Copyright (c) 1998 Association of Mizar Users
environ vocabulary AMI_3, AMI_1, SCMFSA_2, SF_MASTR, SCMFSA6A, SCMFSA7B, BOOLE, UNIALG_2, SCMFSA6C, SCMFSA6B, FUNCT_1, FUNCT_4, RELAT_1, SCM_1, SUBSET_1, SFMASTR1, SCMFSA_9, CARD_3, ARYTM_1, SCMFSA9A, ABSVALUE, PRE_FF, SFMASTR2; notation TARSKI, XBOOLE_0, SUBSET_1, NUMBERS, XCMPLX_0, XREAL_0, CARD_3, NAT_1, GROUP_1, RELAT_1, FUNCT_1, FUNCT_2, FUNCT_4, PRE_FF, AMI_1, AMI_3, SCM_1, AMI_5, SCMFSA_2, SCMFSA6A, SCMFSA6B, SF_MASTR, SCMFSA6C, SCMFSA7B, SCMFSA_9, SFMASTR1, SCMFSA9A; constructors SCMFSA_9, SCMFSA6C, SCMFSA7B, SFMASTR1, SCMFSA9A, SCMFSA6B, SCM_1, AMI_5, PRE_FF, SETWISEO, SCMFSA6A, NAT_1, MEMBERED; clusters FINSET_1, FUNCT_1, AMI_1, SCMFSA_2, INT_1, SF_MASTR, SCMFSA6B, SCMFSA6C, SCMFSA7B, SCMFSA8A, SCMFSA_9, SFMASTR1, RELSET_1, FRAENKEL, XREAL_0, MEMBERED, NUMBERS, ORDINAL2; requirements NUMERALS, REAL, SUBSET, BOOLE, ARITHM; definitions SCMFSA9A; theorems TARSKI, AXIOMS, ZFMISC_1, REAL_1, ABSVALUE, NAT_1, INT_1, SUBSET_1, FUNCT_4, PRE_FF, AMI_3, SCMFSA_2, SCMFSA6A, SCMFSA6B, SF_MASTR, SCMFSA6C, SCMFSA7B, SCMFSA8A, SCMFSA8B, SCMFSA8C, SCMFSA_9, SFMASTR1, SCMFSA9A, XBOOLE_0, XBOOLE_1, XCMPLX_1; schemes FUNCT_2, NAT_1; begin :: SCM+FSA preliminaries reserve s, s1, s2 for State of SCM+FSA, a, b for Int-Location, d for read-write Int-Location, f for FinSeq-Location, I for Macro-Instruction, J for good Macro-Instruction, k, m for Nat; set D = Int-Locations \/ FinSeq-Locations; set SAt = Start-At insloc 0; set IL = the Instruction-Locations of SCM+FSA; :: set D = Int-Locations U FinSeq-Locations; :: set SAt = Start-At insloc 0; :: set IL = the Instruction-Locations of SCM+FSA; theorem Th1: :: UILIE: I is_closed_on Initialize s & I is_halting_on Initialize s & not b in UsedIntLoc I implies IExec(I, s).b = (Initialize s).b proof set a = b; assume that A1: I is_closed_on Initialize s and A2: I is_halting_on Initialize s and A3: not a in UsedIntLoc I; set sI = s+*Initialized I; set Is = Initialize s; A4: sI = Is+*(I +* SAt) by SCMFSA8A:13; I+*SAt c= Initialized I & Initialized I c= sI by FUNCT_4:26,SCMFSA8C:19; then A5: I+*SAt c= sI by XBOOLE_1:1; A6: Is+*(I +* Start-At insloc 0) is halting by A2,SCMFSA7B:def 8; IL misses D by SCMFSA_2:13,14,XBOOLE_1:70; then A7: dom (s | IL) misses D by SCMFSA8A:3; A8: IExec(I, s) | D = (Result(sI) +* s | IL) | D by SCMFSA6B:def 1 .= (Result(sI)) | D by A7,SCMFSA8A:2 .= (Computation sI).(LifeSpan sI) | D by A4,A6,SCMFSA6B:16; for m st m < (LifeSpan sI) holds IC (Computation sI).m in dom I by A1,A4,SCMFSA7B:def 7; then A9: (Computation sI).(LifeSpan sI).a = sI.a by A3,A5,SF_MASTR:69; sI | D = Is | D by SCMFSA8B:5; then sI.a = Is.a by SCMFSA6A:38; hence IExec(I, s).a = (Initialize s).a by A8,A9,SCMFSA6A:38; end; theorem :: UILIEF: I is_closed_on Initialize s & I is_halting_on Initialize s & not f in UsedInt*Loc I implies IExec(I, s).f = (Initialize s).f proof set a = f; assume that A1: I is_closed_on Initialize s and A2: I is_halting_on Initialize s and A3: not a in UsedInt*Loc I; set sI = s+*Initialized I; set Is = Initialize s; A4: sI = Is+*(I +* SAt) by SCMFSA8A:13; I+*SAt c= Initialized I & Initialized I c= sI by FUNCT_4:26,SCMFSA8C:19; then A5: I+*SAt c= sI by XBOOLE_1:1; A6: Is+*(I +* Start-At insloc 0) is halting by A2,SCMFSA7B:def 8; IL misses D by SCMFSA_2:13,14,XBOOLE_1:70; then A7: dom (s | IL) misses D by SCMFSA8A:3; A8: IExec(I, s) | D = (Result(sI) +* s | IL) | D by SCMFSA6B:def 1 .= (Result(sI)) | D by A7,SCMFSA8A:2 .= (Computation sI).(LifeSpan sI) | D by A4,A6,SCMFSA6B:16; for m st m < (LifeSpan sI) holds IC (Computation sI).m in dom I by A1,A4,SCMFSA7B:def 7; then A9: (Computation sI).(LifeSpan sI).a = sI.a by A3,A5,SF_MASTR:71; sI | D = Is | D by SCMFSA8B:5; then sI.a = Is.a by SCMFSA6A:38; hence IExec(I, s).a = (Initialize s).a by A8,A9,SCMFSA6A:38; end; theorem Th3: :: UILIErw: ( I is_closed_on Initialize s & I is_halting_on Initialize s or I is parahalting ) & (s.intloc 0 = 1 or a is read-write) & not a in UsedIntLoc I implies IExec(I, s).a = s.a proof assume that A1: ( I is_closed_on Initialize s & I is_halting_on Initialize s or I is parahalting ) and A2: s.intloc 0 = 1 or a is read-write and A3: not a in UsedIntLoc I; A4: a = intloc 0 or a is read-write by SF_MASTR:def 5; now assume I is parahalting; then reconsider I' = I as parahalting Macro-Instruction; I' is paraclosed; hence I is paraclosed; end; then I is_closed_on Initialize s & I is_halting_on Initialize s by A1,SCMFSA7B:24,25; hence IExec(I, s).a = (Initialize s).a by A3,Th1 .= s.a by A2,A4,SCMFSA6C:3; end; theorem Th4: :: InitC: s.intloc 0 = 1 implies (I is_closed_on s iff I is_closed_on Initialize s) proof assume s.intloc 0 = 1; then (Initialize s) | D = s | D by SCMFSA8C:27; hence I is_closed_on s iff I is_closed_on Initialize s by SCMFSA8B:6; end; theorem Th5: :: InitH: s.intloc 0 = 1 implies ( I is_closed_on s & I is_halting_on s iff I is_closed_on Initialize s & I is_halting_on Initialize s) proof assume s.intloc 0 = 1; then (Initialize s) | D = s | D by SCMFSA8C:27; hence thesis by SCMFSA8B:8; end; theorem Th6: :: Restr0: for Iloc being Subset of Int-Locations, Floc being Subset of FinSeq-Locations holds s1 | (Iloc \/ Floc) = s2 | (Iloc \/ Floc) iff (for x being Int-Location st x in Iloc holds s1.x = s2.x) & (for x being FinSeq-Location st x in Floc holds s1.x = s2.x) proof let Iloc be Subset of Int-Locations, Floc be Subset of FinSeq-Locations; A1: Int-Locations c= dom s1 & Int-Locations c= dom s2 by SCMFSA_2:69; A2: FinSeq-Locations c= dom s1 & FinSeq-Locations c= dom s2 by SCMFSA_2:70; A3: Iloc c= dom s1 & Iloc c= dom s2 by A1,XBOOLE_1:1; A4: Floc c= dom s1 & Floc c= dom s2 by A2,XBOOLE_1:1; then A5: Iloc \/ Floc c= dom s1 & Iloc \/ Floc c= dom s2 by A3,XBOOLE_1:8; hereby assume A6: s1 | (Iloc \/ Floc) = s2 | (Iloc \/ Floc); hereby let x be Int-Location; assume x in Iloc; then x in Iloc \/ Floc by XBOOLE_0:def 2; hence s1.x = s2.x by A5,A6,SCMFSA6A:9; end; let x be FinSeq-Location; assume x in Floc; then x in Iloc \/ Floc by XBOOLE_0:def 2; hence s1.x = s2.x by A5,A6,SCMFSA6A:9; end; assume A7: (for x being Int-Location st x in Iloc holds s1.x = s2.x) & (for x being FinSeq-Location st x in Floc holds s1.x = s2.x); now hereby let x be set; assume A8: x in Iloc; then reconsider x' = x as Int-Location by SCMFSA_2:11; thus s1.x = s2.x' by A7,A8 .