Copyright (c) 2000 Association of Mizar Users
environ vocabulary ARYTM, ARYTM_1, ARYTM_3, RELAT_1, SQUARE_1, FUNCT_3, PREPOWER, POWER, POLYEQ_1, GROUP_1; notation ORDINAL1, XCMPLX_0, XREAL_0, REAL_1, NAT_1, SQUARE_1, PREPOWER, POWER, QUIN_1; constructors REAL_1, NAT_1, SQUARE_1, PREPOWER, POWER, QUIN_1, MEMBERED; clusters XREAL_0, SQUARE_1, NEWTON, QUIN_1, MEMBERED; requirements NUMERALS, SUBSET, REAL, ARITHM; theorems REAL_1, REAL_2, SQUARE_1, PREPOWER, POWER, QUIN_1, NEWTON, XREAL_0, XCMPLX_0, XCMPLX_1; begin :: Polynomial of Degree 1 and 2 reserve a, a', a1, a2, a3, b, b', c, c', d, d', h, p, q, x, x1, x2, x3, u, v, y, z for real number; definition let a, b, x be real number; func Poly1(a ,b ,x) equals :Def1: a*x+b; coherence; end; definition let a, b, x be real number; cluster Poly1(a ,b ,x) -> real; coherence proof Poly1(a ,b ,x) = a*x+b by Def1; hence thesis; end; end; definition let a, b, x be Real; redefine func Poly1(a ,b ,x) -> Real; coherence by XREAL_0:def 1; end; theorem a <> 0 & Poly1(a,b,x) = 0 implies x = -(b/a) proof assume A1: a <> 0 & Poly1(a,b,x) = 0; then a*x+b = 0 by Def1; then a"*(-b) = a"*(a*x) by XCMPLX_0:def 6 .= (a"*a)*x by XCMPLX_1:4; then 1*x = a"*(-b) by A1,XCMPLX_0:def 7; then x = -(a"*b) by XCMPLX_1:175;hence x = -(b/a) by XCMPLX_0:def 9; end; theorem Poly1(0,0,x) = 0 proof Poly1(0,0,x) = 0*x+0 by Def1; hence Poly1(0,0,x) = 0; end; theorem b <> 0 implies not ex x st Poly1(0,b,x) = 0 proof assume that A1: b <> 0; given x2 such that A2:Poly1(0,b,x2) = 0; 0*x2 + b = 0 by A2,Def1; hence contradiction by A1; end; definition let a,b,c,x be real number; func Poly2(a,b,c,x) equals :Def2: a*x^2+b*x+c; coherence; end; definition let a,b,c,x be real number; cluster Poly2(a,b,c,x) -> real; coherence proof Poly2(a,b,c,x) = a*x^2+b*x+c by Def2; hence thesis; end; end; definition let a,b,c,x be Real; redefine func Poly2(a,b,c,x) -> Real; coherence by XREAL_0:def 1; end; theorem Th4: (for x holds Poly2(a,b,c,x) = Poly2(a',b',c',x)) implies a = a'& b = b'& c = c' proof assume A1: for x holds Poly2(a,b,c,x) = Poly2(a',b',c',x); then Poly2(a,b,c,0) = Poly2(a',b',c',0); then a*0^2+b*0+c = Poly2(a',b',c',0) by Def2; then A2:a*0+b*0+c = a'*0+b'*0+c' by Def2,SQUARE_1:60; c-c' = c+-c' by XCMPLX_0:def 8; then A3:c-c' = 0 by A2,XCMPLX_0:def 6; Poly2(a,b,c,1) = Poly2(a',b',c',1) by A1; then a*1^2+b*1+c = Poly2(a',b',c',1) by Def2; then a+b+c = a'*1+b'*1+c' by Def2,SQUARE_1:59; then a+b-(a'+b') = (c'-c) by XCMPLX_1:33 .= (c+-c) by A2,XCMPLX_0:def 8 .= 0 by XCMPLX_0:def 6; then A4: a+b = a'+b' by XCMPLX_1:15; Poly2(a,b,c,-1) = Poly2(a',b',c',-1) by A1; then a*(-1)^2+b*(-1)+c = Poly2(a',b',c',-1) by Def2 .= a'*(-1)^2+b'*(-1)+c' by Def2; then a*1^2+b*(-1)+c = a'*(-1)^2+b'*(-1)+c' by SQUARE_1:61; then a*1+b*(-1)+c = a'*1+b'*(-1)+c' by SQUARE_1:59,61; then a+-b*1+c = a'+b'*(-1)+c' by XCMPLX_1:175; then a+-b+c = a'+-1*b'+c' by XCMPLX_1:175; then a-b+c = a'+-1*b'+c' by XCMPLX_0:def 8 .= a'-b'+c' by XCMPLX_0:def 8; then c-b+a = a'-b'+c' by XCMPLX_1:30 .= c'-b'+a' by XCMPLX_1:30; then c-(b-a) = c'-b'+a' by XCMPLX_1:37 .= c'-(b'-a') by XCMPLX_1:37; then A5: 0 = (b-a)-(b'-a') by A3,XCMPLX_1:24; then b'-a' = b - a by XCMPLX_1:15; then (b'-a'+a')+b' = (b-a)+(a+b) by A4,XCMPLX_1:1 .= (b-a+a)+b by XCMPLX_1:1; then b'-(a'-a')+b' = (b-a+a)+b by XCMPLX_1:37 .= b-(a-a)+b by XCMPLX_1:37; then b'-(a'+-a')+b' = b-(a-a)+b by XCMPLX_0:def 8 .= b-(a+-a)+b by XCMPLX_0:def 8; then b'-0 +b' = b-(a+-a)+b by XCMPLX_0:def 6 .= b-0 +b by XCMPLX_0:def 6; then 2*b' = b +b by XCMPLX_1:11 .= 2*b by XCMPLX_1:11; then A6:b' = 2*b/2 by XCMPLX_1:90 .= (2/2)*b by XCMPLX_1:75 .= 1*b; (a+b)-(b-a) = (a'+b')-(b'-a') by A4,A5,XCMPLX_1:15 .= (a'+b')-b'+a' by XCMPLX_1:37; then a'+b'-b'+a' = (a+b)-b+a by XCMPLX_1:37; then a'+ (b'-b')+a' = a+b-b+a by XCMPLX_1:29 .= a+(b-b)+a by XCMPLX_1:29; then a'+0 +a' = a+(b-b)+a by XCMPLX_1:14 .= a+0 +a by XCMPLX_1:14; then 2*a' = a+a by XCMPLX_1:11 .= 2*a by XCMPLX_1:11; then a' = 2*a/2 by XCMPLX_1:90 .= (2/2)*a by XCMPLX_1:75 .= 1*a; hence thesis by A2,A6; end; theorem Th5: a <> 0 & delta(a,b,c) >= 0 implies (for x holds Poly2(a,b,c,x) = 0 implies x = (-b+sqrt delta(a,b,c))/(2*a) or x = (-b-sqrt delta(a,b,c))/(2*a)) proof assume A1: a <> 0 & delta(a,b,c)>=0; now let y; assume Poly2(a,b,c,y) = 0; then a*(a*y^2+b*y+c) = a*0 by Def2; then a*(a*y^2)+a*(b*y)+a*c = 0 by XCMPLX_1:9; then (a*a)*y^2+a*(b*y)+a*c = 0 by XCMPLX_1:4; then (a*a)*y^2+(a*b)*y+a*c = 0 by XCMPLX_1:4; then A2: a^2*y^2+(a*b)*y+a*c = 0 by SQUARE_1:def 3; set t = a^2*y^2+(a*b)*y; A3: t = -a*c by A2,XCMPLX_0:def 6; set e = a*c; t +b^2/4-b^2/4 = -e*(4*4") by A3,XCMPLX_1:26 .= -(e*4)*4" by XCMPLX_1:4; then t +b^2/4-b^2*4" = -(4*e)*4" by XCMPLX_0:def 9; then t +b^2/4-b^2*4" + (4*e)*4" = 0 by XCMPLX_0:def 6; then t +b^2/4-(b^2*4"-(4*e)*4") = 0 by XCMPLX_1:37; then t +b^2/4 = b^2*4"-(4*e)*4" by XCMPLX_1:15 .= (b^2-4*e)*4" by XCMPLX_1:40; then A4: (b^2-4*e)*4" = (a*y)^2+(a*b)*y+ b^2/4 by SQUARE_1:68 .= (a*y)^2+(a*y)*b + b^2/4 by XCMPLX_1:4 .= (a*y)^2+((a*y)*b/2*2) + b^2/4 by XCMPLX_1:88; 4=2^2 by SQUARE_1:85,def 4; then (b^2-4*e)*4" = (a*y)^2+ 2*((a*y)*b/2) + (b/2)^2 by A4,SQUARE_1:69 .= (a*y)^2+ 2*((a*y)*b*2") + (b/2)^2 by XCMPLX_0:def 9 .= (a*y)^2+ 2*((a*y)*(b*2")) + (b/2)^2 by XCMPLX_1:4 .= (a*y)^2+ 2*((a*y)*(b/2)) + (b/2)^2 by XCMPLX_0:def 9 .= (a*y)^2+ 2*(a*y)*(b/2) + (b/2)^2 by XCMPLX_1:4; then (a*y+b/2)^2 = (b^2-4*(a*c))*4" by SQUARE_1:63; then A5: (a*y+b/2)^2 = (b^2-4*(a*c))/4 by XCMPLX_0:def 9; A6: delta(a,b,c) = b^2-4*a*c by QUIN_1:def 1; then A7: (b^2-4*(a*c)) >= 0 by A1,XCMPLX_1:4; then (b^2-4*(a*c))/4 >= 0/4 by REAL_1:73; then (a*y+b/2)^2 = (sqrt((b^2-4*(a*c))/4))^2 by A5,SQUARE_1:def 4; then (a*y+b/2)^2 -(sqrt((b^2-4*(a*c))/4))^2 = 0 by XCMPLX_1:14; then A8: ((a*y+b/2) - sqrt((b^2-4*(a*c))/4))* ((a*y+b/2) + sqrt((b^2-4*(a*c))/4)) = 0 by SQUARE_1:67; A9:now assume that A10:((a*y+b/2) -sqrt((b^2-4*(a*c))/4)) =0; (a*y+b/2) = sqrt((b^2-4*(a*c))/4)by A10,XCMPLX_1:15 .= sqrt(b^2-4*(a*c))/2 by A7,SQUARE_1:85,99; then a*y = sqrt(b^2-4*(a*c))/2 - b/2 by XCMPLX_1:26 .= -(b/2 - sqrt(b^2-4*(a*c))/2 ) by XCMPLX_1:143 .= -(b*2" - sqrt(b^2-4*(a*c))/2 ) by XCMPLX_0:def 9 .= -(b*2" - sqrt(b^2-4*(a*c))*2" ) by XCMPLX_0:def 9 .= -(b - sqrt(b^2-4*(a*c)))*2" by XCMPLX_1:40 .= -((b - sqrt delta(a,b,c))*2") by A6,XCMPLX_1:4 .= -(b*2" - sqrt delta(a,b,c)*2") by XCMPLX_1:40 .= -(b*2") +(sqrt delta(a,b,c)*2") by XCMPLX_1:162 .= ((-b)*2" +(sqrt delta(a,b,c)*2"))by XCMPLX_1:175; then y = ((-b)*2" +(sqrt delta(a,b,c)*2")) /a by A1,XCMPLX_1:90 .= ((-b)*2" +(sqrt delta(a,b,c)*2"))*a" by XCMPLX_0:def 9 .= ((-b)*2"*a" +(sqrt delta(a,b,c)*2")*a") by XCMPLX_1:8 .= ((-b)*(2"*a") +sqrt delta(a,b,c)*2"*a") by XCMPLX_1:4 .= ((-b)*(2"*a") +sqrt delta(a,b,c)*(2"*a")) by XCMPLX_1:4 .= (-b +sqrt delta(a,b,c))*(2"*a") by XCMPLX_1:8 .= (-b +sqrt delta(a,b,c))*(2*a)" by XCMPLX_1:205;hence y = (-b +sqrt delta(a,b,c))/(2*a) by XCMPLX_0:def 9; end; now assume that A11: (a*y+b/2) +sqrt((b^2-4*(a*c))/4) = 0; (a*y+b/2) = - sqrt((b^2-4*(a*c))/4) by A11,XCMPLX_0:def 6; then a*y+b/2 = -sqrt(b^2-4*(a*c))/2 by A7,SQUARE_1:85,99; then a*y = -sqrt(b^2-4*(a*c))/2 - b/2 by XCMPLX_1:26 .= -(b/2 + sqrt(b^2-4*(a*c))/2 ) by XCMPLX_1:161 .= -(b*2" + sqrt(b^2-4*(a*c))/2 ) by XCMPLX_0:def 9 .= -(b*2" + sqrt(b^2-4*(a*c))*2" ) by XCMPLX_0:def 9 .= -(b + sqrt(b^2-4*(a*c)))*2" by XCMPLX_1:8 .= -(b + sqrt delta(a,b,c))*2" by A6,XCMPLX_1:4 .= -(b*2" + sqrt delta(a,b,c)*2") by XCMPLX_1:8 .= -(b*2") -(sqrt delta(a,b,c)*2") by XCMPLX_1:161 .= ((-b)*2" -(sqrt delta(a,b,c)*2"))by XCMPLX_1:175; then y = ((-b)*2" -(sqrt delta(a,b,c)*2")) /a by A1,XCMPLX_1:90 .= ((-b)*2" -(sqrt delta(a,b,c)*2"))*a" by XCMPLX_0:def 9 .= ((-b)*2"*a" -(sqrt delta(a,b,c)*2")*a") by XCMPLX_1:40 .= ((-b)*(2"*a") -sqrt delta(a,b,c)*2"*a") by XCMPLX_1:4 .= ((-b)*(2"*a") -sqrt delta(a,b,c)*(2"*a")) by XCMPLX_1:4 .= (-b -sqrt delta(a,b,c))*(2"*a") by XCMPLX_1:40 .= (-b -sqrt delta(a,b,c))*(2*a)" by XCMPLX_1:205;hence y = (-b -sqrt delta(a,b,c))/(2*a) by XCMPLX_0:def 9; end; hence y = (-b+sqrt delta(a,b,c))/(2*a) or y = (-b-sqrt delta(a,b,c))/(2*a) by A8,A9,XCMPLX_1:6; end; hence thesis; end; theorem a <> 0 & delta(a,b,c) = 0 & Poly2(a,b,c,x) = 0 implies x = -(b/(2*a)) proof assume A1: a <> 0 & delta(a,b,c) = 0; now let y; assume Poly2(a,b,c,y) = 0; then a*y^2+b*y+c = 0 by Def2; then a*(a*y^2+b*y+c) = 0; then a*(a*y^2)+a*(b*y)+a*c = 0 by XCMPLX_1:9; then (a*a)*y^2+a*(b*y)+a*c = 0 by XCMPLX_1:4; then A2: (a*a)*y^2+(a*b)*y+a*c = 0 by XCMPLX_1:4; set t = a^2*y^2+(a*b)*y; t +a*c = 0 by A2,SQUARE_1:def 3; then A3: t = -a*c by XCMPLX_0:def 6; set e = a*c; A4:b^2-4*a*c = delta(a,b,c) by QUIN_1:def 1; t +b^2/4-b^2/4 = -e*(4*4") by A3,XCMPLX_1:26 .