Copyright (c) 1999 Association of Mizar Users
environ vocabulary FUNCT_2, MARGREL1, BVFUNC_1, ZF_LANG, BINARITH; notation XBOOLE_0, SUBSET_1, FRAENKEL, MARGREL1, VALUAT_1, BINARITH, BVFUNC_1; constructors BINARITH, BVFUNC_1; clusters MARGREL1, VALUAT_1, BINARITH, FRAENKEL; theorems MARGREL1, BINARITH, BVFUNC_1, VALUAT_1; begin ::Chap. 1 Propositional Calculus reserve Y for non empty set; theorem for a,b being Element of Funcs(Y,BOOLEAN) holds a 'imp' (b 'imp' (a '&' b))=I_el(Y) proof let a,b be Element of Funcs(Y,BOOLEAN); for x being Element of Y holds Pj(a 'imp' (b 'imp' (a '&' b)),x)=TRUE proof let x be Element of Y; Pj(a 'imp' (b 'imp' (a '&' b)),x) ='not' Pj(a,x) 'or' Pj(b 'imp' (a '&' b),x) by BVFUNC_1:def 11 .='not' Pj(a,x) 'or' ('not' Pj(b,x) 'or' Pj(a '&' b,x)) by BVFUNC_1:def 11 .='not' Pj(a,x) 'or' ('not' Pj(b,x) 'or' (Pj(a,x) '&' Pj(b,x))) by VALUAT_1:def 6 .='not' Pj(a,x) 'or' (('not' Pj(b,x) 'or' Pj(a,x)) '&' ('not' Pj(b,x) 'or' Pj(b,x))) by BINARITH:23 .='not' Pj(a,x) 'or' (TRUE '&' ('not' Pj(b,x) 'or' Pj(a,x))) by BINARITH:18 .='not' Pj(a,x) 'or' (Pj(a,x) 'or' 'not' Pj(b,x)) by MARGREL1:50 .=('not' Pj(a,x) 'or' Pj(a,x)) 'or' 'not' Pj(b,x) by BINARITH:20 .=TRUE 'or' 'not' Pj(b,x) by BINARITH:18 .=TRUE by BINARITH:19; hence thesis; end; hence thesis by BVFUNC_1:def 14; end; theorem for a,b being Element of Funcs(Y,BOOLEAN) holds (a 'imp' b) 'imp' ((b 'imp' a) 'imp' (a 'eqv' b))=I_el(Y) proof let a,b be Element of Funcs(Y,BOOLEAN); for x being Element of Y holds Pj((a 'imp' b) 'imp' ((b 'imp' a) 'imp' (a 'eqv' b)),x)=TRUE proof let x be Element of Y; Pj((a 'imp' b) 'imp' ((b 'imp' a) 'imp' (a 'eqv' b)),x) ='not' Pj(a 'imp' b,x) 'or' Pj((b 'imp' a) 'imp' (a 'eqv' b),x) by BVFUNC_1:def 11 .='not'( 'not' Pj(a,x) 'or' Pj(b,x)) 'or' Pj((b 'imp' a) 'imp' (a 'eqv' b),x) by BVFUNC_1:def 11 .='not'( 'not' Pj(a,x) 'or' Pj(b,x)) 'or' ('not' Pj(b 'imp' a,x) 'or' Pj(a 'eqv' b,x)) by BVFUNC_1:def 11 .='not'( 'not' Pj(a,x) 'or' Pj(b,x)) 'or' ('not'( 'not' Pj(b,x) 'or' Pj(a,x)) 'or' Pj(a 'eqv' b,x)) by BVFUNC_1:def 11 .=('not' 'not' Pj(a,x) '&' 'not' Pj(b,x)) 'or' ('not'( 'not' Pj(b,x) 'or' Pj(a,x)) 'or' Pj(a 'eqv' b,x)) by BINARITH:10 .=('not' 'not' Pj(a,x) '&' 'not' Pj(b,x)) 'or' (('not' 'not' Pj(b,x) '&' 'not' Pj(a,x)) 'or' Pj(a 'eqv' b,x)) by BINARITH:10 .=(Pj(a,x) '&' 'not' Pj(b,x)) 'or' (('not' 'not' Pj(b,x) '&' 'not' Pj(a,x)) 'or' Pj(a 'eqv' b,x)) by MARGREL1:40 .=(Pj(a,x) '&' 'not' Pj(b,x)) 'or' ((Pj(b,x) '&' 'not' Pj(a,x)) 'or' Pj(a 'eqv' b,x)) by MARGREL1:40 .=(Pj(a,x) '&' 'not' Pj(b,x)) 'or' ((Pj(b,x) '&' 'not' Pj(a,x)) 'or' 'not'( Pj(a,x) 'xor' Pj(b,x))) by BVFUNC_1:def 12 .=(Pj(a,x) '&' 'not' Pj(b,x)) 'or' ((Pj(b,x) '&' 'not' Pj(a,x)) 'or' 'not'( ('not' Pj(a,x) '&' Pj(b,x)) 'or' (Pj(a,x) '&' 'not' Pj(b,x)))) by BINARITH:def 2 .=(Pj(a,x) '&' 'not' Pj(b,x)) 'or' (('not' Pj(a,x) '&' Pj(b,x)) 'or' ('not'( 'not' Pj(a,x) '&' Pj(b,x)) '&' 'not'( Pj(a,x) '&' 'not' Pj(b,x)))) by BINARITH:10 .=(Pj(a,x) '&' 'not' Pj(b,x)) 'or' ((('not' Pj(a,x) '&' Pj(b,x)) 'or' 'not'( 'not' Pj(a,x) '&' Pj(b,x))) '&' (('not' Pj(a,x) '&' Pj(b,x)) 'or' 'not'( Pj(a,x) '&' 'not' Pj(b,x)))) by BINARITH:23 .=(Pj(a,x) '&' 'not' Pj(b,x)) 'or' (TRUE '&' (('not' Pj(a,x) '&' Pj(b,x)) 'or' 'not'( Pj(a,x) '&' 'not' Pj(b,x)))) by BINARITH:18 .=(Pj(a,x) '&' 'not' Pj(b,x)) 'or' ('not'( Pj(a,x) '&' 'not' Pj(b,x)) 'or' ('not' Pj(a,x) '&' Pj(b,x))) by MARGREL1:50 .=((Pj(a,x) '&' 'not' Pj(b,x)) 'or' 'not'( Pj(a,x) '&' 'not' Pj(b,x))) 'or' ('not' Pj(a,x) '&' Pj(b,x)) by BINARITH:20 .=TRUE 'or' ('not' Pj(a,x) '&' Pj(b,x)) by BINARITH:18 .=TRUE by BINARITH:19; hence thesis; end; hence thesis by BVFUNC_1:def 14; end; theorem for a,b being Element of Funcs(Y,BOOLEAN) holds (a 'or' b) 'eqv' (b 'or' a)=I_el(Y) proof let a,b be Element of Funcs(Y,BOOLEAN); for x being Element of Y holds Pj((a 'or' b) 'eqv' (b 'or' a),x)=TRUE proof let x be Element of Y; Pj((a 'or' b) 'eqv' (b 'or' a),x) ='not'( Pj(a 'or' b,x) 'xor' Pj(b 'or' a,x)) by BVFUNC_1:def 12 .='not'( ('not' Pj(a 'or' b,x) '&' Pj(b 'or' a,x)) 'or' (Pj(a 'or' b,x) '&' 'not' Pj(b 'or' a,x))) by BINARITH:def 2 .=('not'( 'not' Pj(a 'or' b,x) '&' Pj(b 'or' a,x)) '&' 'not'( Pj(a 'or' b,x) '&' 'not' Pj(b 'or' a,x))) by BINARITH:10 .=(('not' 'not' Pj(a 'or' b,x) 'or' 'not' Pj(b 'or' a,x)) '&' 'not'( Pj(a 'or' b,x) '&' 'not' Pj(b 'or' a,x))) by BINARITH:9 .=(('not' 'not' Pj(a 'or' b,x) 'or' 'not' Pj(b 'or' a,x)) '&' ('not' Pj(a 'or' b,x) 'or' 'not' 'not' Pj(b 'or' a,x))) by BINARITH:9 .=((Pj(a 'or' b,x) 'or' 'not' Pj(b 'or' a,x)) '&' ('not' Pj(a 'or' b,x) 'or' 'not' 'not' Pj(b 'or' a,x))) by MARGREL1:40 .=TRUE '&' ('not' Pj(a 'or' b,x) 'or' Pj(a 'or' b,x)) by BINARITH:18 .=TRUE '&' TRUE by BINARITH:18 .=TRUE by MARGREL1:45; hence thesis; end; hence thesis by BVFUNC_1:def 14; end; theorem for a,b,c being Element of Funcs(Y,BOOLEAN) holds ((a '&' b) 'imp' c) 'imp' (a 'imp' (b 'imp' c))=I_el(Y) proof let a,b,c be Element of Funcs(Y,BOOLEAN); for x being Element of Y holds Pj(((a '&' b) 'imp' c) 'imp' (a 'imp' (b 'imp' c)),x)=TRUE proof let x be Element of Y; Pj(((a '&' b) 'imp' c) 'imp' (a 'imp' (b 'imp' c)),x) ='not' Pj((a '&' b) 'imp' c,x) 'or' Pj(a 'imp' (b 'imp' c),x) by BVFUNC_1:def 11 .='not'( 'not' Pj(a '&' b,x) 'or' Pj(c,x)) 'or' Pj(a 'imp' (b 'imp' c),x) by BVFUNC_1:def 11 .='not'( 'not' (Pj(a,x) '&' Pj(b,x)) 'or' Pj(c,x)) 'or' Pj(a 'imp' (b 'imp' c),x) by VALUAT_1:def 6 .='not'( 'not'( Pj(a,x) '&' Pj(b,x)) 'or' Pj(c,x)) 'or' ('not' Pj(a,x) 'or' Pj(b 'imp' c,x)) by BVFUNC_1:def 11 .='not'( 'not'( Pj(a,x) '&' Pj(b,x)) 'or' Pj(c,x)) 'or' ('not' Pj(a,x) 'or' ('not' Pj(b,x) 'or' Pj(c,x))) by BVFUNC_1:def 11 .='not'( ('not' Pj(a,x) 'or' 'not' Pj(b,x)) 'or' Pj(c,x)) 'or' ('not' Pj(a,x) 'or' ('not' Pj(b,x) 'or' Pj(c,x))) by BINARITH:9 .='not'( ('not' Pj(a,x) 'or' 'not' Pj(b,x)) 'or' Pj(c,x)) 'or' (('not' Pj(a,x) 'or' 'not' Pj(b,x)) 'or' Pj(c,x)) by BINARITH:20 .=TRUE by BINARITH:18; hence thesis; end; hence thesis by BVFUNC_1:def 14; end; theorem for a,b,c being Element of Funcs(Y,BOOLEAN) holds (a 'imp' (b 'imp' c)) 'imp' ((a '&' b) 'imp' c)=I_el(Y) proof let a,b,c be Element of Funcs(Y,BOOLEAN); for x being Element of Y holds Pj((a 'imp' (b 'imp' c)) 'imp' ((a '&' b) 'imp' c),x)=TRUE proof let x be Element of Y; Pj((a 'imp' (b 'imp' c)) 'imp' ((a '&' b) 'imp' c),x) ='not' Pj(a 'imp' (b 'imp' c),x) 'or' Pj((a '&' b) 'imp' c,x) by BVFUNC_1:def 11 .='not'( 'not' Pj(a,x) 'or' Pj(b 'imp' c,x)) 'or' Pj((a '&' b) 'imp' c,x) by BVFUNC_1:def 11 .='not'( 'not' Pj(a,x) 'or' ('not' Pj(b,x) 'or' Pj(c,x))) 'or' Pj((a '&' b) 'imp' c,x) by BVFUNC_1:def 11 .='not'( 'not' Pj(a,x) 'or' ('not' Pj(b,x) 'or' Pj(c,x))) 'or' ('not' Pj(a '&' b,x) 'or' Pj(c,x)) by BVFUNC_1:def 11 .='not'( 'not' Pj(a,x) 'or' ('not' Pj(b,x) 'or' Pj(c,x))) 'or' ('not'( Pj(a,x) '&' Pj(b,x)) 'or' Pj(c,x)) by VALUAT_1:def 6 .='not'( 'not' Pj(a,x) 'or' ('not' Pj(b,x) 'or' Pj(c,x))) 'or' (('not' Pj(a,x) 'or' 'not' Pj(b,x)) 'or' Pj(c,x)) by BINARITH:9 .='not'( ('not' Pj(a,x) 'or' 'not' Pj(b,x)) 'or' Pj(c,x)) 'or' (('not' Pj(a,x) 'or' 'not' Pj(b,x)) 'or' Pj(c,x)) by BINARITH:20 .=TRUE by BINARITH:18; hence thesis; end; hence thesis by BVFUNC_1:def 14; end; theorem for a,b,c being Element of Funcs(Y,BOOLEAN) holds (c 'imp' a) 'imp' ((c 'imp' b) 'imp' (c 'imp' (a '&' b)))=I_el(Y) proof let a,b,c be Element of Funcs(Y,BOOLEAN); for x being Element of Y holds Pj((c 'imp' a) 'imp' ((c 'imp' b) 'imp' (c 'imp' (a '&' b))),x)=TRUE proof let x be Element of Y; Pj((c 'imp' a) 'imp' ((c 'imp' b) 'imp' (c 'imp' (a '&' b))),x) ='not' Pj(c 'imp' a,x) 'or' Pj((c 'imp' b) 'imp' (c 'imp' (a '&' b)),x) by BVFUNC_1:def 11 .='not'( 'not' Pj(c,x) 'or' Pj(a,x)) 'or' Pj((c 'imp' b) 'imp' (c 'imp' (a '&' b)),x) by BVFUNC_1:def 11 .