= s2.x; end; let x be set; assume A9: x in Floc; then reconsider x' = x as FinSeq-Location by SCMFSA_2:12; thus s1.x = s2.x' by A7,A9 .= s2.x; end; then s1 | Iloc = s2 | Iloc & s1 | Floc = s2 | Floc by A3,A4,SCMFSA6A:9; hence s1 | (Iloc \/ Floc) = s2 | (Iloc \/ Floc) by AMI_3:20; end; theorem Th7: :: Restr1: for Iloc being Subset of Int-Locations holds s1 | (Iloc \/ FinSeq-Locations) = s2 | (Iloc \/ FinSeq-Locations) iff (for x being Int-Location st x in Iloc holds s1.x = s2.x) & (for x being FinSeq-Location holds s1.x = s2.x) proof let Iloc be Subset of Int-Locations; set FSL = FinSeq-Locations; A1: [#] FSL = FSL by SUBSET_1:def 4; now thus (for x being FinSeq-Location holds s1.x = s2.x) implies (for x being FinSeq-Location st x in FSL holds s1.x = s2.x); assume A2: (for x being FinSeq-Location st x in FSL holds s1.x = s2.x); let x be FinSeq-Location; x in FinSeq-Locations by SCMFSA_2:10; hence s1.x = s2.x by A2; end; hence s1 | (Iloc \/ FinSeq-Locations) = s2 | (Iloc \/ FinSeq-Locations) iff (for x being Int-Location st x in Iloc holds s1.x = s2.x) & (for x being FinSeq-Location holds s1.x = s2.x) by A1,Th6; end; begin :: Another times macro instruction definition let a be Int-Location, I be Macro-Instruction; set aux = 1-stRWNotIn ({a} \/ UsedIntLoc I); :: set aux = 1-stRWNotIn ({a} U UsedIntLoc I); func times(a, I) -> Macro-Instruction equals :Def1: aux := a ';' while>0 ( aux, I ';' SubFrom(aux, intloc 0) ); correctness; synonym a times I; end; theorem Th8: :: timesUsed: {b} \/ UsedIntLoc I c= UsedIntLoc times(b, I) proof set a =b; set aux = 1-stRWNotIn ({a} \/ UsedIntLoc I); A1: UsedIntLoc times(a,I) = UsedIntLoc (aux := a ';' while>0(aux, I ';' SubFrom(aux,intloc 0))) by Def1 .= UsedIntLoc (aux := a) \/ UsedIntLoc while>0(aux,I ';' SubFrom(aux, intloc 0)) by SF_MASTR:33 .= {aux, a} \/ UsedIntLoc while>0(aux, I ';' SubFrom(aux, intloc 0)) by SF_MASTR:18 .= {aux, a} \/ ({aux} \/ UsedIntLoc (I ';' SubFrom(aux,intloc 0))) by SCMFSA9A:30 .= {aux, a} \/ {aux} \/ UsedIntLoc (I ';' SubFrom(aux, intloc 0)) by XBOOLE_1:4 .= {aux, a} \/ UsedIntLoc (I ';' SubFrom(aux, intloc 0)) by ZFMISC_1:14 .= {aux, a} \/ ((UsedIntLoc I) \/ UsedIntLoc SubFrom(aux, intloc 0)) by SF_MASTR:34 .= {aux, a} \/ ((UsedIntLoc I) \/ {aux, intloc 0}) by SF_MASTR:18 .= {aux, a} \/ (UsedIntLoc I) \/ {aux, intloc 0} by XBOOLE_1:4; A2: {a} c= {aux, a} by ZFMISC_1:12; A3: {aux, a} c= {aux, a} \/ UsedIntLoc I by XBOOLE_1:7; A4: {aux, a} \/ UsedIntLoc I c= UsedIntLoc times(a, I) by A1,XBOOLE_1:7; {a} c= {aux, a} \/ UsedIntLoc I by A2,A3,XBOOLE_1:1; then A5: {a} c= UsedIntLoc times(a, I) by A4,XBOOLE_1:1; UsedIntLoc I c= {aux, a} \/ UsedIntLoc I by XBOOLE_1:7; then UsedIntLoc I c= UsedIntLoc times(a, I) by A4,XBOOLE_1:1; hence thesis by A5,XBOOLE_1:8; end; theorem :: timesUsedF: UsedInt*Loc times(b, I) = UsedInt*Loc I proof set a = b; set aux = 1-stRWNotIn ({a} \/ UsedIntLoc I); thus UsedInt*Loc times(a,I) = UsedInt*Loc (aux := a ';' while>0(aux, I ';' SubFrom(aux,intloc 0))) by Def1 .= UsedInt*Loc(aux := a)\/ UsedInt*Loc while>0(aux,I ';' SubFrom(aux, intloc 0)) by SF_MASTR:49 .= {} \/ UsedInt*Loc while>0(aux, I ';' SubFrom(aux, intloc 0)) by SF_MASTR:36 .= UsedInt*Loc (I ';' SubFrom(aux,intloc 0)) by SCMFSA9A:31 .= (UsedInt*Loc I) \/ UsedInt*Loc SubFrom(aux, intloc 0) by SF_MASTR:50 .= (UsedInt*Loc I) \/ {} by SF_MASTR:36 .= UsedInt*Loc I; end; definition let I be good Macro-Instruction, a be Int-Location; cluster times(a, I) -> good; coherence proof set aux = 1-stRWNotIn ({a} \/ UsedIntLoc I); times(a, I) = aux := a ';' while>0 ( aux, I ';' SubFrom(aux, intloc 0) ) by Def1; hence thesis; end; end; definition let s be State of SCM+FSA, I be Macro-Instruction, a be Int-Location; set aux = 1-stRWNotIn ({a} \/ UsedIntLoc I); :: set aux = 1-stRWNotIn ({a} U UsedIntLoc I); func StepTimes(a, I, s) -> Function of NAT, product the Object-Kind of SCM+FSA equals :Def2: StepWhile>0(aux, I ';' SubFrom(aux, intloc 0), Exec(aux := a, Initialize s)); correctness; end; theorem Th10: :: ST0i0: StepTimes(a, J, s).0.intloc 0 = 1 proof set I = J; set ST = StepTimes(a, I, s); set au = 1-stRWNotIn({a} \/ UsedIntLoc I); set Is = Initialize s; ST = StepWhile>0 (au, I ';' SubFrom(au, intloc 0), Exec(au := a, Is)) by Def2; hence ST.0.intloc 0 = Exec(au := a, Is).intloc 0 by SCMFSA_9:def 5 .= Is.intloc 0 by SCMFSA_2:89 .= 1 by SCMFSA6C:3; end; theorem Th11: :: ST0i0a: s.intloc 0 = 1 or a is read-write implies StepTimes(a, J, s).0.(1-stRWNotIn ({a} \/ UsedIntLoc J)) = s.a proof set I = J; set ST = StepTimes(a, I, s); set au = 1-stRWNotIn({a} \/ UsedIntLoc I); set Is = Initialize s; A1: ST = StepWhile>0 (au, I ';' SubFrom(au, intloc 0), Exec(au := a, Is)) by Def2; assume A2: s.intloc 0 = 1 or a is read-write; A3: a = intloc 0 or a is read-write by SF_MASTR:def 5; thus ST.0.au = Exec(au := a, Is).au by A1,SCMFSA_9:def 5 .= Is.a by SCMFSA_2:89 .= s.a by A2,A3,SCMFSA6C:3; end; theorem Th12: :: ST1i0: StepTimes(a, J, s).k.intloc 0 = 1 & J is_closed_on StepTimes(a, J, s).k & J is_halting_on StepTimes(a, J, s).k implies StepTimes(a, J, s).(k+1).intloc 0 = 1 & (StepTimes(a, J, s).k.(1-stRWNotIn ({a} \/ UsedIntLoc J)) > 0 implies StepTimes(a, J, s).(k+1).(1-stRWNotIn ({a} \/ UsedIntLoc J)) = StepTimes(a, J, s).k.