= -(e*4)*4" by XCMPLX_1:4; then t+b^2/4-b^2*4" = -(4*e)*4" by XCMPLX_0:def 9; then t+b^2/4-b^2*4" + (4*e)*4" = 0 by XCMPLX_0:def 6; then t+b^2/4-(b^2*4"-(4*e)*4") = 0 by XCMPLX_1:37; then t+b^2/4 = b^2*4"-(4*e)*4" by XCMPLX_1:15 .= (b^2-4*e)*4" by XCMPLX_1:40 .= 0*4" by A1,A4,XCMPLX_1:4; then (a*y)^2+(a*b)*y+ b^2/4 = 0 by SQUARE_1:68; then (a*y)^2+(a*y)*b + b^2/4 = 0 by XCMPLX_1:4; then A5:(a*y)^2+ 2*((a*y)*b/2) + b^2/4 = 0 by XCMPLX_1:88; 4=2^2 by SQUARE_1:85,def 4; then (a*y)^2+ 2*((a*y)*b/2) + (b/2)^2 = 0 by A5,SQUARE_1:69; then (a*y)^2+ 2*((a*y)*b*2") + (b/2)^2 = 0 by XCMPLX_0:def 9; then (a*y)^2+ 2*((a*y)*(b*2")) + (b/2)^2 = 0 by XCMPLX_1:4; then (a*y)^2+ 2*((a*y)*(b/2)) + (b/2)^2 = 0 by XCMPLX_0:def 9; then (a*y)^2+ 2*(a*y)*(b/2) + (b/2)^2 = 0 by XCMPLX_1:4; then (a*y+b/2)^2 = 0 by SQUARE_1:63; then a*y+b/2 = 0 by SQUARE_1:73; then a*y = - b/2 by XCMPLX_0:def 6 .= - b*2" by XCMPLX_0:def 9; then y = (- b*2")/a by A1,XCMPLX_1:90 .= (-2"*b)*a" by XCMPLX_0:def 9 .= (-1)*(b*2")*a" by XCMPLX_1:180 .= (-1)*((b*2")*a") by XCMPLX_1:4 .= -((b*2")*a")*(1) by XCMPLX_1:175 .= -(b*(2"*a"))*1 by XCMPLX_1:4 .= -(b*(2*a)") by XCMPLX_1:205;hence y = -( b/(2*a)) by XCMPLX_0:def 9; end; hence thesis; end; theorem a <> 0 & delta(a,b,c) < 0 implies not ex x st Poly2(a,b,c,x) = 0 proof assume that A1: a <> 0 & delta(a,b,c) < 0; given y such that A2: Poly2(a,b,c,y) = 0; a*(a*y^2+b*y+c) = a*0 by A2,Def2; then a*(a*y^2)+a*(b*y)+a*c = 0 by XCMPLX_1:9; then (a*a)*y^2+a*(b*y)+a*c = 0 by XCMPLX_1:4; then A3: (a*a)*y^2+(a*b)*y+a*c = 0 by XCMPLX_1:4; set t = a^2*y^2+(a*b)*y; t +a*c = 0 by A3,SQUARE_1:def 3; then A4: t = -a*c by XCMPLX_0:def 6; set e = a*c; t +b^2/4-b^2/4 = -e*(4*4") by A4,XCMPLX_1:26 .= -(e*4)*4" by XCMPLX_1:4; then t +b^2/4-b^2*4" = -(4*e)*4" by XCMPLX_0:def 9; then t +b^2/4-b^2*4" + (4*e)*4" = 0 by XCMPLX_0:def 6; then t +b^2/4-(b^2*4"-(4*e)*4") = 0 by XCMPLX_1:37; then t +b^2/4 = b^2*4"-(4*e)*4" by XCMPLX_1:15 .= (b^2-4*e)*4" by XCMPLX_1:40; then A5: (b^2-4*e)*4" = (a*y)^2+(a*b)*y+ b^2/4 by SQUARE_1:68 .= (a*y)^2+(a*y)*b + b^2/4 by XCMPLX_1:4 .= (a*y)^2+((a*y)*b/2*2) + b^2/4 by XCMPLX_1:88; 4=2^2 by SQUARE_1:85,def 4; then (b^2-4*e)*4" = (a*y)^2+ 2*((a*y)*b/2) + (b/2)^2 by A5,SQUARE_1:69 .= (a*y)^2+ 2*((a*y)*b*2") + (b/2)^2 by XCMPLX_0:def 9 .= (a*y)^2+ 2*((a*y)*(b*2")) + (b/2)^2 by XCMPLX_1:4 .= (a*y)^2+ 2*((a*y)*(b/2)) + (b/2)^2 by XCMPLX_0:def 9 .= (a*y)^2+ 2*(a*y)*(b/2) + (b/2)^2 by XCMPLX_1:4; then A6: (a*y+b/2)^2 = (b^2-4*(a*c))*4" by SQUARE_1:63; (b^2-4*a*c) < 0 by A1,QUIN_1:def 1; then (b^2-4*(a*c)) < 0 by XCMPLX_1:4; then (b^2-4*(a*c))*4" < 0 by SQUARE_1:24; then (a*y+b/2)*(a*y+b/2) < 0 by A6,SQUARE_1:def 3; then (a*y+b/2) > 0 & (a*y+b/2) < 0 by REAL_2:132; hence contradiction; end; theorem b <> 0 & (for x holds Poly2(0,b,c,x) = 0) implies x = -(c/b) proof assume that A1: b <> 0; now assume A2: (for x holds Poly2(0,b,c,x) = 0); now let y; Poly2(0,b,c,y) = 0 by A2; then 0*y^2+b*y+c = 0 by Def2; then b*y = - c by XCMPLX_0:def 6; then y = (-c)/b by A1,XCMPLX_1:90 .= (-c)*b" by XCMPLX_0:def 9 .= ((-1)*c)*b" by XCMPLX_1:180 .= (-1)*(c*b") by XCMPLX_1:4 .= (-1)*(c/b) by XCMPLX_0:def 9; hence y = -(c/b) by XCMPLX_1:180; end; hence thesis; end; hence thesis; end; theorem Poly2(0,0,0,x) = 0 proof 0*x^2+0*x+0 = 0; hence thesis by Def2; end; theorem c <> 0 implies not ex x st Poly2(0,0,c,x) = 0 proof assume A1: c <> 0; given y such that A2: Poly2(0,0,c,y) = 0; 0*y^2+0*y+c = 0 by A2,Def2; hence contradiction by A1; end; definition let a,x,x1,x2 be real number; func Quard(a,x1,x2,x) equals :Def3: a*((x-x1)*(x-x2)); coherence; end; definition let a,x,x1,x2 be real number; cluster Quard(a,x1,x2,x) -> real; coherence proof Quard(a,x1,x2,x) = a*((x-x1)*(x-x2)) by Def3; hence thesis; end; end; definition let a,x,x1,x2 be Real; redefine func Quard(a,x1,x2,x) -> Real; coherence by XREAL_0:def 1; end; theorem a <> 0 & (for x holds Poly2(a,b,c,x) = Quard(a,x1,x2,x)) implies b/a = -(x1+x2) & c/a = x1*x2 proof assume A1: a <> 0; now assume A2: (for x holds Poly2(a,b,c,x) = Quard(a,x1,x2,x)); now let z; Poly2(a,b,c,z) = Quard(a,x1,x2,z) by A2; then a*z^2+b*z+c = Quard(a,x1,x2,z) by Def2 .= a*((z-x1)*(z-x2)) by Def3; then A3:a*((z-x1)*(z-x2)) = a*z^2-(-b*z-(--c)) by XCMPLX_1:157 .= a*z^2+-(-b*z-c) by XCMPLX_0:def 8; set h = z-x1, t = z-x2; (a*z^2)+(b*z+c) = a*(h*t) by A3,XCMPLX_1:164; then (b*z+c) = a*(h*t)-(a*z^2) by XCMPLX_1:26; then A4: a*(h*t-z^2) = (b*z+c) by XCMPLX_1:40; set e = h*t-z^2; e = (b*z+c)/a by A1,A4,XCMPLX_1:90 .= a"*(b*z+c) by XCMPLX_0:def 9 .= a"*(b*z)+a"*c by XCMPLX_1:8; then e-a"*c = a"*(b*z) by XCMPLX_1:26; then e -a"*c = (a"*b)*z by XCMPLX_1:4; then e+(-a"*c) = (a"*b)*z by XCMPLX_0:def 8; then e = (a"*b)*z-(-a"*c) by XCMPLX_1:26 .= (a"*b)*z+-(-a"*c) by XCMPLX_0:def 8 .= (a"*b)*z+a"*c; then h*t+-z^2 = (a"*b)*z+a"*c by XCMPLX_0:def 8; then h*t = ((a"*b)*z+a"*c)-(-z^2) by XCMPLX_1:26 .= -(-z^2)+(a"*b)*z+a"*c by XCMPLX_1:155 .= z^2+(a"*b)*z+a"*c; then z*z-z*x2-x1*z+x1*x2 = z^2+(a"*b)*z+a"*c by XCMPLX_1:47; then z^2+(a"*b)*z+a"*c = z^2-x2*z-x1*z+x1*x2 by SQUARE_1:def 3 .= z^2-(x1*z+x2*z)+x1*x2 by XCMPLX_1:36; then z^2-(x1+x2)*z+x1*x2 = z^2+(a"*b)*z+a"*c by XCMPLX_1:8 .= z^2+(b/a)*z+a"*c by XCMPLX_0:def 9 .= z^2+(b/a)*z+(c/a) by XCMPLX_0:def 9; then A5: z^2-(x1+x2)*z+x1*x2 = 1*z^2+(b/a)*z+(c/a) .= Poly2(1,b/a,c/a,z) by Def2; 1*z^2+(-(x1+x2))*z+x1*x2 = 1*z^2+-(x1+x2)*z+x1*x2 by XCMPLX_1:175 .= Poly2(1,b/a,c/a,z) by A5,XCMPLX_0:def 8; hence Poly2(1,-(x1+x2),x1*x2,z) = Poly2(1,b/a,c/a,z) by Def2; end;hence b/a = -(x1+x2) & c/a = x1*x2 by Th4; end;hence thesis; end; begin :: Polynomial of Degree 3 definition let a,b,c,d,x be real number; func Poly3(a,b,c,d,x) equals :Def4: a*(x |^ 3)+ b*x^2 +c*x +d; coherence; end; definition let a,b,c,d,x be real number; cluster Poly3(a,b,c,d,x) -> real; coherence proof Poly3(a,b,c,d,x) = a*(x |^ 3)+ b*x^2 +c*x +d by Def4; hence thesis; end; end; definition let a,b,c,d,x be Real; redefine func Poly3(a,b,c,d,x) -> Real; coherence by XREAL_0:def 1; end; theorem Th12: (for x holds Poly3(a,b,c,d,x) = Poly3(a',b',c',d',x)) implies a = a' & b = b' & c = c' & d = d' proof assume that A1: for x holds Poly3(a,b,c,d,x) = Poly3(a',b',c',d',x); Poly3(a,b,c,d,0) = Poly3(a',b',c',d',0)by A1; then a*(0 |^ 3)+ b*0^2 +c*0 +d = Poly3(a',b',c',d',0) by Def4; then A2: a*(0 |^ 3)+ b*0^2 +c*0 +d = a'*(0 |^ 3)+ b'*0^2 +c'*0 +d' by Def4; A3: (0 |^ 3) = 0 by NEWTON:16; Poly3(a,b,c,d,1) = Poly3(a',b',c',d',1) by A1; then a*(1 |^ 3)+ b*1^2 +c*1 +d = Poly3(a',b',c',d',1) by Def4; then a*1 + b*1 +c*1 +d = Poly3(a',b',c',d',1) by NEWTON:15,SQUARE_1:59; then A4: a + b +c +d = a'*(1 |^ 3) + b'*1^2 +c'*1 +d' by Def4 .= a'*1+ b'*1 +c'*1 +d' by NEWTON:15,SQUARE_1:59 .= a'+ b' +c' +d'; set r1 = a+b+c; set r2 = a'+b'+c'; r1 - r2 = d - d by A2,A3,A4,SQUARE_1:60,XCMPLX_1:33 .= 0 by XCMPLX_1:14; then A5: r1 = r2 by XCMPLX_1:15; Poly3(a,b,c,d,-1) = Poly3(a',b',c',d',-1) by A1; then A6: a*((-1) |^ 3)+ b*(-1)^2 +c*(-1) +d = Poly3(a',b',c',d',-1) by Def4; 3 = 2*1 + 1; then (-1) |^ 3 = - (1 |^ (2+1)) by POWER:2 .= - ((1 |^ 2)*1) by NEWTON:11; then (-1) |^ 3 = - 1 by NEWTON:15; then a*(-1)+ b*(-1)^2 +c*(-1) +d = a'*(-1) + b'*(-1)^2 +c'*(-1) +d' by A6,Def4; then -(a*1)+ b*(-1)^2 +c*(-1) +d = a'*(-1) + b'*(-1)^2 +c'*(-1) +d' by XCMPLX_1:175 .= -(a'*1) + b'*(-1)^2 +c'*(-1) +d' by XCMPLX_1:175; then -a+b*1^2 +c*(-1) +d = -a' + b'*(-1)^2 +c'*(-1) +d' by SQUARE_1:61 .= -a' + b'*1^2 +c'*(-1) +d' by SQUARE_1:61; then -a+b+-(1*c)+d = -a' + b' +(-1)*c' +d' by SQUARE_1:59,XCMPLX_1:175 .= -a' + b'+-(1*c') +d' by XCMPLX_1:175; then A7:-a+b-(1*c) +d = -a' + b'+ -(1*c') +d' by XCMPLX_0:def 8 .= -a' + b' -(1*c') +d' by XCMPLX_0:def 8; set r3 = -a + b - c; set r4 = -a' + b' -c'; A8:r3 - r4 = d -d by A2,A3,A7,SQUARE_1:60,XCMPLX_1:33 .= 0 by XCMPLX_1:14; then r1 + r3 = r2 + r4 by A5,XCMPLX_1:15 .= a'+b'+c'+(-c' - a' +b') by XCMPLX_1:166 .= a'+b'+c'+(-(c'+ a') +b') by XCMPLX_1:161 .= a'+b'+c'+( -(c'+ a') -(-b')) by XCMPLX_1:151 .= a'+b'+c' -(c'+ a') -(-b') by XCMPLX_1:158 .= a'+b'+c' - c'- a' -(-b') by XCMPLX_1:36 .= a'+b'+(c'-c') - a' -(-b') by XCMPLX_1:29 .= a'+b'+ 0 - a' -(-b') by XCMPLX_1:14 .= a'- a'+b' -(-b') by XCMPLX_1:29 .= 0 +b' -(-b') by XCMPLX_1:14 .= b' + b' by XCMPLX_1:151; then A9: 2*b' = a+b+c + (-a+b-c) by XCMPLX_1:11 .= a+b+c + (-c-a+b) by XCMPLX_1:166 .= a+b+c + (-(c+a)+b) by XCMPLX_1:161 .= a+b+c + (-(c+a)-(-b)) by XCMPLX_1:151 .= a+b+c -(c+a)-(-b) by XCMPLX_1:158 .