='not'( 'not' Pj(c,x) 'or' Pj(a,x)) 'or' ('not' Pj(c 'imp' b,x) 'or' Pj(c 'imp' (a '&' b),x)) by BVFUNC_1:def 11 .='not'( 'not' Pj(c,x) 'or' Pj(a,x)) 'or' ('not'( 'not' Pj(c,x) 'or' Pj(b,x)) 'or' Pj(c 'imp' (a '&' b),x)) by BVFUNC_1:def 11 .='not'( 'not' Pj(c,x) 'or' Pj(a,x)) 'or' ('not'( 'not' Pj(c,x) 'or' Pj(b,x)) 'or' ('not' Pj(c,x) 'or' Pj(a '&' b,x))) by BVFUNC_1:def 11 .='not'( 'not' Pj(c,x) 'or' Pj(a,x)) 'or' ('not'( 'not' Pj(c,x) 'or' Pj(b,x)) 'or' ('not' Pj(c,x) 'or' (Pj(a,x) '&' Pj(b,x)))) by VALUAT_1:def 6 .=('not' 'not' Pj(c,x) '&' 'not' Pj(a,x)) 'or' ('not'( 'not' Pj(c,x) 'or' Pj(b,x)) 'or' ('not' Pj(c,x) 'or' (Pj(a,x) '&' Pj(b,x)))) by BINARITH:10 .=('not' 'not' Pj(c,x) '&' 'not' Pj(a,x)) 'or' (('not' 'not' Pj(c,x) '&' 'not' Pj(b,x)) 'or' ('not' Pj(c,x) 'or' (Pj(a,x) '&' Pj(b,x)))) by BINARITH:10 .=(Pj(c,x) '&' 'not' Pj(a,x)) 'or' (('not' 'not' Pj(c,x) '&' 'not' Pj(b,x)) 'or' ('not' Pj(c,x) 'or' (Pj(a,x) '&' Pj(b,x)))) by MARGREL1:40 .=(Pj(c,x) '&' 'not' Pj(a,x)) 'or' ((Pj(c,x) '&' 'not' Pj(b,x)) 'or' ('not' Pj(c,x) 'or' (Pj(a,x) '&' Pj(b,x)))) by MARGREL1:40 .=(Pj(c,x) '&' 'not' Pj(a,x)) 'or' ((Pj(c,x) '&' 'not' Pj(b,x)) 'or' (('not' Pj(c,x) 'or' Pj(a,x)) '&' ('not' Pj(c,x) 'or' Pj(b,x)))) by BINARITH:23 .=(Pj(c,x) '&' 'not' Pj(a,x)) 'or' (((Pj(c,x) '&' 'not' Pj(b,x)) 'or' ('not' Pj(c,x) 'or' Pj(a,x))) '&' ((Pj(c,x) '&' 'not' Pj(b,x)) 'or' ('not' Pj(c,x) 'or' Pj(b,x)))) by BINARITH:23 .=(Pj(c,x) '&' 'not' Pj(a,x)) 'or' (((Pj(c,x) '&' 'not' Pj(b,x)) 'or' ('not' Pj(c,x) 'or' Pj(a,x))) '&' ((Pj(c,x) '&' 'not' Pj(b,x)) 'or' ('not' Pj(c,x) 'or' 'not' 'not' Pj(b,x)))) by MARGREL1:40 .=(Pj(c,x) '&' 'not' Pj(a,x)) 'or' (((Pj(c,x) '&' 'not' Pj(b,x)) 'or' ('not' Pj(c,x) 'or' Pj(a,x))) '&' ((Pj(c,x) '&' 'not' Pj(b,x)) 'or' 'not'( Pj(c,x) '&' 'not' Pj(b,x)))) by BINARITH:9 .=(Pj(c,x) '&' 'not' Pj(a,x)) 'or' (TRUE '&' ((Pj(c,x) '&' 'not' Pj(b,x)) 'or' ('not' Pj(c,x) 'or' Pj(a,x)))) by BINARITH:18 .=(Pj(c,x) '&' 'not' Pj(a,x)) 'or' (('not' Pj(c,x) 'or' Pj(a,x)) 'or' (Pj(c,x) '&' 'not' Pj(b,x))) by MARGREL1:50 .=((Pj(c,x) '&' 'not' Pj(a,x)) 'or' ('not' Pj(c,x) 'or' Pj(a,x))) 'or' (Pj(c,x) '&' 'not' Pj(b,x)) by BINARITH:20 .=((Pj(c,x) '&' 'not' Pj(a,x)) 'or' ('not' Pj(c,x) 'or' 'not' 'not' Pj(a,x))) 'or' (Pj(c,x) '&' 'not' Pj(b,x)) by MARGREL1:40 .=((Pj(c,x) '&' 'not' Pj(a,x)) 'or' 'not'( Pj(c,x) '&' 'not' Pj(a,x))) 'or' (Pj(c,x) '&' 'not' Pj(b,x)) by BINARITH:9 .=TRUE 'or' (Pj(c,x) '&' 'not' Pj(b,x)) by BINARITH:18 .=TRUE by BINARITH:19; hence thesis; end; hence thesis by BVFUNC_1:def 14; end; theorem for a,b,c being Element of Funcs(Y,BOOLEAN) holds ((a 'or' b) 'imp' c) 'imp' ((a 'imp' c) 'or' (b 'imp' c))=I_el(Y) proof let a,b,c be Element of Funcs(Y,BOOLEAN); for x being Element of Y holds Pj(((a 'or' b) 'imp' c) 'imp' ((a 'imp' c) 'or' (b 'imp' c)),x)=TRUE proof let x be Element of Y; Pj(((a 'or' b) 'imp' c) 'imp' ((a 'imp' c) 'or' (b 'imp' c)),x) ='not' Pj((a 'or' b) 'imp' c,x) 'or' Pj((a 'imp' c) 'or' (b 'imp' c),x) by BVFUNC_1:def 11 .='not'( 'not' Pj(a 'or' b,x) 'or' Pj(c,x)) 'or' Pj((a 'imp' c) 'or' (b 'imp' c),x) by BVFUNC_1:def 11 .='not'( 'not'( Pj(a,x) 'or' Pj(b,x)) 'or' Pj(c,x)) 'or' Pj((a 'imp' c) 'or' (b 'imp' c),x) by BVFUNC_1:def 7 .='not'( 'not'( Pj(a,x) 'or' Pj(b,x)) 'or' Pj(c,x)) 'or' (Pj(a 'imp' c,x) 'or' Pj(b 'imp' c,x)) by BVFUNC_1:def 7 .='not'( 'not'( Pj(a,x) 'or' Pj(b,x)) 'or' Pj(c,x)) 'or' (('not' Pj(a,x) 'or' Pj(c,x)) 'or' Pj(b 'imp' c,x)) by BVFUNC_1:def 11 .='not'( 'not'( Pj(a,x) 'or' Pj(b,x)) 'or' Pj(c,x)) 'or' (('not' Pj(a,x) 'or' Pj(c,x)) 'or' ('not' Pj(b,x) 'or' Pj(c,x))) by BVFUNC_1:def 11 .=('not' 'not'( Pj(a,x) 'or' Pj(b,x)) '&' 'not' Pj(c,x)) 'or' (('not' Pj(a,x) 'or' Pj(c,x)) 'or' ('not' Pj(b,x) 'or' Pj(c,x))) by BINARITH:10 .=('not' Pj(c,x) '&' (Pj(a,x) 'or' Pj(b,x))) 'or' (('not' Pj(a,x) 'or' Pj(c,x)) 'or' ('not' Pj(b,x) 'or' Pj(c,x))) by MARGREL1:40 .=((Pj(b,x) '&' 'not' Pj(c,x)) 'or' (Pj(a,x) '&' 'not' Pj(c,x))) 'or' (('not' Pj(a,x) 'or' Pj(c,x)) 'or' ('not' Pj(b,x) 'or' Pj(c,x))) by BINARITH:22 .=((Pj(b,x) '&' 'not' Pj(c,x)) 'or' (Pj(a,x) '&' 'not' Pj(c,x))) 'or' (('not' Pj(a,x) 'or' 'not' 'not' Pj(c,x)) 'or' ('not' Pj(b,x) 'or' Pj(c,x))) by MARGREL1:40 .=((Pj(b,x) '&' 'not' Pj(c,x)) 'or' (Pj(a,x) '&' 'not' Pj(c,x))) 'or' ('not'( Pj(a,x) '&' 'not' Pj(c,x)) 'or' ('not' Pj(b,x) 'or' Pj(c,x))) by BINARITH:9 .=(((Pj(b,x) '&' 'not' Pj(c,x)) 'or' (Pj(a,x) '&' 'not' Pj(c,x))) 'or' 'not'( Pj(a,x) '&' 'not' Pj(c,x))) 'or' ('not' Pj(b,x) 'or' Pj(c,x)) by BINARITH:20 .=((Pj(b,x) '&' 'not' Pj(c,x)) 'or' ((Pj(a,x) '&' 'not' Pj(c,x)) 'or' 'not'( Pj(a,x) '&' 'not' Pj(c,x)))) 'or' ('not' Pj(b,x) 'or' Pj(c,x)) by BINARITH:20 .=((Pj(b,x) '&' 'not' Pj(c,x)) 'or' TRUE) 'or' ('not' Pj(b,x) 'or' Pj(c,x)) by BINARITH:18 .=TRUE 'or' ('not' Pj(b,x) 'or' Pj(c,x)) by BINARITH:19 .=TRUE by BINARITH:19; hence thesis; end; hence thesis by BVFUNC_1:def 14; end; theorem for a,b,c being Element of Funcs(Y,BOOLEAN) holds (a 'imp' c) 'imp' ((b 'imp' c) 'imp' ((a 'or' b) 'imp' c))=I_el(Y) proof let a,b,c be Element of Funcs(Y,BOOLEAN); for x being Element of Y holds Pj((a 'imp' c) 'imp' ((b 'imp' c) 'imp' ((a 'or' b) 'imp' c)),x)=TRUE proof let x be Element of Y; Pj((a 'imp' c) 'imp' ((b 'imp' c) 'imp' ((a 'or' b) 'imp' c)),x) ='not' Pj(a 'imp' c,x) 'or' Pj((b 'imp' c) 'imp' ((a 'or' b) 'imp' c),x) by BVFUNC_1:def 11 .='not'( 'not' Pj(a,x) 'or' Pj(c,x)) 'or' Pj((b 'imp' c) 'imp' ((a 'or' b) 'imp' c),x) by BVFUNC_1:def 11 .='not'( 'not' Pj(a,x) 'or' Pj(c,x)) 'or' ('not' Pj(b 'imp' c,x) 'or' Pj((a 'or' b) 'imp' c,x)) by BVFUNC_1:def 11 .='not'( 'not' Pj(a,x) 'or' Pj(c,x)) 'or' ('not'( 'not' Pj(b,x) 'or' Pj(c,x)) 'or' Pj((a 'or' b) 'imp' c,x)) by BVFUNC_1:def 11 .='not'( 'not' Pj(a,x) 'or' Pj(c,x)) 'or' ('not'( 'not' Pj(b,x) 'or' Pj(c,x)) 'or' ('not' Pj(a 'or' b,x) 'or' Pj(c,x))) by BVFUNC_1:def 11 .='not'( 'not' Pj(a,x) 'or' Pj(c,x)) 'or' ('not'( 'not' Pj(b,x) 'or' Pj(c,x)) 'or' ('not' (Pj(a,x) 'or' Pj(b,x)) 'or' Pj(c,x))) by BVFUNC_1:def 7 .='not'( 'not' Pj(a,x) 'or' Pj(c,x)) 'or' ('not'( 'not' Pj(b,x) 'or' Pj(c,x)) 'or' (Pj(c,x) 'or' ('not' Pj(a,x) '&' 'not' Pj(b,x)))) by BINARITH:10 .='not'( 'not' Pj(a,x) 'or' Pj(c,x)) 'or' ('not'( 'not' Pj(b,x) 'or' Pj(c,x)) 'or' ((Pj(c,x) 'or' 'not' Pj(a,x)) '&' ('not' Pj(b,x) 'or' Pj(c,x)))) by BINARITH:23 .='not'( 'not' Pj(a,x) 'or' Pj(c,x)) 'or' (('not'( 'not' Pj(b,x) 'or' Pj(c,x)) 'or' (Pj(c,x) 'or' 'not' Pj(a,x))) '&' ('not'( 'not' Pj(b,x) 'or' Pj(c,x)) 'or' ('not' Pj(b,x) 'or' Pj(c,x)))) by BINARITH:23 .='not'( 'not' Pj(a,x) 'or' Pj(c,x)) 'or' (TRUE '&' ('not'( 'not' Pj(b,x) 'or' Pj(c,x)) 'or' (Pj(c,x) 'or' 'not' Pj(a,x)))) by BINARITH:18 .='not'( 'not' Pj(a,x) 'or' Pj(c,x)) 'or' ('not'( 'not' Pj(b,x) 'or' Pj(c,x)) 'or' ('not' Pj(a,x) 'or' Pj(c,x))) by MARGREL1:50 .=('not'( 'not' Pj(a,x) 'or' Pj(c,x)) 'or' ('not' Pj(a,x) 'or' Pj(c,x))) 'or' 'not'( 'not' Pj(b,x) 'or' Pj(c,x)) by BINARITH:20 .=TRUE 'or' 'not'( 'not' Pj(b,x) 'or' Pj(c,x)) by BINARITH:18 .=TRUE by BINARITH:19; hence thesis; end; hence thesis by BVFUNC_1:def 14; end; theorem for a,b,c being Element of Funcs(Y,BOOLEAN) holds ((a 'imp' c) '&' (b 'imp' c)) 'imp' ((a 'or' b) 'imp' c)=I_el(Y) proof let a,b,c be Element of Funcs(Y,BOOLEAN); for x being Element of Y holds Pj(((a 'imp' c) '&' (b 'imp' c)) 'imp' ((a 'or' b) 'imp' c),x)=TRUE proof let x be Element of Y; Pj(((a 'imp' c) '&' (b 'imp' c)) 'imp' ((a 'or' b) 'imp' c),x) ='not' Pj((a 'imp' c) '&' (b 'imp' c),x) 'or' Pj((a 'or' b) 'imp' c,x) by BVFUNC_1:def 11 .='not'( Pj(a 'imp' c,x) '&' Pj(b 'imp' c,x)) 'or' Pj((a 'or' b) 'imp' c,x) by VALUAT_1:def 6 .='not'( ('not' Pj(a,x) 'or' Pj(c,x)) '&' Pj(b 'imp' c,x)) 'or' Pj((a 'or' b) 'imp' c,x) by BVFUNC_1:def 11 .