st Sum P=1 & (for i being Nat st i in dom P holds P.i >=0 & F.i=f.(E.i)) holds f.Sum(mlt(P,E))<=Sum(mlt(P,F))) implies f is_convex_on REAL proof assume A3:for n being Nat, P,E,F being Element of n-tuples_on REAL st Sum P=1 & (for i being Nat st i in dom P holds P.i >=0 & F.i=f.(E.i)) holds f.Sum(mlt(P,E))<=Sum(mlt(P,F)); for p being Real st 0<=p & p<=1 holds for r,s being Real st r in REAL & s in REAL & p*r + (1-p)*s in REAL holds f.(p*r + (1-p)*s) <= p*f.r + (1-p)*f.s proof let p be Real such that A4:0<=p & p<=1; let r,s be Real such that r in REAL & s in REAL & p*r + (1-p)*s in REAL; reconsider P=<*p,1-p*>, E=<*r,s*>, F=<*f.r,f.s*> as Element of 2-tuples_on REAL by FINSEQ_2:121; A5: Sum P=p+(1-p) by RVSUM_1:107 .= p-(p-1) by XCMPLX_1:38 .= 1 by XCMPLX_1:18; for i being Nat st i in dom P holds P.i >=0 & F.i=f.(E.i) proof let i be Nat such that A6:i in dom P; A7: dom P = Seg len P by FINSEQ_1:def 3 .= Seg 2 by FINSEQ_2:109; now per cases by A6,A7,FINSEQ_1:4,TARSKI:def 2; suppose i=1; then E.i = r & P.i = p & F.i = f.r by FINSEQ_1:61; hence thesis by A4; suppose i=2; then E.i = s & P.i = 1-p & F.i = f.s by FINSEQ_1:61; hence thesis by A4,SQUARE_1:12; end; hence thesis; end; then A8: f.Sum(mlt(P,E))<=Sum(mlt(P,F)) by A3,A5; A9: P.1=p & P.2=1-p & E.1=r & E.2=s & F.1=f.r & F.2=f.s by FINSEQ_1:61; len P = 2 by FINSEQ_1:61 .= len E by FINSEQ_1:61; then len (multreal.:(P,E)) = len P by FINSEQ_2:86; then A10: len mlt(P,E) = len P by RVSUM_1:def 9 .= 2 by FINSEQ_1:61; mlt(P,E).1 = P.1*E.1 & mlt(P,E).2 = P.2*E.2 by RVSUM_1:87; then mlt(P,E)=<*p*r,(1-p)*s*> by A9,A10,FINSEQ_1:61; then A11: Sum(mlt(P,E))=p*r+(1-p)*s by RVSUM_1:107; len P = 2 by FINSEQ_1:61 .= len F by FINSEQ_1:61; then len (multreal.:(P,F)) = len P by FINSEQ_2:86; then A12: len mlt(P,F) = len P by RVSUM_1:def 9 .= 2 by FINSEQ_1:61; mlt(P,F).1 = P.1*F.1 & mlt(P,F).2 = P.2*F.2 by RVSUM_1:87; then mlt(P,F)=<*p*f.r,(1-p)*f.s*> by A9,A12,FINSEQ_1:61; hence thesis by A8,A11,RVSUM_1:107; end; hence thesis by A1,RFUNCT_3:def 13; end; f is_convex_on REAL implies (for n being Nat, P,E,F being Element of n-tuples_on REAL st Sum P=1 & (for i being Nat st i in dom P holds P.i >=0 & F.i=f.(E.i)) holds f.Sum(mlt(P,E))<=Sum(mlt(P,F))) proof assume A13:f is_convex_on REAL; for n being Nat, P,E,F being Element of n-tuples_on REAL st Sum P=1 & (for i being Nat st i in dom P holds P.i >=0 & F.i=f.(E.i)) holds f.Sum(mlt(P,E))<=Sum(mlt(P,F)) proof defpred S[Nat] means for P,E,F being Element of $1-tuples_on REAL st Sum P=1 & (for i being Nat st i in dom P holds P.i >=0 & F.i=f.(E.i)) holds f.Sum(mlt(P,E))<=Sum(mlt(P,F)); A14: S[0] by RVSUM_1:109; A15: for k being Nat st S[k] holds S[k+1] proof let k be Nat such that A16: (for P,E,F being Element of k-tuples_on REAL st Sum P=1 & (for i being Nat st i in dom P holds P.i >=0 & F.i=f.(E.i)) holds f.Sum(mlt(P,E))<=Sum(mlt(P,F))); for P,E,F being Element of (k+1)-tuples_on REAL st Sum P=1 & (for i being Nat st i in dom P holds P.i >=0 & F.i=f.(E.i)) holds f.Sum(mlt(P,E))<=Sum(mlt(P,F)) proof let P,E,F be Element of (k+1)-tuples_on REAL such that A17: Sum P=1 & (for i being Nat st i in dom P holds P.i>=0 & F.i=f.