Copyright (c) 1998 Association of Mizar Users
environ vocabulary PARTIT1, FUNCT_2, MARGREL1, EQREL_1, BVFUNC_1, ZF_LANG, T_1TOPSP, BVFUNC_2, BINARITH, FUNCT_1; notation XBOOLE_0, SUBSET_1, MARGREL1, VALUAT_1, FRAENKEL, EQREL_1, BINARITH, BVFUNC_1, BVFUNC_2; constructors BINARITH, BVFUNC_2, BVFUNC_1; clusters VALUAT_1, MARGREL1, FRAENKEL; definitions BVFUNC_1; theorems T_1TOPSP, MARGREL1, BINARITH, BVFUNC_1, BVFUNC_2, VALUAT_1; begin :: Chap. 1 Predicate Calculus reserve Y for non empty set, G for Subset of PARTITIONS(Y), a,b,c,u for Element of Funcs(Y,BOOLEAN), PA for a_partition of Y; theorem (a 'imp' b) '<' (All(a,PA,G) 'imp' Ex(b,PA,G)) proof let z be Element of Y; assume Pj(a 'imp' b,z)=TRUE; then A1:('not' Pj(a,z)) 'or' Pj(b,z)=TRUE by BVFUNC_1:def 11; A2:('not' Pj(a,z))=TRUE or ('not' Pj(a,z))=FALSE by MARGREL1:39; A3:z in EqClass(z,CompF(PA,G)) & EqClass(z,CompF(PA,G)) in CompF(PA,G) by T_1TOPSP:def 1; per cases by A1,A2,BINARITH:7; suppose 'not' Pj(a,z)=TRUE; then Pj(a,z)=FALSE by MARGREL1:41; then Pj(a,z)<>TRUE by MARGREL1:43; then Pj(B_INF(a,CompF(PA,G)),z) = FALSE by A3,BVFUNC_1:def 19; then Pj(All(a,PA,G),z)=FALSE by BVFUNC_2:def 9; hence Pj(All(a,PA,G) 'imp' Ex(b,PA,G),z) =('not' FALSE) 'or' Pj(Ex(b,PA,G),z) by BVFUNC_1:def 11 .=TRUE 'or' Pj(Ex(b,PA,G),z) by MARGREL1:41 .=TRUE by BINARITH:19; suppose Pj(b,z)=TRUE; then Pj(B_SUP(b,CompF(PA,G)),z) = TRUE by A3,BVFUNC_1:def 20; then Pj(Ex(b,PA,G),z)=TRUE by BVFUNC_2:def 10; hence Pj(All(a,PA,G) 'imp' Ex(b,PA,G),z) =('not' Pj(All(a,PA,G),z)) 'or' TRUE by BVFUNC_1:def 11 .=TRUE by BINARITH:19; end; theorem (All(a,PA,G) '&' All(b,PA,G)) '<' (a '&' b) proof let z be Element of Y; assume A1:Pj(All(a,PA,G) '&' All(b,PA,G),z)=TRUE; A2: Pj(All(a,PA,G) '&' All(b,PA,G),z) =Pj(All(a,PA,G),z) '&' Pj(All(b,PA,G),z) by VALUAT_1:def 6; A3:z in EqClass(z,CompF(PA,G)) & EqClass(z,CompF(PA,G)) in CompF(PA,G) by T_1TOPSP:def 1; A4: now assume not (for x being Element of Y st x in EqClass(z,CompF(PA,G)) holds Pj(a,x)=TRUE); then Pj(B_INF(a,CompF(PA,G)),z) = FALSE by BVFUNC_1:def 19; then Pj(All(a,PA,G),z)=FALSE by BVFUNC_2:def 9; then Pj(All(a,PA,G),z)<>TRUE by MARGREL1:43; hence contradiction by A1,A2,MARGREL1:45; end; now assume not (for x being Element of Y st x in EqClass(z,CompF(PA,G)) holds Pj(b,x)=TRUE); then Pj(B_INF(b,CompF(PA,G)),z) = FALSE by BVFUNC_1:def 19; then Pj(All(b,PA,G),z)=FALSE by BVFUNC_2:def 9; then Pj(All(b,PA,G),z)<>TRUE by MARGREL1:43; hence contradiction by A1,A2,MARGREL1:45; end; then A5:Pj(b,z)=TRUE by A3; thus Pj(a '&' b,z) =Pj(a,z) '&' Pj(b,z) by VALUAT_1:def 6 .=TRUE '&' TRUE by A3,A4,A5 .=TRUE by MARGREL1:45; end; theorem (a '&' b) '<' (Ex(a,PA,G) '&' Ex(b,PA,G)) proof A1:Ex(a,PA,G) = B_SUP(a,CompF(PA,G)) by BVFUNC_2:def 10; let z be Element of Y; assume A2:Pj(a '&' b,z)=TRUE; Pj(a '&' b,z)=Pj(a,z) '&' Pj(b,z) by VALUAT_1:def 6; then A3: Pj(a,z)=TRUE & Pj(b,z)=TRUE by A2,MARGREL1:45; A4:z in EqClass(z,CompF(PA,G)) & EqClass(z,CompF(PA,G)) in CompF(PA,G) by T_1TOPSP:def 1; then Pj(B_SUP(b,CompF(PA,G)),z) = TRUE by A3,BVFUNC_1:def 20; then A5:Pj(Ex(b,PA,G),z)=TRUE by BVFUNC_2:def 10; thus Pj(Ex(a,PA,G) '&' Ex(b,PA,G),z) =Pj(Ex(a,PA,G),z) '&' Pj(Ex(b,PA,G),z) by VALUAT_1:def 6 .=TRUE '&' TRUE by A1,A3,A4,A5,BVFUNC_1:def 20 .=TRUE by MARGREL1:45; end; theorem 'not' (All(a,PA,G) '&' All(b,PA,G)) = Ex('not' a,PA,G) 'or' Ex('not' b,PA,G ) proof A1:All(a,PA,G) = B_INF(a,CompF(PA,G)) by BVFUNC_2:def 9; A2:All(b,PA,G) = B_INF(b,CompF(PA,G)) by BVFUNC_2:def 9; A3:'not' (All(a,PA,G) '&' All(b,PA,G)) '<' (Ex('not' a,PA,G) 'or' Ex('not' b,PA,G)) proof let z be Element of Y; assume Pj('not' (All(a,PA,G) '&' All(b,PA,G)),z)=TRUE; then A4: 'not' Pj((All(a,PA,G) '&' All(b,PA,G)),z)=TRUE by VALUAT_1:def 5; Pj(All(a,PA,G) '&' All(b,PA,G),z) =Pj(All(a,PA,G),z) '&' Pj(All(b,PA,G),z) by VALUAT_1:def 6; then A5:Pj(All(a,PA,G),z) '&' Pj(All(b,PA,G),z)=FALSE by A4,MARGREL1:41; per cases by A5,MARGREL1:45; suppose A6:Pj(All(a,PA,G),z)=FALSE; now assume A7: for x being Element of Y st x in EqClass(z,CompF(PA,G)) holds Pj(a,x)=TRUE; Pj(All(a,PA,G),z)<>TRUE by A6,MARGREL1:43; hence contradiction by A1,A7,BVFUNC_1:def 19; end; then consider x1 being Element of Y such that A8:x1 in EqClass(z,CompF(PA,G)) & Pj(a,x1)<>TRUE; Pj(a,x1)=FALSE by A8,MARGREL1:43; then 'not' Pj(a,x1)=TRUE by MARGREL1:41; then Pj('not' a,x1)=TRUE by VALUAT_1:def 5; then Pj(B_SUP('not' a,CompF(PA,G)),z) = TRUE by A8,BVFUNC_1:def 20; then Pj(Ex('not' a,PA,G),z) =TRUE by BVFUNC_2:def 10; hence Pj(Ex('not' a,PA,G) 'or' Ex('not' b,PA,G),z) =TRUE 'or' Pj(Ex('not' b,PA,G),z) by BVFUNC_1:def 7 .=TRUE by BINARITH:19; suppose A9:Pj(All(b,PA,G),z)=FALSE; now assume A10: for x being Element of Y st x in EqClass(z,CompF(PA,G)) holds Pj(b,x)=TRUE; Pj(All(b,PA,G),z)<>TRUE by A9,MARGREL1:43; hence contradiction by A2,A10,BVFUNC_1:def 19; end; then consider x1 being Element of Y such that A11:x1 in EqClass(z,CompF(PA,G)) & Pj(b,x1)<>TRUE; Pj(b,x1)=FALSE by A11,MARGREL1:43; then 'not' Pj(b,x1)=TRUE by MARGREL1:41; then Pj('not' b,x1)=TRUE by VALUAT_1:def 5; then Pj(B_SUP('not' b,CompF(PA,G)),z) = TRUE by A11,BVFUNC_1:def 20; then Pj(Ex('not' b,PA,G),z) =TRUE by BVFUNC_2:def 10; hence Pj(Ex('not' a,PA,G) 'or' Ex('not' b,PA,G),z) =Pj(Ex('not' a,PA,G),z) 'or' TRUE by BVFUNC_1:def 7 .=TRUE by BINARITH:19; end; Ex('not' a,PA,G) 'or' Ex('not' b,PA,G) '<' 'not' (All(a,PA,G) '&' All(b,PA,G)) proof let z be Element of Y; assume A12: Pj(Ex('not' a,PA,G) 'or' Ex('not' b,PA,G),z)=TRUE; A13:Pj(Ex('not' a,PA,G) 'or' Ex('not' b,PA,G),z) =Pj(Ex('not' a,PA,G),z) 'or' Pj(Ex('not' b,PA,G),z) by BVFUNC_1:def 7; A14: Pj(Ex('not' b,PA,G),z)=TRUE or Pj(Ex('not' b,PA,G),z)=FALSE by MARGREL1:39; per cases by A12,A13,A14,BINARITH:7; suppose A15:Pj(Ex('not' a,PA,G),z)=TRUE; now assume not (ex x being Element of Y st x in EqClass(z,CompF(PA,G)) & Pj('not' a,x)=TRUE); then Pj(B_SUP('not' a,CompF(PA,G)),z) = FALSE by BVFUNC_1:def 20; then Pj(Ex('not' a,PA,G),z)=FALSE by BVFUNC_2:def 10; hence contradiction by A15,MARGREL1:43; end; then consider x1 being Element of Y such that A16:x1 in EqClass(z,CompF(PA,G)) & Pj('not' a,x1)=TRUE; 'not' Pj(a,x1)=TRUE by A16,VALUAT_1:def 5; then Pj(a,x1)=FALSE by MARGREL1:41; then A17: Pj(a,x1)<>TRUE by MARGREL1:43; thus Pj('not' (All(a,PA,G) '&' All(b,PA,G)),z) ='not' Pj((All(a,PA,G) '&' All(b,PA,G)),z) by VALUAT_1:def 5 .='not' (Pj(All(a,PA,G),z) '&' Pj(All(b,PA,G),z)) by VALUAT_1:def 6 .='not' (FALSE '&' Pj(All(b,PA,G),z)) by A1,A16,A17,BVFUNC_1:def 19 .='not' (FALSE) by MARGREL1:45 .=TRUE by MARGREL1:41; suppose A18:Pj(Ex('not' b,PA,G),z)=TRUE; now assume not (ex x being Element of Y st x in EqClass(z,CompF(PA,G)) & Pj('not' b,x)=TRUE); then Pj(B_SUP('not' b,CompF(PA,G)),z) = FALSE by BVFUNC_1:def 20; then Pj(Ex('not' b,PA,G),z)=FALSE by BVFUNC_2:def 10; hence contradiction by A18,MARGREL1:43; end; then consider x1 being Element of Y such that A19:x1 in EqClass(z,CompF(PA,G)) & Pj('not' b,x1)=TRUE; 'not' Pj(b,x1)=TRUE by A19,VALUAT_1:def 5; then Pj(b,x1)=FALSE by MARGREL1:41; then A20: Pj(b,x1)<>TRUE by MARGREL1:43; thus Pj('not' (All(a,PA,G) '&' All(b,PA,G)),z) ='not' Pj((All(a,PA,G) '&' All(b,PA,G)),z) by VALUAT_1:def 5 .='not' (Pj(All(a,PA,G),z) '&' Pj(All(b,PA,G),z)) by VALUAT_1:def 6 .='not' (Pj(All(a,PA,G),z) '&' FALSE) by A2,A19,A20,BVFUNC_1:def 19 .='not' (FALSE) by MARGREL1:45 .=TRUE by MARGREL1:41; end; hence thesis by A3,BVFUNC_1:18; end; theorem 'not' (Ex(a,PA,G) '&' Ex(b,PA,G)) = All('not' a,PA,G) 'or' All('not' b,PA,G ) proof A1:All('not' a,PA,G) = B_INF('not' a,CompF(PA,G)) by BVFUNC_2:def 9; A2:All('not' b,PA,G) = B_INF('not' b,CompF(PA,G)) by BVFUNC_2:def 9; A3:Ex(a,PA,G) = B_SUP(a,CompF(PA,G)) by BVFUNC_2:def 10; A4:Ex(b,PA,G) = B_SUP(b,CompF(PA,G)) by BVFUNC_2:def 10; A5:'not' (Ex(a,PA,G) '&' Ex(b,PA,G)) '<' (All('not' a,PA,G) 'or' All('not' b,PA,G)) proof let z be Element of Y; assume Pj('not' (Ex(a,PA,G) '&' Ex(b,PA,G)),z)=TRUE; then 'not' Pj((Ex(a,PA,G) '&' Ex(b,PA,G)),z)=TRUE by VALUAT_1:def 5; then Pj((Ex(a,PA,G) '&' Ex(b,PA,G)),z)=FALSE by MARGREL1:41; then A6:Pj(Ex(a,PA,G),z) '&' Pj(Ex(b,PA,G),z)=FALSE by VALUAT_1:def 6; per cases by A6,MARGREL1:45; suppose A7:Pj(Ex(a,PA,G),z)=FALSE; A8: now assume A9: (ex x being Element of Y st x in EqClass(z,CompF(PA,G)) & Pj(a,x)=TRUE); Pj(Ex(a,PA,G),z)<>TRUE by A7,MARGREL1:43; hence contradiction by A3,A9,BVFUNC_1:def 20; end; A10: now let x be Element of Y; assume x in EqClass(z,CompF(PA,G)); then Pj(a,x)<>TRUE by A8; then Pj(a,x)=FALSE by MARGREL1:43; then 'not' Pj(a,x)=TRUE by MARGREL1:41; hence Pj('not' a,x)=TRUE by VALUAT_1:def 5; end; thus Pj(All('not' a,PA,G) 'or' All('not' b,PA,G),z) = Pj(All('not' a,PA,G),z) 'or' Pj(All('not' b,PA,G),z) by BVFUNC_1:def 7 .= TRUE 'or' Pj(All('not' b,PA,G),z) by A1,A10,BVFUNC_1:def 19 .