='not'( ('not' Pj(a,x) 'or' Pj(c,x)) '&' ('not' Pj(b,x) 'or' Pj(c,x))) 'or' Pj((a 'or' b) 'imp' c,x) by BVFUNC_1:def 11 .='not'( ('not' Pj(a,x) 'or' Pj(c,x)) '&' ('not' Pj(b,x) 'or' Pj(c,x))) 'or' ('not' Pj(a 'or' b,x) 'or' Pj(c,x)) by BVFUNC_1:def 11 .='not'( ('not' Pj(a,x) 'or' Pj(c,x)) '&' ('not' Pj(b,x) 'or' Pj(c,x))) 'or' ('not'( Pj(a,x) 'or' Pj(b,x)) 'or' Pj(c,x)) by BVFUNC_1:def 7 .=('not'( 'not' Pj(a,x) 'or' Pj(c,x)) 'or' 'not'( 'not' Pj(b,x) 'or' Pj(c,x))) 'or' (Pj(c,x) 'or' 'not'( Pj(a,x) 'or' Pj(b,x))) by BINARITH:9 .=('not'( 'not' Pj(a,x) 'or' Pj(c,x)) 'or' 'not'( 'not' Pj(b,x) 'or' Pj(c,x))) 'or' (Pj(c,x) 'or' ('not' Pj(a,x) '&' 'not' Pj(b,x))) by BINARITH:10 .=('not'( 'not' Pj(a,x) 'or' Pj(c,x)) 'or' 'not'( 'not' Pj(b,x) 'or' Pj(c,x))) 'or' (('not' Pj(a,x) 'or' Pj(c,x)) '&' (Pj(c,x) 'or' 'not' Pj(b,x))) by BINARITH:23 .=(('not'( 'not' Pj(a,x) 'or' Pj(c,x)) 'or' 'not'( 'not' Pj(b,x) 'or' Pj(c,x))) 'or' ('not' Pj(a,x) 'or' Pj(c,x))) '&' (('not'( 'not' Pj(a,x) 'or' Pj(c,x)) 'or' 'not'( 'not' Pj(b,x) 'or' Pj(c,x))) 'or' ('not' Pj(b,x) 'or' Pj(c,x))) by BINARITH:23 .=('not'( 'not' Pj(b,x) 'or' Pj(c,x)) 'or' ('not'( 'not' Pj(a,x) 'or' Pj(c,x)) 'or' ('not' Pj(a,x) 'or' Pj(c,x)))) '&' (('not'( 'not' Pj(a,x) 'or' Pj(c,x)) 'or' 'not'( 'not' Pj(b,x) 'or' Pj(c,x))) 'or' ('not' Pj(b,x) 'or' Pj(c,x))) by BINARITH:20 .=('not'( 'not' Pj(b,x) 'or' Pj(c,x)) 'or' ('not'( 'not' Pj(a,x) 'or' Pj(c,x)) 'or' ('not' Pj(a,x) 'or' Pj(c,x)))) '&' ('not'( 'not' Pj(a,x) 'or' Pj(c,x)) 'or' ('not'( 'not' Pj(b,x) 'or' Pj(c,x)) 'or' ('not' Pj(b,x) 'or' Pj(c,x)))) by BINARITH:20 .=('not'( 'not' Pj(b,x) 'or' Pj(c,x)) 'or' TRUE) '&' ('not'( 'not' Pj(a,x) 'or' Pj(c,x)) 'or' ('not'( 'not' Pj(b,x) 'or' Pj(c,x)) 'or' ('not' Pj(b,x) 'or' Pj(c,x)))) by BINARITH:18 .=('not'( 'not' Pj(b,x) 'or' Pj(c,x)) 'or' TRUE) '&' ('not'( 'not' Pj(a,x) 'or' Pj(c,x)) 'or' TRUE) by BINARITH:18 .=TRUE '&' ('not'( 'not' Pj(a,x) 'or' Pj(c,x)) 'or' TRUE) by BINARITH:19 .=TRUE '&' TRUE by BINARITH:19 .=TRUE by MARGREL1:45; hence thesis; end; hence thesis by BVFUNC_1:def 14; end; theorem for a,b being Element of Funcs(Y,BOOLEAN) holds (a 'imp' (b '&' 'not' b)) 'imp' 'not' a=I_el(Y) proof let a,b be Element of Funcs(Y,BOOLEAN); for x being Element of Y holds Pj((a 'imp' (b '&' 'not' b)) 'imp' 'not' a,x)=TRUE proof let x be Element of Y; Pj((a 'imp' (b '&' 'not' b)) 'imp' 'not' a,x) ='not' Pj(a 'imp' (b '&' 'not' b),x) 'or' Pj('not' a,x) by BVFUNC_1:def 11 .='not'( 'not' Pj(a,x) 'or' Pj(b '&' 'not' b,x)) 'or' Pj('not' a,x) by BVFUNC_1:def 11 .='not'( 'not' Pj(a,x) 'or' (Pj(b,x) '&' Pj('not' b,x))) 'or' Pj('not' a,x) by VALUAT_1:def 6 .=('not' 'not' Pj(a,x) '&' 'not'( Pj(b,x) '&' Pj('not' b,x))) 'or' Pj('not' a,x) by BINARITH:10 .=(Pj(a,x) '&' 'not'( Pj(b,x) '&' Pj('not' b,x))) 'or' Pj('not' a,x) by MARGREL1:40 .=(Pj(a,x) '&' ('not' Pj(b,x) 'or' 'not' Pj('not' b,x))) 'or' Pj('not' a,x) by BINARITH:9 .=(Pj(a,x) '&' ('not' Pj(b,x) 'or' 'not' 'not' Pj(b,x))) 'or' Pj('not' a,x) by VALUAT_1:def 5 .=(Pj(a,x) '&' TRUE) 'or' Pj('not' a,x) by BINARITH:18 .=Pj(a,x) 'or' Pj('not' a,x) by MARGREL1:50 .=Pj(a,x) 'or' 'not' Pj(a,x) by VALUAT_1:def 5 .=TRUE by BINARITH:18; hence thesis; end; hence thesis by BVFUNC_1:def 14; end; theorem for a,b,c being Element of Funcs(Y,BOOLEAN) holds ((a 'or' b) '&' (a 'or' c)) 'imp' (a 'or' (b '&' c))=I_el(Y) proof let a,b,c be Element of Funcs(Y,BOOLEAN); for x being Element of Y holds Pj(((a 'or' b) '&' (a 'or' c)) 'imp' (a 'or' (b '&' c)),x)=TRUE proof let x be Element of Y; Pj(((a 'or' b) '&' (a 'or' c)) 'imp' (a 'or' (b '&' c)),x) ='not' Pj((a 'or' b) '&' (a 'or' c),x) 'or' Pj(a 'or' (b '&' c),x) by BVFUNC_1:def 11 .='not'( Pj(a 'or' b,x) '&' Pj(a 'or' c,x)) 'or' Pj(a 'or' (b '&' c),x) by VALUAT_1:def 6 .='not' ((Pj(a,x) 'or' Pj(b,x)) '&' Pj(a 'or' c,x)) 'or' Pj(a 'or' (b '&' c),x) by BVFUNC_1:def 7 .='not'( (Pj(a,x) 'or' Pj(b,x)) '&' (Pj(a,x) 'or' Pj(c,x))) 'or' Pj(a 'or' (b '&' c),x) by BVFUNC_1:def 7 .='not'( (Pj(a,x) 'or' Pj(b,x)) '&' (Pj(a,x) 'or' Pj(c,x))) 'or' (Pj(a,x) 'or' Pj(b '&' c,x)) by BVFUNC_1:def 7 .='not'( (Pj(a,x) 'or' Pj(b,x)) '&' (Pj(a,x) 'or' Pj(c,x))) 'or' (Pj(a,x) 'or' (Pj(b,x) '&' Pj(c,x))) by VALUAT_1:def 6 .='not'( (Pj(a,x) 'or' Pj(b,x)) '&' (Pj(a,x) 'or' Pj(c,x))) 'or' ((Pj(a,x) 'or' Pj(b,x)) '&' (Pj(a,x) 'or' Pj(c,x))) by BINARITH:23 .=('not'( Pj(a,x) 'or' Pj(b,x)) 'or' 'not'( Pj(a,x) 'or' Pj(c,x))) 'or' ((Pj(a,x) 'or' Pj(b,x)) '&' (Pj(a,x) 'or' Pj(c,x))) by BINARITH:9 .=(('not'( Pj(a,x) 'or' Pj(c,x)) 'or' 'not'( Pj(a,x) 'or' Pj(b,x))) 'or' (Pj(a,x) 'or' Pj(b,x))) '&' (('not'( Pj(a,x) 'or' Pj(b,x)) 'or' 'not'( Pj(a,x) 'or' Pj(c,x))) 'or' (Pj(a,x) 'or' Pj(c,x))) by BINARITH:23 .=('not'( Pj(a,x) 'or' Pj(c,x)) 'or' ('not'( Pj(a,x) 'or' Pj(b,x)) 'or' (Pj(a,x) 'or' Pj(b,x)))) '&' (('not'( Pj(a,x) 'or' Pj(b,x)) 'or' 'not'( Pj(a,x) 'or' Pj(c,x))) 'or' (Pj(a,x) 'or' Pj(c,x))) by BINARITH:20 .=('not'( Pj(a,x) 'or' Pj(c,x)) 'or' ('not'( Pj(a,x) 'or' Pj(b,x)) 'or' (Pj(a,x) 'or' Pj(b,x)))) '&' ('not'( Pj(a,x) 'or' Pj(b,x)) 'or' ('not'( Pj(a,x) 'or' Pj(c,x)) 'or' (Pj(a,x) 'or' Pj(c,x)))) by BINARITH:20 .=('not'( Pj(a,x) 'or' Pj(c,x)) 'or' TRUE) '&' ('not'( Pj(a,x) 'or' Pj(b,x)) 'or' ('not'( Pj(a,x) 'or' Pj(c,x)) 'or' (Pj(a,x) 'or' Pj(c,x)))) by BINARITH:18 .=('not'( Pj(a,x) 'or' Pj(c,x)) 'or' TRUE) '&' ('not'( Pj(a,x) 'or' Pj(b,x)) 'or' TRUE) by BINARITH:18 .=TRUE '&' ('not'( Pj(a,x) 'or' Pj(b,x)) 'or' TRUE) by BINARITH:19 .=TRUE '&' TRUE by BINARITH:19 .=TRUE by MARGREL1:45; hence thesis; end; hence thesis by BVFUNC_1:def 14; end; theorem for a,b,c being Element of Funcs(Y,BOOLEAN) holds (a '&' (b 'or' c)) 'imp' ((a '&' b) 'or' (a '&' c))=I_el(Y) proof let a,b,c be Element of Funcs(Y,BOOLEAN); for x being Element of Y holds Pj((a '&' (b 'or' c)) 'imp' ((a '&' b) 'or' (a '&' c)),x)=TRUE proof let x be Element of Y; Pj((a '&' (b 'or' c)) 'imp' ((a '&' b) 'or' (a '&' c)),x) ='not' Pj(a '&' (b 'or' c),x) 'or' Pj((a '&' b) 'or' (a '&' c),x) by BVFUNC_1:def 11 .='not'( Pj(a,x) '&' Pj(b 'or' c,x)) 'or' Pj((a '&' b) 'or' (a '&' c),x) by VALUAT_1:def 6 .='not' (Pj(a,x) '&' (Pj(b,x) 'or' Pj(c,x))) 'or' Pj((a '&' b) 'or' (a '&' c),x) by BVFUNC_1:def 7 .='not'( Pj(a,x) '&' (Pj(b,x) 'or' Pj(c,x))) 'or' (Pj(a '&' b,x) 'or' Pj(a '&' c,x)) by BVFUNC_1:def 7 .='not'( Pj(a,x) '&' (Pj(b,x) 'or' Pj(c,x))) 'or' ((Pj(a,x) '&' Pj(b,x)) 'or' Pj(a '&' c,x)) by VALUAT_1:def 6 .='not'( Pj(a,x) '&' (Pj(b,x) 'or' Pj(c,x))) 'or' ((Pj(a,x) '&' Pj(b,x)) 'or' (Pj(a,x) '&' Pj(c,x))) by VALUAT_1:def 6 .='not'( (Pj(a,x) '&' Pj(b,x)) 'or' (Pj(a,x) '&' Pj(c,x))) 'or' ((Pj(a,x) '&' Pj(b,x)) 'or' (Pj(a,x) '&' Pj(c,x))) by BINARITH:22 .= ((Pj(a,x) '&' Pj(b,x)) 'or' (Pj(a,x) '&' Pj(c,x))) 'or' ('not'( Pj(a,x) '&' Pj(b,x)) '&' 'not' (Pj(a,x) '&' Pj(c,x))) by BINARITH:10 .= (((Pj(a,x) '&' Pj(c,x)) 'or' (Pj(a,x) '&' Pj(b,x))) 'or' 'not'( Pj(a,x) '&' Pj(b,x))) '&' (((Pj(a,x) '&' Pj(b,x)) 'or' (Pj(a,x) '&' Pj(c,x))) 'or' 'not'( Pj(a,x) '&' Pj(c,x))) by BINARITH:23 .= ((Pj(a,x) '&' Pj(c,x)) 'or' ((Pj(a,x) '&' Pj(b,x)) 'or' 'not'( Pj(a,x) '&' Pj(b,x)))) '&' (((Pj(a,x) '&' Pj(b,x)) 'or' (Pj(a,x) '&' Pj(c,x))) 'or' 'not'( Pj(a,x) '&' Pj(c,x))) by BINARITH:20 .= ((Pj(a,x) '&' Pj(c,x)) 'or' ((Pj(a,x) '&' Pj(b,x)) 'or' 'not'( Pj(a,x) '&' Pj(b,x)))) '&' ((Pj(a,x) '&' Pj(b,x)) 'or' ((Pj(a,x) '&' Pj(c,x)) 'or' 'not'( Pj(a,x) '&' Pj(c,x)))) by BINARITH:20 .= ((Pj(a,x) '&' Pj(c,x)) 'or' TRUE) '&' ((Pj(a,x) '&' Pj(b,x)) 'or' ((Pj(a,x) '&' Pj(c,x)) 'or' 'not'( Pj(a,x) '&' Pj(c,x)))) by BINARITH:18 .= ((Pj(a,x) '&' Pj(c,x)) 'or' TRUE) '&' ((Pj(a,x) '&' Pj(b,x)) 'or' TRUE) by BINARITH:18 .= TRUE '&' ((Pj(a,x) '&' Pj(b,x)) 'or' TRUE) by BINARITH:19 .= TRUE '&' TRUE by BINARITH:19 .