(E.i)); consider P1 being Element of k-tuples_on REAL, p1 being Real such that A18: P=P1^<*p1*> by FINSEQ_2:137; consider E1 being Element of k-tuples_on REAL, e1 being Real such that A19: E=E1^<*e1*> by FINSEQ_2:137; consider F1 being Element of k-tuples_on REAL, f1 being Real such that A20: F=F1^<*f1*> by FINSEQ_2:137; mlt(P,E) = mlt(P1,E1)^<*p1*e1*> by A18,A19,Th2; then A21: Sum(mlt(P,E)) = 1*Sum(mlt(P1,E1))+p1*e1 by RVSUM_1:104; mlt(P,F) = mlt(P1,F1)^<*p1*f1*> by A18,A20,Th2; then A22: Sum(mlt(P,F)) = 1*Sum(mlt(P1,F1))+p1*f1 by RVSUM_1:104; len F1 + 1 = k + 1 by FINSEQ_2:109 .= len P by FINSEQ_2:109; then len F1 + 1 in Seg len P by FINSEQ_1:6; then A23: len F1 + 1 in dom P by FINSEQ_1:def 3; A24: f1=F.(len F1 + 1) by A20,FINSEQ_1:59 .= f.(E.(len F1 + 1)) by A17,A23 .= f.(E.(k+1)) by FINSEQ_2:109 .= f.(E.(len E1+1)) by FINSEQ_2:109 .= f.e1 by A19,FINSEQ_1:59; A25: for i being Nat st i in dom P1 holds P1.i>=0 proof let i be Nat such that A26: i in dom P1; i in Seg len P1 by A26,FINSEQ_1:def 3; then 1 <= i & i <= len P1 by FINSEQ_1:3; then 1 <= i & i <= k & k <= k+1 by FINSEQ_2:109,NAT_1:29; then 1 <= i & i <= k+1 by AXIOMS:22; then i in Seg (k+1) by FINSEQ_1:3; then i in Seg len P by FINSEQ_2:109; then A27: i in dom P by FINSEQ_1:def 3; P1.i = P.i by A18,A26,FINSEQ_1:def 7; hence thesis by A17,A27; end; now per cases; suppose A28:Sum P1 = 0; then for i being Nat st i in dom P1 holds P1.i=0 by A25,Th3; then A29: P1 = k |-> (0 qua Real) by Th4; then mlt(P1,E1)=k |-> 0 by Th5; then A30: Sum(mlt(P1,E1))=k*0 by RVSUM_1:110; A31: Sum P = 0+p1 by A18,A28,RVSUM_1:104; mlt(P1,F1)=k |-> 0 by A29,Th5; then Sum(mlt(P1,F1))=k*0 by RVSUM_1:110; hence thesis by A17,A21,A22,A24,A30,A31; suppose A32:Sum P1 <>0; then A33: Sum(mlt(P,E))=Sum P1*(Sum P1)"*Sum(mlt(P1,E1))+p1*e1 by A21,XCMPLX_0:def 7 .=Sum P1*((Sum P1)"*Sum(mlt(P1,E1)))+p1*e1 by XCMPLX_1:4 .=Sum P1*(Sum((Sum P1)"*mlt(P1,E1)))+p1*e1 by RVSUM_1:117 .=Sum P1*Sum(mlt((Sum P1)"*P1,E1))+p1*e1 by RVSUM_1:94; Sum P1+p1 = 1 by A17,A18,RVSUM_1:104; then A34: p1 = 1 - Sum P1 by XCMPLX_1:26; A35: 0 <= Sum P1 & Sum P1 <= 1 proof thus 0 <= Sum P1 by A25,RVSUM_1:114; len P1 + 1 = len P by A18,FINSEQ_2:19; then len P1 + 1 in Seg len P by FINSEQ_1:6; then A36: len P1 + 1 in dom P by FINSEQ_1:def 3; P.(len P1+1) = p1 by A18,FINSEQ_1:59; then p1 >= 0 by A17,A36; hence thesis by A34,REAL_2:105; end; then A37: f.Sum(mlt(P,E)) <= Sum P1*f.Sum(mlt((Sum P1)"*P1,E1)) + p1*f.e1 by A13,A33,A34,RFUNCT_3:def 13; f.Sum(mlt((Sum P1)"*P1,E1)) <= (Sum P1)"*Sum(mlt(P1,F1)) proof A38: (Sum P1)"*Sum(mlt(P1,F1)) = Sum((Sum P1)"*mlt(P1,F1)) by RVSUM_1:117 .=Sum(mlt((Sum P1)"*P1,F1)) by RVSUM_1:94; A39: Sum((Sum P1)"*P1) = (Sum P1)"*Sum P1 by RVSUM_1:117 .= 1 by A32,XCMPLX_0:def 7; for i being Nat st i in dom ((Sum P1)"*P1) holds ((Sum P1)"*P1).i >= 0 & F1.i=f.(E1.i) proof let i be Nat such that A40: i in dom ((Sum P1)"*P1); i in Seg len ((Sum P1)"*P1) by A40,FINSEQ_1:def 3; then A41: i in Seg k by FINSEQ_2:109; A42: ((Sum P1)"*P1).i = (Sum P1)"*P1.i by RVSUM_1:67; A43: (Sum P1)" > 0 by A32,A35,REAL_1:72; A44: i in Seg len P1 by A41,FINSEQ_2:109; then i in dom P1 by FINSEQ_1:def 3; then P1.i >=0 by A25; hence ((Sum P1)"*P1).i >= 0 by A42,A43,REAL_2:121; i in Seg len F1 & i in Seg len E1 by A41,FINSEQ_2:109; then A45: i in dom F1 & i in dom E1 by FINSEQ_1:def 3; 1 <= i & i <= len P1 by A44,FINSEQ_1:3; then 1 <= i & i <= k & k <= k+1 by FINSEQ_2:109,NAT_1:29; then 1 <= i & i <= k+1 by AXIOMS:22; then i in Seg (k+1) by FINSEQ_1:3; then i in Seg len P by FINSEQ_2:109; then A46: i in dom P by FINSEQ_1:def 3; F.i = F1.i & E.i = E1.i by A19,A20,A45,FINSEQ_1:def 