Copyright (c) 1998 Association of Mizar Users
environ vocabulary PARTIT1, T_1TOPSP, EQREL_1, FUNCT_1, SETFAM_1, RELAT_1, CANTOR_1, BOOLE, PARTFUN1, FINSEQ_4, TARSKI, SUBSET_1, GROUP_4, FUNCT_2, MARGREL1, BVFUNC_1, ZF_LANG, BINARITH, BVFUNC_2; notation TARSKI, XBOOLE_0, ZFMISC_1, SUBSET_1, MARGREL1, VALUAT_1, RELAT_1, FUNCT_1, SETFAM_1, FRAENKEL, RELSET_1, PARTFUN1, FINSEQ_4, EQREL_1, CANTOR_1, T_1TOPSP, BINARITH, PARTIT1, BVFUNC_1; constructors FINSEQ_4, BINARITH, CANTOR_1, PARTIT1, BVFUNC_1, PUA2MSS1; clusters RELSET_1, PARTIT1, T_1TOPSP, SUBSET_1, MARGREL1, VALUAT_1, BINARITH, XBOOLE_0; requirements SUBSET, BOOLE; definitions TARSKI, BVFUNC_1, XBOOLE_0; theorems TARSKI, FUNCT_1, SETFAM_1, EQREL_1, ZFMISC_1, CANTOR_1, FUNCT_2, T_1TOPSP, SUBSET_1, MARGREL1, BINARITH, PARTIT1, BVFUNC_1, FINSEQ_4, RELAT_1, VALUAT_1, XBOOLE_0, XBOOLE_1; schemes COMPLSP1, PARTFUN2, XBOOLE_0; begin :: Chap. 1 Preliminaries reserve Y for non empty set, G for Subset of PARTITIONS(Y); definition let X be set; redefine func PARTITIONS X -> Part-Family of X; coherence proof A1: PARTITIONS X c= bool bool X proof let x be set; assume x in PARTITIONS X; then x is a_partition of X by PARTIT1:def 3; hence thesis; end; for S being set st S in PARTITIONS X holds S is a_partition of X by PARTIT1:def 3; hence thesis by A1,T_1TOPSP:def 2,def 3; end; end; definition let X be set; let F be non empty Part-Family of X; redefine mode Element of F -> a_partition of X; coherence by T_1TOPSP:def 3; end; theorem Th1: for y being Element of Y ex X being Subset of Y st y in X & ex h being Function, F being Subset-Family of Y st dom h=G & rng h = F & (for d being set st d in G holds h.d in d) & X=Intersect F & X<>{} proof let y be Element of Y; deffunc _F(Element of PARTITIONS(Y)) = EqClass(y,$1); defpred _P[set] means $1 in G; consider h being PartFunc of PARTITIONS(Y), bool Y such that A1: for d being Element of PARTITIONS(Y) holds d in dom h iff _P[d] and A2: for d being Element of PARTITIONS(Y) st d in dom h holds h/.d = _F(d) from LambdaPFD; A3:dom h c= G proof let x be set; assume x in dom h; hence thesis by A1; end; A4:G c= dom h proof let x be set; assume x in G; hence thesis by A1; end; then A5:dom h = G by A3,XBOOLE_0:def 10; A6:for d being set st d in G holds h.d in d proof let d be set; assume A7:d in G; then reconsider d as a_partition of Y by PARTIT1:def 3; h/.d=h.d by A4,A7,FINSEQ_4:def 4; then h.d = EqClass(y,d) by A2,A4,A7; hence thesis; end; A8:for d being Element of PARTITIONS(Y) st d in dom h holds y in h.d proof let d be Element of PARTITIONS(Y); assume A9:d in dom h; then h/.d = EqClass(y,d) by A2; then h.d = EqClass(y,d) by A9,FINSEQ_4:def 4; hence y in h.d by T_1TOPSP:def 1; end; A10:for c being set holds c in rng h implies y in c proof let c be set; assume c in rng h; then consider a being set such that A11:a in dom h & c = h.a by FUNCT_1:def 5; thus thesis by A8,A11; end; reconsider rr = rng h as Subset-Family of Y by SETFAM_1:def 7; per cases; suppose rng h ={}; then Intersect rr = Y by CANTOR_1:def 3; hence thesis by A5,A6; suppose A12:rng h <> {}; then A13:y in meet (rng h) by A10,SETFAM_1:def 1; Intersect rr = meet (rng h) by A12,CANTOR_1:def 3; hence thesis by A5,A6,A13; end; definition let Y;let G be Subset of PARTITIONS(Y); func '/\' G -> a_partition of Y means :Def1: for x being set holds x in it iff ex h being Function, F being Subset-Family of Y st dom h=G & rng h = F & (for d being set st d in G holds h.d in d) & x=Intersect F & x<>{}; existence proof defpred _P[set] means (ex h being Function, F being Subset-Family of Y st dom h=G & rng h = F & (for d being set st d in G holds h.d in d) & $1=Intersect F & $1<>{}); consider X being set such that A1:for x being set holds x in X iff (x in bool Y) & _P[x] from Separation; take X; A2:union X = Y proof A3:union X c= Y proof let a be set; assume a in union X; then consider p being set such that A4:a in p & p in X by TARSKI:def 4; consider h being Function, F being Subset-Family of Y such that A5: dom h=G & rng h = F & (for d being set st d in G holds h.d in d) & p=Intersect F & p<>{} by A1,A4; thus thesis by A4,A5; end; Y c= union X proof let y be set; assume y in Y; then reconsider y as Element of Y; consider a being Subset of Y such that A6: y in a & ex h being Function, F being Subset-Family of Y st dom h=G & rng h = F & (for d being set st d in G holds h.d in d) & a=Intersect F & a<>{} by Th1; consider h being Function, F being Subset-Family of Y such that A7: dom h=G & rng h = F & (for d being set st d in G holds h.d in d) & a=Intersect F & a<>{} by A6; a in X by A1,A7; hence thesis by A6,TARSKI:def 4; end; hence thesis by A3,XBOOLE_0:def 10; end; A8:for A being Subset of Y st A in X holds A<>{} & for B being Subset of Y st B in X holds A=B or A misses B proof let A be Subset of Y; assume A in X; then consider h1 being Function, F1 being Subset-Family of Y such that A9: dom h1=G & rng h1 = F1 & (for d being set st d in G holds h1.d in d) & A=Intersect F1 & A<>{} by A1; thus A<>{} by A9; let B be Subset of Y; assume B in X; then consider h2 being Function, F2 being Subset-Family of Y such that A10: dom h2=G & rng h2 =F2 & (for d being set st d in G holds h2.d in d) & B=Intersect F2 & B<>{} by A1; per cases; suppose G={}; then rng h1={} & rng h2={} by A9,A10,RELAT_1:65; hence thesis by A9,A10; suppose G<>{}; then A11: rng h1<>{} & rng h2<>{} by A9,A10,RELAT_1:65; now assume A meets B; then consider p being set such that A12: p in A & p in B by XBOOLE_0:3; A13:p in meet (rng h1) by A9,A11,A12,CANTOR_1:def 3; A14:p in meet (rng h2) by A10,A11,A12,CANTOR_1:def 3; for g being set st g in G holds h1.g=h2.g proof let g be set; assume A15:g in G; then reconsider g as a_partition of Y by PARTIT1:def 3; A16:h1.g in g by A9,A15; A17:h2.g in g by A10,A15; A18:h1.g in rng h1 by A9,A15,FUNCT_1:def 5; A19:h2.g in rng h2 by A10,A15,FUNCT_1:def 5; A20:p in h1.g by A13,A18,SETFAM_1:def 1; A21:p in h2.g by A14,A19,SETFAM_1:def 1; h1.g=h2.g or h1.g misses h2.g by A16,A17,EQREL_1:def 6; hence thesis by A20,A21,XBOOLE_0:3; end; hence thesis by A9,A10,FUNCT_1:9; end; hence thesis; end; X c= bool Y proof let a be set; assume a in X; then consider h being Function, F being Subset-Family of Y such that A22: dom h=G & rng h = F & (for d being set st d in G holds h.d in d) & a=Intersect F & a<>{} by A1; thus thesis by A22; end; then reconsider X as Subset-Family of Y by SETFAM_1:def 7; X is a_partition of Y by A2,A8,EQREL_1:def 6; hence thesis by A1; end; uniqueness proof let A1,A2 be a_partition of Y such that A23: for x being set holds x in A1 iff ex h being Function, F being Subset-Family of Y st dom h=G & rng h = F & (for d being set st d in G holds h.d in d)& x=Intersect F & x<>{} and A24: for x being set holds x in A2 iff ex h being Function, F being Subset-Family of Y st dom h=G & rng h = F & (for d being set st d in G holds h.d in d)& x=Intersect F & x<>{}; now let y be set; y in A1 iff ex h being Function, F being Subset-Family of Y st dom h=G & rng h =F & (for d being set st d in G holds h.d in d)& y=Intersect F & y<>{} by A23; hence y in A1 iff y in A2 by A24; end; hence A1=A2 by TARSKI:2; end; end; definition let Y;let G be Subset of PARTITIONS(Y),b be set; pred b is_upper_min_depend_of G means :Def2:(for d being a_partition of Y st d in G holds b is_a_dependent_set_of d) & (for e being set st (e c= b & (for d being a_partition of Y st d in G holds e is_a_dependent_set_of d)) holds e=b); end; theorem Th2: for y being Element of Y st G<>{} holds (ex X being Subset of Y st y in X & X is_upper_min_depend_of G) proof let y be Element of Y; assume G<>{}; then consider g being set such that A1:g in G by XBOOLE_0:def 1; reconsider g as a_partition of Y by A1,PARTIT1:def 3; A2:(union g = Y & for A being set st A in g holds A<>{} & for B being set st B in g holds A=B or A misses B) by EQREL_1:def 6; A3:Y c= Y; A4:for d being a_partition of Y st d in G holds Y is_a_dependent_set_of d by PARTIT1:9; deffunc _F(Element of bool Y) = $1; defpred _P[set] means y in $1 & for d being a_partition of Y st d in G holds $1 is_a_dependent_set_of d; reconsider XX={_F(X) where X is Subset of Y: _P[X]} as Subset of bool Y from SubsetFD; reconsider XX as Subset-Family of Y by SETFAM_1:def 7; A5:Y in XX by A3,A4; for X1 be set st X1 in XX holds y in X1 proof let X1 be set; assume X1 in XX; then consider X be Subset of Y such that A6:X=X1 & y in X & for d being a_partition of Y st d in G holds X is_a_dependent_set_of d; thus thesis by A6; end; then A7:y in meet XX by A5,SETFAM_1:def 1; then A8:Intersect(XX)<>{} by A5,CANTOR_1:def 3; take Intersect(XX); A9:for d being a_partition of Y st d in G holds Intersect(XX) is_a_dependent_set_of d proof let d be a_partition of Y; assume A10:d in G; for X1 be set st X1 in XX holds X1 is_a_dependent_set_of d proof let X1 be set; assume X1 in XX; then consider X be Subset of Y such that A11:X=X1 & y in X & for d being a_partition of Y st d in G holds X is_a_dependent_set_of d; thus