= a+b+c -c-a-(-b) by XCMPLX_1:36 .= a+b+(c -c)-a-(-b) by XCMPLX_1:29 .= a+b+0-a-(-b) by XCMPLX_1:14 .= a-a+b-(-b) by XCMPLX_1:29 .= 0+ b-(-b) by XCMPLX_1:14 .= b+b by XCMPLX_1:151 .= 2*b by XCMPLX_1:11; r1 - r3 = r2 - r4 by A5,A8,XCMPLX_1:15 .= a'+b'+c'- -( a' - b' +c')by XCMPLX_1:169 .= a'+b'+c'+( a'-b'+c')by XCMPLX_1:151 .= a'+b'+c'+(-b'+a'+c')by XCMPLX_0:def 8 .= a'+b'+c'+(-(b'-a'-c')) by XCMPLX_1:170 .= a'+b'+c'-(b'-a'-c') by XCMPLX_0:def 8 .= a'+b'+c'-(b'-(a'+c')) by XCMPLX_1:36 .= a'+b'+c'-b'+(a'+c') by XCMPLX_1:37 .= a'+b'-b'+c'+(a'+c') by XCMPLX_1:29 .= a'+c'+(a'+c') by XCMPLX_1:26; then 2*(a'+c') = a+b+c-(-a+b-c) by XCMPLX_1:11 .= a+b+c--(a-b+c) by XCMPLX_1:169 .= a+b+c+(a-b+c) by XCMPLX_1:151 .= a+b+c+(-b+a+c) by XCMPLX_0:def 8 .= a+b+c+(-(b-a-c)) by XCMPLX_1:170 .= a+b+c-(b-a-c) by XCMPLX_0:def 8 .= a+b+c-(b-(a+c)) by XCMPLX_1:36 .= a+b+c-b+(a+c) by XCMPLX_1:37 .= a+b-b+c+(a+c) by XCMPLX_1:29 .= a +c +(a+c) by XCMPLX_1:26 .= 2*(a+c) by XCMPLX_1:11; then a'+c' = a+c by XCMPLX_1:5; then A10: a-a' = c'-c by XCMPLX_1:33; Poly3(a,b,c,d,2) = Poly3(a',b',c',d',2) by A1; then A11: a*(2 |^ 3)+ b*2^2 +c*2 +d = Poly3(a',b',c',d',2) by Def4; A12: 2 |^ 3 = 2 |^ (2+1) .= (2 |^ (1+1))*2 by NEWTON:11 .= ((2 |^ 1)*2)*2 by NEWTON:11 .= (2 |^ 1)*(2*2) by XCMPLX_1:4; A13: 2 |^ 1 = 2 to_power 1 by POWER:47 .= 2 by POWER:30; set r5 = a*8+ b*2^2 +c*2; set r6 = a'*8 + b'*2^2 +c'*2; r5 + d = r6 +d' by A11,A12,A13,Def4; then A14: r5 - r6 = d -d by A2,A3,SQUARE_1:60,XCMPLX_1:33 .= 0 by XCMPLX_1:14; A15: (a - a')*8 = (c' -c)*2 proof a*8+ b*2^2 +c*2 = a'*8 + b'*2^2 +c'*2 by A14,XCMPLX_1:15; then a*8+ (b*2^2 +c*2) = a'*8 + b'*2^2 +c'*2 by XCMPLX_1:1 .= a'*8 + (b'*2^2 +c'*2) by XCMPLX_1:1; then a*8 - a'*8 = b'*2^2 +c'*2 -( b*2^2 +c*2) by XCMPLX_1:33 .= b'*2^2 +c'*2 - b*2^2 -c*2 by XCMPLX_1:36 .= b'*2^2 - b*2^2+c'*2 -c*2 by XCMPLX_1:29 .= (b*2^2 - b*2^2)+c'*2 -c*2 by A9,XCMPLX_1:5 .= 0 +c'*2 -c*2 by XCMPLX_1:14; then (a - a')*8 = c'*2 -c*2 by XCMPLX_1:40;hence thesis by XCMPLX_1:40 ; end; A16: 8-2=6; (a - a')*8 + (-(c' -c)*2) = 0 by A15,XCMPLX_0:def 6; then (c' - c)*8 - (c' -c)*2 = 0 by A10,XCMPLX_0:def 8; then (c' - c)*6 = 0 by A16,XCMPLX_1:40; then c' - c = 0 or 6 = 0 by XCMPLX_1:6; hence thesis by A2,A3,A9,A10,SQUARE_1:60,XCMPLX_1:5,15; end; definition let a,x,x1,x2,x3 be real number; func Tri(a,x1,x2,x3,x) equals :Def5: a*((x-x1)*(x-x2)*(x-x3)); coherence; end; definition let a,x,x1,x2,x3 be real number; cluster Tri(a,x1,x2,x3,x) -> real; coherence proof Tri(a,x1,x2,x3,x) = a*((x-x1)*(x-x2)*(x-x3)) by Def5; hence thesis; end; end; definition let a,x,x1,x2,x3 be Real; redefine func Tri(a,x1,x2,x3,x) -> Real; coherence by XREAL_0:def 1; end; theorem a <> 0 & (for x holds Poly3(a,b,c,d,x) = Tri(a,x1,x2,x3,x)) implies b/a = -(x1+x2+x3) & c/a = x1*x2 +x2*x3 +x1*x3 & d/a = -x1*x2*x3 proof assume A1: a <> 0; assume A2: for x holds Poly3(a,b,c,d,x) = Tri(a,x1,x2,x3,x); set b' = -(x1+x2+x3); set c' = x1*x2+x2*x3+x1*x3; set d' = -x1*x2*x3; set t1 = b/a; set t2 = c/a; set t3 = d/a; now let x; Poly3(a,b,c,d,x) = Tri(a,x1,x2,x3,x)by A2; then A3: a*(x |^ 3)+ b*x^2 +c*x +d = Tri(a,x1,x2,x3,x) by Def4; set t = a*(x |^ 3)+ b*x^2 +c*x +d; set r8 = ((x-x1)*(x-x2)*(x-x3)); t = a*r8 by A3,Def5; then t/a = r8 by A1,XCMPLX_1:90; then a"*t = r8 by XCMPLX_0:def 9; then A4: a"*t = ((x*x-x*x2-x1*x+x1*x2))*(x-x3) by XCMPLX_1:47; set r9 = (x^2-x*x2-x1*x+x1*x2); a"*t = r9*(x-x3) by A4,SQUARE_1:def 3; then A5: a"*t = r9*x- r9*x3 by XCMPLX_1:40; A6: r9*x = (x^2-x2*x-x1*x)*x + (x1*x2)*x by XCMPLX_1:8 .= x^2*x-x2*x*x-x1*x*x + (x1*x2)*x by XCMPLX_1:42 .= x^2*x-x2*(x*x)-x1*x*x + (x1*x2)*x by XCMPLX_1:4 .= x^2*x-x2*x^2-x1*x*x + (x1*x2)*x by SQUARE_1:def 3 .= x^2*x-x2*x^2-x1*(x*x) + (x1*x2)*x by XCMPLX_1:4 .= x^2*x-x2*x^2-x1*x^2 + (x1*x2)*x by SQUARE_1:def 3 .= x^2*x-(x2*x^2+x1*x^2) + (x1*x2)*x by XCMPLX_1:36 .= x^2*x-(x2+x1)*x^2 + (x1*x2)*x by XCMPLX_1:8; r9*x3 = (x^2-x*x2-x*x1)*x3+(x1*x2)*x3 by XCMPLX_1:8 .= x^2*x3-x*x2*x3-x*x1*x3+(x1*x2)*x3 by XCMPLX_1:42 .= x^2*x3-(x2*x3)*x-x*x1*x3+(x1*x2)*x3 by XCMPLX_1:4 .= x^2*x3-(x2*x3)*x-(x1*x3)*x+(x1*x2)*x3 by XCMPLX_1:4 .= x^2*x3-((x2*x3)*x+(x1*x3)*x)+(x1*x2)*x3 by XCMPLX_1:36 .= x^2*x3-((x2*x3)+(x1*x3))*x+ x1*x2*x3 by XCMPLX_1:8; then A7: a"*t = x^2*x-(x2+x1)*x^2 + (x1*x2)*x - (-((x2*x3)+(x1*x3))*x+x^2*x3+x1*x2*x3) by A5,A6,XCMPLX_0:def 8; set r10 = x^2*x-(x2+x1)*x^2; A8: a"*t = r10 + (x1*x2)*x -(-((x2*x3)+(x1*x3))*x+(x^2*x3+x1*x2*x3)) by A7,XCMPLX_1:1 .= r10 + (x1*x2)*x - (-((x2*x3)+(x1*x3))*x--(x^2*x3+x1*x2*x3)) by XCMPLX_1:151 .= r10 + (x1*x2)*x + ((x2*x3)+(x1*x3))*x +-(x^2*x3 +x1*x2*x3) by XCMPLX_1:157 .= r10 + (x1*x2)*x + ((x2*x3)+(x1*x3))*x -(x^2*x3 +x1*x2*x3) by XCMPLX_0:def 8 .= r10 + (x1*x2)*x + ((x2*x3)+(x1*x3))*x -x^2*x3 -x1*x2*x3 by XCMPLX_1:36 .= r10 + ((x1*x2)*x + ((x2*x3)+(x1*x3))*x) -x^2*x3 -x1*x2*x3 by XCMPLX_1:1 .= r10 + ((x1*x2)+ (x2*x3+x1*x3))*x -x^2*x3 -x1*x2*x3 by XCMPLX_1:8; set r11 = ((x1*x2)+ (x2*x3)+(x1*x3))*x; A9: a"*t = r10 + r11 -x3*x^2 -x1*x2*x3 by A8,XCMPLX_1:1 .= r10 -x3*x^2+r11 -x1*x2*x3 by XCMPLX_1:29 .= (x^2*x-((x2+x1)*x^2+ x3*x^2))+r11 -x1*x2*x3 by XCMPLX_1:36 .= (x^2*x-(x2+x1+x3)*x^2)+r11 -x1*x2*x3 by XCMPLX_1:8 .= x^2*x + (-(x1+x2+x3)*x^2)+ (x1*x2+x2*x3+x1*x3)*x -x1*x2*x3 by XCMPLX_0:def 8 .= x^2*x+(-(x1+x2+x3)*x^2)+ (x1*x2+x2*x3+x1*x3)*x + (-x1*x2*x3) by XCMPLX_0:def 8; (b' + (x1+x2+x3))*x^2 = 0*x^2 by XCMPLX_0:def 6; then b'*x^2 + (x1+x2+x3)*x^2 = 0 by XCMPLX_1:8; then A10: a"*t = x^2*x+ b'*x^2 +c'*x + d' by A9,XCMPLX_0:def 6; A11: x |^ 3 = x |^ (2+1) .= (x |^ (1+1))*x by NEWTON:11 .= ((x |^ 1)*x)*x by NEWTON:11; x |^ 1 = x to_power 1 by POWER:47; then x |^ 3 = (x*x)*x by A11,POWER:30; then A12: a"*t = 1*(x |^ 3) + b'*x^2 +c'*x + d' by A10,SQUARE_1:def 3; a"*t = a"*(a*(x |^ 3)+ b*x^2 +(c*x +d)) by XCMPLX_1:1 .= a"*(a*(x |^ 3))+ a"*(b*x^2) +a"*(c*x +d) by XCMPLX_1:9 .= (a"*a)*(x |^ 3)+ a"*(b*x^2) +a"*(c*x +d) by XCMPLX_1:4 .= (a"*a)*(x |^ 3)+ (a"*b)*x^2 +a"*(c*x +d) by XCMPLX_1:4 .= (a"*a)*(x |^ 3)+ (a"*b)*x^2 + (a"*(c*x) +a"*d) by XCMPLX_1:8 .= (a"*a)*(x |^ 3)+ (a"*b)*x^2 +((a"*c)*x +(a"*d)) by XCMPLX_1:4 .= 1*(x |^ 3)+ (a"*b)*x^2 +((a"*c)*x +a"*d) by A1,XCMPLX_0:def 7 .= 1*(x |^ 3)+ t1*x^2 +((a"*c)*x +a"*d) by XCMPLX_0:def 9 .= 1*(x |^ 3)+ t1*x^2 + (t2*x +a"*d) by XCMPLX_0:def 9 .= 1*(x |^ 3)+ t1*x^2 + (t2*x + t3) by XCMPLX_0:def 9 .= 1*(x |^ 3)+ t1*x^2 + t2*x +t3 by XCMPLX_1:1 .= Poly3(1,t1,t2,t3,x) by Def4; hence Poly3(1,t1,t2,t3,x) = Poly3(1,b',c',d',x) by A12,Def4; end; hence b/a = -(x1+x2+x3) & c/a = x1*x2+x2*x3+x1*x3 & d/a = -x1*x2*x3 by Th12; end; theorem Th14: (y+h) |^ 3 = y |^ 3+((3*h)*y^2+(3*h^2)*y)+h |^ 3 proof A1: (y+h) |^ 3 = (y+h) |^ (2+1); set a4 = h*y^2+(2*h^2)*y; A2: (y+h) |^ 3 = ((y+h) |^ (1+1))*(y+h) by A1,NEWTON:11 .= ((y+h) |^ 1*(y+h))*(y+h) by NEWTON:11 .= ((y+h) |^ 1)*((y+h)*(y+h)) by XCMPLX_1:4 .= ((y+h) |^ 1)*(y+h)^2 by SQUARE_1:def 3 .= ((y+h) |^ 1)*(y^2+2*y*h+h^2) by SQUARE_1:63 .= ((y+h) to_power 1)*(y^2+2*y*h+h^2) by POWER:47 .= (y+h)*(y^2+2*y*h+h^2) by POWER:30 .= y*(y^2+2*y*h+h^2)+h*(y^2+2*y*h+h^2) by XCMPLX_1:8 .= y*y^2+y*(2*y*h)+y*h^2+h*(y^2+2*y*h+h^2) by XCMPLX_1:9 .= y*y^2+y*(2*y*h)+y*h^2+(h*y^2+h*(2*y*h)+h*h^2) by XCMPLX_1:9 .= y*y^2+y*(2*y)*h +y*h^2+(h*y^2+h*(2*y*h)+h*h^2) by XCMPLX_1:4 .= y*y^2-(-h*(-(-y*(2*y)))) +y*h^2+(h*y^2+h*(2*y*h)+h*h^2 ) by XCMPLX_1:151 .= y*y^2-(h*(-(2*y)*y)) +y*h^2+(h*y^2+h*(2*y*h)+h*h^2) by XCMPLX_1:179 .= y*y^2-(h*(-(2*(y*y)))) +y*h^2+(h*y^2+h*(2*y*h)+h*h^2 ) by XCMPLX_1:4 .= y*y^2-(h*(-(2*y^2))) +y*h^2+(h*y^2+h*(2*y*h)+h*h^2 ) by SQUARE_1:def 3 .= y*y^2-(-h*(2*y^2)) +y*h^2+(h*y^2+h*(2*y*h)+h*h^2) by XCMPLX_1:175 .= y*y^2-(-(2*h*y^2)) +y*h^2+(h*y^2+h*(2*y*h)+h*h^2) by XCMPLX_1:4 .= y*y^2+(2*h*y^2) +h^2*y+(h*y^2+h*(2*y*h)+h*h^2) by XCMPLX_1:151 .= y*y^2+(2*h)*y^2 +h^2*y+(h*y^2+2*y*(h*h)+h*h^2) by XCMPLX_1:4 .= y*y^2+(2*h)*y^2 +h^2*y+(h*y^2+2*y*h^2+h*h^2) by SQUARE_1:def 3 .= y*y^2+(2*h)*y^2 +h^2*y+(h*y^2+(2*h^2)*y+h*h^2) by XCMPLX_1:4 .= y*y^2+(2*h)*y^2 +(h^2*y+(a4+h*h^2)) by XCMPLX_1:1 .= y*y^2+(2*h)*y^2 +(a4+(h^2*y+h*h^2)) by XCMPLX_1:1 .= y*y^2+(2*h)*y^2 +a4+(h^2*y+h*h^2) by XCMPLX_1:1 .= y*y^2+((2*h)*y^2 +a4)+(h^2*y+h*h^2) by XCMPLX_1:1 .= y*y^2+(((2*h)*y^2 +h*y^2)+(2*h^2*y))+(h^2*y+h*h^2) by XCMPLX_1:1 .= y*y^2+((2*h +h)*y^2+(2*h^2*y))+(h^2*y+h*h^2) by XCMPLX_1:8 .= y*y^2+(((2*h +h)*y^2+(2*h^2*y))+(h^2*y+h*h^2)) by XCMPLX_1:1 .= y*y^2+((2*h +h)*y^2+((2*h^2*y)+(h^2*y+h*h^2))) by XCMPLX_1:1 .= y*y^2+((2*h +h)*y^2+(((2*h^2*y)+h^2*y)+h*h^2)) by XCMPLX_1:1 .= y*y^2+((2*h +h)*y^2+((2*h^2+h^2)*y+h*h^2)) by XCMPLX_1:8 .= y*y^2+(((2*h +h)*y^2+((2*h^2+h^2)*y))+h*h^2) by XCMPLX_1:1 .