7; hence thesis by A17,A46; end; hence thesis by A16,A38,A39; end; then Sum P1*f.Sum(mlt((Sum P1)"*P1,E1)) <= Sum P1*((Sum P1)"*Sum(mlt(P1,F1))) by A35,AXIOMS:25; then Sum P1*f.Sum(mlt((Sum P1)"*P1,E1)) + p1*f.e1 <= Sum P1*((Sum P1)"*Sum(mlt(P1,F1)))+p1*f.e1 by AXIOMS:24; then f.Sum(mlt(P,E))<=Sum P1*((Sum P1)"*Sum (mlt(P1,F1)))+p1*f.e1 by A37,AXIOMS:22; then f.Sum(mlt(P,E)) <= Sum P1*(Sum P1)"*Sum(mlt(P1,F1))+p1*f.e1 by XCMPLX_1:4; hence thesis by A22,A24,A32,XCMPLX_0:def 7; end; hence thesis; end; hence thesis; end; for k be Nat holds S[k] from Ind(A14,A15); hence thesis; end; hence thesis; end; hence thesis by A2; end; theorem for f being PartFunc of REAL,REAL, I being Interval, a being Real st (ex x1,x2 being Real st x1 in I & x2 in I & x1 < a & a < x2) & f is_convex_on I holds f is_continuous_in a proof let f be PartFunc of REAL,REAL, I be Interval, a be Real such that A1:(ex x1,x2 being Real st x1 in I & x2 in I & x1<a & a<x2) & f is_convex_on I; A2:I c= dom f by A1,RFUNCT_3:def 13; consider x1,x2 being Real such that A3:x1 in I & x2 in I & x1 < a & a < x2 by A1; A4:a in I proof now per cases by MEASURE5:def 9; suppose I is open_interval; then consider p,q being R_eal such that A5: p <=' q & I = ].p,q.[ by MEASURE5:def 5; thus thesis by A3,A5,MEASURE6:38; suppose I is closed_interval; then consider p,q being R_eal such that A6: p <=' q & I = [.p,q.] by MEASURE5:def 6; thus thesis by A3,A6,MEASURE6:39; suppose I is right_open_interval; then consider p,q being R_eal such that A7: p <=' q & I = [.p,q.[by MEASURE5:def 7; thus thesis by A3,A7,MEASURE6:41; suppose I is left_open_interval; then consider p,q being R_eal such that A8: p <=' q & I = ].p,q.] by MEASURE5:def 8; thus thesis by A3,A8,MEASURE6:40; end; hence thesis; end; A9:for x being Real st x1<=x & x<=x2 & x<>a holds (f.x1-f.a)/(x1-a) <= (f.x-f.a)/(x-a) & (f.x-f.a)/(x-a) <= (f.x2-f.a)/(x2-a) proof let x be Real such that A10: x1 <= x & x <= x2 & x<>a; (f.x1-f.a)/(x1-a) <= (f.x-f.a)/(x-a) & (f.x-f.a)/(x-a) <= (f.x2-f.a)/(x2-a) proof now per cases by A10,AXIOMS:21; suppose A11:x < a; A12: x in I proof now per cases by MEASURE5:def 9; suppose I is open_interval; then consider p,q being R_eal such that A13: p <=' q & I = ].p,q.[ by MEASURE5:def 5; thus thesis by A3,A10,A13,MEASURE6:38; suppose I is closed_interval; then consider p,q being R_eal such that A14: p <=' q & I = [.p,q.] by MEASURE5:def 6; thus thesis by A3,A10,A14,MEASURE6:39; suppose I is right_open_interval; then consider p,q being R_eal such that A15: p <=' q & I = [.p,q.[by MEASURE5:def 7; thus thesis by A3,A10,A15,MEASURE6:41; suppose I is left_open_interval; then consider p,q being R_eal such that A16: p <=' q & I = ].p,q.] by MEASURE5:def 8; thus thesis by A3,A10,A16,MEASURE6:40; end; hence thesis; end; then (f.a-f.x)/(a-x)<=(f.x2-f.x)/(x2-x) & (f.x2-f.x)/(x2-x)<=(f.x2-f.a)/(x2-a) by A1,A3,A4,A11,Th16; then (f.a-f.x)/(a-x)<=(f.x2-f.a)/(x2-a) by AXIOMS:22; then (-(f.a-f.x))/(-(a-x)) <= (f.x2-f.a)/(x2-a) by XCMPLX_1:192 ; then A17: (f.x-f.a)/(-(a-x)) <= (f.x2-f.a)/(x2-a) by XCMPLX_1:143; now per cases by A10,REAL_1:def 5; suppose x1=x; hence (f.x1-f.a)/(x1-a) <= (f.x-f.a)/(x-a); suppose A18:x1 < x; A19: (f.a-f.x)/(a-x) = (-(f.a-f.x))/(-(a-x)) by XCMPLX_1:192 .=(f.x-f.a)/(-(a-x)) by XCMPLX_1:143 .=(f.x-f.a)/(x-a) by XCMPLX_1:143; (f.a-f.x1)/(a-x1) = (-(f.a-f.x1))/(-(a-x1)) by XCMPLX_1:192 .