Copyright (c) 1989 Association of Mizar Users
environ vocabulary FINSEQ_1, QC_LANG1, ZF_LANG, FUNCT_1, MCART_1, RELAT_1, ARYTM_1, BOOLE, QC_LANG2; notation TARSKI, XBOOLE_0, ENUMSET1, SUBSET_1, XCMPLX_0, XREAL_0, RELAT_1, FUNCT_1, NAT_1, FINSEQ_1, MCART_1, QC_LANG1; constructors ENUMSET1, NAT_1, QC_LANG1, XREAL_0, XBOOLE_0; clusters RELSET_1, FINSEQ_1, XREAL_0, ARYTM_3, ZFMISC_1, XBOOLE_0; requirements NUMERALS, REAL, SUBSET, BOOLE, ARITHM; definitions TARSKI, QC_LANG1, XBOOLE_0; theorems AXIOMS, TARSKI, ENUMSET1, REAL_1, NAT_1, FUNCT_1, FINSEQ_1, QC_LANG1, XBOOLE_0, XBOOLE_1, XCMPLX_0, XCMPLX_1; schemes NAT_1, XBOOLE_0; begin reserve sq for FinSequence, x,y,z for bound_QC-variable, p,q,p1,p2,q1 for Element of QC-WFF; theorem Th1: 'not' p = 'not' q implies p = q proof assume A1: 'not' p = 'not' q; 'not' p = <*[1,0]*>^@p & 'not' q = <*[1,0]*>^@q & p = @p & q = @q by QC_LANG1:def 12,def 14; hence thesis by A1,FINSEQ_1:46; end; theorem Th2: the_argument_of 'not' p = p proof 'not' p is negative by QC_LANG1:def 18; hence thesis by QC_LANG1:def 23; end; theorem Th3: p '&' q = p1 '&' q1 implies p = p1 & q = q1 proof assume A1: p '&' q = p1 '&' q1; A2: p = @p & p1 = @p1 & q = @q & q1 = @q1 by QC_LANG1:def 12; A3: p '&' q = <*[2,0]*>^@p^@q & p1 '&' q1 = <*[2,0]*>^@p1^@q1 & <*[2,0]*>^@p^@q = <*[2,0]*>^(@p^@q) & <*[2,0]*>^@p1^@q1 = <*[2,0]*>^(@p1^@q1) by FINSEQ_1:45,QC_LANG1:def 15 ; then @p^@q = @p1^@q1 by A1,FINSEQ_1:46; then A4: (len @p <= len @p1 or len @p1 <= len @p) & (len @p1 <= len @p implies ex sq st @p = @p1^sq) & (len @p <= len @p1 implies ex sq st @p1 = @p^sq) by FINSEQ_1:64; A5: (ex sq st @p1 = @p^sq) implies p1 = p by A2,QC_LANG1:37; thus p = p1 by A2,A4,QC_LANG1:37; thus q = q1 by A1,A2,A3,A4,A5,FINSEQ_1:46,QC_LANG1:37; end; theorem Th4: p is conjunctive implies p = (the_left_argument_of p) '&' the_right_argument_of p proof given p1,q1 such that A1: p = p1 '&' q1; p is conjunctive & (ex q st p = p1 '&' q) & (ex q st p = q '&'q1) by A1,QC_LANG1:def 19; then p1 = the_left_argument_of p & q1 = the_right_argument_of p by QC_LANG1:def 24,def 25; hence thesis by A1; end; theorem Th5: the_left_argument_of (p '&' q) = p & the_right_argument_of (p '&' q) = q proof p '&' q is conjunctive by QC_LANG1:def 19; hence thesis by QC_LANG1:def 24,def 25; end; theorem Th6: All(x,p) = All(y,q) implies x = y & p = q proof assume A1: All(x,p) = All(y,q); A2: All(x,p) = <*[3,0]*>^<*x*>^@p & All(y,q) = <*[3,0]*>^<*y*>^@q by QC_LANG1:def 16; A3: <*[3,0]*>^<*x*>^@p = <*[3,0]*>^(<*x*>^@p) & <*[3,0]*>^<*y*>^@q = <*[3,0]*>^(<*y*>^@q) by FINSEQ_1:45; then A4: <*x*>^@p = <*y*>^@q by A1,A2,FINSEQ_1:46; A5: @p = p & @q = q by QC_LANG1:def 12; A6: (<*x*>^@p).1 = x & (<*y*>^@q).1 = y by FINSEQ_1:58; hence x = y by A1,A2,A3,FINSEQ_1:46; thus p = q by A4,A5,A6,FINSEQ_1:46; end; theorem Th7: p is universal implies p = All(bound_in p, the_scope_of p) proof given x,q such that A1: p = All(x,q); p is universal & (ex q st p = All(x,q)) & (ex x st p = All(x,q)) by A1,QC_LANG1:def 20; then x = bound_in p & q = the_scope_of p by QC_LANG1:def 26,def 27; hence thesis by A1; end; theorem Th8: bound_in All(x,p) = x & the_scope_of All(x,p) = p proof All(x,p) is universal by QC_LANG1:def 20; then All(x,p) = All(bound_in All(x,p), the_scope_of All(x,p)) by