= TRUE by BINARITH:19; suppose A11:Pj(Ex(b,PA,G),z)=FALSE; A12: now assume A13: (ex x being Element of Y st x in EqClass(z,CompF(PA,G)) & Pj(b,x)=TRUE); Pj(Ex(b,PA,G),z)<>TRUE by A11,MARGREL1:43; hence contradiction by A4,A13,BVFUNC_1:def 20; end; A14: now let x be Element of Y; assume x in EqClass(z,CompF(PA,G)); then Pj(b,x)<>TRUE by A12; then Pj(b,x)=FALSE by MARGREL1:43; then 'not' Pj(b,x)=TRUE by MARGREL1:41; hence Pj('not' b,x)=TRUE by VALUAT_1:def 5; end; thus Pj(All('not' a,PA,G) 'or' All('not' b,PA,G),z) = Pj(All('not' a,PA,G),z) 'or' Pj(All('not' b,PA,G),z) by BVFUNC_1:def 7 .= Pj(All('not' a,PA,G),z) 'or' TRUE by A2,A14,BVFUNC_1:def 19 .= TRUE by BINARITH:19; end; All('not' a,PA,G) 'or' All('not' b,PA,G) '<' 'not' (Ex(a,PA,G) '&' Ex(b,PA,G)) proof let z be Element of Y; assume Pj(All('not' a,PA,G) 'or' All('not' b,PA,G),z)=TRUE; then A15:Pj(All('not' a,PA,G),z) 'or' Pj(All('not' b,PA,G),z)=TRUE by BVFUNC_1:def 7; A16:Pj(All('not' b,PA,G),z)=TRUE or Pj(All('not' b,PA,G),z)=FALSE by MARGREL1:39; per cases by A15,A16,BINARITH:7; suppose A17:Pj(All('not' a,PA,G),z)=TRUE; A18: now assume not (for x being Element of Y st x in EqClass(z,CompF(PA,G)) holds Pj('not' a,x)=TRUE); then Pj(B_INF('not' a,CompF(PA,G)),z) = FALSE by BVFUNC_1:def 19; then Pj(All('not' a,PA,G),z)=FALSE by BVFUNC_2:def 9; hence contradiction by A17,MARGREL1:43; end; A19: now let x be Element of Y; assume x in EqClass(z,CompF(PA,G)); then Pj('not' a,x)=TRUE by A18; then 'not' Pj(a,x)=TRUE by VALUAT_1:def 5; then Pj(a,x)=FALSE by MARGREL1:41; hence Pj(a,x)<>TRUE by MARGREL1:43; end; thus Pj('not' (Ex(a,PA,G) '&' Ex(b,PA,G)),z) ='not' Pj((Ex(a,PA,G) '&' Ex(b,PA,G)),z) by VALUAT_1:def 5 .='not' (Pj(Ex(a,PA,G),z) '&' Pj(Ex(b,PA,G),z)) by VALUAT_1:def 6 .='not' (FALSE '&' Pj(Ex(b,PA,G),z)) by A3,A19,BVFUNC_1:def 20 .='not' (FALSE) by MARGREL1:45 .=TRUE by MARGREL1:41; suppose A20:Pj(All('not' b,PA,G),z)=TRUE; A21:now assume not (for x being Element of Y st x in EqClass(z,CompF(PA,G)) holds Pj('not' b,x)=TRUE); then Pj(B_INF('not' b,CompF(PA,G)),z) = FALSE by BVFUNC_1:def 19; then Pj(All('not' b,PA,G),z)=FALSE by BVFUNC_2:def 9; hence contradiction by A20,MARGREL1:43; end; A22: now let x be Element of Y; assume x in EqClass(z,CompF(PA,G)); then Pj('not' b,x)=TRUE by A21; then 'not' Pj(b,x)=TRUE by VALUAT_1:def 5; then Pj(b,x)=FALSE by MARGREL1:41; hence Pj(b,x)<>TRUE by MARGREL1:43; end; thus Pj('not' (Ex(a,PA,G) '&' Ex(b,PA,G)),z) ='not' Pj((Ex(a,PA,G) '&' Ex(b,PA,G)),z) by VALUAT_1:def 5 .='not' (Pj(Ex(a,PA,G),z) '&' Pj(Ex(b,PA,G),z)) by VALUAT_1:def 6 .='not' (Pj(Ex(a,PA,G),z) '&' FALSE) by A4,A22,BVFUNC_1:def 20 .='not' (FALSE) by MARGREL1:45 .=TRUE by MARGREL1:41; end; hence thesis by A5,BVFUNC_1:18; end; theorem (All(a,PA,G) 'or' All(b,PA,G)) '<' (a 'or' b) proof let z be Element of Y; assume Pj(All(a,PA,G) 'or' All(b,PA,G),z)=TRUE; then A1:Pj(All(a,PA,G),z) 'or' Pj(All(b,PA,G),z)=TRUE by BVFUNC_1:def 7; A2: Pj(All(a,PA,G),z)=TRUE or Pj(All(a,PA,G),z)=FALSE by MARGREL1:39; A3:z in EqClass(z,CompF(PA,G)) & EqClass(z,CompF(PA,G)) in CompF(PA,G) by T_1TOPSP:def 1; per cases by A1,A2,BINARITH:7; suppose A4:Pj(All(a,PA,G),z)=TRUE; A5: now assume not (for x being Element of Y st x in EqClass(z,CompF(PA,G)) holds Pj(a,x)=TRUE); then Pj(B_INF(a,CompF(PA,G)),z) = FALSE by BVFUNC_1:def 19; then Pj(All(a,PA,G),z)=FALSE by BVFUNC_2:def 9; hence contradiction by A4,MARGREL1:43; end; thus Pj(a 'or' b,z) = Pj(a,z) 'or' Pj(b,z) by BVFUNC_1:def 7 .= TRUE 'or' Pj(b,z) by A3,A5 .= TRUE by BINARITH:19; suppose A6:Pj(All(b,PA,G),z)=TRUE; A7: now assume not (for x being Element of Y st x in EqClass(z,CompF(PA,G)) holds Pj(b,x)=TRUE); then Pj(B_INF(b,CompF(PA,G)),z) = FALSE by BVFUNC_1:def 19; then Pj(All(b,PA,G),z)=FALSE by BVFUNC_2:def 9; hence contradiction by A6,MARGREL1:43; end; thus Pj(a 'or' b,z) = Pj(a,z) 'or' Pj(b,z) by BVFUNC_1:def 7 .= Pj(a,z) 'or' TRUE by A3,A7 .= TRUE by BINARITH:19; end; theorem (a 'or' b) '<' (Ex(a,PA,G) 'or' Ex(b,PA,G)) proof A1:Ex(a,PA,G) = B_SUP(a,CompF(PA,G)) by BVFUNC_2:def 10; A2:Ex(b,PA,G) = B_SUP(b,CompF(PA,G)) by BVFUNC_2:def 10; let z be Element of Y; assume Pj(a 'or' b,z)=TRUE; then A3:Pj(a,z) 'or' Pj(b,z)=TRUE by BVFUNC_1:def 7; A4: Pj(b,z)=TRUE or Pj(b,z)=FALSE by MARGREL1:39; A5:z in EqClass(z,CompF(PA,G)) & EqClass(z,CompF(PA,G)) in CompF(PA,G) by T_1TOPSP:def 1; per cases by A3,A4,BINARITH:7; suppose A6: Pj(a,z)=TRUE; thus Pj(Ex(a,PA,G) 'or' Ex(b,PA,G),z) =Pj(Ex(a,PA,G),z) 'or' Pj(Ex(b,PA,G),z) by BVFUNC_1:def 7 .=TRUE 'or' Pj(Ex(b,PA,G),z) by A1,A5,A6,BVFUNC_1:def 20 .=TRUE by BINARITH:19; suppose A7: Pj(b,z)=TRUE; thus Pj(Ex(a,PA,G) 'or' Ex(b,PA,G),z) =Pj(Ex(a,PA,G),z) 'or' Pj(Ex(b,PA,G),z) by BVFUNC_1:def 7 .=Pj(Ex(a,PA,G),z) 'or' TRUE by A2,A5,A7,BVFUNC_1:def 20 .=TRUE by BINARITH:19; end; theorem (a 'xor' b) '<' ('not' (Ex('not' a,PA,G) 'xor' Ex(b,PA,G)) 'or' 'not' (Ex(a,PA,G) 'xor' Ex( 'not' b,PA,G))) proof A1:Ex('not' a,PA,G) = B_SUP('not' a,CompF(PA,G)) by BVFUNC_2:def 10; A2:Ex('not' b,PA,G) = B_SUP('not' b,CompF(PA,G)) by BVFUNC_2:def 10; let z be Element of Y; assume A3:Pj(a 'xor' b,z)=TRUE; A4: Pj(a 'xor' b,z) =Pj(a,z) 'xor' Pj(b,z) by BVFUNC_1:def 8 .=('not' Pj(a,z) '&' Pj(b,z)) 'or' (Pj(a,z) '&' 'not' Pj(b,z)) by BINARITH:def 2; A5: (Pj(a,z) '&' 'not' Pj(b,z))=TRUE or (Pj(a,z) '&' 'not' Pj(b,z))=FALSE by MARGREL1:39; A6:z in EqClass(z,CompF(PA,G)) & EqClass(z,CompF(PA,G)) in CompF(PA,G) by T_1TOPSP:def 1; A7:'not' FALSE=TRUE & 'not' TRUE=FALSE by MARGREL1:41; A8:FALSE '&' TRUE =FALSE by MARGREL1:49; per cases by A3,A4,A5,BINARITH:7; suppose ('not' Pj(a,z) '&' Pj(b,z))=TRUE; then A9:'not' Pj(a,z)=TRUE & Pj(b,z)=TRUE by MARGREL1:45; then Pj('not' a,z)=TRUE by VALUAT_1:def 5; then A10: Pj(B_SUP('not' a,CompF(PA,G)),z) = TRUE by A6,BVFUNC_1:def 20; Pj(B_SUP(b,CompF(PA,G)),z) = TRUE by A6,A9,BVFUNC_1:def 20; then A11:Pj(Ex(b,PA,G),z)=TRUE by BVFUNC_2:def 10; A12:Pj(Ex('not' a,PA,G) 'xor' Ex(b,PA,G),z) =Pj(Ex('not' a,PA,G),z) 'xor' Pj(Ex(b,PA,G),z) by BVFUNC_1:def 8 .=FALSE 'or' FALSE by A1,A7,A8,A10,A11,BINARITH:def 2 .=FALSE by BINARITH:7; A13:Pj('not' (Ex(a,PA,G) 'xor' Ex('not' b,PA,G)),z) ='not' Pj((Ex(a,PA,G) 'xor' Ex('not' b,PA,G)),z) by VALUAT_1:def 5; thus Pj('not' (Ex('not' a,PA,G) 'xor' Ex(b,PA,G)) 'or' 'not' (Ex(a,PA,G) 'xor' Ex('not' b,PA,G)),z) =Pj('not' (Ex('not' a,PA,G) 'xor' Ex(b,PA,G)),z) 'or' Pj('not' (Ex(a,PA,G) 'xor' Ex('not' b,PA,G)),z) by BVFUNC_1:def 7 .='not' FALSE 'or' 'not' Pj((Ex(a,PA,G) 'xor' Ex('not' b,PA,G)),z) by A12,A13,VALUAT_1:def 5 .=TRUE 'or' 'not' Pj((Ex(a,PA,G) 'xor' Ex('not' b,PA,G)),z) by MARGREL1:41 .=TRUE by BINARITH:19; suppose (Pj(a,z) '&' 'not' Pj(b,z))=TRUE; then A14:Pj(a,z)=TRUE & 'not' Pj(b,z)=TRUE by MARGREL1:45; then Pj('not' b,z)=TRUE by VALUAT_1:def 5; then A15: Pj(B_SUP('not' b,CompF(PA,G)),z) = TRUE by A6,BVFUNC_1:def 20; Pj(B_SUP(a,CompF(PA,G)),z) = TRUE by A6,A14,BVFUNC_1:def 20; then A16:Pj(Ex(a,PA,G),z)=TRUE by BVFUNC_2:def 10; A17:Pj(Ex(a,PA,G) 'xor' Ex('not' b,PA,G),z) =Pj(Ex(a,PA,G),z) 'xor' Pj(Ex('not' b,PA,G),z) by BVFUNC_1:def 8 .=FALSE 'or' FALSE by A2,A7,A8,A15,A16,BINARITH:def 2 .=FALSE by BINARITH:7; A18:Pj('not' (Ex(a,PA,G) 'xor' Ex('not' b,PA,G)),z) ='not' Pj((Ex(a,PA,G) 'xor' Ex('not' b,PA,G)),z) by VALUAT_1:def 5; thus Pj('not' (Ex('not' a,PA,G) 'xor' Ex(b,PA,G)) 'or' 'not' (Ex(a,PA,G) 'xor' Ex('not' b,PA,G)),z) =Pj('not' (Ex('not' a,PA,G) 'xor' Ex(b,PA,G)),z) 'or' Pj('not' (Ex(a,PA,G) 'xor' Ex('not' b,PA,G)),z) by BVFUNC_1:def 7 .='not' Pj((Ex('not' a,PA,G) 'xor' Ex(b,PA,G)),z) 'or' 'not' FALSE by A17,A18,VALUAT_1:def 5 .='not' Pj((Ex('not' a,PA,G) 'xor' Ex(b,PA,G)),z) 'or' TRUE by MARGREL1:41 .=TRUE by BINARITH:19; end; theorem All(a 'or' b,PA,G) '<' All(a,PA,G) 'or' Ex(b,PA,G) proof let z be Element of Y; assume A1:Pj(All(a 'or' b,PA,G),z)=TRUE; A2: now assume not (for x being Element of Y st x in EqClass(z,CompF(PA,G)) holds Pj(a 'or' b,x)=TRUE); then Pj(B_INF(a 'or' b,CompF(PA,G)),z)=FALSE by BVFUNC_1:def 19; then Pj(All(a 'or' b,PA,G),z)=FALSE by BVFUNC_2:def 9; hence contradiction by A1,MARGREL1:43; end; per cases; suppose (ex x being Element of Y st x in EqClass(z,CompF(PA,G)) & Pj(b,x)=TRUE); then Pj(B_SUP(b,CompF(PA,G)),z) = TRUE by BVFUNC_1:def 20; then Pj(Ex(b,PA,G),z)=TRUE by BVFUNC_2:def 10; hence Pj(All(a,PA,G) 'or' Ex(b,PA,G),z) =Pj(All(a,PA,G),z) 'or' TRUE by BVFUNC_1:def 7 .=TRUE by BINARITH:19; suppose (for x being Element of Y st x in EqClass(z,CompF(PA,G)) holds Pj(a,x)=TRUE) & not (ex x being Element of Y st x in EqClass(z,CompF(PA,G)) & Pj(b,x)=TRUE); then Pj(B_INF(a,CompF(PA,G)),z) = TRUE by BVFUNC_1:def 19; then Pj(All(a,PA,G),z)=TRUE by BVFUNC_2:def 9; hence Pj(All(a,PA,G) 'or' Ex(b,PA,G),z) =TRUE 'or' Pj(Ex(b,PA,G),z) by BVFUNC_1:def 7 .=TRUE by BINARITH:19; suppose A3: not (for x being Element of Y st x in EqClass(z,CompF(PA,G)) holds Pj(a,x)=TRUE) & not (ex x being Element of Y st x in EqClass(z,CompF(PA,G)) & Pj(b,x)=TRUE); then consider x1 being Element of Y such that A4: x1 in EqClass(z,CompF(PA,G)) & Pj(a,x1)<>TRUE; A5: Pj(b,x1)<>TRUE by A3,A4; A6:Pj(a,x1)=FALSE by A4,MARGREL1:43; A7: Pj(a 'or' b,x1) = Pj(a,x1) 'or' Pj(b,x1) by BVFUNC_1:def 7 .