Copyright (c) 2000 Association of Mizar Users
environ vocabulary INTEGRA1, FINSEQ_1, RLVECT_1, ARYTM_1, RVSUM_1, RELAT_1, FUNCT_1, VECTSP_1, FINSEQ_2, PARTFUN1, REALSET1, SEQ_1, BOOLE, RFUNCT_1, FCONT_1, FCONT_2, COMPTS_1, LATTICES, SEQ_2, ABSVALUE, INTEGRA2, FUNCT_3, ORDINAL2, MEASURE5, ARYTM_3, SQUARE_1, FDIFF_1, RCOMP_1, RFUNCT_2, PRE_TOPC, INTEGRA5, FINSEQ_4, ARYTM; notation TARSKI, XBOOLE_0, SUBSET_1, ORDINAL1, NUMBERS, XCMPLX_0, XREAL_0, REAL_1, NAT_1, REALSET1, FUNCT_2, RELSET_1, PARTFUN1, RCOMP_1, PSCOMP_1, FINSEQ_1, FUNCOP_1, SEQ_1, RFUNCT_1, FINSEQ_2, SEQ_2, SEQ_4, PRE_CIRC, FDIFF_1, ABSVALUE, FINSEQ_4, VECTSP_1, RVSUM_1, INTEGRA1, INTEGRA2, FCONT_1, FCONT_2, RFUNCT_2; constructors REAL_1, REALSET1, FINSEQOP, PRE_CIRC, FDIFF_1, FINSEQ_4, INTEGRA2, RFUNCT_3, FCONT_1, FCONT_2, RFUNCT_2, ABSVALUE, PSCOMP_1, NAT_1; clusters XREAL_0, RELSET_1, FINSEQ_2, INTEGRA1, SEQ_1, RCOMP_1, ARYTM_3, MEMBERED, ORDINAL2; requirements NUMERALS, BOOLE, SUBSET, REAL, ARITHM; theorems AXIOMS, REAL_1, SEQ_4, SUBSET_1, REAL_2, PARTFUN1, PSCOMP_1, INTEGRA1, RFUNCT_1, FUNCT_1, FINSEQ_1, RVSUM_1, SEQ_1, SEQ_2, FDIFF_1, ABSVALUE, PRE_CIRC, NAT_1, TARSKI, FINSEQ_4, INTEGRA2, NAT_2, FINSEQ_2, RCOMP_1, FCONT_2, INTEGRA4, FCONT_1, ROLLE, RFUNCT_2, FDIFF_2, RELAT_1, XREAL_0, FUNCT_2, XBOOLE_0, XBOOLE_1, SQUARE_1, XCMPLX_0, XCMPLX_1, RLVECT_1; schemes FINSEQ_2; begin ::Some useful properties of finite sequence reserve i,k,n,m for Nat; reserve a,b,r,r1,r2,s,x,x1,x2,y for Real; reserve A for closed-interval Subset of REAL; reserve X for set; theorem Th1: for F,F1,F2 being FinSequence of REAL, r1,r2 st (F1=<*r1*>^F or F1=F^<*r1*>) & (F2=<*r2*>^F or F2=F^<*r2*>) holds Sum(F1-F2)=r1-r2 proof let F,F1,F2 be FinSequence of REAL; let r1,r2; assume that A1:(F1=<*r1*>^F or F1=F^<*r1*>) and A2:(F2=<*r2*>^F or F2=F^<*r2*>); A3:len F1 = len F2 & len F1 = len (F1-F2) proof len F1=len F+len<*r1*>&len F2=len<*r2*>+len F by A1,A2,FINSEQ_1:35; then A4: len F1=len F+1 & len F2=1+len F by FINSEQ_1:56; F1-F2 = diffreal.:(F1,F2) by RVSUM_1:def 6; hence thesis by A4,FINSEQ_2:86; end; for k st k in dom F1 holds (F1-F2).k = F1/.k - F2/.k proof let k; assume A5:k in dom F1; then k in Seg len F1 by FINSEQ_1:def 3; then A6: k in dom (F1-F2) & k in dom F2 by A3,FINSEQ_1:def 3; then F1.k = F1/.k & F2.k = F2/.k by A5,FINSEQ_4:def 4; hence thesis by A6,RVSUM_1:47; end; then A7:Sum(F1-F2)=Sum F1-Sum F2 by A3,INTEGRA1:24; Sum F1=r1+Sum F & Sum F2=Sum F+r2 by A1,A2,RVSUM_1:104,106; hence thesis by A7,XCMPLX_1:32; end; theorem Th2: for F1,F2 being FinSequence of REAL st len F1 = len F2 holds len (F1+F2)=len F1 & len (F1-F2)=len F1 & Sum(F1+F2)=Sum F1+Sum F2 & Sum(F1-F2)= Sum F1-Sum F2 proof let F1,F2 be FinSequence of REAL; assume A1:len F1=len F2; F1+F2=addreal.:(F1,F2) by RVSUM_1:def 4; hence A2:len F1=len (F1+F2) by A1,FINSEQ_2:86; F1-F2=diffreal.:(F1,F2) by RVSUM_1:def 6; hence A3:len F1=len (F1-F2) by A1,FINSEQ_2:86; for k st k in dom F1 holds (F1+F2).k = F1/.k + F2/.k proof let k; assume A4:k in dom F1; then k in Seg len F1 by FINSEQ_1:def 3; then A5: k in dom (F1+F2) & k in dom F2 by A1,A2,FINSEQ_1:def 3; then F1.k = F1/.k & F2.k = F2/.k by A4,FINSEQ_4:def 4; hence thesis by A5,RVSUM_1:26; end; hence Sum(F1+F2)=Sum F1 + Sum F2 by A1,A2,INTEGRA1:23; for k st k in dom F1 holds (F1-F2).k = F1/.k - F2/.k proof let k; assume A6:k in dom F1; then k in Seg len F1 by FINSEQ_1:def 3; then A7: k in dom (F1-F2) & k in dom F2 by A1,A3,FINSEQ_1:def 3; then F1.k = F1/.k & F2.k = F2/.k by A6,FINSEQ_4:def 4; hence thesis by A7,RVSUM_1:47; end; hence thesis by A1,A3,INTEGRA1:24; end; theorem Th3: for F1,F2 being FinSequence of REAL st len F1 = len F2 & (for i st i in dom F1 holds F1.i <= F2.i) holds Sum F1 <= Sum F2 proof let F1,F2 be FinSequence of REAL; assume that A1:len F1 = len F2 and A2:for i st i in dom F1 holds F1.i <= F2.i; reconsider R1=F1 as Element of (len F1)-tuples_on REAL by FINSEQ_2:110; reconsider R2=F2 as Element of (len F1)-tuples_on REAL by A1,FINSEQ_2:110; for i st i in Seg len F1 holds R1.i <= R2.i proof let i; assume i in Seg len F1; then i in dom F1 by FINSEQ_1:def 3; hence thesis by A2; end; hence thesis by RVSUM_1:112; end; begin :: Integrability for partial function of REAL,REAL definition let C be non empty Subset of REAL; let f be PartFunc of REAL,REAL; func f||C -> PartFunc of C,REAL equals :Def1: f|C; correctness by PARTFUN1:43; end; theorem Th4: for f,g being PartFunc of REAL,REAL, C being non empty Subset of REAL holds (f||C)(#)(g||C) = (f(#)g)||C proof let f,g be PartFunc of REAL,REAL; let C be non empty Subset of REAL; A1:dom (f||C(#)g||C)= dom (f||C) /\ dom (g||C) by SEQ_1:def 5 .= dom (f|C) /\ dom(g||C) by Def1 .= dom (f|C) /\ dom(g|C) by Def1 .= (dom f /\ C) /\ dom (g|C) by FUNCT_1:68 .= (dom f /\ C) /\ (dom g /\ C) by FUNCT_1:68 .= ((dom f /\ C) /\ C) /\ dom g by XBOOLE_1:16 .= (dom f /\ (C /\ C)) /\ dom g by XBOOLE_1:16 .= (dom f /\ C) /\ dom g; dom ((f(#)g)||C)= dom ((f(#)g)|C) by Def1 .= dom(f(#)g) /\ C by FUNCT_1:68 .= (dom f /\ dom g) /\ C by SEQ_1:def 5; then A2:dom (f||C(#)g||C) = dom ((f(#)g)||C) by A1,XBOOLE_1:16; for c being Element of C st c in dom(f||C(#)g||C) holds (f||C(#)g||C).c = ((f(#)g)||C).c proof let c be Element of C; assume A3:c in dom(f||C(#)g||C); then c in dom (f||C) /\ dom (g||C) by SEQ_1:def 5; then c in dom (f||C) & c in dom (g||C) by XBOOLE_0:def 3; then A4: c in dom (f|C) & c in dom (g|C) by Def1; A5: (f||C(#)g||C).c = (f||C).c * (g||C).c by A3,SEQ_1:def 5 .=(f|C).c * (g||C).c by Def1 .=(f|C).c * (g|C).c by Def1; A6: c in dom ((f(#)g)|C) by A2,A3,Def1; then c in dom (f(#)g) /\ C by FUNCT_1:68; then A7: c in dom (f(#)g) by XBOOLE_0:def 3; ((f(#)g)||C).c = ((f(#)g)|C).c by Def1 .=(f(#)g).c by A6,FUNCT_1:68 .=f.c * g.c by A7,SEQ_1:def 5 .= (f|C).c * g.c by A4,FUNCT_1:68; hence thesis by A4,A5,FUNCT_1:68; end; hence thesis by A2,PARTFUN1:34; end; theorem Th5: for f,g being PartFunc of REAL,REAL, C being non empty Subset of REAL holds (f+g)||C = f||C + g||C proof let f,g be PartFunc of REAL,REAL; let C be non empty Subset of REAL; A1:dom ((f+g)||C) = dom ((f+g)|C) by Def1 .= dom (f+g) /\ C by FUNCT_1:68 .= dom f /\ dom g /\ C by SEQ_1:def 3; dom (f||C+g||C) = dom (f||C) /\ dom (g||C) by SEQ_1:def 3 .=dom (f|C) /\ dom (g||C) by Def1 .= dom (f|C) /\ dom (g|C) by Def1 .= (dom f /\ C) /\ dom (g|C) by FUNCT_1:68 .= (dom f /\ C) /\ (dom g /\ C) by FUNCT_1:68 .= dom f /\ (C /\ (dom g /\ C)) by XBOOLE_1:16 .= dom f /\ (dom g /\ (C /\ C)) by XBOOLE_1:16 .= dom f /\ (dom g /\ C); then A2:dom ((f+g)||C) = dom (f||C + g||C) by A1,XBOOLE_1:16; for c being Element of C st c in dom ((f+g)||C) holds (f+g)||C.c = (f||C + g||C).c proof let c be Element of C; assume A3:c in dom((f+g)||C); then A4: c in dom((f+g)|C) by Def1; then c in dom(f+g) /\ C by FUNCT_1:68; then A5: c in dom(f+g) by XBOOLE_0:def 3; A6: (f+g)||C.c = (f+g)|C.c by Def1 .= (f+g).c by A4,FUNCT_1:68 .= f.c + g.c by A5,SEQ_1:def 3; c in dom(f||C) /\ dom(g||C) by A2,A3,SEQ_1:def 3; then c in dom(f||C) & c in dom(g||C) by XBOOLE_0:def 3; then A7: c in dom(f|C) & c in dom(g|C) by Def1; (f||C+g||C).c = f||C.c + g||C.c by A2,A3,SEQ_1:def 3 .=f|C.c + g||C.c by Def1 .=f|C.c + g|C.c by Def1 .= f.c + g|C.c by A7,FUNCT_1:68; hence thesis by A6,A7,FUNCT_1:68; end; hence thesis by A2,PARTFUN1:34; end; definition let A be closed-interval Subset of REAL; let f be PartFunc of REAL,REAL; pred f is_integrable_on A means :Def2: f||A is_integrable_on A; end; definition let A be closed-interval Subset of REAL; let f be PartFunc of REAL,REAL; func integral(f,A) -> Real equals :Def3: integral(f||A); correctness; end; theorem Th6: for f being PartFunc of REAL,REAL st A c= dom f holds f||A is total proof let f be PartFunc of REAL,REAL; assume A1:A c= dom f; dom (f||A) = dom (f|A) by Def1 .= dom f /\ A by FUNCT_1:68 .= A by A1,XBOOLE_1:28; hence f||A is total by PARTFUN1:def 4; end; theorem Th7: for f being PartFunc of REAL,REAL st f is_bounded_above_on A holds f||A is_bounded_above_on A proof let f be PartFunc of REAL,REAL; assume f is_bounded_above_on A; then consider r be real number such that A1:for x st x in A /\ dom f holds f.x <= r by RFUNCT_1:def 9; for x being Element of A st x in A /\ dom (f||A) holds (f||A).x <= r proof let x be Element of A; assume A2:x in A /\ dom (f||A); A3: dom(f|A) = dom f /\ A by FUNCT_1:68; then A4: dom(f|A) c= A by XBOOLE_1:17; A5: A /\ dom(f||A)=A /\ dom(f|A) by Def1 .