= y*y^2+((2*h +1*h)*y^2+((2*h^2+h^2)*y))+h*h^2 by XCMPLX_1:1 .= y*y^2+(((2 +1)*h)*y^2+((2*h^2+h^2)*y))+h*h^2 by XCMPLX_1:8 .= y*y^2+((3*h)*y^2+((2*h^2+1*h^2)*y))+h*h^2 .= y*y^2+((3*h)*y^2+((2+1)*h^2)*y)+h*h^2 by XCMPLX_1:8; y |^ 3 = y |^ (2+1) .= (y |^ (1+1))*y by NEWTON:11 .= (((y |^ 1)*y))*y by NEWTON:11 .= (y |^ 1)*(y*y) by XCMPLX_1:4 .= (y |^ 1)*y^2 by SQUARE_1:def 3; then A3: y |^ 3 = (y to_power 1)*y^2by POWER:47; h |^ 3 = h |^ (2+1) .= (h |^ (1+1))*h by NEWTON:11 .= (((h |^ 1)*h))*h by NEWTON:11 .= (h |^ 1)*(h*h) by XCMPLX_1:4 .= (h |^ 1)*h^2 by SQUARE_1:def 3 .= (h to_power 1)*h^2 by POWER:47 .= h*h^2 by POWER:30; hence (y+h) |^ 3 = y |^ 3 +((3*h)*y^2+(3*h^2)*y)+h |^ 3 by A2,A3,POWER:30; end; theorem Th15: a <> 0 & Poly3(a,b,c,d,x) = 0 implies (for a1,a2,a3,h,y st y = (x+b/(3*a)) & h = -b/(3*a) & a1 = b/a & a2 = c/a & a3 = d/a holds y |^ 3 + ((3*h+a1)*y^2+(3*h^2+2*(a1*h)+a2)*y) + ((h |^ 3+a1*h^2)+(a2*h+a3)) = 0) proof assume A1:a <> 0; assume A2:Poly3(a,b,c,d,x) = 0; let a1,a2,a3,h,y; assume that A3: y = x+ b/(3*a) & h = -b/(3*a) & a1 = b/a & a2 = c/a & a3 = d/a; 0 = a*(x |^ 3)+ b*x^2 +c*x +d by A2,Def4; then A4: 0 = a"*(a*(x |^ 3)+ b*x^2 +c*x +d) .= a"*(a*(x |^ 3)+ b*x^2 +(c*x +d)) by XCMPLX_1:1 .= a"*(a*(x |^ 3))+ a"*(b*x^2) +a"*(c*x +d) by XCMPLX_1:9 .= (a"*a)*(x |^ 3)+ a"*(b*x^2) +a"*(c*x +d) by XCMPLX_1:4 .= 1*(x |^ 3)+ a"*(b*x^2) +a"*(c*x +d) by A1,XCMPLX_0:def 7 .= (x |^ 3)+ (a"*b)*x^2 +a"*(c*x +d) by XCMPLX_1:4 .= (x |^ 3)+ (a"*b)*x^2 +(a"*(c*x) +a"*d) by XCMPLX_1:8 .= (x |^ 3)+ (a"*b)*x^2 +((a"*c)*x +a"*d) by XCMPLX_1:4 .= (x |^ 3)+ (a"*b)*x^2 +(a"*c)*x +a"*d by XCMPLX_1:1 .= (x |^ 3)+ (b/a)*x^2 +(a"*c)*x +a"*d by XCMPLX_0:def 9 .= (x |^ 3)+ (b/a)*x^2 +(c/a)*x +a"*d by XCMPLX_0:def 9 .= (x |^ 3)+ a1*x^2 + a2*x + a3 by A3,XCMPLX_0:def 9; A5: x = y - b/(3*a) by A3,XCMPLX_1:26; then A6: x = y + h by A3,XCMPLX_0:def 8; A7: ((y+h) |^ 3) + a1*x^2 + a2*x + a3 = 0 by A3,A4,A5,XCMPLX_0:def 8; x +(-(y+h))= 0 by A6,XCMPLX_0:def 6; then x -(y+h)= 0 by XCMPLX_0:def 8; then a2*(x -(y+h))= 0; then a2*x-a2*(y+h) = 0 by XCMPLX_1:40; then A8: ((y+h) |^ 3) + a1*x^2 + a2*(y+h) + a3 = 0 by A7,XCMPLX_1:15; (y+h)^2 = y^2+2*y*h+h^2 by SQUARE_1:63; then (y+h)^2 = y^2+(2*h)*y+h^2 by XCMPLX_1:4; then a1*(y+h)^2 = a1*y^2+a1*((2*h)*y)+a1*h^2 by XCMPLX_1:9; then A9: a1*(y+h)^2 = a1*y^2+(a1*(2*h))*y+a1*h^2 by XCMPLX_1:4; (y+h) |^ 3 = y |^ 3 +((3*h)*y^2+(3*h^2)*y)+h |^ 3 by Th14; then A10: 0 = y |^ 3 +((3*h)*y^2+(3*h^2)*y)+h |^ 3 + a1*(y+h)^2 + a2*(y+h) + a3 by A3,A5,A8,XCMPLX_0:def 8 .= y |^ 3 +((3*h)*y^2+(3*h^2)*y)+h |^ 3 + (a1*y^2+2*(a1*h)*y+a1*h^2) + a2*(y+h) + a3 by A9,XCMPLX_1:4 .= y |^ 3 +((3*h)*y^2+(3*h^2)*y)+h |^ 3 + (a1*y^2+2*(a1*h)*y+a1*h^2) + (a2*y+a2*h) + a3 by XCMPLX_1:8 .= y |^ 3 +((3*h)*y^2+(3*h^2)*y)+h |^ 3 - (- (a1*y^2+2*(a1*h)*y+a1*h^2)) + (a2*y+a2*h) + a3 by XCMPLX_1:151 .= y |^ 3 +((3*h)*y^2+(3*h^2)*y)+h |^ 3 - (- (a1*y^2+2*(a1*h)*y+a1*h^2)) + ((a2*y+a2*h) + a3) by XCMPLX_1:1 .= y |^ 3 +((3*h)*y^2+(3*h^2)*y)+h |^ 3 - (- (a1*y^2+2*(a1*h)*y+a1*h^2)) + (a2*y+(a2*h + a3)) by XCMPLX_1:1 .= y |^ 3 +((3*h)*y^2+(3*h^2)*y)+h |^ 3 - (- (a1*y^2+2*(a1*h)*y+a1*h^2)) + a2*y+(a2*h + a3) by XCMPLX_1:1 .= y |^ 3 +((3*h)*y^2+(3*h^2)*y)+h |^ 3 - (- a1*y^2-2*(a1*h)*y-a1*h^2) + a2*y+(a2*h + a3) by XCMPLX_1:167 .= y |^ 3 +((3*h)*y^2+(3*h^2)*y)+h |^ 3 - (- a1*y^2-2*(a1*h)*y-a1*h^2) -(-a2*y)+(a2*h + a3) by XCMPLX_1:151 .= y |^ 3 +((3*h)*y^2+(3*h^2)*y)-(-h |^ 3) - (- a1*y^2-2*(a1*h)*y-a1*h^2) -(-a2*y)+(a2*h + a3) by XCMPLX_1:151 .= y |^ 3 +((3*h)*y^2+(3*h^2)*y)-((-h |^ 3) +(- a1*y^2-2*(a1*h)*y-a1*h^2)) -(-a2*y)+(a2*h + a3) by XCMPLX_1:36 .= y |^ 3 +((3*h)*y^2+(3*h^2)*y)-((-h |^ 3) +(- a1*h^2-2*(a1*h)*y-a1*y^2)) -(-a2*y)+(a2*h + a3) by XCMPLX_1:148 .= y |^ 3 +((3*h)*y^2+(3*h^2)*y)-((-h |^ 3) +(-( a1*h^2+2*(a1*h)*y+a1*y^2))) -(-a2*y)+(a2*h + a3) by XCMPLX_1:167 .= y |^ 3 +((3*h)*y^2+(3*h^2)*y)-((-h |^ 3) -( a1*h^2+2*(a1*h)*y+a1*y^2)) -(-a2*y)+(a2*h + a3) by XCMPLX_0:def 8 .= y |^ 3 +((3*h)*y^2+(3*h^2)*y)-((-h |^ 3) - (a1*h^2+(2*(a1*h)*y+a1*y^2))) -(-a2*y)+(a2*h + a3) by XCMPLX_1:1 .= y |^ 3 +((3*h)*y^2+(3*h^2)*y)-(-h |^ 3 - a1*h^2-(2*(a1*h)*y+a1*y^2)) -(-a2*y)+(a2*h + a3) by XCMPLX_1:36 .= y |^ 3 +((3*h)*y^2+(3*h^2)*y)-(-(2*(a1*h)*y+a1*y^2) - h |^ 3 -a1*h^2) -(-a2*y)+(a2*h + a3) by XCMPLX_1:147 .= y |^ 3 +((3*h)*y^2+(3*h^2)*y)-(-(2*(a1*h)*y+a1*y^2) -( h |^ 3 +a1*h^2)) -(-a2*y)+(a2*h + a3) by XCMPLX_1:36 .= y |^ 3 +((3*h)*y^2+(3*h^2)*y)+(2*(a1*h)*y+a1*y^2) +( h |^ 3 +a1*h^2) -(-a2*y)+(a2*h + a3) by XCMPLX_1:157 .= y |^ 3 +((3*h)*y^2+(3*h^2)*y)+(2*(a1*h)*y+a1*y^2) -(-( h |^ 3 +a1*h^2)) -(-a2*y)+(a2*h + a3) by XCMPLX_1:151 .= y |^ 3 +((3*h)*y^2+(3*h^2)*y)+(2*(a1*h)*y+a1*y^2) +((--( h |^ 3 +a1*h^2)) -(-a2*y))+(a2*h + a3) by XCMPLX_1:158 .= y |^ 3 +((3*h)*y^2+(3*h^2)*y)+(2*(a1*h)*y+a1*y^2) +(-(-( h |^ 3 +a1*h^2) +(-a2*y)))+(a2*h + a3) by XCMPLX_1:161 .= y |^ 3 +((3*h)*y^2+(3*h^2)*y)+(2*(a1*h)*y+a1*y^2) -(-( h |^ 3 +a1*h^2) +(-a2*y))+(a2*h + a3) by XCMPLX_0:def 8 .= y |^ 3 +((3*h)*y^2+(3*h^2)*y)+(2*(a1*h)*y+a1*y^2) -(-( h |^ 3 +a1*h^2) -a2*y)+(a2*h + a3) by XCMPLX_0:def 8 .= y |^ 3 +((3*h)*y^2+(3*h^2)*y)+(2*(a1*h)*y+a1*y^2) -(- h |^ 3 -a1*h^2 -a2*y)+(a2*h + a3) by XCMPLX_1:161 .= y |^ 3 +((3*h)*y^2+(3*h^2)*y)+(2*(a1*h)*y+a1*y^2) -(-a2*y - h |^ 3 -a1*h^2)+(a2*h + a3) by XCMPLX_1:147 .= y |^ 3 +((3*h)*y^2+(3*h^2)*y)+(2*(a1*h)*y+a1*y^2) -(-(a2*y + h |^ 3 +a1*h^2))+(a2*h + a3) by XCMPLX_1:167 .= y |^ 3 +((3*h)*y^2+(3*h^2)*y)+(2*(a1*h)*y+a1*y^2) +(a2*y + h |^ 3 +a1*h^2)+(a2*h + a3) by XCMPLX_1:151 .= y |^ 3 +((3*h)*y^2+(3*h^2)*y)+(2*(a1*h)*y+a1*y^2) +(a2*y + (h |^ 3 +a1*h^2))+(a2*h + a3) by XCMPLX_1:1 .= y |^ 3 +((3*h)*y^2+(3*h^2)*y)+(2*(a1*h)*y+a1*y^2) +((a2*y + (h |^ 3 +a1*h^2))+(a2*h + a3)) by XCMPLX_1:1 .= y |^ 3 +((3*h)*y^2+(3*h^2)*y)+(2*(a1*h)*y+a1*y^2) +(a2*y + ((h |^ 3 +a1*h^2)+(a2*h + a3))) by XCMPLX_1:1; set q2 = (h |^ 3 +a1*h^2)+(a2*h + a3); A11: now 0 = y |^ 3 +((3*h)*y^2+(3*h^2)*y)+((2*(a1*h)*y+a1*y^2) +(a2*y + q2)) by A10,XCMPLX_1:1 .= y |^ 3 +((3*h)*y^2+(3*h^2)*y)-(-((2*(a1*h)*y+a1*y^2) +(a2*y + q2))) by XCMPLX_1:151 .= y |^ 3 +((3*h)*y^2+(3*h^2)*y)-(-(2*(a1*h)*y+a1*y^2) -(a2*y + q2)) by XCMPLX_1:161 .= y |^ 3 +((3*h)*y^2+(3*h^2)*y)-(-2*(a1*h)*y-a1*y^2 -(a2*y + q2)) by XCMPLX_1:161 .= y |^ 3 +((3*h)*y^2+(3*h^2)*y)-(-2*(a1*h)*y-a1*y^2 -a2*y - q2 ) by XCMPLX_1:36 .= y |^ 3 +((3*h)*y^2+(3*h^2)*y)-(-2*(a1*h)*y -a2*y -a1*y^2-q2 ) by XCMPLX_1:146; hence y |^ 3 +((3*h)*y^2+(3*h^2)*y)-(-(2*(a1*h)*y +a2*y) -a1*y^2-q2 ) = 0 by XCMPLX_1:161; end; A12: now 0 = y |^ 3 +((3*h)*y^2+(3*h^2)*y)-(-(2*(a1*h)*y +a2*y) -(a1*y^2+q2)) by A11,XCMPLX_1:36 .= y |^ 3 +((3*h)*y^2+(3*h^2)*y)--((2*(a1*h)*y +a2*y) +(a1*y^2+q2) ) by XCMPLX_1:161 .= y |^ 3 +((3*h)*y^2+(3*h^2)*y)+((2*(a1*h)*y +a2*y) +(a1*y^2+q2)) by XCMPLX_1:151 .= y |^ 3 +((3*h)*y^2+(3*h^2)*y)+((2*(a1*h) +a2)*y +(a1*y^2+q2)) by XCMPLX_1:8 .= y |^ 3 +((3*h)*y^2+(3*h^2)*y)+(2*(a1*h) +a2)*y +(a1*y^2+q2) by XCMPLX_1:1 .= (y |^ 3 +(3*h)*y^2)+(3*h^2)*y+(2*(a1*h) +a2)*y +(a1*y^2+q2) by XCMPLX_1:1 .= (y |^ 3 +(3*h)*y^2)+((3*h^2)*y+(2*(a1*h) +a2)*y )+(a1*y^2+q2) by XCMPLX_1:1 .= y |^ 3 +(3*h)*y^2+((3*h^2)+(2*(a1*h) +a2))*y +(a1*y^2+q2) by XCMPLX_1:8 .= y |^ 3 +(3*h)*y^2+(3*h^2+2*(a1*h) +a2)*y +(a1*y^2+q2) by XCMPLX_1:1 .= y |^ 3 +(3*h)*y^2+((3*h^2+2*(a1*h) +a2)*y +(a1*y^2+q2)) by XCMPLX_1:1 .= y |^ 3 +((3*h)*y^2+((3*h^2+2*(a1*h) +a2)*y +(a1*y^2+q2))) by XCMPLX_1:1; hence y |^ 3 --((3*h)*y^2+((3*h^2 +2*(a1*h)+a2)*y +(a1*y^2+q2))) = 0 by XCMPLX_1:151; end; A13: now 0 = y |^ 3 -(-(3*h)*y^2-((3*h^2 +2*(a1*h)+a2)*y +(a1*y^2+q2))) by A12,XCMPLX_1:161 .= y |^ 3 -(-(3*h)*y^2-(a1*y^2+q2) -(3*h^2 +2*(a1*h)+a2)*y) by XCMPLX_1:36 .= y |^ 3 -(-((3*h)*y^2+(a1*y^2+q2)) -(3*h^2 +2*(a1*h)+a2)*y) by XCMPLX_1:161 .= y |^ 3 -(-(((3*h)*y^2+a1*y^2)+q2) -(3*h^2 +2*(a1*h)+a2)*y) by XCMPLX_1:1 .= y |^ 3 -(-(((3*h+a1)*y^2)+q2) -(3*h^2 +2*(a1*h)+a2)*y) by XCMPLX_1:8; hence y |^ 3 -(-(3*h+a1)*y^2-q2 -(3*h^2 +2*(a1*h)+a2)*y) = 0 by XCMPLX_1:161; end; now 0 = y |^ 3 -(-(3*h+a1)*y^2-(3*h^2 +2*(a1*h)+a2)*y-q2) by A13,XCMPLX_1:146 .= y |^ 3 --((((3*h+a1)*y^2+(3*h^2 +2*(a1*h)+a2)*y)+q2)) by XCMPLX_1:167; hence y |^ 3 +((3*h+a1)*y^2 +(3*h^2 +2*(a1*h)+a2)*y + q2) = 0 by XCMPLX_1:151; end; hence y |^ 3 +((3*h+a1)*y^2+(3*h^2 +2*(a1*h)+a2)*y) + ((h |^ 3 +a1*h^2)+(a2*h + a3)) = 0 by XCMPLX_1:1; end; theorem a <> 0 & Poly3(a,b,c,d,x) = 0 implies (for a1,a2,a3,h,y st y = (x+b/(3*a)) & h = -b/(3*a) & a1 = b/a & a2 = c/a & a3 = d/a holds y |^ 3 + 0*y^2 + ((3*a*c-b^2)/(3*a^2))*y + (2*((b/(3*a)) |^ 3)+(3*a*d-b*c)/(3*a^2)) = 0) proof assume A1:a <> 0; assume A2:Poly3(a,b,c,d,x) = 0; let a1,a2,a3,h,y; assume that A3: y = (x + b/(3*a)) & h = -b/(3*a) & a1 = b/a & a2 = c/a & a3 = d/a; set q2 = (h |^ 3 +a1*h^2)+(a2*h + a3); set p2 = (3*h^2+2*(a1*h)+a2); set p0 = 3*h+a1; A4: y |^ 3 +(p0*y^2+p2*y) + q2 = 0 by A1,A2,A3,Th15; A5: p0 = 0 proof p0 = 3*((-1)*(b/(3*a)))+a1 by A3,XCMPLX_1:180 .