thesis by A10,A11; end; hence thesis by A8,PARTIT1:10; end; for e being set st ((e c= Intersect(XX)) & (for d being a_partition of Y st d in G holds e is_a_dependent_set_of d)) holds e=Intersect(XX) proof let e be set; assume A12:(e c= Intersect(XX)) & (for d being a_partition of Y st d in G holds e is_a_dependent_set_of d); then e is_a_dependent_set_of g by A1; then consider Ad being set such that A13:Ad c= g & Ad<>{} & e = union Ad by PARTIT1:def 1; A14:e c= Y by A2,A13,ZFMISC_1:95; per cases; suppose y in e; then A15:e in XX by A12,A14; Intersect(XX) c= e proof let X1 be set; assume X1 in Intersect(XX); then X1 in meet XX by A5,CANTOR_1:def 3; hence X1 in e by A15,SETFAM_1:def 1; end; hence thesis by A12,XBOOLE_0:def 10; suppose A16:not(y in e); reconsider e as Subset of Y by A2,A13,ZFMISC_1:95; e` = Y \ e by SUBSET_1:def 5; then A17:y in e` by A16,XBOOLE_0:def 4; e misses e` by SUBSET_1:44; then A18:e /\ e` = {} by XBOOLE_0:def 7; A19:e <> Y by A16; for d being a_partition of Y st d in G holds e` is_a_dependent_set_of d proof let d be a_partition of Y; assume d in G; then e is_a_dependent_set_of d by A12; hence thesis by A19,PARTIT1:12; end; then A20:e` in XX by A17; Intersect(XX) c= e` proof let X1 be set; assume X1 in Intersect XX; then X1 in meet XX by A5,CANTOR_1:def 3; hence X1 in e` by A20,SETFAM_1:def 1; end; then e /\ Intersect(XX) c= e /\ e` by XBOOLE_1:26; then A21:e /\ Intersect(XX) = {} by A18,XBOOLE_1:3; e /\ e = e; then e c= {} by A12,A21,XBOOLE_1:26; then A22:union Ad = {} by A13,XBOOLE_1:3; consider ad being set such that A23:ad in Ad by A13,XBOOLE_0:def 1; A24:ad<>{} by A2,A13,A23; A25:ad c= {} by A22,A23,ZFMISC_1:92; consider add being set such that A26:add in ad by A24,XBOOLE_0:def 1; thus thesis by A25,A26; end; hence thesis by A5,A7,A9,Def2,CANTOR_1:def 3; end; definition let Y;let G be Subset of PARTITIONS(Y); func '\/' G -> a_partition of Y means :Def3: (for x being set holds x in it iff x is_upper_min_depend_of G) if G<>{} otherwise it = %I(Y); existence proof thus G<>{} implies ex X being a_partition of Y st for x being set holds x in X iff x is_upper_min_depend_of G proof assume A1:G<>{}; then consider g being set such that A2:g in G by XBOOLE_0:def 1; reconsider g as a_partition of Y by A2,PARTIT1:def 3; A3:union g = Y & for A being set st A in g holds A<>{} & for B being set st B in g holds A=B or A misses B by EQREL_1:def 6; defpred _P[set] means $1 is_upper_min_depend_of G; consider X being set such that A4:for x being set holds x in X iff x in bool Y & _P[x] from Separation; A5:for x being set holds x in X iff x is_upper_min_depend_of G proof let x be set; for x being set holds (x is_upper_min_depend_of G) implies (x in bool Y) proof let x be set; assume x is_upper_min_depend_of G; then x is_a_dependent_set_of g by A2,Def2; then consider A being set such that A6:A c= g & A<>{} & x = union A by PARTIT1:def 1; x c= union g by A6,ZFMISC_1:95; hence x in bool Y by A3; end; then x is_upper_min_depend_of G implies x is_upper_min_depend_of G & x in bool Y; hence thesis by A4; end; take X; A7:Y = union X proof thus Y c= union X proof let y be set; assume y in Y; then reconsider y as Element of Y; consider a being Subset of Y such that A8: y in a & a is_upper_min_depend_of G by A1,Th2; a in X by A5,A8; hence thesis by A8,TARSKI:def 4; end; thus union X c= Y proof let y be set; assume y in union X; then consider a being set such that A9:y in a & a in X by TARSKI:def 4; a in bool Y by A4,A9; hence y in Y by A9; end; end; A10:for A being Subset of Y st A in X holds A<>{} & for B being Subset of Y st B in X holds A=B or A misses B proof let A be Subset of Y; assume A in X; then A11: A is_upper_min_depend_of G by A5; then A is_a_dependent_set_of g by A2,Def2; then consider Aa being set such that A12:Aa c= g & Aa<>{} & A = union Aa by PARTIT1:def 1; consider aa being set such that A13:aa in Aa by A12,XBOOLE_0:def 1; A14:aa<>{} by A3,A12,A13; A15:aa c= union Aa by A13,ZFMISC_1:92; consider ax being set such that A16:ax in aa by A14,XBOOLE_0:def 1; thus A<>{} by A12,A15,A16; let B be Subset of Y; assume B in X; then A17: B is_upper_min_depend_of G by A5; now assume A18:A meets B; A19: for d being a_partition of Y st d in G holds A /\ B is_a_dependent_set_of d proof let d be a_partition of Y; assume A20:d in G; then A21:A is_a_dependent_set_of d by A11,Def2; B is_a_dependent_set_of d by A17,A20,Def2; hence thesis by A18,A21,PARTIT1:11; end; A /\ B c= A by XBOOLE_1:17; then A22:A /\ B = A by A11,A19,Def2; A23:A c= B proof let x be set; assume x in A; hence x in B by A22,XBOOLE_0:def 3; end; A /\ B c= B by XBOOLE_1:17; then A24:A /\ B = B by A17,A19,Def2; B c= A proof let x be set; assume x in B; hence x in A by A24,XBOOLE_0:def 3; end; hence A=B by A23,XBOOLE_0:def 10; end; hence thesis; end; X c= bool Y proof let x be set; assume x in X; hence thesis by A4; end; then reconsider X as Subset-Family of Y by SETFAM_1:def 7; X is a_partition of Y by A7,A10,EQREL_1:def 6; hence thesis by A5; end; thus G={} implies ex X being a_partition of Y st X = %I(Y); end; uniqueness proof let A1,A2 be a_partition of Y; now assume that A25: G<>{} & for x being set holds x in A1 iff x is_upper_min_depend_of G and A26: for x being set holds x in A2 iff x is_upper_min_depend_of G; now let y be set; y in A1 iff y is_upper_min_depend_of G by A25; hence y in A1 iff y in A2 by A26; end; hence A1=A2 by TARSKI:2; end; hence thesis; end; consistency; end; theorem for G being Subset of PARTITIONS(Y),PA being a_partition of Y st PA in G holds PA '>' ('/\' G) proof let G be Subset of PARTITIONS(Y); let PA be a_partition of Y; assume A1:PA in G; for x being set st x in ('/\' G) ex a being set st a in PA & x c= a proof let x be set; assume x in ('/\' G); then consider h being Function, F being Subset-Family of Y such that A2: dom h=G & rng h =F and A3: for d being set st d in G holds h.d in d and A4: x=Intersect F & x<>{} by Def1; set a = h.PA; A5: a in PA by A1,A3; A6:a in rng h by A1,A2,FUNCT_1:def 5; then Intersect F = meet F by A2,CANTOR_1:def 3; then x c= a by A2,A4,A6,SETFAM_1:4; hence thesis by A5; end; hence thesis by SETFAM_1:def 2; end; theorem for G being Subset of PARTITIONS(Y),PA being a_partition of Y st PA in G holds PA '<' ('\/' G) proof let G be Subset of PARTITIONS(Y); let PA be a_partition of Y; assume A1:PA in G; for a being set st a in PA ex b being set st b in ('\/' G) & a c= b proof let a be set; assume A2:a in PA; then A3: a c= Y & a<>{} by EQREL_1:def 6; consider x being Element of a; A4: x in Y by A3,TARSKI:def 3; union ('\/' G) = Y by EQREL_1:def 6; then consider b being set such that A5:x in b & b in ('\/' G) by A4,TARSKI:def 4; b is_upper_min_depend_of G by A1,A5,Def3; then b is_a_dependent_set_of PA by A1,Def2; then consider B being set such that A6:B c= PA & B<>{} & b = union B by PARTIT1:def 1; a in B proof consider u being set such that A7: x in u & u in B by A5,A6,TARSKI:def 4; a /\ u <> {} by A3,A7,XBOOLE_0:def 3; then A8: not (a misses u) by XBOOLE_0:def 7; u in PA by A6,A7; hence thesis by A2,A7,A8,EQREL_1:def 6; end; then a c= b by A6,ZFMISC_1:92; hence thesis by A5; end; hence thesis by SETFAM_1:def 2; end; begin :: Chap. 2 Coordinate and Quantifiers definition let Y;let G be Subset of PARTITIONS(Y); attr G is generating means ('/\' G) = %I(Y); end; definition let Y;let G be Subset of PARTITIONS(Y); attr G is independent means for h being Function, F being Subset-Family of Y st dom h=G & rng h=F & (for d being set st d in G holds h.d in d) holds (Intersect F)<>{}; end; definition let Y;let G be Subset of PARTITIONS(Y); pred G is_a_coordinate means G is independent generating; end; definition let Y;let PA be a_partition of Y; redefine func {PA} -> Subset of PARTITIONS(Y); coherence proof PA in PARTITIONS(Y) by PARTIT1:def 3; hence thesis by ZFMISC_1:37; end; end; definition let Y;let PA be a_partition of Y;let G be Subset of PARTITIONS(Y); func CompF(PA,G) -> a_partition of Y equals '/\' (G \ {PA}); correctness; end; definition let Y;let a be Element of Funcs(Y,BOOLEAN); let G be Subset of PARTITIONS(Y),PA be a_partition of Y; pred a is_independent_of PA,G means :Def8: a is_dependent_of CompF(PA,G); end; definition let Y;let a be Element of Funcs(Y,BOOLEAN), G be Subset of PARTITIONS(Y), PA be a_partition of Y; func All(a,PA,G) -> Element of Funcs(Y,BOOLEAN) equals :Def9: B_INF(a,CompF(PA,G)); correctness; end; definition let Y;let a be Element of Funcs(Y,BOOLEAN), G be Subset of PARTITIONS(Y), PA be a_partition of Y; func Ex(a,PA,G) -> Element of Funcs(Y,BOOLEAN) equals :Def10: B_SUP(a,CompF(PA,G)); correctness; end; theorem for a being Element of Funcs(Y,BOOLEAN), PA being a_partition of Y holds All(a,PA,G) is_dependent_of CompF(PA,G) proof let a be Element of Funcs(Y,BOOLEAN); let PA be a_partition of Y; A1:All(a,PA,G) = B_INF(a,CompF(PA,G)) by Def9; let F be set; assume A2:F in CompF(PA,G); thus for x1,x2 being set st x1 in F & x2 in F holds All(a,PA,G).x1=All(a,PA,G).x2 proof let x1,x2 