= dom f /\ A by A3,A4,XBOOLE_1:28 ; then A6: x in A /\ dom f & x in dom(f|A) by A2,FUNCT_1:68; (f||A).x = (f|A).x by Def1 .= f.x by A6,FUNCT_1:68; hence thesis by A1,A2,A5; end; hence thesis by RFUNCT_1:def 9; end; theorem Th8: for f being PartFunc of REAL,REAL st f is_bounded_below_on A holds f||A is_bounded_below_on A proof let f be PartFunc of REAL,REAL; assume f is_bounded_below_on A; then consider r be real number such that A1:for x st x in A /\ dom f holds f.x >= r by RFUNCT_1:def 10; for x being Element of A st x in A /\ dom (f||A) holds (f||A).x >= r proof let x be Element of A; assume A2:x in A /\ dom (f||A); A3: dom(f|A) = dom f /\ A by FUNCT_1:68; then A4: dom(f|A) c= A by XBOOLE_1:17; A5: A /\ dom(f||A)=A /\ dom(f|A) by Def1 .= dom f /\ A by A3,A4,XBOOLE_1:28 ; then A6: x in A /\ dom f & x in dom(f|A) by A2,FUNCT_1:68; (f||A).x = (f|A).x by Def1 .= f.x by A6,FUNCT_1:68; hence thesis by A1,A2,A5; end; hence thesis by RFUNCT_1:def 10; end; theorem Th9: for f being PartFunc of REAL,REAL st f is_bounded_on A holds f||A is_bounded_on A proof let f be PartFunc of REAL,REAL; assume f is_bounded_on A; then f is_bounded_above_on A & f is_bounded_below_on A by RFUNCT_1:def 11; then f||A is_bounded_above_on A & f||A is_bounded_below_on A by Th7,Th8; hence thesis by RFUNCT_1:def 11; end; begin :: Integrability for continuous function theorem Th10: for f being PartFunc of REAL,REAL st f is_continuous_on A holds f is_bounded_on A proof let f be PartFunc of REAL,REAL; assume A1:f is_continuous_on A; then f is_uniformly_continuous_on A by FCONT_2:11; then A c= dom f by FCONT_2:def 1; then f.:A is compact by A1,FCONT_1:30; then f.:A is bounded by RCOMP_1:28; then A2:f.:A is bounded_above & f.:A is bounded_below by SEQ_4:def 3; then consider a be real number such that A3:for r be real number st r in f.:A holds r <= a by SEQ_4:def 1; consider b be real number such that A4:for r be real number st r in f.:A holds b <= r by A2,SEQ_4:def 2; for x st x in A /\ dom f holds f.x <= a proof let x; assume x in A /\ dom f; then x in A & x in dom f by XBOOLE_0:def 3; then f.x in f.:A by FUNCT_1:def 12; hence thesis by A3; end; then A5:f is_bounded_above_on A by RFUNCT_1:def 9; for x st x in A /\ dom f holds b <= f.x proof let x; assume x in A /\ dom f; then x in A & x in dom f by XBOOLE_0:def 3; then f.x in f.:A by FUNCT_1:def 12; hence thesis by A4; end; then f is_bounded_below_on A by RFUNCT_1:def 10; hence thesis by A5,RFUNCT_1:def 11; end; theorem Th11: for f being PartFunc of REAL,REAL st f is_continuous_on A holds f is_integrable_on A proof let f be PartFunc of REAL,REAL; assume A1:f is_continuous_on A; then A2:f is_uniformly_continuous_on A by FCONT_2:11; then A3:A c= dom f & for r st 0<r ex s st 0<s & for x1,x2 st x1 in A & x2 in A & abs(x1 - x2) < s holds abs(f.x1 - f.x2) < r by FCONT_2:def 1; reconsider g=f|A as PartFunc of A,REAL by PARTFUN1:43; A4:g is total & g is_bounded_on A proof A5: dom g = dom f /\ A by FUNCT_1:68 .= A by A3,XBOOLE_1:28; hence g is total by PARTFUN1:def 4; f.:A is compact by A1,A3,FCONT_1:30; then A6: f.:A is bounded by RCOMP_1:28; rng g = f.:A proof for y being set st y in rng g holds y in f.:A proof let y be set; assume y in rng g; then consider x being set such that A7: x in dom g & y=g.x by FUNCT_1:def 5; f.x in f.:A by A3,A5,A7,FUNCT_1:def 12; hence thesis by A7,FUNCT_1:68; end; then A8: rng g c= f.:A by TARSKI:def 3; for y being set st y in f.:A holds y in rng g proof let y be set; assume y in f.:A; then consider x being set such that A9: x in dom f & x in A & y = f.x by FUNCT_1:def 12; g.x in rng g & y=g.x by A5,A9,FUNCT_1:68,def 5; hence thesis; end; then f.:A c= rng g by TARSKI:def 3; hence thesis by A8,XBOOLE_0:def 10; end; then rng g is bounded_above & rng g is bounded_below by A6,SEQ_4:def 3; then g is_bounded_above_on A & g is_bounded_below_on A by INTEGRA1:14,16; hence thesis by RFUNCT_1:def 11; end; then reconsider g as Function of A,REAL by FUNCT_2:131; for T being DivSequence of A st delta(T) is convergent & lim delta(T)=0 holds lim upper_sum(g,T)-lim lower_sum(g,T)=0 proof let T be DivSequence of A; assume that A10:delta(T) is convergent and A11:lim delta(T)=0; reconsider osc=upper_sum(g,T)-lower_sum(g,T) as Real_Sequence; A12:for r be real number st 0<r ex n st for m st n<=m holds abs(osc.m-0)<r proof let r be real number; assume A13:r>0; ex r1 st r1>0 & r1*vol(A)<r proof now per cases by INTEGRA1:11; suppose A14:vol(A)=0; consider r1 such that A15: r1=1; r1*vol(A)<r by A13,A14; hence thesis by A15; suppose A16:vol(A)>0; then r/vol(A) > 0 by A13,REAL_2:127; then consider r1 being real number such that A17: 0<r1 & r1<r/vol(A) by REAL_1:75; reconsider r1 as Real by XREAL_0:def 1; r1*vol(A)<r by A16,A17,REAL_2:177; hence thesis by A17; end; hence thesis; end; then consider r1 such that A18: r1>0 & r1*vol(A) < r; consider s such that A19: 0<s & for x1,x2 st x1 in A & x2 in A & abs(x1 - x2) < s holds abs(f.x1 - f.x2) < r1 by A2,A18,FCONT_2:def 1; consider n such that A20: for m st n<=m holds abs(delta(T).m-0)<s by A10,A11,A19,SEQ_2:def 7; A21: for m st n<=m holds upper_sum(g,T).m-lower_sum(g,T).m <=r1*vol(A) proof let m; assume A22:n<=m; reconsider D=T.m as Element of divs A; A23: for k st k in dom D holds upper_volume(g,D).k-lower_volume(g,D).k<=r1*upper_volume(chi(A,A),D).k proof let k; assume A24:k in dom D; then A25: divset(D,k) c= A by INTEGRA1:10; reconsider h=g|divset(D,k) as PartFunc of divset(D,k),REAL by PARTFUN1:43; A26: h is total & h is_bounded_on divset(D,k) proof dom g = A by A4,PARTFUN1:def 4; then dom g /\ divset(D,k) = divset(D,k) by A25,XBOOLE_1:28; then dom h = divset(D,k) by FUNCT_1:68; hence h is total by PARTFUN1:def 4; g is_bounded_above_on A & g is_bounded_below_on A by A4,RFUNCT_1:def 11; then rng h is bounded_above & rng h is bounded_below by INTEGRA4:18,19 ; then h is_bounded_above_on divset(D,k) & h is_bounded_below_on divset(D,k) by INTEGRA1:14,16; hence thesis by RFUNCT_1:def 11; end; then reconsider h as Function of divset(D,k),REAL by FUNCT_2:131; for x1,x2 st x1 in divset(D,k) & x2 in divset(D,k) holds abs(h.x1-h.x2)<=r1 proof let x1,x2; assume A27:x1 in divset(D,k) & x2 in divset(D,k); A28: abs(x1-x2)<=delta(T).m proof now per cases; suppose x1 >= x2; then x1-x2>=0 by SQUARE_1:12; then A29: abs(x1-x2)=x1-x2 by ABSVALUE:def 1; x1<=sup divset(D,k) & x2>=inf divset(D,k) by A27,INTEGRA2:1; then abs(x1-x2)<=sup divset(D,k)-inf divset(D,k) by A29,REAL_1:92; then A30: abs(x1-x2)<=vol(divset(D,k)) by INTEGRA1:def 6; A31: k in Seg(len D) by A24,FINSEQ_1:def 3; then A32: upper_volume(chi(A,A),D).k=vol(divset(D,k)) by INTEGRA1:22; k in Seg(len (upper_volume(chi(A,A),D))) by A31,INTEGRA1:def 7; then k in dom(upper_volume(chi(A,A),D)) by FINSEQ_1:def 3; then upper_volume(chi(A,A),D).k in rng(upper_volume(chi(A,A),D)) by FUNCT_1:def 5; then upper_volume(chi(A,A),D).k<=max rng(upper_volume(chi(A,A),D)) by PRE_CIRC:def 1; then upper_volume(chi(A,A),D).k<=delta(T.m) by INTEGRA1:def 19; then abs(x1-x2)<=delta(T.m) by A30,A32,AXIOMS:22; hence thesis by INTEGRA2:def 3; suppose x1<x2; then x1-x2<0 by REAL_2:105; then abs(x1-x2)=-(x1-x2) by ABSVALUE:def 1; then A33: abs(x1-x2)=x2-x1 by XCMPLX_1:143; x2<=sup divset(D,k) & x1>=inf divset(D,k) by A27,INTEGRA2:1; then abs(x1-x2)<=sup divset(D,k)-inf divset(D,k) by A33,REAL_1:92; then A34: abs(x1-x2)<=vol(divset(D,k)) by INTEGRA1:def 6; A35: k in Seg(len D) by A24,FINSEQ_1:def 3; then A36: upper_volume(chi(A,A),D).k=vol(divset(D,k)) by INTEGRA1:22; k in Seg(len (upper_volume(chi(A,A),D))) by A35,INTEGRA1:def 7; then k in dom(upper_volume(chi(A,A),D)) by FINSEQ_1:def 3; then upper_volume(chi(A,A),D).k in rng(upper_volume(chi(A,A),D)) by FUNCT_1:def 5; then upper_volume(chi(A,A),D).k<=max rng(upper_volume(chi(A,A),D)) by PRE_CIRC:def 1; then upper_volume(chi(A,A),D).k<=delta(T.m) by INTEGRA1:def 19; then abs(x1-x2)<=delta(T.m) by A34,A36,AXIOMS:22; hence thesis by INTEGRA2:def 3; end; hence thesis; end; delta(T).m-0>=0 proof A37: delta(T).m = delta(D) by INTEGRA2:def 3 .