= TRUE by MARGREL1:45; hence thesis; end; hence thesis by BVFUNC_1:def 14; end; theorem for a,b,c being Element of Funcs(Y,BOOLEAN) holds ((a 'or' c) '&' (b 'or' c)) 'imp' ((a '&' b) 'or' c)=I_el(Y) proof let a,b,c be Element of Funcs(Y,BOOLEAN); for x being Element of Y holds Pj(((a 'or' c) '&' (b 'or' c)) 'imp' ((a '&' b) 'or' c),x)=TRUE proof let x be Element of Y; Pj(((a 'or' c) '&' (b 'or' c)) 'imp' ((a '&' b) 'or' c),x) ='not' Pj((a 'or' c) '&' (b 'or' c),x) 'or' Pj((a '&' b) 'or' c,x) by BVFUNC_1:def 11 .='not'( Pj(a 'or' c,x) '&' Pj(b 'or' c,x)) 'or' Pj((a '&' b) 'or' c,x) by VALUAT_1:def 6 .='not' ((Pj(a,x) 'or' Pj(c,x)) '&' Pj(b 'or' c,x)) 'or' Pj((a '&' b) 'or' c,x) by BVFUNC_1:def 7 .='not'( (Pj(a,x) 'or' Pj(c,x)) '&' (Pj(b,x) 'or' Pj(c,x))) 'or' Pj((a '&' b) 'or' c,x) by BVFUNC_1:def 7 .=('not'( Pj(a,x) 'or' Pj(c,x)) 'or' 'not'( Pj(b,x) 'or' Pj(c,x))) 'or' Pj((a '&' b) 'or' c,x) by BINARITH:9 .=('not'( Pj(a,x) 'or' Pj(c,x)) 'or' 'not'( Pj(b,x) 'or' Pj(c,x))) 'or' (Pj(a '&' b,x) 'or' Pj(c,x)) by BVFUNC_1:def 7 .=('not'( Pj(a,x) 'or' Pj(c,x)) 'or' 'not'( Pj(b,x) 'or' Pj(c,x))) 'or' (Pj(c,x) 'or' (Pj(a,x) '&' Pj(b,x))) by VALUAT_1:def 6 .=('not'( Pj(a,x) 'or' Pj(c,x)) 'or' 'not'( Pj(b,x) 'or' Pj(c,x))) 'or' ((Pj(a,x) 'or' Pj(c,x)) '&' (Pj(c,x) 'or' Pj(b,x))) by BINARITH:23 .=(('not'( Pj(a,x) 'or' Pj(c,x)) 'or' 'not'( Pj(b,x) 'or' Pj(c,x))) 'or' (Pj(a,x) 'or' Pj(c,x))) '&' (('not'( Pj(a,x) 'or' Pj(c,x)) 'or' 'not'( Pj(b,x) 'or' Pj(c,x))) 'or' (Pj(b,x) 'or' Pj(c,x))) by BINARITH:23 .=('not'( Pj(b,x) 'or' Pj(c,x)) 'or' ('not'( Pj(a,x) 'or' Pj(c,x)) 'or' (Pj(a,x) 'or' Pj(c,x)))) '&' (('not'( Pj(a,x) 'or' Pj(c,x)) 'or' 'not'( Pj(b,x) 'or' Pj(c,x))) 'or' (Pj(b,x) 'or' Pj(c,x))) by BINARITH:20 .=('not'( Pj(b,x) 'or' Pj(c,x)) 'or' ('not'( Pj(a,x) 'or' Pj(c,x)) 'or' (Pj(a,x) 'or' Pj(c,x)))) '&' ('not'( Pj(a,x) 'or' Pj(c,x)) 'or' ('not'( Pj(b,x) 'or' Pj(c,x)) 'or' (Pj(b,x) 'or' Pj(c,x)))) by BINARITH:20 .=('not'( Pj(b,x) 'or' Pj(c,x)) 'or' TRUE) '&' ('not'( Pj(a,x) 'or' Pj(c,x)) 'or' ('not'( Pj(b,x) 'or' Pj(c,x)) 'or' (Pj(b,x) 'or' Pj(c,x)))) by BINARITH:18 .=('not'( Pj(b,x) 'or' Pj(c,x)) 'or' TRUE) '&' ('not'( Pj(a,x) 'or' Pj(c,x)) 'or' TRUE) by BINARITH:18 .=TRUE '&' ('not'( Pj(a,x) 'or' Pj(c,x)) 'or' TRUE) by BINARITH:19 .=TRUE '&' TRUE by BINARITH:19 .=TRUE by MARGREL1:45; hence thesis; end; hence thesis by BVFUNC_1:def 14; end; theorem for a,b,c being Element of Funcs(Y,BOOLEAN) holds ((a 'or' b) '&' c) 'imp' ((a '&' c) 'or' (b '&' c))=I_el(Y) proof let a,b,c be Element of Funcs(Y,BOOLEAN); for x being Element of Y holds Pj(((a 'or' b) '&' c) 'imp' ((a '&' c) 'or' (b '&' c)),x)=TRUE proof let x be Element of Y; Pj(((a 'or' b) '&' c) 'imp' ((a '&' c) 'or' (b '&' c)),x) ='not' Pj((a 'or' b) '&' c,x) 'or' Pj((a '&' c) 'or' (b '&' c),x) by BVFUNC_1:def 11 .='not'( Pj((a 'or' b),x) '&' Pj(c,x)) 'or' Pj((a '&' c) 'or' (b '&' c),x) by VALUAT_1:def 6 .='not'( (Pj(a,x) 'or' Pj(b,x)) '&' Pj(c,x)) 'or' Pj((a '&' c) 'or' (b '&' c),x) by BVFUNC_1:def 7 .='not'( (Pj(a,x) 'or' Pj(b,x)) '&' Pj(c,x)) 'or' (Pj(a '&' c,x) 'or' Pj(b '&' c,x)) by BVFUNC_1:def 7 .='not'( (Pj(a,x) 'or' Pj(b,x)) '&' Pj(c,x)) 'or' ((Pj(a,x) '&' Pj(c,x)) 'or' Pj(b '&' c,x)) by VALUAT_1:def 6 .='not'( Pj(c,x) '&' (Pj(a,x) 'or' Pj(b,x))) 'or' ((Pj(a,x) '&' Pj(c,x)) 'or' (Pj(b,x) '&' Pj(c,x))) by VALUAT_1:def 6 .='not'( (Pj(c,x) '&' Pj(a,x)) 'or' (Pj(c,x) '&' Pj(b,x))) 'or' ((Pj(a,x) '&' Pj(c,x)) 'or' (Pj(b,x) '&' Pj(c,x))) by BINARITH:22 .=((Pj(a,x) '&' Pj(c,x)) 'or' (Pj(b,x) '&' Pj(c,x))) 'or' ('not'( Pj(a,x) '&' Pj(c,x)) '&' 'not'( Pj(b,x) '&' Pj(c,x))) by BINARITH:10 .=(((Pj(b,x) '&' Pj(c,x)) 'or' (Pj(a,x) '&' Pj(c,x))) 'or' 'not'( Pj(a,x) '&' Pj(c,x))) '&' (((Pj(a,x) '&' Pj(c,x)) 'or' (Pj(b,x) '&' Pj(c,x))) 'or' 'not'( Pj(b,x) '&' Pj(c,x))) by BINARITH:23 .=((Pj(b,x) '&' Pj(c,x)) 'or' ((Pj(a,x) '&' Pj(c,x)) 'or' 'not'( Pj(a,x) '&' Pj(c,x)))) '&' (((Pj(a,x) '&' Pj(c,x)) 'or' (Pj(b,x) '&' Pj(c,x))) 'or' 'not'( Pj(b,x) '&' Pj(c,x))) by BINARITH:20 .=((Pj(b,x) '&' Pj(c,x)) 'or' ((Pj(a,x) '&' Pj(c,x)) 'or' 'not'( Pj(a,x) '&' Pj(c,x)))) '&' ((Pj(a,x) '&' Pj(c,x)) 'or' ((Pj(b,x) '&' Pj(c,x)) 'or' 'not'( Pj(b,x) '&' Pj(c,x)))) by BINARITH:20 .=((Pj(b,x) '&' Pj(c,x)) 'or' TRUE) '&' ((Pj(a,x) '&' Pj(c,x)) 'or' ((Pj(b,x) '&' Pj(c,x)) 'or' 'not'( Pj(b,x) '&' Pj(c,x)))) by BINARITH:18 .=((Pj(b,x) '&' Pj(c,x)) 'or' TRUE) '&' ((Pj(a,x) '&' Pj(c,x)) 'or' TRUE) by BINARITH:18 .=TRUE '&' ((Pj(a,x) '&' Pj(c,x)) 'or' TRUE) by BINARITH:19 .=TRUE '&' TRUE by BINARITH:19 .=TRUE by MARGREL1:45; hence thesis; end; hence thesis by BVFUNC_1:def 14; end; theorem for a,b being Element of Funcs(Y,BOOLEAN) holds (a '&' b)=I_el(Y) implies (a 'or' b)=I_el(Y) proof let a,b be Element of Funcs(Y,BOOLEAN); assume A1: (a '&' b)=I_el(Y); for x being Element of Y holds Pj(a 'or' b,x)=TRUE proof let x be Element of Y; Pj(a '&' b,x)= TRUE by A1,BVFUNC_1:def 14; then Pj(a,x) '&' Pj(b,x)=TRUE by VALUAT_1:def 6; then Pj(a,x)=TRUE & Pj(b,x)=TRUE by MARGREL1:45; then Pj(a 'or' b,x) =TRUE 'or' TRUE by BVFUNC_1:def 7 .=TRUE by BINARITH:19; hence thesis; end; hence thesis by BVFUNC_1:def 14; end; theorem for a,b,c being Element of Funcs(Y,BOOLEAN) holds (a 'imp' b)=I_el(Y) implies (a 'or' c) 'imp' (b 'or' c)=I_el(Y) proof let a,b,c be Element of Funcs(Y,BOOLEAN); assume A1: (a 'imp' b)=I_el(Y); for x being Element of Y holds Pj((a 'or' c) 'imp' (b 'or' c),x)=TRUE proof let x be Element of Y; Pj(a 'imp' b,x)= TRUE by A1,BVFUNC_1:def 14; then A2:'not' Pj(a,x) 'or' Pj(b,x) = TRUE by BVFUNC_1:def 11; Pj((a 'or' c) 'imp' (b 'or' c),x) ='not' Pj(a 'or' c,x) 'or' Pj(b 'or' c,x) by BVFUNC_1:def 11 .='not'( Pj(a,x) 'or' Pj(c,x)) 'or' Pj(b 'or' c,x) by BVFUNC_1:def 7 .='not'( Pj(a,x) 'or' Pj(c,x)) 'or' (Pj(b,x) 'or' Pj(c,x)) by BVFUNC_1:def 7 .=(Pj(b,x) 'or' Pj(c,x)) 'or' ('not' Pj(a,x) '&' 'not' Pj(c,x)) by BINARITH:10 .=((Pj(c,x) 'or' Pj(b,x)) 'or' 'not' Pj(a,x)) '&' ((Pj(b,x) 'or' Pj(c,x)) 'or' 'not' Pj(c,x)) by BINARITH:23 .=(Pj(c,x) 'or' ('not' Pj(a,x) 'or' Pj(b,x))) '&' ((Pj(b,x) 'or' Pj(c,x)) 'or' 'not' Pj(c,x)) by BINARITH:20 .=TRUE '&' ((Pj(b,x) 'or' Pj(c,x)) 'or' 'not' Pj(c,x)) by A2,BINARITH:19 .=TRUE '&' (Pj(b,x) 'or' (Pj(c,x) 'or' 'not' Pj(c,x))) by BINARITH:20 .=TRUE '&' (Pj(b,x) 'or' TRUE) by BINARITH:18 .=TRUE '&' TRUE by BINARITH:19 .=TRUE by MARGREL1:45; hence thesis; end; hence thesis by BVFUNC_1:def 14; end; theorem for a,b,c being Element of Funcs(Y,BOOLEAN) holds (a 'imp' b)=I_el(Y) implies (a '&' c) 'imp' (b '&' c)=I_el(Y) proof let a,b,c be Element of Funcs(Y,BOOLEAN); assume A1: (a 'imp' b)=I_el(Y); for x being Element of Y holds Pj((a '&' c) 'imp' (b '&' c),x)=TRUE proof let x be Element of Y; Pj(a 'imp' b,x)= TRUE by A1,BVFUNC_1:def 14; then A2:'not' Pj(a,x) 'or' Pj(b,x) = TRUE by BVFUNC_1:def 11; Pj((a '&' c) 'imp' (b '&' c),x) ='not' Pj(a '&' c,x) 'or' Pj(b '&' c,x) by BVFUNC_1:def 11 .='not'( Pj(a,x) '&' Pj(c,x)) 'or' Pj(b '&' c,x) by VALUAT_1:def 6 .='not'( Pj(a,x) '&' Pj(c,x)) 'or' (Pj(b,x) '&' Pj(c,x)) by VALUAT_1:def 6 .=('not' Pj(a,x) 'or' 'not' Pj(c,x)) 'or' (Pj(b,x) '&' Pj(c,x)) by BINARITH:9 .=(('not' Pj(c,x) 'or' 'not' Pj(a,x)) 'or' Pj(b,x)) '&' (('not' Pj(a,x) 'or' 'not' Pj(c,x)) 'or' Pj(c,x)) by BINARITH:23 .=('not' Pj(c,x) 'or' ('not' Pj(a,x) 'or' Pj(b,x))) '&' (('not' Pj(a,x) 'or' 'not' Pj(c,x)) 'or' Pj(c,x)) by BINARITH:20 .=('not' Pj(c,x) 'or' ('not' Pj(a,x) 'or' Pj(b,x))) '&' ('not' Pj(a,x) 'or' ('not' Pj(c,x) 'or' Pj(c,x))) by BINARITH:20 .=('not' Pj(c,x) 'or' ('not' Pj(a,x) 'or' Pj(b,x))) '&' ('not' Pj(a,x) 'or' TRUE) by BINARITH:18 .=('not' Pj(c,x) 'or' TRUE) '&' TRUE by A2,BINARITH:19 .=TRUE '&' TRUE by BINARITH:19 .