Copyright (c) 1999 Association of Mizar Users
environ
vocabulary FUNCT_2, MARGREL1, PARTIT1, EQREL_1, ZF_LANG, BVFUNC_2, BVFUNC_1,
T_1TOPSP;
notation XBOOLE_0, SUBSET_1, FRAENKEL, MARGREL1, VALUAT_1, EQREL_1, BVFUNC_1,
BVFUNC_2;
constructors BVFUNC_2, BVFUNC_1;
clusters MARGREL1, VALUAT_1, AMI_1, XBOOLE_0;
definitions BVFUNC_1;
theorems T_1TOPSP, MARGREL1, BVFUNC_1, BVFUNC_2, VALUAT_1;
begin :: Chap. 1 Four Variable Predicate Calculus
reserve Y for non empty set,
a for Element of Funcs(Y,BOOLEAN),
G for Subset of PARTITIONS(Y),
A, B for a_partition of Y;
canceled 3;
theorem
All('not' Ex(a,A,G),B,G) '<' 'not' Ex(All(a,B,G),A,G)
proof
let z be Element of Y;
assume A1:Pj(All('not' Ex(a,A,G),B,G),z)=TRUE;
A2:z in EqClass(z,CompF(B,G)) &
EqClass(z,CompF(B,G)) in CompF(B,G)
by T_1TOPSP:def 1;
now assume
not (for x being Element of Y st x in EqClass(z,CompF(B,G)) holds
Pj('not' Ex(a,A,G),x)=TRUE);then
Pj(B_INF('not' Ex(a,A,G),CompF(B,G)),z) = FALSE by BVFUNC_1:def 19;then
Pj(All('not' Ex(a,A,G),B,G),z)=FALSE by BVFUNC_2:def 9;
hence contradiction by A1,MARGREL1:43;
end;then
Pj('not' Ex(a,A,G),z)=TRUE by A2;then
'not' Pj(Ex(a,A,G),z)=TRUE by VALUAT_1:def 5;then
A3:Pj(Ex(a,A,G),z)=FALSE by MARGREL1:41;
A4:now assume
ex x being Element of Y st
x in EqClass(z,CompF(A,G)) & Pj(a,x)=TRUE;then
Pj(B_SUP(a,CompF(A,G)),z) = TRUE by BVFUNC_1:def 20;then
Pj(Ex(a,A,G),z)=TRUE by BVFUNC_2:def 10;
hence contradiction by A3,MARGREL1:43;
end;
for x being Element of Y st
x in EqClass(z,CompF(A,G)) holds Pj(All(a,B,G),x)<>TRUE
proof
let x be Element of Y;
assume x in EqClass(z,CompF(A,G));then
A5:Pj(a,x)<>TRUE by A4;
x in EqClass(x,CompF(B,G)) & EqClass(x,CompF(B,G)) in CompF(B,G)
by T_1TOPSP:def 1;then
Pj(B_INF(a,CompF(B,G)),x) = FALSE by A5,BVFUNC_1:def 19;then
Pj(All(a,B,G),x)=FALSE by BVFUNC_2:def 9;
hence thesis by MARGREL1:43;
end; then
Pj(B_SUP(All(a,B,G),CompF(A,G)),z) = FALSE by BVFUNC_1:def 20;then
Pj(Ex(All(a,B,G),A,G),z)=FALSE by BVFUNC_2:def 10;then
'not' Pj(Ex(All(a,B,G),A,G),z)=TRUE by MARGREL1:41;
hence thesis by VALUAT_1:def 5;
end;