=max rng(upper_volume(chi(A,A),D)) by INTEGRA1:def 19; A38: k in Seg(len D) by A24,FINSEQ_1:def 3; then upper_volume(chi(A,A),D).k=vol(divset(D,k)) by INTEGRA1:22; then A39: upper_volume(chi(A,A),D).k>=0 by INTEGRA1:11; k in Seg(len(upper_volume(chi(A,A),D))) by A38,INTEGRA1:def 7; then k in dom(upper_volume(chi(A,A),D)) by FINSEQ_1:def 3; then upper_volume(chi(A,A),D).k in rng(upper_volume(chi(A,A),D)) by FUNCT_1:def 5; hence thesis by A37,A39,PRE_CIRC:def 1; end; then A40: abs(x1-x2)<=abs(delta(T).m-0) by A28,ABSVALUE:def 1; abs(delta(T).m-0)<s by A20,A22; then A41: abs(x1-x2)<s by A40,AXIOMS:22; f.x1=h.x1 & f.x2=h.x2 proof A42: x1 in dom h & x2 in dom h by A26,A27,PARTFUN1:def 4; dom h = dom g /\ divset(D,k) by FUNCT_1:68; then A43: dom h c= dom g by XBOOLE_1:17; g.x1=h.x1 & g.x2=h.x2 by A42,FUNCT_1:68; hence thesis by A42,A43,FUNCT_1:68; end; hence thesis by A19,A25,A27,A41; end; then A44: sup rng(g|divset(D,k))-inf rng(g|divset(D,k))<=r1 by INTEGRA4:24; vol(divset(D,k)) >= 0 by INTEGRA1:11; then (sup rng(g|divset(D,k))-inf rng(g|divset(D,k)))*vol(divset(D,k)) <=r1*vol(divset(D,k)) by A44,AXIOMS:25; then A45: sup rng(g|divset(D,k))*vol(divset(D,k)) -inf rng(g|divset(D,k))*vol(divset(D,k))<=r1*vol(divset(D,k)) by XCMPLX_1:40; A46: k in Seg(len D) by A24,FINSEQ_1:def 3; then upper_volume(g,D).k -inf rng(g|divset(D,k))*vol(divset(D,k))<=r1*vol(divset(D,k)) by A45,INTEGRA1:def 7; then upper_volume(g,D).k-lower_volume(g,D).k<=r1*vol(divset(D,k)) by A46,INTEGRA1:def 8; hence thesis by A46,INTEGRA1:22; end; len upper_volume(g,D) = len D by INTEGRA1:def 7; then reconsider UV=upper_volume(g,D) as Element of (len D)-tuples_on REAL by FINSEQ_2:110; len lower_volume(g,D) = len D by INTEGRA1:def 8; then reconsider LV=lower_volume(g,D) as Element of (len D)-tuples_on REAL by FINSEQ_2:110; reconsider OSC=UV-LV as Element of (len D)-tuples_on REAL; len upper_volume(chi(A,A),D) = len D by INTEGRA1:def 7; then reconsider VOL=upper_volume(chi(A,A),D) as Element of (len D)-tuples_on REAL by FINSEQ_2:110; for k st k in Seg len D holds OSC.k<=(r1*VOL).k proof let k; assume k in Seg len D; then A47: k in dom D by FINSEQ_1:def 3; OSC.k = upper_volume(g,D).k-lower_volume(g,D).k by RVSUM_1:48; then OSC.k<=r1*VOL.k by A23,A47; hence thesis by RVSUM_1:67; end; then Sum OSC <= Sum(r1*VOL) by RVSUM_1:112; then Sum OSC <= r1*Sum VOL by RVSUM_1:117; then Sum UV-Sum LV <= r1*Sum VOL by RVSUM_1:120; then upper_sum(g,D)-Sum LV <= r1*Sum VOL by INTEGRA1:def 9; then upper_sum(g,D)-lower_sum(g,D) <= r1*Sum VOL by INTEGRA1:def 10; then upper_sum(g,D)-lower_sum(g,D) <= r1*vol(A) by INTEGRA1:26; then upper_sum(g,T).m-lower_sum(g,D)<=r1*vol(A) by INTEGRA2:def 4; hence thesis by INTEGRA2:def 5; end; for m st n<=m holds abs(osc.m-0)<r proof let m; assume n<=m; then upper_sum(g,T).m-lower_sum(g,T).m <= r1*vol(A) by A21; then A48: upper_sum(g,T).m-lower_sum(g,T).m < r by A18,AXIOMS:22; osc=upper_sum(g,T)+-lower_sum(g,T) by SEQ_1:15; then A49: osc.m=upper_sum(g,T).m+(-lower_sum(g,T)).m by SEQ_1:11 .=upper_sum(g,T).m+-lower_sum(g,T).m by SEQ_1:14 .=upper_sum(g,T).m-lower_sum(g,T).m by XCMPLX_0:def 8; reconsider D=T.m as Element of divs A; upper_sum(g,D)>=lower_sum(g,D) by A4,INTEGRA1:30; then upper_sum(g,T).m>=lower_sum(g,D) by INTEGRA2:def 4; then upper_sum(g,T).m>=lower_sum(g,T).m by INTEGRA2:def 5; then upper_sum(g,T).m-lower_sum(g,T).m >= 0 by SQUARE_1:12; hence thesis by A48,A49,ABSVALUE:def 1; end; hence thesis; end; then osc is convergent by SEQ_2:def 6; then A50:lim osc = 0 by A12,SEQ_2:def 7; upper_sum(g,T) is convergent & lower_sum(g,T) is convergent by A4,A10,A11,INTEGRA4:8,9; hence thesis by A50,SEQ_2:26; end; then g is_integrable_on A by A4,INTEGRA4:12; then consider g being PartFunc of A,REAL such that A51:g=f|A & g is_integrable_on A; f||A = g by A51,Def1; hence thesis by A51,Def2; end; theorem Th12: for f being PartFunc of REAL,REAL, D being Element of divs A st A c= X & f is_differentiable_on X & f`|X is_bounded_on A holds lower_sum((f`|X)||A,D) <= f.(sup A)-f.(inf A) & f.(sup A)-f.(inf A)<=upper_sum((f`|X)||A,D) proof let f be PartFunc of REAL,REAL; let D be Element of divs A; assume that A1:A c= X and A2:f is_differentiable_on X and A3:f`|X is_bounded_on A; A4:for k st k in dom D holds ex r st r in divset(D,k) & f.(sup divset(D,k))-f.(inf divset(D,k))=diff(f,r)*vol(divset(D,k)) proof let k; assume A5:k in dom D; now per cases; suppose A6:inf divset(D,k)=sup divset(D,k); then sup divset(D,k)-inf divset(D,k)=0 by XCMPLX_1:14; then A7: vol(divset(D,k))=0 by INTEGRA1:def 6; consider r such that A8: r = sup divset(D,k); A9: r in divset(D,k) proof consider a,b such that A10: a<=b & a=inf divset(D,k) & b=sup divset(D,k) by INTEGRA1:4; thus thesis by A8,A10,INTEGRA2:1; end; A11: diff(f,r)*vol(divset(D,k)) = 0 by A7; f.(sup divset(D,k))-f.(inf divset(D,k)) = 0 by A6,XCMPLX_1:14; hence thesis by A9,A11; suppose A12:inf divset(D,k)<>sup divset(D,k); f is_continuous_on X by A2,FDIFF_1:33; then A13: f is_continuous_on A by A1,FCONT_1:17; A14: divset(D,k) c= A by A5,INTEGRA1:10; then A15: f is_continuous_on divset(D,k) by A13,FCONT_1:17; consider r1,r2 such that A16: r1<=r2 & r1=inf divset(D,k) & r2=sup divset(D,k) by INTEGRA1:4; A17: inf divset(D,k) < sup divset(D,k) by A12,A16,REAL_1:def 5; A18: divset(D,k)=[.inf divset(D,k),sup divset(D,k).] by INTEGRA1:5; A19: f is_continuous_on [.inf divset(D,k),sup divset(D,k).] by A15,INTEGRA1:5; A20: ].inf divset(D,k),sup divset(D,k).[ c= divset(D,k) by A18,RCOMP_1:15; then ].inf divset(D,k),sup divset(D,k).[ c= A by A14,XBOOLE_1:1; then ].inf divset(D,k),sup divset(D,k).[ c= X by A1,XBOOLE_1:1; then f is_differentiable_on ].inf divset(D,k),sup divset(D,k).[ by A2,FDIFF_1:34; then consider r such that A21: r in ].inf divset(D,k),sup divset(D,k).[ & diff(f,r)=(f.(sup divset(D,k))-f.(inf divset(D,k)))/ (sup divset(D,k)-inf divset(D,k)) by A17,A19,ROLLE:3; sup divset(D,k)-inf divset(D,k) > 0 by A17,SQUARE_1:11; then diff(f,r)*(sup divset(D,k)-inf divset(D,k)) =f.(sup divset(D,k))-f.(inf divset(D,k)) by A21,XCMPLX_1:88; then diff(f,r)*vol(divset(D,k)) =f.(sup divset(D,k))-f.(inf divset(D,k)) by INTEGRA1:def 6; hence thesis by A20,A21; end; hence thesis; end; A22:for k,r st k in dom D & r in divset(D,k) holds diff(f,r) in rng (((f`|X)||A)|divset(D,k)) proof let k,r; assume that A23:k in dom D and A24:r in divset(D,k); A25:divset(D,k) c= A by A23,INTEGRA1:10; then divset(D,k) c= X by A1,XBOOLE_1:1; then A26:(f`|X).r = diff(f,r) by A2,A24,FDIFF_1:def 8; A27:dom((f`|X)|A) = dom(f`|X) /\ A by FUNCT_1:68 .= X /\ A by A2,FDIFF_1:def 8 .= A by A1,XBOOLE_1:28; then A28:diff(f,r)=((f`|X)|A).r by A24,A25,A26,FUNCT_1:68 .= ((f`|X)||A).r by Def1; A29:dom(((f`|X)||A)|divset(D,k))=dom((f`|X)||A) /\ divset(D,k) by FUNCT_1:68 .= A /\ divset(D,k) by A27,Def1 .=divset(D,k) by A25,XBOOLE_1:28; then ((f`|X)||A)|divset(D,k).r in rng(((f`|X)||A)|divset(D,k)) by A24,FUNCT_1:def 5; hence thesis by A24,A28,A29,FUNCT_1:68; end; A30:for k st k in dom D holds rng(((f`|X)||A)|divset(D,k)) is bounded proof let k; assume k in dom D; dom(f`|X) = X by A2,FDIFF_1:def 8; then reconsider g=f`|X as PartFunc of X,REAL by PARTFUN1:28; A31:f`|X is_bounded_above_on A & f`|X is_bounded_below_on A by A3,RFUNCT_1:def 11; then consider r1 be real number such that A32:for x st x in A /\ dom(f`|X) holds (f`|X).x <= r1 by RFUNCT_1:def 9; consider r2 be real number such that A33:for x st x in A /\ dom(f`|X) holds (f`|X).x >= r2 by A31,RFUNCT_1:def 10; A34:dom((f`|X)|A) =dom(f`|X) /\ A by FUNCT_1:68; A35:for x st x in A /\ dom g holds g.x=((f`|X)||A).x proof let x; assume x in A /\ dom g; then (f`|X).x=((f`|X)|A).x by A34,FUNCT_1:68 .=((f`|X)||A).x by Def1; hence thesis; end; for x being Element of A st x in A /\ dom((f`|X)||A) holds ((f`|X)||A).x<=r1 proof let x be Element of A; assume x in A /\ dom((f`|X)||A); then A36: x in A /\ (A /\ dom(f`|X)) by A34,Def1; A37: A /\ (A /\ dom(f`|X)) = (A /\ A) /\ dom(f`|X) by XBOOLE_1:16 .= A /\ dom(f`|X); reconsider y=g.x as Real; y <= r1 & g.x=((f`|X)||A).x by A32,A35,A36,A37; hence thesis; end; then ((f`|X)||A) is_bounded_above_on A by RFUNCT_1:def 9; then A38:rng(((f`|X)||A)|divset(D,k)) is bounded_above by INTEGRA4:18; for x being Element of A st x in A /\ dom((f`|X)||A) holds ((f`|X)||A).x>=r2 proof let x be Element of A; assume x in A /\ dom((f`|X)||A); then A39: x in A /\ (A /\ dom(f`|X)) by A34,Def1; A40: A /\ (A /\ dom(f`|X)) = (A /\ A) /\ dom(f`|X) by XBOOLE_1:16 .= A /\ dom(f`|X); reconsider y=g.x as Real; y >= r2 & g.x=((f`|X)||A).x by A33,A35,A39,A40; hence thesis; end; then ((f`|X)||A) is_bounded_below_on A by RFUNCT_1:def 10; then rng(((f`|X)||A)|divset(D,k)) is bounded_below by INTEGRA4:19; hence thesis by A38,SEQ_4:def 3; end; deffunc F(Nat)=f.(sup divset(D,$1))-f.