=TRUE by MARGREL1:45; hence thesis; end; hence thesis by BVFUNC_1:def 14; end; theorem for a,b,c being Element of Funcs(Y,BOOLEAN) holds (c 'imp' a)=I_el(Y) & (c 'imp' b)=I_el(Y) implies c 'imp' (a '&' b)=I_el(Y) proof let a,b,c be Element of Funcs(Y,BOOLEAN); assume A1:(c 'imp' a)=I_el(Y) & (c 'imp' b)=I_el(Y); for x being Element of Y holds Pj(c 'imp' (a '&' b),x)=TRUE proof let x be Element of Y; Pj(c 'imp' a,x)= TRUE by A1,BVFUNC_1:def 14; then A2:'not' Pj(c,x) 'or' Pj(a,x) = TRUE by BVFUNC_1:def 11; Pj(c 'imp' b,x)= TRUE by A1,BVFUNC_1:def 14; then A3:'not' Pj(c,x) 'or' Pj(b,x) = TRUE by BVFUNC_1:def 11; Pj(c 'imp' (a '&' b),x) ='not' Pj(c,x) 'or' Pj(a '&' b,x) by BVFUNC_1:def 11 .='not' Pj(c,x) 'or' (Pj(a,x) '&' Pj(b,x)) by VALUAT_1:def 6 .=TRUE '&' TRUE by A2,A3,BINARITH:23 .=TRUE by MARGREL1:45; hence thesis; end; hence thesis by BVFUNC_1:def 14; end; theorem for a,b,c being Element of Funcs(Y,BOOLEAN) holds (a 'imp' c)=I_el(Y) & (b 'imp' c)=I_el(Y) implies (a 'or' b) 'imp' c = I_el(Y) proof let a,b,c be Element of Funcs(Y,BOOLEAN); assume A1:(a 'imp' c)=I_el(Y) & (b 'imp' c)=I_el(Y); for x being Element of Y holds Pj((a 'or' b) 'imp' c,x)=TRUE proof let x be Element of Y; Pj(a 'imp' c,x)= TRUE by A1,BVFUNC_1:def 14; then A2:'not' Pj(a,x) 'or' Pj(c,x) = TRUE by BVFUNC_1:def 11; Pj(b 'imp' c,x)= TRUE by A1,BVFUNC_1:def 14; then A3:'not' Pj(b,x) 'or' Pj(c,x) = TRUE by BVFUNC_1:def 11; Pj((a 'or' b) 'imp' c,x) ='not' Pj(a 'or' b,x) 'or' Pj(c,x) by BVFUNC_1:def 11 .='not'( Pj(a,x) 'or' Pj(b,x)) 'or' Pj(c,x) by BVFUNC_1:def 7 .=Pj(c,x) 'or' ('not' Pj(a,x) '&' 'not' Pj(b,x)) by BINARITH:10 .=TRUE '&' TRUE by A2,A3,BINARITH:23 .=TRUE by MARGREL1:45; hence thesis; end; hence thesis by BVFUNC_1:def 14; end; theorem for a,b being Element of Funcs(Y,BOOLEAN) holds (a 'or' b)=I_el(Y) & 'not' a=I_el(Y) implies b=I_el(Y) proof let a,b be Element of Funcs(Y,BOOLEAN); assume A1:(a 'or' b)=I_el(Y) & 'not' a=I_el(Y); for x being Element of Y holds Pj(b,x)=TRUE proof let x be Element of Y; Pj(a 'or' b,x)= TRUE by A1,BVFUNC_1:def 14; then A2:Pj(a,x) 'or' Pj(b,x) = TRUE by BVFUNC_1:def 7; Pj('not' a,x)= TRUE by A1,BVFUNC_1:def 14; then 'not' Pj(a,x) = TRUE by VALUAT_1:def 5; then Pj(a,x) = FALSE by MARGREL1:41; hence thesis by A2,BINARITH:7; end; hence thesis by BVFUNC_1:def 14; end; theorem for a,b,c,d being Element of Funcs(Y,BOOLEAN) holds (a 'imp' b)=I_el(Y) & (c 'imp' d)=I_el(Y) implies (a '&' c) 'imp' (b '&' d)=I_el(Y) proof let a,b,c,d be Element of Funcs(Y,BOOLEAN); assume A1:(a 'imp' b)=I_el(Y) & (c 'imp' d)=I_el(Y); for x being Element of Y holds Pj((a '&' c) 'imp' (b '&' d),x)=TRUE proof let x be Element of Y; Pj(a 'imp' b,x)= TRUE by A1,BVFUNC_1:def 14; then A2:'not' Pj(a,x) 'or' Pj(b,x) = TRUE by BVFUNC_1:def 11; Pj(c 'imp' d,x)= TRUE by A1,BVFUNC_1:def 14; then A3:'not' Pj(c,x) 'or' Pj(d,x) = TRUE by BVFUNC_1:def 11; Pj((a '&' c) 'imp' (b '&' d),x) ='not' Pj(a '&' c,x) 'or' Pj(b '&' d,x) by BVFUNC_1:def 11 .='not'( Pj(a,x) '&' Pj(c,x)) 'or' Pj(b '&' d,x) by VALUAT_1:def 6 .='not'( Pj(a,x) '&' Pj(c,x)) 'or' (Pj(b,x) '&' Pj(d,x)) by VALUAT_1:def 6 .=('not' Pj(a,x) 'or' 'not' Pj(c,x)) 'or' (Pj(b,x) '&' Pj(d,x)) by BINARITH:9 .=(('not' Pj(c,x) 'or' 'not' Pj(a,x)) 'or' Pj(b,x)) '&' (('not' Pj(a,x) 'or' 'not' Pj(c,x)) 'or' Pj(d,x)) by BINARITH:23 .=('not' Pj(c,x) 'or' ('not' Pj(a,x) 'or' Pj(b,x))) '&' (('not' Pj(a,x) 'or' 'not' Pj(c,x)) 'or' Pj(d,x)) by BINARITH:20 .=('not' Pj(c,x) 'or' TRUE) '&' ('not' Pj(a,x) 'or' TRUE) by A2,A3,BINARITH:20 .=TRUE '&' ('not' Pj(a,x) 'or' TRUE) by BINARITH:19 .=TRUE '&' TRUE by BINARITH:19 .=TRUE by MARGREL1:45; hence thesis; end; hence thesis by BVFUNC_1:def 14; end; theorem for a,b,c,d being Element of Funcs(Y,BOOLEAN) holds (a 'imp' b)=I_el(Y) & (c 'imp' d)=I_el(Y) implies (a 'or' c) 'imp' (b 'or' d) =I_el(Y) proof let a,b,c,d be Element of Funcs(Y,BOOLEAN); assume A1:(a 'imp' b)=I_el(Y) & (c 'imp' d)=I_el(Y); for x being Element of Y holds Pj((a 'or' c) 'imp' (b 'or' d),x)=TRUE proof let x be Element of Y; Pj(a 'imp' b,x)= TRUE by A1,BVFUNC_1:def 14; then A2:'not' Pj(a,x) 'or' Pj(b,x) = TRUE by BVFUNC_1:def 11; Pj(c 'imp' d,x)= TRUE by A1,BVFUNC_1:def 14; then A3:'not' Pj(c,x) 'or' Pj(d,x) = TRUE by BVFUNC_1:def 11; Pj((a 'or' c) 'imp' (b 'or' d),x) ='not' Pj(a 'or' c,x) 'or' Pj(b 'or' d,x) by BVFUNC_1:def 11 .='not'( Pj(a,x) 'or' Pj(c,x)) 'or' Pj(b 'or' d,x) by BVFUNC_1:def 7 .='not'( Pj(a,x) 'or' Pj(c,x)) 'or' (Pj(b,x) 'or' Pj(d,x)) by BVFUNC_1:def 7 .=(Pj(b,x) 'or' Pj(d,x)) 'or' ('not' Pj(a,x) '&' 'not' Pj(c,x)) by BINARITH:10 .=((Pj(d,x) 'or' Pj(b,x)) 'or' 'not' Pj(a,x)) '&' ((Pj(b,x) 'or' Pj(d,x)) 'or' 'not' Pj(c,x)) by BINARITH:23 .=(Pj(d,x) 'or' (Pj(b,x) 'or' 'not' Pj(a,x))) '&' ((Pj(b,x) 'or' Pj(d,x)) 'or' 'not' Pj(c,x)) by BINARITH:20 .=(Pj(d,x) 'or' TRUE) '&' (Pj(b,x) 'or' TRUE) by A2,A3,BINARITH:20 .=TRUE '&' (Pj(b,x) 'or' TRUE) by BINARITH:19 .=TRUE '&' TRUE by BINARITH:19 .=TRUE by MARGREL1:45; hence thesis; end; hence thesis by BVFUNC_1:def 14; end; theorem for a,b being Element of Funcs(Y,BOOLEAN) holds (a '&' 'not' b) 'imp' 'not' a=I_el(Y) implies (a 'imp' b)=I_el(Y) proof let a,b be Element of Funcs(Y,BOOLEAN); assume A1: (a '&' 'not' b) 'imp' 'not' a=I_el(Y); for x being Element of Y holds Pj(a 'imp' b,x)=TRUE proof let x be Element of Y; Pj((a '&' 'not' b) 'imp' 'not' a,x)=TRUE by A1,BVFUNC_1:def 14; then 'not' Pj(a '&' 'not' b,x) 'or' Pj('not' a,x) = TRUE by BVFUNC_1:def 11 ; then 'not'( Pj(a,x) '&' Pj('not' b,x)) 'or' Pj('not' a,x)=TRUE by VALUAT_1:def 6; then ('not' Pj(a,x) 'or' 'not' Pj('not' b,x)) 'or' Pj('not' a,x)=TRUE by BINARITH:9; then ('not' Pj(a,x) 'or' 'not' 'not' Pj(b,x)) 'or' Pj('not' a,x)=TRUE by VALUAT_1:def 5; then ('not' Pj(a,x) 'or' 'not' 'not' Pj(b,x)) 'or' 'not' Pj(a,x)=TRUE by VALUAT_1:def 5; then ('not' Pj(a,x) 'or' Pj(b,x)) 'or' 'not' Pj(a,x)=TRUE by MARGREL1:40; then Pj(b,x) 'or' ('not' Pj(a,x) 'or' 'not' Pj(a,x))=TRUE by BINARITH:20; then Pj(b,x) 'or' 'not' Pj(a,x)=TRUE by BINARITH:21; hence thesis by BVFUNC_1:def 11; end; hence thesis by BVFUNC_1:def 14; end; canceled; theorem for a,b being Element of Funcs(Y,BOOLEAN) holds a 'imp' 'not' b=I_el(Y) implies b 'imp' 'not' a=I_el(Y) proof let a,b be Element of Funcs(Y,BOOLEAN); assume A1:a 'imp' 'not' b=I_el(Y); for x being Element of Y holds Pj(b 'imp' 'not' a,x)=TRUE proof let x be Element of Y; Pj(a 'imp' 'not' b,x)=TRUE by A1,BVFUNC_1:def 14; then ('not' Pj(a,x)) 'or' Pj('not' b,x)=TRUE by BVFUNC_1:def 11; then A2:'not' Pj(a,x) 'or' 'not' Pj(b,x)=TRUE by VALUAT_1:def 5; Pj(b 'imp' 'not' a,x) =('not' Pj(b,x)) 'or' Pj('not' a,x) by BVFUNC_1:def 11 .=TRUE by A2,VALUAT_1:def 5; hence thesis; end; hence thesis by BVFUNC_1:def 14; end; theorem for a,b being Element of Funcs(Y,BOOLEAN) holds 'not' a 'imp' b=I_el(Y) implies 'not' b 'imp' a=I_el(Y) proof let a,b be Element of Funcs(Y,BOOLEAN); assume A1:'not' a 'imp' b=I_el(Y); for x being Element of Y holds Pj('not' b 'imp' a,x)=TRUE proof let x be Element of Y; Pj('not' a 'imp' b,x)=TRUE by A1,BVFUNC_1:def 14; then ('not' Pj('not' a,x)) 'or' Pj(b,x)=TRUE by BVFUNC_1:def 11; then 'not' 'not' Pj(a,x) 'or' Pj(b,x)=TRUE by VALUAT_1:def 5; then A2:Pj(a,x) 'or' Pj(b,x)=TRUE by MARGREL1:40; Pj('not' b 'imp' a,x) =('not' Pj('not' b,x)) 'or' Pj(a,x) by BVFUNC_1:def 11 .=('not' 'not' Pj(b,x)) 'or' Pj(a,x) by VALUAT_1:def 5 .=TRUE by A2,MARGREL1:40; hence thesis; end; hence thesis by BVFUNC_1:def 14; end; theorem for a,b being Element of Funcs(Y,BOOLEAN) holds a 'imp' (a 'or' b)=I_el(Y) proof let a,b be Element of Funcs(Y,BOOLEAN); for x being Element of Y holds Pj(a 'imp' (a 'or' b),x)=TRUE proof let x be Element of Y; Pj(a 'imp' (a 'or' b),x) ='not' Pj(a,x) 'or' Pj(a 'or' b,x) by BVFUNC_1:def 11 .='not' Pj(a,x) 'or' (Pj(a,x) 'or' Pj(b,x)) by BVFUNC_1:def 7 .