be set; assume A3:x1 in F & x2 in F; then reconsider x1,x2 as Element of Y by A2; A4:x2 in EqClass(x2,CompF(PA,G)) & EqClass(x2,CompF(PA,G)) in CompF(PA,G) by T_1TOPSP:def 1; F = EqClass(x2,CompF(PA,G)) or F misses EqClass(x2,CompF(PA,G)) by A2,EQREL_1:def 6; then A5: EqClass(x1,CompF(PA,G)) = EqClass(x2,CompF(PA,G)) by A3,A4,T_1TOPSP:def 1,XBOOLE_0:3; per cases; suppose A6: (for x being Element of Y st x in EqClass(x1,CompF(PA,G)) holds Pj(a,x)=TRUE) & (for x being Element of Y st x in EqClass(x2,CompF(PA,G)) holds Pj(a,x)=TRUE); then Pj(All(a,PA,G),x2)=TRUE by A1,BVFUNC_1:def 19; hence thesis by A1,A6,BVFUNC_1:def 19; suppose (for x being Element of Y st x in EqClass(x1,CompF(PA,G)) holds Pj(a,x)=TRUE) & not (for x being Element of Y st x in EqClass(x2,CompF(PA,G)) holds Pj(a,x)=TRUE); hence thesis by A5; suppose not (for x being Element of Y st x in EqClass(x1,CompF(PA,G)) holds Pj(a,x)=TRUE) & (for x being Element of Y st x in EqClass(x2,CompF(PA,G)) holds Pj(a,x)=TRUE); hence thesis by A5; suppose A7: not (for x being Element of Y st x in EqClass(x1,CompF(PA,G)) holds Pj(a,x)=TRUE) & not (for x being Element of Y st x in EqClass(x2,CompF(PA,G)) holds Pj(a,x)=TRUE); then Pj(All(a,PA,G),x2)=FALSE by A1,BVFUNC_1:def 19; hence thesis by A1,A7,BVFUNC_1:def 19; end; end; theorem for a being Element of Funcs(Y,BOOLEAN), PA being a_partition of Y holds Ex(a,PA,G) is_dependent_of CompF(PA,G) proof let a be Element of Funcs(Y,BOOLEAN); let PA be a_partition of Y; A1:Ex(a,PA,G) = B_SUP(a,CompF(PA,G)) by Def10; let F be set; assume A2:F in CompF(PA,G); thus for x1,x2 being set st x1 in F & x2 in F holds Ex(a,PA,G).x1=Ex(a,PA,G).x2 proof let x1,x2 be set; assume A3:x1 in F & x2 in F; then reconsider x1, x2 as Element of Y by A2; A4:x2 in EqClass(x2,CompF(PA,G)) & EqClass(x2,CompF(PA,G)) in CompF(PA,G) by T_1TOPSP:def 1; F = EqClass(x2,CompF(PA,G)) or F misses EqClass(x2,CompF(PA,G)) by A2,EQREL_1:def 6; then A5: EqClass(x1,CompF(PA,G)) = EqClass(x2,CompF(PA,G)) by A3,A4,T_1TOPSP:def 1,XBOOLE_0:3; per cases; suppose A6: (ex x being Element of Y st x in EqClass(x1,CompF(PA,G)) & Pj(a,x)=TRUE) & (ex x being Element of Y st x in EqClass(x2,CompF(PA,G)) & Pj(a,x)=TRUE); then Pj(B_SUP(a,CompF(PA,G)),x1) = TRUE by BVFUNC_1:def 20; hence thesis by A1,A6,BVFUNC_1:def 20; suppose (ex x being Element of Y st x in EqClass(x1,CompF(PA,G)) & Pj(a,x)=TRUE) & not (ex x being Element of Y st x in EqClass(x2,CompF(PA,G)) & Pj(a,x)=TRUE); hence thesis by A5; suppose not (ex x being Element of Y st x in EqClass(x1,CompF(PA,G)) & Pj(a,x)=TRUE) & (ex x being Element of Y st x in EqClass(x2,CompF(PA,G)) & Pj(a,x)=TRUE); hence thesis by A5; suppose A7: not (ex x being Element of Y st x in EqClass(x1,CompF(PA,G)) & Pj(a,x)=TRUE) & not (ex x being Element of Y st x in EqClass(x2,CompF(PA,G)) & Pj(a,x)=TRUE); then Pj(B_SUP(a,CompF(PA,G)),x1) = FALSE by BVFUNC_1:def 20; hence thesis by A1,A7,BVFUNC_1:def 20; end; end; theorem for a being Element of Funcs(Y,BOOLEAN), PA being a_partition of Y holds All(I_el(Y),PA,G) = I_el(Y) proof let a be Element of Funcs(Y,BOOLEAN); let PA be a_partition of Y; A1:All(I_el(Y),PA,G) = B_INF(I_el(Y),CompF(PA,G)) by Def9; for z being Element of Y holds Pj(All(I_el(Y),PA,G),z)=TRUE proof let z be Element of Y; for x being Element of Y st x in EqClass(z,CompF(PA,G)) holds Pj(I_el(Y),x)=TRUE by BVFUNC_1:def 14; hence thesis by A1,BVFUNC_1:def 19; end; hence thesis by BVFUNC_1:def 14; end; theorem for a being Element of Funcs(Y,BOOLEAN), PA being a_partition of Y holds Ex(I_el(Y),PA,G) = I_el(Y) proof let a be Element of Funcs(Y,BOOLEAN); let PA be a_partition of Y; for z being Element of Y holds Pj(Ex(I_el(Y),PA,G),z)=TRUE proof let z be Element of Y; A1:z in EqClass(z,CompF(PA,G)) & EqClass(z,CompF(PA,G)) in CompF(PA,G) by T_1TOPSP:def 1; Pj(I_el(Y),z)=TRUE by BVFUNC_1:def 14; then Pj(B_SUP(I_el(Y),CompF(PA,G)),z) = TRUE by A1,BVFUNC_1:def 20; hence thesis by Def10; end; hence thesis by BVFUNC_1:def 14; end; theorem for a being Element of Funcs(Y,BOOLEAN), PA being a_partition of Y holds All(O_el(Y),PA,G) = O_el(Y) proof let a be Element of Funcs(Y,BOOLEAN); let PA be a_partition of Y; A1:All(O_el(Y),PA,G) = B_INF(O_el(Y),CompF(PA,G)) by Def9; for z being Element of Y holds Pj(All(O_el(Y),PA,G),z)=FALSE proof let z be Element of Y; A2:z in EqClass(z,CompF(PA,G)) & EqClass(z,CompF(PA,G)) in CompF(PA,G) by T_1TOPSP:def 1; Pj(O_el(Y),z)=FALSE by BVFUNC_1:def 13; then Pj(O_el(Y),z)<>TRUE by MARGREL1:43; hence thesis by A1,A2,BVFUNC_1:def 19; end; hence thesis by BVFUNC_1:def 13; end; theorem for a being Element of Funcs(Y,BOOLEAN), PA being a_partition of Y holds Ex(O_el(Y),PA,G) = O_el(Y) proof let a be Element of Funcs(Y,BOOLEAN); let PA be a_partition of Y; A1:Ex(O_el(Y),PA,G) = B_SUP(O_el(Y),CompF(PA,G)) by Def10; for z being Element of Y holds Pj(Ex(O_el(Y),PA,G),z)=FALSE proof let z be Element of Y; for x being Element of Y st x in EqClass(z,CompF(PA,G)) holds Pj(O_el(Y),x)<>TRUE proof let x be Element of Y; assume x in EqClass(z,CompF(PA,G)); Pj(O_el(Y),x)=FALSE by BVFUNC_1:def 13; hence thesis by MARGREL1:43; end; hence thesis by A1,BVFUNC_1:def 20; end; hence thesis by BVFUNC_1:def 13; end; theorem for a being Element of Funcs(Y,BOOLEAN), PA being a_partition of Y holds All(a,PA,G) '<' a proof let a be Element of Funcs(Y,BOOLEAN); let PA be a_partition of Y; let z be Element of Y; assume Pj(All(a,PA,G),z)= TRUE; then A1:Pj(B_INF(a,CompF(PA,G)),z)= TRUE by Def9; A2: now assume not (for x being Element of Y st x in EqClass(z,CompF(PA,G)) holds Pj(a,x)=TRUE); then Pj(B_INF(a,CompF(PA,G)),z) = FALSE by BVFUNC_1:def 19; hence contradiction by A1,MARGREL1:43; end; z in EqClass(z,CompF(PA,G)) & EqClass(z,CompF(PA,G)) in CompF(PA,G) by T_1TOPSP:def 1; hence Pj(a,z)=TRUE by A2; end; theorem for a being Element of Funcs(Y,BOOLEAN), PA being a_partition of Y holds a '<' Ex(a,PA,G) proof let a be Element of Funcs(Y,BOOLEAN); let PA be a_partition of Y; let z be Element of Y; assume A1:Pj(a,z)= TRUE; A2:Ex(a,PA,G) = B_SUP(a,CompF(PA,G)) by Def10; z in EqClass(z,CompF(PA,G)) & EqClass(z,CompF(PA,G)) in CompF(PA,G) by T_1TOPSP:def 1; hence Pj(Ex(a,PA,G),z)=TRUE by A1,A2,BVFUNC_1:def 20; end; theorem for a,b being Element of Funcs(Y,BOOLEAN), PA being a_partition of Y holds All(a '&' b,PA,G) = All(a,PA,G) '&' All(b,PA,G) proof let a,b be Element of Funcs(Y,BOOLEAN); let PA be a_partition of Y; A1:All(a,PA,G) = B_INF(a,CompF(PA,G)) by Def9; A2:All(b,PA,G) = B_INF(b,CompF(PA,G)) by Def9; All(a '&' b,PA,G) = B_INF(a '&' b,CompF(PA,G)) by Def9; hence All(a '&' b,PA,G)=(All(a,PA,G) '&' All(b,PA,G)) by A1,A2,BVFUNC_1:42; end; theorem for a,b being Element of Funcs(Y,BOOLEAN), PA being a_partition of Y holds All(a,PA,G) 'or' All(b,PA,G) '<' All(a 'or' b,PA,G) proof let a,b be Element of Funcs(Y,BOOLEAN); let PA be a_partition of Y; A1:All(a 'or' b,PA,G) = B_INF(a 'or' b,CompF(PA,G)) by Def9; A2:All(a,PA,G) = B_INF(a,CompF(PA,G)) by Def9; A3:All(b,PA,G) = B_INF(b,CompF(PA,G)) by Def9; let z be Element of Y; assume Pj(All(a,PA,G) 'or' All(b,PA,G),z)=TRUE; then A4:Pj(All(a,PA,G),z) 'or' Pj(All(b,PA,G),z)=TRUE by BVFUNC_1:def 7; A5:Pj(All(b,PA,G),z)=TRUE or Pj(All(b,PA,G),z)=FALSE by MARGREL1:39; now per cases by A4,A5,BINARITH:7; case A6:Pj(All(a,PA,G),z)=TRUE; A7: now assume not (for x being Element of Y st x in EqClass(z,CompF(PA,G)) holds Pj(a,x)=TRUE); then Pj(All(a,PA,G),z)=FALSE by A2,BVFUNC_1:def 19; hence contradiction by A6,MARGREL1:43; end; for x being Element of Y st x in EqClass(z,CompF(PA,G)) holds Pj(a 'or' b,x)=TRUE proof let x be Element of Y; assume A8: x in EqClass(z,CompF(PA,G)); Pj(a 'or' b,x) =Pj(a,x) 'or' Pj(b,x) by BVFUNC_1:def 7 .=TRUE 'or' Pj(b,x) by A7,A8 .=TRUE by BINARITH:19; hence thesis; end; hence thesis by A1,BVFUNC_1:def 19; case A9:Pj(All(b,PA,G),z)=TRUE; A10: now assume not (for x being Element of Y st x in EqClass(z,CompF(PA,G)) holds Pj(b,x)=TRUE); then Pj(All(b,PA,G),z)=FALSE by A3,BVFUNC_1:def 19; hence contradiction by A9,MARGREL1:43; end; for x being Element of Y st x in EqClass(z,CompF(PA,G)) holds Pj(a 'or' b,x)=TRUE proof let x be Element of Y; assume A11: x in EqClass(z,CompF(PA,G)); Pj(a 'or' b,x) =Pj(a,x) 'or' Pj(b,x) by BVFUNC_1:def 7 .=Pj(a,x) 'or' TRUE by A10,A11 .=TRUE by BINARITH:19; hence thesis; end; hence thesis by A1,BVFUNC_1:def 19; end; hence thesis; end; theorem for a,b being Element of Funcs(Y,BOOLEAN), PA being a_partition of Y holds All(a 'imp' b,PA,G) '<' All(a,PA,G) 'imp' All(b,PA,G) proof let a,b be Element of Funcs(Y,BOOLEAN); let PA be a_partition of Y; A1:All(a 'imp' b,PA,G) = B_INF(a 'imp' b,CompF(PA,G)) by Def9; A2:All(a,PA,G) = B_INF(a,CompF(PA,G)) by Def9; A3:All(b,PA,G) = B_INF(b,CompF(PA,G)) by Def9; let z be Element of Y; assume A4:Pj(All(a 'imp' b,PA,G),z)=TRUE; A5: now assume not (for x being Element of Y st x in EqClass(z,CompF(PA,G)) holds Pj(a 'imp' b,x)=TRUE); then Pj(All(a 'imp' b,PA,G),z)=FALSE by A1,BVFUNC_1:def 19; hence contradiction by A4,MARGREL1:43; end; A6:Pj(All(a,PA,G) 'imp' All(b,PA,G),z) =('not' Pj(All(a,PA,G),z)) 'or' Pj(All(b,PA,G),z) by BVFUNC_1:def 11; per cases; suppose (for x being Element of Y st x in EqClass(z,CompF(PA,G)) holds Pj(a,x)=TRUE) & (for x being Element of Y st x in EqClass(z,CompF(PA,G)) holds Pj(b,x)=TRUE); then Pj(B_INF(b,CompF(PA,G)),z) = TRUE by BVFUNC_1:def 19; then Pj(All(b,PA,G),z)=TRUE by Def9; then Pj(All(a,PA,G) 'imp' All(b,PA,G),z) =('not' Pj(All(a,PA,G),z)) 'or' TRUE by BVFUNC_1:def 11 .