= (3*(-1))*(b/(3*a))+a1 by XCMPLX_1:4 .= (-(3*1))*(b/(3*a))+a1 .= -(3*(b/(3*a)))+a1 by XCMPLX_1:175 .= -(3*((3*a)"*b))+a1 by XCMPLX_0:def 9 .= -(3*((3"*a")*b))+a1 by XCMPLX_1:205 .= -((3*(3"*a")*b))+a1 by XCMPLX_1:4 .= -(((3*3")*a")*b)+a1 by XCMPLX_1:4 .= -(b/a)+a1 by XCMPLX_0:def 9; hence p0 = 0 by A3,XCMPLX_0:def 6; end; A6: 3*a <> 0 by A1,XCMPLX_1:6; A7: p2 = (3*a*c-b^2)/(3*a^2) proof set t = ((3*a)"*b); set a5 = b/(3*a); A8: (3*a)/(3*a) = 1 by A6,XCMPLX_1:60; p2 = (3*(b/(3*a))^2+2*(a1*-b/(3*a))+a2) by A3,SQUARE_1:61 .= (3*((3*a)"*b)^2+2*(a1*-b/(3*a))+a2) by XCMPLX_0:def 9 .= 3*(((3*a)"*b)*((3*a)"*b))+2*(a1*-b/(3*a))+a2 by SQUARE_1:def 3 .= (3*t)*t+2*(a1*-b/(3*a))+a2 by XCMPLX_1:4 .= ((3*(3*a)")*b)*t+2*(a1*-b/(3*a))+a2 by XCMPLX_1:4 .= (3*(3"*a")*b)*t+2*(a1*-b/(3*a))+a2 by XCMPLX_1:205 .= (((3*3")*a")*b)*t+2*(a1*-b/(3*a))+a2 by XCMPLX_1:4 .= (b/a)*((3*a)"*b)+2*(a1*-b/(3*a))+a2 by XCMPLX_0:def 9 .= (b/a)*(b/(3*a))+2*(a1*-b/(3*a))+a2 by XCMPLX_0:def 9 .= (b*b)/(a*(3*a))+2*(a1*-b/(3*a))+a2 by XCMPLX_1:77 .= b^2/((3*a)*a)+2*(a1*-b/(3*a))+a2 by SQUARE_1:def 3 .= b^2/(3*(a*a))+2*(a1*-b/(3*a))+a2 by XCMPLX_1:4 .= b^2/(3*a^2)+2*((b/a)*-b/(3*a))+c/a by A3,SQUARE_1:def 3 .= b^2/(3*a^2)+ 2*-(b/a*a5) +c/a by XCMPLX_1:175 .= b^2/(3*a^2)+ -(2*(b/a*a5)) +c/a by XCMPLX_1:175 .= b^2/(3*a^2)-2*(b/a*(b/(3*a))) +c/a by XCMPLX_0:def 8 .= b^2/(3*a^2)-2*((b*b)/(a*(3*a))) +c/a by XCMPLX_1:77 .= b^2/(3*a^2)-2*((b^2)/((3*a)*a)) +c/a by SQUARE_1:def 3 .= b^2/(3*a^2)-2*((b^2)/(3*(a*a))) +c/a by XCMPLX_1:4 .= 1*(b^2/(3*a^2))-2*(b^2/(3*a^2)) +c/a by SQUARE_1:def 3 .= (1-2)*(b^2/(3*a^2)) +c/a by XCMPLX_1:40 .= -b^2/(3*a^2) +((3*a)/(3*a))*(c/a) by A8,XCMPLX_1:180 .= -b^2/(3*a^2) +(3*a*c)/(3*a*a) by XCMPLX_1:77 .= -b^2/(3*a^2) +(3*a*c)/(3*(a*a)) by XCMPLX_1:4 .= -b^2/(3*a^2) +(3*a*c)/(3*a^2) by SQUARE_1:def 3 .= (3*a*c)/(3*a^2)-b^2/(3*a^2) by XCMPLX_0:def 8 .= (3*a*c)*(3*a^2)"-b^2/(3*a^2) by XCMPLX_0:def 9 .= (3*a*c)*(3*a^2)"-b^2*(3*a^2)" by XCMPLX_0:def 9 .= ((3*a*c)-b^2)*(3*a^2)" by XCMPLX_1:40; hence p2 = (3*a*c-b^2)/(3*a^2) by XCMPLX_0:def 9; end; q2 = 2*((b/(3*a)) |^ 3)+(3*a*d-b*c)/(3*a^2) proof set t = 3*a; set a6 = b/t; A9: b/a = (3*b)/t by XCMPLX_1:92; A10: q2 = ((-b/t) |^ 3 +b/a*(-b/t)^2) +(-(c/a*(b/t)) + d/a) by A3,XCMPLX_1:175 .= ((-b/t) |^ 3 +b/a*(-b/t)^2) +(-(b*c)/(t*a) + d/a) by XCMPLX_1:77 .= ((-b/t) |^ 3 +b/a*(-b/t)^2) +(-(b*c)/(3*(a*a)) + d/a)by XCMPLX_1:4 .= ((-b/t) |^ 3 +b/a*(-b/t)^2) +(-(b*c)/(3*a^2) + 1*(d/a)) by SQUARE_1:def 3 .= ((-b/t) |^ 3 +b/a*(-b/t)^2) +(-(b*c)/(3*a^2) + (t/t)*(d/a)) by A6,XCMPLX_1:60 .= ((-b/t) |^ 3 +b/a*(-b/t)^2) +(-(b*c)/(3*a^2) -- (t/t)*(d/a)) by XCMPLX_1:151 .= ((-b/t) |^ 3 +b/a*(-b/t)^2) +-((b*c)/(3*a^2) +- (t/t)*(d/a)) by XCMPLX_1:161 .= ((-b/t) |^ 3 +b/a*(-b/t)^2) +(-((b*c)/(3*a^2) - (t/t)*(d/a))) by XCMPLX_0:def 8 .= ((-b/t) |^ 3 +b/a*(-b/t)^2) +((t/t)*(d/a)- (b*c)/(3*a^2)) by XCMPLX_1:143 .= ((-b/t) |^ 3 +b/a*(-b/t)^2) + ((t/t)*(d/a))- (b*c)/(3*a^2) by XCMPLX_1:29 .= ((-b/t) |^ 3 +b/a*(-b/t)^2) + ((t*d)/(t*a))- (b*c)/(3*a^2) by XCMPLX_1:77 .= ((-b/t) |^ 3 +b/a*(-b/t)^2) +(t*d)/(3*(a*a))- (b*c)/(3*a^2) by XCMPLX_1:4 .= ((-b/t) |^ 3 +b/a*(-b/t)^2) +(t*d)/(3*a^2)-(b*c)/(3*a^2) by SQUARE_1:def 3 .= ((-b/t) |^ 3 +b/a*(-b/t)^2) +(t*d)*(3*a^2)"-(b*c)/(3*a^2) by XCMPLX_0:def 9 .= ((-b/t) |^ 3 +b/a*(-b/t)^2) +(t*d)*(3*a^2)"-(b*c)*(3*a^2)" by XCMPLX_0:def 9 .= ((-b/t) |^ 3 +b/a*(-b/t)^2) +((t*d)*(3*a^2)"-(b*c)*(3*a^2)") by XCMPLX_1:29 .= ((-b/t) |^ 3 +b/a*(-b/t)^2) +(t*d-b*c)*(3*a^2)" by XCMPLX_1:40 .= ((-b/t) |^ 3 +b/a*(-b/t)^2) +(t*d-b*c)/(3*a^2) by XCMPLX_0:def 9 .= (-b/t) |^ (2+1) +b/a*(b/t)^2 +(t*d-b*c)/(3*a^2) by SQUARE_1:61 .= ((-b/t) |^ (1+1))*(-b/t) +b/a*(b/t)^2 +( t*d-b*c)/(3*a^2) by NEWTON:11 .= ((-b/t) |^ 1)*(-b/t)*(-b/t) +b/a*(b/t)^2+( t*d-b*c)/(3*a^2) by NEWTON:11 .= (-b/t) |^ 1*((-b/t)*(-b/t)) +b/a*(b/t)^2+( t*d-b*c)/(3*a^2) by XCMPLX_1:4 .= ((-b/t) |^ 1)*(-b/t)^2 +b/a*(b/t)^2 +( t*d-b*c)/(3*a^2) by SQUARE_1:def 3 .= ((-b/t) to_power 1)*(-b/t)^2 +b/a*(b/t)^2 +( t*d-b*c)/(3*a^2) by POWER:47 .= (-b/t)*(-b/t)^2 +b/a*(b/t)^2 +(t*d-b*c)/(3*a^2) by POWER:30 .= (-b/t)*(b/t)^2 +b/a*(b/t)^2 +(t*d-b*c)/(3*a^2) by SQUARE_1:61 .= (-b/t)*(b^2/t^2) +b/a*(b/t)^2 +(t*d-b*c)/(3*a^2) by SQUARE_1:69 .= ((-b/t)*(b^2/t^2) +b/a*(b^2/t^2)) +(t*d-b*c)/(3*a^2) by SQUARE_1:69 .= ((-b/t+b/a)*(b^2/t^2)) +(t*d-b*c)/(3*a^2) by XCMPLX_1:8 .= (( b/a -b/t)*(b^2/t^2)) +(t*d-b*c)/(3*a^2) by XCMPLX_0:def 8 .= (((3*b)*t" -1*b/t)*(b^2/t^2)) +( t*d-b*c)/(3*a^2) by A9,XCMPLX_0:def 9 .= (((3*b)*t" -1*b*t")*(b^2/t^2)) +( t*d-b*c)/(3*a^2) by XCMPLX_0:def 9 .= (((3*b -1*b)*t")*(b^2/t^2)) +( t*d-b*c)/(3*a^2) by XCMPLX_1:40 .= (((3 -1)*b*t")*(b^2/t^2)) +( t*d-b*c)/(3*a^2) by XCMPLX_1:40 .= ((2*(b*t"))*(b^2/t^2)) +( t*d-b*c)/(3*a^2) by XCMPLX_1:4 .= 2*((b*t")*(b^2/t^2)) +(t*d-b*c)/(3*a^2) by XCMPLX_1:4 .= 2*((b/t)*(b^2/t^2)) +(t*d-b*c)/(3*a^2) by XCMPLX_0:def 9 .= 2*((b/t)*(b/t)^2) +(t*d-b*c)/(3*a^2) by SQUARE_1:69; a6 |^ 3 = a6 |^ (2+1) .= (a6 |^ (1+1))*a6 by NEWTON:11 .= (a6 |^ 1)*a6*a6 by NEWTON:11 .= (a6 |^ 1)*(a6*a6) by XCMPLX_1:4 .= (a6 |^ 1)*a6^2 by SQUARE_1:def 3 .= (a6 to_power 1)*a6^2 by POWER:47; hence q2 = 2*((b/t) |^ 3)+(t*d-b*c)/(3*a^2) by A10,POWER:30; end; hence thesis by A4,A5,A7; end; theorem (y |^ 3)+0*y^2+((3*a*c-b^2)/(3*a^2))*y + (2*((b/(3*a)) |^ 3)+(3*a*d-b*c)/(3*a^2)) = 0 implies (for p,q st p = (3*a*c-b^2)/(3*a^2) & q = 2*((b/(3*a)) |^ 3)+(3*a*d-b*c)/(3*a^2) holds Poly3(1,0,p,q,y) = 0) proof assume that A1: (y |^ 3) +0*y^2 +((3*a*c-b^2)/(3*a^2))*y + (2*((b/(3*a)) |^ 3)+(3*a*d-b*c)/(3*a^2)) = 0; let p,q; assume that A2: p = (3*a*c-b^2)/(3*a^2) & q = 2*((b/(3*a)) |^ 3)+(3*a*d-b*c)/(3*a^2); 1*(y |^ 3) +0*y^2 + p*y +q = 0 by A1,A2; hence Poly3(1,0,p,q,y) = 0 by Def4; end; theorem Th18: Poly3(1,0,p,q,y) = 0 implies (for u,v st y = u+v & 3*v*u+p = 0 holds u |^ 3 + v |^ 3 = -q & (u |^ 3)*(v |^ 3) = (-p/3) |^ 3) proof assume A1: Poly3(1,0,p,q,y) = 0; let u,v; assume that A2: y = u+v & 3*v*u+p = 0; A3: 1*(y |^ 3) +0*y^2 + p*y + q = 0 by A1,Def4; (u+v) |^ 3 = u |^ 3+((3*v)*u^2+(3*v^2)*u)+v |^ 3 by Th14 .= u |^ 3+((3*v)*(u*u)+(3*v^2)*u)+v |^ 3 by SQUARE_1:def 3 .= u |^ 3+((3*v)*(u*u)+(3*(v*v))*u)+v |^ 3 by SQUARE_1:def 3 .= u |^ 3+((3*v)*(u*u)+(3*((v*v)*u)))+v |^ 3 by XCMPLX_1:4 .= u |^ 3+((3*v)*(u*u)+(3*(v*(u*v))))+v |^ 3 by XCMPLX_1:4 .= u |^ 3+((3*v)*(u*u)+(3*(v*u))*v)+v |^ 3 by XCMPLX_1:4 .= u |^ 3+((3*v)*(u*u)+(3*v*u)*v)+v |^ 3 by XCMPLX_1:4 .= u |^ 3+(((3*v*u)*u)+(3*v*u)*v)+v |^ 3 by XCMPLX_1:4 .= u |^ 3+(3*v*u)*(u+v)+v |^ 3 by XCMPLX_1:8; then A4: 0 = -(-u |^ 3-(3*v*u)*(u+v)-v |^ 3)+ p*(u+v) + q by A2,A3,XCMPLX_1 :174 .= -(-u |^ 3-v |^ 3-(3*v*u)*(u+v))+ p*(u+v) + q by XCMPLX_1:146 .= (u |^ 3+v |^ 3+(3*v*u)*(u+v))+ p*(u+v) + q by XCMPLX_1:174 .= (u |^ 3+v |^ 3)+((3*v*u)*(u+v)+ p*(u+v)) + q by XCMPLX_1:1 .= (u |^ 3+v |^ 3)+((3*v*u + p )*(u+v)) + q by XCMPLX_1:8; 3*v*u = - p by A2,XCMPLX_0:def 6; then 3*(v*u) = - p by XCMPLX_1:4; then A5: v*u = (- p)/3 by XCMPLX_1:90 .= (- p)*3" by XCMPLX_0:def 9 .= - (p*3") by XCMPLX_1:175 .= - (p/3) by XCMPLX_0:def 9; thus u |^ 3+v |^ 3 = - q by A2,A4,XCMPLX_0:def 6; thus (u |^ 3)*(v |^ 3) = (- p/3) |^ 3 by A5,NEWTON:12; end; theorem Th19: Poly3(1,0,p,q,y) = 0 implies (for u,v st y = u+v & 3*v*u+p = 0 holds y = 3-root(-q/2+sqrt(q^2/4+(p/3) |^ 3)) + 3-root(-q/2-sqrt(q^2/4+(p/3) |^ 3)) or y = 3-root(-q/2+sqrt(q^2/4+(p/3) |^ 3)) + 3-root(-q/2+sqrt(q^2/4+(p/3) |^ 3)) or y = 3-root(-q/2-sqrt(q^2/4+(p/3) |^ 3)) + 3-root(-q/2-sqrt(q^2/4+(p/3) |^ 3))) proof assume A1: Poly3(1,0,p,q,y) = 0; let u,v; assume that A2: y = u+v & 3*v*u+p = 0; set z1 = u |^ 3; set z2 = v |^ 3; A3: z1+ z2 = -q by A1,A2,Th18; A4: z2*z1 = (-p/3) |^ 3 by A1,A2,Th18; A5:now let z; thus (z-z1)*(z-z2)=z*z-z*z2-z1*z+z1*z2 by XCMPLX_1:47 .= z^2-z*z2-z1*z+z1*z2 by SQUARE_1:def 3 .= z^2-(z1*z+z2*z)+z1*z2 by XCMPLX_1:36 .= z^2-(z1+z2)*z+z1*z2 by XCMPLX_1:8 .= z^2-(-q)*z+z1*z2 by A1,A2,Th18 .= z^2-(-q)*z+(-p/3) |^ 3 by A1,A2,Th18 .= z^2-(-(q*z))+(-p/3) |^ 3 by XCMPLX_1:175 .= z^2+q*z+(-p/3) |^ 3 by XCMPLX_1:151; end; set e1 = 1; set e2 = q; set e3 = ((-p/3) |^ 3); (z1-z1)*(z1-z2)= 0*(z1-z2) by XCMPLX_1:14; then e1*z1^2+e2*z1 + e3 = 0 by A5; then A6: Poly2(e1,e2,e3,z1) = 0 by Def2; e2^2 = (z1+z2)^2 by A3,SQUARE_1:61; then A7: e2^2-(4*e1*e3) = (z1+z2)^2-(4*(z1*z2)) by A1,A2,Th18 .= -(-(z1^2+2*z1*z2+z2^2))-4*(z1*z2) by SQUARE_1:63 .