=(f.x1-f.a)/(-(a-x1)) by XCMPLX_1:143 .=(f.x1-f.a)/(x1-a) by XCMPLX_1: 143; hence (f.x1-f.a)/(x1-a)<=(f.x-f.a)/(x-a) by A1,A3,A4,A11,A12,A18,A19, Th16; end; hence thesis by A17,XCMPLX_1:143; suppose A20:x > a; A21: x in I proof now per cases by MEASURE5:def 9; suppose I is open_interval; then consider p,q being R_eal such that A22: p <=' q & I = ].p,q.[ by MEASURE5:def 5; thus thesis by A3,A10,A22,MEASURE6:38; suppose I is closed_interval; then consider p,q being R_eal such that A23: p <=' q & I = [.p,q.] by MEASURE5:def 6; thus thesis by A3,A10,A23,MEASURE6:39; suppose I is right_open_interval; then consider p,q being R_eal such that A24: p <=' q & I = [.p,q.[ by MEASURE5:def 7; thus thesis by A3,A10,A24,MEASURE6:41; suppose I is left_open_interval; then consider p,q being R_eal such that A25: p <=' q & I = ].p,q.] by MEASURE5:def 8; thus thesis by A3,A10,A25,MEASURE6:40; end; hence thesis; end; then A26: (f.a-f.x1)/(a-x1)<=(f.x-f.x1)/(x-x1) & (f.x-f.x1)/(x-x1)<=(f.x-f.a)/(x-a) by A1,A3,A4,A20,Th16; (f.a-f.x1)/(a-x1) = (-(f.a-f.x1))/(-(a-x1)) by XCMPLX_1:192 .=(f.x1-f.a)/(-(a-x1)) by XCMPLX_1:143 .=(f.x1-f.a)/(x1-a) by XCMPLX_1: 143; hence (f.x1-f.a)/(x1-a) <= (f.x-f.a)/(x-a) by A26,AXIOMS:22; now per cases by A10,REAL_1:def 5; suppose x=x2; hence (f.x-f.a)/(x-a) <= (f.x2-f.a)/(x2-a); suppose x<x2; hence (f.x-f.a)/(x-a)<=(f.x2-f.a)/(x2-a) by A1,A3,A4,A20,A21,Th16; end; hence (f.x-f.a)/(x-a) <= (f.x2-f.a)/(x2-a); end; hence thesis; end; hence thesis; end; set M = max(abs((f.x1-f.a)/(x1-a)),abs((f.x2-f.a)/(x2-a))); A27: abs((f.x1-f.a)/(x1-a)) >= 0 & abs((f.x2-f.a)/(x2-a)) >= 0 by ABSVALUE:5; then A28:min(abs((f.x1-f.a)/(x1-a)),abs((f.x2-f.a)/(x2-a))) >= 0 by SQUARE_1:39 ; A29: max(abs((f.x1-f.a)/(x1-a)),abs((f.x2-f.a)/(x2-a))) >= min(abs((f.x1-f.a)/(x1-a)),abs((f.x2-f.a)/(x2-a))) by Th1; A30:M >= 0 by A28,Th1; A31:for x being real number st x1<=x & x<=x2 & x<>a holds abs(f.x-f.a)<=M*abs(x-a) proof let x be real number such that A32:x1<=x & x<=x2 & x<>a; reconsider x as Real by XREAL_0:def 1; x<a or x>a by A32,AXIOMS:21; then x-a <> 0 by REAL_2:105,SQUARE_1:11; then A33: abs(x-a) > 0 by ABSVALUE:6; A34: (f.x1-f.a)/(x1-a) <= (f.x-f.a)/(x-a) & (f.x-f.a)/(x-a) <= (f.x2-f.a)/(x2-a) by A9,A32; -abs((f.x1-f.a)/(x1-a)) <= (f.x1-f.a)/(x1-a) & (f.x2-f.a)/(x2-a) <= abs((f.x2-f.a)/(x2-a)) by ABSVALUE:11; then A35: -abs((f.x1-f.a)/(x1-a)) <= (f.x-f.a)/(x-a) & (f.x-f.a)/(x-a) <= abs((f.x2-f.a)/(x2-a)) by A34,AXIOMS:22; now per cases; suppose abs((f.x1-f.a)/(x1-a)) <= abs((f.x2-f.a)/(x2-a)); then -abs((f.x1-f.a)/(x1-a)) >= -abs((f.x2-f.a)/(x2-a)) by REAL_1:50; then -abs((f.x2-f.a)/(x2-a)) <= (f.x-f.a)/(x-a) by A35,AXIOMS:22; then abs((f.x-f.a)/(x-a)) <= abs((f.x2-f.a)/(x2-a)) by A35,ABSVALUE:12; then A36: abs((f.x-f.a))/abs((x-a)) <= abs((f.x2-f.a)/(x2-a)) by ABSVALUE:16; abs((f.x2-f.a)/(x2-a)) <= M by SQUARE_1:46; then abs((f.x-f.a))/abs((x-a)) <= M by A36,AXIOMS:22; hence thesis by A33,REAL_2:178; suppose abs((f.x1-f.a)/(x1-a)) >= abs((f.x2-f.a)/(x2-a)); then (f.x-f.a)/(x-a) <= abs((f.x1-f.a)/(x1-a)) by A35,AXIOMS:22; then abs((f.x-f.a)/(x-a)) <= abs((f.x1-f.a)/(x1-a)) by A35,ABSVALUE:12; then A37: abs((f.x-f.a))/abs((x-a)) <= abs((f.x1-f.a)/(x1-a)) by ABSVALUE:16; abs((f.x1-f.a)/(x1-a)) <= M by SQUARE_1:46; then abs((f.x-f.a))/abs((x-a)) <= M by A37,AXIOMS:22; hence thesis by A33,REAL_2:178; end; hence thesis; end; for r being real