=TRUE by BINARITH:19; hence thesis; suppose A7: (for x being Element of Y st x in EqClass(z,CompF(PA,G)) holds Pj(a,x)=TRUE) & not (for x being Element of Y st x in EqClass(z,CompF(PA,G)) holds Pj(b,x)=TRUE); then consider x1 being Element of Y such that A8: x1 in EqClass(z,CompF(PA,G)) & Pj(b,x1)<>TRUE; A9:Pj(a,x1)=TRUE by A7,A8; Pj(a 'imp' b,x1) =('not' Pj(a,x1)) 'or' Pj(b,x1) by BVFUNC_1:def 11 .=('not' TRUE) 'or' FALSE by A8,A9,MARGREL1:43 .=FALSE 'or' FALSE by MARGREL1:41 .=FALSE by BINARITH:7; then Pj(a 'imp' b,x1)<>TRUE by MARGREL1:43; hence thesis by A5,A8; suppose not (for x being Element of Y st x in EqClass(z,CompF(PA,G)) holds Pj(a,x)=TRUE) & (for x being Element of Y st x in EqClass(z,CompF(PA,G)) holds Pj(b,x)=TRUE); then Pj(All(a,PA,G) 'imp' All(b,PA,G),z) =('not' Pj(All(a,PA,G),z)) 'or' TRUE by A3,A6,BVFUNC_1:def 19 .=TRUE by BINARITH:19; hence thesis; suppose not (for x being Element of Y st x in EqClass(z,CompF(PA,G)) holds Pj(a,x)=TRUE) & not (for x being Element of Y st x in EqClass(z,CompF(PA,G)) holds Pj(b,x)=TRUE); then Pj(All(a,PA,G) 'imp' All(b,PA,G),z) =('not' FALSE) 'or' Pj(All(b,PA,G),z) by A2,A6,BVFUNC_1:def 19 .=TRUE 'or' Pj(All(b,PA,G),z) by MARGREL1:41 .=TRUE by BINARITH:19; hence thesis; end; theorem for a,b being Element of Funcs(Y,BOOLEAN), PA being a_partition of Y holds Ex(a 'or' b,PA,G) = Ex(a,PA,G) 'or' Ex(b,PA,G) proof let a,b be Element of Funcs(Y,BOOLEAN); let PA be a_partition of Y; A1:Ex(a,PA,G) = B_SUP(a,CompF(PA,G)) by Def10; A2:Ex(b,PA,G) = B_SUP(b,CompF(PA,G)) by Def10; Ex(a 'or' b,PA,G) = B_SUP(a 'or' b,CompF(PA,G)) by Def10; hence (Ex(a 'or' b,PA,G))=(Ex(a,PA,G) 'or' Ex(b,PA,G)) by A1,A2,BVFUNC_1:43; end; theorem for a,b being Element of Funcs(Y,BOOLEAN),G being Subset of PARTITIONS(Y), PA being a_partition of Y holds Ex(a '&' b,PA,G) '<' Ex(a,PA,G) '&' Ex(b,PA,G) proof let a,b be Element of Funcs(Y,BOOLEAN); let G be Subset of PARTITIONS(Y); let PA be a_partition of Y; A1:Ex(a '&' b,PA,G) = B_SUP(a '&' b,CompF(PA,G)) by Def10; A2:Ex(a,PA,G) = B_SUP(a,CompF(PA,G)) by Def10; A3:Ex(b,PA,G) = B_SUP(b,CompF(PA,G)) by Def10; let z be Element of Y; assume A4:Pj(Ex(a '&' b,PA,G),z)=TRUE; now assume not (ex x being Element of Y st x in EqClass(z,CompF(PA,G)) & Pj(a '&' b,x)=TRUE); then Pj(Ex(a '&' b,PA,G),z)=FALSE by A1,BVFUNC_1:def 20; hence contradiction by A4,MARGREL1:43; end; then consider x1 being Element of Y such that A5:x1 in EqClass(z,CompF(PA,G)) & Pj(a '&' b,x1)=TRUE; Pj(a,x1) '&' Pj(b,x1)=TRUE by A5,VALUAT_1:def 6; then A6:Pj(a,x1)=TRUE & Pj(b,x1)=TRUE by MARGREL1:45; then A7:Pj(Ex(a,PA,G),z)=TRUE by A2,A5,BVFUNC_1:def 20; Pj(Ex(a,PA,G) '&' Ex(b,PA,G),z) = Pj(Ex(a,PA,G),z) '&' Pj(Ex(b,PA,G),z) by VALUAT_1:def 6 .= TRUE '&' TRUE by A3,A5,A6,A7,BVFUNC_1:def 20 .= TRUE by MARGREL1:45; hence thesis; end; theorem for a,b being Element of Funcs(Y,BOOLEAN), PA being a_partition of Y holds Ex(a,PA,G) 'xor' Ex(b,PA,G) '<' Ex(a 'xor' b,PA,G) proof let a,b be Element of Funcs(Y,BOOLEAN); let PA be a_partition of Y; A1:Ex(a 'xor' b,PA,G) = B_SUP(a 'xor' b,CompF(PA,G)) by Def10; A2:Ex(a,PA,G) = B_SUP(a,CompF(PA,G)) by Def10; A3:Ex(b,PA,G) = B_SUP(b,CompF(PA,G)) by Def10; let z be Element of Y; assume A4:Pj(Ex(a,PA,G) 'xor' Ex(b,PA,G),z)=TRUE; A5: Pj(Ex(a,PA,G) 'xor' Ex(b,PA,G),z) =Pj(Ex(a,PA,G),z) 'xor' Pj(Ex(b,PA,G),z) by BVFUNC_1:def 8 .=('not' Pj(Ex(a,PA,G),z) '&' Pj(Ex(b,PA,G),z)) 'or' (Pj(Ex(a,PA,G),z) '&' 'not' Pj(Ex(b,PA,G),z)) by BINARITH:def 2; A6:('not' Pj(Ex(a,PA,G),z) '&' Pj(Ex(b,PA,G),z))=TRUE or ('not' Pj(Ex(a,PA,G),z) '&' Pj(Ex(b,PA,G),z))=FALSE by MARGREL1:39; A7:'not' FALSE=TRUE & 'not' TRUE=FALSE by MARGREL1:41; A8:FALSE '&' FALSE =FALSE by MARGREL1:49; now per cases by A4,A5,A6,BINARITH:7; case ('not' Pj(Ex(a,PA,G),z) '&' Pj(Ex(b,PA,G),z))=TRUE; then A9:'not' Pj(Ex(a,PA,G),z)=TRUE & Pj(Ex(b,PA,G),z)=TRUE by MARGREL1:45; then Pj(Ex(a,PA,G),z)=FALSE by MARGREL1:41; then A10:Pj(Ex(a,PA,G),z)<>TRUE by MARGREL1:43; now assume not (ex x being Element of Y st x in EqClass(z,CompF(PA,G)) & Pj(b,x)=TRUE); then Pj(Ex(b,PA,G),z)=FALSE by A3,BVFUNC_1:def 20; hence contradiction by A9,MARGREL1:43; end; then consider x1 being Element of Y such that A11:x1 in EqClass(z,CompF(PA,G)) & Pj(b,x1)=TRUE; Pj(a,x1)<>TRUE by A2,A10,A11,BVFUNC_1:def 20; then A12:Pj(a,x1)=FALSE by MARGREL1:43; Pj(a 'xor' b,x1) =Pj(a,x1) 'xor' Pj(b,x1) by BVFUNC_1:def 8 .=('not' Pj(a,x1) '&' Pj(b,x1)) 'or' (Pj(a,x1) '&' 'not' Pj(b,x1)) by BINARITH:def 2 .=TRUE 'or' FALSE by A7,A8,A11,A12,MARGREL1:50 .=TRUE by BINARITH:19; hence thesis by A1,A11,BVFUNC_1:def 20; case (Pj(Ex(a,PA,G),z) '&' 'not' Pj(Ex(b,PA,G),z))=TRUE; then A13:Pj(Ex(a,PA,G),z)=TRUE & 'not' Pj(Ex(b,PA,G),z)=TRUE by MARGREL1:45; then Pj(Ex(b,PA,G),z)=FALSE by MARGREL1:41; then A14: Pj(Ex(b,PA,G),z)<>TRUE by MARGREL1:43; now assume not (ex x being Element of Y st x in EqClass(z,CompF(PA,G)) & Pj(a,x)=TRUE); then Pj(Ex(a,PA,G),z)=FALSE by A2,BVFUNC_1:def 20; hence contradiction by A13,MARGREL1:43; end; then consider x1 being Element of Y such that A15:x1 in EqClass(z,CompF(PA,G)) & Pj(a,x1)=TRUE; Pj(b,x1)<>TRUE by A3,A14,A15,BVFUNC_1:def 20; then A16:Pj(b,x1)=FALSE by MARGREL1:43; Pj(a 'xor' b,x1)=Pj(a,x1) 'xor' Pj(b,x1) by BVFUNC_1:def 8 .=('not' Pj(a,x1) '&' Pj(b,x1)) 'or' (Pj(a,x1) '&' 'not' Pj(b,x1)) by BINARITH:def 2 .=FALSE 'or' TRUE by A7,A8,A15,A16,MARGREL1:50 .=TRUE by BINARITH:19; hence thesis by A1,A15,BVFUNC_1:def 20; end; hence thesis; end; theorem for a,b being Element of Funcs(Y,BOOLEAN), PA being a_partition of Y holds Ex(a,PA,G) 'imp' Ex(b,PA,G) '<' Ex(a 'imp' b,PA,G) proof let a,b be Element of Funcs(Y,BOOLEAN); let PA be a_partition of Y; A1:Ex(a 'imp' b,PA,G) = B_SUP(a 'imp' b,CompF(PA,G)) by Def10; A2:Ex(a,PA,G) = B_SUP(a,CompF(PA,G)) by Def10; A3:Ex(b,PA,G) = B_SUP(b,CompF(PA,G)) by Def10; let z be Element of Y; assume Pj(Ex(a,PA,G) 'imp' Ex(b,PA,G),z)=TRUE; then A4:('not' Pj(Ex(a,PA,G),z)) 'or' Pj(Ex(b,PA,G),z)=TRUE by BVFUNC_1:def 11; A5: ('not' Pj(Ex(a,PA,G),z))=TRUE or ('not' Pj(Ex(a,PA,G),z))=FALSE by MARGREL1:39; A6:z in EqClass(z,CompF(PA,G)) & EqClass(z,CompF(PA,G)) in CompF(PA,G) by T_1TOPSP:def 1; now per cases by A4,A5,BINARITH:7; case ('not' Pj(Ex(a,PA,G),z))=TRUE; then Pj(Ex(a,PA,G),z)=FALSE by MARGREL1:41; then Pj(Ex(a,PA,G),z)<>TRUE by MARGREL1:43; then A7: Pj(a,z)<>TRUE by A2,A6,BVFUNC_1:def 20; Pj(a 'imp' b,z)=('not' Pj(a,z)) 'or' Pj(b,z) by BVFUNC_1:def 11 .=('not' FALSE) 'or' Pj(b,z) by A7,MARGREL1:43 .=TRUE 'or' Pj(b,z) by MARGREL1:41 .=TRUE by BINARITH:19; hence thesis by A1,A6,BVFUNC_1:def 20; case A8:Pj(Ex(b,PA,G),z)=TRUE; now assume not (ex x being Element of Y st x in EqClass(z,CompF(PA,G)) & Pj(b,x)=TRUE); then Pj(Ex(b,PA,G),z)=FALSE by A3,BVFUNC_1:def 20; hence contradiction by A8,MARGREL1:43; end; then consider x1 being Element of Y such that A9:x1 in EqClass(z,CompF(PA,G)) & Pj(b,x1)=TRUE; Pj(a 'imp' b,x1) =('not' Pj(a,x1)) 'or' Pj(b,x1) by BVFUNC_1:def 11 .=TRUE by A9,BINARITH:19; hence thesis by A1,A9,BVFUNC_1:def 20; end; hence thesis; end; reserve a, u for Element of Funcs(Y,BOOLEAN); theorem :: De'Morgan's Law for PA being a_partition of Y holds 'not' All(a,PA,G) = Ex('not' a,PA,G) proof let PA be a_partition of Y; A1:All(a,PA,G) = B_INF(a,CompF(PA,G)) by Def9; A2:Ex('not' a,PA,G) = B_SUP('not' a,CompF(PA,G)) by Def10; A3:for z being Element of Y holds Pj('not' B_INF(a,CompF(PA,G)),z) = Pj(B_SUP('not' a,CompF(PA,G)),z) proof let z be Element of Y; per cases; suppose A4: (for x being Element of Y st x in EqClass(z,CompF(PA,G)) holds Pj(a,x)=TRUE) & (ex x being Element of Y st x in EqClass(z,CompF(PA,G)) & Pj('not' a,x)=TRUE); then consider x1 being Element of Y such that A5:x1 in EqClass(z,CompF(PA,G)) & Pj('not' a,x1)=TRUE; 'not' Pj(a,x1) = TRUE by A5,VALUAT_1:def 5; then Pj(a,x1) = FALSE by MARGREL1:41; then Pj(a,x1) <>TRUE by MARGREL1:43; hence thesis by A4,A5; suppose A6: (for x being Element of Y st x in EqClass(z,CompF(PA,G)) holds Pj(a,x)=TRUE) & not (ex x being Element of Y st x in EqClass(z,CompF(PA,G)) & Pj('not' a,x)=TRUE); then A7:Pj(B_INF(a,CompF(PA,G)),z) = TRUE by BVFUNC_1:def 19; A8:Pj(B_SUP('not' a,CompF(PA,G)),z) = FALSE by A6,BVFUNC_1:def 20; Pj('not' B_INF(a,CompF(PA,G)),z) = 'not' TRUE by A7,VALUAT_1:def 5; hence thesis by A8,MARGREL1:41; suppose A9: not (for x being Element of Y st x in EqClass(z,CompF(PA,G)) holds Pj(a,x)=TRUE) & (ex x being Element of Y st x in EqClass(z,CompF(PA,G)) & Pj('not' a,x)=TRUE); then A10:Pj(B_INF(a,CompF(PA,G)),z) = FALSE by BVFUNC_1:def 