= -(-z1^2-2*z1*z2-z2^2)-4*(z1*z2) by XCMPLX_1:167 .= -(-z1^2-z2^2-2*z1*z2)-4*(z1*z2) by XCMPLX_1:146 .= (z1^2+z2^2+2*z1*z2)-4*(z1*z2) by XCMPLX_1:174 .= (z1^2+z2^2+2*z1*z2)+(-4*(z1*z2)) by XCMPLX_0:def 8 .= (z1^2+z2^2)+(2*z1*z2+(-4*(z1*z2))) by XCMPLX_1:1 .= (z1^2+z2^2)+(2*z1*z2-4*(z1*z2)) by XCMPLX_0:def 8 .= (z1^2+z2^2)+(2*(z1*z2)-4*(z1*z2)) by XCMPLX_1:4 .= (z1^2+z2^2)+((2-4)*(z1*z2)) by XCMPLX_1:40 .= (z1^2+z2^2)+((-2)*(z1*z2)) .= (z1^2+z2^2)+-(2*(z1*z2)) by XCMPLX_1:175 .= (z1^2+z2^2)-(2*(z1*z2)) by XCMPLX_0:def 8 .= (z1^2-2*(z1*z2)+z2^2) by XCMPLX_1:29 .= (z1^2-(2*z1*z2)+z2^2) by XCMPLX_1:4 .= (z1-z2)^2 by SQUARE_1:64; then A8: (e2^2-4*e1*e3)>= 0 by SQUARE_1:72; then A9:delta(e1,e2,e3) >= 0 by QUIN_1:def 1; (z2-z1)*(z2-z2) = (z2-z1)*0 by XCMPLX_1:14; then e1*z2^2+e2*z2 + e3 = 0 by A5; then A10: Poly2(e1,e2,e3,z2) = 0 by Def2; now per cases by A6,A9,Th5; case A11:z1 = (-e2+sqrt delta(e1,e2,e3))/(2*e1); A12: (q^2-4*(-p/3) |^ 3)>= 0 by A7,SQUARE_1:72; A13: z1 = (-e2+sqrt(e2^2-4*e1*e3))/(2*e1) by A11,QUIN_1:def 1 .= (-q)/2 +sqrt(q^2-4*(-p/3) |^ 3)/sqrt 4 by SQUARE_1:85, XCMPLX_1:63 .= (-q)/2 +sqrt((q^2-4*(-p/3) |^ 3)/4) by A12,SQUARE_1:99 .= (-q)/2 +sqrt(q^2/4-4*(-p/3) |^ 3/4) by XCMPLX_1:121 .= (-q)/2 +sqrt(q^2/4-4"*(4*(-p/3) |^ 3)) by XCMPLX_0:def 9 .= (-q)/2 +sqrt(q^2/4-(4"*4)*(-p/3) |^ 3) by XCMPLX_1:4 .= (-q)/2 +sqrt(q^2/4-1*(-p/3) |^ 3); A14:(-p/3) |^ 3 = (-p/3) |^ (2+1) .= ((-p/3) |^ (1+1))*(-p/3) by NEWTON:11 .= ((((-p/3) |^ 1)*(-p/3)))*(-p/3) by NEWTON:11 .= ((-p/3) |^ 1)*((-p/3)*(-p/3)) by XCMPLX_1:4 .= ((-p/3) |^ 1)*(-p/3)^2 by SQUARE_1:def 3; then A15:(-p/3) |^ 3 = ((-p/3) to_power 1)*(-p/3)^2 by POWER:47 .= (-p/3)*(-p/3)^2 by POWER:30 .= (-p/3)*(p/3)^2 by SQUARE_1:61 .= -((p/3)*(p/3)^2) by XCMPLX_1:175; A16:(p/3) |^ 3 = (p/3) |^ (2+1) .= ((p/3) |^ (1+1))*(p/3) by NEWTON:11 .= ((((p/3) |^ 1)*(p/3)))*(p/3) by NEWTON:11 .= ((p/3) |^ 1)*((p/3)*(p/3)) by XCMPLX_1:4 .= ((p/3) |^ 1)*(p/3)^2 by SQUARE_1:def 3 .= ((p/3) to_power 1)*(p/3)^2by POWER:47 .= (p/3)*(p/3)^2 by POWER:30; then A17:z1 = (-q)/2 +sqrt(q^2/4+(p/3) |^ 3) by A13,A15,XCMPLX_1:151 .= (-q)*2" +sqrt(q^2/4+((p/3) |^ 3)) by XCMPLX_0:def 9 .= -(q*2") +sqrt(q^2/4+((p/3) |^ 3)) by XCMPLX_1:175 .= -(q/2) +sqrt(q^2/4+((p/3) |^ 3)) by XCMPLX_0:def 9; A18: now per cases by REAL_1:def 5; case u >0; then A19: u > 0 & (-q/2 +sqrt(q^2/4+(p/3) |^ 3))> 0 by A17,PREPOWER :13; then u = 3 -Root (-q/2 +sqrt(q^2/4+(p/3) |^ 3)) by A17,PREPOWER:def 3;hence u = 3-root(-q/2 +sqrt(q^2/4+(p/3) |^ 3)) by A19,POWER:def 1; case A20:u =0; then A21: -q/2 +sqrt(q^2/4+(p/3) |^ 3) = 0 by A17,NEWTON:16; then 3 -Root (-q/2 +sqrt(q^2/4+(p/3) |^ 3)) = 0 by PREPOWER:def 3; hence u = 3-root(-q/2 +sqrt(q^2/4+(p/3) |^ 3)) by A20,A21,POWER:def 1; case u <0; then A22: -u > 0 by REAL_1:66; (-u) |^ 3 = (-u) |^ (2+1) .= ((-u) |^ (1+1))*(-u) by NEWTON:11 .= ((((-u) |^ 1)*(-u)))*(-u) by NEWTON:11 .= ((-u) |^ 1)*((-u)*(-u)) by XCMPLX_1:4 .= ((-u) |^ 1)*(-u)^2 by SQUARE_1:def 3; then (-u) |^ 3 = ((-u) to_power 1)*(-u)^2by POWER:47; then A23: (-u) |^ 3 = (-u)*(-u)^2 by POWER:30 .= (-u)*u^2 by SQUARE_1:61 .= -((u)*u^2) by XCMPLX_1:175; u |^ 3 = u |^ (2+1) .= (u |^ (1+1))*u by NEWTON:11 .= ((u |^ 1)*u)*u by NEWTON:11 .= (u |^ 1)*(u*u) by XCMPLX_1:4; then u |^ 3 = (u |^ 1)*u^2 by SQUARE_1:def 3; then A24: u |^ 3 = (u to_power 1)*u^2 by POWER:47; then A25: (-u) |^ 3 = -(u |^ 3) by A23,POWER:30; then A26: -(u |^ 3)> 0 by A22,PREPOWER:13; A27: -(-q/2 +sqrt(q^2/4+(p/3) |^ 3))> 0 by A17,A22,A25,PREPOWER:13; (-u) |^ 3 = -(-q/2 +sqrt(q^2/4+(p/3) |^ 3)) by A17,A23,A24,POWER:30; then (-u) = 3 -Root(-(-q/2 +sqrt(q^2/4+(p/3) |^ 3))) by A17,A22,A26,PREPOWER:def 3; then A28: (-u) = 3-root(-(-q/2 +sqrt(q^2/4+(p/3) |^ 3))) by A27,POWER:def 1; set r = (-q/2 +sqrt(q^2/4+(p/3) |^ 3)); A29: (-u) = 3-root((-1)*(r)) by A28,XCMPLX_1:180; A30: 3 = 2*1+1; then A31: (-u) = (3-root (-1))*(3-root r) by A29,POWER:12; (3-root (-1)) = -1 by A30,POWER:9; then (-u) = -(3-root r) by A31,XCMPLX_1:180; then -(-u) = (3-root r); hence u = 3-root(-q/2 +sqrt(q^2/4+(p/3) |^ 3)); end; now per cases by A9,A10,Th5; case z2 = (-e2+sqrt delta(e1,e2,e3))/(2*e1); then z2 = (-e2+sqrt(e2^2-4*e1*e3))/(2*e1) by QUIN_1:def 1; then z2 = (-q)/2 +sqrt(q^2-4*(-p/3) |^ 3)/sqrt 4 by SQUARE_1:85,XCMPLX_1:63; then A32: z2 = (-q)/2 +sqrt((q^2-4*(-p/3) |^ 3)/4) by A8,SQUARE_1:99 .= (-q)/2 +sqrt(q^2/4-4*(-p/3) |^ 3/4) by XCMPLX_1:121 .= (-q)/2 +sqrt(q^2/4-4"*(4*(-p/3) |^ 3)) by XCMPLX_0:def 9 .= (-q)/2 +sqrt(q^2/4-(4"*4)*(-p/3) |^ 3) by XCMPLX_1:4 .= (-q)/2 +sqrt(q^2/4-1*(-p/3) |^ 3); (-p/3) |^ 3 = ((-p/3) to_power 1)*(-p/3)^2by A14,POWER:47 .= (-p/3)*(-p/3)^2 by POWER:30 .= (-p/3)*(p/3)^2 by SQUARE_1:61; then (-p/3) |^ 3 = -((p/3) |^ 3) by A16,XCMPLX_1:175; then A33: z2 = (-q)/2 +sqrt(q^2/4+(p/3) |^ 3) by A32,XCMPLX_1:151 .= (-q)*2" +sqrt(q^2/4+((p/3) |^ 3)) by XCMPLX_0:def 9 .= -(q*2") +sqrt(q^2/4+((p/3) |^ 3)) by XCMPLX_1:175; then A34: v |^ 3 = -q/2 +sqrt(q^2/4+((p/3) |^ 3)) by XCMPLX_0: def 9; now per cases by REAL_1:def 5; case v >0; then A35: v > 0 & (-q/2 +sqrt(q^2/4+(p/3) |^ 3))> 0 by A34,PREPOWER:13; v |^ 3 = -q/2 +sqrt(q^2 /4+(p/3) |^ 3) by A33,XCMPLX_0:def 9; then v = 3 -Root (-q/2 +sqrt(q^2/4+(p/3) |^ 3)) by A35,PREPOWER:def 3; hence v = 3-root(-q/2 +sqrt(q^2/4+(p/3) |^ 3)) by A35,POWER:def 1; case A36:v=0; v |^ 3 = -q/2 +sqrt(q^2/4+((p/3) |^ 3)) by A33,XCMPLX_0:def 9; then (-q/2 +sqrt(q^2/4+(p/3) |^ 3)) = 0 by A36,NEWTON:16; hence v = 3-root(-q/2 +sqrt(q^2/4+(p/3) |^ 3)) by A36,POWER:6; case v<0; then A37: -v > 0 by REAL_1:66; then A38: (-v) |^ 3 > 0 by PREPOWER:13; (-v) |^ 3 = (-v) |^ (2+1); then (-v) |^ 3 = ((-v) |^ (1+1))*(-v) by NEWTON:11; then (-v) |^ 3 = ((((-v) |^ 1)*(-v)))*(-v) by NEWTON:11; then (-v) |^ 3 = ((-v) |^ 1)*((-v)*(-v)) by XCMPLX_1:4; then (-v) |^ 3 = ((-v) |^ 1)*(-v)^2 by SQUARE_1:def 3; then (-v) |^ 3 = ((-v) to_power 1)*(-v)^2by POWER:47; then (-v) |^ 3 = (-v)*(-v)^2 by POWER:30; then (-v) |^ 3 = (-v)*v^2 by SQUARE_1:61; then A39:(-v) |^ 3 = -(v*v^2) by XCMPLX_1:175; v |^ 3 = v |^ (2+1); then v |^ 3 = (v |^ (1+1))*v by NEWTON:11; then v |^ 3 = ((v |^ 1)*v)*v by NEWTON:11; then v |^ 3 = (v |^ 1)*(v*v) by XCMPLX_1:4; then v |^ 3 = (v |^ 1)*v^2 by SQUARE_1:def 3; then A40: v |^ 3 = (v to_power 1)*v^2 by POWER:47; then A41: -(-q/2 +sqrt(q^2/4+(p/3) |^ 3))> 0 by A34,A38,A39,POWER:30; (-v) |^ 3 = -(-q/2 +sqrt(q^2/4+(p/3) |^ 3)) by A34,A39,A40,POWER:30; then (-v) = 3 -Root(-(-q/2 +sqrt(q^2/4+(p/3) |^ 3))) by A37,A38,PREPOWER:def 3; then A42: (-v) = 3-root(-(-q/2 +sqrt(q^2/4+(p/3) |^ 3))) by A41,POWER:def 1; set r = (-q/2 +sqrt(q^2/4+(p/3) |^ 3)); A43: (-v) = 3-root((-1)*(r)) by A42,XCMPLX_1:180; A44: 3 = 2*1+1; then A45: (-v) = (3-root(-1))*(3-root r) by A43,POWER:12; (3-root (-1)) = -1 by A44,POWER:9; then (-v) = -(3-root r) by A45,XCMPLX_1:180; then -(-v) = (3-root r); hence v = 3-root(-q/2 +sqrt(q^2/4+(p/3) |^ 3)); end; hence thesis by A2,A18; case z2 = (-e2-sqrt delta(e1,e2,e3))/(2*e1); then z2 = (-e2-sqrt(e2^2-4*e1*e3))/(2*e1) by QUIN_1:def 1; then z2 = (-q)/2 -(sqrt(q^2-4*(-p/3) |^ 3))/2 by XCMPLX_1:121; then z2 = ((-q)*2") -(sqrt(q^2 -4*(-p/3) |^ 3))/2 by XCMPLX_0:def 9; then z2 = -(q*2") -(sqrt(q^2-4*(-p/3) |^ 3))/2 by XCMPLX_1:175 ; then z2 = -q/2 -sqrt(q^2-4*(-p/3) |^ 3)/sqrt 4 by SQUARE_1:85,XCMPLX_0:def 9; then A46:z2 = -q/2 -sqrt((q^2-4*(-p/3) |^ 3)/4) by A8,SQUARE_1:99 .= -q/2 -sqrt(q^2/4-4*(-p/3) |^ 3/4) by XCMPLX_1:121 .= -q/2 -sqrt(q^2/4-4"*(4*(-p/3) |^ 3)) by XCMPLX_0:def 9 .= -q/2 -sqrt(q^2/4-(4"*4)*(-p/3) |^ 3) by XCMPLX_1:4 .= -q/2 -sqrt(q^2/4-1*(-p/3) |^ 3); then A47:v |^ 3 = -q/2 -sqrt(q^2/4+(p/3) |^ 3) by A15,A16,XCMPLX_1:151; now per cases by REAL_1:def 5; case A48:v>0; then A49: (-q/2 -sqrt(q^2/4+(p/3) |^ 3))> 0 by A47,PREPOWER :13; v > 0 & (-q/2 -sqrt(q^2/4+(p/3) |^ 3))> 0 by A47,A48,PREPOWER:13; then v = 3 -Root (-q/2 -sqrt(q^2/4+(p/3) |^ 3)) by A47,PREPOWER:def 3;hence v = 3-root (-q/2 -sqrt(q^2/4+(p/3) |^ 3)) by A49,POWER:def 1; case A50:v=0; then A51: (-q/2 -sqrt(q^2/4+(p/3) |^ 3)) = 0 by A47,NEWTON:16; hence v = 3 -Root (-q/2 -sqrt(q^2/4+(p/3) |^ 3)) by A50,PREPOWER:def 3;hence v = 3-root (-q/2 -sqrt(q^2 /4+(p/3) |^ 3))by A51,POWER:def 1 ; case v<0; then A52:-v > 0 by REAL_1:66; (-v) |^ 3 = (-v) |^ (2+1); then (-v) |^ 3 = ((-v) |^ (1+1))*(-v) by NEWTON:11; then (-v) |^ 3 = ((((-v) |^ 1)*(-v)))*(-v) by NEWTON:11; then (-v) |^ 3 = ((-v) |^ 1)*((-v)*(-v)) by XCMPLX_1:4; then (-v) |^ 3 = ((-v) |^ 1)*(-v)^2 by SQUARE_1:def 3; then A53: (-v) |^ 3 = ((-v) to_power 1)*(-v)^2 by POWER:47 .= (-v)*(-v)^2 by POWER:30 .= (-v)*v^2 by SQUARE_1:61 .