=('not' Pj(a,x) 'or' Pj(a,x)) 'or' Pj(b,x) by BINARITH:20 .=TRUE 'or' Pj(b,x) by BINARITH:18 .=TRUE by BINARITH:19; hence thesis; end; hence thesis by BVFUNC_1:def 14; end; theorem for a,b being Element of Funcs(Y,BOOLEAN) holds (a 'or' b) 'imp' ('not' a 'imp' b)=I_el(Y) proof let a,b be Element of Funcs(Y,BOOLEAN); for x being Element of Y holds Pj((a 'or' b) 'imp' ('not' a 'imp' b),x)= TRUE proof let x be Element of Y; Pj((a 'or' b) 'imp' ('not' a 'imp' b),x) ='not' Pj(a 'or' b,x) 'or' Pj('not' a 'imp' b,x) by BVFUNC_1:def 11 .='not'( Pj(a,x) 'or' Pj(b,x)) 'or' Pj('not' a 'imp' b,x) by BVFUNC_1:def 7 .='not'( Pj(a,x) 'or' Pj(b,x)) 'or' ('not' Pj('not' a,x) 'or' Pj(b,x)) by BVFUNC_1:def 11 .=('not' Pj(a,x) '&' 'not' Pj(b,x)) 'or' ('not' Pj('not' a,x) 'or' Pj(b,x)) by BINARITH:10 .=('not' Pj(a,x) '&' 'not' Pj(b,x)) 'or' ('not' 'not' Pj(a,x) 'or' Pj(b,x)) by VALUAT_1:def 5 .=(Pj(a,x) 'or' Pj(b,x)) 'or' ('not' Pj(a,x) '&' 'not' Pj(b,x)) by MARGREL1:40 .=((Pj(a,x) 'or' Pj(b,x)) 'or' 'not' Pj(a,x)) '&' ((Pj(a,x) 'or' Pj(b,x)) 'or' 'not' Pj(b,x)) by BINARITH:23 .=((Pj(a,x) 'or' 'not' Pj(a,x)) 'or' Pj(b,x)) '&' ((Pj(a,x) 'or' Pj(b,x)) 'or' 'not' Pj(b,x)) by BINARITH:20 .=((Pj(a,x) 'or' 'not' Pj(a,x)) 'or' Pj(b,x)) '&' (Pj(a,x) 'or' (Pj(b,x) 'or' 'not' Pj(b,x))) by BINARITH:20 .=(TRUE 'or' Pj(b,x)) '&' (Pj(a,x) 'or' (Pj(b,x) 'or' 'not' Pj(b,x))) by BINARITH:18 .=(TRUE 'or' Pj(b,x)) '&' (Pj(a,x) 'or' TRUE) by BINARITH:18 .=TRUE '&' (Pj(a,x) 'or' TRUE) by BINARITH:19 .=TRUE '&' TRUE by BINARITH:19 .=TRUE by MARGREL1:45; hence thesis; end; hence thesis by BVFUNC_1:def 14; end; theorem for a,b being Element of Funcs(Y,BOOLEAN) holds 'not'( a 'or' b) 'imp' ('not' a '&' 'not' b)=I_el(Y) proof let a,b be Element of Funcs(Y,BOOLEAN); for x being Element of Y holds Pj('not'( a 'or' b) 'imp' ('not' a '&' 'not' b),x)=TRUE proof let x be Element of Y; Pj('not'( a 'or' b) 'imp' ('not' a '&' 'not' b),x) ='not' Pj('not'( a 'or' b),x) 'or' Pj('not' a '&' 'not' b,x) by BVFUNC_1:def 11 .='not' 'not' Pj(a 'or' b,x) 'or' Pj('not' a '&' 'not' b,x) by VALUAT_1:def 5 .=Pj(a 'or' b,x) 'or' Pj('not' a '&' 'not' b,x) by MARGREL1:40 .=(Pj(a,x) 'or' Pj(b,x)) 'or' Pj('not' a '&' 'not' b,x) by BVFUNC_1:def 7 .=(Pj(a,x) 'or' Pj(b,x)) 'or' (Pj('not' a,x) '&' Pj('not' b,x)) by VALUAT_1:def 6 .=(Pj(a,x) 'or' Pj(b,x)) 'or' ('not' Pj(a,x) '&' Pj('not' b,x)) by VALUAT_1:def 5 .=(Pj(a,x) 'or' Pj(b,x)) 'or' ('not' Pj(a,x) '&' 'not' Pj(b,x)) by VALUAT_1:def 5 .=((Pj(a,x) 'or' Pj(b,x)) 'or' 'not' Pj(a,x)) '&' ((Pj(a,x) 'or' Pj(b,x)) 'or' 'not' Pj(b,x)) by BINARITH:23 .=((Pj(a,x) 'or' 'not' Pj(a,x)) 'or' Pj(b,x)) '&' ((Pj(a,x) 'or' Pj(b,x)) 'or' 'not' Pj(b,x)) by BINARITH:20 .=((Pj(a,x) 'or' 'not' Pj(a,x)) 'or' Pj(b,x)) '&' (Pj(a,x) 'or' (Pj(b,x) 'or' 'not' Pj(b,x))) by BINARITH:20 .=(TRUE 'or' Pj(b,x)) '&' (Pj(a,x) 'or' (Pj(b,x) 'or' 'not' Pj(b,x))) by BINARITH:18 .=(TRUE 'or' Pj(b,x)) '&' (Pj(a,x) 'or' TRUE) by BINARITH:18 .=TRUE '&' (Pj(a,x) 'or' TRUE) by BINARITH:19 .=TRUE '&' TRUE by BINARITH:19 .=TRUE by MARGREL1:45; hence thesis; end; hence thesis by BVFUNC_1:def 14; end; theorem for a,b being Element of Funcs(Y,BOOLEAN) holds ('not' a '&' 'not' b) 'imp' 'not'( a 'or' b)=I_el(Y) proof let a,b be Element of Funcs(Y,BOOLEAN); for x being Element of Y holds Pj(('not' a '&' 'not' b) 'imp' 'not' (a 'or' b),x)=TRUE proof let x be Element of Y; Pj(('not' a '&' 'not' b) 'imp' 'not'( a 'or' b),x) ='not' Pj('not' a '&' 'not' b,x) 'or' Pj('not'( a 'or' b),x) by BVFUNC_1:def 11 .='not' Pj('not' a '&' 'not' b,x) 'or' 'not' Pj(a 'or' b,x) by VALUAT_1:def 5 .='not'( Pj('not' a,x) '&' Pj('not' b,x)) 'or' 'not' Pj(a 'or' b,x) by VALUAT_1:def 6 .='not'( 'not' Pj(a,x) '&' Pj('not' b,x)) 'or' 'not' Pj(a 'or' b,x) by VALUAT_1:def 5 .='not'( 'not' Pj(a,x) '&' 'not' Pj(b,x)) 'or' 'not' Pj(a 'or' b,x) by VALUAT_1:def 5 .=('not' 'not' Pj(a,x) 'or' 'not' 'not' Pj(b,x)) 'or' 'not' Pj(a 'or' b,x) by BINARITH:9 .=(Pj(a,x) 'or' 'not' 'not' Pj(b,x)) 'or' 'not' Pj(a 'or' b,x) by MARGREL1:40 .=(Pj(a,x) 'or' Pj(b,x)) 'or' 'not' Pj(a 'or' b,x) by MARGREL1:40 .=(Pj(a,x) 'or' Pj(b,x)) 'or' 'not'( Pj(a,x) 'or' Pj(b,x)) by BVFUNC_1:def 7 .=(Pj(a,x) 'or' Pj(b,x)) 'or' ('not' Pj(a,x) '&' 'not' Pj(b,x)) by BINARITH:10 .=((Pj(a,x) 'or' Pj(b,x)) 'or' 'not' Pj(a,x)) '&' ((Pj(a,x) 'or' Pj(b,x)) 'or' 'not' Pj(b,x)) by BINARITH:23 .=((Pj(a,x) 'or' 'not' Pj(a,x)) 'or' Pj(b,x)) '&' ((Pj(a,x) 'or' Pj(b,x)) 'or' 'not' Pj(b,x)) by BINARITH:20 .=((Pj(a,x) 'or' 'not' Pj(a,x)) 'or' Pj(b,x)) '&' (Pj(a,x) 'or' (Pj(b,x) 'or' 'not' Pj(b,x))) by BINARITH:20 .=(TRUE 'or' Pj(b,x)) '&' (Pj(a,x) 'or' (Pj(b,x) 'or' 'not' Pj(b,x))) by BINARITH:18 .=(TRUE 'or' Pj(b,x)) '&' (Pj(a,x) 'or' TRUE) by BINARITH:18 .=TRUE '&' (Pj(a,x) 'or' TRUE) by BINARITH:19 .=TRUE '&' TRUE by BINARITH:19 .=TRUE by MARGREL1:45; hence thesis; end; hence thesis by BVFUNC_1:def 14; end; theorem for a,b being Element of Funcs(Y,BOOLEAN) holds 'not'( a 'or' b) 'imp' 'not' a=I_el(Y) proof let a,b be Element of Funcs(Y,BOOLEAN); for x being Element of Y holds Pj('not'( a 'or' b) 'imp' 'not' a,x)=TRUE proof let x be Element of Y; Pj('not'( a 'or' b) 'imp' 'not' a,x) ='not' Pj('not'( a 'or' b),x) 'or' Pj('not' a,x) by BVFUNC_1:def 11 .='not' 'not' Pj(a 'or' b,x) 'or' Pj('not' a,x) by VALUAT_1:def 5 .='not' 'not' Pj(a 'or' b,x) 'or' 'not' Pj(a,x) by VALUAT_1:def 5 .=Pj(a 'or' b,x) 'or' 'not' Pj(a,x) by MARGREL1:40 .=(Pj(a,x) 'or' Pj(b,x)) 'or' 'not' Pj(a,x) by BVFUNC_1:def 7 .=(Pj(a,x) 'or' 'not' Pj(a,x)) 'or' Pj(b,x) by BINARITH:20 .=TRUE 'or' Pj(b,x) by BINARITH:18 .=TRUE by BINARITH:19; hence thesis; end; hence thesis by BVFUNC_1:def 14; end; theorem for a being Element of Funcs(Y,BOOLEAN) holds (a 'or' a) 'imp' a=I_el(Y) proof let a be Element of Funcs(Y,BOOLEAN); for x being Element of Y holds Pj((a 'or' a) 'imp' a,x)=TRUE proof let x be Element of Y; Pj((a 'or' a) 'imp' a,x) ='not' Pj(a 'or' a,x) 'or' Pj(a,x) by BVFUNC_1:def 11 .='not'( Pj(a,x) 'or' Pj(a,x)) 'or' Pj(a,x) by BVFUNC_1:def 7 .=('not' Pj(a,x) '&' 'not' Pj(a,x)) 'or' Pj(a,x) by BINARITH:10 .='not' Pj(a,x) 'or' Pj(a,x) by BINARITH:16 .=TRUE by BINARITH:18; hence thesis; end; hence thesis by BVFUNC_1:def 14; end; theorem for a,b being Element of Funcs(Y,BOOLEAN) holds (a '&' 'not' a) 'imp' b=I_el(Y) proof let a,b be Element of Funcs(Y,BOOLEAN); for x being Element of Y holds Pj((a '&' 'not' a) 'imp' b,x)=TRUE proof let x be Element of Y; Pj((a '&' 'not' a) 'imp' b,x) ='not' Pj(a '&' 'not' a,x) 'or' Pj(b,x) by BVFUNC_1:def 11 .='not'( Pj(a,x) '&' Pj('not' a,x)) 'or' Pj(b,x) by VALUAT_1:def 6 .='not'( Pj(a,x) '&' 'not' Pj(a,x)) 'or' Pj(b,x) by VALUAT_1:def 5 .=('not' Pj(a,x) 'or' 'not' 'not' Pj(a,x)) 'or' Pj(b,x) by BINARITH:9 .=TRUE 'or' Pj(b,x) by BINARITH:18 .=TRUE by BINARITH:19; hence thesis; end; hence thesis by BVFUNC_1:def 14; end; theorem for a,b being Element of Funcs(Y,BOOLEAN) holds (a 'imp' b) 'imp' ('not' a 'or' b)=I_el(Y) proof let a,b be Element of Funcs(Y,BOOLEAN); for x being Element of Y holds Pj((a 'imp' b) 'imp' ('not' a 'or' b),x)= TRUE proof let x be Element of Y; Pj((a 'imp' b) 'imp' ('not' a 'or' b),x) ='not' Pj(a 'imp' b,x) 'or' Pj('not' a 'or' b,x) by BVFUNC_1:def 11 .='not'( 'not' Pj(a,x) 'or' Pj(b,x)) 'or' Pj('not' a 'or' b,x) by BVFUNC_1:def 11 .='not'( 'not' Pj(a,x) 'or' Pj(b,x)) 'or' (Pj('not' a,x) 'or' Pj(b,x)) by BVFUNC_1:def 7 .=('not' 'not' Pj(a,x) '&' 'not' Pj(b,x)) 'or' (Pj('not' a,x) 'or' Pj(b,x)) by BINARITH:10 .=(Pj(a,x) '&' 'not' Pj(b,x)) 'or' (Pj('not' a,x) 'or' Pj(b,x)) by MARGREL1:40 .=('not' Pj(a,x) 'or' Pj(b,x)) 'or' (Pj(a,x) '&' 'not' Pj(b,x)) by VALUAT_1:def 5 .=(('not' Pj(a,x) 'or' Pj(b,x)) 'or' Pj(a,x)) '&' (('not' Pj(a,x) 'or' Pj(b,x)) 'or' 'not' Pj(b,x)) by BINARITH:23 .