19; A11:Pj(B_SUP('not' a,CompF(PA,G)),z) = TRUE by A9,BVFUNC_1:def 20; Pj('not' B_INF(a,CompF(PA,G)),z) = 'not' FALSE by A10,VALUAT_1:def 5; hence thesis by A11,MARGREL1:41; suppose A12: not (for x being Element of Y st x in EqClass(z,CompF(PA,G)) holds Pj(a,x)=TRUE) & not (ex x being Element of Y st x in EqClass(z,CompF(PA,G)) & Pj('not' a,x)=TRUE); then consider x1 being Element of Y such that A13:x1 in EqClass(z,CompF(PA,G)) & Pj(a,x1)<>TRUE; Pj('not' a,x1)<>TRUE by A12,A13; then 'not' Pj(a,x1)<>TRUE by VALUAT_1:def 5; then 'not' Pj(a,x1)= FALSE by MARGREL1:43; hence thesis by A13,MARGREL1:41; end; consider k3 being Function such that A14: ('not' All(a,PA,G))=k3 & dom k3=Y & rng k3 c= BOOLEAN by FUNCT_2:def 2; consider k4 being Function such that A15: Ex('not' a,PA,G)=k4 & dom k4=Y & rng k4 c= BOOLEAN by FUNCT_2:def 2; for u being set st u in Y holds k3.u=k4.u by A1,A2,A3,A14,A15; hence thesis by A14,A15,FUNCT_1:9; end; theorem :: De'Morgan's Law for PA being a_partition of Y holds 'not' Ex(a,PA,G) = All('not' a,PA,G) proof let PA be a_partition of Y; A1:All('not' a,PA,G) = B_INF('not' a,CompF(PA,G)) by Def9; A2:Ex(a,PA,G) = B_SUP(a,CompF(PA,G)) by Def10; A3:for z being Element of Y holds Pj('not' B_SUP(a,CompF(PA,G)),z) = Pj(B_INF('not' a,CompF(PA,G)),z) proof let z be Element of Y; per cases; suppose A4: (for x being Element of Y st x in EqClass(z,CompF(PA,G)) holds Pj('not' a,x)=TRUE) & (ex x being Element of Y st x in EqClass(z,CompF(PA,G)) & Pj(a,x)=TRUE); then consider x1 being Element of Y such that A5:x1 in EqClass(z,CompF(PA,G)) & Pj(a,x1)=TRUE; Pj('not' a,x1)='not' TRUE by A5,VALUAT_1:def 5; then Pj('not' a,x1)=FALSE by MARGREL1:41; then Pj('not' a,x1)<>TRUE by MARGREL1:43; hence thesis by A4,A5; suppose A6: (for x being Element of Y st x in EqClass(z,CompF(PA,G)) holds Pj('not' a,x)=TRUE) & not (ex x being Element of Y st x in EqClass(z,CompF(PA,G)) & Pj(a,x)=TRUE); then Pj(B_SUP(a,CompF(PA,G)),z) = FALSE by BVFUNC_1:def 20; then 'not' Pj(B_SUP(a,CompF(PA,G)),z) = TRUE by MARGREL1:41; then Pj('not' B_SUP(a,CompF(PA,G)),z) = TRUE by VALUAT_1:def 5; hence thesis by A6,BVFUNC_1:def 19; suppose A7: not (for x being Element of Y st x in EqClass(z,CompF(PA,G)) holds Pj('not' a,x)=TRUE) & (ex x being Element of Y st x in EqClass(z,CompF(PA,G)) & Pj(a,x)=TRUE); then A8:Pj(B_INF('not' a,CompF(PA,G)),z) = FALSE by BVFUNC_1:def 19; Pj(B_SUP(a,CompF(PA,G)),z) = TRUE by A7,BVFUNC_1:def 20; then Pj('not' B_SUP(a,CompF(PA,G)),z) = 'not' TRUE by VALUAT_1:def 5; hence thesis by A8,MARGREL1:41; suppose A9: not (for x being Element of Y st x in EqClass(z,CompF(PA,G)) holds Pj('not' a,x)=TRUE) & not (ex x being Element of Y st x in EqClass(z,CompF(PA,G)) & Pj(a,x)=TRUE); then consider x1 being Element of Y such that A10:x1 in EqClass(z,CompF(PA,G)) & Pj('not' a,x1)<>TRUE; Pj('not' a,x1)=FALSE by A10,MARGREL1:43; then 'not' Pj(a,x1)=FALSE by VALUAT_1:def 5; then Pj(a,x1)=TRUE by MARGREL1:41; hence thesis by A9,A10; end; consider k3 being Function such that A11: ('not' Ex(a,PA,G))=k3 & dom k3=Y & rng k3 c= BOOLEAN by FUNCT_2:def 2; consider k4 being Function such that A12: All('not' a,PA,G)=k4 & dom k4=Y & rng k4 c= BOOLEAN by FUNCT_2:def 2; for u being set st u in Y holds k3.u=k4.u by A1,A2,A3,A11,A12; hence thesis by A11,A12,FUNCT_1:9; end; theorem for PA being a_partition of Y st u is_independent_of PA,G holds All(u 'imp' a,PA,G) = u 'imp' All(a,PA,G) proof let PA be a_partition of Y; assume u is_independent_of PA,G; then A1:u is_dependent_of CompF(PA,G) by Def8; A2:All(a,PA,G) = B_INF(a,CompF(PA,G)) by Def9; A3:All(u 'imp' a,PA,G) = B_INF(u 'imp' a,CompF(PA,G)) by Def9; A4:All(u 'imp' a,PA,G) '<' (u 'imp' All(a,PA,G)) proof let z be Element of Y; assume A5:Pj(All(u 'imp' a,PA,G),z)= TRUE; A6: now assume not (for x being Element of Y st x in EqClass(z,CompF(PA,G)) holds Pj(u 'imp' a,x)=TRUE); then Pj(B_INF(u 'imp' a,CompF(PA,G)),z) = FALSE by BVFUNC_1:def 19; hence contradiction by A3,A5,MARGREL1:43; end; A7:z in EqClass(z,CompF(PA,G)) by T_1TOPSP:def 1; A8:Pj(u 'imp' All(a,PA,G),z) = ('not' Pj(u,z)) 'or' Pj(All(a,PA,G),z) by BVFUNC_1:def 11; per cases; suppose (for x being Element of Y st x in EqClass(z,CompF(PA,G)) holds Pj(a,x)=TRUE); then Pj(All(a,PA,G),z) =TRUE by A2,BVFUNC_1:def 19; hence thesis by A8,BINARITH:19; suppose not (for x being Element of Y st x in EqClass(z,CompF(PA,G)) holds Pj(a,x)=TRUE) & (for x being Element of Y st x in EqClass(z,CompF(PA,G)) holds ('not' Pj(u,x))=TRUE); then ('not' Pj(u,z))=TRUE by A7; hence thesis by A8,BINARITH:19; suppose A9: not (for x being Element of Y st x in EqClass(z,CompF(PA,G)) holds Pj(a,x)=TRUE) & not (for x being Element of Y st x in EqClass(z,CompF(PA,G)) holds ('not' Pj(u,x))=TRUE); then consider x1 being Element of Y such that A10: x1 in EqClass(z,CompF(PA,G)) & ('not' Pj(u,x1))<>TRUE; consider x2 being Element of Y such that A11: x2 in EqClass(z,CompF(PA,G)) & Pj(a,x2)<>TRUE by A9; u.x1 = u.x2 by A1,A10,A11,BVFUNC_1:def 18; then ('not' Pj(u,x2))=FALSE by A10,MARGREL1:43; then A12:Pj(u,x2)=TRUE by MARGREL1:41; Pj(a,x2)=FALSE by A11,MARGREL1:43; then Pj(u 'imp' a,x2) = 'not' TRUE 'or' FALSE by A12,BVFUNC_1:def 11; then Pj(u 'imp' a,x2) = FALSE 'or' FALSE by MARGREL1:41 .= FALSE by BINARITH:7; then Pj(u 'imp' a,x2) <>TRUE by MARGREL1:43; hence thesis by A6,A11; end; (u 'imp' All(a,PA,G)) '<' All(u 'imp' a,PA,G) proof let z be Element of Y; assume Pj(u 'imp' All(a,PA,G),z)= TRUE; then A13:('not' Pj(u,z)) 'or' Pj(All(a,PA,G),z) = TRUE by BVFUNC_1:def 11; A14: Pj(All(a,PA,G),z)=TRUE or Pj(All(a,PA,G),z)=FALSE by MARGREL1:39; now per cases by A13,A14,BINARITH:7; suppose A15:Pj(All(a,PA,G),z)=TRUE; A16: now assume not (for x being Element of Y st x in EqClass(z,CompF(PA,G)) holds Pj(a,x)=TRUE); then Pj(B_INF(a,CompF(PA,G)),z) = FALSE by BVFUNC_1:def 19; hence contradiction by A2,A15,MARGREL1:43; end; for x being Element of Y st x in EqClass(z,CompF(PA,G)) holds Pj(u 'imp' a,x)=TRUE proof let x be Element of Y; assume A17: x in EqClass(z,CompF(PA,G)); Pj(u 'imp' a,x) = ('not' Pj(u,x)) 'or' Pj(a,x) by BVFUNC_1:def 11 .= ('not' Pj(u,x)) 'or' TRUE by A16,A17 .= TRUE by BINARITH:19; hence thesis; end; hence thesis by A3,BVFUNC_1:def 19; suppose A18:Pj(All(a,PA,G),z)<>TRUE & ('not' Pj(u,z))=TRUE; A19:z in EqClass(z,CompF(PA,G)) & EqClass(z,CompF(PA,G)) in CompF(PA,G) by T_1TOPSP:def 1; for x being Element of Y st x in EqClass(z,CompF(PA,G)) holds Pj(u 'imp' a,x)=TRUE proof let x be Element of Y; assume A20:x in EqClass(z,CompF(PA,G)); A21:Pj(u 'imp' a,x)=('not' Pj(u,x)) 'or' Pj(a,x) by BVFUNC_1:def 11; u.x = u.z by A1,A19,A20,BVFUNC_1:def 18; hence Pj(u 'imp' a,x)=TRUE by A18,A21,BINARITH:19; end; hence thesis by A3,BVFUNC_1:def 19; end; hence thesis; end; hence thesis by A4,BVFUNC_1:18; end; theorem for PA being a_partition of Y st u is_independent_of PA,G holds All(a 'imp' u,PA,G) = Ex(a,PA,G) 'imp' u proof let PA be a_partition of Y; assume u is_independent_of PA,G; then A1:u is_dependent_of CompF(PA,G) by Def8; A2:Ex(a,PA,G) = B_SUP(a,CompF(PA,G)) by Def10; A3:All(a 'imp' u,PA,G) = B_INF(a 'imp' u,CompF(PA,G)) by Def9; A4:All(a 'imp' u,PA,G) '<' (Ex(a,PA,G) 'imp' u) proof let z be Element of Y; assume Pj(All(a 'imp' u,PA,G),z)= TRUE; then A5:Pj(B_INF(a 'imp' u,CompF(PA,G)),z)=TRUE by Def9; A6: now assume not (for x being Element of Y st x in EqClass(z,CompF(PA,G)) holds Pj(a 'imp' u,x)=TRUE); then Pj(B_INF(a 'imp' u,CompF(PA,G)),z)=FALSE by BVFUNC_1:def 19; hence contradiction by A5,MARGREL1:43; end; A7:z in EqClass(z,CompF(PA,G)) by T_1TOPSP:def 1; A8:Pj(Ex(a,PA,G) 'imp' u,z) = ('not' Pj(Ex(a,PA,G),z)) 'or' Pj(u,z) by BVFUNC_1:def 11; per cases; suppose (for x being Element of Y st x in EqClass(z,CompF(PA,G)) holds Pj(u,x)=TRUE); then Pj(Ex(a,PA,G) 'imp' u,z) = ('not' Pj(Ex(a,PA,G),z)) 'or' TRUE by A7, A8 .= TRUE by BINARITH:19; hence thesis; suppose A9: not (for x being Element of Y st x in EqClass(z,CompF(PA,G)) holds Pj(u,x)=TRUE) & (ex x being Element of Y st x in EqClass(z,CompF(PA,G)) & Pj(a,x)=TRUE); then consider x1 being Element of Y such that A10:x1 in EqClass(z,CompF(PA,G)) & Pj(u,x1)<>TRUE; consider x2 being Element of Y such that A11:x2 in EqClass(z,CompF(PA,G)) & Pj(a,x2)=TRUE by A9; A12:u.x1 = u.x2 by A1,A10,A11,BVFUNC_1:def 18; Pj(a 'imp' u,x2) = ('not' Pj(a,x2)) 'or' Pj(u,x2) by BVFUNC_1:def 11 .= ('not' TRUE) 'or' FALSE by A10,A11,A12,MARGREL1:43 .= FALSE 'or' FALSE by MARGREL1:41 .= FALSE by BINARITH:7; then Pj(a 'imp' u,x2) <> TRUE by MARGREL1:43; hence thesis by A6,A11; suppose not (for x being Element of Y st x in EqClass(z,CompF(PA,G)) holds Pj(u,x)=TRUE) & not (ex x being Element of Y st x in EqClass(z,CompF(PA,G)) & Pj(a,x)=TRUE); then Pj(Ex(a,PA,G) 'imp' u,z) = ('not' FALSE) 'or' Pj(u,z) by A2,A8,BVFUNC_1:def 20 .= TRUE 'or' Pj(u,z) by MARGREL1:41 .