= FALSE 'or' FALSE by A5,A6,MARGREL1:43 .= FALSE by BINARITH:7; Pj(a 'or' b,x1)=TRUE by A2,A4; hence thesis by A7,MARGREL1:43; end; Lm1:now let Y,a,b,G,PA; let z be Element of Y; assume A1:Pj(All(a 'or' b,PA,G),z)=TRUE; assume not (for x being Element of Y st x in EqClass(z,CompF(PA,G)) holds Pj(a 'or' b,x)=TRUE); then Pj(B_INF(a 'or' b,CompF(PA,G)),z)=FALSE by BVFUNC_1:def 19; then Pj(All(a 'or' b,PA,G),z)=FALSE by BVFUNC_2:def 9; hence contradiction by A1,MARGREL1:43; end; theorem All(a 'or' b,PA,G) '<' Ex(a,PA,G) 'or' All(b,PA,G) proof let z be Element of Y; assume A1:Pj(All(a 'or' b,PA,G),z)=TRUE; per cases; suppose (ex x being Element of Y st x in EqClass(z,CompF(PA,G)) & Pj(a,x)=TRUE); then Pj(B_SUP(a,CompF(PA,G)),z) = TRUE by BVFUNC_1:def 20; then Pj(Ex(a,PA,G),z)=TRUE by BVFUNC_2:def 10; hence Pj(Ex(a,PA,G) 'or' All(b,PA,G),z) = TRUE 'or' Pj(All(b,PA,G),z) by BVFUNC_1:def 7 .=TRUE by BINARITH:19; suppose (for x being Element of Y st x in EqClass(z,CompF(PA,G)) holds Pj(b,x)=TRUE) & not (ex x being Element of Y st x in EqClass(z,CompF(PA,G)) & Pj(a,x)=TRUE); then Pj(B_INF(b,CompF(PA,G)),z) = TRUE by BVFUNC_1:def 19; then Pj(All(b,PA,G),z)=TRUE by BVFUNC_2:def 9; hence Pj(Ex(a,PA,G) 'or' All(b,PA,G),z) =Pj(Ex(a,PA,G),z) 'or' TRUE by BVFUNC_1:def 7 .=TRUE by BINARITH:19; suppose A2: not (for x being Element of Y st x in EqClass(z,CompF(PA,G)) holds Pj(b,x)=TRUE) & not (ex x being Element of Y st x in EqClass(z,CompF(PA,G)) & Pj(a,x)=TRUE); then consider x1 being Element of Y such that A3: x1 in EqClass(z,CompF(PA,G)) & Pj(b,x1)<>TRUE; A4:Pj(a,x1)<>TRUE by A2,A3; A5:Pj(b,x1)=FALSE by A3,MARGREL1:43; A6: Pj(a 'or' b,x1) = Pj(a,x1) 'or' Pj(b,x1) by BVFUNC_1:def 7 .= FALSE 'or' FALSE by A4,A5,MARGREL1:43 .= FALSE by BINARITH:7; Pj(a 'or' b,x1)=TRUE by A1,A3,Lm1; hence thesis by A6,MARGREL1:43; end; theorem All(a 'or' b,PA,G) '<' Ex(a,PA,G) 'or' Ex(b,PA,G) proof let z be Element of Y; assume A1:Pj(All(a 'or' b,PA,G),z)=TRUE; A2:z in EqClass(z,CompF(PA,G)) & EqClass(z,CompF(PA,G)) in CompF(PA,G) by T_1TOPSP:def 1; then Pj(a 'or' b,z)=TRUE by A1,Lm1; then A3:Pj(a,z) 'or' Pj(b,z)=TRUE by BVFUNC_1:def 7; A4:Pj(a,z)=TRUE or Pj(a,z)=FALSE by MARGREL1:39; per cases by A3,A4,BINARITH:7; suppose Pj(a,z)=TRUE; then Pj(B_SUP(a,CompF(PA,G)),z) = TRUE by A2,BVFUNC_1:def 20; then Pj(Ex(a,PA,G),z)=TRUE by BVFUNC_2:def 10; hence Pj(Ex(a,PA,G) 'or' Ex(b,PA,G),z) =TRUE 'or' Pj(Ex(b,PA,G),z) by BVFUNC_1:def 7 .=TRUE by BINARITH:19; suppose Pj(b,z)=TRUE; then Pj(B_SUP(b,CompF(PA,G)),z) = TRUE by A2,BVFUNC_1:def 20; then Pj(Ex(b,PA,G),z)=TRUE by BVFUNC_2:def 10; hence Pj(Ex(a,PA,G) 'or' Ex(b,PA,G),z) =Pj(Ex(a,PA,G),z) 'or' TRUE by BVFUNC_1:def 7 .=TRUE by BINARITH:19; end; theorem Ex(a,PA,G) '&' All(b,PA,G) '<' Ex(a '&' b,PA,G) proof let z be Element of Y; assume Pj(Ex(a,PA,G) '&' All(b,PA,G),z)=TRUE; then A1: Pj(Ex(a,PA,G),z) '&' Pj(All(b,PA,G),z)=TRUE by VALUAT_1:def 6; now assume not (ex x being Element of Y st x in EqClass(z,CompF(PA,G)) & Pj(a,x)=TRUE); then Pj(B_SUP(a,CompF(PA,G)),z) = FALSE by BVFUNC_1:def 20; then Pj(Ex(a,PA,G),z)=FALSE by BVFUNC_2:def 10; then Pj(Ex(a,PA,G),z)<>TRUE by MARGREL1:43; hence contradiction by A1,MARGREL1:45; end; then consider x1 being Element of Y such that A2:x1 in EqClass(z,CompF(PA,G)) & Pj(a,x1)=TRUE; A3: now assume not (for x being Element of Y st x in EqClass(z,CompF(PA,G)) holds Pj(b,x)=TRUE); then Pj(B_INF(b,CompF(PA,G)),z) = FALSE by BVFUNC_1:def 19; then Pj(All(b,PA,G),z)=FALSE by BVFUNC_2:def 9; then Pj(All(b,PA,G),z)<>TRUE by MARGREL1:43; hence contradiction by A1,MARGREL1:45; end; Pj(a '&' b,x1) =Pj(a,x1) '&' Pj(b,x1) by VALUAT_1:def 6 .=TRUE '&' TRUE by A2,A3 .=TRUE by MARGREL1:45; then Pj(B_SUP(a '&' b,CompF(PA,G)),z) = TRUE by A2,BVFUNC_1:def 20; hence thesis by BVFUNC_2:def 10; end; theorem All(a,PA,G) '&' Ex(b,PA,G) '<' Ex(a '&' b,PA,G) proof let z be Element of Y; assume Pj(All(a,PA,G) '&' Ex(b,PA,G),z)=TRUE; then A1: Pj(All(a,PA,G),z) '&' Pj(Ex(b,PA,G),z)=TRUE by VALUAT_1:def 6; now assume not (ex x being Element of Y st x in EqClass(z,CompF(PA,G)) & Pj(b,x)=TRUE); then Pj(B_SUP(b,CompF(PA,G)),z) = FALSE by BVFUNC_1:def 20; then Pj(Ex(b,PA,G),z)=FALSE by BVFUNC_2:def 10; then Pj(Ex(b,PA,G),z)<>TRUE by MARGREL1:43; hence contradiction by A1,MARGREL1:45; end; then consider x1 being Element of Y such that A2:x1 in EqClass(z,CompF(PA,G)) & Pj(b,x1)=TRUE; A3: now assume not (for x being Element of Y st x in EqClass(z,CompF(PA,G)) holds Pj(a,x)=TRUE); then Pj(B_INF(a,CompF(PA,G)),z) = FALSE by BVFUNC_1:def 19; then Pj(All(a,PA,G),z)=FALSE by BVFUNC_2:def 9; then Pj(All(a,PA,G),z)<>TRUE by MARGREL1:43; hence contradiction by A1,MARGREL1:45; end; Pj(a '&' b,x1) =Pj(a,x1) '&' Pj(b,x1) by VALUAT_1:def 6 .=TRUE '&' TRUE by A2,A3 .=TRUE by MARGREL1:45; then Pj(B_SUP(a '&' b,CompF(PA,G)),z) = TRUE by A2,BVFUNC_1:def 20; hence thesis by BVFUNC_2:def 10; end; Lm2: now let Y,a,b,G,PA; let z be Element of Y; assume A1:Pj(All(a 'imp' b,PA,G),z)=TRUE; assume not (for x being Element of Y st x in EqClass(z,CompF(PA,G)) holds Pj(a 'imp' b,x)=TRUE); then Pj(B_INF(a 'imp' b,CompF(PA,G)),z) = FALSE by BVFUNC_1:def 19; then Pj(All(a 'imp' b,PA,G),z)=FALSE by BVFUNC_2:def 9; hence contradiction by A1,MARGREL1:43; end; theorem All(a 'imp' b,PA,G) '<' All(a,PA,G) 'imp' Ex(b,PA,G) proof A1:All(a,PA,G) = B_INF(a,CompF(PA,G)) by BVFUNC_2:def 9; let z be Element of Y; assume A2:Pj(All(a 'imp' b,PA,G),z)=TRUE; A3:z in EqClass(z,CompF(PA,G)) & EqClass(z,CompF(PA,G)) in CompF(PA,G) by T_1TOPSP:def 1; per cases; suppose (ex x being Element of Y st x in EqClass(z,CompF(PA,G)) & Pj(b,x)=TRUE); then Pj(B_SUP(b,CompF(PA,G)),z) = TRUE by BVFUNC_1:def 20; then Pj(Ex(b,PA,G),z)=TRUE by BVFUNC_2:def 10; hence Pj(All(a,PA,G) 'imp' Ex(b,PA,G),z) =('not' Pj(All(a,PA,G),z)) 'or' TRUE by BVFUNC_1:def 11 .=TRUE by BINARITH:19; suppose A4: (for x being Element of Y st x in EqClass(z,CompF(PA,G)) holds Pj(a,x)=TRUE) & not (ex x being Element of Y st x in EqClass(z,CompF(PA,G)) & Pj(b,x)=TRUE); then A5: Pj(b,z)<>TRUE by A3; A6:Pj(a,z)=TRUE by A3,A4; A7: Pj(a 'imp' b,z) =('not' Pj(a,z)) 'or' Pj(b,z) by BVFUNC_1:def 11 .=('not' TRUE) 'or' FALSE by A5,A6,MARGREL1:43 .=FALSE 'or' FALSE by MARGREL1:41 .=FALSE by BINARITH:7; Pj(a 'imp' b,z)=TRUE by A2,A3,Lm2; hence thesis by A7,MARGREL1:43; suppose A8: not (for x being Element of Y st x in EqClass(z,CompF(PA,G)) holds Pj(a,x)=TRUE) & not (ex x being Element of Y st x in EqClass(z,CompF(PA,G)) & Pj(b,x)=TRUE); thus Pj(All(a,PA,G) 'imp' Ex(b,PA,G),z) =('not' Pj(All(a,PA,G),z)) 'or' Pj(Ex(b,PA,G),z) by BVFUNC_1:def 11 .=('not' FALSE) 'or' Pj(Ex(b,PA,G),z) by A1,A8,BVFUNC_1:def 19 .=TRUE 'or' Pj(Ex(b,PA,G),z) by MARGREL1:41 .=TRUE by BINARITH:19; end; theorem All(a 'imp' b,PA,G) '<' Ex(a,PA,G) 'imp' Ex(b,PA,G) proof A1:Ex(a,PA,G) = B_SUP(a,CompF(PA,G)) by BVFUNC_2:def 10; let z be Element of Y; assume A2:Pj(All(a 'imp' b,PA,G),z)=TRUE; per cases; suppose (ex x being Element of Y st x in EqClass(z,CompF(PA,G)) & Pj(b,x)=TRUE); then Pj(B_SUP(b,CompF(PA,G)),z) = TRUE by BVFUNC_1:def 20; then Pj(Ex(b,PA,G),z)=TRUE by BVFUNC_2:def 10; hence Pj(Ex(a,PA,G) 'imp' Ex(b,PA,G),z) =('not' Pj(Ex(a,PA,G),z)) 'or' TRUE by BVFUNC_1:def 11 .=TRUE by BINARITH:19; suppose A3: (ex x being Element of Y st x in EqClass(z,CompF(PA,G)) & Pj(a,x)=TRUE) & not (ex x being Element of Y st x in EqClass(z,CompF(PA,G)) & Pj(b,x)=TRUE); then consider x1 being Element of Y such that A4:x1 in EqClass(z,CompF(PA,G)) & Pj(a,x1)=TRUE; A5: Pj(b,x1)<>TRUE by A3,A4; A6: Pj(a 'imp' b,x1) =('not' Pj(a,x1)) 'or' Pj(b,x1) by BVFUNC_1:def 11 .=('not' TRUE) 'or' FALSE by A4,A5,MARGREL1:43 .=FALSE 'or' FALSE by MARGREL1:41 .=FALSE by BINARITH:7; Pj(a 'imp' b,x1)=TRUE by A2,A4,Lm2; hence thesis by A6,MARGREL1:43; suppose A7: not (ex x being Element of Y st x in EqClass(z,CompF(PA,G)) & Pj(a,x)=TRUE) & not (ex x being Element of Y st x in EqClass(z,CompF(PA,G)) & Pj(b,x)=TRUE); thus Pj(Ex(a,PA,G) 'imp' Ex(b,PA,G),z) =('not' Pj(Ex(a,PA,G),z)) 'or' Pj(Ex(b,PA,G),z) by BVFUNC_1:def 11 .=('not' FALSE) 'or' Pj(Ex(b,PA,G),z) by A1,A7,BVFUNC_1:def 20 .=TRUE 'or' Pj(Ex(b,PA,G),z) by MARGREL1:41 .=TRUE by BINARITH:19; end; theorem Ex(a,PA,G) 'imp' All(b,PA,G) '<' All(a 'imp' b,PA,G) proof let z be Element of Y; assume Pj(Ex(a,PA,G) 'imp' All(b,PA,G),z)=TRUE; then A1:('not' Pj(Ex(a,PA,G),z)) 'or' Pj(All(b,PA,G),z)=TRUE by BVFUNC_1: def 11; per cases; suppose A2: (for x being Element of Y st x in EqClass(z,CompF(PA,G)) holds Pj(b,x)=TRUE); for x being Element of Y st x in EqClass(z,CompF(PA,G)) holds Pj(a 'imp' b,x)=TRUE proof let x be Element of Y; assume A3: x in EqClass(z,CompF(PA,G)); thus Pj(a 'imp' b,x)=('not' Pj(a,x)) 'or' Pj(b,x) by BVFUNC_1:def 11 .