Copyright (c) 1999 Association of Mizar Users
environ vocabulary FUNCT_2, MARGREL1, PARTIT1, EQREL_1, BVFUNC_2, ZF_LANG, BVFUNC_1, T_1TOPSP; notation XBOOLE_0, SUBSET_1, FRAENKEL, MARGREL1, VALUAT_1, EQREL_1, SETWISEO, BVFUNC_1, BVFUNC_2; constructors SETWISEO, BVFUNC_2, BVFUNC_1; clusters SUBSET_1, MARGREL1, VALUAT_1, AMI_1, XBOOLE_0; definitions BVFUNC_1; theorems T_1TOPSP, MARGREL1, BVFUNC_1, BVFUNC_2, BVFUNC13, VALUAT_1; begin :: Chap. 1 Predicate Calculus reserve Y for non empty set; canceled 3; theorem for a being Element of Funcs(Y,BOOLEAN), G being Subset of PARTITIONS(Y), A,B,C being a_partition of Y holds All('not' Ex(a,A,G),B,G) '<' 'not' Ex(All(a,B,G),A,G) proof let a be Element of Funcs(Y,BOOLEAN); let G be Subset of PARTITIONS(Y); let A,B,C be a_partition of Y; A1:Ex(a,A,G) = B_SUP(a,CompF(A,G)) by BVFUNC_2:def 10; A2:All('not' Ex(a,A,G),B,G) = B_INF('not' Ex(a,A,G),CompF(B,G)) by BVFUNC_2:def 9; A3:for y being Element of Y holds ( (for x being Element of Y st x in EqClass(y,CompF(B,G)) holds Pj('not' Ex(a,A,G),x)=TRUE) implies Pj(B_INF('not' Ex(a,A,G),CompF(B,G)),y) = TRUE ) & (not (for x being Element of Y st x in EqClass(y,CompF(B,G)) holds Pj('not' Ex(a,A,G),x)=TRUE) implies Pj(B_INF('not' Ex(a,A,G),CompF(B,G)),y) = FALSE) by BVFUNC_1:def 19; A4:All(a,B,G) = B_INF(a,CompF(B,G)) by BVFUNC_2:def 9; A5:Ex(All(a,B,G),A,G) = B_SUP(All(a,B,G),CompF(A,G)) by BVFUNC_2:def 10; let z be Element of Y; assume A6:Pj(All('not' Ex(a,A,G),B,G),z)=TRUE; A7:z in EqClass(z,CompF(B,G)) & EqClass(z,CompF(B,G)) in CompF(B,G) by T_1TOPSP:def 1; now assume not (for x being Element of Y st x in EqClass(z,CompF(B,G)) holds Pj('not' Ex(a,A,G),x)=TRUE);then Pj(B_INF('not' Ex(a,A,G),CompF(B,G)),z) = FALSE by A3;then Pj(All('not' Ex(a,A,G),B,G),z)=FALSE by A2;then Pj(All('not' Ex(a,A,G),B,G),z)<>TRUE by MARGREL1:43; hence contradiction by A6; end;then for x being Element of Y st x in EqClass(z,CompF(B,G)) holds Pj('not' Ex(a,A,G),x)=TRUE;then Pj('not' Ex(a,A,G),z)=TRUE by A7;then 'not' Pj(Ex(a,A,G),z)=TRUE by VALUAT_1:def 5;then Pj(Ex(a,A,G),z)='not' TRUE by MARGREL1:40;then A8:Pj(Ex(a,A,G),z)=FALSE by MARGREL1:41; now assume ex x being Element of Y st x in EqClass(z,CompF(A,G)) & Pj(a,x)=TRUE;then Pj(B_SUP(a,CompF(A,G)),z) = TRUE by BVFUNC_1:def 20;then Pj(Ex(a,A,G),z)=TRUE by A1; hence contradiction by A8,MARGREL1:43; end;then A9:for x being Element of Y st x in EqClass(z,CompF(A,G)) holds Pj(a,x)<>TRUE; for x being Element of Y st x in EqClass(z,CompF(A,G)) holds Pj(All(a,B,G),x)<>TRUE proof let x be Element of Y; assume x in EqClass(z,CompF(A,G));then A10:Pj(a,x)<>TRUE by A9; x in EqClass(x,CompF(B,G)) & EqClass(x,CompF(B,G)) in CompF(B,G) by T_1TOPSP:def 1;then ex y being Element of Y st y in EqClass(x,CompF(B,G)) & Pj(a,y)<>TRUE by A10;then Pj(B_INF(a,CompF(B,G)),x) = FALSE by BVFUNC_1:def 19;then Pj(All(a,B,G),x)=FALSE by A4;then Pj(All(a,B,G),x)<>TRUE by MARGREL1:43; hence thesis; end;then not (ex x being Element of Y st x in EqClass(z,CompF(A,G)) & Pj(All(a,B,G),x)=TRUE);then Pj(B_SUP(All(a,B,G),CompF(A,G)),z) = FALSE by BVFUNC_1:def 20;then Pj(Ex(All(a,B,G),A,G),z)=FALSE by A5;then 'not' Pj(Ex(All(a,B,G),A,G),z)=TRUE by MARGREL1:41; hence thesis by VALUAT_1:def 5; end; Lm1:for a being Element of Funcs(Y,BOOLEAN),G being Subset of PARTITIONS(Y), A,B,C being a_partition of Y st G is independent holds Ex('not' All(a,A,G),B,G) '<' Ex('not' All(a,B,G),A,G) by BVFUNC13:34; canceled 2; theorem for a being Element of Funcs(Y,BOOLEAN),G being Subset of PARTITIONS(Y), A,B,C being a_partition of Y st G is independent & G={A,B,C} & A<>B & B<>C & C<>A holds Ex('not' All(a,A,G),B,G) = Ex('not' All(a,B,G),A,G) proof let a be Element of Funcs(Y,BOOLEAN); let G be Subset of PARTITIONS(Y); let A,B,C be a_partition of Y; assume A1:G is independent & G={A,B,C} & A<>B & B<>C & C<>A;then A2:Ex('not' All(a,A,G),B,G) '<' Ex('not' All(a,B,G),A,G) by Lm1; Ex('not' All(a,B,G),A,G) '<' Ex('not' All(a,A,G),B,G) by A1,Lm1; hence thesis by A2,BVFUNC_1:18; end; canceled 6; theorem for a being Element of Funcs(Y,BOOLEAN),G being Subset of PARTITIONS(Y), A,B,C being a_partition of Y st G is independent & G={A,B,C} & A<>B & B<>C & C<>A holds All('not' Ex(a,A,G),B,G) = All('not' Ex(a,B,G),A,G) proof let a be Element of Funcs(Y,BOOLEAN); let G be Subset of PARTITIONS(Y); let A,B,C be a_partition of Y; assume A1:G is independent & G={A,B,C} & A<>B & B<>C & C<>A;then A2:All('not' Ex(a,A,G),B,G) '<' All('not' Ex(a,B,G),A,G) by BVFUNC13:41; All('not' Ex(a,B,G),A,G) '<' All('not' Ex(a,A,G),B,G) by A1,BVFUNC13:41; hence thesis by A2,BVFUNC_1:18; end;