(1-stRWNotIn ({a} \/ UsedIntLoc J)) - 1) proof set I = J; assume that A1: StepTimes(a, I, s).k.intloc 0 = 1 and A2: I is_closed_on StepTimes(a, I, s).k and A3: I is_halting_on StepTimes(a, I, s).k; set ST = StepTimes(a, I, s); set au = 1-stRWNotIn ({a} \/ UsedIntLoc I); set SW = StepWhile>0 (au, I ';' SubFrom(au, intloc 0), Exec(au := a, Initialize s)); A4: ST = SW by Def2; A5: I is_closed_on Initialize ST.k by A1,A2,Th4; A6: I is_halting_on Initialize ST.k by A1,A2,A3,Th5; A7: I ';' SubFrom(au, intloc 0) = I ';' Macro SubFrom(au, intloc 0) by SCMFSA6A:def 6; A8: Macro SubFrom(au, intloc 0) is_closed_on IExec(I, ST.k) by SCMFSA7B:24; then A9:I ';' SubFrom(au,intloc 0) is_closed_on Initialize ST.k by A5,A6, A7,SFMASTR1:3; Macro SubFrom(au, intloc 0) is_halting_on IExec(I, ST.k) by SCMFSA7B:25; then A10: I ';' SubFrom(au, intloc 0) is_halting_on Initialize ST.k by A5,A6,A7,A8,SFMASTR1:4; hereby per cases; suppose SW.k.au <= 0; then SW.(k+1) | D = ST.k | D by A4,SCMFSA9A:37; hence StepTimes(a, I, s).(k+1).intloc 0 = 1 by A1,A4,SCMFSA6A:38; suppose SW.k.au > 0; then SW.(k+1) | D = IExec(I ';' SubFrom(au, intloc 0), ST.k) | D by A1,A4,A9,A10,SCMFSA9A:38; hence ST.(k+1).intloc 0 = IExec(I ';' SubFrom(au, intloc 0), ST.k).intloc 0 by A4,SCMFSA6A:38 .= Exec(SubFrom(au, intloc 0), IExec(I, ST.k)).intloc 0 by A5,A6,SFMASTR1:12 .= IExec(I, ST.k).intloc 0 by SCMFSA_2:91 .= 1 by A5,A6,SCMFSA8C:96; end; not au in {a} \/ UsedIntLoc I by SFMASTR1:21; then A11: not au in UsedIntLoc I by XBOOLE_0:def 2; assume ST.k.au > 0; then SW.(k+1) | D = IExec(I ';' SubFrom(au, intloc 0), ST.k) | D by A1,A4,A9,A10,SCMFSA9A:38; hence ST.(k+1).au = IExec(I ';' SubFrom(au, intloc 0), ST.k).au by A4,SCMFSA6A:38 .= Exec(SubFrom(au, intloc 0), IExec(I, ST.k)).au by A5,A6,SFMASTR1:12 .= IExec(I, ST.k).au - IExec(I, ST.k).intloc 0 by SCMFSA_2:91 .= IExec(I, ST.k).au - 1 by A5,A6,SCMFSA8C:96 .= (Initialize ST.k).au - 1 by A5,A6,A11,Th1 .= ST.k.au - 1 by SCMFSA6C:3; end; theorem Th13: :: STi0: s.intloc 0 = 1 or a is read-write implies StepTimes(a, I, s).0.a = s.a proof set ST = StepTimes(a, I, s); set au = 1-stRWNotIn ({a} \/ UsedIntLoc I); set Is = Initialize s; set SW = StepWhile>0 (au, I ';' SubFrom(au, intloc 0), Exec(au := a, Is)); A1: ST = SW by Def2; a in {a} by TARSKI:def 1; then a in {a} \/ UsedIntLoc I by XBOOLE_0:def 2; then A2: au <> a by SFMASTR1:21; assume A3: s.intloc 0 = 1 or a is read-write; A4: a = intloc 0 or a is read-write by SF_MASTR:def 5; thus ST.0.a = Exec(au := a, Is).a by A1,SCMFSA_9:def 5 .= Is.a by A2,SCMFSA_2:89 .= s.a by A3,A4,SCMFSA6C:3; end; theorem :: STf0: StepTimes(a, I, s).0.f = s.f proof set ST = StepTimes(a, I, s); set au = 1-stRWNotIn ({a} \/ UsedIntLoc I); set Is = Initialize s; set SW = StepWhile>0 (au, I ';' SubFrom(au, intloc 0), Exec(au := a, Is)); ST = SW by Def2; hence ST.0.f = Exec(au := a, Is).f by SCMFSA_9:def 5 .= Is.f by SCMFSA_2:89 .= s.f by SCMFSA6C:3; end; definition let s be State of SCM+FSA, a be Int-Location, I be Macro-Instruction; pred ProperTimesBody a, I, s means :Def3: for k being Nat st k < s.a holds I is_closed_on StepTimes(a,I,s).k & I is_halting_on StepTimes(a,I,s).k; end; theorem Th15: :: timespara: I is parahalting implies ProperTimesBody a, I, s proof assume A1: I is parahalting; let k be Nat; assume k < s.a; reconsider I' = I as parahalting Macro-Instruction by A1; I' is paraclosed; hence I is_closed_on StepTimes(a,I,s).k by SCMFSA7B:24; thus I is_halting_on StepTimes(a,I,s).k by A1,SCMFSA7B:25; end; theorem Th16: :: ST0: ProperTimesBody a, J, s implies for k st k <= s.a holds StepTimes(a, J, s).k.intloc 0 = 1 proof set I = J; assume A1: ProperTimesBody a, I, s; set ST = StepTimes(a, I, s); set au = 1-stRWNotIn ({a} \/ UsedIntLoc I); set Is = Initialize s; A2: ST = StepWhile>0 (au, I ';' SubFrom(au, intloc 0), Exec(au := a, Is)) by Def2; defpred X[Nat] means $1 <= s.a implies ST.$1.intloc 0 = 1; A3: X[0] proof assume 0 <= s.a; thus ST.0.intloc 0 = Exec(au := a, Is).intloc 0 by A2,SCMFSA_9:def 5 .= Is.intloc 0 by SCMFSA_2:89 .= 1 by SCMFSA6C:3; end; A4: for k being Nat st X[k] holds X[k+1] proof let k be Nat; assume that A5: k <= s.a implies ST.k.intloc 0 = 1 and A6: k+1 <= s.a; 0 <= k+1 by NAT_1:18; then reconsider sa = s.a as Nat by A6,INT_1:16; A7: k < sa by A6,NAT_1:38; then I is_closed_on ST.k & I is_halting_on ST.k by A1,Def3; hence ST.(k+1).intloc 0 = 1 by A5,A7,Th12; end; thus for k holds X[k] from Ind(A3, A4); end; theorem Th17: :: AU0: (s.intloc 0 = 1 or a is read-write) & ProperTimesBody a, J, s implies for k st k <= s.a holds StepTimes(a, J, s).k.(1-stRWNotIn({a} \/ UsedIntLoc J))+k = s.a proof set I = J; assume that A1: s.intloc 0 = 1 or a is read-write and A2: ProperTimesBody a, I, s; set ST = StepTimes(a, I, s); set au = 1-stRWNotIn ({a} \/ UsedIntLoc I); set Is = Initialize s; set SW = StepWhile>0 (au, I ';' SubFrom(au, intloc 0), Exec(au := a, Is)); A3: ST = SW by Def2; A4: a = intloc 0 or a is read-write by SF_MASTR:def 5; defpred X[Nat] means $1 <= s.a implies StepTimes(a, I, s).$1.au+$1 = s.a; A5: X[0] proof assume 0 <= s.a; thus ST.0.au+0 = Exec(au := a, Is).au by A3,SCMFSA_9:def 5 .= Is.a by SCMFSA_2:89 .= s.a by A1,A4,SCMFSA6C:3; end; A6: for k being Nat st X[k] holds X[k+1] proof let k be Nat such that A7: k <= s.a implies ST.k.au+k = s.a and A8: k+1 <= s.a; 0 <= k+1 by NAT_1:18; then reconsider sa = s.a as Nat by A8,INT_1:16; A9: k < sa by A8,NAT_1:38; then A10: ST.k.intloc 0 = 1 by A2,Th16; A11: I is_closed_on ST.k by A2,A9,Def3; A12: I is_halting_on ST.k by A2,A9,Def3; A13: I is_closed_on Initialize ST.k by A10,A11,Th4; A14: I is_halting_on Initialize ST.k by A10,A11,A12,Th5; A15: I ';' SubFrom(au, intloc 0) = I ';' Macro SubFrom(au, intloc 0) by SCMFSA6A:def 6; A16: Macro SubFrom(au, intloc 0) is_closed_on IExec(I, ST.k) by SCMFSA7B:24; then A17:I ';' SubFrom(au,intloc 0) is_closed_on Initialize ST.k by A13,A14,A15,SFMASTR1:3; Macro SubFrom(au, intloc 0) is_halting_on IExec(I, ST.k) by SCMFSA7B:25; then A18: I ';' SubFrom(au, intloc 0) is_halting_on Initialize ST.k by A13,A14,A15,A16,SFMASTR1:4; not au in {a} \/ UsedIntLoc I by SFMASTR1:21; then A19: not au in UsedIntLoc I by XBOOLE_0:def 2; now assume SW.k.au <= 0; then SW.k.au+k < s.a+0 by A9,REAL_1:67; hence contradiction by A7,A9,Def2; end; then SW.