(inf divset(D,$1)); consider p being FinSequence of REAL such that A41:len p = len D & for i st i in Seg(len D) holds p.i = F(i) from SeqLambdaD; len D - 1 in NAT proof len D <> 0 by FINSEQ_1:25; then len D >= 1 by RLVECT_1:99; then consider j being Nat such that A42: len D = 1 + j by NAT_1:28; j = len D - 1 by A42,XCMPLX_1:26; hence thesis; end; then reconsider k1 =len D - 1 as Nat; deffunc F(Nat)=f.(sup divset(D,$1)); consider s1 being FinSequence of REAL such that A43:len s1 = k1 & for i st i in Seg k1 holds s1.i = F(i) from SeqLambdaD; deffunc G(Nat)=f.(inf divset(D,$1+1)); consider s2 being FinSequence of REAL such that A44:len s2 = k1 & for i st i in Seg k1 holds s2.i = G(i) from SeqLambdaD; A45:for i st i in Seg k1 holds sup divset(D,i)=inf divset(D,i+1) proof let i; assume A46:i in Seg k1; A47: k1 + 1 = len D by XCMPLX_1:27; then k1 <= len D by NAT_1:29; then Seg k1 c= Seg len D by FINSEQ_1:7; then i in Seg (len D) by A46; then A48: i in dom D by FINSEQ_1:def 3; A49: i+1 in dom D proof 1 <= i & i <= k1 by A46,FINSEQ_1:3; then 1+0 <= i+1 & i+1 <= k1+1 by REAL_1:55; then i+1 in Seg(len D) by A47,FINSEQ_1:3; hence thesis by FINSEQ_1:def 3; end; A50: i+1-1=i proof i+1-1=i+(1-1) by XCMPLX_1:29; hence thesis; end; now per cases; suppose A51:i=1; then sup divset(D,i) = D.i by A48,INTEGRA1:def 5; hence sup divset(D,i) = inf divset(D,i+1) by A49,A50,A51,INTEGRA1:def 5 ; suppose A52:i<>1; i >= 1 by A46,FINSEQ_1:3; then i+1>=1+1 by AXIOMS:24; then A53: i+1 <> 1; sup divset(D,i) = D.i by A48,A52,INTEGRA1:def 5; hence thesis by A49,A50,A53,INTEGRA1:def 5; end; hence thesis; end; A54:s1=s2 proof for i st i in Seg k1 holds s1.i = s2.i proof let i; assume A55:i in Seg k1; then s1.i=f.(sup divset(D,i)) by A43; then s1.i=f.(inf divset(D,i+1)) by A45,A55; hence thesis by A44,A55; end; hence thesis by A43,A44,FINSEQ_2:10; end; A56:len (s1^<*f.(sup A)*>) = len (<*f.(inf A)*>^s2) & len (s1^<*f.(sup A)*>) = len p & (for i st i in dom (s1^<*f.(sup A)*>) holds p.i=((s1^<*f.(sup A)*>)/.i) - ((<*f.(inf A)*>^s2)/.i)) proof dom(<*f.(sup A)*>)=Seg 1 by FINSEQ_1:def 8; then A57:len(<*f.(sup A)*>)=1 by FINSEQ_1:def 3; dom(<*f.(inf A)*>)=Seg 1 by FINSEQ_1:def 8; then A58:len(<*f.(inf A)*>)=1 by FINSEQ_1:def 3; A59:len(s1^<*f.(sup A)*>)=k1+1 by A43,A57,FINSEQ_1:35; hence A60:len (s1^<*f.(sup A)*>) = len (<*f.(inf A)*>^s2) by A44,A58,FINSEQ_1:35; thus len (s1^<*f.(sup A)*>) = len p by A41,A59,XCMPLX_1:27; let i; assume A61:i in dom (s1^<*f.(sup A)*>); A62:i in dom (<*f.(inf A)*>^s2) proof i in Seg(len (s1^<*f.(sup A)*>)) by A61,FINSEQ_1:def 3; hence thesis by A60,FINSEQ_1:def 3; end; A63:len D = 1 or len D >= 2 proof len D <> 0 by FINSEQ_1:25; then len D = 1 or len D is non trivial by NAT_2:def 1; hence thesis by NAT_2:31; end; A64:(s1^<*f.(sup A)*>)/.i=(s1^<*f.(sup A)*>).i by A61,FINSEQ_4:def 4; A65:(<*f.(inf A)*>^s2)/.i=(<*f.(inf A)*>^s2).i by A62,FINSEQ_4:def 4; now per cases by A63; suppose A66:len D = 1; then A67: i in Seg 1 by A59,A61,FINSEQ_1:def 3; then A68: i = 1 by FINSEQ_1:4,TARSKI:def 1; A69: i in Seg(len D) & i in dom D by A66,A67,FINSEQ_1:def 3; s1={} by A43,A66,FINSEQ_1:25; then s1^<*f.(sup A)*> = <*f.(sup A)*> by FINSEQ_1:47; then A70: (s1^<*f.(sup A)*>)/.i=f.(sup A) by A64,A68,FINSEQ_1:def 8; s2={} by A44,A66,FINSEQ_1:25; then <*f.(inf A)*>^s2 = <*f.(inf A)*> by FINSEQ_1:47; then A71: (<*f.(inf A)*>^s2)/.i=f.(inf A) by A65,A68,FINSEQ_1:def 8; D.i=sup A by A66,A68,INTEGRA1:def 2; then A72: sup divset(D,i)=sup A by A68,A69,INTEGRA1:def 5; p.i=f.(sup divset(D,i))-f.(inf divset(D,i)) by A41,A66,A67; hence thesis by A68,A69,A70,A71,A72,INTEGRA1:def 5; suppose A73:len D >= 2; A74: k1>=1 proof 1 = 2 - 1; hence thesis by A73,REAL_1:49; end; now per cases; suppose A75:i=1; A76: i in Seg(len D) & i in dom D proof A77: Seg 2 c= Seg len D by A73,FINSEQ_1:7; i in Seg 2 by A75,FINSEQ_1:4,TARSKI:def 2; hence i in Seg(len D) by A77; hence thesis by FINSEQ_1:def 3; end; A78: i in Seg 1 & i in Seg k1 & i in dom s1 proof A79: Seg 1 c= Seg k1 by A74,FINSEQ_1:7; thus i in Seg 1 by A75,FINSEQ_1:4,TARSKI:def 1; hence i in Seg k1 by A79; hence thesis by A43,FINSEQ_1:def 3; end; then (s1^<*f.(sup A)*>).i=s1.i by FINSEQ_1:def 7; then A80: (s1^<*f.(sup A)*>).i=f.(sup divset(D,i)) by A43,A78; A81: (<*f.(inf A)*>^s2).i = f.(inf A) proof i in dom <*f.(inf A)*> by A78,FINSEQ_1:def 8; then (<*f.(inf A)*>^s2).i=<*f.(inf A)*>.i by FINSEQ_1:def 7; hence thesis by A75,FINSEQ_1:def 8; end; p.i=f.(sup divset(D,i))-f.(inf divset(D,i)) by A41,A76; hence thesis by A64,A65,A75,A76,A80,A81,INTEGRA1:def 5; suppose A82:i=len D; A83: i in Seg(len D) & i in dom D proof i<>0 by A73,A82; hence i in Seg(len D) by A82,FINSEQ_1:5; hence thesis by FINSEQ_1:def 3; end; A84: i-len s1 = 1 & i-len s1 in dom <*f.(sup A)*> & i=i-len s1 + len s1 & i<>1 proof i-len s1 = i-i+1 by A43,A82,XCMPLX_1:37; then A85: i-len s1 = 0+1 by XCMPLX_1:14; hence i-len s1 = 1; i-len s1 in Seg 1 by A85,FINSEQ_1:4,TARSKI:def 1; hence i-len s1 in dom <*f.(sup A)*> by FINSEQ_1:def 8; i = i - 0; then i = i - (len s1 - len s1) by XCMPLX_1:14; hence i = i - len s1 + len s1 by XCMPLX_1:37; thus thesis by A73,A82; end; then (s1^<*f.(sup A)*>).i=<*f.(sup A)*>.(i-len s1) by FINSEQ_1:def 7; then A86: (s1^<*f.(sup A)*>)/.i=f.(sup A) by A64,A84,FINSEQ_1:def 8; A87: i-len <*f.(inf A)*>=i-1 & len <*f.(inf A)*> + (i - len <*f.(inf A)*>) = i & i-1 in Seg k1 & i-len <*f.(inf A)*> in dom s2 & i-1+1=i proof thus A88:i-len <*f.(inf A)*> = i-1 by FINSEQ_1:57; then len <*f.(inf A)*>+(i-len <*f.(inf A)*>)=1+(i-1) by FINSEQ_1:57 .=1+-(1-i) by XCMPLX_1:143 .=1-(1-i) by XCMPLX_0:def 8 .=1-1+i by XCMPLX_1:37 .=0+i; hence len <*f.(inf A)*>+(i-len <*f.(inf A)*>)=i; i >= 1+1 & i-1 = k1 by A73,A82; then i-1<>0 & i-1=k1 by REAL_1:84; hence i-1 in Seg k1 by FINSEQ_1:5; hence i-len <*f.(inf A)*> in dom s2 by A44,A88,FINSEQ_1:def 3; i-(1-1)=i; hence thesis by XCMPLX_1:37; end; A89: (<*f.(inf A)*>^s2).i = f.(D.(i-1)) proof (<*f.(inf A)*>^s2).i = s2.(i-len <*f.(inf A)*>) by A87,FINSEQ_1:def 7; then (<*f.(inf A)*>^s2).i = f.(inf divset(D,i)) by A44,A87; hence thesis by A83,A84,INTEGRA1:def 5; end; p.i=f.(sup divset(D,i))-f.(inf divset(D,i)) by A41,A83; then p.i=f.(sup divset(D,i))-f.(D.(i-1)) by A83,A84,INTEGRA1:def 5; then p.i=f.(D.i)-f.(D.(i-1)) by A83,A84,INTEGRA1:def 5; hence thesis by A65,A82,A86,A89,INTEGRA1:def 2; suppose A90:i<>1 & i<>len D; A91: i in Seg(len D) & i in dom D proof len s1+len <*f.(sup A)*> = k1+1 by A43,FINSEQ_1:56; then A92: len s1+len <*f.(sup A)*> = len D by XCMPLX_1:27; hence i in Seg(len D) by A61,FINSEQ_1:def 7; dom (s1^<*f.(sup A)*>) = Seg(len D) by A92,FINSEQ_1:def 7; hence thesis by A61,FINSEQ_1:def 3; end; A93: i in dom s1 & i in Seg k1 & i-1 in Seg k1 & i-1+1=i & i-len<*f.(inf A)*> in dom s2 proof A94: 1 <= i & i <= len D by A91,FINSEQ_1:3; then 1 <= i & i < len D - (1-1) by A90,REAL_1:def 5; then A95: 1 <= i & i < k1 + 1 by XCMPLX_1:37; then A96: 1 <= i & i <= k1 by NAT_1:38; then i in Seg(len s1) by A43,FINSEQ_1:3; hence i in dom s1 by FINSEQ_1:def 3; thus i in Seg k1 by A96,FINSEQ_1:3; consider j being Nat such that A97: i = 1 + j by A94,NAT_1:28; A98: j = i - 1 by A97,XCMPLX_1:26; i <> 0 & i <> 1 by A90,A91,FINSEQ_1:3; then i is non trivial by NAT_2:def 1; then i >= 2 & i <= k1 by A95,NAT_1:38,NAT_2:31; then i >= 1+1 & i-1 <= k1-1 by REAL_1:49; then i-1 >= 1 & i-1+0 <= k1-1+1 by REAL_1:55,84; then i-1 >= 1 & i-1 <= k1-(1-1) by XCMPLX_1:37; hence i-1 in Seg k1 by A98,FINSEQ_1:3; then A99: i-len<*f.(inf A)*> in Seg(len s2) by A44,FINSEQ_1:56; i-(1-1)=i; hence i-1+1=i by XCMPLX_1:37; thus thesis by A99,FINSEQ_1:def 3; end; A100: (s1^<*f.(sup A)*>).i=f.(D.i) proof (s1^<*f.(sup A)*>).i = s1.i by A93,FINSEQ_1:def 7; then (s1^<*f.(sup A)*>).i = f.(sup divset(D,i)) by A43,A93; hence thesis by A90,A91,INTEGRA1:def 5; end; A101: (<*f.(inf A)*>^s2).i = f.(D.(i-1)) proof A102: i-len<*f.(inf A)*> in Seg(len s2) by A93,FINSEQ_1:def 3; i-len<*f.(inf A)*> is Nat by A93; then 1 <= i-len<*f.(inf A)*> & i-len<*f.(inf A)*><=len s2 by A102,FINSEQ_1:3; then len<*f.(inf A)*>+1<=i & i<=len<*f.(inf A)*>+len s2 by REAL_1:84,86; then (<*f.(inf A)*>^s2).i=s2.(i-len<*f.(inf A)*>) by FINSEQ_1:36; then (<*f.(inf A)*>^s2).i=s2.(i-1) by FINSEQ_1:56; then (<*f.(inf A)*>^s2).i= f.(inf divset(D,i)) by A44,A93; hence thesis by A90,A91,INTEGRA1:def 5; end; p.i=f.(sup divset(D,i))-f.(inf divset(D,i)) by A41,A91; then p.i=f.(sup divset(D,i))-f.(D.(i-1)) by A90,A91,INTEGRA1:def 5; hence thesis by A64,A65,A90,A91,A100,A101,INTEGRA1:def 5; end; hence thesis; end; hence thesis; end; A103:Sum p=Sum s1 + f.