= TRUE by BINARITH:19; hence thesis; end; (Ex(a,PA,G) 'imp' u) '<' All(a 'imp' u,PA,G) proof let z be Element of Y; assume Pj(Ex(a,PA,G) 'imp' u,z)= TRUE; then A13:('not' Pj(Ex(a,PA,G),z)) 'or' Pj(u,z) = TRUE by BVFUNC_1:def 11; A14:('not' Pj(Ex(a,PA,G),z))= TRUE or ('not' Pj(Ex(a,PA,G),z))= FALSE by MARGREL1:39; A15:z in EqClass(z,CompF(PA,G)) & EqClass(z,CompF(PA,G)) in CompF(PA,G) by T_1TOPSP:def 1; now per cases by A13,A14,BINARITH:7,MARGREL1:39; case A16:Pj(u,z)= TRUE; for x being Element of Y st x in EqClass(z,CompF(PA,G)) holds Pj(a 'imp' u,x)=TRUE proof let x be Element of Y; assume A17:x in EqClass(z,CompF(PA,G)); A18:Pj(a 'imp' u,x)=('not' Pj(a,x)) 'or' Pj(u,x) by BVFUNC_1:def 11; u.x = u.z by A1,A15,A17,BVFUNC_1:def 18; hence thesis by A16,A18,BINARITH:19; end; hence thesis by A3,BVFUNC_1:def 19; case ('not' Pj(Ex(a,PA,G),z))= TRUE & Pj(u,z)= FALSE; then A19:Pj(Ex(a,PA,G),z) = FALSE by MARGREL1:41; A20: now assume (ex x being Element of Y st x in EqClass(z,CompF(PA,G)) & Pj(a,x)=TRUE); then Pj(Ex(a,PA,G),z) = TRUE by A2,BVFUNC_1:def 20; hence contradiction by A19,MARGREL1:43; end; for x being Element of Y st x in EqClass(z,CompF(PA,G)) holds Pj(a 'imp' u,x)=TRUE proof let x be Element of Y; assume A21:x in EqClass(z,CompF(PA,G)); A22:Pj(a 'imp' u,x)=('not' Pj(a,x)) 'or' Pj(u,x) by BVFUNC_1:def 11; Pj(a,x)<>TRUE by A20,A21; then Pj(a,x)=FALSE by MARGREL1:43; then Pj(a 'imp' u,x) = TRUE 'or' Pj(u,x) by A22,MARGREL1:41 .= TRUE by BINARITH:19; hence thesis; end; hence thesis by A3,BVFUNC_1:def 19; end; hence thesis; end; hence thesis by A4,BVFUNC_1:18; end; theorem Th24: for PA being a_partition of Y st u is_independent_of PA,G holds All(u 'or' a,PA,G) = u 'or' All(a,PA,G) proof let PA be a_partition of Y; assume u is_independent_of PA,G; then A1:u is_dependent_of CompF(PA,G) by Def8; A2:All(u 'or' a,PA,G) = B_INF(u 'or' a,CompF(PA,G)) by Def9; A3:All(a,PA,G) = B_INF(a,CompF(PA,G)) by Def9; A4:for z being Element of Y holds Pj(B_INF(u 'or' a,CompF(PA,G)),z) = Pj(u 'or' B_INF(a,CompF(PA,G)),z) proof let z be Element of Y; A5:Pj(u 'or' B_INF(a,CompF(PA,G)),z) = Pj(u,z) 'or' Pj(B_INF(a,CompF(PA,G)),z) by BVFUNC_1:def 7; per cases; suppose A6: (for x being Element of Y st x in EqClass(z,CompF(PA,G)) holds Pj(a,x)=TRUE); then Pj(B_INF(a,CompF(PA,G)),z) = TRUE by BVFUNC_1:def 19; then A7:Pj(u 'or' B_INF(a,CompF(PA,G)),z) = TRUE by A5,BINARITH:19; for x being Element of Y st x in EqClass(z,CompF(PA,G)) holds Pj(u 'or' a,x)=TRUE proof let x be Element of Y; assume A8: x in EqClass(z,CompF(PA,G)); Pj(u 'or' a,x) = Pj(u,x) 'or' Pj(a,x) by BVFUNC_1:def 7 .= Pj(u,x) 'or' TRUE by A6,A8 .= TRUE by BINARITH:19; hence thesis; end; hence thesis by A7,BVFUNC_1:def 19; suppose A9: not (for x being Element of Y st x in EqClass(z,CompF(PA,G)) holds Pj(a,x)=TRUE) & (for x being Element of Y st x in EqClass(z,CompF(PA,G)) holds Pj(u,x)=TRUE); z in EqClass(z,CompF(PA,G)) by T_1TOPSP:def 1; then Pj(u 'or' B_INF(a,CompF(PA,G)),z) = TRUE 'or' Pj(B_INF(a,CompF(PA,G)),z) by A5,A9; then A10:Pj(u 'or' B_INF(a,CompF(PA,G)),z) = TRUE by BINARITH:19; for x being Element of Y st x in EqClass(z,CompF(PA,G)) holds Pj(u 'or' a,x)=TRUE proof let x be Element of Y; assume A11: x in EqClass(z,CompF(PA,G)); Pj(u 'or' a,x) = Pj(u,x) 'or' Pj(a,x) by BVFUNC_1:def 7 .= TRUE 'or' Pj(a,x) by A9,A11 .= TRUE by BINARITH:19; hence thesis; end; hence thesis by A10,BVFUNC_1:def 19; suppose A12: not (for x being Element of Y st x in EqClass(z,CompF(PA,G)) holds Pj(a,x)=TRUE) & not (for x being Element of Y st x in EqClass(z,CompF(PA,G)) holds Pj(u,x)=TRUE); then A13:Pj(B_INF(a,CompF(PA,G)),z) = FALSE by BVFUNC_1:def 19; consider x1 being Element of Y such that A14: x1 in EqClass(z,CompF(PA,G)) & Pj(a,x1)<>TRUE by A12; consider x2 being Element of Y such that A15: x2 in EqClass(z,CompF(PA,G)) & Pj(u,x2)<>TRUE by A12; A16:z in EqClass(z,CompF(PA,G)) & EqClass(z,CompF(PA,G)) in CompF(PA,G) by T_1TOPSP:def 1; u.x1 = u.x2 by A1,A14,A15,BVFUNC_1:def 18; then A17:Pj(u,x1) = FALSE by A15,MARGREL1:43; Pj(a,x1) = FALSE by A14,MARGREL1:43; then Pj(u 'or' a,x1) = FALSE 'or' FALSE by A17,BVFUNC_1:def 7; then Pj(u 'or' a,x1) = FALSE by BINARITH:7; then Pj(u 'or' a,x1) <> TRUE by MARGREL1:43; then A18:Pj(B_INF(u 'or' a,CompF(PA,G)),z) = FALSE by A14,BVFUNC_1:def 19 ; u.x1 = u.z by A1,A14,A16,BVFUNC_1:def 18; hence thesis by A5,A13,A17,A18,BINARITH:7; end; consider k3 being Function such that A19: (All(u 'or' a,PA,G))=k3 & dom k3=Y & rng k3 c= BOOLEAN by FUNCT_2:def 2; consider k4 being Function such that A20: (u 'or' All(a,PA,G))=k4 & dom k4=Y & rng k4 c= BOOLEAN by FUNCT_2:def 2; for u being set st u in Y holds k3.u=k4.u by A2,A3,A4,A19,A20; hence thesis by A19,A20,FUNCT_1:9; end; theorem for PA being a_partition of Y st u is_independent_of PA,G holds All(a 'or' u,PA,G) = All(a,PA,G) 'or' u by Th24; theorem for PA being a_partition of Y st u is_independent_of PA,G holds All(a 'or' u,PA,G) '<' Ex(a,PA,G) 'or' u proof let PA be a_partition of Y; assume u is_independent_of PA,G; then A1:u is_dependent_of CompF(PA,G) by Def8; A2:Ex(a,PA,G) = B_SUP(a,CompF(PA,G)) by Def10; let z be Element of Y; assume Pj(All(a 'or' u,PA,G),z)= TRUE; then A3:Pj(B_INF(a 'or' u,CompF(PA,G)),z)=TRUE by Def9; A4: now assume not (for x being Element of Y st x in EqClass(z,CompF(PA,G)) holds Pj(a 'or' u,x)=TRUE); then Pj(B_INF(a 'or' u,CompF(PA,G)),z)=FALSE by BVFUNC_1:def 19; hence contradiction by A3,MARGREL1:43; end; A5:for x being Element of Y st x in EqClass(z,CompF(PA,G)) holds Pj(a,x)=TRUE or Pj(u,x)=TRUE proof let x be Element of Y; assume x in EqClass(z,CompF(PA,G)); then Pj(a 'or' u,x)=TRUE by A4; then A6:Pj(a,x) 'or' Pj(u,x)=TRUE by BVFUNC_1:def 7; Pj(u,x)= TRUE or Pj(u,x)=FALSE by MARGREL1:39; hence thesis by A6,BINARITH:7; end; A7:z in EqClass(z,CompF(PA,G)) by T_1TOPSP:def 1; A8:Pj(Ex(a,PA,G) 'or' u,z) = Pj(Ex(a,PA,G),z) 'or' Pj(u,z) by BVFUNC_1:def 7; per cases; suppose (for x being Element of Y st x in EqClass(z,CompF(PA,G)) holds Pj(u,x)=TRUE); then Pj(Ex(a,PA,G) 'or' u,z) = Pj(Ex(a,PA,G),z) 'or' TRUE by A7,A8 .= TRUE by BINARITH:19; hence thesis; suppose not (for x being Element of Y st x in EqClass(z,CompF(PA,G)) holds Pj(u,x)=TRUE) & (ex x being Element of Y st x in EqClass(z,CompF(PA,G)) & Pj(a,x)=TRUE); then Pj(Ex(a,PA,G) 'or' u,z) = TRUE 'or' Pj(u,z) by A2,A8,BVFUNC_1:def 20 .= TRUE by BINARITH:19; hence thesis; suppose A9: not (for x being Element of Y st x in EqClass(z,CompF(PA,G)) holds Pj(u,x)=TRUE) & not (ex x being Element of Y st x in EqClass(z,CompF(PA,G)) & Pj(a,x)=TRUE); A10:z in EqClass(z,CompF(PA,G)) & EqClass(z,CompF(PA,G)) in CompF(PA,G) by T_1TOPSP:def 1; then A11:Pj(a,z)<>TRUE by A9; consider x1 being Element of Y such that A12:x1 in EqClass(z,CompF(PA,G)) & Pj(u,x1)<>TRUE by A9; u.x1=u.z by A1,A10,A12,BVFUNC_1:def 18; hence thesis by A5,A10,A11,A12; end; theorem Th27: for PA being a_partition of Y st u is_independent_of PA,G holds All(u '&' a,PA,G) = u '&' All(a,PA,G) proof let PA be a_partition of Y; assume u is_independent_of PA,G; then A1:u is_dependent_of CompF(PA,G) by Def8; A2:All(u '&' a,PA,G) = B_INF(u '&' a,CompF(PA,G)) by Def9; A3:All(a,PA,G) = B_INF(a,CompF(PA,G)) by Def9; A4:All(u '&' a,PA,G) '<' (u '&' All(a,PA,G)) proof let z be Element of Y; assume A5:Pj(All(u '&' a,PA,G),z)= TRUE; A6: now assume not (for x being Element of Y st x in EqClass(z,CompF(PA,G)) holds Pj(u '&' a,x)=TRUE); then Pj(All(u '&' a,PA,G),z)= FALSE by A2,BVFUNC_1:def 19; hence contradiction by A5,MARGREL1:43; end; A7:for x being Element of Y st x in EqClass(z,CompF(PA,G)) holds Pj(a,x)=TRUE proof let x be Element of Y; assume x in EqClass(z,CompF(PA,G)); then A8:Pj(u '&' a,x)=TRUE by A6; Pj(u '&' a,x)=Pj(u,x) '&' Pj(a,x) by VALUAT_1:def 6; hence thesis by A8,MARGREL1:45; end; A9:for x being Element of Y st x in EqClass(z,CompF(PA,G)) holds Pj(u,x)=TRUE proof let x be Element of Y; assume x in EqClass(z,CompF(PA,G)); then A10:Pj(u '&' a,x)=TRUE by A6; Pj(u '&' a,x)=Pj(u,x) '&' Pj(a,x) by VALUAT_1:def 6; hence thesis by A10,MARGREL1:45; end; A11:Pj(u '&' All(a,PA,G),z)= Pj(u,z) '&' Pj(All(a,PA,G),z) by VALUAT_1:def 6; A12:Pj(All(a,PA,G),z)=TRUE by A3,A7,BVFUNC_1:def 19; z in EqClass(z,CompF(PA,G)) by T_1TOPSP:def 1; then Pj(u,z)=TRUE by A9; hence thesis by A11,A12,MARGREL1:45; end; (u '&' All(a,PA,G)) '<' All(u '&' a,PA,G) proof let z be Element of Y; assume Pj(u '&' All(a,PA,G),z)= TRUE; then Pj(u,z) '&' Pj(All(a,PA,G),z)= TRUE by VALUAT_1:def 6; then A13:(Pj(u,z)=TRUE & Pj(All(a,PA,G),z)=TRUE ) by MARGREL1:45; A14: now assume not (for x being Element of Y st x in EqClass(z,CompF(PA,G)) holds Pj(a,x)=TRUE); then Pj(All(a,PA,G),z)=FALSE by A3,BVFUNC_1:def 19; hence contradiction by A13,MARGREL1:43; end; A15:z in EqClass(z,CompF(PA,G)) & EqClass(z,CompF(PA,G)) in CompF(PA,G) by T_1TOPSP:def 1; for x being Element of Y st x in EqClass(z,CompF(PA,G)) holds Pj(u '&' a,x)=TRUE proof let x be Element of Y; assume A16:x in EqClass(z,CompF(PA,G)); then A17:Pj(a,x)=TRUE by A14; u.x=u.z by A1,A15,A16,BVFUNC_1:def 18; then Pj(u '&' a,x) =TRUE '&' TRUE by A13,A17,VALUAT_1:def 6 .