= -(v*v^2) by XCMPLX_1:175; v |^ 3 = v |^ (2+1); then v |^ 3 = (v |^ (1+1))*v by NEWTON:11; then v |^ 3 = ((v |^ 1)*v)*v by NEWTON:11; then v |^ 3 = (v |^ 1)*(v*v) by XCMPLX_1:4; then A54: v |^ 3 = (v |^ 1)*v^2 by SQUARE_1:def 3; A55: v to_power 1 = v by POWER:30; then (-v) |^ 3 = -(v |^ 3) by A53,A54,POWER:47; then A56: -(-q/2 -sqrt(q^2/4+(p/3) |^ 3))> 0 by A47,A52,PREPOWER:13; -(v |^ 3) = -(-q/2 -sqrt(q^2/4+(p/3) |^ 3)) by A15,A16,A46,XCMPLX_1:151; then (-v) |^ 3 = -(-q/2 -sqrt(q^2/4+(p/3) |^ 3)) by A53,A54,A55,POWER:47; then (-v) = 3 -Root(-(-q/2 -sqrt(q^2/4+(p/3) |^ 3))) by A52,A56,PREPOWER:def 3; then A57: (-v) = 3-root(-(-q/2 -sqrt(q^2/4+(p/3) |^ 3))) by A56,POWER:def 1; set r = (-q/2 -sqrt(q^2/4+(p/3) |^ 3)); A58: (-v) = 3-root((-1)*(r)) by A57,XCMPLX_1:180; A59: 3 = 2*1+1; then A60: (-v) = (3-root (-1))*(3-root r) by A58,POWER:12; (3-root (-1)) = -1 by A59,POWER:9; then (-v) = -(3-root r) by A60,XCMPLX_1:180; then -(-v) = (3-root r); hence v = 3-root(-q/2 -sqrt(q^2/4+(p/3) |^ 3)); end; hence thesis by A2,A18; end; hence thesis; case A61:z1 = (-e2-sqrt delta(e1,e2,e3))/(2*e1); then z1 = (-e2-sqrt(e2^2-4*e1*e3))/(2*e1) by QUIN_1:def 1; then A62: z1= (-q)/2 -(sqrt(q^2-4*(-p/3) |^ 3))/2 by XCMPLX_1:121 .= ((-q)*2") -(sqrt(q^2-4*(-p/3) |^ 3))/2 by XCMPLX_0:def 9 .= -(q*2") -(sqrt(q^2-4*(-p/3) |^ 3))/2 by XCMPLX_1:175 .= -q/2 -sqrt(q^2-4*(-p/3) |^ 3)/sqrt 4 by SQUARE_1:85,XCMPLX_0:def 9 .= -q/2 -sqrt((q^2-4*(-p/3) |^ 3)/4) by A8,SQUARE_1:99 .= -q/2 -sqrt(q^2/4-4*(-p/3) |^ 3/4) by XCMPLX_1:121 .= -q/2 -sqrt(q^2/4-4"*(4*(-p/3) |^ 3)) by XCMPLX_0:def 9 .= -q/2 -sqrt(q^2/4-(4"*4)*(-p/3) |^ 3) by XCMPLX_1:4 .= -q/2 -sqrt(q^2/4-1*(-p/3) |^ 3);hence z1 = -q/2 -sqrt(q^2/4-(-p/3) |^ 3); (-p/3) |^ 3 = (-p/3) |^ (2+1); then (-p/3) |^ 3 = ((-p/3) |^ (1+1))*(-p/3) by NEWTON:11; then (-p/3) |^ 3 = ((((-p/3) |^ 1)*(-p/3)))*(-p/3) by NEWTON:11; then (-p/3) |^ 3 = ((-p/3) |^ 1)*((-p/3)*(-p/3)) by XCMPLX_1:4; then (-p/3) |^ 3 = ((-p/3) |^ 1)*(-p/3)^2 by SQUARE_1:def 3; then (-p/3) |^ 3 = ((-p/3) to_power 1)*(-p/3)^2 by POWER:47; then (-p/3) |^ 3 = (-p/3)*(-p/3)^2 by POWER:30; then (-p/3) |^ 3 = (-p/3)*(p/3)^2 by SQUARE_1:61; then A63:(-p/3) |^ 3 = -((p/3)*(p/3)^2) by XCMPLX_1:175; (p/3) |^ 3 = (p/3) |^ (2+1); then (p/3) |^ 3 = ((p/3) |^ (1+1))*(p/3) by NEWTON:11; then (p/3) |^ 3 = ((((p/3) |^ 1)*(p/3)))*(p/3) by NEWTON:11; then (p/3) |^ 3 = ((p/3) |^ 1)*((p/3)*(p/3)) by XCMPLX_1:4; then (p/3) |^ 3 = ((p/3) |^ 1)*(p/3)^2 by SQUARE_1:def 3; then (p/3) |^ 3 = ((p/3) to_power 1)*(p/3)^2by POWER:47; then A64: (-p/3) |^ 3 = -((p/3) |^ 3) by A63,POWER:30; then A65:u |^ 3 = -q/2 -sqrt(q^2/4+(p/3) |^ 3) by A62,XCMPLX_1: 151; A66: now per cases by REAL_1:def 5; case A67:u >0; then A68: (-q/2 -sqrt(q^2 /4+(p/3) |^ 3))> 0 by A65,PREPOWER:13; A69: u > 0 & (-q/2 -sqrt(q^2/4+(p/3) |^ 3))> 0 by A65,A67,PREPOWER:13; u |^ 3 = -q/2 -sqrt(q^2/4+(p/3) |^ 3) by A62,A64,XCMPLX_1:151; then u = 3 -Root (-q/2 -sqrt(q^2/4+(p/3) |^ 3)) by A69,PREPOWER:def 3;hence u = 3-root (-q/2 -sqrt(q^2/4+(p/3) |^ 3)) by A68,POWER:def 1; case A70:u =0; then (-q/2 -sqrt(q^2/4+(p/3) |^ 3)) = 0 by A65,NEWTON:16; hence u = 3-root(-q/2 -sqrt(q^2/4+(p/3) |^ 3)) by A70,POWER:6; case u <0; then A71:-u > 0 by REAL_1:66; then A72: (-u) |^ 3 > 0 by PREPOWER:13; (-u) |^ 3 = (-u) |^ (2+1); then (-u) |^ 3 = ((-u) |^ (1+1))*(-u) by NEWTON:11; then (-u) |^ 3 = ((((-u) |^ 1)*(-u)))*(-u) by NEWTON:11; then (-u) |^ 3 = ((-u) |^ 1)*((-u)*(-u)) by XCMPLX_1:4; then (-u) |^ 3 = ((-u) |^ 1)*(-u)^2 by SQUARE_1:def 3; then (-u) |^ 3 = ((-u) to_power 1)*(-u)^2 by POWER:47; then (-u) |^ 3 = (-u)*(-u)^2 by POWER:30; then (-u) |^ 3 = (-u)*u^2 by SQUARE_1:61; then A73: (-u) |^ 3 = -(u*u^2) by XCMPLX_1:175; u |^ 3 = u |^ (2+1); then u |^ 3 = (u |^ (1+1))*u by NEWTON:11; then u |^ 3 = ((u |^ 1)*u)*u by NEWTON:11; then u |^ 3 = (u |^ 1)*(u*u) by XCMPLX_1:4; then u |^ 3 = (u |^ 1)*u^2 by SQUARE_1:def 3; then A74: u |^ 3 = (u to_power 1)*u^2 by POWER:47; then A75: -(-q/2 -sqrt(q^2/4+(p/3) |^ 3))> 0 by A65,A72,A73,POWER:30; A76: (-u) |^ 3 = -(-q/2 -sqrt(q^2/4+(p/3) |^ 3)) by A65,A73,A74,POWER:30; 3 -Root(-(-q/2 -sqrt(q^2/4+(p/3) |^ 3))) = 3-root(-(-q/2 -sqrt(q^2/4+(p/3) |^ 3))) by A75,POWER:def 1; then A77: (-u) = 3-root(-(-q/2 -sqrt(q^2/4+(p/3) |^ 3))) by A71,A72,A76,PREPOWER:def 3; set r = (-q/2 -sqrt(q^2/4+(p/3) |^ 3)); A78: (-u) = 3-root((-1)*(r)) by A77,XCMPLX_1:180; A79: 3 = 2*1+1; then A80: (-u) = (3-root (-1))*(3-root r) by A78,POWER:12; (3-root (-1)) = -1 by A79,POWER:9; then (-u) = -(3-root r) by A80,XCMPLX_1:180; then -(-u) = (3-root r); hence u = 3-root(-q/2 -sqrt(q^2/4+(p/3) |^ 3)); end; now per cases by A9,A10,Th5; case z2 = (-e2+sqrt delta(e1,e2,e3))/(2*e1); then z2 = (-e2+sqrt(e2^2-4*e1*e3))/(2*e1) by QUIN_1:def 1; then z2 = (-q)/2 +sqrt(q^2-4*(-p/3) |^ 3)/sqrt 4 by SQUARE_1:85,XCMPLX_1:63; then A81: z2 = (-q)/2 +sqrt((q^2-4*(-p/3) |^ 3)/4) by A8,SQUARE_1:99 .= (-q)/2 +sqrt(q^2/4-4*(-p/3) |^ 3/4) by XCMPLX_1:121 .= (-q)/2 +sqrt(q^2/4-4"*(4*(-p/3) |^ 3)) by XCMPLX_0:def 9 .= (-q)/2 +sqrt(q^2/4-(4"*4)*(-p/3) |^ 3) by XCMPLX_1:4 .= (-q)/2 +sqrt(q^2/4-1*(-p/3) |^ 3); (-p/3) |^ 3 = (-p/3) |^ (2+1); then (-p/3) |^ 3 = ((-p/3) |^ (1+1))*(-p/3) by NEWTON:11; then (-p/3) |^ 3 = ((((-p/3) |^ 1)*(-p/3)))*(-p/3) by NEWTON:11; then (-p/3) |^ 3 = ((-p/3) |^ 1)*((-p/3)*(-p/3)) by XCMPLX_1:4; then (-p/3) |^ 3 = ((-p/3) |^ 1)*(-p/3)^2 by SQUARE_1:def 3; then (-p/3) |^ 3 = ((-p/3) to_power 1)*(-p/3)^2by POWER:47; then (-p/3) |^ 3 = (-p/3)*(-p/3)^2 by POWER:30; then (-p/3) |^ 3 = (-p/3)*(p/3)^2 by SQUARE_1:61; then A82: (-p/3) |^ 3 = -((p/3)*(p/3)^2) by XCMPLX_1:175; (p/3) |^ 3 = (p/3) |^ (2+1); then (p/3) |^ 3 = ((p/3) |^ (1+1))*(p/3) by NEWTON:11; then (p/3) |^ 3 = ((((p/3) |^ 1)*(p/3)))*(p/3) by NEWTON:11; then (p/3) |^ 3 = ((p/3) |^ 1)*((p/3)*(p/3)) by XCMPLX_1:4; then (p/3) |^ 3 = ((p/3) |^ 1)*(p/3)^2 by SQUARE_1:def 3; then (p/3) |^ 3 = ((p/3) to_power 1)*(p/3)^2by POWER:47; then (-p/3) |^ 3 = -((p/3) |^ 3) by A82,POWER:30; then A83: z2 = (-q)/2 +sqrt(q^2/4+(p/3) |^ 3) by A81,XCMPLX_1:151 .= (-q)*2" +sqrt(q^2/4+((p/3) |^ 3)) by XCMPLX_0:def 9 .= -(q*2") +sqrt(q^2/4+((p/3) |^ 3)) by XCMPLX_1:175; then A84: v |^ 3 = -q/2 +sqrt(q^2/4+((p/3) |^ 3)) by XCMPLX_0:def 9; now per cases by REAL_1:def 5; case v >0; then A85: v > 0 & (-q/2 +sqrt(q^2/4+(p/3) |^ 3))> 0 by A84,PREPOWER:13; then v = 3 -Root (-q/2 +sqrt(q^2/4+(p/3) |^ 3)) by A84,PREPOWER:def 3; hence v = 3-root(-q/2 +sqrt(q^2/4+(p/3) |^ 3)) by A85,POWER:def 1; case A86:v=0; then (-q/2 +sqrt(q^2/4+(p/3) |^ 3)) = 0 by A84,NEWTON:16; hence v = 3-root(-q/2 +sqrt(q^2/4+(p/3) |^ 3)) by A86,POWER:6; case v<0; then A87: -v > 0 by REAL_1:66; then A88: (-v) |^ 3 > 0 by PREPOWER:13; (-v) |^ 3 = (-v) |^ (2+1); then (-v) |^ 3 = ((-v) |^ (1+1))*(-v) by NEWTON:11; then (-v) |^ 3 = ((((-v) |^ 1)*(-v)))*(-v) by NEWTON:11; then (-v) |^ 3 = ((-v) |^ 1)*((-v)*(-v)) by XCMPLX_1:4; then (-v) |^ 3 = ((-v) |^ 1)*(-v)^2 by SQUARE_1:def 3; then (-v) |^ 3 = ((-v) to_power 1)*(-v)^2by POWER:47; then (-v) |^ 3 = (-v)*(-v)^2 by POWER:30; then (-v) |^ 3 = (-v)*v^2 by SQUARE_1:61; then A89:(-v) |^ 3 = -(v*v^2) by XCMPLX_1:175; v |^ 3 = v |^ (2+1); then v |^ 3 = (v |^ (1+1))*v by NEWTON:11; then v |^ 3 = ((v |^ 1)*v)*v by NEWTON:11; then v |^ 3 = (v |^ 1)*(v*v) by XCMPLX_1:4; then v |^ 3 = (v |^ 1)*v^2 by SQUARE_1:def 3; then A90: v |^ 3 = (v to_power 1)*v^2 by POWER:47; then A91: v |^ 3 = v*v^2 by POWER:30; A92: -(-q/2 +sqrt(q^2/4+(p/3) |^ 3))> 0 by A84,A88,A89,A90,POWER:30; (-v) |^ 3 = -(-q/2 +sqrt(q^2/4+(p/3) |^ 3)) by A83,A89,A91,XCMPLX_0:def 9; then (-v) = 3 -Root(-(-q/2 +sqrt(q^2/4+(p/3) |^ 3))) by A87,A88,PREPOWER:def 3; then A93: (-v) = 3-root(-(-q/2 +sqrt(q^2/4+(p/3) |^ 3))) by A92,POWER:def 1; set r = (-q/2 +sqrt(q^2/4+(p/3) |^ 3)); A94: (-v) = 3-root((-1)*(r)) by A93,XCMPLX_1:180; A95: 3 = 2*1+1; then A96: (-v) = (3-root(-1))*(3-root r) by A94,POWER:12; (3-root (-1)) = -1 by A95,POWER:9; then (-v) = -(3-root r) by A96,XCMPLX_1:180; then -(-v) = (3-root r); hence v = 3-root(-q/2 +sqrt(q^2/4+(p/3) |^ 3)); end; hence thesis by A2,A66; case A97: z2 = (-e2-sqrt delta(e1,e2,e3))/(2*e1); then A98:z2 = (-e2-sqrt(e2^2-4*e1*e3))/(2*e1) by QUIN_1:def 1; e2^2 = (z1+z2)^2 by A3,SQUARE_1:61; then e2^2-(4*e1*e3) = (z1^2+2*z1*z2+z2^2)-4*(z1*z2) by A4,SQUARE_1:63 .= -(-z1^2-2*z1*z2-z2^2)-4*(z1*z2) by XCMPLX_1:174 .= -(-z1^2-z2^2-2*z1*z2)-4*(z1*z2) by XCMPLX_1:146 .= (z1^2+z2^2+2*z1*z2)-4*(z1*z2) by XCMPLX_1:174 .= (z1^2+z2^2+2*z1*z2)+(-4*(z1*z2)) by XCMPLX_0:def 8 .= (z1^2+z2^2)+(2*z1*z2+(-4*(z1*z2))) by XCMPLX_1:1 .= (z1^2+z2^2)+(2*z1*z2-4*(z1*z2)) by XCMPLX_0:def 8 .