(sup A) - f.(inf A) - Sum s2 proof Sum p=Sum(s1^<*f.(sup A)*>)-Sum(<*f.(inf A)*>^s2) by A56,INTEGRA1:24; then Sum p=Sum s1 + f.(sup A) -Sum(<*f.(inf A)*>^s2) by RVSUM_1:104; then Sum p=Sum s1 + f.(sup A) - (f.(inf A) + Sum s2) by RVSUM_1:106; hence thesis by XCMPLX_1:36; end; A104:Sum p=f.(sup A) - f.(inf A) proof Sum p=f.(sup A) + Sum s1 - (Sum s2 + f.(inf A)) by A103,XCMPLX_1:36; then Sum p=f.(sup A) + Sum s1 - Sum s2 - f.(inf A) by XCMPLX_1:36; then Sum p=f.(sup A) + (Sum s1-Sum s2) - f.(inf A) by XCMPLX_1:29; then Sum p=0 + f.(sup A) - f.(inf A) by A54,XCMPLX_1:14; hence thesis; end; A105:lower_sum((f`|X)||A,D) <= f.(sup A)-f.(inf A) proof A106:for k st k in dom D holds f.(sup divset(D,k))-f.(inf divset(D,k))>=(lower_volume((f`|X)||A,D)).k proof let k; assume A107:k in dom D; then consider r such that A108: r in divset(D,k) & f.(sup divset(D,k))-f.(inf divset(D,k))=diff(f,r)*vol(divset(D,k)) by A4; A109: diff(f,r) in rng(((f`|X)||A)|divset(D,k)) by A22,A107,A108; rng(((f`|X)||A)|divset(D,k)) is bounded by A30,A107; then rng(((f`|X)||A)|divset(D,k)) is bounded_above & rng(((f`|X)||A)|divset(D,k)) is bounded_below by SEQ_4:def 3; then A110: diff(f,r) >= inf rng(((f`|X)||A)|divset(D,k)) by A109,SEQ_4:def 5; A111: vol(divset(D,k)) >= 0 by INTEGRA1:11; k in Seg len D by A107,FINSEQ_1:def 3; then (inf rng(((f`|X)||A)|divset(D,k)))*vol(divset(D,k)) =(lower_volume((f`|X)||A,D)).k by INTEGRA1:def 8; hence thesis by A108,A110,A111,AXIOMS:25; end; f.(sup A)-f.(inf A)>=lower_sum((f`|X)||A,D) proof A112: for k st k in Seg len D holds p.k >= (lower_volume((f`|X)||A,D)).k proof let k; assume A113:k in Seg len D; then A114: f.(sup divset(D,k))-f.(inf divset(D,k))=p.k by A41; k in dom D by A113,FINSEQ_1:def 3; hence thesis by A106,A114; end; reconsider p as Element of (len D)-tuples_on REAL by A41,FINSEQ_2:110; len lower_volume((f`|X)||A,D)=len D by INTEGRA1:def 8; then reconsider q=(lower_volume((f`|X)||A,D)) as Element of (len D)-tuples_on REAL by FINSEQ_2:110; Sum q<=Sum p by A112,RVSUM_1:112; hence thesis by A104,INTEGRA1:def 10; end; hence thesis; end; f.(sup A)-f.(inf A) <= upper_sum((f`|X)||A,D) proof A115:for k st k in dom D holds f.(sup divset(D,k))-f.(inf divset(D,k))<=(upper_volume((f`|X)||A,D)).k proof let k; assume A116:k in dom D; then consider r such that A117: r in divset(D,k) & f.(sup divset(D,k))-f.(inf divset(D,k))=diff(f,r)*vol(divset(D,k)) by A4; A118: diff(f,r) in rng(((f`|X)||A)|divset(D,k)) by A22,A116,A117; rng(((f`|X)||A)|divset(D,k)) is bounded by A30,A116; then rng(((f`|X)||A)|divset(D,k)) is bounded_above & rng(((f`|X)||A)|divset(D,k)) is bounded_below by SEQ_4:def 3; then A119: diff(f,r) <= sup rng(((f`|X)||A)|divset(D,k)) by A118,SEQ_4:def 4; vol(divset(D,k)) >= 0 by INTEGRA1:11; then A120: diff(f,r)*vol(divset(D,k)) <=(sup rng(((f`|X)||A)|divset(D,k)))*vol(divset(D,k)) by A119,AXIOMS:25; k in Seg len D by A116,FINSEQ_1:def 3; hence thesis by A117,A120,INTEGRA1:def 7; end; f.(sup A)-f.(inf A)<=upper_sum((f`|X)||A,D) proof A121: for k st k in Seg len D holds p.k <= (upper_volume((f`|X)||A,D)).k proof let k; assume A122:k in Seg len D; then A123: f.(sup divset(D,k))-f.(inf divset(D,k))=p.k by A41; k in dom D by A122,FINSEQ_1:def 3; hence thesis by A115,A123; end; reconsider p as Element of (len D)-tuples_on REAL by A41,FINSEQ_2:110; len upper_volume((f`|X)||A,D)=len D by INTEGRA1:def 7; then reconsider q=(upper_volume((f`|X)||A,D)) as Element of (len D)-tuples_on REAL by FINSEQ_2:110; Sum p<=Sum q by A121,RVSUM_1:112; hence thesis by A104,INTEGRA1:def 9; end; hence thesis; end; hence thesis by A105; end; theorem Th13: for f being PartFunc of REAL,REAL st A c= X & f is_differentiable_on X & f`|X is_integrable_on A & f`|X is_bounded_on A holds integral(f`|X,A) = f.(sup A)-f.(inf A) proof let f be PartFunc of REAL,REAL; assume that A1:A c= X and A2:f is_differentiable_on X and A3:f`|X is_integrable_on A and A4:f`|X is_bounded_on A; (f`|X)||A is_integrable_on A by A3,Def2; then A5:(f`|X)||A is_upper_integrable_on A & (f`|X)||A is_lower_integrable_on A & upper_integral((f`|X)||A)=lower_integral((f`|X)||A) by INTEGRA1:def 17; dom upper_sum_set((f`|X)||A) = divs A by INTEGRA1:def 11; then A6:rng upper_sum_set((f`|X)||A) is non empty by RELAT_1:65; dom lower_sum_set((f`|X)||A) = divs A by INTEGRA1:def 12; then A7:rng lower_sum_set((f`|X)||A) is non empty by RELAT_1:65; for r be real number st r in rng lower_sum_set((f`|X)||A) holds r <= f.(sup A)-f.(inf A) proof let r be real number; assume r in rng lower_sum_set((f`|X)||A); then consider D being Element of divs A such that A8:D in dom lower_sum_set((f`|X)||A) & r=(lower_sum_set((f`|X)||A)).D by PARTFUN1:26; r=lower_sum((f`|X)||A,D) by A8,INTEGRA1:def 12; hence thesis by A1,A2,A4,Th12; end; then sup rng lower_sum_set((f`|X)||A) <= f.(sup A)-f.(inf A) by A7,PSCOMP_1:10; then A9:upper_integral((f`|X)||A) <= f.(sup A)-f.(inf A) by A5,INTEGRA1:def 16; for r be real number st r in rng upper_sum_set((f`|X)||A) holds f.(sup A)-f.(inf A) <= r proof let r be real number; assume r in rng upper_sum_set((f`|X)||A); then consider D being Element of divs A such that A10:D in dom upper_sum_set((f`|X)||A) & r=(upper_sum_set((f`|X)||A)).D by PARTFUN1:26; r=upper_sum((f`|X)||A,D) by A10,INTEGRA1:def 11; hence thesis by A1,A2,A4,Th12; end; then f.(sup A)-f.(inf A) <= inf rng upper_sum_set((f`|X)||A) by A6,PSCOMP_1:8; then upper_integral((f`|X)||A) >= f.(sup A)-f.(inf A) by INTEGRA1:def 15; then upper_integral((f`|X)||A) = f.(sup A)-f.(inf A) by A9,AXIOMS:21; then integral((f`|X)||A) = f.(sup A)-f.(inf A) by INTEGRA1:def 18; hence thesis by Def3; end; theorem Th14: for f being PartFunc of REAL,REAL st f is_non_decreasing_on A & A c= dom f holds rng (f|A) is bounded proof let f be PartFunc of REAL,REAL; assume that A1:f is_non_decreasing_on A and A2:A c= dom f; A3:dom(f|A)=dom f /\ A by FUNCT_1:68 .= A by A2,XBOOLE_1:28; for y be real number st y in rng (f|A) holds y <= f.(sup A) proof let y be real number; assume y in rng (f|A); then consider x such that A4: x in dom(f|A) & y=(f|A).x by PARTFUN1:26; A5: y=f.x by A4,FUNCT_1:68; A6: x <= sup A by A3,A4,INTEGRA2:1; inf A <= sup A by SEQ_4:24; then sup A in dom(f|A) by A3,INTEGRA2:1; then x in dom f /\ A & sup A in dom f /\ A by A4,FUNCT_1:68; hence thesis by A1,A5,A6,RFUNCT_2:48; end; then A7:rng(f|A) is bounded_above by SEQ_4:def 1; for y be real number st y in rng (f|A) holds y >= f.(inf A) proof let y be real number; assume y in rng (f|A); then consider x such that A8: x in dom(f|A) & y=(f|A).x by PARTFUN1:26; A9:y=f.x by A8,FUNCT_1:68; A10:x >= inf A by A3,A8,INTEGRA2:1; inf A <= sup A by SEQ_4:24; then inf A in dom(f|A) by A3,INTEGRA2:1; then x in dom f /\ A & inf A in dom f /\ A by A8,FUNCT_1:68; hence thesis by A1,A9,A10,RFUNCT_2:48; end; then rng(f|A) is bounded_below by SEQ_4:def 2; hence thesis by A7,SEQ_4:def 3; end; theorem Th15: for f being PartFunc of REAL,REAL st f is_non_decreasing_on A & A c= dom f holds inf rng (f|A) = f.(inf A) & sup rng (f|A) = f.(sup A) proof let f be PartFunc of REAL,REAL; assume that A1:f is_non_decreasing_on A and A2:A c= dom f; A3:dom(f|A) = dom f /\ A by FUNCT_1:68 .= A by A2,XBOOLE_1:28; then A4:rng(f|A) <> {} by RELAT_1:65; inf A <= sup A by SEQ_4:24; then A5:sup A in dom(f|A) & inf A in dom(f|A) by A3,INTEGRA2:1; then A6:sup A in dom f /\ A & inf A in dom f /\ A by FUNCT_1:68; A7:for y be real number st y in rng(f|A) holds y >= f.(inf A) proof let y be real number; assume y in rng (f|A); then consider x such that A8: x in dom (f|A) & y=(f|A).x by PARTFUN1:26; A9:x in dom f /\ A by A8,FUNCT_1:68; inf A <= x by A3,A8,INTEGRA2:1; then f.(inf A) <= f.x by A1,A6,A9,RFUNCT_2:48; hence thesis by A8,FUNCT_1:68; end; for a be real number st for x be real number st x in rng(f|A) holds x>=a holds f.(inf A)>=a proof let a be real number; assume A10:for x be real number st x in rng(f|A) holds x>=a; A11:f.(inf A) = (f|A).(inf A) by A5,FUNCT_1:68; (f|A).(inf A) in rng(f|A) by A5,FUNCT_1:def 5; hence thesis by A10,A11; end; hence inf rng(f|A)=f.(inf A) by A4,A7,PSCOMP_1:9; A12:for x be real number st x in rng(f|A) holds x <= f.(sup A) proof let y be real number; assume y in rng (f|A); then consider x such that A13:x in dom (f|A) & y=(f|A).x by PARTFUN1:26; A14:x in dom f /\ A by A13,FUNCT_1:68; sup A >= x by A3,A13,INTEGRA2:1; then f.