=TRUE by MARGREL1:45; hence thesis; end; hence thesis by A2,BVFUNC_1:def 19; end; hence thesis by A4,BVFUNC_1:18; end; theorem for PA being a_partition of Y st u is_independent_of PA,G holds All(a '&' u,PA,G) = All(a,PA,G) '&' u by Th27; theorem for PA being a_partition of Y holds All(a '&' u,PA,G) '<' Ex(a,PA,G) '&' u proof let PA be a_partition of Y; A1:Ex(a,PA,G) = B_SUP(a,CompF(PA,G)) by Def10; let z be Element of Y; assume Pj(All(a '&' u,PA,G),z)= TRUE; then A2:Pj(B_INF(a '&' u,CompF(PA,G)),z)=TRUE by Def9; A3: now assume not (for x being Element of Y st x in EqClass(z,CompF(PA,G)) holds Pj(a '&' u,x)=TRUE); then Pj(B_INF(a '&' u,CompF(PA,G)),z)=FALSE by BVFUNC_1:def 19; hence contradiction by A2,MARGREL1:43; end; A4:for x being Element of Y st x in EqClass(z,CompF(PA,G)) holds Pj(a,x)=TRUE & Pj(u,x)=TRUE proof let x be Element of Y; assume x in EqClass(z,CompF(PA,G)); then Pj(a '&' u,x)=TRUE by A3; then Pj(a,x) '&' Pj(u,x)=TRUE by VALUAT_1:def 6; hence thesis by MARGREL1:45; end; A5:z in EqClass(z,CompF(PA,G)) & EqClass(z,CompF(PA,G)) in CompF(PA,G) by T_1TOPSP:def 1; A6:Pj(Ex(a,PA,G) '&' u,z) = Pj(Ex(a,PA,G),z) '&' Pj(u,z) by VALUAT_1:def 6; per cases; suppose A7: (for x being Element of Y st x in EqClass(z,CompF(PA,G)) holds Pj(u,x)=TRUE); now per cases; suppose (ex x being Element of Y st x in EqClass(z,CompF(PA,G)) & Pj(a,x)=TRUE); then Pj(Ex(a,PA,G),z) = TRUE by A1,BVFUNC_1:def 20; hence Pj(Ex(a,PA,G) '&' u,z) = TRUE '&' TRUE by A5,A6,A7 .= TRUE by MARGREL1:45; suppose not (ex x being Element of Y st x in EqClass(z,CompF(PA,G)) & Pj(a,x)=TRUE); then Pj(a,z)<>TRUE by A5; hence thesis by A4,A5; end; hence thesis; suppose not (for x being Element of Y st x in EqClass(z,CompF(PA,G)) holds Pj(u,x)=TRUE); then consider x1 being Element of Y such that A8:x1 in EqClass(z,CompF(PA,G)) & Pj(u,x1)<>TRUE; thus thesis by A4,A8; end; theorem Th30: for PA being a_partition of Y st u is_independent_of PA,G holds All(u 'xor' a,PA,G) '<' u 'xor' All(a,PA,G) proof let PA be a_partition of Y; A1:'not' FALSE=TRUE & 'not' TRUE=FALSE by MARGREL1:41; assume u is_independent_of PA,G; then A2:u is_dependent_of CompF(PA,G) by Def8; A3:All(a,PA,G) = B_INF(a,CompF(PA,G)) by Def9; let z be Element of Y; assume Pj(All(u 'xor' a,PA,G),z)= TRUE; then A4:Pj(B_INF(u 'xor' a,CompF(PA,G)),z)=TRUE by Def9; A5: now assume not (for x being Element of Y st x in EqClass(z,CompF(PA,G)) holds Pj(u 'xor' a,x)=TRUE); then Pj(B_INF(u 'xor' a,CompF(PA,G)),z)=FALSE by BVFUNC_1:def 19; hence contradiction by A4,MARGREL1:43; end; A6:z in EqClass(z,CompF(PA,G)) & EqClass(z,CompF(PA,G)) in CompF(PA,G) by T_1TOPSP:def 1; A7:Pj(u 'xor' All(a,PA,G),z) = Pj(All(a,PA,G),z) 'xor' Pj(u,z) by BVFUNC_1:def 8; per cases; suppose A8: (for x being Element of Y st x in EqClass(z,CompF(PA,G)) holds Pj(u,x)=TRUE) & (for x being Element of Y st x in EqClass(z,CompF(PA,G)) holds Pj(a,x)=TRUE); then A9:Pj(u,z)=TRUE by A6; A10:Pj(a,z)=TRUE by A6,A8; A11:FALSE '&' TRUE = FALSE & TRUE '&' FALSE =FALSE by MARGREL1:45; A12:Pj(u 'xor' a,z)=TRUE by A5,A6; Pj(u 'xor' a,z) =Pj(a,z) 'xor' Pj(u,z) by BVFUNC_1:def 8 .=('not' Pj(a,z) '&' Pj(u,z)) 'or' (Pj(a,z) '&' 'not' Pj(u,z)) by BINARITH:def 2 .=FALSE by A1,A9,A10,A11,BINARITH:7; hence thesis by A12,MARGREL1:43; suppose A13: (for x being Element of Y st x in EqClass(z,CompF(PA,G)) holds Pj(u,x)=TRUE) & not (for x being Element of Y st x in EqClass(z,CompF(PA,G)) holds Pj(a,x)=TRUE); then A14:Pj(All(a,PA,G),z) = FALSE by A3,BVFUNC_1:def 19; consider x1 being Element of Y such that A15:x1 in EqClass(z,CompF(PA,G)) & Pj(a,x1)<>TRUE by A13; A16:Pj(u,x1)=TRUE by A13,A15; A17:u.z=u.x1 by A2,A6,A15,BVFUNC_1:def 18; A18:FALSE '&' FALSE =FALSE by MARGREL1:49; Pj(u 'xor' All(a,PA,G),z) =('not' FALSE '&' TRUE) 'or' (FALSE '&' 'not' TRUE) by A7,A14,A16,A17,BINARITH:def 2 .=TRUE 'or' FALSE by A1,A18,MARGREL1:50 .=TRUE by BINARITH:7; hence thesis; suppose not (for x being Element of Y st x in EqClass(z,CompF(PA,G)) holds Pj(u,x)=TRUE); then consider x1 being Element of Y such that A19: x1 in EqClass(z,CompF(PA,G)) & Pj(u,x1)<>TRUE; A20: FALSE '&' TRUE = FALSE & TRUE '&' FALSE =FALSE by MARGREL1:45; now per cases; suppose for x being Element of Y st x in EqClass(z,CompF(PA,G)) holds Pj(a,x)=TRUE; then A21:Pj(All(a,PA,G),z) = TRUE by A3,BVFUNC_1:def 19; u.z=u.x1 by A2,A6,A19,BVFUNC_1:def 18; then A22:Pj(u,z)=FALSE by A19,MARGREL1:43; A23:FALSE '&' FALSE =FALSE by MARGREL1:49; Pj(u 'xor' All(a,PA,G),z) =('not' TRUE '&' FALSE) 'or' (TRUE '&' 'not' FALSE) by A7,A21,A22,BINARITH:def 2 .=FALSE 'or' TRUE by A1,A23,MARGREL1:50 .=TRUE by BINARITH:7; hence thesis; suppose not (for x being Element of Y st x in EqClass(z,CompF(PA,G)) holds Pj(a,x)=TRUE); then consider x2 being Element of Y such that A24:x2 in EqClass(z,CompF(PA,G)) & Pj(a,x2)<>TRUE; u.x1=u.x2 by A2,A19,A24,BVFUNC_1:def 18; then A25:Pj(u,x2)=FALSE by A19,MARGREL1:43; A26:Pj(a,x2)=FALSE by A24,MARGREL1:43; A27:Pj(u 'xor' a,x2)=TRUE by A5,A24; Pj(u 'xor' a,x2) =Pj(a,x2) 'xor' Pj(u,x2) by BVFUNC_1:def 8 .=('not' Pj(a,x2) '&' Pj(u,x2)) 'or' (Pj(a,x2) '&' 'not' Pj(u,x2)) by BINARITH:def 2 .=FALSE by A1,A20,A25,A26,BINARITH:7; hence thesis by A27,MARGREL1:43; end; hence thesis; end; theorem for PA being a_partition of Y st u is_independent_of PA,G holds All(a 'xor' u,PA,G) '<' All(a,PA,G) 'xor' u by Th30; theorem Th32: for PA being a_partition of Y st u is_independent_of PA,G holds All(u 'eqv' a,PA,G) '<' u 'eqv' All(a,PA,G) proof let PA be a_partition of Y; assume u is_independent_of PA,G; then A1:u is_dependent_of CompF(PA,G) by Def8; A2:'not' FALSE=TRUE & 'not' TRUE=FALSE by MARGREL1:41; A3:All(a,PA,G) = B_INF(a,CompF(PA,G)) by Def9; let z be Element of Y; assume Pj(All(u 'eqv' a,PA,G),z)= TRUE; then A4:Pj(B_INF(u 'eqv' a,CompF(PA,G)),z)=TRUE by Def9; A5: now assume not (for x being Element of Y st x in EqClass(z,CompF(PA,G)) holds Pj(u 'eqv' a,x)=TRUE); then Pj(B_INF(u 'eqv' a,CompF(PA,G)),z)=FALSE by BVFUNC_1:def 19; hence contradiction by A4,MARGREL1:43; end; A6:z in EqClass(z,CompF(PA,G)) & EqClass(z,CompF(PA,G)) in CompF(PA,G) by T_1TOPSP:def 1; per cases; suppose A7: (for x being Element of Y st x in EqClass(z,CompF(PA,G)) holds Pj(u,x)=TRUE) & (for x being Element of Y st x in EqClass(z,CompF(PA,G)) holds Pj(a,x)=TRUE); then A8:Pj(All(a,PA,G),z)=TRUE by A3,BVFUNC_1:def 19; A9:Pj(u,z)=TRUE by A6,A7; A10:FALSE '&' TRUE =FALSE by MARGREL1:49; Pj(u 'eqv' All(a,PA,G),z) ='not'(Pj(u,z) 'xor' Pj(All(a,PA,G),z)) by BVFUNC_1:def 12 .='not'(FALSE 'or' FALSE) by A2,A8,A9,A10,BINARITH:def 2 .='not' FALSE by BINARITH:7 .=TRUE by MARGREL1:41; hence thesis; suppose A11: (for x being Element of Y st x in EqClass(z,CompF(PA,G)) holds Pj(u,x)=TRUE) & not (for x being Element of Y st x in EqClass(z,CompF(PA,G)) holds Pj(a,x)=TRUE); then consider x1 being Element of Y such that A12:x1 in EqClass(z,CompF(PA,G)) & Pj(a,x1)<>TRUE; A13:Pj(u,x1)=TRUE by A11,A12; A14:Pj(a,x1)=FALSE by A12,MARGREL1:43; A15:FALSE '&' FALSE =FALSE by MARGREL1:49; Pj(u 'eqv' a,x1) ='not'(Pj(u,x1) 'xor' Pj(a,x1)) by BVFUNC_1:def 12 .='not'(('not' Pj(u,x1) '&' Pj(a,x1)) 'or' (Pj(u,x1) '&' 'not' Pj(a,x1))) by BINARITH:def 2 .='not'(FALSE 'or' TRUE) by A2,A13,A14,A15,MARGREL1:50 .='not' TRUE by BINARITH:7 .=FALSE by MARGREL1:41; then Pj(u 'eqv' a,x1)<>TRUE by MARGREL1:43; hence thesis by A5,A12; suppose A16: not (for x being Element of Y st x in EqClass(z,CompF(PA,G)) holds Pj(u,x)=TRUE) & (for x being Element of Y st x in EqClass(z,CompF(PA,G)) holds Pj(a,x)=TRUE); then consider x1 being Element of Y such that A17:x1 in EqClass(z,CompF(PA,G)) & Pj(u,x1)<>TRUE; A18:Pj(u,x1)=FALSE by A17,MARGREL1:43; A19:Pj(a,x1)=TRUE by A16,A17; A20:FALSE '&' FALSE =FALSE by MARGREL1:49; Pj(u 'eqv' a,x1) ='not'(Pj(u,x1) 'xor' Pj(a,x1)) by BVFUNC_1:def 12 .='not'(('not' Pj(u,x1) '&' Pj(a,x1)) 'or' (Pj(u,x1) '&' 'not' Pj(a,x1))) by BINARITH:def 2 .='not'(TRUE 'or' FALSE) by A2,A18,A19,A20,MARGREL1:50 .='not' TRUE by BINARITH:7 .=FALSE by MARGREL1:41; then Pj(u 'eqv' a,x1)<>TRUE by MARGREL1:43; hence thesis by A5,A17; suppose A21: not (for x being Element of Y st x in EqClass(z,CompF(PA,G)) holds Pj(u,x)=TRUE) & not (for x being Element of Y st x in EqClass(z,CompF(PA,G)) holds Pj(a,x)=TRUE); then A22:Pj(All(a,PA,G),z) = FALSE by A3,BVFUNC_1:def 19; consider x1 being Element of Y such that A23:x1 in EqClass(z,CompF(PA,G)) & Pj(u,x1)<>TRUE by A21; u.x1=u.z by A1,A6,A23,BVFUNC_1:def 18; then A24:Pj(u,z)=FALSE by A23,MARGREL1:43; A25:FALSE '&' TRUE =FALSE by MARGREL1:49; Pj(u 'eqv' All(a,PA,G),z) ='not'(Pj(u,z) 'xor' Pj(All(a,PA,G),z)) by BVFUNC_1:def 12 .='not'(FALSE 'or' FALSE) by A2,A22,A24,A25,BINARITH:def 2 .='not' FALSE by BINARITH:7 .