=(('not' Pj(a,x) 'or' Pj(a,x)) 'or' Pj(b,x)) '&' (('not' Pj(a,x) 'or' Pj(b,x)) 'or' 'not' Pj(b,x)) by BINARITH:20 .=(('not' Pj(a,x) 'or' Pj(a,x)) 'or' Pj(b,x)) '&' ('not' Pj(a,x) 'or' (Pj(b,x) 'or' 'not' Pj(b,x))) by BINARITH:20 .=(TRUE 'or' Pj(b,x)) '&' ('not' Pj(a,x) 'or' (Pj(b,x) 'or' 'not' Pj(b,x))) by BINARITH:18 .=(TRUE 'or' Pj(b,x)) '&' ('not' Pj(a,x) 'or' TRUE) by BINARITH:18 .=TRUE '&' ('not' Pj(a,x) 'or' TRUE) by BINARITH:19 .=TRUE '&' TRUE by BINARITH:19 .=TRUE by MARGREL1:45; hence thesis; end; hence thesis by BVFUNC_1:def 14; end; theorem for a,b being Element of Funcs(Y,BOOLEAN) holds (a '&' b) 'imp' 'not'( a 'imp' 'not' b)=I_el(Y) proof let a,b be Element of Funcs(Y,BOOLEAN); for x being Element of Y holds Pj((a '&' b) 'imp' 'not'( a 'imp' 'not' b),x)=TRUE proof let x be Element of Y; Pj((a '&' b) 'imp' 'not'( a 'imp' 'not' b),x) ='not' Pj(a '&' b,x) 'or' Pj('not'( a 'imp' 'not' b),x) by BVFUNC_1:def 11 .='not'( Pj(a,x) '&' Pj(b,x)) 'or' Pj('not'( a 'imp' 'not' b),x) by VALUAT_1:def 6 .='not'( Pj(a,x) '&' Pj(b,x)) 'or' 'not' Pj(a 'imp' 'not' b,x) by VALUAT_1:def 5 .=('not' Pj(a,x) 'or' 'not' Pj(b,x)) 'or' 'not' Pj(a 'imp' 'not' b,x) by BINARITH:9 .=('not' Pj(a,x) 'or' 'not' Pj(b,x)) 'or' 'not'( 'not' Pj(a,x) 'or' Pj('not' b,x)) by BVFUNC_1:def 11 .=('not' Pj(a,x) 'or' 'not' Pj(b,x)) 'or' 'not'( 'not' Pj(a,x) 'or' 'not' Pj(b,x)) by VALUAT_1:def 5 .=('not' Pj(a,x) 'or' 'not' Pj(b,x)) 'or' ('not' 'not' Pj(a,x) '&' 'not' 'not' Pj(b,x)) by BINARITH:10 .=('not' Pj(a,x) 'or' 'not' Pj(b,x)) 'or' (Pj(a,x) '&' 'not' 'not' Pj(b,x)) by MARGREL1:40 .=('not' Pj(a,x) 'or' 'not' Pj(b,x)) 'or' (Pj(a,x) '&' Pj(b,x)) by MARGREL1:40 .=(('not' Pj(a,x) 'or' 'not' Pj(b,x)) 'or' Pj(a,x)) '&' (('not' Pj(a,x) 'or' 'not' Pj(b,x)) 'or' Pj(b,x)) by BINARITH:23 .=(('not' Pj(a,x) 'or' Pj(a,x)) 'or' 'not' Pj(b,x)) '&' (('not' Pj(a,x) 'or' 'not' Pj(b,x)) 'or' Pj(b,x)) by BINARITH:20 .=(('not' Pj(a,x) 'or' Pj(a,x)) 'or' 'not' Pj(b,x)) '&' ('not' Pj(a,x) 'or' ('not' Pj(b,x) 'or' Pj(b,x))) by BINARITH:20 .=(TRUE 'or' 'not' Pj(b,x)) '&' ('not' Pj(a,x) 'or' ('not' Pj(b,x) 'or' Pj(b,x))) by BINARITH:18 .=(TRUE 'or' 'not' Pj(b,x)) '&' ('not' Pj(a,x) 'or' TRUE) by BINARITH:18 .=TRUE '&' ('not' Pj(a,x) 'or' TRUE) by BINARITH:19 .=TRUE '&' TRUE by BINARITH:19 .=TRUE by MARGREL1:45; hence thesis; end; hence thesis by BVFUNC_1:def 14; end; theorem for a,b being Element of Funcs(Y,BOOLEAN) holds 'not'( a 'imp' 'not' b) 'imp' (a '&' b)=I_el(Y) proof let a,b be Element of Funcs(Y,BOOLEAN); for x being Element of Y holds Pj('not'( a 'imp' 'not' b) 'imp' (a '&' b),x)=TRUE proof let x be Element of Y; Pj('not'( a 'imp' 'not' b) 'imp' (a '&' b),x) ='not' Pj('not'( a 'imp' 'not' b),x) 'or' Pj(a '&' b,x) by BVFUNC_1:def 11 .='not' 'not' Pj(a 'imp' 'not' b,x) 'or' Pj(a '&' b,x) by VALUAT_1:def 5 .='not' 'not' Pj(a 'imp' 'not' b,x) 'or' (Pj(a,x) '&' Pj(b,x)) by VALUAT_1:def 6 .='not' 'not'( 'not' Pj(a,x) 'or' Pj('not' b,x)) 'or' (Pj(a,x) '&' Pj(b,x)) by BVFUNC_1:def 11 .=('not' Pj(a,x) 'or' Pj('not' b,x)) 'or' (Pj(a,x) '&' Pj(b,x)) by MARGREL1:40 .=('not' Pj(a,x) 'or' 'not' Pj(b,x)) 'or' (Pj(a,x) '&' Pj(b,x)) by VALUAT_1:def 5 .=(('not' Pj(a,x) 'or' 'not' Pj(b,x)) 'or' Pj(a,x)) '&' (('not' Pj(a,x) 'or' 'not' Pj(b,x)) 'or' Pj(b,x)) by BINARITH:23 .=(('not' Pj(a,x) 'or' Pj(a,x)) 'or' 'not' Pj(b,x)) '&' (('not' Pj(a,x) 'or' 'not' Pj(b,x)) 'or' Pj(b,x)) by BINARITH:20 .=(('not' Pj(a,x) 'or' Pj(a,x)) 'or' 'not' Pj(b,x)) '&' ('not' Pj(a,x) 'or' ('not' Pj(b,x) 'or' Pj(b,x))) by BINARITH:20 .=(TRUE 'or' 'not' Pj(b,x)) '&' ('not' Pj(a,x) 'or' ('not' Pj(b,x) 'or' Pj(b,x))) by BINARITH:18 .=(TRUE 'or' 'not' Pj(b,x)) '&' ('not' Pj(a,x) 'or' TRUE) by BINARITH:18 .=TRUE '&' ('not' Pj(a,x) 'or' TRUE) by BINARITH:19 .=TRUE '&' TRUE by BINARITH:19 .=TRUE by MARGREL1:45; hence thesis; end; hence thesis by BVFUNC_1:def 14; end; theorem for a,b being Element of Funcs(Y,BOOLEAN) holds 'not'( a '&' b) 'imp' ('not' a 'or' 'not' b)=I_el(Y) proof let a,b be Element of Funcs(Y,BOOLEAN); for x being Element of Y holds Pj('not'( a '&' b) 'imp' ('not' a 'or' 'not' b),x)=TRUE proof let x be Element of Y; Pj('not'( a '&' b) 'imp' ('not' a 'or' 'not' b),x) ='not' Pj('not'( a '&' b),x) 'or' Pj('not' a 'or' 'not' b,x) by BVFUNC_1:def 11 .='not' 'not' Pj(a '&' b,x) 'or' Pj('not' a 'or' 'not' b,x) by VALUAT_1:def 5 .=Pj(a '&' b,x) 'or' Pj('not' a 'or' 'not' b,x) by MARGREL1:40 .=(Pj(a,x) '&' Pj(b,x)) 'or' Pj('not' a 'or' 'not' b,x) by VALUAT_1:def 6 .=(Pj('not' a,x) 'or' Pj('not' b,x)) 'or' (Pj(a,x) '&' Pj(b,x)) by BVFUNC_1:def 7 .=('not' Pj(a,x) 'or' Pj('not' b,x)) 'or' (Pj(a,x) '&' Pj(b,x)) by VALUAT_1:def 5 .=('not' Pj(a,x) 'or' 'not' Pj(b,x)) 'or' (Pj(a,x) '&' Pj(b,x)) by VALUAT_1:def 5 .=(('not' Pj(a,x) 'or' 'not' Pj(b,x)) 'or' Pj(a,x)) '&' (('not' Pj(a,x) 'or' 'not' Pj(b,x)) 'or' Pj(b,x)) by BINARITH:23 .=(('not' Pj(a,x) 'or' Pj(a,x)) 'or' 'not' Pj(b,x)) '&' (('not' Pj(a,x) 'or' 'not' Pj(b,x)) 'or' Pj(b,x)) by BINARITH:20 .=(('not' Pj(a,x) 'or' Pj(a,x)) 'or' 'not' Pj(b,x)) '&' ('not' Pj(a,x) 'or' ('not' Pj(b,x) 'or' Pj(b,x))) by BINARITH:20 .=(TRUE 'or' 'not' Pj(b,x)) '&' ('not' Pj(a,x) 'or' ('not' Pj(b,x) 'or' Pj(b,x))) by BINARITH:18 .=(TRUE 'or' 'not' Pj(b,x)) '&' ('not' Pj(a,x) 'or' TRUE) by BINARITH:18 .=TRUE '&' ('not' Pj(a,x) 'or' TRUE) by BINARITH:19 .=TRUE '&' TRUE by BINARITH:19 .=TRUE by MARGREL1:45; hence thesis; end; hence thesis by BVFUNC_1:def 14; end; theorem for a,b being Element of Funcs(Y,BOOLEAN) holds ('not' a 'or' 'not' b) 'imp' 'not'( a '&' b)=I_el(Y) proof let a,b be Element of Funcs(Y,BOOLEAN); for x being Element of Y holds Pj(('not' a 'or' 'not' b) 'imp' 'not' (a '&' b),x)=TRUE proof let x be Element of Y; Pj(('not' a 'or' 'not' b) 'imp' 'not'( a '&' b),x) ='not' Pj('not' a 'or' 'not' b,x) 'or' Pj('not'( a '&' b),x) by BVFUNC_1:def 11 .='not' Pj('not' a 'or' 'not' b,x) 'or' 'not' Pj(a '&' b,x) by VALUAT_1:def 5 .='not'( Pj('not' a,x) 'or' Pj('not' b,x)) 'or' 'not' Pj(a '&' b,x) by BVFUNC_1:def 7 .='not'( 'not' Pj(a,x) 'or' Pj('not' b,x)) 'or' 'not' Pj(a '&' b,x) by VALUAT_1:def 5 .='not'( 'not' Pj(a,x) 'or' 'not' Pj(b,x)) 'or' 'not' Pj(a '&' b,x) by VALUAT_1:def 5 .='not'( 'not' Pj(a,x) 'or' 'not' Pj(b,x)) 'or' 'not' (Pj(a,x) '&' Pj(b,x)) by VALUAT_1:def 6 .=('not' 'not' Pj(a,x) '&' 'not' 'not' Pj(b,x)) 'or' 'not' (Pj(a,x) '&' Pj(b,x)) by BINARITH:10 .=('not' 'not' Pj(a,x) '&' 'not' 'not' Pj(b,x)) 'or' ('not' Pj(a,x) 'or' 'not' Pj(b,x)) by BINARITH:9 .=(Pj(a,x) '&' 'not' 'not' Pj(b,x)) 'or' ('not' Pj(a,x) 'or' 'not' Pj(b,x)) by MARGREL1:40 .=('not' Pj(a,x) 'or' 'not' Pj(b,x)) 'or' (Pj(a,x) '&' Pj(b,x)) by MARGREL1:40 .=(('not' Pj(a,x) 'or' 'not' Pj(b,x)) 'or' Pj(a,x)) '&' (('not' Pj(a,x) 'or' 'not' Pj(b,x)) 'or' Pj(b,x)) by BINARITH:23 .=(('not' Pj(a,x) 'or' Pj(a,x)) 'or' 'not' Pj(b,x)) '&' (('not' Pj(a,x) 'or' 'not' Pj(b,x)) 'or' Pj(b,x)) by BINARITH:20 .=(('not' Pj(a,x) 'or' Pj(a,x)) 'or' 'not' Pj(b,x)) '&' ('not' Pj(a,x) 'or' ('not' Pj(b,x) 'or' Pj(b,x))) by BINARITH:20 .=(TRUE 'or' 'not' Pj(b,x)) '&' ('not' Pj(a,x) 'or' ('not' Pj(b,x) 'or' Pj(b,x))) by BINARITH:18 .=(TRUE 'or' 'not' Pj(b,x)) '&' ('not' Pj(a,x) 'or' TRUE) by BINARITH:18 .=TRUE '&' ('not' Pj(a,x) 'or' TRUE) by BINARITH:19 .=TRUE '&' TRUE by BINARITH:19 .=TRUE by MARGREL1:45; hence thesis; end; hence thesis by BVFUNC_1:def 14; end; theorem for a,b being Element of Funcs(Y,BOOLEAN) holds (a '&' b) 'imp' a=I_el(Y) proof let a,b be Element of Funcs(Y,BOOLEAN); for x being Element of Y holds Pj((a '&' b) 'imp' a,x)=TRUE proof let x be Element of Y; Pj((a '&' b) 'imp' a,x) ='not' Pj(a '&' b,x) 'or' Pj(a,x) by BVFUNC_1:def 11 .='not'( Pj(a,x) '&' Pj(b,x)) 'or' Pj(a,x) by VALUAT_1:def 6 .=('not' Pj(a,x) 'or' 'not' Pj(b,x)) 'or' Pj(a,x) by BINARITH:9 .