=('not' Pj(a,x)) 'or' TRUE by A2,A3 .=TRUE by BINARITH:19; end; then Pj(B_INF(a 'imp' b,CompF(PA,G)),z) = TRUE by BVFUNC_1:def 19; hence thesis by BVFUNC_2:def 9; suppose A4: (ex x being Element of Y st x in EqClass(z,CompF(PA,G)) & Pj(a,x)=TRUE) & not (for x being Element of Y st x in EqClass(z,CompF(PA,G)) holds Pj(b,x)=TRUE); then Pj(B_SUP(a,CompF(PA,G)),z) = TRUE by BVFUNC_1:def 20; then Pj(Ex(a,PA,G),z)=TRUE by BVFUNC_2:def 10; then A5: 'not' Pj(Ex(a,PA,G),z)=FALSE by MARGREL1:41; Pj(B_INF(b,CompF(PA,G)),z) = FALSE by A4,BVFUNC_1:def 19; then Pj(All(b,PA,G),z)=FALSE by BVFUNC_2:def 9; then Pj(All(b,PA,G),z)<>TRUE by MARGREL1:43; hence thesis by A1,A5,BINARITH:7; suppose A6: not (ex x being Element of Y st x in EqClass(z,CompF(PA,G)) & Pj(a,x)=TRUE) & not (for x being Element of Y st x in EqClass(z,CompF(PA,G)) holds Pj(b,x)=TRUE); now let x be Element of Y; assume x in EqClass(z,CompF(PA,G)); then A7: Pj(a,x)<>TRUE by A6; thus Pj(a 'imp' b,x) =('not' Pj(a,x)) 'or' Pj(b,x) by BVFUNC_1:def 11 .=('not' FALSE) 'or' Pj(b,x) by A7,MARGREL1:43 .=TRUE 'or' Pj(b,x) by MARGREL1:41 .=TRUE by BINARITH:19; end; then Pj(B_INF(a 'imp' b,CompF(PA,G)),z) = TRUE by BVFUNC_1:def 19; hence thesis by BVFUNC_2:def 9; end; theorem (a 'imp' b) '<' (a 'imp' Ex(b,PA,G)) proof let z be Element of Y; assume Pj(a 'imp' b,z)=TRUE; then A1:('not' Pj(a,z)) 'or' Pj(b,z)=TRUE by BVFUNC_1:def 11; A2: ('not' Pj(a,z))=TRUE or ('not' Pj(a,z))=FALSE by MARGREL1:39; A3:z in EqClass(z,CompF(PA,G)) & EqClass(z,CompF(PA,G)) in CompF(PA,G) by T_1TOPSP:def 1; per cases by A1,A2,BINARITH:7; suppose 'not' Pj(a,z)=TRUE; hence Pj(a 'imp' Ex(b,PA,G),z) =TRUE 'or' Pj(Ex(b,PA,G),z) by BVFUNC_1:def 11 .=TRUE by BINARITH:19; suppose Pj(b,z)=TRUE; then Pj(B_SUP(b,CompF(PA,G)),z) = TRUE by A3,BVFUNC_1:def 20; then Pj(Ex(b,PA,G),z) =TRUE by BVFUNC_2:def 10; hence Pj(a 'imp' Ex(b,PA,G),z) =('not' Pj(a,z)) 'or' TRUE by BVFUNC_1:def 11 .=TRUE by BINARITH:19; end; theorem (a 'imp' b) '<' (All(a,PA,G) 'imp' b) proof let z be Element of Y; assume Pj(a 'imp' b,z)=TRUE; then A1:('not' Pj(a,z)) 'or' Pj(b,z)=TRUE by BVFUNC_1:def 11; A2: ('not' Pj(a,z))=TRUE or ('not' Pj(a,z))=FALSE by MARGREL1:39; A3:z in EqClass(z,CompF(PA,G)) & EqClass(z,CompF(PA,G)) in CompF(PA,G) by T_1TOPSP:def 1; per cases by A1,A2,BINARITH:7; suppose 'not' Pj(a,z)=TRUE; then Pj(a,z)=FALSE by MARGREL1:41; then Pj(a,z)<>TRUE by MARGREL1:43; then Pj(B_INF(a,CompF(PA,G)),z) = FALSE by A3,BVFUNC_1:def 19; then Pj(All(a,PA,G),z)=FALSE by BVFUNC_2:def 9; hence Pj(All(a,PA,G) 'imp' b,z) =('not' FALSE) 'or' Pj(b,z) by BVFUNC_1:def 11 .=TRUE 'or' Pj(b,z) by MARGREL1:41 .=TRUE by BINARITH:19; suppose Pj(b,z)=TRUE; hence Pj(All(a,PA,G) 'imp' b,z) =('not' Pj(All(a,PA,G),z)) 'or' TRUE by BVFUNC_1:def 11 .=TRUE by BINARITH:19; end; theorem Ex(a 'imp' b,PA,G) '<' All(a,PA,G) 'imp' Ex(b,PA,G) proof let z be Element of Y; assume A1:Pj(Ex(a 'imp' b,PA,G),z)=TRUE; now assume not (ex x being Element of Y st x in EqClass(z,CompF(PA,G)) & Pj(a 'imp' b,x)=TRUE); then Pj(B_SUP(a 'imp' b,CompF(PA,G)),z) = FALSE by BVFUNC_1:def 20; then Pj(Ex(a 'imp' b,PA,G),z)=FALSE by BVFUNC_2:def 10; hence contradiction by A1,MARGREL1:43; end; then consider x1 being Element of Y such that A2:x1 in EqClass(z,CompF(PA,G)) & Pj(a 'imp' b,x1)=TRUE; A3:('not' Pj(a,x1)) 'or' Pj(b,x1)=TRUE by A2,BVFUNC_1:def 11; A4: Pj(b,x1)=TRUE or Pj(b,x1)=FALSE by MARGREL1:39; per cases by A3,A4,BINARITH:7; suppose ('not' Pj(a,x1))=TRUE; then Pj(a,x1)=FALSE by MARGREL1:41; then Pj(a,x1)<>TRUE by MARGREL1:43; then Pj(B_INF(a,CompF(PA,G)),z) = FALSE by A2,BVFUNC_1:def 19; then Pj(All(a,PA,G),z)=FALSE by BVFUNC_2:def 9; hence Pj(All(a,PA,G) 'imp' Ex(b,PA,G),z) =('not' FALSE) 'or' Pj(Ex(b,PA,G),z) by BVFUNC_1:def 11 .=TRUE 'or' Pj(Ex(b,PA,G),z) by MARGREL1:41 .=TRUE by BINARITH:19; suppose Pj(b,x1)=TRUE; then Pj(B_SUP(b,CompF(PA,G)),z) = TRUE by A2,BVFUNC_1:def 20; then Pj(Ex(b,PA,G),z)=TRUE by BVFUNC_2:def 10; hence Pj(All(a,PA,G) 'imp' Ex(b,PA,G),z) =('not' Pj(All(a,PA,G),z)) 'or' TRUE by BVFUNC_1:def 11 .=TRUE by BINARITH:19; end; theorem All(a,PA,G) '<' Ex(b,PA,G) 'imp' Ex(a '&' b,PA,G) proof let z be Element of Y; assume A1:Pj(All(a,PA,G),z)=TRUE; A2:now assume not (for x being Element of Y st x in EqClass(z,CompF(PA,G)) holds Pj(a,x)=TRUE); then Pj(B_INF(a,CompF(PA,G)),z) = FALSE by BVFUNC_1:def 19; then Pj(All(a,PA,G),z)=FALSE by BVFUNC_2:def 9; hence contradiction by A1,MARGREL1:43; end; per cases; suppose A3:Pj(Ex(b,PA,G),z)=TRUE; now assume not (ex x being Element of Y st x in EqClass(z,CompF(PA,G)) & Pj(b,x)=TRUE); then Pj(B_SUP(b,CompF(PA,G)),z) = FALSE by BVFUNC_1:def 20; then Pj(Ex(b,PA,G),z)=FALSE by BVFUNC_2:def 10; hence contradiction by A3,MARGREL1:43; end; then consider x1 being Element of Y such that A4:x1 in EqClass(z,CompF(PA,G)) & Pj(b,x1)=TRUE; Pj(a '&' b,x1) =Pj(a,x1) '&' Pj(b,x1) by VALUAT_1:def 6 .=TRUE '&' TRUE by A2,A4 .=TRUE by MARGREL1:45; then Pj(B_SUP(a '&' b,CompF(PA,G)),z) = TRUE by A4,BVFUNC_1:def 20; then Pj(Ex(a '&' b,PA,G),z)=TRUE by BVFUNC_2:def 10; hence Pj(Ex(b,PA,G) 'imp' Ex(a '&' b,PA,G),z) =('not' Pj(Ex(b,PA,G),z)) 'or' TRUE by BVFUNC_1:def 11 .=TRUE by BINARITH:19; suppose Pj(Ex(b,PA,G),z)<>TRUE; then Pj(Ex(b,PA,G),z)=FALSE by MARGREL1:43; hence Pj(Ex(b,PA,G) 'imp' Ex(a '&' b,PA,G),z) =('not' FALSE) 'or' Pj(Ex(a '&' b,PA,G),z) by BVFUNC_1:def 11 .=TRUE 'or' Pj(Ex(a '&' b,PA,G),z) by MARGREL1:41 .=TRUE by BINARITH:19; end; theorem u is_independent_of PA,G implies Ex(u 'imp' a,PA,G) '<' (u 'imp' Ex(a,PA,G)) proof assume u is_independent_of PA,G; then A1:u is_dependent_of CompF(PA,G) by BVFUNC_2:def 8; let z be Element of Y; assume A2:Pj(Ex(u 'imp' a,PA,G),z)=TRUE; now assume not (ex x being Element of Y st x in EqClass(z,CompF(PA,G)) & Pj(u 'imp' a,x)=TRUE); then Pj(B_SUP(u 'imp' a,CompF(PA,G)),z) = FALSE by BVFUNC_1:def 20; then Pj(Ex(u 'imp' a,PA,G),z)=FALSE by BVFUNC_2:def 10; hence contradiction by A2,MARGREL1:43; end; then consider x1 being Element of Y such that A3: x1 in EqClass(z,CompF(PA,G)) & Pj(u 'imp' a,x1)=TRUE; A4:('not' Pj(u,x1)) 'or' Pj(a,x1)=TRUE by A3,BVFUNC_1:def 11; A5: ('not' Pj(u,x1))=TRUE or ('not' Pj(u,x1))=FALSE by MARGREL1:39; A6:z in EqClass(z,CompF(PA,G)) & EqClass(z,CompF(PA,G)) in CompF(PA,G) by T_1TOPSP:def 1; per cases by A4,A5,BINARITH:7; suppose A7:('not' Pj(u,x1))=TRUE; u.x1 = u.z by A1,A3,A6,BVFUNC_1:def 18; then Pj(u,z)=FALSE by A7,MARGREL1:41; hence Pj(u 'imp' Ex(a,PA,G),z) =('not' FALSE) 'or' Pj(Ex(a,PA,G),z) by BVFUNC_1:def 11 .=TRUE 'or' Pj(Ex(a,PA,G),z) by MARGREL1:41 .=TRUE by BINARITH:19; suppose Pj(a,x1)=TRUE; then Pj(B_SUP(a,CompF(PA,G)),z) = TRUE by A3,BVFUNC_1:def 20; then Pj(Ex(a,PA,G),z)=TRUE by BVFUNC_2:def 10; hence Pj(u 'imp' Ex(a,PA,G),z) =('not' Pj(u,z)) 'or' TRUE by BVFUNC_1:def 11 .=TRUE by BINARITH:19; end; theorem u is_independent_of PA,G implies Ex(a 'imp' u,PA,G) '<' (All(a,PA,G) 'imp' u) proof assume u is_independent_of PA,G; then A1: u is_dependent_of CompF(PA,G) by BVFUNC_2:def 8; let z be Element of Y; assume A2:Pj(Ex(a 'imp' u,PA,G),z)=TRUE; now assume not (ex x being Element of Y st x in EqClass(z,CompF(PA,G)) & Pj(a 'imp' u,x)=TRUE); then Pj(B_SUP(a 'imp' u,CompF(PA,G)),z) = FALSE by BVFUNC_1:def 20; then Pj(Ex(a 'imp' u,PA,G),z)=FALSE by BVFUNC_2:def 10; hence contradiction by A2,MARGREL1:43; end; then consider x1 being Element of Y such that A3:x1 in EqClass(z,CompF(PA,G)) & Pj(a 'imp' u,x1)=TRUE; A4:('not' Pj(a,x1)) 'or' Pj(u,x1)=TRUE by A3,BVFUNC_1:def 11; A5: ('not' Pj(a,x1))=TRUE or ('not' Pj(a,x1))=FALSE by MARGREL1:39; A6:z in EqClass(z,CompF(PA,G)) & EqClass(z,CompF(PA,G)) in CompF(PA,G) by T_1TOPSP:def 1; per cases by A4,A5,BINARITH:7; suppose ('not' Pj(a,x1))=TRUE; then Pj(a,x1)=FALSE by MARGREL1:41; then Pj(a,x1)<>TRUE by MARGREL1:43; then Pj(B_INF(a,CompF(PA,G)),z) = FALSE by A3,BVFUNC_1:def 19; then Pj(All(a,PA,G),z)=FALSE by BVFUNC_2:def 9; hence Pj(All(a,PA,G) 'imp' u,z) =('not' FALSE) 'or' Pj(u,z) by BVFUNC_1:def 11 .=TRUE 'or' Pj(u,z) by MARGREL1:41 .=TRUE by BINARITH:19; suppose A7:Pj(u,x1)=TRUE; u.x1 = u.z by A1,A3,A6,BVFUNC_1:def 18; hence Pj(All(a,PA,G) 'imp' u,z) =('not' Pj(All(a,PA,G),z)) 'or' TRUE by A7,BVFUNC_1:def 11 .=TRUE by BINARITH:19; end; theorem All(a,PA,G) 'imp' Ex(b,PA,G) = Ex(a 'imp' b,PA,G) proof A1:All(a,PA,G) = B_INF(a,CompF(PA,G)) by BVFUNC_2:def 9; A2:All(a,PA,G) 'imp' Ex(b,PA,G) '<' Ex(a 'imp' b,PA,G) proof let z be Element of Y; assume Pj(All(a,PA,G) 'imp' Ex(b,PA,G),z)=TRUE; then A3:('not' Pj(All(a,PA,G),z)) 'or' Pj(Ex(b,PA,G),z)=TRUE by BVFUNC_1: def 11; A4: ('not' Pj(All(a,PA,G),z))=TRUE or ('not' Pj(All(a,PA,G),z))=FALSE by MARGREL1:39; per cases by A3,A4,BINARITH:7; suppose ('not' Pj(All(a,PA,G),z))=TRUE; then Pj(All(a,PA,G),z)=FALSE by MARGREL1:41; then Pj(All(a,PA,G),z)<>TRUE by MARGREL1:43; then consider x1 being Element of Y such that A5: x1 in EqClass(z,CompF(PA,G)) & Pj(a,x1)<>TRUE by A1,BVFUNC_1:def 19; Pj(a 'imp' b,x1) =('not' Pj(a,x1)) 'or' Pj(b,x1) by BVFUNC_1:def 11 .