(k+1) | D = IExec(I ';' SubFrom(au, intloc 0), ST.k) | D by A3,A10,A17,A18,SCMFSA9A:38; then ST.(k+1).au = IExec(I ';' SubFrom(au, intloc 0), ST.k).au by A3,SCMFSA6A:38 .= Exec(SubFrom(au, intloc 0), IExec(I, ST.k)).au by A13,A14,SFMASTR1:12 .= IExec(I, ST.k).au - IExec(I, ST.k).intloc 0 by SCMFSA_2:91 .= IExec(I, ST.k).au - 1 by A13,A14,SCMFSA8C:96 .= (Initialize ST.k).au - 1 by A13,A14,A19,Th1 .= ST.k.au - 1 by SCMFSA6C:3; hence ST.(k+1).au+(k+1) = s.a by A7,A9,XCMPLX_1:28; end; thus for k holds X[k] from Ind(A5, A6); end; theorem Th18: :: STAU: ProperTimesBody a, J, s & 0 <= s.a & (s.intloc 0 = 1 or a is read-write) implies for k st k >= s.a holds StepTimes(a, J, s).k.(1-stRWNotIn({a} \/ UsedIntLoc J)) = 0 & StepTimes(a, J, s).k.intloc 0 = 1 proof set I = J; assume that A1: ProperTimesBody a, I, s and A2: 0 <= s.a and A3: s.intloc 0 = 1 or a is read-write; set ST = StepTimes(a, I, s); set au = 1-stRWNotIn ({a} \/ UsedIntLoc I); set SW = StepWhile>0 (au, I ';' SubFrom(au, intloc 0), Exec(au := a, Initialize s)); A4: ST = SW by Def2; defpred X[Nat] means $1 >= s.a implies ST.$1.au = 0 & ST.$1.intloc 0 = 1; A5: X[0] proof assume 0 >= s.a; then A6: s.a = 0 by A2; thus ST.0.au = ST.0.au+0 .= 0 by A1,A3,A6,Th17; thus ST.0.intloc 0 = 1 by A1,A2,Th16; end; A7: for k st X[k] holds X[k+1] proof let k such that A8: k >= s.a implies ST.k.au = 0 & ST.k.intloc 0 = 1 and A9: (k+1) >= s.a; reconsider sa = s.a as Nat by A2,INT_1:16; per cases by A9,REAL_1:def 5; suppose A10: k+1 = sa; then ST.(k+1).au+(k+1) = s.a by A1,A3,Th17; hence ST.(k+1).au = 0 by A10,XCMPLX_1:3; thus ST.(k+1).intloc 0 = 1 by A1,A10,Th16; suppose A11: k+1 > sa; then A12: SW.(k+1) | D = SW.k | D by A4,A8,NAT_1:38,SCMFSA9A:37; hence ST.(k+1).au = 0 by A4,A8,A11,NAT_1:38,SCMFSA6A:38; thus ST.(k+1).intloc 0 = 1 by A4,A8,A11,A12,NAT_1:38,SCMFSA6A:38; end; thus for k holds X[k] from Ind(A5, A7); end; theorem Th19: :: ST0_D: s.intloc 0 = 1 implies StepTimes(a, I, s).0 | ((UsedIntLoc I) \/ FinSeq-Locations) = s | ((UsedIntLoc I) \/ FinSeq-Locations) proof assume A1: s.intloc 0 = 1; set ST = StepTimes(a, I, s); set au = 1-stRWNotIn ({a} \/ UsedIntLoc I); set Is = Initialize s; set SW = StepWhile>0 (au, I ';' SubFrom(au, intloc 0), Exec(au := a, Is)); set UILI = UsedIntLoc I; A2: (Initialize s) | D = s | D by A1,SCMFSA8C:27; A3: now let x be Int-Location; assume A4: x in UILI; not au in {a} \/ UILI by SFMASTR1:21; then A5: au <> x by A4,XBOOLE_0:def 2; thus ST.0.x = SW.0.x by Def2 .= Exec(au := a, Is).x by SCMFSA_9:def 5 .= Is.x by A5,SCMFSA_2:89 .= s.x by A2,SCMFSA6A:38; end; now let x be FinSeq-Location; thus ST.0.x = SW.0.x by Def2 .= Exec(au := a, Is).x by SCMFSA_9:def 5 .= Is.x by SCMFSA_2:89 .= s.x by SCMFSA6C:3; end; hence StepTimes(a, I, s).0 | ((UsedIntLoc I) \/ FinSeq-Locations) = s | ((UsedIntLoc I) \/ FinSeq-Locations) by A3,Th7; end; theorem Th20: :: STi1: StepTimes(a, J, s).k.intloc 0 = 1 & J is_halting_on Initialize StepTimes(a, J, s).k & J is_closed_on Initialize StepTimes(a, J, s).k & StepTimes(a, J, s).k.(1-stRWNotIn ({a} \/ UsedIntLoc J)) > 0 implies StepTimes(a, J, s).(k+1) | ((UsedIntLoc J) \/ FinSeq-Locations) = IExec(J, StepTimes(a, J, s).k) | ((UsedIntLoc J) \/ FinSeq-Locations) proof set I = J; set ST = StepTimes(a, I, s); set au = 1-stRWNotIn ({a} \/ UsedIntLoc I); set SW = StepWhile>0 (au, I ';' SubFrom(au, intloc 0), Exec(au := a, Initialize s)); set UILI = UsedIntLoc I; set UFLI = FinSeq-Locations; A1: ST = SW by Def2; assume that A2: ST.k.intloc 0 = 1 and A3: I is_halting_on Initialize ST.k and A4: I is_closed_on Initialize ST.k and A5: ST.k.au > 0; A6: I ';' SubFrom(au, intloc 0) = I ';' Macro SubFrom(au, intloc 0) by SCMFSA6A:def 6; A7: Macro SubFrom(au, intloc 0) is_closed_on IExec(I, ST.k) by SCMFSA7B:24; then A8:I ';' SubFrom(au,intloc 0) is_closed_on Initialize ST.k by A3,A4,A6,SFMASTR1:3; Macro SubFrom(au, intloc 0) is_halting_on IExec(I, ST.k) by SCMFSA7B:25; then I ';' SubFrom(au, intloc 0) is_halting_on Initialize ST.k by A3,A4,A6,A7,SFMASTR1:4; then A9: SW.(k+1) | D = IExec(I ';' SubFrom(au, intloc 0), ST.k) | D by A1,A2,A5,A8,SCMFSA9A:38; A10: now let x be Int-Location; assume A11: x in UILI; not au in {a} \/ UILI by SFMASTR1:21; then A12: au <> x by A11,XBOOLE_0:def 2; thus ST.(k+1).x = IExec(I ';' SubFrom(au, intloc 0), ST.k).x by A1,A9,SCMFSA6A:38 .= Exec(SubFrom(au, intloc 0), IExec(I, ST.k)).x by A3,A4,SFMASTR1:12 .= IExec(I, ST.k).x by A12,SCMFSA_2:91; end; now let x be FinSeq-Location; thus ST.(k+1).x = IExec(I ';' SubFrom(au, intloc 0), ST.k).x by A1,A9,SCMFSA6A:38 .= Exec(SubFrom(au, intloc 0), IExec(I, ST.k)).x by A3,A4,SFMASTR1:13 .= IExec(I, ST.k).x by SCMFSA_2:91; end; hence ST.(k+1) | (UILI \/ UFLI) = IExec(I, ST.k) | (UILI \/ UFLI) by A10,Th7; end; theorem Th21: :: STi1a: (ProperTimesBody a, J, s or J is parahalting) & k < s.a & (s.intloc 0 = 1 or a is read-write) implies StepTimes(a, J, s).