=('not' Pj(a,x) 'or' Pj(a,x)) 'or' 'not' Pj(b,x) by BINARITH:20 .=TRUE 'or' 'not' Pj(b,x) by BINARITH:18 .=TRUE by BINARITH:19; hence thesis; end; hence thesis by BVFUNC_1:def 14; end; theorem for a,b being Element of Funcs(Y,BOOLEAN) holds (a '&' b) 'imp' (a 'or' b)=I_el(Y) proof let a,b be Element of Funcs(Y,BOOLEAN); for x being Element of Y holds Pj((a '&' b) 'imp' (a 'or' b),x)=TRUE proof let x be Element of Y; Pj((a '&' b) 'imp' (a 'or' b),x) ='not' Pj(a '&' b,x) 'or' Pj(a 'or' b,x) by BVFUNC_1:def 11 .='not'( Pj(a,x) '&' Pj(b,x)) 'or' Pj(a 'or' b,x) by VALUAT_1:def 6 .=('not' Pj(a,x) 'or' 'not' Pj(b,x)) 'or' Pj(a 'or' b,x) by BINARITH:9 .=('not' Pj(a,x) 'or' 'not' Pj(b,x)) 'or' (Pj(a,x) 'or' Pj(b,x)) by BVFUNC_1:def 7 .=(('not' Pj(b,x) 'or' 'not' Pj(a,x)) 'or' Pj(a,x)) 'or' Pj(b,x) by BINARITH:20 .=('not' Pj(b,x) 'or' ('not' Pj(a,x) 'or' Pj(a,x))) 'or' Pj(b,x) by BINARITH:20 .=('not' Pj(b,x) 'or' TRUE) 'or' Pj(b,x) by BINARITH:18 .=TRUE 'or' Pj(b,x) by BINARITH:19 .=TRUE by BINARITH:19; hence thesis; end; hence thesis by BVFUNC_1:def 14; end; theorem for a,b being Element of Funcs(Y,BOOLEAN) holds (a '&' b) 'imp' b=I_el(Y) proof let a,b be Element of Funcs(Y,BOOLEAN); for x being Element of Y holds Pj((a '&' b) 'imp' b,x)=TRUE proof let x be Element of Y; Pj((a '&' b) 'imp' b,x) ='not' Pj(a '&' b,x) 'or' Pj(b,x) by BVFUNC_1:def 11 .='not'( Pj(a,x) '&' Pj(b,x)) 'or' Pj(b,x) by VALUAT_1:def 6 .=('not' Pj(a,x) 'or' 'not' Pj(b,x)) 'or' Pj(b,x) by BINARITH:9 .='not' Pj(a,x) 'or' ('not' Pj(b,x) 'or' Pj(b,x)) by BINARITH:20 .='not' Pj(a,x) 'or' TRUE by BINARITH:18 .=TRUE by BINARITH:19; hence thesis; end; hence thesis by BVFUNC_1:def 14; end; theorem for a being Element of Funcs(Y,BOOLEAN) holds a 'imp' a '&' a=I_el(Y) proof let a be Element of Funcs(Y,BOOLEAN); for x being Element of Y holds Pj(a 'imp' (a '&' a),x)=TRUE proof let x be Element of Y; Pj(a 'imp' a '&' a,x) ='not' Pj(a,x) 'or' Pj(a '&' a,x) by BVFUNC_1:def 11 .='not' Pj(a,x) 'or' (Pj(a,x) '&' Pj(a,x)) by VALUAT_1:def 6 .=('not' Pj(a,x) 'or' Pj(a,x)) '&' ('not' Pj(a,x) 'or' Pj(a,x)) by BINARITH:23 .=TRUE '&' ('not' Pj(a,x) 'or' Pj(a,x)) by BINARITH:18 .=TRUE '&' TRUE by BINARITH:18 .=TRUE by MARGREL1:45; hence thesis; end; hence thesis by BVFUNC_1:def 14; end; theorem for a,b being Element of Funcs(Y,BOOLEAN) holds (a 'eqv' b) 'imp' (a 'imp' b)=I_el(Y) proof let a,b be Element of Funcs(Y,BOOLEAN); for x being Element of Y holds Pj((a 'eqv' b) 'imp' (a 'imp' b),x)=TRUE proof let x be Element of Y; Pj((a 'eqv' b) 'imp' (a 'imp' b),x) ='not' Pj(a 'eqv' b,x) 'or' Pj(a 'imp' b,x) by BVFUNC_1:def 11 .='not' 'not'( Pj(a,x) 'xor' Pj(b,x)) 'or' Pj(a 'imp' b,x) by BVFUNC_1:def 12 .=(Pj(a,x) 'xor' Pj(b,x)) 'or' Pj(a 'imp' b,x) by MARGREL1:40 .=(('not' Pj(a,x) '&' Pj(b,x)) 'or' (Pj(a,x) '&' 'not' Pj(b,x))) 'or' Pj(a 'imp' b,x) by BINARITH:def 2 .=(('not' Pj(a,x) '&' Pj(b,x)) 'or' (Pj(a,x) '&' 'not' Pj(b,x))) 'or' ('not' Pj(a,x) 'or' Pj(b,x)) by BVFUNC_1:def 11 .=(('not' Pj(a,x) '&' Pj(b,x)) 'or' (Pj(a,x) '&' 'not' Pj(b,x))) 'or' ('not' Pj(a,x) 'or' 'not' 'not' Pj(b,x)) by MARGREL1:40 .=(('not' Pj(a,x) '&' Pj(b,x)) 'or' (Pj(a,x) '&' 'not' Pj(b,x))) 'or' 'not'( Pj(a,x) '&' 'not' Pj(b,x)) by BINARITH:9 .=('not' Pj(a,x) '&' Pj(b,x)) 'or' ((Pj(a,x) '&' 'not' Pj(b,x)) 'or' 'not'( Pj(a,x) '&' 'not' Pj(b,x))) by BINARITH:20 .=('not' Pj(a,x) '&' Pj(b,x)) 'or' TRUE by BINARITH:18 .=TRUE by BINARITH:19; hence thesis; end; hence thesis by BVFUNC_1:def 14; end; theorem for a,b being Element of Funcs(Y,BOOLEAN) holds (a 'eqv' b) 'imp' (b 'imp' a)=I_el(Y) proof let a,b be Element of Funcs(Y,BOOLEAN); for x being Element of Y holds Pj((a 'eqv' b) 'imp' (b 'imp' a),x)=TRUE proof let x be Element of Y; Pj((a 'eqv' b) 'imp' (b 'imp' a),x) ='not' Pj(a 'eqv' b,x) 'or' Pj(b 'imp' a,x) by BVFUNC_1:def 11 .='not' 'not'( Pj(a,x) 'xor' Pj(b,x)) 'or' Pj(b 'imp' a,x) by BVFUNC_1:def 12 .=(Pj(a,x) 'xor' Pj(b,x)) 'or' Pj(b 'imp' a,x) by MARGREL1:40 .=(('not' Pj(a,x) '&' Pj(b,x)) 'or' (Pj(a,x) '&' 'not' Pj(b,x))) 'or' Pj(b 'imp' a,x) by BINARITH:def 2 .=(('not' Pj(a,x) '&' Pj(b,x)) 'or' (Pj(a,x) '&' 'not' Pj(b,x))) 'or' (Pj(a,x) 'or' 'not' Pj(b,x)) by BVFUNC_1:def 11 .=('not' Pj(a,x) '&' Pj(b,x)) 'or' ((Pj(a,x) '&' 'not' Pj(b,x)) 'or' (Pj(a,x) 'or' 'not' Pj(b,x))) by BINARITH:20 .=('not' Pj(a,x) '&' Pj(b,x)) 'or' ((Pj(a,x) '&' 'not' Pj(b,x)) 'or' ('not' 'not' Pj(a,x) 'or' 'not' Pj(b,x))) by MARGREL1:40 .=('not' Pj(a,x) '&' Pj(b,x)) 'or' ('not'( 'not' Pj(a,x) '&' Pj(b,x)) 'or' (Pj(a,x) '&' 'not' Pj(b,x))) by BINARITH:9 .=(('not' Pj(a,x) '&' Pj(b,x)) 'or' 'not'( 'not' Pj(a,x) '&' Pj(b,x))) 'or' (Pj(a,x) '&' 'not' Pj(b,x)) by BINARITH:20 .=TRUE 'or' (Pj(a,x) '&' 'not' Pj(b,x)) by BINARITH:18 .=TRUE by BINARITH:19; hence thesis; end; hence thesis by BVFUNC_1:def 14; end; theorem for a,b,c being Element of Funcs(Y,BOOLEAN) holds ((a 'or' b) 'or' c) 'imp' (a 'or' (b 'or' c))=I_el(Y) proof let a,b,c be Element of Funcs(Y,BOOLEAN); for x being Element of Y holds Pj(((a 'or' b) 'or' c) 'imp' (a 'or' (b 'or' c)),x)=TRUE proof let x be Element of Y; Pj(((a 'or' b) 'or' c) 'imp' (a 'or' (b 'or' c)),x) ='not' Pj((a 'or' b) 'or' c,x) 'or' Pj(a 'or' (b 'or' c),x) by BVFUNC_1:def 11 .='not'( Pj(a 'or' b,x) 'or' Pj(c,x)) 'or' Pj(a 'or' (b 'or' c),x) by BVFUNC_1:def 7 .='not'( (Pj(a,x) 'or' Pj(b,x)) 'or' Pj(c,x)) 'or' Pj(a 'or' (b 'or' c),x) by BVFUNC_1:def 7 .='not'( (Pj(a,x) 'or' Pj(b,x)) 'or' Pj(c,x)) 'or' (Pj(a,x) 'or' Pj(b 'or' c,x)) by BVFUNC_1:def 7 .='not'( (Pj(a,x) 'or' Pj(b,x)) 'or' Pj(c,x)) 'or' (Pj(a,x) 'or' (Pj(b,x) 'or' Pj(c,x))) by BVFUNC_1:def 7 .='not'( (Pj(a,x) 'or' Pj(b,x)) 'or' Pj(c,x)) 'or' ((Pj(a,x) 'or' Pj(b,x)) 'or' Pj(c,x)) by BINARITH:20 .=TRUE by BINARITH:18; hence thesis; end; hence thesis by BVFUNC_1:def 14; end; theorem for a,b,c being Element of Funcs(Y,BOOLEAN) holds ((a '&' b) '&' c) 'imp' (a '&' (b '&' c))=I_el(Y) proof let a,b,c be Element of Funcs(Y,BOOLEAN); for x being Element of Y holds Pj(((a '&' b) '&' c) 'imp' (a '&' (b '&' c)),x)=TRUE proof let x be Element of Y; Pj(((a '&' b) '&' c) 'imp' (a '&' (b '&' c)),x) ='not' Pj((a '&' b) '&' c,x) 'or' Pj(a '&' (b '&' c),x) by BVFUNC_1:def 11 .='not'( Pj(a '&' b,x) '&' Pj(c,x)) 'or' Pj(a '&' (b '&' c),x) by VALUAT_1:def 6 .='not'( (Pj(a,x) '&' Pj(b,x)) '&' Pj(c,x)) 'or' Pj(a '&' (b '&' c),x) by VALUAT_1:def 6 .='not'( (Pj(a,x) '&' Pj(b,x)) '&' Pj(c,x)) 'or' (Pj(a,x) '&' Pj(b '&' c,x)) by VALUAT_1:def 6 .='not'( (Pj(a,x) '&' Pj(b,x)) '&' Pj(c,x)) 'or' (Pj(a,x) '&' (Pj(b,x) '&' Pj(c,x))) by VALUAT_1:def 6 .='not'( (Pj(a,x) '&' Pj(b,x)) '&' Pj(c,x)) 'or' ((Pj(a,x) '&' Pj(b,x)) '&' Pj(c,x)) by MARGREL1:52 .=TRUE by BINARITH:18; hence thesis; end; hence thesis by BVFUNC_1:def 14; end; theorem for a,b,c being Element of Funcs(Y,BOOLEAN) holds (a 'or' (b 'or' c)) 'imp' ((a 'or' b) 'or' c)=I_el(Y) proof let a,b,c be Element of Funcs(Y,BOOLEAN); for x being Element of Y holds Pj((a 'or' (b 'or' c)) 'imp' ((a 'or' b) 'or' c),x)=TRUE proof let x be Element of Y; Pj((a 'or' (b 'or' c)) 'imp' ((a 'or' b) 'or' c),x) ='not' Pj(a 'or' (b 'or' c),x) 'or' Pj((a 'or' b) 'or' c,x) by BVFUNC_1:def 11 .='not'( Pj(a,x) 'or' Pj(b 'or' c,x)) 'or' Pj((a 'or' b) 'or' c,x) by BVFUNC_1:def 7 .='not'( Pj(a,x) 'or' (Pj(b,x) 'or' Pj(c,x))) 'or' Pj((a 'or' b) 'or' c,x) by BVFUNC_1:def 7 .='not'( Pj(a,x) 'or' (Pj(b,x) 'or' Pj(c,x))) 'or' (Pj(a 'or' b,x) 'or' Pj(c,x)) by BVFUNC_1:def 7 .='not'( Pj(a,x) 'or' (Pj(b,x) 'or' Pj(c,x))) 'or' ((Pj(a,x) 'or' Pj(b,x)) 'or' Pj(c,x)) by BVFUNC_1:def 7 .='not'( Pj(a,x) 'or' (Pj(b,x) 'or' Pj(c,x))) 'or' (Pj(a,x) 'or' (Pj(b,x) 'or' Pj(c,x))) by BINARITH:20 .=TRUE by BINARITH:18; hence thesis; end; hence thesis by BVFUNC_1:def 14; end;