=('not' FALSE) 'or' Pj(b,x1) by A5,MARGREL1:43 .=TRUE 'or' Pj(b,x1) by MARGREL1:41 .=TRUE by BINARITH:19; then Pj(B_SUP(a 'imp' b,CompF(PA,G)),z) = TRUE by A5,BVFUNC_1:def 20; hence thesis by BVFUNC_2:def 10; suppose A6:Pj(Ex(b,PA,G),z)=TRUE; now assume not (ex x being Element of Y st x in EqClass(z,CompF(PA,G)) & Pj(b,x)=TRUE); then Pj(B_SUP(b,CompF(PA,G)),z) = FALSE by BVFUNC_1:def 20; then Pj(Ex(b,PA,G),z)=FALSE by BVFUNC_2:def 10; hence contradiction by A6,MARGREL1:43; end; then consider x1 being Element of Y such that A7: x1 in EqClass(z,CompF(PA,G)) & Pj(b,x1)=TRUE; Pj(a 'imp' b,x1) =('not' Pj(a,x1)) 'or' TRUE by A7,BVFUNC_1:def 11 .=TRUE by BINARITH:19; then Pj(B_SUP(a 'imp' b,CompF(PA,G)),z) = TRUE by A7,BVFUNC_1:def 20; hence thesis by BVFUNC_2:def 10; end; Ex(a 'imp' b,PA,G) '<' All(a,PA,G) 'imp' Ex(b,PA,G) proof let z be Element of Y; assume A8:Pj(Ex(a 'imp' b,PA,G),z)=TRUE; now assume not (ex x being Element of Y st x in EqClass(z,CompF(PA,G)) & Pj(a 'imp' b,x)=TRUE); then Pj(B_SUP(a 'imp' b,CompF(PA,G)),z) = FALSE by BVFUNC_1:def 20; then Pj(Ex(a 'imp' b,PA,G),z)=FALSE by BVFUNC_2:def 10; hence contradiction by A8,MARGREL1:43; end; then consider x1 being Element of Y such that A9:x1 in EqClass(z,CompF(PA,G)) & Pj(a 'imp' b,x1)=TRUE; A10:('not' Pj(a,x1)) 'or' Pj(b,x1)=TRUE by A9,BVFUNC_1:def 11; A11:('not' Pj(a,x1))=TRUE or ('not' Pj(a,x1))=FALSE by MARGREL1:39; per cases by A10,A11,BINARITH:7; suppose ('not' Pj(a,x1))=TRUE; then Pj(a,x1)=FALSE by MARGREL1:41; then Pj(a,x1)<>TRUE by MARGREL1:43; then Pj(B_INF(a,CompF(PA,G)),z) = FALSE by A9,BVFUNC_1:def 19; hence Pj(All(a,PA,G) 'imp' Ex(b,PA,G),z) =('not' FALSE) 'or' Pj(Ex(b,PA,G),z) by A1,BVFUNC_1:def 11 .=TRUE 'or' Pj(Ex(b,PA,G),z) by MARGREL1:41 .=TRUE by BINARITH:19; suppose Pj(b,x1)=TRUE; then Pj(B_SUP(b,CompF(PA,G)),z) = TRUE by A9,BVFUNC_1:def 20; then Pj(Ex(b,PA,G),z)=TRUE by BVFUNC_2:def 10; hence Pj(All(a,PA,G) 'imp' Ex(b,PA,G),z) =('not' Pj(All(a,PA,G),z)) 'or' TRUE by BVFUNC_1:def 11 .=TRUE by BINARITH:19; end; hence thesis by A2,BVFUNC_1:18; end; theorem All(a,PA,G) 'imp' All(b,PA,G) '<' All(a,PA,G) 'imp' Ex(b,PA,G) proof let z be Element of Y; assume Pj(All(a,PA,G) 'imp' All(b,PA,G),z)=TRUE; then A1:('not' Pj(All(a,PA,G),z)) 'or' Pj(All(b,PA,G),z)=TRUE by BVFUNC_1:def 11; A2: ('not' Pj(All(a,PA,G),z))=TRUE or ('not' Pj(All(a,PA,G),z))=FALSE by MARGREL1:39; A3:z in EqClass(z,CompF(PA,G)) & EqClass(z,CompF(PA,G)) in CompF(PA,G) by T_1TOPSP:def 1; per cases by A1,A2,BINARITH:7; suppose 'not' Pj(All(a,PA,G),z)=TRUE; hence Pj(All(a,PA,G) 'imp' Ex(b,PA,G),z) =TRUE 'or' Pj(Ex(b,PA,G),z) by BVFUNC_1:def 11 .=TRUE by BINARITH:19; suppose A4:Pj(All(b,PA,G),z)=TRUE; now assume not (for x being Element of Y st x in EqClass(z,CompF(PA,G)) holds Pj(b,x)=TRUE); then Pj(B_INF(b,CompF(PA,G)),z) = FALSE by BVFUNC_1:def 19; then Pj(All(b,PA,G),z)=FALSE by BVFUNC_2:def 9; hence contradiction by A4,MARGREL1:43; end; then Pj(b,z)=TRUE by A3; then Pj(B_SUP(b,CompF(PA,G)),z) = TRUE by A3,BVFUNC_1:def 20; then Pj(Ex(b,PA,G),z)=TRUE by BVFUNC_2:def 10; hence Pj(All(a,PA,G) 'imp' Ex(b,PA,G),z) =('not' Pj(All(a,PA,G),z)) 'or' TRUE by BVFUNC_1:def 11 .=TRUE by BINARITH:19; end; theorem Ex(a,PA,G) 'imp' Ex(b,PA,G) '<' All(a,PA,G) 'imp' Ex(b,PA,G) proof A1:Ex(a,PA,G) = B_SUP(a,CompF(PA,G)) by BVFUNC_2:def 10; let z be Element of Y; assume Pj(Ex(a,PA,G) 'imp' Ex(b,PA,G),z)=TRUE; then A2: ('not' Pj(Ex(a,PA,G),z)) 'or' Pj(Ex(b,PA,G),z)=TRUE by BVFUNC_1:def 11 ; A3: ('not' Pj(Ex(a,PA,G),z))=TRUE or ('not' Pj(Ex(a,PA,G),z))=FALSE by MARGREL1:39; A4:z in EqClass(z,CompF(PA,G)) & EqClass(z,CompF(PA,G)) in CompF(PA,G) by T_1TOPSP:def 1; per cases by A2,A3,BINARITH:7; suppose ('not' Pj(Ex(a,PA,G),z))=TRUE; then Pj(Ex(a,PA,G),z)=FALSE by MARGREL1:41; then Pj(Ex(a,PA,G),z)<>TRUE by MARGREL1:43; then Pj(a,z)<>TRUE by A1,A4,BVFUNC_1:def 20; then Pj(B_INF(a,CompF(PA,G)),z) = FALSE by A4,BVFUNC_1:def 19; then Pj(All(a,PA,G),z)=FALSE by BVFUNC_2:def 9; hence Pj(All(a,PA,G) 'imp' Ex(b,PA,G),z) =('not' FALSE) 'or' Pj(Ex(b,PA,G),z) by BVFUNC_1:def 11 .=TRUE 'or' Pj(Ex(b,PA,G),z) by MARGREL1:41 .=TRUE by BINARITH:19; suppose Pj(Ex(b,PA,G),z)=TRUE; hence Pj(All(a,PA,G) 'imp' Ex(b,PA,G),z) =('not' Pj(All(a,PA,G),z)) 'or' TRUE by BVFUNC_1:def 11 .=TRUE by BINARITH:19; end; theorem Th26: All(a 'imp' b,PA,G) = All('not' a 'or' b,PA,G) proof A1:All(a 'imp' b,PA,G) '<' All('not' a 'or' b,PA,G) proof let z be Element of Y; assume A2:Pj(All(a 'imp' b,PA,G),z)=TRUE; A3: now assume not (for x being Element of Y st x in EqClass(z,CompF(PA,G)) holds Pj(a 'imp' b,x)=TRUE); then Pj(B_INF(a 'imp' b,CompF(PA,G)),z) = FALSE by BVFUNC_1:def 19; then Pj(All(a 'imp' b,PA,G),z)=FALSE by BVFUNC_2:def 9; hence contradiction by A2,MARGREL1:43; end; now let x be Element of Y; assume x in EqClass(z,CompF(PA,G)); then Pj(a 'imp' b,x)=TRUE by A3; then A4:('not' Pj(a,x)) 'or' Pj(b,x)=TRUE by BVFUNC_1:def 11; A5: ('not' Pj(a,x))=TRUE or ('not' Pj(a,x))=FALSE by MARGREL1:39; per cases by A4,A5,BINARITH:7; suppose ('not' Pj(a,x))=TRUE; then Pj('not' a,x)=TRUE by VALUAT_1:def 5; hence Pj('not' a 'or' b,x) =TRUE 'or' Pj(b,x) by BVFUNC_1:def 7 .=TRUE by BINARITH:19; suppose Pj(b,x)=TRUE; hence Pj('not' a 'or' b,x)=Pj('not' a,x) 'or' TRUE by BVFUNC_1:def 7 .=TRUE by BINARITH:19; end; then Pj(B_INF('not' a 'or' b,CompF(PA,G)),z) = TRUE by BVFUNC_1:def 19; hence thesis by BVFUNC_2:def 9; end; All('not' a 'or' b,PA,G) '<' All(a 'imp' b,PA,G) proof let z be Element of Y; assume A6:Pj(All('not' a 'or' b,PA,G),z)=TRUE; A7:now assume not (for x being Element of Y st x in EqClass(z,CompF(PA,G)) holds Pj('not' a 'or' b,x)=TRUE); then Pj(B_INF('not' a 'or' b,CompF(PA,G)),z) = FALSE by BVFUNC_1:def 19; then Pj(All('not' a 'or' b,PA,G),z)=FALSE by BVFUNC_2:def 9; hence contradiction by A6,MARGREL1:43; end; for x being Element of Y st x in EqClass(z,CompF(PA,G)) holds Pj(a 'imp' b,x)=TRUE proof let x be Element of Y; assume x in EqClass(z,CompF(PA,G)); then Pj('not' a 'or' b,x)=TRUE by A7; then A8: Pj('not' a,x) 'or' Pj(b,x)=TRUE by BVFUNC_1:def 7; A9: Pj('not' a,x)=TRUE or Pj('not' a,x)=FALSE by MARGREL1:39; per cases by A8,A9,BINARITH:7; suppose Pj('not' a,x)=TRUE; then 'not' Pj(a,x)=TRUE by VALUAT_1:def 5; hence Pj(a 'imp' b,x) = TRUE 'or' Pj(b,x) by BVFUNC_1:def 11 .=TRUE by BINARITH:19; suppose Pj(b,x)=TRUE; hence Pj(a 'imp' b,x) =('not' Pj(a,x)) 'or' TRUE by BVFUNC_1:def 11 .=TRUE by BINARITH:19; end; then Pj(B_INF(a 'imp' b,CompF(PA,G)),z) = TRUE by BVFUNC_1:def 19; hence thesis by BVFUNC_2:def 9; end; hence thesis by A1,BVFUNC_1:18; end; theorem All(a 'imp' b,PA,G) = 'not' (Ex(a '&' 'not' b,PA,G)) proof 'not' All('not' a 'or' b,PA,G) = Ex('not' ('not' a 'or' b),PA,G) by BVFUNC_2:20; then A1:All('not' a 'or' b,PA,G) ='not' Ex('not' ('not' a 'or' b),PA,G) by BVFUNC_1:4; 'not' ('not' a 'or' b)=('not' 'not' a) '&' ('not' b) by BVFUNC_1:16; then 'not' ('not' a 'or' b)=a '&' 'not' b by BVFUNC_1:4; hence thesis by A1,Th26; end; theorem Ex(a,PA,G) '<' 'not' (All(a 'imp' b,PA,G) '&' All(a 'imp' 'not' b,PA,G)) proof let z be Element of Y; assume A1:Pj(Ex(a,PA,G),z)=TRUE; now assume not (ex x being Element of Y st x in EqClass(z,CompF(PA,G)) & Pj(a,x)=TRUE); then Pj(B_SUP(a,CompF(PA,G)),z) = FALSE by BVFUNC_1:def 20; then Pj(Ex(a,PA,G),z)=FALSE by BVFUNC_2:def 10; hence contradiction by A1,MARGREL1:43; end; then consider x1 being Element of Y such that A2:x1 in EqClass(z,CompF(PA,G)) & Pj(a,x1)=TRUE; A3:Pj('not' (All(a 'imp' b,PA,G) '&' All(a 'imp' 'not' b,PA,G)),z) ='not' Pj((All(a 'imp' b,PA,G) '&' All(a 'imp' 'not' b,PA,G)),z) by VALUAT_1:def 5 .='not' (Pj(All(a 'imp' b,PA,G),z) '&' Pj(All(a 'imp' 'not' b,PA,G),z)) by VALUAT_1:def 6; A4:Pj(a 'imp' b,x1) ='not' TRUE 'or' Pj(b,x1) by A2,BVFUNC_1:def 11 .=FALSE 'or' Pj(b,x1) by MARGREL1:41 .=Pj(b,x1) by BINARITH:7; A5: Pj(a 'imp' 'not' b,x1) ='not' TRUE 'or' Pj('not' b,x1) by A2,BVFUNC_1:def 11 .=FALSE 'or' Pj('not' b,x1) by MARGREL1:41 .=Pj('not' b,x1) by BINARITH:7; per cases by MARGREL1:39; suppose Pj(b,x1)=TRUE; then Pj(a 'imp' 'not' b,x1) ='not' TRUE by A5,VALUAT_1:def 5 .=FALSE by MARGREL1:41; then Pj(a 'imp' 'not' b,x1)<>TRUE by MARGREL1:43; then Pj(B_INF(a 'imp' 'not' b,CompF(PA,G)),z) = FALSE by A2,BVFUNC_1:def 19 ; hence Pj('not' (All(a 'imp' b,PA,G) '&' All(a 'imp' 'not' b,PA,G)),z) ='not' (Pj(All(a 'imp' b,PA,G),z) '&' FALSE) by A3,BVFUNC_2:def 9 .='not' (FALSE) by MARGREL1:45 .=TRUE by MARGREL1:41; suppose Pj(b,x1)=FALSE; then Pj(a 'imp' b,x1)<>TRUE by A4,MARGREL1:43; then Pj(B_INF(a 'imp' b,CompF(PA,G)),z) = FALSE by A2,BVFUNC_1:def 19; hence Pj('not' (All(a 'imp' b,PA,G) '&' All(a 'imp' 'not' b,PA,G)),z) ='not' (FALSE '&' Pj(All(a 'imp' 'not' b,PA,G),z)) by A3,BVFUNC_2:def 9 .='not' (FALSE) by MARGREL1:45 .