number st 0<r ex s being real number st 0<s & for x being real number st x in dom f & abs(x-a)<s holds abs(f.x-f.a)<r proof let r be real number such that A38: 0<r; reconsider r as Real by XREAL_0:def 1; ex s being real number st 0<s & for x being real number st x in dom f & abs(x-a)<s holds abs(f.x-f.a)<r proof now per cases by A27,A29,SQUARE_1:39; suppose A39:M>0; set s = min(r/M,min(a-x1,x2-a)); A40: s>0 proof A41: min(a-x1,x2-a) > 0 proof now per cases by SQUARE_1:38; suppose min(a-x1,x2-a)=a-x1; hence thesis by A3,SQUARE_1:11; suppose min(a-x1,x2-a)=x2-a; hence thesis by A3,SQUARE_1:11; end; hence thesis; end; now per cases by SQUARE_1:38; suppose s = r/M; hence thesis by A38,A39,REAL_2:127; suppose s = min(a-x1,x2-a); hence thesis by A41; end; hence thesis; end; for x being real number st x in dom f & abs(x-a)<s holds abs(f.x-f.a)<r proof let x be real number such that A42:x in dom f & abs(x-a)<s; A43: s <= r/M & s<=min(a-x1,x2-a) by SQUARE_1:35; min(a-x1,x2-a)<=a-x1 & min(a-x1,x2-a)<=x2-a by SQUARE_1:35; then s <= a-x1 & s <= x2-a by A43,AXIOMS:22; then abs(x-a)<a-x1 & abs(x-a)<x2-a by A42,AXIOMS:22; then -(a-x1) <= x-a & x-a <= x2-a by ABSVALUE:12; then x1-a <= x-a & x-a <=x2-a by XCMPLX_1:143; then A44: x1 <= x & x <= x2 by REAL_1:54; now per cases; suppose x<>a; then A45: abs(f.x-f.a)<=M*abs(x-a) by A31,A44; now per cases; suppose A46:M<>0; then A47: M*abs(x-a) < M*s by A30,A42,REAL_1:70; M*s <= M*(r/M) by A28,A29,A43,AXIOMS:25; then M*abs(x-a) < M*(r/M) by A47,AXIOMS:22; then M*abs(x-a) < (r*M)/M by Lm4; then M*abs(x-a) < r*(M/M) by Lm4; then M*abs(x-a) < r*1 by A46,XCMPLX_1:60; hence thesis by A45,AXIOMS:22; suppose M=0; hence thesis by A38,A45; end; hence thesis; suppose x=a; then f.x-f.a=0 by XCMPLX_1:14; hence thesis by A38,ABSVALUE:7; end; hence thesis; end; hence thesis by A40; suppose A48:M=0; A49: for x being real number st x1<=x & x<=x2 & x<>a holds abs(f.x-f.a)=0 proof let x be real number such that A50:x1<=x & x<=x2 & x<>a; abs(f.x-f.a)<=M*abs(x-a) by A31,A50; hence thesis by A48,ABSVALUE:5; end; set s = min(a-x1,x2-a); A51: s > 0 proof now per cases by SQUARE_1:38; suppose s=a-x1; hence thesis by A3,SQUARE_1:11; suppose s=x2-a; hence thesis by A3,SQUARE_1:11; end; hence thesis; end; for x being real number st x in dom f & abs(x-a)<s holds abs(f.x-f.a)<r proof let x be real number such that A52:x in dom f & abs(x-a)<s; s<=a-x1 & s<=x2-a by SQUARE_1:35; then abs(x-a)<a-x1 & abs(x-a)<x2-a by A52,AXIOMS:22; then -(a-x1) <= x-a & x-a <= x2-a by ABSVALUE:12; then x1-a <= x-a & x-a <=x2-a by XCMPLX_1:143; then A53: x1 <= x & x <= x2 by REAL_1:54; now per cases; suppose x<>a; hence thesis by A38,A49,A53; suppose x=a; then f.x-f.a=0 by XCMPLX_1:14; hence thesis by A38,ABSVALUE:7; end; hence thesis; end; hence thesis by A51; end; hence thesis; end; hence thesis; end; hence thesis by A2,A4,FCONT_1:3; end; begin :: Definitions of several convexity and semicontinuity concepts definition let f, X; pred f is_quasiconvex_on X means :Def2: X c= dom f & for p being Real st 0<p & p<1 holds for r,s being Real st r in X & s in X & p*r + (1-p)*s in X holds f.(p*r + (1-p)*s) <= max(f.r,f.s); end; definition let f, X; pred f is_strictly_quasiconvex_on X means :Def3: X c= dom f & for p being Real st 0<p & p<1 holds for r,s being Real st r in X & s in X & p*r + (1-p)*s in X & f.r <> f.s holds f.