(sup A) >= f.x by A1,A6,A14,RFUNCT_2:48; hence thesis by A13,FUNCT_1:68; end; for a be real number st for x be real number st x in rng(f|A) holds x<=a holds f.(sup A)<=a proof let a be real number; assume A15:for x be real number st x in rng(f|A) holds x<=a; A16:f.(sup A) = (f|A).(sup A) by A5,FUNCT_1:68; (f|A).(sup A) in rng(f|A) by A5,FUNCT_1:def 5; hence thesis by A15,A16; end; hence thesis by A4,A12,PSCOMP_1:11; end; Lm1: for f being PartFunc of REAL,REAL st f is_non_decreasing_on A & A c= dom f holds f is_integrable_on A proof let f be PartFunc of REAL,REAL; assume that A1:f is_non_decreasing_on A and A2:A c= dom f; A3:for D being Element of divs A, k st k in dom D holds 0 <= (upper_volume(f||A,D)).k-(lower_volume(f||A,D)).k & (upper_volume(f||A,D)).k-(lower_volume(f||A,D)).k <= (f.(sup divset(D,k))-f.(inf divset(D,k)))*delta(D) proof let D be Element of divs A; let k; assume A4:k in dom D; then A5: divset(D,k) c= A by INTEGRA1:10; then A6: f is_non_decreasing_on divset(D,k) by A1,RFUNCT_2:62; divset(D,k) c= dom f by A2,A5,XBOOLE_1:1; then A7: inf rng (f|divset(D,k)) = f.(inf divset(D,k)) & sup rng (f|divset(D,k)) = f.(sup divset(D,k)) by A6,Th15; k in Seg len D by A4,FINSEQ_1:def 3; then A8: (upper_volume(f||A,D)).k=(sup (rng((f||A)|divset(D,k))))*vol(divset(D, k)) & (lower_volume(f||A,D)).k=(inf (rng((f||A)|divset(D,k))))*vol(divset(D,k)) by INTEGRA1:def 7,def 8; A9:rng (f|divset(D,k))=rng ((f||A)|divset(D,k)) proof f||A = f|A by Def1; hence thesis by A5,FUNCT_1:82; end; then A10: (upper_volume(f||A,D)).k-(lower_volume(f||A,D)).k =(f.(sup divset(D,k))-f.(inf divset(D,k)))*vol(divset(D,k)) by A7,A8,XCMPLX_1:40; A11:divset(D,k) c= dom f by A2,A5,XBOOLE_1:1; dom(f|divset(D,k)) = dom f /\ divset(D,k) by FUNCT_1:68 .= divset(D,k) by A11,XBOOLE_1:28; then A12: rng(f|divset(D,k)) <> {} by RELAT_1:65; A13:rng(f|A) is bounded by A1,A2,Th14; rng(f|divset(D,k)) = rng((f|A)|divset(D,k)) by A9,Def1; then rng(f|divset(D,k)) c= rng(f|A) by FUNCT_1:76; then rng(f|divset(D,k)) is bounded by A13,RCOMP_1:5; then inf rng (f|divset(D,k)) <= sup rng (f|divset(D,k)) by A12,SEQ_4:24; then A14:f.(sup divset(D,k)) - f.(inf divset(D,k)) >= 0 by A7,SQUARE_1:12; vol(divset(D,k)) >= 0 by INTEGRA1:11; then 0*vol(divset(D,k)) <= (f.(sup divset(D,k)) - f.(inf divset(D,k)))*vol(divset(D,k)) by A14,AXIOMS:25; hence 0<=(upper_volume(f||A,D)).k-(lower_volume(f||A,D)).k by A7,A8,A9,XCMPLX_1:40; vol(divset(D,k)) <= delta(D) proof A15: k in Seg len D by A4,FINSEQ_1:def 3; then A16: vol(divset(D,k))=upper_volume(chi(A,A),D).k by INTEGRA1:22; k in Seg len upper_volume(chi(A,A),D) by A15,INTEGRA1:def 7; then k in dom upper_volume(chi(A,A),D) by FINSEQ_1:def 3; then vol(divset(D,k)) in rng upper_volume(chi(A,A),D) by A16,FUNCT_1:def 5 ; then vol(divset(D,k)) <= max rng upper_volume(chi(A,A),D) by PRE_CIRC:def 1; hence thesis by INTEGRA1:def 19; end; hence thesis by A10,A14,AXIOMS:25; end; A17:for D being Element of divs A holds upper_sum(f||A,D)-lower_sum(f||A,D) <= delta(D)*(f.(sup A)-f.(inf A)) & upper_sum(f||A,D)-lower_sum(f||A,D) >= 0 proof let D be Element of divs A; len upper_volume(f||A,D) = len D & len lower_volume(f||A,D) = len D by INTEGRA1:def 7,def 8; then A18:Sum(upper_volume(f||A,D)-lower_volume(f||A,D)) =Sum upper_volume(f||A,D)-Sum lower_volume(f||A,D) by Th2 .=upper_sum(f||A,D)-Sum lower_volume(f||A,D) by INTEGRA1:def 9 .=upper_sum(f||A,D)-lower_sum(f||A,D) by INTEGRA1:def 10; A19:len D - 1 in NAT proof len D <> 0 by FINSEQ_1:25; then len D >= 1 by RLVECT_1:99; then consider j being Nat such that A20: len D = 1 + j by NAT_1:28; j = len D - 1 by A20,XCMPLX_1:26; hence thesis; end; deffunc F(Nat)=f.(sup divset(D,$1)); consider F1 being FinSequence of REAL such that A21:len F1 = len D & for i st i in Seg len D holds F1.i = F(i) from SeqLambdaD; deffunc G(Nat)=f.(inf divset(D,$1)); consider F2 being FinSequence of REAL such that A22:len F2 = len D & for i st i in Seg len D holds F2.i = G(i) from SeqLambdaD; consider k1 being Nat such that A23:k1=len D - 1 by A19; deffunc G(Nat)=f.(sup divset(D,$1)); consider F being FinSequence of REAL such that A24:len F = k1 & for i st i in Seg k1 holds F.i = G(i) from SeqLambdaD; F1=F^<*f.(sup A)*> & F2=<*f.(inf A)*>^F proof A25: len (F^<*f.(sup A)*>)= len F + len <*f.(sup A)*> by FINSEQ_1:35 .= len D - 1 + 1 by A23,A24,FINSEQ_1:56 .= len D - (1-1) by XCMPLX_1:37 .= len D; for i st 1<=i & i<=len F1 holds F1.i=(F^<*f.(sup A)*>).i proof let i; assume A26:1<=i & i<=len F1; now per cases; suppose i <= len F; then A27: i in Seg len F1 & i in Seg len F by A26,FINSEQ_1:3; then A28: F1.i = f.(sup divset(D,i)) & F.i = f.(sup divset(D,i)) by A21,A24; i in dom F by A27,FINSEQ_1:def 3; hence F1.i=(F^<*f.(sup A)*>).i by A28,FINSEQ_1:def 7; suppose i > len F; then i >= len F + 1 by NAT_1:38; then A29: i >= len D - (1-1) by A23,A24,XCMPLX_1:37; then A30: i = len D - (1-1) by A21,A26,AXIOMS:21 .=len F + 1 by A23,A24, XCMPLX_1:37; i in Seg len F1 by A26,FINSEQ_1:3; then A31: F1.i = f.(sup divset(D,i)) & i in dom D by A21,FINSEQ_1:def 3; sup divset(D,i) = D.i proof now per cases; suppose i=1; hence thesis by A31,INTEGRA1:def 5; suppose i<>1; hence thesis by A31,INTEGRA1:def 5; end; hence thesis; end; then F1.i = f.(D.(len D)) by A21,A26,A29,A31,AXIOMS:21 .= f.(sup A) by INTEGRA1:def 2; hence F1.i=(F^<*f.(sup A)*>).i by A30,FINSEQ_1:59; end; hence thesis; end; hence F1=F^<*f.(sup A)*> by A21,A25,FINSEQ_1:18; A32: len (<*f.(inf A)*>^F) = len <*f.(inf A)*> + len F by FINSEQ_1:35 .= 1 + (len D - 1) by A23,A24,FINSEQ_1:56 .= len D + 1 - 1 by XCMPLX_1:29 .= len D by XCMPLX_1:26; for i st 1<=i & i<=len F2 holds F2.i=(<*f.(inf A)*>^F).i proof let i; assume A33:1<=i & i<=len F2; per cases; suppose A34:i=1; A35: i in Seg len D by A22,A33,FINSEQ_1:3; then A36: i in dom D by FINSEQ_1:def 3; F2.i = f.(inf divset(D,i)) by A22,A35 .=f.(inf A) by A34,A36,INTEGRA1:def 5; hence thesis by A34,FINSEQ_1:58; suppose A37:i<>1; A38: i in Seg len D by A22,A33,FINSEQ_1:3; then A39: i in dom D by FINSEQ_1:def 3; A40: F2.i = f.(inf divset(D,i)) by A22,A38 .= f.(D.(i-1)) by A37,A39,INTEGRA1:def 5; i > 1 by A33,A37,REAL_1:def 5; then A41: 1+1<=i by NAT_1:38; then A42: len <*f.(inf A)*>+1<=i by FINSEQ_1:56; len F2=1-(1-len D) by A22,XCMPLX_1:18 .= 1+(len D-1) by XCMPLX_1:38 .= len <*f.(inf A)*>+len F by A23,A24,FINSEQ_1:56; then A43: (<*f.(inf A)*>^F).i = F.(i-len<*f.(inf A)*>) by A33,A42,FINSEQ_1:36 .=F.(i-1) by FINSEQ_1:56; reconsider k2=i-1 as Nat by A37,A39,INTEGRA1:9; 1+1 <= k2+1 & k2+1 <=len F2 by A33,A41,XCMPLX_1:27; then A44: 1 <= k2 & k2 <= len D - 1 by A22,REAL_1:53,84; then A45: k2 in Seg k1 by A23,FINSEQ_1:3; sup divset(D,k2)=D.(i-1) proof len D <= len D+1 by NAT_1:38; then len D - 1 <= len D by REAL_1:86; then 1 <= k2 & k2 <= len D by A44,AXIOMS:22; then k2 in Seg len D by FINSEQ_1:3; then A46: k2 in dom D by FINSEQ_1:def 3; per cases; suppose k2=1; hence thesis by A46,INTEGRA1:def 5; suppose k2<>1; hence thesis by A46,INTEGRA1:def 5; end; hence thesis by A24,A40,A43,A45; end; hence thesis by A22,A32,FINSEQ_1:18; end; then A47: Sum(F1-F2)=f.(sup A)-f.(inf A) by Th1; len upper_volume(f||A,D)=len D & len lower_volume(f||A,D)=len D by INTEGRA1:def 7,def 8; then A48:len (upper_volume(f||A,D)-lower_volume(f||A,D))=len D by Th2; (delta(D)*(F1-F2))=(delta(D) multreal)*(F1-F2) by RVSUM_1:def 7; then A49:len (delta(D)*(F1-F2)) = len (F1-F2) by FINSEQ_2:37; A50:len (F1-F2) = len D by A21,A22,Th2; A51: len (upper_volume(f||A,D)-lower_volume(f||A,D)) = len (delta(D)*(F1-F2)) by A21,A22,A48,A49,Th2; for k st k in dom (upper_volume(f||A,D)-lower_volume(f||A,D)) holds (upper_volume(f||A,D)-lower_volume(f||A,D)).k <= (delta(D)*(F1-F2)).k proof let k; assume A52:k in dom(upper_volume(f||A,D)-lower_volume(f||A,D)); then A53: k in Seg len D by A48,FINSEQ_1:def 3; then k in dom D by FINSEQ_1:def 3; then (upper_volume(f||A,D)).k-(lower_volume(f||A,D)).k <= (f.(sup divset(D,k))-f.(inf divset(D,k)))*delta(D) by A3; then A54: (upper_volume(f||A,D)-lower_volume(f||A,D)).k <= (f.(sup divset(D,k))-f.(inf divset(D,k)))*delta(D) by A52,RVSUM_1:47; k in Seg len (F1-F2) by A48,A50,A52,FINSEQ_1:def 3; then A55: k in dom (F1-F2) by FINSEQ_1:def 3; F1.k=f.(sup divset(D,k)) & F2.k=f.(inf divset(D,k)) by A21,A22,A53; then (upper_volume(f||A,D)-lower_volume(f||A,D)).k <= delta(D)*(F1-F2).k by A54,A55,RVSUM_1:47; hence thesis by RVSUM_1:66; end; then Sum(upper_volume(f||A,D)-lower_volume(f||A,D))<=Sum(delta(D)*(F1-F2)) by A51,Th3; hence upper_sum(f||A,D)-lower_sum(f||A,D)<=delta(D)*(f.