= (z1^2+z2^2)+(2*(z1*z2)-4*(z1*z2)) by XCMPLX_1:4 .= (z1^2+z2^2)+((2-4)*(z1*z2)) by XCMPLX_1:40 .= (z1^2+z2^2)+((-2)*(z1*z2)) .= (z1^2+z2^2)+-(2*(z1*z2)) by XCMPLX_1:175 .= (z1^2+z2^2-2*(z1*z2)) by XCMPLX_0:def 8 .= (z1^2-2*(z1*z2)+z2^2) by XCMPLX_1:29 .= (z1^2-(2*z1*z2)+z2^2) by XCMPLX_1:4 .= (z1-z2)^2 by SQUARE_1:64; then sqrt(q^2-4*1*(-p/3) |^ 3)= 0 by A61,A97,SQUARE_1:60,82,XCMPLX_1:14; then z2 = (-q)/2 +sqrt(q^2-4*(-p/3) |^ 3)/sqrt 4 by A98; then A99: z2 = (-q)/2 +sqrt((q^2-4*(-p/3) |^ 3)/4) by A8,SQUARE_1:99 .= (-q)/2 +sqrt(q^2/4-4*(-p/3) |^ 3/4) by XCMPLX_1:121 .= (-q)/2 +sqrt(q^2/4-4"*(4*(-p/3) |^ 3)) by XCMPLX_0:def 9 .= (-q)/2 +sqrt(q^2/4-(4"*4)*(-p/3) |^ 3) by XCMPLX_1:4 .= (-q)/2 +sqrt(q^2/4-1*(-p/3) |^ 3); (-p/3) |^ 3 = (-p/3) |^ (2+1) .= ((-p/3) |^ (1+1))*(-p/3) by NEWTON:11 .= ((((-p/3) |^ 1)*(-p/3)))*(-p/3) by NEWTON:11 .= ((-p/3) |^ 1)*((-p/3)*(-p/3)) by XCMPLX_1:4; then (-p/3) |^ 3 = ((-p/3) |^ 1)*(-p/3)^2 by SQUARE_1:def 3 .= ((-p/3) to_power 1)*(-p/3)^2by POWER:47 .= (-p/3)*(-p/3)^2 by POWER:30 .= (-p/3)*(p/3)^2 by SQUARE_1:61; then A100: (-p/3) |^ 3 = -((p/3)*(p/3)^2) by XCMPLX_1:175; (p/3) |^ 3 = (p/3) |^ (2+1) .= ((p/3) |^ (1+1))*(p/3) by NEWTON:11 .= ((((p/3) |^ 1)*(p/3)))*(p/3) by NEWTON:11 .= ((p/3) |^ 1)*((p/3)*(p/3)) by XCMPLX_1:4 .= ((p/3) |^ 1)*(p/3)^2 by SQUARE_1:def 3; then (p/3) |^ 3 = ((p/3) to_power 1)*(p/3)^2by POWER:47; then (-p/3) |^ 3 = -((p/3) |^ 3) by A100,POWER:30; then A101: z2 = (-q)/2 +sqrt(q^2/4+(p/3) |^ 3) by A99,XCMPLX_1:151 .= (-q)*2" +sqrt(q^2/4+((p/3) |^ 3)) by XCMPLX_0:def 9 .= -(q*2") +sqrt(q^2/4+((p/3) |^ 3)) by XCMPLX_1:175; then A102: v |^ 3 = -q/2 +sqrt(q^2/4+((p/3) |^ 3)) by XCMPLX_0:def 9; now per cases by REAL_1:def 5; case v >0; then A103: v > 0 & (-q/2 +sqrt(q^2/4+(p/3) |^ 3))> 0 by A102,PREPOWER:13; v |^ 3 = -q/2 +sqrt(q^2/4+(p/3) |^ 3) by A101,XCMPLX_0:def 9; then v = 3 -Root (-q/2 +sqrt(q^2/4+(p/3) |^ 3)) by A103,PREPOWER:def 3;hence v = 3-root(-q/2 +sqrt(q^2/4+(p/3) |^ 3)) by A103,POWER:def 1; case A104:v=0; then v |^ 3 = 0 by NEWTON:16; then (-q/2 +sqrt(q^2/4+(p/3) |^ 3)) = 0 by A101,XCMPLX_0:def 9; hence v = 3-root(-q/2 +sqrt(q^2/4+(p/3) |^ 3)) by A104,POWER:6; case v<0; then A105: -v > 0 by REAL_1:66; then A106: (-v) |^ 3 > 0 by PREPOWER:13; (-v) |^ 3 = (-v) |^ (2+1) .= ((-v) |^ (1+1))*(-v) by NEWTON:11 .= ((((-v) |^ 1)*(-v)))*(-v) by NEWTON:11 .= ((-v) |^ 1)*((-v)*(-v)) by XCMPLX_1:4 .= ((-v) |^ 1)*(-v)^2 by SQUARE_1:def 3 .= ((-v) to_power 1)*(-v)^2by POWER:47 .= (-v)*(-v)^2 by POWER:30 .= (-v)*v^2 by SQUARE_1:61; then A107:(-v) |^ 3 = -(v*v^2) by XCMPLX_1:175; v |^ 3 = v |^ (2+1) .= (v |^ (1+1))*v by NEWTON:11 .= ((v |^ 1)*v)*v by NEWTON:11 .= (v |^ 1)*(v*v) by XCMPLX_1:4 .= (v |^ 1)*v^2 by SQUARE_1:def 3; then A108: v |^ 3 = (v to_power 1)*v^2 by POWER:47; then A109: (-v) |^ 3 = -(v |^ 3) by A107,POWER:30; -(v |^ 3)> 0 by A106,A107,A108,POWER:30; then A110: -(-q/2 +sqrt(q^2/4+(p/3) |^ 3))> 0 by A101,XCMPLX_0:def 9; (-v) |^ 3 = -(-q/2 +sqrt(q^2/4+(p/3) |^ 3)) by A101,A109,XCMPLX_0:def 9; then (-v) = 3 -Root(-(-q/2 +sqrt(q^2/4+(p/3) |^ 3))) by A105,A110,PREPOWER:def 3; then A111: (-v) = 3-root(-(-q/2 +sqrt(q^2/4+(p/3) |^ 3))) by A110,POWER:def 1; set r = (-q/2 +sqrt(q^2/4+(p/3) |^ 3)); A112: (-v) = 3-root((-1)*(r)) by A111,XCMPLX_1:180; A113: 3 = 2*1+1; then A114: (-v) = (3-root(-1))*(3-root r) by A112,POWER:12; (3-root (-1)) = -1 by A113,POWER:9; then (-v) = -(3-root r) by A114,XCMPLX_1:180; then -(-v) = (3-root r);hence v = 3-root(-q/2 +sqrt(q^2/4+(p/3) |^ 3)); end; hence y = 3-root(-q/2 +sqrt(q^2/4+(p/3) |^ 3)) +3-root(-q/2 -sqrt(q^2/4+(p/3) |^ 3)) by A2,A66; end; hence thesis; end; hence thesis; end; theorem b <> 0 & delta(b,c,d) > 0 & Poly3(0,b,c,d,x) = 0 implies x = (-c+sqrt delta(b,c,d))/(2*b) or x = (-c-sqrt delta(b,c,d))/(2*b) proof assume that A1: b <> 0 & delta(b,c,d)>0; assume Poly3(0,b,c,d,x) = 0; then 0*(x |^ 3)+ b*x^2 +c*x +d = 0 by Def4; then Poly2(b,c,d,x) = 0 by Def2; hence x = (-c+sqrt delta(b,c,d))/(2*b) or x = (-c-sqrt delta(b,c,d))/(2*b) by A1,Th5; end; theorem a <> 0 & p = c/a & q = d/a & Poly3(a,0,c,d,x) = 0 implies (for u,v st x = u+v & 3*v*u+p = 0 holds x = 3-root(-d/(2*a)+sqrt((d^2/(4*a^2))+(c/(3*a)) |^ 3)) +3-root(-d/(2*a)-sqrt((d^2/(4*a^2))+(c/(3*a)) |^ 3)) or x = 3-root(-d/(2*a)+sqrt((d^2/(4*a^2))+(c/(3*a)) |^ 3)) +3-root(-d/(2*a)+sqrt((d^2/(4*a^2))+(c/(3*a)) |^ 3)) or x = 3-root(-d/(2*a)-sqrt((d^2/(4*a^2))+(c/(3*a)) |^ 3)) +3-root(-d/(2*a)-sqrt((d^2/(4*a^2))+(c/(3*a)) |^ 3))) proof assume that A1: a <> 0 & p = c/a & q = d/a; assume A2: Poly3(a,0,c,d,x) = 0; let u,v; assume that A3: x = u+v & 3*v*u+p = 0; a*(x |^ 3)+ 0*x^2 +c*x +d = 0 by A2,Def4; then a"*(a*(x |^ 3)+c*x +d) = 0; then a"*(a*(x |^ 3)+(c*x +d)) = 0 by XCMPLX_1:1; then a"*(a*(x |^ 3))+a"*(c*x +d)= 0 by XCMPLX_1:8; then (a"*a)*(x |^ 3)+a"*(c*x +d)= 0 by XCMPLX_1:4; then 1*(x |^ 3)+a"*(c*x +d)= 0 by A1,XCMPLX_0:def 7; then (x |^ 3)+(a"*(c*x) +a"*d) = 0 by XCMPLX_1:8; then (x |^ 3)+((a"*c)*x +a"*d) = 0 by XCMPLX_1:4; then (x |^ 3)+((c/a)*x +a"*d) = 0 by XCMPLX_0:def 9; then (x |^ 3)+((c/a)*x +d/a) = 0 by XCMPLX_0:def 9; then 1*(x |^ 3)+ 0*x^2 +p*x + q = 0 by A1,XCMPLX_1:1; then A4: Poly3(1,0,p,q,x) = 0 by Def4; A5: p/3 = c/(3*a) by A1,XCMPLX_1:79; A6:-q/2 = -d/(2*a) by A1,XCMPLX_1:79; q^2/4 = d^2/a^2/4 by A1,SQUARE_1:69; then q^2/4 = d^2/(4*a^2) by XCMPLX_1:79; hence x = 3-root(-d/(2*a)+sqrt((d^2/(4*a^2))+(c/(3*a)) |^ 3)) +3-root(-d/(2*a)-sqrt((d^2/(4*a^2))+(c/(3*a)) |^ 3)) or x = 3-root(-d/(2*a)+sqrt((d^2/(4*a^2))+(c/(3*a)) |^ 3)) +3-root(-d/(2*a)+sqrt((d^2/(4*a^2))+(c/(3*a)) |^ 3)) or x = 3-root(-d/(2*a)-sqrt((d^2/(4*a^2))+(c/(3*a)) |^ 3)) +3-root(-d/(2*a)-sqrt((d^2/(4*a^2))+(c/(3*a)) |^ 3)) by A3,A4,A5,A6,Th19; end; theorem a <> 0 & delta(a,b,c) >= 0 & Poly3(a,b,c,0,x) = 0 implies x = 0 or x = (-b+sqrt delta(a,b,c))/(2*a) or x = (-b-sqrt delta(a,b,c))/(2*a) proof assume that A1: a <> 0 & delta(a,b,c)>= 0; assume Poly3(a,b,c,0,x) = 0; then A2: a*(x |^ 3)+ b*x^2 +c*x +0 = 0 by Def4; x |^ 3 = x |^ (2+1); then x |^ 3 = (x |^ (1+1))*x by NEWTON:11; then A3: x |^ 3 = ((x |^ 1)*x)*x by NEWTON:11; x |^ 1 = x to_power 1 by POWER:47; then x |^ 1 = x by POWER:30; then x |^ 3 = x^2*x by A3,SQUARE_1:def 3; then a*(x^2*x) +b*(x*x)+c*x = 0 by A2,SQUARE_1:def 3; then (a*x^2)*x +b*(x*x)+c*x = 0 by XCMPLX_1:4; then (a*x^2)*x +(b*x)*x+c*x = 0 by XCMPLX_1:4; then (a*x^2 +b*x+c)*x = 0 by XCMPLX_1:9; then x = 0 or (a*x^2 +b*x+c) = 0 by XCMPLX_1:6; then x = 0 or Poly2(a,b,c,x) = 0 by Def2; hence x = 0 or x = (-b+sqrt delta(a,b,c))/(2*a) or x = (-b-sqrt delta(a,b,c))/(2*a) by A1,Th5; end; theorem a <> 0 & c/a < 0 & Poly3(a,0,c,0,x) = 0 implies x = 0 or x = sqrt -c/a or x = -sqrt(-c/a) proof assume that A1: a <> 0 & c/a < 0; assume Poly3(a,0,c,0,x) = 0; then A2: a*(x |^ 3)+ 0*x^2 +c*x +0 = 0 by Def4; x |^ 3 = x |^ (2+1); then x |^ 3 = (x |^ (1+1))*x by NEWTON:11; then A3: x |^ 3 = ((x |^ 1)*x)*x by NEWTON:11; x |^ 1 = x to_power 1 by POWER:47; then x |^ 1 = x by POWER:30; then x |^ 3 = x^2*x by A3,SQUARE_1:def 3; then (a*x^2)*x +c*x = 0 by A2,XCMPLX_1:4; then (a*x^2+c)*x = 0 by XCMPLX_1:8; then A4:x = 0 or (a*x^2+c) = 0 by XCMPLX_1:6; now now per cases by REAL_1:def 5; case A5: x > 0; then a*x^2 = - c by A4,XCMPLX_0:def 6; then x^2 = (-c)/a by A1,XCMPLX_1:90; then x^2 = ((-c)*a") by XCMPLX_0:def 9; then x^2 = -(c*a") by XCMPLX_1:175; then A6: x^2 = -c/a by XCMPLX_0:def 9; A7:(-c/a) > 0 by A1,REAL_1:66; x |^ 2 = (x |^ (1+1)); then x |^ 2 = ((x |^ 1)*x) by NEWTON:11; then x |^ 2 = ((x to_power 1)*x) by POWER:47; then x |^ 2 = x*x by POWER:30; then x |^ 2 = -c/a by A6,SQUARE_1:def 3; then x = 2 -Root (-c/a) by A5,A7,PREPOWER:def 3; hence x = 0 or x = sqrt -c/a or x = -sqrt(-c/a) by A7,PREPOWER:41; case A8: x < 0; then A9: -x>0 by REAL_1:66; a*x^2 = - c by A4,A8,XCMPLX_0:def 6; then x^2 = (-c)/a by A1,XCMPLX_1:90; then x^2 = ((-c)*a") by XCMPLX_0:def 9; then x^2 = -(c*a") by XCMPLX_1:175; then x^2 = -c/a by XCMPLX_0:def 9; then A10:(-x)^2=-c/a by SQUARE_1:61; A11:(-c/a) > 0 by A1,REAL_1:66; (-x) |^ 2 = ((-x) |^ (1+1)); then (-x) |^ 2 = (((-x) |^ 1)*(-x)) by NEWTON:11; then (-x) |^ 2 = (((-x) to_power 1)*(-x)) by POWER:47; then (-x) |^ 2 = (-x)*(-x) by POWER:30; then (-x) |^ 2 = -c/a by A10,SQUARE_1:def 3; then -x = (2 -Root (-c/a)) by A9,A11,PREPOWER:def 3; then -x = sqrt(-c/a) by A11,PREPOWER:41; hence x = 0 or x = sqrt -c/a or x = -sqrt(-c/a); case x=0; hence x = 0 or x = sqrt -c/a or x = -sqrt(-c/a); end;hence x = 0 or x = sqrt -c/a or x = -sqrt(-c/a); end; hence x = 0 or x = sqrt -c/a or x = -sqrt(-c/a); end;