(p*r + (1-p)*s) < max(f.r,f.s); end; definition let f, X; pred f is_strongly_quasiconvex_on X means :Def4: X c= dom f & for p being Real st 0<p & p<1 holds for r,s being Real st r in X & s in X & p*r + (1-p)*s in X & r <> s holds f.(p*r + (1-p)*s) < max(f.r,f.s); end; definition let f; let x0 be real number; pred f is_upper_semicontinuous_in x0 means :Def5: x0 in dom f & (for r st 0<r ex s st 0<s & for x st x in dom f & abs(x-x0)<s holds f.x0-f.x<r); end; definition let f,X; pred f is_upper_semicontinuous_on X means :Def6: X c= dom f & for x0 st x0 in X holds f|X is_upper_semicontinuous_in x0; end; definition let f; let x0 be real number; pred f is_lower_semicontinuous_in x0 means :Def7: x0 in dom f & (for r st 0<r ex s st 0<s & for x st x in dom f & abs(x-x0)<s holds f.x-f.x0<r); end; definition let f,X; pred f is_lower_semicontinuous_on X means :Def8: X c= dom f & for x0 st x0 in X holds f|X is_lower_semicontinuous_in x0; end; theorem Th20: for x0 be real number, f holds f is_upper_semicontinuous_in x0 & f is_lower_semicontinuous_in x0 iff f is_continuous_in x0 proof let x0 be real number, f; A1:f is_upper_semicontinuous_in x0 & f is_lower_semicontinuous_in x0 implies f is_continuous_in x0 proof assume A2: f is_upper_semicontinuous_in x0&f is_lower_semicontinuous_in x0; then A3: x0 in dom f & (for r st 0<r ex s st 0<s & for x st x in dom f & abs(x-x0)<s holds f.x-f.x0<r) & (for r st 0<r ex s st 0<s & for x st x in dom f & abs(x-x0)<s holds f.x0-f.x<r) by Def5,Def7; for r be real number st 0<r ex s be real number st 0<s & for x be real number st x in dom f & abs(x-x0)<s holds abs(f.x-f.x0)<r proof let r be real number such that A4: 0<r; A5: r is Real by XREAL_0:def 1; then consider s1 being Real such that A6: 0<s1 & for x st x in dom f & abs(x-x0)<s1 holds f.x-f.x0<r by A2,A4,Def7; consider s2 being Real such that A7: 0<s2 & for x st x in dom f & abs(x-x0)<s2 holds f.x0-f.x<r by A2,A4,A5,Def5; set s = min(s1,s2); A8: s > 0 proof now per cases; suppose s1<=s2; hence 0<s by A6,SQUARE_1:def 1; suppose not (s1<=s2); hence 0<s by A7,SQUARE_1:def 1; end; hence thesis; end; A9: for x be real number st x in dom f & abs(x-x0)<s holds abs(f.x-f.x0)<r proof let x be real number such that A10:x in dom f & abs(x-x0)<s; A11: x is Real by XREAL_0:def 1; s <= s1 & s <= s2 by SQUARE_1:35; then abs(x-x0)<s1 & abs(x-x0)<s2 by A10,AXIOMS:22; then A12: f.x-f.x0<r & f.x0-f.x<r by A6,A7,A10,A11; then f.x-f.x0<r & -(f.x0-f.x)>-r by REAL_1:50; then f.x-f.x0<r & f.x-f.x0>-r by XCMPLX_1:143; then A13: abs(f.x-f.x0)<=r & f.x-f.x0<>r & f.x-f.x0<>-r by ABSVALUE:12; abs(f.x-f.x0)<>r proof assume A14:abs(f.x-f.x0)=r; now per cases; suppose f.x-f.x0>=0; hence contradiction by A12,A14,ABSVALUE:def 1; suppose not (f.x-f.x0>=0); then abs(f.x-f.x0)=-(f.x-f.x0) by ABSVALUE:def 1; hence contradiction by A12,A14,XCMPLX_1:143; end; hence thesis; end; hence thesis by A13,REAL_1:def 5; end; take s; thus thesis by A8,A9; end; hence f is_continuous_in x0 by A3,FCONT_1:3; end; f is_continuous_in x0 implies f is_upper_semicontinuous_in x0 & f is_lower_semicontinuous_in x0 proof assume A15:f is_continuous_in x0; then A16:x0 in dom f & for r be real number st 0<r ex s be real number st 0<s & for x be real number st x in dom f & abs(x-x0)<s holds abs(f.x-f.x0)<r by FCONT_1:3; A17:for r st 0<r ex s st 0<s & for x st x in dom f & abs(x-x0)<s holds f.x-f.x0<r proof let r such that A18:0<r; consider s