=TRUE by MARGREL1:41; end; theorem Ex(a,PA,G) '<' 'not' ('not' Ex(a '&' b,PA,G) '&' 'not' Ex(a '&' 'not' b,PA,G)) proof let z be Element of Y; assume A1:Pj(Ex(a,PA,G),z)=TRUE; now assume not (ex x being Element of Y st x in EqClass(z,CompF(PA,G)) & Pj(a,x)=TRUE); then Pj(B_SUP(a,CompF(PA,G)),z) = FALSE by BVFUNC_1:def 20; then Pj(Ex(a,PA,G),z)=FALSE by BVFUNC_2:def 10; hence contradiction by A1,MARGREL1:43; end; then consider x1 being Element of Y such that A2:x1 in EqClass(z,CompF(PA,G)) & Pj(a,x1)=TRUE; A3:Pj(a '&' b,x1) =TRUE '&' Pj(b,x1) by A2,VALUAT_1:def 6 .=Pj(b,x1) by MARGREL1:50; A4:Pj(a '&' 'not' b,x1) =TRUE '&' Pj('not' b,x1) by A2,VALUAT_1:def 6 .=Pj('not' b,x1) by MARGREL1:50; A5:Pj('not' Ex(a '&' 'not' b,PA,G),z)='not' Pj(Ex(a '&' 'not' b,PA,G),z) by VALUAT_1:def 5; A6:Pj('not' ('not' Ex(a '&' b,PA,G) '&' 'not' Ex(a '&' 'not' b,PA,G)),z) ='not' Pj(('not' Ex(a '&' b,PA,G) '&' 'not' Ex(a '&' 'not' b,PA,G)),z) by VALUAT_1:def 5 .='not' (Pj('not' Ex(a '&' b,PA,G),z) '&' Pj('not' Ex(a '&' 'not' b,PA,G),z)) by VALUAT_1:def 6 .='not' ('not' Pj(Ex(a '&' b,PA,G),z) '&' 'not' Pj(Ex(a '&' 'not' b,PA,G),z)) by A5,VALUAT_1:def 5; per cases by MARGREL1:39; suppose Pj(b,x1)=TRUE; then Pj(B_SUP(a '&' b,CompF(PA,G)),z) = TRUE by A2,A3,BVFUNC_1:def 20; hence Pj('not' ('not' Ex(a '&' b,PA,G) '&' 'not' Ex(a '&' 'not' b,PA,G)),z ) ='not' ('not' TRUE '&' 'not' Pj(Ex(a '&' 'not' b,PA,G),z)) by A6,BVFUNC_2:def 10 .='not' (FALSE '&' 'not' Pj(Ex(a '&' 'not' b,PA,G),z)) by MARGREL1:41 .='not' (FALSE) by MARGREL1:45 .=TRUE by MARGREL1:41; suppose Pj(b,x1)=FALSE; then Pj(a '&' 'not' b,x1)='not' FALSE by A4,VALUAT_1:def 5; then Pj(a '&' 'not' b,x1)=TRUE by MARGREL1:41; then Pj(B_SUP(a '&' 'not' b,CompF(PA,G)),z) = TRUE by A2,BVFUNC_1:def 20; hence Pj('not' ('not' Ex(a '&' b,PA,G) '&' 'not' Ex(a '&' 'not' b,PA,G)),z ) ='not' ('not' Pj(Ex(a '&' b,PA,G),z) '&' 'not' TRUE) by A6,BVFUNC_2:def 10 .='not' ('not' Pj(Ex(a '&' b,PA,G),z) '&' FALSE) by MARGREL1:41 .='not' (FALSE) by MARGREL1:45 .=TRUE by MARGREL1:41; end; theorem Ex(a,PA,G) '&' All(a 'imp' b,PA,G) '<' Ex(a '&' b,PA,G) proof let z be Element of Y; assume Pj(Ex(a,PA,G) '&' All(a 'imp' b,PA,G),z)=TRUE; then A1: Pj(Ex(a,PA,G),z) '&' Pj(All(a 'imp' b,PA,G),z)=TRUE by VALUAT_1:def 6; now assume not (ex x being Element of Y st x in EqClass(z,CompF(PA,G)) & Pj(a,x)=TRUE); then Pj(B_SUP(a,CompF(PA,G)),z) = FALSE by BVFUNC_1:def 20; then Pj(Ex(a,PA,G),z)=FALSE by BVFUNC_2:def 10; then Pj(Ex(a,PA,G),z)<>TRUE by MARGREL1:43; hence contradiction by A1,MARGREL1:45; end; then consider x1 being Element of Y such that A2:x1 in EqClass(z,CompF(PA,G)) & Pj(a,x1)=TRUE; now assume not (for x being Element of Y st x in EqClass(z,CompF(PA,G)) holds Pj(a 'imp' b,x)=TRUE); then Pj(B_INF(a 'imp' b,CompF(PA,G)),z) = FALSE by BVFUNC_1:def 19; then Pj(All(a 'imp' b,PA,G),z)=FALSE by BVFUNC_2:def 9; then Pj(All(a 'imp' b,PA,G),z)<>TRUE by MARGREL1:43; hence contradiction by A1,MARGREL1:45; end; then Pj(a 'imp' b,x1)=TRUE by A2; then A3:('not' Pj(a,x1)) 'or' Pj(b,x1) =TRUE by BVFUNC_1:def 11; A4:'not' FALSE=TRUE & 'not' TRUE=FALSE by MARGREL1:41; Pj(a '&' b,x1) =Pj(a,x1) '&' Pj(b,x1) by VALUAT_1:def 6 .=TRUE '&' TRUE by A2,A3,A4,BINARITH:7 .=TRUE by MARGREL1:45; then Pj(B_SUP(a '&' b,CompF(PA,G)),z) = TRUE by A2,BVFUNC_1:def 20; hence thesis by BVFUNC_2:def 10; end; theorem Ex(a,PA,G) '&' 'not' Ex(a '&' b,PA,G) '<' 'not' All(a 'imp' b,PA,G) proof A1:Ex(a '&' b,PA,G) = B_SUP(a '&' b,CompF(PA,G)) by BVFUNC_2:def 10; let z be Element of Y; assume Pj(Ex(a,PA,G) '&' 'not' Ex(a '&' b,PA,G),z)=TRUE; then A2: Pj(Ex(a,PA,G),z) '&' Pj('not' Ex(a '&' b,PA,G),z)=TRUE by VALUAT_1:def 6; then Pj(Ex(a,PA,G),z)=TRUE & Pj('not' Ex(a '&' b,PA,G),z)=TRUE by MARGREL1:45; then 'not' Pj(Ex(a '&' b,PA,G),z)=TRUE by VALUAT_1:def 5; then Pj(Ex(a '&' b,PA,G),z)=FALSE by MARGREL1:41; then A3: Pj(Ex(a '&' b,PA,G),z)<>TRUE by MARGREL1:43; now assume not (ex x being Element of Y st x in EqClass(z,CompF(PA,G)) & Pj(a,x)=TRUE); then Pj(B_SUP(a,CompF(PA,G)),z) = FALSE by BVFUNC_1:def 20; then Pj(Ex(a,PA,G),z)=FALSE by BVFUNC_2:def 10; then Pj(Ex(a,PA,G),z)<>TRUE by MARGREL1:43; hence contradiction by A2,MARGREL1:45; end; then consider x1 being Element of Y such that A4:x1 in EqClass(z,CompF(PA,G)) & Pj(a,x1)=TRUE; Pj(a '&' b,x1)<>TRUE by A1,A3,A4,BVFUNC_1:def 20; then Pj(a '&' b,x1)=FALSE by MARGREL1:43; then A5:Pj(a,x1) '&' Pj(b,x1)=FALSE by VALUAT_1:def 6; per cases by A5,MARGREL1:45; suppose Pj(a,x1)=FALSE; hence thesis by A4,MARGREL1:43; suppose Pj(b,x1)=FALSE; then Pj(a 'imp' b,x1) =('not' TRUE) 'or' FALSE by A4,BVFUNC_1:def 11 .=FALSE 'or' FALSE by MARGREL1:41 .=FALSE by BINARITH:7; then Pj(a 'imp' b,x1)<>TRUE by MARGREL1:43; then Pj(B_INF(a 'imp' b,CompF(PA,G)),z) = FALSE by A4,BVFUNC_1:def 19; then Pj(All(a 'imp' b,PA,G),z)=FALSE by BVFUNC_2:def 9; hence Pj('not' All(a 'imp' b,PA,G),z) ='not' FALSE by VALUAT_1:def 5 .=TRUE by MARGREL1:41; end; theorem All(a 'imp' c,PA,G) '&' All(c 'imp' b,PA,G) '<' All(a 'imp' b,PA,G) proof let z be Element of Y; assume Pj(All(a 'imp' c,PA,G) '&' All(c 'imp' b,PA,G),z)=TRUE; then A1: Pj(All(a 'imp' c,PA,G),z) '&' Pj(All(c 'imp' b,PA,G),z)=TRUE by VALUAT_1:def 6; A2: now assume not (for x being Element of Y st x in EqClass(z,CompF(PA,G)) holds Pj(a 'imp' c,x)=TRUE); then Pj(B_INF(a 'imp' c,CompF(PA,G)),z) = FALSE by BVFUNC_1:def 19; then Pj(All(a 'imp' c,PA,G),z)=FALSE by BVFUNC_2:def 9; then Pj(All(a 'imp' c,PA,G),z)<>TRUE by MARGREL1:43; hence contradiction by A1,MARGREL1:45; end; A3: now assume not (for x being Element of Y st x in EqClass(z,CompF(PA,G)) holds Pj(c 'imp' b,x)=TRUE); then Pj(B_INF(c 'imp' b,CompF(PA,G)),z) = FALSE by BVFUNC_1:def 19; then Pj(All(c 'imp' b,PA,G),z)=FALSE by BVFUNC_2:def 9; then Pj(All(c 'imp' b,PA,G),z)<>TRUE by MARGREL1:43; hence contradiction by A1,MARGREL1:45; end; for x being Element of Y st x in EqClass(z,CompF(PA,G)) holds Pj(a 'imp' b,x)=TRUE proof let x be Element of Y; assume A4:x in EqClass(z,CompF(PA,G)); then Pj(a 'imp' c,x)=TRUE by A2; then A5:('not' Pj(a,x)) 'or' Pj(c,x)=TRUE by BVFUNC_1:def 11; A6: ('not' Pj(a,x))=TRUE or ('not' Pj(a,x))=FALSE by MARGREL1:39; Pj(c 'imp' b,x)=TRUE by A3,A4; then A7:('not' Pj(c,x)) 'or' Pj(b,x)=TRUE by BVFUNC_1:def 11; A8: ('not' Pj(c,x))=TRUE or ('not' Pj(c,x))=FALSE by MARGREL1:39; per cases by A5,A6,A7,A8,BINARITH:7; suppose ('not' Pj(a,x))=TRUE & ('not' Pj(c,x))=TRUE; hence Pj(a 'imp' b,x) =TRUE 'or' Pj(b,x) by BVFUNC_1:def 11 .=TRUE by BINARITH:19; suppose ('not' Pj(a,x))=TRUE & Pj(b,x)=TRUE; hence Pj(a 'imp' b,x) =TRUE 'or' Pj(b,x) by BVFUNC_1:def 11 .=TRUE by BINARITH:19; suppose A9:Pj(c,x)=TRUE & ('not' Pj(c,x))=TRUE; then Pj(c,x)=FALSE by MARGREL1:41; hence thesis by A9,MARGREL1:43; suppose Pj(c,x)=TRUE & Pj(b,x)=TRUE; hence Pj(a 'imp' b,x) =('not' Pj(a,x)) 'or' TRUE by BVFUNC_1:def 11 .=TRUE by BINARITH:19; end; then Pj(B_INF(a 'imp' b,CompF(PA,G)),z) = TRUE by BVFUNC_1:def 19; hence thesis by BVFUNC_2:def 9; end; theorem All(c 'imp' b,PA,G) '&' Ex(a '&' c,PA,G) '<' Ex(a '&' b,PA,G) proof let z be Element of Y; assume Pj(All(c 'imp' b,PA,G) '&' Ex(a '&' c,PA,G),z)=TRUE; then A1: Pj(All(c 'imp' b,PA,G),z) '&' Pj(Ex(a '&' c,PA,G),z)=TRUE by VALUAT_1:def 6; A2: now assume not (for x being Element of Y st x in EqClass(z,CompF(PA,G)) holds Pj(c 'imp' b,x)=TRUE); then Pj(B_INF(c 'imp' b,CompF(PA,G)),z) = FALSE by BVFUNC_1:def 19; then Pj(All(c 'imp' b,PA,G),z)=FALSE by BVFUNC_2:def 9; then Pj(All(c 'imp' b,PA,G),z)<>TRUE by MARGREL1:43; hence contradiction by A1,MARGREL1:45; end; now assume not (ex x being Element of Y st x in EqClass(z,CompF(PA,G)) & Pj(a '&' c,x)=TRUE); then Pj(B_SUP(a '&' c,CompF(PA,G)),z) = FALSE by BVFUNC_1:def 20; then Pj(Ex(a '&' c,PA,G),z)=FALSE by BVFUNC_2:def 10; then Pj(Ex(a '&' c,PA,G),z)<>TRUE by MARGREL1:43; hence contradiction by A1,MARGREL1:45; end; then consider x1 being Element of Y such that A3:x1 in EqClass(z,CompF(PA,G)) & Pj(a '&' c,x1)=TRUE; Pj(c 'imp' b,x1)=TRUE by A2,A3; then A4:('not' Pj(c,x1)) 'or' Pj(b,x1)=TRUE by BVFUNC_1:def 11; A5: ('not' Pj(c,x1))=TRUE or ('not' Pj(c,x1))=FALSE by MARGREL1:39; A6: Pj(a,x1) '&' Pj(c,x1)=TRUE by A3,VALUAT_1:def 6; per cases by A4,A5,A6,BINARITH:7,MARGREL1:45; suppose A7:(Pj(a,x1)=TRUE & Pj(c,x1)=TRUE) & ('not' Pj(c,x1))=TRUE; then Pj(c,x1)=FALSE by MARGREL1:41; hence thesis by A7,MARGREL1:43; suppose (Pj(a,x1)=TRUE & Pj(c,x1)=TRUE) & Pj(b,x1)=TRUE; then Pj(a '&' b,x1) =TRUE '&' TRUE by VALUAT_1:def 6 .