(k+1) | ((UsedIntLoc J) \/ FinSeq-Locations) = IExec(J, StepTimes(a, J, s).k) | ((UsedIntLoc J) \/ FinSeq-Locations) proof set I = J; assume that A1: ProperTimesBody a, I, s or I is parahalting and A2: k < s.a and A3: s.intloc 0 = 1 or a is read-write; A4: ProperTimesBody a, I, s by A1,Th15; set ST = StepTimes(a, I, s); set au = 1-stRWNotIn ({a} \/ UsedIntLoc I); set UILI = UsedIntLoc I; set UFLI = FinSeq-Locations; A5: ST.k.intloc 0 = 1 by A2,A4,Th16; A6: I is_closed_on ST.k by A2,A4,Def3; then A7: I is_closed_on Initialize ST.k by A5,Th4; I is_halting_on ST.k by A2,A4,Def3; then A8: I is_halting_on Initialize ST.k by A5,A6,Th5; ST.k.au+k = s.a by A2,A3,A4,Th17; then A9: ST.k.au = s.a-k by XCMPLX_1:26; k-k < s.a-k by A2,REAL_1:54 ; then 0 < s.a-k by XCMPLX_1:14; hence ST.(k+1) | (UILI \/ UFLI) = IExec(I, ST.k) | (UILI \/ UFLI) by A5,A7,A8,A9,Th20; end; theorem :: IE_times0: s.a <= 0 & s.intloc 0 = 1 implies IExec(times(a, I), s) | ((UsedIntLoc I) \/ FinSeq-Locations) = s | ((UsedIntLoc I) \/ FinSeq-Locations) proof assume that A1: s.a <= 0 and A2: s.intloc 0 = 1; set au = 1-stRWNotIn ({a} \/ UsedIntLoc I); set UILI = UsedIntLoc I; set FSL = FinSeq-Locations; set WH = while>0 ( au, I ';' SubFrom(au, intloc 0) ); set s1 = Exec(au := a, Initialize s); A3: times(a, I) = au := a ';' WH by Def1; A4: [#] FSL = FSL by SUBSET_1:def 4; A5: s1.intloc 0 = (Initialize s).intloc 0 by SCMFSA_2:89 .= 1 by SCMFSA6C:3; A6: a = intloc 0 or a is read-write by SF_MASTR:def 5; A7: s1.au = (Initialize s).a by SCMFSA_2:89 .= s.a by A2,A6,SCMFSA6C:3; then A8: IExec(WH, s1) | D = s1 | D by A1,A5,SCMFSA9A:41; A9: s1 = IExec(Macro (au := a), s) by SCMFSA6C:6; then A10: WH is_closed_on IExec(Macro (au := a), s) by A1,A7,SCMFSA_9:43; A11: WH is_halting_on IExec(Macro (au := a), s) by A1,A7,A9,SCMFSA_9:43; A12: s | D = (Initialize s) | D by A2,SCMFSA8C:27; A13: now let x be Int-Location; assume A14: x in UILI; not au in {a} \/ UILI by SFMASTR1:21; then A15: au <> x by A14,XBOOLE_0:def 2; thus IExec(times(a, I), s).x = IExec(WH, s1).x by A3,A9,A10,A11,SFMASTR1:15 .= s1.x by A8,SCMFSA6A:38 .= (Initialize s).x by A15,SCMFSA_2:89 .= s.x by A12,SCMFSA6A:38; end; now let x be FinSeq-Location; assume x in FSL; thus IExec(times(a, I), s).x = IExec(WH, s1).x by A3,A9,A10,A11,SFMASTR1:16 .= s1.x by A8,SCMFSA6A:38 .= (Initialize s).x by SCMFSA_2:89 .= s.x by SCMFSA6C:3; end; hence IExec(times(a, I), s) | ((UsedIntLoc I) \/ FinSeq-Locations) = s | ((UsedIntLoc I) \/ FinSeq-Locations) by A4,A13,Th6; end; theorem Th23: :: IE_times1: s.a = k & (ProperTimesBody a, J, s or J is parahalting) & (s.intloc 0 = 1 or a is read-write) implies IExec(times(a, J), s) | D = StepTimes(a, J, s).k | D proof set I = J; assume A1: s.a = k; assume ProperTimesBody a, I, s or I is parahalting; then A2: ProperTimesBody a, I, s by Th15; assume A3: s.intloc 0 = 1 or a is read-write; A4: 0 <= s.a by A1,NAT_1:18; set au = 1-stRWNotIn ({a} \/ UsedIntLoc I); set ISu = I ';' SubFrom(au, intloc 0); set WH = while>0 ( au, ISu ); set s1 = Exec(au := a, Initialize s); set Is1 = Initialize s1; set ST = StepTimes(a, I, s); set SW = StepWhile>0(au, ISu, s1); set ISW = StepWhile>0(au, ISu, Is1); A5: times(a, I) = au := a ';' WH by Def1; A6: ST = SW by Def2; s1.intloc 0 = (Initialize s).intloc 0 by SCMFSA_2:89 .= 1 by SCMFSA6C:3; then A7: Is1 | D = s1 | D by SCMFSA8C:27; A8: ProperBodyWhile>0 au, ISu, s1 proof let k be Nat; assume SW.k.au > 0; then A9: k < s.a by A2,A3,A4,A6,Th18; then A10: I is_closed_on ST.k by A2,Def3; A11: I is_halting_on ST.k by A2,A9,Def3; A12: ST.k.intloc 0 = 1 by A2,A9,Th16; then A13: ST.k | D = (Initialize (ST.k)) | D by SCMFSA8C:27; A14: I is_closed_on Initialize ST.k by A10,A12,Th4; A15: I is_halting_on Initialize ST.k by A10,A11,A12,Th5; A16: ISu = I ';' Macro SubFrom(au, intloc 0) by SCMFSA6A:def 6; A17: Macro SubFrom(au, intloc 0) is_closed_on IExec(I, ST.k) by SCMFSA7B:24; then A18: ISu is_closed_on Initialize ST.k by A14,A15,A16,SFMASTR1:3; Macro SubFrom(au, intloc 0) is_halting_on IExec(I, ST.k) by SCMFSA7B:25 ; then A19: ISu is_halting_on Initialize ST.k by A14,A15,A16,A17,SFMASTR1:4 ; thus ISu is_closed_on SW.k by A6,A13,A18,SCMFSA8B:6; thus ISu is_halting_on SW.k by A6,A13,A18,A19,SCMFSA8B:8; end; A20: ProperBodyWhile>0 au, ISu, Is1 proof let k be Nat; assume A21: ISW.k.au > 0; A22: ISW.k | D = SW.k | D by A7,A8,SCMFSA9A:40; then SW.k.au = ISW.k.au by SCMFSA6A:38; then A23: ISu is_closed_on SW.k & ISu is_halting_on SW.k by A8,A21,SCMFSA9A: def 4; hence ISu is_closed_on ISW.k by A22,SCMFSA8B:6; thus ISu is_halting_on ISW.k by A22,A23,SCMFSA8B:8; end; A24: WithVariantWhile>0 au, ISu, Is1 proof deffunc U(Element of product the Object-Kind of SCM+FSA) = abs($1.au); consider f being Function of product the Object-Kind of SCM+FSA,NAT such that A25: for x being Element of product the Object-Kind of SCM+FSA holds f.x = U(x) from LambdaD; take f; reconsider sa = s.a as Nat by A1; let k be Nat; ISW.k | D = SW.k | D by A7,A8,SCMFSA9A:40; then A26: ISW.k.au = SW.k.au by SCMFSA6A:38; ISW.(k+1) | D = SW.(k+1) | D by A7,A8,SCMFSA9A:40; then A27: ISW.(k+1).au = SW.(k+1).au by SCMFSA6A:38; per cases; suppose A28: k < s.a; then A29: k+1 <= sa by NAT_1:38; A30: ST.k.au+k = s.a by A2,A3,A28,Th17; A31: ST.(k+1).au+(k+1) = s.a by A2,A3,A29,Th17; then s.a = (ST.(k+1).au+1)+k by XCMPLX_1:1; then A32: SW.k.au = SW.(k+1).au+1 by A6,A30,XCMPLX_1:2; A33: ST.(k+1).au = s.a-(k+1) by A31,XCMPLX_1:26; (k+1)-(k+1) <= s.a-(k+1) by A29,REAL_1:49; then A34: 0 <= s.a-(k+1) by XCMPLX_1:14; A35: f.(ISW.(k+1)) = abs( ISW.(k+1).au ) by A25 .= SW.(k+1).au by A6,A27,A33,A34,ABSVALUE:def 1; A36: ST.k.au = s.a-k by A30,XCMPLX_1:26; k-k < s.a-k by A28,REAL_1:54; then A37: 0 < s.a-k by XCMPLX_1:14; f.(ISW.k) = abs( ISW.k.au ) by A25 .= SW.k.au by A6,A26,A36,A37,ABSVALUE:def 1; hence f.(ISW.(k+1)) < f.(ISW.k) or ISW.k.au <= 0 by A32,A35,NAT_1:38; suppose k >= s.a; hence f.(ISW.(k+1)) < f.