be real number such that A19: 0<s & for x be real number st x in dom f & abs(x-x0)<s holds abs(f.x-f.x0)<r by A15,A18,FCONT_1:3; A20: for x st x in dom f & abs(x-x0)<s holds f.x-f.x0<r proof let x such that A21:x in dom f & abs(x-x0)<s; A22: abs(f.x-f.x0)<r by A19,A21; f.x-f.x0<=abs(f.x-f.x0) by ABSVALUE:11; hence thesis by A22,AXIOMS:22; end; take s; thus s is Real by XREAL_0:def 1; thus thesis by A19,A20; end; for r st 0<r ex s st 0<s & for x st x in dom f & abs(x-x0)<s holds f.x0-f.x<r proof let r such that A23:0<r; consider s be real number such that A24: 0<s & for x be real number st x in dom f & abs(x-x0)<s holds abs(f.x-f.x0)<r by A15,A23,FCONT_1:3; A25: for x st x in dom f & abs(x-x0)<s holds f.x0-f.x<r proof let x such that A26:x in dom f & abs(x-x0)<s; A27: abs(f.x-f.x0)<r by A24,A26; f.x-f.x0>=-abs(f.x-f.x0) by ABSVALUE:11; then -(f.x-f.x0)<=abs(f.x-f.x0) by REAL_2:110; then f.x0-f.x <= abs(f.x-f.x0) by XCMPLX_1:143; hence thesis by A27,AXIOMS:22; end; take s; thus s is Real by XREAL_0:def 1; thus thesis by A24,A25; end; hence thesis by A16,A17,Def5,Def7; end; hence thesis by A1; end; theorem for X, f holds f is_upper_semicontinuous_on X & f is_lower_semicontinuous_on X iff f is_continuous_on X proof let X, f; A1:f is_upper_semicontinuous_on X & f is_lower_semicontinuous_on X implies f is_continuous_on X proof assume A2: f is_upper_semicontinuous_on X & f is_lower_semicontinuous_on X; X c= dom f & for x0 be real number st x0 in X holds f|X is_continuous_in x0 proof thus X c= dom f by A2,Def6; let x0 be real number such that A3:x0 in X; x0 is Real by XREAL_0:def 1; then f|X is_upper_semicontinuous_in x0 & f|X is_lower_semicontinuous_in x0 by A2,A3,Def6,Def8; hence thesis by Th20; end; hence thesis by FCONT_1:def 2; end; f is_continuous_on X implies f is_upper_semicontinuous_on X & f is_lower_semicontinuous_on X proof assume A4:f is_continuous_on X; X c= dom f & (for x0 st x0 in X holds f|X is_upper_semicontinuous_in x0) & (for x0 st x0 in X holds f|X is_lower_semicontinuous_in x0) proof thus X c= dom f by A4,FCONT_1:def 2; A5: for x0 st x0 in X holds f|X is_upper_semicontinuous_in x0 proof let x0; assume A6: x0 in X; f|X is_upper_semicontinuous_in x0 proof f|X is_continuous_in x0 by A4,A6,FCONT_1:def 2; hence thesis by Th20; end; hence thesis; end; for x0 st x0 in X holds f|X is_lower_semicontinuous_in x0 proof let x0; assume A7: x0 in X; f|X is_lower_semicontinuous_in x0 proof f|X is_continuous_in x0 by A4,A7,FCONT_1:def 2; hence thesis by Th20; end; hence thesis; end; hence thesis by A5; end; hence thesis by Def6,Def8; end; hence thesis by A1; end; theorem for X, f st f is_strictly_convex_on X holds f is_strongly_quasiconvex_on X proof let X, f such that A1:f is_strictly_convex_on X; A2:X c= dom f by A1,Def1; for p being Real st 0<p & p<1 holds for r,s being Real st r in X & s in X & p*r + (1-p)*s in X & r <> s holds f.(p*r + (1-p)*s) < max(f.r,f.s) proof let p be Real; assume A3:0<p & p<1; for r,s being Real st r in X & s in X & p*r + (1-p)*s in X & r <> s holds f.(p*r + (1-p)*s) < max(f.r,f.s) proof let r,s be Real; assume r in X & s in X & p*r + (1-p)*s in X & r <> s; then A4: f.