Copyright (c) 1999 Association of Mizar Users
environ vocabulary FUNCT_2, MARGREL1, PARTIT1, EQREL_1, ZF_LANG, BVFUNC_2, BVFUNC_1, T_1TOPSP; notation XBOOLE_0, SUBSET_1, FRAENKEL, MARGREL1, VALUAT_1, EQREL_1, BVFUNC_1, BVFUNC_2; constructors BVFUNC_2, BVFUNC_1; clusters MARGREL1, VALUAT_1, AMI_1, XBOOLE_0; definitions BVFUNC_1; theorems T_1TOPSP, MARGREL1, BVFUNC_1, BVFUNC_2, VALUAT_1; begin :: Chap. 1 Four Variable Predicate Calculus reserve Y for non empty set, a for Element of Funcs(Y,BOOLEAN), G for Subset of PARTITIONS(Y), A, B for a_partition of Y; canceled 3; theorem All('not' Ex(a,A,G),B,G) '<' 'not' Ex(All(a,B,G),A,G) proof let z be Element of Y; assume A1:Pj(All('not' Ex(a,A,G),B,G),z)=TRUE; A2:z in EqClass(z,CompF(B,G)) & EqClass(z,CompF(B,G)) in CompF(B,G) by T_1TOPSP:def 1; now assume not (for x being Element of Y st x in EqClass(z,CompF(B,G)) holds Pj('not' Ex(a,A,G),x)=TRUE);then Pj(B_INF('not' Ex(a,A,G),CompF(B,G)),z) = FALSE by BVFUNC_1:def 19;then Pj(All('not' Ex(a,A,G),B,G),z)=FALSE by BVFUNC_2:def 9; hence contradiction by A1,MARGREL1:43; end;then Pj('not' Ex(a,A,G),z)=TRUE by A2;then 'not' Pj(Ex(a,A,G),z)=TRUE by VALUAT_1:def 5;then A3:Pj(Ex(a,A,G),z)=FALSE by MARGREL1:41; A4:now assume ex x being Element of Y st x in EqClass(z,CompF(A,G)) & Pj(a,x)=TRUE;then Pj(B_SUP(a,CompF(A,G)),z) = TRUE by BVFUNC_1:def 20;then Pj(Ex(a,A,G),z)=TRUE by BVFUNC_2:def 10; hence contradiction by A3,MARGREL1:43; end; for x being Element of Y st x in EqClass(z,CompF(A,G)) holds Pj(All(a,B,G),x)<>TRUE proof let x be Element of Y; assume x in EqClass(z,CompF(A,G));then A5:Pj(a,x)<>TRUE by A4; x in EqClass(x,CompF(B,G)) & EqClass(x,CompF(B,G)) in CompF(B,G) by T_1TOPSP:def 1;then Pj(B_INF(a,CompF(B,G)),x) = FALSE by A5,BVFUNC_1:def 19;then Pj(All(a,B,G),x)=FALSE by BVFUNC_2:def 9; hence thesis by MARGREL1:43; end; then Pj(B_SUP(All(a,B,G),CompF(A,G)),z) = FALSE by BVFUNC_1:def 20;then Pj(Ex(All(a,B,G),A,G),z)=FALSE by BVFUNC_2:def 10;then 'not' Pj(Ex(All(a,B,G),A,G),z)=TRUE by MARGREL1:41; hence thesis by VALUAT_1:def 5; end;