Th7; hence thesis by Th6; end; definition func FALSUM -> QC-formula equals: Def1: 'not' VERUM; correctness; let p,q be Element of QC-WFF; func p => q -> QC-formula equals: Def2: 'not' (p '&' 'not' q); correctness; func p 'or' q -> QC-formula equals: Def3: 'not' ('not' p '&' 'not' q); correctness; end; definition let p,q be Element of QC-WFF; func p <=> q -> QC-formula equals: Def4: (p => q) '&' (q => p); correctness; end; definition let x be bound_QC-variable, p be Element of QC-WFF; func Ex(x,p) -> QC-formula equals: Def5: 'not' All(x,'not' p); correctness; end; canceled 4; theorem FALSUM is negative & the_argument_of FALSUM = VERUM by Def1,Th2,QC_LANG1:def 18; theorem Th14: p 'or' q = 'not' p => q proof 'not' p => q = 'not' ('not' p '&' 'not' q) by Def2; hence thesis by Def3; end; canceled; theorem p 'or' q = p1 'or' q1 implies p = p1 & q = q1 proof assume A1: p 'or' q = p1 'or' q1; p 'or' q = 'not'('not' p '&' 'not' q) & p1 'or' q1 = 'not'('not' p1 '&' 'not' q1) by Def3; then 'not' p '&' 'not' q = 'not' p1 '&' 'not' q1 by A1,Th1; then 'not' p = 'not' p1 & 'not' q = 'not' q1 by Th3; hence thesis by Th1; end; theorem Th17: p => q = p1 => q1 implies p = p1 & q = q1 proof assume A1: p => q = p1 => q1; p => q = 'not' (p '&' 'not' q) & p1 => q1 = 'not' (p1 '&' 'not' q1) by Def2; then A2: p '&' 'not' q = p1 '&' 'not' q1 by A1,Th1; hence p = p1 by Th3; 'not' q = 'not' q1 by A2,Th3; hence thesis by Th1; end; theorem p <=> q = p1 <=> q1 implies p = p1 & q = q1 proof assume A1: p <=> q = p1 <=> q1; p <=> q = (p => q) '&' (q => p) & p1 <=> q1 = (p1 => q1) '&' (q1 => p1) by Def4; then p => q = p1 => q1 by A1,Th3; hence thesis by Th17; end; theorem Th19: Ex(x,p) = Ex(y,q) implies x = y & p = q proof assume A1: Ex(x,p) = Ex(y,q); Ex(x,p) = 'not' All(x,'not' p) & Ex(y,q) = 'not' All(y,'not' q) by Def5; then All(x,'not' p) = All(y,'not' q) by A1,Th1; then x = y & 'not' p = 'not' q by Th6; hence thesis by Th1; end; definition let x,y be bound_QC-variable, p be Element of QC-WFF; func All(x,y,p) -> QC-formula equals: Def6: All(x,All(y,p)); correctness; func Ex(x,y,p) -> QC-formula equals: Def7: Ex(x,Ex(y,p)); correctness; end; theorem All(x,y,p) = All(x,All(y,p)) & Ex(x,y,p) = Ex(x,Ex(y,p)) by Def6,Def7; theorem Th21: for x1,x2,y1,y2 being bound_QC-variable st All(x1,y1,p1) = All(x2,y2,p2) holds x1 = x2 & y1 = y2 & p1 = p2 proof let x1,x2,y1,y2 be bound_QC-variable such that A1: All(x1,y1,p1) = All(x2,y2,p2); All(x1,y1,p1) = All(x1,All(y1,p1)) by Def6; then A2: All(x1,All(y1,p1)) = All(x2,All(y2,p2)) by A1,Def6; hence x1 = x2 by Th6; All(y1,p1) = All(y2,p2) by A2,Th6; hence thesis by Th6; end; theorem Th22: All(x,y,p) = All(z,q) implies x = z & All(y,p) = q proof All(x,y,p) = All(x,All(y,p)) by Def6; hence thesis by Th6; end; theorem Th23: for x1,x2,y1,y2 being bound_QC-variable st Ex(x1,y1,p1) = Ex(x2,y2,p2) holds x1 = x2 & y1 = y2 & p1 = p2 proof let x1,x2,y1,y2 be bound_QC-variable such that A1: Ex(x1,y1,p1) = Ex(x2,y2,p2); Ex(x1,y1,p1) = Ex(x1,Ex(y1,p1)) by Def7; then A2: Ex(x1,Ex(y1,p1)) = Ex(x2,Ex(y2,p2)) by A1,Def7; hence x1 = x2 by Th19; Ex(y1,p1) = Ex(y2,p2) by A2,Th19; hence thesis by Th19; end; theorem Th24: Ex(x,y,p) = Ex(z,q) implies x = z & Ex(y,p) = q proof Ex(x,y,p) = Ex(x,Ex(y,p)) by Def7; hence thesis