(ISW.k) or ISW.k.au <= 0 by A2,A3,A4,A6,A26,Th18; end; then A38: WH is_closed_on Is1 by A20,SCMFSA9A:33; then A39: WH is_closed_on s1 by A7,SCMFSA8B:6; WH is_halting_on Is1 by A20,A24,SCMFSA9A:33; then A40: WH is_halting_on s1 by A7,A38,SCMFSA8B:8; A41: IExec(WH, s1) | D = ISW.ExitsAtWhile>0(au, ISu, Is1) | D by A20,A24,SCMFSA9A:42; consider K being Nat such that A42: ExitsAtWhile>0(au, ISu, Is1) = K and A43: ISW.K.au <= 0 and A44: (for i being Nat st ISW.i.au <= 0 holds K <= i) and (Computation (Is1 +* (WH +* SAt))). (LifeSpan (Is1 +* (WH +* SAt))) | D = ISW.K | D by A20,A24,SCMFSA9A:def 6; A45: ISW.k | D = SW.k | D by A7,A8,SCMFSA9A:40; A46: ISW.K | D = SW.K | D by A7,A8,SCMFSA9A:40; SW.k.au = 0 by A1,A2,A3,A4,A6,Th18; then ISW.k.au = 0 by A45,SCMFSA6A:38; then A47: K <= k by A44; then SW.K.au+K = k by A1,A2,A3,A6,Th17; then A48: ISW.K.au+K = k by A46,SCMFSA6A:38; K-K <= k-K by A47,REAL_1:49; then 0 <= k-K by XCMPLX_1:14; then A49: ISW.K.au = 0 by A43,A48,XCMPLX_1:26; now hereby let x be Int-Location; thus IExec(times(a, I), s).x = IExec(WH, s1).x by A5,A39,A40,SFMASTR1:15 .= ST.k.x by A6,A41,A42,A45,A48,A49,SCMFSA6A:38; end; let x be FinSeq-Location; thus IExec(times(a, I), s).x = IExec(WH, s1).x by A5,A39,A40,SFMASTR1:16 .= ST.k.x by A6,A41,A42,A45,A48,A49,SCMFSA6A:38; end; hence IExec(times(a, I), s) | D = StepTimes(a, I, s).k | D by SCMFSA6A:38; end; theorem Th24: :: timeshc: s.intloc 0 = 1 & (ProperTimesBody a, J, s or J is parahalting) implies times(a, J) is_closed_on s & times(a, J) is_halting_on s proof set I = J; assume that A1: s.intloc 0 = 1; assume ProperTimesBody a, I, s or I is parahalting; then A2: ProperTimesBody a, I, s by Th15; set au = 1-stRWNotIn ({a} \/ UsedIntLoc I); set ISu = I ';' SubFrom(au, intloc 0); set WH = while>0 ( au, ISu ); set s1 = Exec(au := a, Initialize s); set Is1 = Initialize s1; set ST = StepTimes(a, I, s); set SW = StepWhile>0(au, ISu, s1); set ISW = StepWhile>0(au, ISu, Is1); set taI = times(a, I); A3: taI = au := a ';' WH by Def1; A4: ST = SW by Def2; s1.intloc 0 = (Initialize s).intloc 0 by SCMFSA_2:89 .= 1 by SCMFSA6C:3; then A5: Is1 | D = s1 | D by SCMFSA8C:27; A6: s1 = IExec(Macro (au := a), s) by SCMFSA6C:6; A7: Macro(au := a) is_closed_on Initialize s by SCMFSA7B:24; A8: Macro(au := a) is_halting_on Initialize s by SCMFSA7B:25; A9: taI = Macro(au := a) ';' WH by A3,SCMFSA6A:def 5; per cases; suppose A10: s.a < 0; A11: a = intloc 0 or a is read-write by SF_MASTR:def 5; A12: s1.au = (Initialize s).a by SCMFSA_2:89 .= s.a by A1,A11,SCMFSA6C:3; then A13: WH is_closed_on s1 by A10,SCMFSA_9:43; A14: WH is_halting_on s1 by A10,A12,SCMFSA_9:43; A15: taI is_closed_on Initialize s by A6,A7,A8,A9,A13,SFMASTR1:3; hence times(a, I) is_closed_on s by A1,Th4; taI is_halting_on Initialize s by A6,A7,A8,A9,A13,A14,SFMASTR1:4; hence times(a, I) is_halting_on s by A1,A15,Th5; suppose A16: 0 <= s.a; A17: ProperBodyWhile>0 au, ISu, s1 proof let k be Nat; assume SW.k.au > 0; then A18: k < s.a by A1,A2,A4,A16,Th18; then A19: I is_closed_on ST.k by A2,Def3; A20: I is_halting_on ST.k by A2,A18,Def3; A21: ST.k.intloc 0 = 1 by A2,A18,Th16; then A22: ST.k | D = (Initialize (ST.k)) | D by SCMFSA8C:27; A23: I is_closed_on Initialize ST.k by A19,A21,Th4; A24: I is_halting_on Initialize ST.k by A19,A20,A21,Th5; A25: ISu = I ';' Macro SubFrom(au, intloc 0) by SCMFSA6A:def 6; A26: Macro SubFrom(au, intloc 0) is_closed_on IExec(I, ST.k) by SCMFSA7B:24; then A27: ISu is_closed_on Initialize ST.k by A23,A24,A25,SFMASTR1:3; Macro SubFrom(au, intloc 0) is_halting_on IExec(I, ST.k) by SCMFSA7B:25 ; then A28: ISu is_halting_on Initialize ST.k by A23,A24,A25,A26,SFMASTR1:4 ; thus ISu is_closed_on SW.k by A4,A22,A27,SCMFSA8B:6; thus ISu is_halting_on SW.k by A4,A22,A27,A28,SCMFSA8B:8; end; A29: ProperBodyWhile>0 au, ISu, Is1 proof let k be Nat; assume A30: ISW.k.au > 0; A31: ISW.k | D = SW.k | D by A5,A17,SCMFSA9A:40; then SW.k.au = ISW.k.au by SCMFSA6A:38; then A32: ISu is_closed_on SW.k & ISu is_halting_on SW.k by A17,A30,SCMFSA9A: def 4 ; hence ISu is_closed_on ISW.k by A31,SCMFSA8B:6; thus ISu is_halting_on ISW.k by A31,A32,SCMFSA8B:8; end; A33: WithVariantWhile>0 au, ISu, Is1 proof deffunc U(Element of product the Object-Kind of SCM+FSA) = abs($1.au); consider f being Function of product the Object-Kind of SCM+FSA,NAT such that A34: for x being Element of product the Object-Kind of SCM+FSA holds f.x = U(x) from LambdaD; take f; reconsider sa = s.a as Nat by A16,INT_1:16; let k be Nat; ISW.k | D = SW.k | D by A5,A17,SCMFSA9A:40; then A35: ISW.k.au = SW.k.au by SCMFSA6A:38; ISW.(k+1) | D = SW.(k+1) | D by A5,A17,SCMFSA9A:40; then A36: ISW.(k+1).au = SW.(k+1).au by SCMFSA6A:38; per cases; suppose A37: k < s.a; then A38: k+1 <= sa by NAT_1:38; A39: ST.k.au+k = s.a by A1,A2,A37,Th17; A40: ST.(k+1).au+(k+1) = s.a by A1,A2,A38,Th17; then s.a = (ST.(k+1).au+1)+k by XCMPLX_1:1; then A41: SW.k.au = SW.(k+1).au+1 by A4,A39,XCMPLX_1:2; A42: ST.(k+1).au = s.a-(k+1) by A40,XCMPLX_1:26; (k+1)-(k+1) <= s.a-(k+1) by A38,REAL_1:49; then A43: 0 <= s.a-(k+1) by XCMPLX_1:14; A44: f.(ISW.(k+1)) = abs( ISW.(k+1).au ) by A34 .= SW.(k+1).au by A4,A36,A42,A43,ABSVALUE:def 1; A45: ST.k.au = s.a-k by A39,XCMPLX_1:26; k-k < s.a-k by A37,REAL_1:54; then A46: 0 < s.a-k by XCMPLX_1:14; f.(ISW.k) = abs( ISW.k.au ) by A34 .= SW.k.au by A4,A35,A45,A46,ABSVALUE:def 1; hence f.(ISW.(k+1)) < f.(ISW.k) or ISW.k.au <= 0 by A41,A44,NAT_1:38; suppose k >= s.a; hence f.(ISW.(k+1)) < f.