=TRUE by MARGREL1:41; hence thesis; end; theorem for PA being a_partition of Y st u is_independent_of PA,G holds All(a 'eqv' u,PA,G) '<' All(a,PA,G) 'eqv' u by Th32; theorem Th34: for PA being a_partition of Y st u is_independent_of PA,G holds Ex(u 'or' a,PA,G) = u 'or' Ex(a,PA,G) proof let PA be a_partition of Y; assume u is_independent_of PA,G; then A1:u is_dependent_of CompF(PA,G) by Def8; A2:Ex(u 'or' a,PA,G) = B_SUP(u 'or' a,CompF(PA,G)) by Def10; A3:Ex(a,PA,G) = B_SUP(a,CompF(PA,G)) by Def10; A4:Ex(u 'or' a,PA,G) '<' u 'or' Ex(a,PA,G) proof let z be Element of Y; assume A5:Pj(Ex(u 'or' a,PA,G),z)= TRUE; now assume not (ex x being Element of Y st x in EqClass(z,CompF(PA,G)) & Pj(u 'or' a,x)=TRUE); then Pj(Ex(u 'or' a,PA,G),z)=FALSE by A2,BVFUNC_1:def 20; hence contradiction by A5,MARGREL1:43; end; then consider x1 being Element of Y such that A6:x1 in EqClass(z,CompF(PA,G)) & Pj(u 'or' a,x1)=TRUE; A7:Pj(u,x1) 'or' Pj(a,x1)=TRUE by A6,BVFUNC_1:def 7; A8: Pj(u,x1)= TRUE or Pj(u,x1)=FALSE by MARGREL1:39; A9:z in EqClass(z,CompF(PA,G)) & EqClass(z,CompF(PA,G)) in CompF(PA,G) by T_1TOPSP:def 1; A10:Pj(u 'or' Ex(a,PA,G),z) = Pj(u,z) 'or' Pj(Ex(a,PA,G),z) by BVFUNC_1:def 7; now per cases by A7,A8,BINARITH:7; case A11:Pj(u,x1)=TRUE; u.z=u.x1 by A1,A6,A9,BVFUNC_1:def 18; hence thesis by A10,A11,BINARITH:19; case Pj(a,x1)=TRUE; then Pj(u 'or' Ex(a,PA,G),z) = Pj(u,z) 'or' TRUE by A3,A6,A10,BVFUNC_1:def 20 .= TRUE by BINARITH:19; hence thesis; end; hence thesis; end; u 'or' Ex(a,PA,G) '<' Ex(u 'or' a,PA,G) proof let z be Element of Y; assume Pj(u 'or' Ex(a,PA,G),z)= TRUE; then A12:Pj(u,z) 'or' Pj(Ex(a,PA,G),z)=TRUE by BVFUNC_1:def 7; A13:Pj(Ex(a,PA,G),z)= TRUE or Pj(Ex(a,PA,G),z)=FALSE by MARGREL1:39; A14:z in EqClass(z,CompF(PA,G)) & EqClass(z,CompF(PA,G)) in CompF(PA,G) by T_1TOPSP:def 1; now per cases by A12,A13,BINARITH:7; case Pj(u,z)=TRUE; then Pj(u 'or' a,z) = TRUE 'or' Pj(a,z) by BVFUNC_1:def 7 .= TRUE by BINARITH:19; hence thesis by A2,A14,BVFUNC_1:def 20; case A15:Pj(Ex(a,PA,G),z)=TRUE; now assume not (ex x being Element of Y st x in EqClass(z,CompF(PA,G)) & Pj(a,x)=TRUE); then Pj(B_SUP(a,CompF(PA,G)),z) = FALSE by BVFUNC_1:def 20; hence contradiction by A3,A15,MARGREL1:43; end; then consider x1 being Element of Y such that A16:x1 in EqClass(z,CompF(PA,G)) & Pj(a,x1)=TRUE; Pj(u 'or' a,x1) = Pj(u,x1) 'or' Pj(a,x1) by BVFUNC_1:def 7 .= TRUE by A16,BINARITH:19; hence thesis by A2,A16,BVFUNC_1:def 20; end; hence thesis; end; hence thesis by A4,BVFUNC_1:18; end; theorem for PA being a_partition of Y st u is_independent_of PA,G holds Ex(a 'or' u,PA,G) = Ex(a,PA,G) 'or' u by Th34; theorem Th36: for PA being a_partition of Y st u is_independent_of PA,G holds Ex(u '&' a,PA,G) = u '&' Ex(a,PA,G) proof let PA be a_partition of Y; assume u is_independent_of PA,G; then A1:u is_dependent_of CompF(PA,G) by Def8; A2:Ex(u '&' a,PA,G) = B_SUP(u '&' a,CompF(PA,G)) by Def10; A3:Ex(a,PA,G) = B_SUP(a,CompF(PA,G)) by Def10; A4:Ex(u '&' a,PA,G) '<' (u '&' Ex(a,PA,G)) proof let z be Element of Y; assume A5:Pj(Ex(u '&' a,PA,G),z)= TRUE; now assume not (ex x being Element of Y st x in EqClass(z,CompF(PA,G)) & Pj(u '&' a,x)=TRUE); then Pj(Ex(u '&' a,PA,G),z)=FALSE by A2,BVFUNC_1:def 20; hence contradiction by A5,MARGREL1:43; end; then consider x1 being Element of Y such that A6:x1 in EqClass(z,CompF(PA,G)) & Pj(u '&' a,x1)=TRUE; Pj(u,x1) '&' Pj(a,x1)=TRUE by A6,VALUAT_1:def 6; then A7:Pj(u,x1)=TRUE & Pj(a,x1)=TRUE by MARGREL1:45; A8:z in EqClass(z,CompF(PA,G)) & EqClass(z,CompF(PA,G)) in CompF(PA,G) by T_1TOPSP:def 1; A9:Pj(Ex(a,PA,G),z)=TRUE by A3,A6,A7,BVFUNC_1:def 20; u.z=u.x1 by A1,A6,A8,BVFUNC_1:def 18; then Pj(u '&' Ex(a,PA,G),z) =TRUE '&' TRUE by A7,A9,VALUAT_1:def 6 .=TRUE by MARGREL1:45; hence thesis; end; (u '&' Ex(a,PA,G)) '<' Ex(u '&' a,PA,G) proof let z be Element of Y; assume Pj(u '&' Ex(a,PA,G),z)= TRUE; then Pj(u,z) '&' Pj(Ex(a,PA,G),z)=TRUE by VALUAT_1:def 6; then A10:Pj(u,z)=TRUE & Pj(Ex(a,PA,G),z)=TRUE by MARGREL1:45; A11:z in EqClass(z,CompF(PA,G)) & EqClass(z,CompF(PA,G)) in CompF(PA,G) by T_1TOPSP:def 1; now assume not (ex x being Element of Y st x in EqClass(z,CompF(PA,G)) & Pj(a,x)=TRUE); then Pj(Ex(a,PA,G),z)=FALSE by A3,BVFUNC_1:def 20; hence contradiction by A10,MARGREL1:43; end; then consider x1 being Element of Y such that A12:x1 in EqClass(z,CompF(PA,G)) & Pj(a,x1)=TRUE; u.x1=u.z by A1,A11,A12,BVFUNC_1:def 18; then Pj(u '&' a,x1)=TRUE '&' TRUE by A10,A12,VALUAT_1:def 6 .=TRUE by MARGREL1:45; hence thesis by A2,A12,BVFUNC_1:def 20; end; hence thesis by A4,BVFUNC_1:18; end; theorem for PA being a_partition of Y st u is_independent_of PA,G holds Ex(a '&' u,PA,G) = Ex(a,PA,G) '&' u by Th36; theorem for PA being a_partition of Y holds u 'imp' Ex(a,PA,G) '<' Ex(u 'imp' a,PA,G) proof let PA be a_partition of Y; A1:Ex(u 'imp' a,PA,G) = B_SUP(u 'imp' a,CompF(PA,G)) by Def10; A2:Ex(a,PA,G) = B_SUP(a,CompF(PA,G)) by Def10; let z be Element of Y; assume Pj(u 'imp' Ex(a,PA,G),z)= TRUE; then A3:('not' Pj(u,z)) 'or' Pj(Ex(a,PA,G),z)=TRUE by BVFUNC_1:def 11; A4:Pj(Ex(a,PA,G),z)= TRUE or Pj(Ex(a,PA,G),z)=FALSE by MARGREL1:39; A5:z in EqClass(z,CompF(PA,G)) & EqClass(z,CompF(PA,G)) in CompF(PA,G) by T_1TOPSP:def 1; now per cases by A3,A4,BINARITH:7; case A6: 'not' Pj(u,z)=TRUE; Pj(u 'imp' a,z) = ('not' Pj(u,z)) 'or' Pj(a,z) by BVFUNC_1:def 11 .= TRUE by A6,BINARITH:19; hence thesis by A1,A5,BVFUNC_1:def 20; case A7:Pj(Ex(a,PA,G),z)=TRUE; now assume not (ex x being Element of Y st x in EqClass(z,CompF(PA,G)) & Pj(a,x)=TRUE); then Pj(Ex(a,PA,G),z)=FALSE by A2,BVFUNC_1:def 20; hence contradiction by A7,MARGREL1:43; end; then consider x1 being Element of Y such that A8:x1 in EqClass(z,CompF(PA,G)) & Pj(a,x1)=TRUE; Pj(u 'imp' a,x1) =('not' Pj(u,x1)) 'or' Pj(a,x1) by BVFUNC_1:def 11 .=TRUE by A8,BINARITH:19; hence thesis by A1,A8,BVFUNC_1:def 20; end; hence thesis; end; theorem for PA being a_partition of Y holds Ex(a,PA,G) 'imp' u '<' Ex(a 'imp' u,PA,G) proof let PA be a_partition of Y; A1:Ex(a 'imp' u,PA,G) = B_SUP(a 'imp' u,CompF(PA,G)) by Def10; A2:Ex(a,PA,G) = B_SUP(a,CompF(PA,G)) by Def10; let z be Element of Y; assume Pj(Ex(a,PA,G) 'imp' u,z)= TRUE; then A3:('not' Pj(Ex(a,PA,G),z)) 'or' Pj(u,z)=TRUE by BVFUNC_1:def 11; A4:Pj(u,z)= TRUE or Pj(u,z)=FALSE by MARGREL1:39; A5:z in EqClass(z,CompF(PA,G)) & EqClass(z,CompF(PA,G)) in CompF(PA,G) by T_1TOPSP:def 1; now per cases by A3,A4,BINARITH:7; case ('not' Pj(Ex(a,PA,G),z))=TRUE; then Pj(Ex(a,PA,G),z)=FALSE by MARGREL1:41; then Pj(Ex(a,PA,G),z)<>TRUE by MARGREL1:43; then A6: Pj(a,z)<>TRUE by A2,A5,BVFUNC_1:def 20; Pj(a 'imp' u,z) =('not' Pj(a,z)) 'or' Pj(u,z) by BVFUNC_1:def 11 .= 'not' FALSE 'or' Pj(u,z) by A6,MARGREL1:43 .= TRUE 'or' Pj(u,z) by MARGREL1:41 .= TRUE by BINARITH:19; hence thesis by A1,A5,BVFUNC_1:def 20; case A7:Pj(u,z)=TRUE; Pj(a 'imp' u,z) =('not' Pj(a,z)) 'or' Pj(u,z) by BVFUNC_1:def 11 .=TRUE by A7,BINARITH:19; hence thesis by A1,A5,BVFUNC_1:def 20; end; hence thesis; end; theorem Th40: for PA being a_partition of Y st u is_independent_of PA,G holds u 'xor' Ex(a,PA,G) '<' Ex(u 'xor' a,PA,G) proof let PA be a_partition of Y; assume u is_independent_of PA,G; then A1:u is_dependent_of CompF(PA,G) by Def8; A2:Ex(u 'xor' a,PA,G) = B_SUP(u 'xor' a,CompF(PA,G)) by Def10; A3:Ex(a,PA,G) = B_SUP(a,CompF(PA,G)) by Def10; let z be Element of Y; assume A4:Pj(u 'xor' Ex(a,PA,G),z)= TRUE; A5: Pj(u 'xor' Ex(a,PA,G),z) =Pj(u,z) 'xor' Pj(Ex(a,PA,G),z) by BVFUNC_1:def 8 .=('not' Pj(u,z) '&' Pj(Ex(a,PA,G),z)) 'or' (Pj(u,z) '&' 'not' Pj(Ex(a,PA,G),z)) by BINARITH:def 2; A6: (Pj(u,z) '&' 'not' Pj(Ex(a,PA,G),z))=TRUE or (Pj(u,z) '&' 'not' Pj(Ex(a,PA,G),z))=FALSE by MARGREL1:39; A7:z in EqClass(z,CompF(PA,G)) & EqClass(z,CompF(PA,G)) in CompF(PA,G) by T_1TOPSP:def 1; A8:'not' FALSE=TRUE & 'not' TRUE=FALSE by MARGREL1:41; A9:FALSE '&' FALSE =FALSE by MARGREL1:49; now per cases by A4,A5,A6,BINARITH:7; case 'not' Pj(u,z) '&' Pj(Ex(a,PA,G),z)=TRUE; then A10:'not' Pj(u,z)=TRUE & Pj(Ex(a,PA,G),z)=TRUE by MARGREL1:45; then A11:Pj(u,z)=FALSE by MARGREL1:41; now assume not (ex x being Element of Y st x in EqClass(z,CompF(PA,G)) & Pj(a,x)=TRUE); then Pj(Ex(a,PA,G),z)=FALSE by A3,BVFUNC_1:def 20; hence contradiction by A10,MARGREL1:43; end; then consider x1 being Element of Y such that A12: x1 in EqClass(z,CompF(PA,G)) & Pj(a,x1)=TRUE; A13:u.z=u.x1 by A1,A7,A12,BVFUNC_1:def 18; Pj(u 'xor' a,x1) =Pj(u,x1) 'xor' Pj(a,x1) by BVFUNC_1:def 8 .=('not' Pj(u,x1) '&' Pj(a,x1)) 'or' (Pj(u,x1) '&' 'not' Pj(a,x1)) by BINARITH:def 2 .= TRUE 'or' FALSE by A8,A9,A11,A12,A13,MARGREL1:50 .= TRUE by BINARITH:19; hence thesis by A2,A12,BVFUNC_1:def 20; case Pj(u,z) '&' 'not' Pj(Ex(a,PA,G),z)=TRUE; then A14: Pj(u,z)=TRUE & 'not' Pj(Ex(a,PA,G),z)=TRUE by MARGREL1:45; then A15:Pj(Ex(a,PA,G),z)=FALSE by MARGREL1:41; now assume ex x being Element of Y st x in EqClass(z,CompF(PA,G)) & Pj(a,x)=TRUE; then Pj(B_SUP(a,CompF(PA,G)),z) = TRUE by BVFUNC_1:def 20; hence contradiction by A3,A15,MARGREL1:43; end; then Pj(a,z)<>TRUE by A7; then A16: Pj(a,z)=FALSE by MARGREL1:43; Pj(u 'xor' a,z) = Pj(u,z) 'xor' Pj(a,z) by BVFUNC_1:def 8 .=('not' Pj(u,z) '&' Pj(a,z)) 'or' (Pj(u,z) '&' 'not' Pj(a,z)) by BINARITH:def 2 .= FALSE 'or' TRUE by A8,A9,A14,A16,MARGREL1:50 .= TRUE by BINARITH:19; hence thesis by A2,A7,BVFUNC_1:def 20; end; hence thesis; end; theorem for PA being a_partition of Y st u is_independent_of PA,G holds Ex(a,PA,G) 'xor' u '<' Ex(a 'xor' u,PA,G) by Th40;