by Th19; end; theorem All(x,y,p) is universal & bound_in All(x,y,p) = x & the_scope_of All(x,y,p) = All(y,p) proof All(x,y,p) = All(x,All(y,p)) by Def6; hence thesis by Th8,QC_LANG1:def 20; end; definition let x,y,z be bound_QC-variable, p be Element of QC-WFF; func All(x,y,z,p) -> QC-formula equals: Def8: All(x,All(y,z,p)); correctness; func Ex(x,y,z,p) -> QC-formula equals: Def9: Ex(x,Ex(y,z,p)); correctness; end; theorem All(x,y,z,p) = All(x,All(y,z,p)) & Ex(x,y,z,p) = Ex(x,Ex(y,z,p)) by Def8, Def9 ; theorem for x1,x2,y1,y2,z1,z2 being bound_QC-variable st All(x1,y1,z1,p1) = All(x2,y2,z2,p2) holds x1 = x2 & y1 = y2 & z1 = z2 & p1 = p2 proof let x1,x2,y1,y2,z1,z2 be bound_QC-variable such that A1: All(x1,y1,z1,p1) = All(x2,y2,z2,p2); A2: All(x1,All(y1,z1,p1)) = All(x1,y1,z1,p1) by Def8 .= All(x2,All(y2,z2,p2)) by A1,Def8; hence x1 = x2 by Th6; All(y1,z1,p1) = All(y2,z2,p2) by A2,Th6; hence thesis by Th21; end; reserve s,t for bound_QC-variable; theorem All(x,y,z,p) = All(t,q) implies x = t & All(y,z,p) = q proof All(x,y,z,p) = All(x,All(y,z,p)) by Def8; hence thesis by Th6; end; theorem All(x,y,z,p) = All(t,s,q) implies x = t & y = s & All(z,p) = q proof A1: All(x,y,z,p) = All(x,All(y,z,p)) & All(t,s,q) = All(t,All(s,q)) by Def6, Def8; assume A2: All(x,y,z,p) = All(t,s,q); hence x = t by A1,Th6; All(y,z,p) = All(s,q) by A1,A2,Th6; hence thesis by Th22; end; theorem for x1,x2,y1,y2,z1,z2 being bound_QC-variable st Ex(x1,y1,z1,p1) = Ex(x2,y2,z2,p2) holds x1 = x2 & y1 = y2 & z1 = z2 & p1 = p2 proof let x1,x2,y1,y2,z1,z2 be bound_QC-variable such that A1: Ex(x1,y1,z1,p1) = Ex(x2,y2,z2,p2); A2: Ex(x1,Ex(y1,z1,p1)) = Ex(x1,y1,z1,p1) by Def9 .= Ex(x2,Ex(y2,z2,p2)) by A1,Def9; hence x1 = x2 by Th19; Ex(y1,z1,p1) = Ex(y2,z2,p2) by A2,Th19; hence thesis by Th23; end; theorem Ex(x,y,z,p) = Ex(t,q) implies x = t & Ex(y,z,p) = q proof Ex(x,y,z,p) = Ex(x,Ex(y,z,p)) by Def9; hence thesis by Th19; end; theorem Ex(x,y,z,p) = Ex(t,s,q) implies x = t & y = s & Ex(z,p) = q proof A1: Ex(x,y,z,p) = Ex(x,Ex(y,z,p)) & Ex(t,s,q) = Ex(t,Ex(s,q)) by Def7,Def9; assume A2: Ex(x,y,z,p) = Ex(t,s,q); hence x = t by A1,Th19; Ex(y,z,p) = Ex(s,q) by A1,A2,Th19; hence thesis by Th24; end; theorem All(x,y,z,p) is universal & bound_in All(x,y,z,p) = x & the_scope_of All(x,y,z,p) = All(y,z,p) proof All(x,y,z,p) = All(x,All(y,z,p)) by Def8; hence thesis by Th8,QC_LANG1:def 20; end; definition let H be Element of QC-WFF; attr H is disjunctive means ex p,q being Element of QC-WFF st H = p 'or' q; attr H is conditional means: Def11: ex p,q being Element of QC-WFF st H = p => q; attr H is biconditional means ex p,q being Element of QC-WFF st H = p <=> q; attr H is existential means: Def13: ex x being bound_QC-variable, p being Element of QC-WFF st H = Ex(x,p); end; canceled 4; theorem Ex(x,y,p) is existential & Ex(x,y,z,p) is existential proof Ex(x,y,p) = Ex(x,Ex(y,p)) & Ex(x,y,z,p) = Ex(x,Ex(y,z,p)) by Def7,Def9; hence thesis by Def13; end; definition let H be Element of QC-WFF; func the_left_disjunct_of H -> QC-formula equals: Def14: the_argument_of the_left_argument_of the_argument_of H; correctness; func the_right_disjunct_of H -> QC-formula equals: Def15: the_argument_of the_right_argument_of the_argument_of H; correctness; synonym the_consequent_of