(sup A)-f.(inf A)) by A18,A47,RVSUM_1:117; for k st k in dom (upper_volume(f||A,D)-lower_volume(f||A,D)) holds 0<=(upper_volume(f||A,D)-lower_volume(f||A,D)).k proof let k; assume A56:k in dom (upper_volume(f||A,D)-lower_volume(f||A,D)); set r = (upper_volume(f||A,D)-lower_volume(f||A,D)).k; A57: len upper_volume(f||A,D)=len D & len lower_volume(f||A,D)=len D by INTEGRA1:def 7,def 8; k in Seg len (upper_volume(f||A,D)-lower_volume(f||A,D)) by A56,FINSEQ_1:def 3; then k in Seg len D by A57,Th2; then A58: k in dom D by FINSEQ_1:def 3; r = (upper_volume(f||A,D)).k-(lower_volume(f||A,D)).k by A56,RVSUM_1:47; hence thesis by A3,A58; end; hence upper_sum(f||A,D)-lower_sum(f||A,D) >= 0 by A18,RVSUM_1:114; end; A59:f||A is total & f||A is_bounded_on A proof A60: dom (f||A) = dom (f|A) by Def1 .= dom f /\ A by FUNCT_1:68 .= A by A2,XBOOLE_1:28; hence f||A is total by PARTFUN1:def 4; consider x such that A61: x in A by SUBSET_1:10; inf A <= x & x <= sup A by A61,INTEGRA2:1; then A62: inf A <= sup A by AXIOMS:22; A63: f||A is_bounded_above_on A proof for x being Element of A st x in A /\ dom (f||A) holds (f||A).x <= (f||A).(sup A) proof let x be Element of A; assume x in A /\ dom (f||A); A64: x in A & sup A in A by A62,INTEGRA2:1; then A65: x in A /\ dom f & sup A in A /\ dom f by A2,XBOOLE_1:28; A66: x <= sup A by INTEGRA2:1; x in dom (f|A) & sup A in dom (f|A) by A60,A64,Def1; then f.x = (f|A).x & f.(sup A)=(f|A).(sup A) by FUNCT_1:68; then f.x = (f||A).x & f.(sup A)=(f||A).(sup A) by Def1; hence thesis by A1,A65,A66,RFUNCT_2:48; end; hence thesis by RFUNCT_1:def 9; end; f||A is_bounded_below_on A proof for x being Element of A st x in A /\ dom (f||A) holds (f||A).x >= (f||A).(inf A) proof let x be Element of A; assume x in A /\ dom (f||A); A67: x in A & inf A in A by A62,INTEGRA2:1; then A68: x in A /\ dom f & inf A in A /\ dom f by A2,XBOOLE_1:28; A69: x >= inf A by INTEGRA2:1; x in dom (f|A) & inf A in dom (f|A) by A60,A67,Def1; then f.x = (f|A).x & f.(inf A)=(f|A).(inf A) by FUNCT_1:68; then f.x = (f||A).x & f.(inf A)=(f||A).(inf A) by Def1; hence thesis by A1,A68,A69,RFUNCT_2:48; end; hence thesis by RFUNCT_1:def 10; end; hence thesis by A63,RFUNCT_1:def 11; end; then A70: f||A is Function of A,REAL by FUNCT_2:131; for T being DivSequence of A st delta(T) is convergent & lim delta(T)=0 holds lim upper_sum(f||A,T)-lim lower_sum(f||A,T)=0 proof let T be DivSequence of A; assume A71:delta(T) is convergent & lim delta(T)=0; A72: for r be real number st 0<r ex n st for m st n<=m holds abs((upper_sum(f||A,T)-lower_sum(f||A,T)).m-0)<r proof let r be real number; assume A73:0<r; consider x such that A74: x in A by SUBSET_1:10; inf A <= x & x <= sup A by A74,INTEGRA2:1; then A75: inf A <= sup A by AXIOMS:22; then A76: inf A in A & sup A in A by INTEGRA2:1; A = A /\ dom f by A2,XBOOLE_1:28; then A77: f.(inf A) <= f.(sup A) by A1,A75,A76,RFUNCT_2:48; now per cases by A77,REAL_1:def 5; suppose f.(inf A)=f.(sup A); then A78: f.(sup A)-f.(inf A)=0 by XCMPLX_1:14; consider n being Nat; for m st n<=m holds abs((upper_sum(f||A,T)-lower_sum(f||A,T)).m-0)<r proof let m; assume n<=m; reconsider D1=T.m as Element of divs A; upper_sum(f||A,D1)-lower_sum(f||A,D1)<=delta(D1)*(f.(sup A)-f.(inf A)) & upper_sum(f||A,D1)-lower_sum(f||A,D1)>=0 by A17; then A79: upper_sum(f||A,D1)-lower_sum(f||A,D1)=0 by A78; (upper_sum(f||A,T)-lower_sum(f||A,T)).m =(upper_sum(f||A,T)+-lower_sum(f||A,T)).m by SEQ_1:15 .=upper_sum(f||A,T).m+(-lower_sum(f||A,T)).m by SEQ_1:11 .=upper_sum(f||A,T).m+-lower_sum(f||A,T).m by SEQ_1:14 .=upper_sum(f||A,D1)+-lower_sum(f||A,T).m by INTEGRA2:def 4 .=upper_sum(f||A,D1)+-lower_sum(f||A,D1) by INTEGRA2:def 5; then (upper_sum(f||A,T)-lower_sum(f||A,T)).m=0 by A79,XCMPLX_0:def 8; hence thesis by A73,ABSVALUE:def 1; end; hence thesis; suppose f.(inf A)<f.(sup A); then A80: f.(sup A)-f.(inf A) > 0 by SQUARE_1:11; then r/(f.(sup A)-f.(inf A)) > 0 by A73,REAL_2:127; then consider n such that A81: for m st n<=m holds abs(delta(T).m-0)<r/(f.(sup A)-f.(inf A)) by A71,SEQ_2:def 7; A82: for m st n<=m holds delta(T).m<r/(f.(sup A)-f.(inf A)) proof let m; assume n<=m; then A83: abs(delta(T).m-0)<r/(f.(sup A)-f.(inf A)) by A81; delta(T).m <= abs(delta(T).m) by ABSVALUE:11; hence thesis by A83,AXIOMS:22; end; for m st n<=m holds abs((upper_sum(f||A,T)-lower_sum(f||A,T)).m-0)<r proof let m; assume n<=m; then delta(T).m<r/(f.(sup A)-f.(inf A)) by A82; then A84: delta(T).m*(f.(sup A)-f.(inf A)) < r by A80,REAL_2:177; reconsider D=T.m as Element of divs A; A85: delta(D)*(f.(sup A)-f.(inf A)) <r by A84,INTEGRA2:def 3; A86: upper_sum(f||A,D)-lower_sum(f||A,D) <= delta(D)*(f.(sup A)-f.(inf A)) & upper_sum(f||A,D)-lower_sum(f||A,D) >=0 by A17; then A87: upper_sum(f||A,D)-lower_sum(f||A,D) < r by A85,AXIOMS:22; abs(upper_sum(f||A,D)-lower_sum(f||A,D)) =abs(upper_sum(f||A,T).m-lower_sum(f||A,D)-0) by INTEGRA2:def 4 .=abs(upper_sum(f||A,T).m-lower_sum(f||A,T).m-0) by INTEGRA2:def 5 .=abs(upper_sum(f||A,T).m+-lower_sum(f||A,T).m-0) by XCMPLX_0:def 8 .=abs(upper_sum(f||A,T).m+(-lower_sum(f||A,T)).m-0) by SEQ_1:14 .=abs((upper_sum(f||A,T)+(-lower_sum(f||A,T))).m-0) by SEQ_1:11 .=abs((upper_sum(f||A,T)-lower_sum(f||A,T)).m-0) by SEQ_1:15; hence thesis by A86,A87,ABSVALUE:def 1; end; hence thesis; end; hence thesis; end; A88: upper_sum(f||A,T) is convergent & lower_sum(f||A,T) is convergent by A59,A70,A71,INTEGRA4:8,9; then upper_sum(f||A,T)-lower_sum(f||A,T) is convergent by SEQ_2:25; then lim (upper_sum(f||A,T)-lower_sum(f||A,T)) = 0 by A72,SEQ_2:def 7; hence lim upper_sum(f||A,T)-lim lower_sum(f||A,T)=0 by A88,SEQ_2:26; end; then f||A is_integrable_on A by A59,A70,INTEGRA4:12; hence thesis by Def2; end; theorem for f being PartFunc of REAL,REAL st f is_monotone_on A & A c= dom f holds f is_integrable_on A proof let f be PartFunc of REAL,REAL; assume that A1:f is_monotone_on A and A2:A c= dom f; per cases by A1,RFUNCT_2:def 6; suppose f is_non_decreasing_on A; hence thesis by A2,Lm1; suppose f is_non_increasing_on A; then (-1)(#)f is_non_decreasing_on A by RFUNCT_2:67; then A3: -f is_non_decreasing_on A by RFUNCT_1:38; dom f = dom -f by SEQ_1:def 7; then -f is_integrable_on A by A2,A3,Lm1; then A4: ((-f)||A) is_integrable_on A by Def2; A5: ((-f)||A) is total & ((-f)||A) is_bounded_on A proof A6: dom ((-f)||A) = dom ((-f)|A) by Def1 .= dom (-f) /\ A by FUNCT_1:68 .= dom f /\ A by SEQ_1:def 7 .= A by A2,XBOOLE_1:28; hence ((-f)||A) is total by PARTFUN1:def 4; consider x such that A7: x in A by SUBSET_1:10; inf A <= x & x <= sup A by A7,INTEGRA2:1; then A8: inf A <= sup A by AXIOMS:22; A9: ((-f)||A) is_bounded_above_on A proof for x being Element of A st x in A /\ dom ((-f)||A) holds ((-f)||A).x <= ((-f)||A).(sup A) proof let x be Element of A; assume x in A /\ dom ((-f)||A); A10: x in A & sup A in A by A8,INTEGRA2:1; A = A /\ dom f by A2,XBOOLE_1:28 .= A /\ dom (-f) by SEQ_1:def 7; then A11: x in A /\ dom (-f) & sup A in A /\ dom (-f) by A8,INTEGRA2:1; A12: x <= sup A by INTEGRA2:1; x in dom ((-f)|A) & sup A in dom ((-f)|A) by A6,A10,Def1; then (-f).x = ((-f)|A).x & (-f).(sup A)=((-f)|A).(sup A) by FUNCT_1:68; then (-f).x = ((-f)||A).x & (-f).(sup A)=((-f)||A).(sup A) by Def1; hence thesis by A3,A11,A12,RFUNCT_2:48; end; hence thesis by RFUNCT_1:def 9; end; ((-f)||A) is_bounded_below_on A proof for x being Element of A st x in A /\ dom ((-f)||A) holds ((-f)||A).x >= ((-f)||A).(inf A) proof let x be Element of A; assume x in A /\ dom ((-f)||A); A13: x in A & inf A in A by A8,INTEGRA2:1; A = A /\ dom f by A2,XBOOLE_1:28 .= A /\ dom (-f) by SEQ_1:def 7; then A14: x in A /\ dom (-f) & inf A in A /\ dom (-f) by A8,INTEGRA2:1; A15: x >= inf A by INTEGRA2:1; x in dom ((-f)|A) & inf A in dom ((-f)|A) by A6,A13,Def1; then (-f).x = ((-f)|A).x & (-f).(inf A)=((-f)|A).(inf A) by FUNCT_1:68; then (-f).x = ((-f)||A).x & (-f).(inf A)=((-f)||A).(inf A) by Def1; hence thesis by A3,A14,A15,RFUNCT_2:48; end; hence thesis by RFUNCT_1:def 10; end; hence thesis by A9,RFUNCT_1:def 11; end; then ((-f)||A) is Function of A,REAL by FUNCT_2:131; then A16: (-1)(#)((-f)||A) is_integrable_on A by A4,A5,INTEGRA2:31; (-1)(#)((-f)||A) = (f||A) proof A = dom ((-1)(#)((-f)||A)) & A = dom (f||A) & for z being Element of A st z in A holds ((-1)(#)((-f)||A)).z = (f||A).z proof A17: dom ((-f)||A) = dom ((-f)|A) by Def1 .= dom (-f) /\ A by FUNCT_1:68 .= dom f /\ A by SEQ_1:def 7 .