=TRUE by MARGREL1:45; then Pj(B_SUP(a '&' b,CompF(PA,G)),z) = TRUE by A3,BVFUNC_1:def 20; hence thesis by BVFUNC_2:def 10; end; theorem All(b 'imp' 'not' c,PA,G) '&' All(a 'imp' c,PA,G) '<' All(a 'imp' 'not' b,PA,G) proof let z be Element of Y; assume Pj(All(b 'imp' 'not' c,PA,G) '&' All(a 'imp' c,PA,G),z)=TRUE; then A1: Pj(All(b 'imp' 'not' c,PA,G),z) '&' Pj(All(a 'imp' c,PA,G),z)=TRUE by VALUAT_1:def 6; A2: now assume not (for x being Element of Y st x in EqClass(z,CompF(PA,G)) holds Pj(b 'imp' 'not' c,x)=TRUE); then Pj(B_INF(b 'imp' 'not' c,CompF(PA,G)),z) = FALSE by BVFUNC_1:def 19 ; then Pj(All(b 'imp' 'not' c,PA,G),z)=FALSE by BVFUNC_2:def 9; then Pj(All(b 'imp' 'not' c,PA,G),z)<>TRUE by MARGREL1:43; hence contradiction by A1,MARGREL1:45; end; A3: now assume not (for x being Element of Y st x in EqClass(z,CompF(PA,G)) holds Pj(a 'imp' c,x)=TRUE); then Pj(B_INF(a 'imp' c,CompF(PA,G)),z) = FALSE by BVFUNC_1:def 19; then Pj(All(a 'imp' c,PA,G),z)=FALSE by BVFUNC_2:def 9; then Pj(All(a 'imp' c,PA,G),z)<>TRUE by MARGREL1:43; hence contradiction by A1,MARGREL1:45; end; for x being Element of Y st x in EqClass(z,CompF(PA,G)) holds Pj(a 'imp' 'not' b,x)=TRUE proof let x be Element of Y; assume A4:x in EqClass(z,CompF(PA,G)); then Pj(b 'imp' 'not' c,x)=TRUE by A2; then A5:('not' Pj(b,x)) 'or' Pj('not' c,x)=TRUE by BVFUNC_1:def 11; A6: ('not' Pj(b,x))=TRUE or ('not' Pj(b,x))=FALSE by MARGREL1:39; Pj(a 'imp' c,x)=TRUE by A3,A4; then A7:('not' Pj(a,x)) 'or' Pj(c,x)=TRUE by BVFUNC_1:def 11; A8: ('not' Pj(a,x))=TRUE or ('not' Pj(a,x))=FALSE by MARGREL1:39; per cases by A5,A6,A7,A8,BINARITH:7; suppose A9:('not' Pj(b,x))=TRUE & ('not' Pj(a,x))=TRUE; then Pj('not' b,x)=TRUE by VALUAT_1:def 5; hence Pj(a 'imp' 'not' b,x) =TRUE 'or' TRUE by A9,BVFUNC_1:def 11 .=TRUE by BINARITH:19; suppose ('not' Pj(b,x))=TRUE & Pj(c,x)=TRUE; then Pj('not' b,x)=TRUE by VALUAT_1:def 5; hence Pj(a 'imp' 'not' b,x) =('not' Pj(a,x)) 'or' TRUE by BVFUNC_1:def 11 .=TRUE by BINARITH:19; suppose Pj('not' c,x)=TRUE & ('not' Pj(a,x))=TRUE; hence Pj(a 'imp' 'not' b,x) =TRUE 'or' Pj('not' b,x) by BVFUNC_1:def 11 .=TRUE by BINARITH:19; suppose A10:Pj('not' c,x)=TRUE & Pj(c,x)=TRUE; then 'not' Pj(c,x)=TRUE by VALUAT_1:def 5; then Pj(c,x)=FALSE by MARGREL1:41; hence thesis by A10,MARGREL1:43; end; then Pj(B_INF(a 'imp' 'not' b,CompF(PA,G)),z) = TRUE by BVFUNC_1:def 19; hence thesis by BVFUNC_2:def 9; end; theorem All(b 'imp' c,PA,G) '&' All(a 'imp' 'not' c,PA,G) '<' All(a 'imp' 'not' b,PA,G) proof let z be Element of Y; assume Pj(All(b 'imp' c,PA,G) '&' All(a 'imp' 'not' c,PA,G),z)=TRUE; then A1: Pj(All(b 'imp' c,PA,G),z) '&' Pj(All(a 'imp' 'not' c,PA,G),z)=TRUE by VALUAT_1:def 6; A2: now assume not (for x being Element of Y st x in EqClass(z,CompF(PA,G)) holds Pj(b 'imp' c,x)=TRUE); then Pj(B_INF(b 'imp' c,CompF(PA,G)),z) = FALSE by BVFUNC_1:def 19; then Pj(All(b 'imp' c,PA,G),z)=FALSE by BVFUNC_2:def 9; then Pj(All(b 'imp' c,PA,G),z)<>TRUE by MARGREL1:43; hence contradiction by A1,MARGREL1:45; end; A3: now assume not (for x being Element of Y st x in EqClass(z,CompF(PA,G)) holds Pj(a 'imp' 'not' c,x)=TRUE); then Pj(B_INF(a 'imp' 'not' c,CompF(PA,G)),z) = FALSE by BVFUNC_1:def 19 ; then Pj(All(a 'imp' 'not' c,PA,G),z)=FALSE by BVFUNC_2:def 9; then Pj(All(a 'imp' 'not' c,PA,G),z)<>TRUE by MARGREL1:43; hence contradiction by A1,MARGREL1:45; end; for x being Element of Y st x in EqClass(z,CompF(PA,G)) holds Pj(a 'imp' 'not' b,x)=TRUE proof let x be Element of Y; assume A4:x in EqClass(z,CompF(PA,G)); then Pj(b 'imp' c,x)=TRUE by A2; then A5:('not' Pj(b,x)) 'or' Pj(c,x)=TRUE by BVFUNC_1:def 11; A6: ('not' Pj(b,x))=TRUE or ('not' Pj(b,x))=FALSE by MARGREL1:39; Pj(a 'imp' 'not' c,x)=TRUE by A3,A4; then A7:('not' Pj(a,x)) 'or' Pj('not' c,x)=TRUE by BVFUNC_1:def 11; A8: ('not' Pj(a,x))=TRUE or ('not' Pj(a,x))=FALSE by MARGREL1:39; per cases by A5,A6,A7,A8,BINARITH:7; suppose A9:('not' Pj(b,x))=TRUE & ('not' Pj(a,x))=TRUE; then Pj('not' b,x)=TRUE by VALUAT_1:def 5; hence Pj(a 'imp' 'not' b,x) =TRUE 'or' TRUE by A9,BVFUNC_1:def 11 .=TRUE by BINARITH:19; suppose ('not' Pj(b,x))=TRUE & Pj('not' c,x)=TRUE; then Pj('not' b,x)=TRUE by VALUAT_1:def 5; hence Pj(a 'imp' 'not' b,x) =('not' Pj(a,x)) 'or' TRUE by BVFUNC_1:def 11 .=TRUE by BINARITH:19; suppose Pj(c,x)=TRUE & ('not' Pj(a,x))=TRUE; hence Pj(a 'imp' 'not' b,x) =TRUE 'or' Pj('not' b,x) by BVFUNC_1:def 11 .=TRUE by BINARITH:19; suppose A10:Pj(c,x)=TRUE & Pj('not' c,x)=TRUE; then 'not' Pj(c,x)=TRUE by VALUAT_1:def 5; then Pj(c,x)=FALSE by MARGREL1:41; hence thesis by A10,MARGREL1:43; end; then Pj(B_INF(a 'imp' 'not' b,CompF(PA,G)),z) = TRUE by BVFUNC_1:def 19; hence thesis by BVFUNC_2:def 9; end; theorem All(b 'imp' 'not' c,PA,G) '&' Ex(a '&' c,PA,G) '<' Ex(a '&' 'not' b,PA,G) proof let z be Element of Y; assume Pj(All(b 'imp' 'not' c,PA,G) '&' Ex(a '&' c,PA,G),z)=TRUE; then A1: Pj(All(b 'imp' 'not' c,PA,G),z) '&' Pj(Ex(a '&' c,PA,G),z)=TRUE by VALUAT_1:def 6; A2: now assume not (for x being Element of Y st x in EqClass(z,CompF(PA,G)) holds Pj(b 'imp' 'not' c,x)=TRUE); then Pj(B_INF(b 'imp' 'not' c,CompF(PA,G)),z) = FALSE by BVFUNC_1:def 19 ; then Pj(All(b 'imp' 'not' c,PA,G),z)=FALSE by BVFUNC_2:def 9; then Pj(All(b 'imp' 'not' c,PA,G),z)<>TRUE by MARGREL1:43; hence contradiction by A1,MARGREL1:45; end; now assume not (ex x being Element of Y st x in EqClass(z,CompF(PA,G)) & Pj(a '&' c,x)=TRUE); then Pj(B_SUP(a '&' c,CompF(PA,G)),z) = FALSE by BVFUNC_1:def 20; then Pj(Ex(a '&' c,PA,G),z)=FALSE by BVFUNC_2:def 10; then Pj(Ex(a '&' c,PA,G),z)<>TRUE by MARGREL1:43; hence contradiction by A1,MARGREL1:45; end; then consider x1 being Element of Y such that A3:x1 in EqClass(z,CompF(PA,G)) & Pj(a '&' c,x1)=TRUE; Pj(b 'imp' 'not' c,x1)=TRUE by A2,A3; then A4:('not' Pj(b,x1)) 'or' Pj('not' c,x1)=TRUE by BVFUNC_1:def 11; A5:('not' Pj(b,x1))=TRUE or ('not' Pj(b,x1))=FALSE by MARGREL1:39; A6: Pj(a,x1) '&' Pj(c,x1)=TRUE by A3,VALUAT_1:def 6; per cases by A4,A5,A6,BINARITH:7,MARGREL1:45; suppose A7:(Pj(a,x1)=TRUE & Pj(c,x1)=TRUE) & ('not' Pj(b,x1))=TRUE; Pj(a '&' 'not' b,x1) =Pj(a,x1) '&' Pj('not' b,x1) by VALUAT_1:def 6 .=TRUE '&' TRUE by A7,VALUAT_1:def 5 .=TRUE by MARGREL1:45; then Pj(B_SUP(a '&' 'not' b,CompF(PA,G)),z) = TRUE by A3,BVFUNC_1:def 20; hence thesis by BVFUNC_2:def 10; suppose A8:(Pj(a,x1)=TRUE & Pj(c,x1)=TRUE) & Pj('not' c,x1)=TRUE; then 'not' Pj(c,x1)=TRUE by VALUAT_1:def 5; then Pj(c,x1)=FALSE by MARGREL1:41; hence thesis by A8,MARGREL1:43; end; theorem All(b 'imp' c,PA,G) '&' Ex(a '&' 'not' c,PA,G) '<' Ex(a '&' 'not' b,PA,G) proof let z be Element of Y; assume Pj(All(b 'imp' c,PA,G) '&' Ex(a '&' 'not' c,PA,G),z)=TRUE; then A1: Pj(All(b 'imp' c,PA,G),z) '&' Pj(Ex(a '&' 'not' c,PA,G),z)=TRUE by VALUAT_1:def 6; A2: now assume not (for x being Element of Y st x in EqClass(z,CompF(PA,G)) holds Pj(b 'imp' c,x)=TRUE); then Pj(B_INF(b 'imp' c,CompF(PA,G)),z) = FALSE by BVFUNC_1:def 19; then Pj(All(b 'imp' c,PA,G),z)=FALSE by BVFUNC_2:def 9; then Pj(All(b 'imp' c,PA,G),z)<>TRUE by MARGREL1:43; hence contradiction by A1,MARGREL1:45; end; now assume not (ex x being Element of Y st x in EqClass(z,CompF(PA,G)) & Pj(a '&' 'not' c,x)=TRUE); then Pj(B_SUP(a '&' 'not' c,CompF(PA,G)),z) = FALSE by BVFUNC_1:def 20; then Pj(Ex(a '&' 'not' c,PA,G),z)=FALSE by BVFUNC_2:def 10; then Pj(Ex(a '&' 'not' c,PA,G),z)<>TRUE by MARGREL1:43; hence contradiction by A1,MARGREL1:45; end; then consider x1 being Element of Y such that A3:x1 in EqClass(z,CompF(PA,G)) & Pj(a '&' 'not' c,x1)=TRUE; Pj(b 'imp' c,x1)=TRUE by A2,A3; then A4:('not' Pj(b,x1)) 'or' Pj(c,x1)=TRUE by BVFUNC_1:def 11; A5:('not' Pj(b,x1))=TRUE or ('not' Pj(b,x1))=FALSE by MARGREL1:39; A6: Pj(a,x1) '&' Pj('not' c,x1)=TRUE by A3,VALUAT_1:def 6; per cases by A4,A5,A6,BINARITH:7,MARGREL1:45; suppose A7:(Pj(a,x1)=TRUE & Pj('not' c,x1)=TRUE) & ('not' Pj(b,x1))=TRUE; Pj(a '&' 'not' b,x1) = Pj(a,x1) '&' Pj('not' b,x1) by VALUAT_1:def 6 .=TRUE '&' TRUE by A7,VALUAT_1:def 5 .=TRUE by MARGREL1:45; then Pj(B_SUP(a '&' 'not' b,CompF(PA,G)),z) = TRUE by A3,BVFUNC_1:def 20; hence thesis by BVFUNC_2:def 10; suppose A8:(Pj(a,x1)=TRUE & Pj('not' c,x1)=TRUE) & Pj(c,x1)=TRUE; then 'not' Pj(c,x1)=TRUE by VALUAT_1:def 5; then Pj(c,x1)=FALSE by MARGREL1:41; hence thesis by A8,MARGREL1:43; end; theorem Ex(c,PA,G) '&' All(c 'imp' b,PA,G) '&' All(c 'imp' a,PA,G) '<' Ex(a '&' b,PA,G) proof let z be Element of Y; assume Pj(Ex(c,PA,G) '&' All(c 'imp' b,PA,G) '&' All(c 'imp' a,PA,G),z)=TRUE; then A1: Pj(Ex(c,PA,G) '&' All(c 'imp' b,PA,G),z) '&' Pj(All(c 'imp' a,PA,G),z) =TRUE by VALUAT_1:def 6; then Pj(Ex(c,PA,G),z) '&' Pj(All(c 'imp' b,PA,G),z) '&' Pj(All(c 'imp' a,PA,G),z)=TRUE by VALUAT_1:def 6; then A2:(Pj(Ex(c,PA,G),z) '&' Pj(All(c 'imp' b,PA,G),z))=TRUE & Pj(All(c 'imp' a,PA,G),z)=TRUE by MARGREL1:45; now assume not (ex x being Element of Y st x in EqClass(z,CompF(PA,G)) & Pj(c,x)=TRUE); then Pj(B_SUP(c,CompF(PA,G)),z) = FALSE by BVFUNC_1:def 20; then Pj(Ex(c,PA,G),z)=FALSE by BVFUNC_2:def 10; then Pj(Ex(c,PA,G),z)<>TRUE by MARGREL1:43; hence contradiction by A2,MARGREL1:45; end; then consider x1 being Element of Y such that A3: x1 in EqClass(z,CompF(PA,G)) & Pj(c,x1)=TRUE; now assume not (for x being Element of Y st x in EqClass(z,CompF(PA,G)) holds Pj(c 'imp' a,x)=TRUE); then Pj(B_INF(c 'imp' a,CompF(PA,G)),z) = FALSE by BVFUNC_1:def 19; then Pj(All(c 'imp' a,PA,G),z)=FALSE by BVFUNC_2:def 9; then Pj(All(c 'imp' a,PA,G),z)<>TRUE by MARGREL1:43; hence contradiction by A1,MARGREL1:45; end; then Pj(c 'imp' a,x1)=TRUE by A3; then A4:('not' Pj(c,x1)) 'or' Pj(a,x1)=TRUE by BVFUNC_1:def 11; A5: ('not' Pj(c,x1))=TRUE or ('not' Pj(c,x1))=FALSE by MARGREL1:39; now assume not (for x being Element of Y st x in EqClass(z,CompF(PA,G)) holds Pj(c 'imp' b,x)=TRUE); then Pj(B_INF(c 'imp' b,CompF(PA,G)),z) = FALSE by BVFUNC_1:def 19; then Pj(All(c 'imp' b,PA,G),z)=FALSE by BVFUNC_2:def 9; then Pj(All(c 'imp' b,PA,G),z)<>TRUE by MARGREL1:43; hence contradiction by A2,MARGREL1:45; end; then Pj(c 'imp' b,x1)=TRUE by A3; then A6:('not' Pj(c,x1)) 'or' Pj(b,x1)=TRUE by BVFUNC_1:def 11; per cases by A4,A5,A6,BINARITH:7; suppose ('not' Pj(c,x1))=TRUE; then Pj(c,x1)=FALSE by MARGREL1:41; hence thesis by A3,MARGREL1:43; suppose ('not' Pj(c,x1))=TRUE & Pj(b,x1)=TRUE; then Pj(c,x1)=FALSE by MARGREL1:41; hence thesis by A3,MARGREL1:43; suppose Pj(a,x1)=TRUE & ('not' Pj(c,x1))=TRUE; then Pj(c,x1)=FALSE by MARGREL1:41; hence thesis by A3,MARGREL1:43; suppose Pj(a,x1)=TRUE & Pj(b,x1)=TRUE; then Pj(a '&' b,x1) =TRUE '&' TRUE by VALUAT_1:def 6 .