(ISW.k) or ISW.k.au <= 0 by A1,A2,A4,A16,A35,Th18; end; then A47: WH is_closed_on Is1 by A29,SCMFSA9A:33; then A48: WH is_closed_on s1 by A5,SCMFSA8B:6; WH is_halting_on Is1 by A29,A33,SCMFSA9A:33; then A49: WH is_halting_on s1 by A5,A47,SCMFSA8B:8; A50: taI = Macro(au := a) ';' WH by A3,SCMFSA6A:def 5; then A51: taI is_closed_on Initialize s by A6,A7,A8,A48,SFMASTR1:3; hence times(a, I) is_closed_on s by A1,Th4; taI is_halting_on Initialize s by A6,A7,A8,A48,A49,A50,SFMASTR1:4; hence times(a, I) is_halting_on s by A1,A51,Th5; end; begin :: A trivial example definition let d be read-write Int-Location; func triv-times(d) -> Macro-Instruction equals :Def4: times( d, while=0(d, Macro(d := d)) ';' SubFrom(d, intloc 0) ); correctness; end; theorem :: SA0: s.d <= 0 implies IExec(triv-times(d), s).d = s.d proof set a = d; assume A1: s.a <= 0; set I = while=0(a, Macro(a := a)) ';' SubFrom(a, intloc 0); set au = 1-stRWNotIn ({a} \/ UsedIntLoc I); set WH = while>0 ( au, I ';' SubFrom(au, intloc 0) ); set s1 = Exec(au := a, Initialize s); A2: times(a, I) = au := a ';' WH by Def1; A3: s1.intloc 0 = (Initialize s).intloc 0 by SCMFSA_2:89 .= 1 by SCMFSA6C:3; A4: s1.au = (Initialize s).a by SCMFSA_2:89 .= s.a by SCMFSA6C:3; then A5: IExec(WH, s1) | D = s1 | D by A1,A3,SCMFSA9A:41; A6: s1 = IExec(Macro (au := a), s) by SCMFSA6C:6; then A7: WH is_closed_on IExec(Macro (au := a), s) by A1,A4,SCMFSA_9:43; A8: WH is_halting_on IExec(Macro (au := a), s) by A1,A4,A6,SCMFSA_9:43; a in {a} by TARSKI:def 1; then a in {a} \/ UsedIntLoc I by XBOOLE_0:def 2; then A9: au <> a by SFMASTR1:21; thus IExec(triv-times(a), s).a = IExec(times(a, I), s).a by Def4 .= IExec(WH, s1).a by A2,A6,A7,A8,SFMASTR1:15 .= s1.a by A5,SCMFSA6A:38 .= (Initialize s).a by A9,SCMFSA_2:89 .= s.a by SCMFSA6C:3; end; theorem :: trivtimes 0 <= s.d implies IExec(triv-times(d), s).d = 0 proof set a = d; assume A1: 0 <= s.a; set I1 = while=0(a, Macro(a := a)); set i2 = SubFrom(a, intloc 0); set I = I1 ';' i2; set au = 1-stRWNotIn ({a} \/ UsedIntLoc I); A2: I = I1 ';' Macro i2 by SCMFSA6A:def 6; A3: triv-times(a) = times( a, I ) by Def4; a in {a, intloc 0} by TARSKI:def 2; then a in UsedIntLoc SubFrom(a, intloc 0) by SF_MASTR:18; then a in (UsedIntLoc while=0(a, Macro(a := a))) \/ UsedIntLoc SubFrom(a, intloc 0) by XBOOLE_0:def 2; then A4: a in UsedIntLoc I by SF_MASTR:34; set ST = StepTimes(a, I, s); defpred X[Nat] means ($1 < s.a implies I is_closed_on ST.$1 & I is_halting_on ST.$1 & ST.$1.intloc 0 = 1) & ($1 <= s.a implies ST.$1.a+$1 = s.a & ST.$1.au = ST.$1.a) ; A5: X[0] proof hereby assume A6: 0 < s.a; A7: ST.0.intloc 0 = 1 by Th10; ST.0.a <> 0 by A6,Th13; then A8: I1 is_halting_on ST.0 & I1 is_closed_on ST.0 by SCMFSA_9:18; then A9: I1 is_halting_on Initialize ST.0 by A7,Th5; A10: I1 is_closed_on Initialize ST.0 by A7,A8,Th4; A11: Macro i2 is_halting_on IExec(I1, ST.0) by SCMFSA7B:25; A12: Macro i2 is_closed_on IExec(I1, ST.0) by SCMFSA7B:24; then A13: I is_closed_on Initialize ST.0 by A2,A9,A10,SFMASTR1:3; A14: I is_halting_on Initialize ST.0 by A2,A9,A10,A11,A12,SFMASTR1:4; thus I is_closed_on ST.0 by A7,A13,Th4; thus I is_halting_on ST.0 by A7,A13,A14,Th5; thus ST.0.intloc 0 = 1 by Th10; end; assume 0 <= s.a; A15: ST.0.a = s.a by Th13; thus ST.0.a+0 = s.a by Th13; thus ST.0.au = ST.0.a by A15,Th11; end; A16: for k st X[k] holds X[k+1] proof let k; assume that A17: (k < s.a implies I is_closed_on ST.k & I is_halting_on ST.k & ST.k.intloc 0 = 1) and A18: (k <= s.a implies ST.k.a+k = s.a & ST.k.au = ST.k.a); A19:now assume A20: k < s.a; then A21: ST.k.a <> 0 by A18; k-k < s.a-k by A20,REAL_1:54; then A22: 0 < s.a-k by XCMPLX_1:14; A23: ST.k.a = s.a-k by A18,A20,XCMPLX_1:26; thus ST.k.au > 0 by A18,A20,A22,XCMPLX_1:26; A24: I1 is_closed_on ST.k by A21,SCMFSA_9:18; then A25: I1 is_closed_on Initialize ST.k by A17,A20,Th4; I1 is_halting_on ST.k by A21,SCMFSA_9:18; then A26: I1 is_halting_on Initialize ST.k by A17,A20,A24,Th5; A27: I is_closed_on Initialize ST.k by A17,A20,Th4; A28: I is_halting_on Initialize ST.k by A17,A20,Th5; A29: IExec(I1, ST.k) | D = ST.k | D by A17,A20,A21,SCMFSA9A:28; ST.(k+1) | ((UsedIntLoc I) \/ FinSeq-Locations) = IExec(I, ST.k) | ((UsedIntLoc I) \/ FinSeq-Locations) by A17,A18,A20,A22,A23,A27,A28,Th20; then ST.(k+1).a = IExec(I, ST.k).a by A4,Th7 .= Exec(i2, IExec(I1, ST.k)).a by A25,A26,SFMASTR1:12 .= IExec(I1, ST.k).a - IExec(I1, ST.k).intloc 0 by SCMFSA_2:91 .= ST.k.a - IExec(I1, ST.k).intloc 0 by A29,SCMFSA6A:38 .= ST.k.a - 1 by A17,A20,A29,SCMFSA6A:38; hence ST.(k+1).a+(k+1) = s.a by A18,A20,XCMPLX_1:28; end; hereby assume A30: k+1 < s.a; 0 <= k+1 by NAT_1:18; then 0 <= s.a by A30,AXIOMS:22; then reconsider sa = s.a as Nat by INT_1:16; A31: k < sa by A30,NAT_1:37; then A32: ST.(k+1).intloc 0 = 1 by A17,Th12; ST.(k+1).a <> 0 by A19,A30,A31; then A33: I1 is_halting_on ST.(k+1) & I1 is_closed_on ST.(k+1) by SCMFSA_9:18 ; then A34: I1 is_halting_on Initialize ST.(k+1) by A32,Th5; A35: I1 is_closed_on Initialize ST.(k+1) by A32,A33,Th4; A36: Macro i2 is_halting_on IExec(I1, ST.(k+1)) by SCMFSA7B:25; A37: Macro i2 is_closed_on IExec(I1, ST.(k+1)) by SCMFSA7B:24; then A38: I is_closed_on Initialize ST.(k+1) by A2,A34,A35,SFMASTR1:3; A39: I is_halting_on Initialize ST.(k+1) by A2,A34,A35,A36,A37,SFMASTR1:4; thus I is_closed_on ST.(k+1) by A32,A38,Th4; thus I is_halting_on ST.(k+1) by A32,A38,A39,Th5; thus ST.(k+1).intloc 0 =1 by A17,A31,Th12; end; assume A40: k+1 <= s.a; A41: k < k+1 by NAT_1:38; hence ST.(k+1).a+(k+1) = s.a by A19,A40,AXIOMS:22; A42: ST.(k+1).au = ST.k.a - 1 by A17,A18,A19,A40,A41,Th12,AXIOMS:22; s.a = ST.k.a+1-1+k by A18,A40,A41,AXIOMS:22,XCMPLX_1:26 .= ST.k.a-1+1+k by XCMPLX_1:29 .= ST.k.a-1+(k+1) by XCMPLX_1:1; hence ST.(k+1).au = ST.