= A by A2,XBOOLE_1:28; hence A18:dom ((-1)(#)((-f)||A)) = A by SEQ_1:def 6; dom (f||A) = dom (f|A) by Def1 .= dom f /\ A by FUNCT_1:68; hence A19:dom (f||A) = A by A2,XBOOLE_1:28; for z being Element of A st z in A holds ((-1)(#)((-f)||A)).z = (f||A). z proof let z be Element of A; assume A20:z in A; z in dom ((-f)||A) by A17; then A21: z in dom ((-f)|A) by Def1; A22: A c= dom(-f) by A2,SEQ_1:def 7; ((-f)||A).z = ((-f)|A).z by Def1 .= (-f).z by A21,FUNCT_1:68 .=-(f.z) by A20,A22,SEQ_1:def 7; then A23: ((-1)(#) ((-f)||A)).z =(-1)*(-(f.z)) by A18,SEQ_1:def 6 .= f.z by XCMPLX_1:181; z in dom (f||A) by A19; then A24: z in dom (f|A) by Def1; (f||A).z = (f|A).z by Def1 .= f.z by A24,FUNCT_1:68; hence thesis by A23; end; hence thesis; end; hence thesis by PARTFUN1:34; end; hence thesis by A16,Def2; end; theorem Th17: for f being PartFunc of REAL,REAL, A,B being closed-interval Subset of REAL st f is_continuous_on A & B c= A holds f is_integrable_on B proof let f be PartFunc of REAL,REAL; let A,B be closed-interval Subset of REAL; assume that A1:f is_continuous_on A and A2:B c= A; f is_continuous_on B by A1,A2,FCONT_1:17; hence thesis by Th11; end; theorem for f being PartFunc of REAL,REAL, A,B,C being closed-interval Subset of REAL , X st A c= X & f is_differentiable_on X &f`|X is_continuous_on A &inf A = inf B & sup B = inf C & sup C = sup A holds B c= A & C c= A & integral(f`|X,A)=integral(f`|X,B)+integral(f`|X,C) proof let f be PartFunc of REAL,REAL; let A,B,C be closed-interval Subset of REAL; let X; assume that A1:A c=X and A2:f is_differentiable_on X and A3:f`|X is_continuous_on A and A4:inf A=inf B and A5:sup B=inf C and A6:sup C=sup A; consider x such that A7:x in B by SUBSET_1:10; inf B <= x & x <= sup B by A7,INTEGRA2:1; then A8:inf B <= sup B by AXIOMS:22; consider x such that A9:x in C by SUBSET_1:10; inf C <= x & x <= sup C by A9,INTEGRA2:1; then A10:inf C <= sup C by AXIOMS:22; for x being set st x in B holds x in A proof let x be set; assume A11:x in B; then reconsider x as Real; inf B <= x & x <= sup B by A11,INTEGRA2:1; then inf A <= x & x <= sup A by A4,A5,A6,A10,AXIOMS:22; hence thesis by INTEGRA2:1; end; hence A12:B c= A by TARSKI:def 3; for x being set st x in C holds x in A proof let x be set; assume A13:x in C; then reconsider x as Real; inf C <= x & x <= sup C by A13,INTEGRA2:1; then inf A <= x & x <= sup A by A4,A5,A6,A8,AXIOMS:22; hence thesis by INTEGRA2:1; end; hence A14:C c= A by TARSKI:def 3; then A15:f`|X is_integrable_on A & f`|X is_integrable_on B & f`|X is_integrable_on C by A3,A12,Th17; A16:f`|X is_bounded_on A by A3,Th10; then A17:f`|X is_bounded_on B & f`|X is_bounded_on C by A12,A14,RFUNCT_1:91; B c= X & C c= X by A1,A12,A14,XBOOLE_1:1; then integral(f`|X,A) = f.(sup A)-f.(inf A) & integral(f`|X,B) = f.(sup B)-f.(inf B) & integral(f`|X,C) = f.(sup C)-f.(inf C) by A1,A2,A15,A16,A17,Th13; hence thesis by A4,A5,A6,XCMPLX_1:39; end; definition let a,b be real number; assume A1:a<=b; func [' a,b '] -> closed-interval Subset of REAL equals :Def4: [.a,b.]; correctness proof a is Real & b is Real by XREAL_0:def 1; hence thesis by A1,INTEGRA1:def 1; end; end; definition let a,b be real number; let f be PartFunc of REAL,REAL; func integral(f,a,b) -> Real equals :Def5: integral(f,[' a,b ']) if a<=b otherwise -integral(f,[' b,a ']); correctness; end; theorem for f being PartFunc of REAL,REAL, A being closed-interval Subset of REAL, a,b st A=[.a,b.] holds integral(f,A)=integral(f,a,b) proof let f be PartFunc of REAL,REAL; let A be closed-interval Subset of REAL; let a,b; assume that A1:A = [.a,b.]; consider a1,b1 being Real such that A2:a1 <= b1 & A = [.a1,b1.] by INTEGRA1:def 1; A3:a1=a & b1=b by A1,A2,INTEGRA1:6; then integral(f,a,b)=integral(f,[' a,b ']) by A2,Def5; hence thesis by A2,A3,Def4; end; theorem for f being PartFunc of REAL,REAL, A being closed-interval Subset of REAL, a,b st A=[.b,a.] holds -integral(f,A)=integral(f,a,b) proof let f be PartFunc of REAL,REAL; let A be closed-interval Subset of REAL; let a,b; assume that A1:A = [.b,a.]; consider a1,b1 being Real such that A2:a1 <= b1 & A = [.a1,b1.] by INTEGRA1:def 1; A3:a1 = b & b1 = a by A1,A2,INTEGRA1:6; now per cases by A2,A3,REAL_1:def 5; suppose A4:b < a; then integral(f,a,b)=-integral(f,[' b,a ']) by Def5; hence thesis by A1,A4,Def4; suppose A5:b = a; then A6: integral(f,a,b)=integral(f,[' a,b ']) by Def5; A=[.inf A,sup A.] by INTEGRA1:5; then inf A = b & sup A = a by A1,INTEGRA1:6; then A7: vol(A)=sup A-sup A by A5,INTEGRA1:def 6 .=0 by XCMPLX_1:14; integral(f,A)=integral(f||A) by Def3 .=0 by A7,INTEGRA4:6; hence thesis by A1,A5,A6,Def4; end; hence thesis; end; theorem for f,g being PartFunc of REAL,REAL, X being open Subset of REAL st f is_differentiable_on X & g is_differentiable_on X & A c= X & f`|X is_integrable_on A & f`|X is_bounded_on A & g`|X is_integrable_on A & g`|X is_bounded_on A holds integral((f`|X)(#)g,A) =f.(sup A)*g.(sup A)-f.(inf A)*g.(inf A)-integral(f(#)(g`|X),A) proof let f,g be PartFunc of REAL,REAL; let X be open Subset of REAL; assume that A1:f is_differentiable_on X and A2:g is_differentiable_on X and A3:A c= X and A4:f`|X is_integrable_on A and A5:f`|X is_bounded_on A and A6:g`|X is_integrable_on A and A7:g`|X is_bounded_on A; A8:f(#)g is_differentiable_on X & (f(#)g)`|X = (f`|X)(#)g + f(#)(g`|X) by A1,A2,FDIFF_2:20; f is_continuous_on X & g is_continuous_on X by A1,A2,FDIFF_1:33; then A9:f is_continuous_on A & g is_continuous_on A by A3,FCONT_1:17; then f is_integrable_on A & g is_integrable_on A by Th11; then A10:f||A is_integrable_on A & g||A is_integrable_on A & (f`|X)||A is_integrable_on A & (g`|X)||A is_integrable_on A by A4,A6,Def2; X c= dom f & X c= dom g by A1,A2,FDIFF_1:def 7; then A11:A c= dom f & A c= dom g by A3,XBOOLE_1:1; then f||A is total & g||A is total by Th6; then A12: f||A is Function of A,REAL & g||A is Function of A,REAL by FUNCT_2: 131; A13:f is_bounded_on A & g is_bounded_on A by A9,Th10; then A14:f||A is_bounded_on A & g||A is_bounded_on A by Th9; A15:A c= dom(f`|X) & A c= dom(g`|X) by A1,A2,A3,FDIFF_1:def 8; then (f`|X)||A is total & (g`|X)||A is total by Th6; then A16: (f`|X)||A is Function of A,REAL & (g`|X)||A is Function of A,REAL by FUNCT_2:131; (f`|X)||A is_bounded_on A & (g`|X)||A is_bounded_on A by A5,A7,Th9; then ((f`|X)||A)(#)(g||A) is_integrable_on A & (f||A)(#)((g`|X)||A) is_integrable_on A by A10,A12,A14,A16,INTEGRA4:29; then A17:((f`|X)(#)g)||A is_integrable_on A & (f(#)(g`|X))||A is_integrable_on A by Th4; dom ((f`|X)(#)g) = dom (f`|X) /\ dom g by SEQ_1:def 5; then A c= dom((f`|X)(#)g) by A11,A15,XBOOLE_1:19; then ((f`|X)(#)g)||A is total by Th6; then A18: ((f`|X)(#)g)||A is Function of A, REAL by FUNCT_2:131; A19: (f`|X)(#)g is_bounded_on (A /\ A) by A5,A13,RFUNCT_1:101; then A20:((f`|X)(#)g)||A is_bounded_on A by Th9; dom (f(#)(g`|X)) = dom f /\ dom (g`|X) by SEQ_1:def 5; then A c= dom(f(#)(g`|X)) by A11,A15,XBOOLE_1:19; then (f(#)(g`|X))||A is total by Th6; then A21: (f(#)(g`|X))||A is Function of A, REAL by FUNCT_2:131; A22: f(#)(g`|X) is_bounded_on (A /\ A) by A7,A13,RFUNCT_1:101; then A23:(f(#)(g`|X))||A is_bounded_on A by Th9; A24:f(#)g is_differentiable_on X by A1,A2,FDIFF_2:20; A25:(f(#)g)`|X is_integrable_on A proof ((f`|X)(#)g)||A+(f(#)(g`|X))||A is_integrable_on A by A17,A18,A20,A21,A23,INTEGRA1:59; then ((f`|X)(#)g + f(#)(g`|X))||A is_integrable_on A by Th5; hence thesis by A8,Def2; end; A26:(f(#)g)`|X is_bounded_on A proof (f`|X)(#)g + f(#)(g`|X) is_bounded_on (A /\ A) by A19,A22,RFUNCT_1:100; hence thesis by A1,A2,FDIFF_2:20; end; A27:integral(((f(#)g)`|X)||A)=integral((f(#)g)`|X,A) by Def3 .=(f(#)g).(sup A)-(f(#)g).(inf A) by A3,A24,A25,A26,Th13; A28:(f(#)g).(sup A)=f.(sup A)*g.(sup A) & (f(#)g).(inf A)=f.(inf A)*g.(inf A) proof consider x such that A29:x in A by SUBSET_1:10; inf A <= x & x <= sup A by A29,INTEGRA2:1; then inf A <= sup A by AXIOMS:22; then A30:inf A in A & sup A in A by INTEGRA2:1; A c= dom f /\ dom g by A11,XBOOLE_1:19; then A c= dom (f(#)g) by SEQ_1:def 5; hence thesis by A30,SEQ_1:def 5; end; integral(((f`|X)(#)g)||A + (f(#)(g`|X))||A) =integral(((f`|X)(#)g)||A) + integral((f(#)(g`|X))||A) by A17,A18,A20,A21,A23,INTEGRA1:59; then integral(((f`|X)(#)g+f(#)(g`|X))||A) = integral(((f`|X)(#)g)||A) + integral((f(#)(g`|X))||A) by Th5 .=integral((f`|X)(#)g,A) + integral((f(#)(g`|X))||A) by Def3 .=integral((f`|X)(#)g,A) + integral(f(#)(g`|X),A) by Def3; hence thesis by A8,A27,A28,XCMPLX_1:26; end;