(p*r + (1-p)*s) < p*f.r + (1-p)*f.s by A1,A3,Def1; A5: 1-p > 0 by A3,SQUARE_1:11; f.r <= max(f.r,f.s) & f.s <= max(f.r,f.s) by SQUARE_1:46; then p*f.r<=p*max(f.r,f.s) & (1-p)*f.s<=(1-p)*max(f.r,f.s) by A3,A5,AXIOMS:25; then p*f.r + (1-p)*f.s <= p*max(f.r,f.s)+(1-p)*max(f.r,f.s) by REAL_1:55; then p*f.r + (1-p)*f.s <= max(f.r,f.s) by Lm1; hence thesis by A4,AXIOMS:22; end; hence thesis; end; hence thesis by A2,Def4; end; theorem for X, f st f is_strongly_quasiconvex_on X holds f is_quasiconvex_on X proof let X,f such that A1:f is_strongly_quasiconvex_on X; A2:X c= dom f by A1,Def4; for p being Real st 0<p & p<1 holds for r,s being Real st r in X & s in X & p*r + (1-p)*s in X holds f.(p*r + (1-p)*s) <= max(f.r,f.s) proof let p be Real such that A3: 0<p & p<1; for r,s being Real st r in X & s in X & p*r + (1-p)*s in X holds f.(p*r + (1-p)*s) <= max(f.r,f.s) proof let r,s be Real such that A4: r in X & s in X & p*r + (1-p)*s in X; now per cases; suppose r<>s; hence f.(p*r + (1-p)*s) <= max(f.r,f.s) by A1,A3,A4,Def4; suppose r=s; hence f.(p*r + (1-p)*s) <= max(f.r,f.s) by Lm1; end; hence thesis; end; hence thesis; end; hence thesis by A2,Def2; end; theorem for X, f st f is_convex_on X holds f is_strictly_quasiconvex_on X proof let X,f such that A1:f is_convex_on X; A2:X c= dom f by A1,RFUNCT_3:def 13; for p being Real st 0<p & p<1 holds for r,s being Real st r in X & s in X & p*r + (1-p)*s in X & f.r <> f.s holds f.(p*r + (1-p)*s) < max(f.r,f.s) proof let p be Real such that A3: 0<p & p<1; for r,s being Real st r in X & s in X & p*r + (1-p)*s in X & f.r <> f.s holds f.(p*r + (1-p)*s) < max(f.r,f.s) proof let r,s be Real such that A4: r in X & s in X & p*r + (1-p)*s in X & f.r <> f.s; A5: f.(p*r + (1-p)*s) <= p*f.r + (1-p)*f.s by A1,A3,A4,RFUNCT_3:def 13; A6: 1-p > 0 by A3,SQUARE_1:11; now per cases by A4,REAL_1:def 5; suppose f.r < f.s; then p*f.r < p*f.s by A3,REAL_1:70; then p*f.r + (1-p)*f.s < p*f.s + (1-p)*f.s by REAL_1:53; then p*f.r + (1-p)*f.s < f.s by Lm1; then A7: f.(p*r + (1-p)*s) < f.s by A5,AXIOMS:22; f.s <= max(f.r,f.s) by SQUARE_1:46; hence f.(p*r + (1-p)*s) < max(f.r,f.s) by A7,AXIOMS:22; suppose f.r > f.s; then (1-p)*f.r > (1-p)*f.s by A6,REAL_1:70; then p*f.r + (1-p)*f.s < p*f.r + (1-p)*f.r by REAL_1:53; then p*f.r + (1-p)*f.s < f.r by Lm1; then A8: f.(p*r + (1-p)*s) < f.r by A5,AXIOMS:22; f.r <= max(f.r,f.s) by SQUARE_1:46; hence thesis by A8,AXIOMS:22; end; hence thesis; end; hence thesis; end; hence thesis by A2,Def3; end; theorem for X, f st f is_strongly_quasiconvex_on X holds f is_strictly_quasiconvex_on X proof let X, f such that A1:f is_strongly_quasiconvex_on X; A2:X c= dom f by A1,Def4; for p being Real st 0<p & p<1 holds for r,s being Real st r in X & s in X & p*r + (1-p)*s in X & f.r <> f.s holds f.(p*r + (1-p)*s) < max(f.r,f.s) by A1,Def4; hence thesis by A2,Def3; end; theorem for X, f st f is_strictly_quasiconvex_on X & f is one-to-one holds f is_strongly_quasiconvex_on X proof let X, f such that A1:f is_strictly_quasiconvex_on X & f is one-to-one; A2:X c= dom f by A1,Def3; for p being Real st 0<p & p<1 holds for r,s being Real st r in X & s in X & p*r + (1-p)*s in X & r <> s holds f.(p*r + (1-p)*s) < max(f.r,f.s) proof let p be Real such that A3: 0<p & p<1; for r,s being Real st r in X & s in X & p*r + (1-p)*s in X & r <> s holds f.(p*r + (1-p)*s) < max(f.r,f.s) proof let r,s be Real such that A4: r in X & s in X & p*r + (1-p)*s in X & r <> s; f.(p*r + (1-p)*s) < max(f.r,f.s) proof f.r <> f.s by A1,A2,A4,FUNCT_1:def 8; hence thesis by A1,A3,A4,Def3; end; hence thesis; end; hence thesis; end; hence thesis by A2,Def4; end;