(k+1).a by A19,A40,A41,A42,AXIOMS:22,XCMPLX_1:2; end; A43: for k holds X[k] from Ind(A5, A16); A44: ProperTimesBody a, I, s proof let k; thus thesis by A43; end; reconsider k = s.a as Nat by A1,INT_1:16; A45: IExec(times(a, I), s) | D = StepTimes(a, I, s).k | D by A44,Th23; StepTimes(a, I, s).k.a+k = s.a by A43; then StepTimes(a, I, s).k.a = 0 by XCMPLX_1:3; hence IExec(triv-times(a), s).a = 0 by A3,A45,SCMFSA6A:38; end; begin :: A macro for the Fibonacci sequence definition let N, result be Int-Location; set next = 1-stRWNotIn {N, result}; set N_save = 1-stNotUsed times(N, AddTo(result, next)';'swap(result, next)); :: set next = 1-stRWNotIn {N, result}; :: local variable :: set N_save = 1-stNotUsed times(N, AddTo(result, next)';'swap(result, next)); :: for saving and restoring N :: - requires: N <> result :: - does not change N func Fib-macro (N, result) -> Macro-Instruction equals :Def5: N_save := N ';' (SubFrom(result, result)) ';' (next := intloc 0) ';' times( N, AddTo(result, next) ';' swap(result, next) ) ';' (N := N_save); correctness; end; theorem :: Fib, new times for N, result being read-write Int-Location st N <> result for n being Nat st n = s.N holds IExec(Fib-macro(N, result), s).result = Fib n & IExec(Fib-macro(N, result), s).N = s.N proof let N, result be read-write Int-Location such that A1: N <> result; set next = 1-stRWNotIn {N, result}; set N_save = 1-stNotUsed times(N, AddTo(result, next)';'swap(result, next)); set i0 = N_save := N; set i1 = SubFrom(result, result); set i2 = next := intloc 0; set i30 = AddTo (result, next); set I31 = swap(result, next); set I301 = i30 ';' I31; set i02 = i0 ';' i1 ';' i2; set s1 = IExec(i02, s); set I3 = times( N, I301 ); set i4 = N := N_save; A2: Fib-macro(N, result) = i02 ';' I3 ';' i4 by Def5; A3: N_save = 1-stRWNotIn UsedIntLoc I3 by SFMASTR1:def 4; then A4: not N_save in UsedIntLoc I3 by SFMASTR1:21; set UIFS = UsedIntLoc I301 \/ FinSeq-Locations; A5: UsedIntLoc I301 = (UsedIntLoc i30) \/ UsedIntLoc I31 by SF_MASTR:33 .= {result, next} \/ UsedIntLoc I31 by SF_MASTR:18; result in {result, next} by TARSKI:def 2; then A6: result in UsedIntLoc I301 by A5,XBOOLE_0:def 2; next in {result, next} by TARSKI:def 2; then A7: next in UsedIntLoc I301 by A5,XBOOLE_0:def 2; A8: not next in {N, result} by SFMASTR1:21; then A9: next <> result by TARSKI:def 2; A10: next <> N by A8,TARSKI:def 2; A11:{N} \/ UsedIntLoc I301 c= UsedIntLoc I3 by Th8; N in {N} by TARSKI:def 1; then N in {N} \/ UsedIntLoc I301 by XBOOLE_0:def 2; then A12: N_save <> N by A3,A11,SFMASTR1:21; next in {N} \/ UsedIntLoc I301 by A7,XBOOLE_0:def 2; then A13: N_save <> next by A3,A11,SFMASTR1:21; result in {N} \/ UsedIntLoc I301 by A6,XBOOLE_0:def 2; then A14: N_save <> result by A3,A11,SFMASTR1:21; A15: s1.intloc 0 = Exec(i2, IExec(i0 ';' i1, s)).intloc 0 by SCMFSA6C:7 .= IExec(i0 ';' i1, s).intloc 0 by SCMFSA_2:89 .= Exec(i1, Exec(i0, Initialize s)).intloc 0 by SCMFSA6C:9 .= Exec(i0, Initialize s).intloc 0 by SCMFSA_2:91 .= (Initialize s).intloc 0 by SCMFSA_2:89 .= 1 by SCMFSA6C:3; A16: s1.N_save = Exec(i2, IExec(i0 ';' i1, s)).N_save by SCMFSA6C:7 .= IExec(i0 ';' i1, s).N_save by A13,SCMFSA_2:89 .= Exec(i1, Exec(i0, Initialize s)).N_save by SCMFSA6C:9 .= Exec(i0, Initialize s).N_save by A14,SCMFSA_2:91 .= (Initialize s).N by SCMFSA_2:89 .= s.N by SCMFSA6C:3; A17: s1.result = Exec(i2, IExec(i0 ';' i1, s)).result by SCMFSA6C:7 .= IExec(i0 ';' i1, s).result by A9,SCMFSA_2:89 .= Exec(i1, Exec(i0, Initialize s)).result by SCMFSA6C:9 .= Exec(i0,Initialize s).result-Exec(i0, Initialize s).result by SCMFSA_2:91 .= Fib 0 by PRE_FF:1,XCMPLX_1:14; A18: s1.next = Exec(i2, IExec(i0 ';' i1, s)).next by SCMFSA6C:7 .= IExec(i0 ';' i1, s).intloc 0 by SCMFSA_2:89 .= Exec(i1, Exec(i0, Initialize s)).intloc 0 by SCMFSA6C:9 .= Exec(i0, Initialize s).intloc 0 by SCMFSA_2:91 .= (Initialize s).intloc 0 by SCMFSA_2:89 .= Fib (0+1) by PRE_FF:1,SCMFSA6C:3; A19: s1.N = Exec(i2, IExec(i0 ';' i1, s)).N by SCMFSA6C:7 .= IExec(i0 ';' i1, s).N by A10,SCMFSA_2:89 .= Exec(i1, Exec(i0, Initialize s)).N by SCMFSA6C:9 .= Exec(i0, Initialize s).N by A1,SCMFSA_2:91 .= (Initialize s).N by A12,SCMFSA_2:89 .= s.N by SCMFSA6C:3; set ST = StepTimes(N, I301, s1); defpred P[Nat] means $1 <= s1.N implies ST.$1.result = Fib $1 & ST.$1.next = Fib ($1+1); A20: P[0] proof assume 0 <= s1.N; A21: ST.0 | UIFS = s1 | UIFS by A15,Th19; hence ST.0.result = Fib 0 by A6,A17,Th7; thus ST.0.next = Fib (0+1) by A7,A18,A21,Th7; end; A22: now let k be Nat such that A23: P[k]; thus P[k+1] proof assume A24: k+1 <= s1.N; A25: k < k+1 by NAT_1:38; then k < s1.N by A24,AXIOMS:22; then A26: ST.(k+1) | UIFS = IExec(I301, ST.k) | UIFS by Th21; hence ST.(k+1).result = IExec(I301, ST.k).result by A6,Th7 .= IExec(I31, Exec(i30, Initialize ST.k)).result by SCMFSA8B:12 .= Exec(i30, Initialize ST.k).next by SCMFSA6C:11 .= (Initialize ST.k).next by A9,SCMFSA_2:90 .= Fib (k+1) by A23,A24,A25,AXIOMS:22,SCMFSA6C:3; thus ST.(k+1).next = IExec(I301, ST.k).next by A7,A26,Th7 .= IExec(I31, Exec(i30, Initialize ST.k)).next by SCMFSA8B:12 .= Exec(i30, Initialize ST.k).result by SCMFSA6C:11 .= (Initialize ST.k).result + (Initialize ST.k).next by SCMFSA_2:90 .= ST.k.result + (Initialize ST.k).next by SCMFSA6C:3 .= ST.k.result + ST.k.next by SCMFSA6C:3 .= Fib ((k+1)+1) by A23,A24,A25,AXIOMS:22,PRE_FF:1; end; end; A27: for n being Nat holds P[n] from Ind(A20, A22); let n be Nat; assume A28: n = s.N; then A29: IExec(I3, s1) | D = ST.n | D by A19,Th23; A30: i02 is_halting_on Initialize s by SCMFSA7B:25; A31: I3 is_closed_on s1 & I3 is_halting_on s1 by A15,Th24; then A32: I3 is_closed_on Initialize s1 & I3 is_halting_on Initialize s1 by A15,Th5; A33: i02 is_closed_on Initialize s by SCMFSA7B:24; reconsider i02 as good Macro-Instruction; A34: i02 ';' I3 is_halting_on Initialize s by A30,A31,A33,SFMASTR1:4; A35: i02 ';' I3 is_closed_on Initialize s by A30,A31,A33,SFMASTR1:3; hence IExec(Fib-macro(N, result), s).result = Exec(i4, IExec(i02 ';' I3, s)).result by A2,A34,SFMASTR1:12 .= IExec( i02 ';' I3, s).result by A1,SCMFSA_2:89 .= IExec(I3, s1).result by A31,SFMASTR1:8 .= ST.n.result by A29,SCMFSA6A:38 .= Fib n by A19,A27,A28; thus IExec(Fib-macro(N, result), s).N = Exec(i4, IExec(i02 ';' I3, s)).N by A2,A34,A35,SFMASTR1:12 .= IExec( i02 ';' I3, s).N_save by SCMFSA_2:89 .= IExec(I3, s1).N_save by A31,SFMASTR1:8 .= s.N by A4,A16,A32,Th3; end;