=TRUE by MARGREL1:45; then Pj(B_SUP(a '&' b,CompF(PA,G)),z) = TRUE by A3,BVFUNC_1:def 20; hence thesis by BVFUNC_2:def 10; end; theorem All(b 'imp' c,PA,G) '&' All(c 'imp' 'not' a,PA,G) '<' All(a 'imp' 'not' b,PA,G) proof let z be Element of Y; assume Pj(All(b 'imp' c,PA,G) '&' All(c 'imp' 'not' a,PA,G),z)=TRUE; then A1: Pj(All(b 'imp' c,PA,G),z) '&' Pj(All(c 'imp' 'not' a,PA,G),z)=TRUE by VALUAT_1:def 6; A2: now assume not (for x being Element of Y st x in EqClass(z,CompF(PA,G)) holds Pj(c 'imp' 'not' a,x)=TRUE); then Pj(B_INF(c 'imp' 'not' a,CompF(PA,G)),z) = FALSE by BVFUNC_1:def 19 ; then Pj(All(c 'imp' 'not' a,PA,G),z)=FALSE by BVFUNC_2:def 9; then Pj(All(c 'imp' 'not' a,PA,G),z)<>TRUE by MARGREL1:43; hence contradiction by A1,MARGREL1:45; end; A3: now assume not (for x being Element of Y st x in EqClass(z,CompF(PA,G)) holds Pj(b 'imp' c,x)=TRUE); then Pj(B_INF(b 'imp' c,CompF(PA,G)),z) = FALSE by BVFUNC_1:def 19; then Pj(All(b 'imp' c,PA,G),z)=FALSE by BVFUNC_2:def 9; then Pj(All(b 'imp' c,PA,G),z)<>TRUE by MARGREL1:43; hence contradiction by A1,MARGREL1:45; end; for x being Element of Y st x in EqClass(z,CompF(PA,G)) holds Pj(a 'imp' 'not' b,x)=TRUE proof let x be Element of Y; assume A4:x in EqClass(z,CompF(PA,G)); then Pj(c 'imp' 'not' a,x)=TRUE by A2; then A5:('not' Pj(c,x)) 'or' Pj('not' a,x)=TRUE by BVFUNC_1:def 11; A6: ('not' Pj(c,x))=TRUE or ('not' Pj(c,x))=FALSE by MARGREL1:39; Pj(b 'imp' c,x)=TRUE by A3,A4; then A7:('not' Pj(b,x)) 'or' Pj(c,x)=TRUE by BVFUNC_1:def 11; A8: ('not' Pj(b,x))=TRUE or ('not' Pj(b,x))=FALSE by MARGREL1:39; per cases by A5,A6,A7,A8,BINARITH:7; suppose ('not' Pj(c,x))=TRUE & ('not' Pj(b,x))=TRUE; then Pj('not' b,x)=TRUE by VALUAT_1:def 5; hence Pj(a 'imp' 'not' b,x) =('not' Pj(a,x)) 'or' TRUE by BVFUNC_1:def 11 .=TRUE by BINARITH:19; suppose A9:('not' Pj(c,x))=TRUE & Pj(c,x)=TRUE; then Pj(c,x)=FALSE by MARGREL1:41; hence thesis by A9,MARGREL1:43; suppose Pj('not' a,x)=TRUE & ('not' Pj(b,x))=TRUE; then Pj('not' b,x)=TRUE by VALUAT_1:def 5; hence Pj(a 'imp' 'not' b,x) =('not' Pj(a,x)) 'or' TRUE by BVFUNC_1:def 11 .=TRUE by BINARITH:19; suppose Pj('not' a,x)=TRUE & Pj(c,x)=TRUE; then 'not' Pj(a,x)=TRUE by VALUAT_1:def 5; hence Pj(a 'imp' 'not' b,x) =TRUE 'or' Pj('not' b,x) by BVFUNC_1:def 11 .=TRUE by BINARITH:19; end; then Pj(B_INF(a 'imp' 'not' b,CompF(PA,G)),z) = TRUE by BVFUNC_1:def 19; hence thesis by BVFUNC_2:def 9; end; theorem Ex(b,PA,G) '&' All(b 'imp' c,PA,G) '&' All(c 'imp' a,PA,G) '<' Ex(a '&' b,PA,G) proof let z be Element of Y; assume Pj(Ex(b,PA,G) '&' All(b 'imp' c,PA,G) '&' All(c 'imp' a,PA,G),z)=TRUE; then A1:Pj(Ex(b,PA,G) '&' All(b 'imp' c,PA,G),z) '&' Pj(All(c 'imp' a,PA,G),z)= TRUE by VALUAT_1:def 6; then Pj(Ex(b,PA,G),z) '&' Pj(All(b 'imp' c,PA,G),z) '&' Pj(All(c 'imp' a,PA,G),z)=TRUE by VALUAT_1:def 6; then A2:(Pj(Ex(b,PA,G),z) '&' Pj(All(b 'imp' c,PA,G),z))=TRUE & Pj(All(c 'imp' a,PA,G),z)=TRUE by MARGREL1:45; now assume not (ex x being Element of Y st x in EqClass(z,CompF(PA,G)) & Pj(b,x)=TRUE); then Pj(B_SUP(b,CompF(PA,G)),z) = FALSE by BVFUNC_1:def 20; then Pj(Ex(b,PA,G),z)=FALSE by BVFUNC_2:def 10; then Pj(Ex(b,PA,G),z)<>TRUE by MARGREL1:43; hence contradiction by A2,MARGREL1:45; end; then consider x1 being Element of Y such that A3: x1 in EqClass(z,CompF(PA,G)) & Pj(b,x1)=TRUE; now assume not (for x being Element of Y st x in EqClass(z,CompF(PA,G)) holds Pj(c 'imp' a,x)=TRUE); then Pj(B_INF(c 'imp' a,CompF(PA,G)),z) = FALSE by BVFUNC_1:def 19; then Pj(All(c 'imp' a,PA,G),z)=FALSE by BVFUNC_2:def 9; then Pj(All(c 'imp' a,PA,G),z)<>TRUE by MARGREL1:43; hence contradiction by A1,MARGREL1:45; end; then Pj(c 'imp' a,x1)=TRUE by A3; then A4:('not' Pj(c,x1)) 'or' Pj(a,x1)=TRUE by BVFUNC_1:def 11; A5:('not' Pj(c,x1))=TRUE or ('not' Pj(c,x1))=FALSE by MARGREL1:39; now assume not (for x being Element of Y st x in EqClass(z,CompF(PA,G)) holds Pj(b 'imp' c,x)=TRUE); then Pj(B_INF(b 'imp' c,CompF(PA,G)),z) = FALSE by BVFUNC_1:def 19; then Pj(All(b 'imp' c,PA,G),z)=FALSE by BVFUNC_2:def 9; then Pj(All(b 'imp' c,PA,G),z)<>TRUE by MARGREL1:43; hence contradiction by A2,MARGREL1:45; end; then Pj(b 'imp' c,x1)=TRUE by A3; then A6:('not' Pj(b,x1)) 'or' Pj(c,x1)=TRUE by BVFUNC_1:def 11; A7:('not' Pj(b,x1))=TRUE or ('not' Pj(b,x1))=FALSE by MARGREL1:39; per cases by A4,A5,A6,A7,BINARITH:7; suppose ('not' Pj(c,x1))=TRUE & ('not' Pj(b,x1))=TRUE; then Pj(b,x1)=FALSE by MARGREL1:41; hence thesis by A3,MARGREL1:43; suppose A8:('not' Pj(c,x1))=TRUE & Pj(c,x1)=TRUE; then Pj(c,x1)=FALSE by MARGREL1:41; hence thesis by A8,MARGREL1:43; suppose Pj(a,x1)=TRUE & ('not' Pj(b,x1))=TRUE; then Pj(b,x1)=FALSE by MARGREL1:41; hence thesis by A3,MARGREL1:43; suppose Pj(a,x1)=TRUE & Pj(c,x1)=TRUE; then Pj(a '&' b,x1) =TRUE '&' TRUE by A3,VALUAT_1:def 6 .=TRUE by MARGREL1:45; then Pj(B_SUP(a '&' b,CompF(PA,G)),z) = TRUE by A3,BVFUNC_1:def 20; hence thesis by BVFUNC_2:def 10; end; theorem Ex(c,PA,G) '&' All(b 'imp' 'not' c,PA,G) '&' All(c 'imp' a,PA,G) '<' Ex(a '&' 'not' b,PA,G) proof let z be Element of Y; assume Pj(Ex(c,PA,G) '&' All(b 'imp' 'not' c,PA,G) '&' All(c 'imp' a,PA,G),z)=TRUE; then A1: Pj(Ex(c,PA,G) '&' All(b 'imp' 'not' c,PA,G),z) '&' Pj(All(c 'imp' a,PA,G),z)=TRUE by VALUAT_1:def 6; then Pj(Ex(c,PA,G),z) '&' Pj(All(b 'imp' 'not' c,PA,G),z) '&' Pj(All(c 'imp' a,PA,G),z)=TRUE by VALUAT_1:def 6; then A2:(Pj(Ex(c,PA,G),z) '&' Pj(All(b 'imp' 'not' c,PA,G),z))=TRUE & Pj(All(c 'imp' a,PA,G),z)=TRUE by MARGREL1:45; now assume not (ex x being Element of Y st x in EqClass(z,CompF(PA,G)) & Pj(c,x)=TRUE); then Pj(B_SUP(c,CompF(PA,G)),z) = FALSE by BVFUNC_1:def 20; then Pj(Ex(c,PA,G),z)=FALSE by BVFUNC_2:def 10; then Pj(Ex(c,PA,G),z)<>TRUE by MARGREL1:43; hence contradiction by A2,MARGREL1:45; end; then consider x1 being Element of Y such that A3: x1 in EqClass(z,CompF(PA,G)) & Pj(c,x1)=TRUE; now assume not (for x being Element of Y st x in EqClass(z,CompF(PA,G)) holds Pj(c 'imp' a,x)=TRUE); then Pj(B_INF(c 'imp' a,CompF(PA,G)),z) = FALSE by BVFUNC_1:def 19; then Pj(All(c 'imp' a,PA,G),z)=FALSE by BVFUNC_2:def 9; then Pj(All(c 'imp' a,PA,G),z)<>TRUE by MARGREL1:43; hence contradiction by A1,MARGREL1:45; end; then Pj(c 'imp' a,x1)=TRUE by A3; then A4:('not' Pj(c,x1)) 'or' Pj(a,x1)=TRUE by BVFUNC_1:def 11; A5:('not' Pj(c,x1))=TRUE or ('not' Pj(c,x1))=FALSE by MARGREL1:39; now assume not (for x being Element of Y st x in EqClass(z,CompF(PA,G)) holds Pj(b 'imp' 'not' c,x)=TRUE); then Pj(B_INF(b 'imp' 'not' c,CompF(PA,G)),z) = FALSE by BVFUNC_1:def 19 ; then Pj(All(b 'imp' 'not' c,PA,G),z)=FALSE by BVFUNC_2:def 9; then Pj(All(b 'imp' 'not' c,PA,G),z)<>TRUE by MARGREL1:43; hence contradiction by A2,MARGREL1:45; end; then Pj(b 'imp' 'not' c,x1)=TRUE by A3; then A6:('not' Pj(b,x1)) 'or' Pj('not' c,x1)=TRUE by BVFUNC_1:def 11; A7:('not' Pj(b,x1))=TRUE or ('not' Pj(b,x1))=FALSE by MARGREL1:39; per cases by A4,A5,A6,A7,BINARITH:7; suppose ('not' Pj(c,x1))=TRUE & ('not' Pj(b,x1))=TRUE; then Pj(c,x1)=FALSE by MARGREL1:41; hence thesis by A3,MARGREL1:43; suppose ('not' Pj(c,x1))=TRUE & Pj('not' c,x1)=TRUE; then Pj(c,x1)=FALSE by MARGREL1:41; hence thesis by A3,MARGREL1:43; suppose A8:Pj(a,x1)=TRUE & ('not' Pj(b,x1))=TRUE; Pj(a '&' 'not' b,x1) =Pj(a,x1) '&' Pj('not' b,x1) by VALUAT_1:def 6 .=TRUE '&' TRUE by A8,VALUAT_1:def 5 .=TRUE by MARGREL1:45; then Pj(B_SUP(a '&' 'not' b,CompF(PA,G)),z)=TRUE by A3,BVFUNC_1:def 20; hence thesis by BVFUNC_2:def 10; suppose Pj(a,x1)=TRUE & Pj('not' c,x1)=TRUE; then 'not' Pj(c,x1)=TRUE by VALUAT_1:def 5; then Pj(c,x1)=FALSE by MARGREL1:41; hence thesis by A3,MARGREL1:43; end;