H; func the_antecedent_of H -> QC-formula equals: Def16: the_left_argument_of the_argument_of H; correctness; end; definition let H be Element of QC-WFF; canceled; func the_left_side_of H -> QC-formula equals: Def18: the_antecedent_of the_left_argument_of H; correctness; func the_right_side_of H -> QC-formula equals: Def19: the_consequent_of the_left_argument_of H; correctness; end; reserve F,G,H,H1 for Element of QC-WFF; canceled 6; theorem Th45: the_left_disjunct_of(F 'or' G) = F & the_right_disjunct_of(F 'or' G) = G & the_argument_of F 'or' G = 'not' F '&' 'not' G proof A1: F 'or' G = 'not'('not' F '&' 'not' G) by Def3; hence the_left_disjunct_of(F 'or' G) = the_argument_of the_left_argument_of the_argument_of 'not'('not' F '&' 'not' G) by Def14 .= the_argument_of the_left_argument_of ('not' F '&' 'not' G) by Th2 .= the_argument_of 'not' F by Th5 .= F by Th2; thus the_right_disjunct_of(F 'or' G) = the_argument_of the_right_argument_of the_argument_of 'not'('not' F '&' 'not' G) by A1,Def15 .= the_argument_of the_right_argument_of ('not' F '&' 'not' G) by Th2 .= the_argument_of 'not' G by Th5 .= G by Th2; thus thesis by A1,Th2; end; theorem Th46: the_antecedent_of(F => G) = F & the_consequent_of(F => G) = G & the_argument_of F => G = F '&' 'not' G proof A1: F => G = 'not'(F '&' 'not' G) by Def2; hence the_antecedent_of(F => G) = the_left_argument_of the_argument_of 'not'(F '&' 'not' G) by Def16 .= the_left_argument_of (F '&' 'not' G) by Th2 .= F by Th5; thus the_consequent_of(F => G) = the_argument_of the_right_argument_of the_argument_of 'not'(F '&' 'not' G) by A1,Def15 .= the_argument_of the_right_argument_of (F '&' 'not' G) by Th2 .= the_argument_of 'not' G by Th5 .= G by Th2; thus thesis by A1,Th2; end; theorem Th47: the_left_side_of(F <=> G) = F & the_right_side_of(F <=> G) = G & the_left_argument_of(F <=> G) = F => G & the_right_argument_of(F <=> G) = G => F proof the_antecedent_of(F => G) = F & the_consequent_of(F => G) = G & the_left_argument_of (F => G) '&' (G => F) = F => G & the_right_argument_of (F => G) '&' (G => F) = G => F & F <=> G = (F => G) '&' (G => F) by Def4,Th5,Th46; hence thesis by Def18,Def19; end; theorem the_argument_of Ex(x,H) = All(x,'not' H) proof Ex(x,H) = 'not' All(x,'not' H) by Def5; hence thesis by Th2; end; theorem H is disjunctive implies H is conditional & H is negative & the_argument_of H is conjunctive & the_left_argument_of the_argument_of H is negative & the_right_argument_of the_argument_of H is negative proof given F,G such that A1: H = F 'or' G; F 'or' G = 'not' F => G by Th14; hence H is conditional by A1,Def11; A2: F 'or' G = 'not'('not' F '&' 'not' G) by Def3; hence H is negative by A1,QC_LANG1:def 18; A3: the_argument_of H = 'not' F '&' 'not' G by A1,A2,Th2; hence the_argument_of H is conjunctive by QC_LANG1:def 19; the_left_argument_of the_argument_of H = 'not' F & the_right_argument_of the_argument_of H = 'not' G by A3,Th5; hence thesis by QC_LANG1:def 18; end; theorem H is conditional implies H is negative & the_argument_of H is conjunctive & the_right_argument_of the_argument_of H is negative proof given F,G such that A1: H = F => G; H = 'not'(F '&' 'not' G) & the_argument_of 'not'(F '&' 'not' G) = F '&' 'not' G & the_right_argument_of (F '&' 'not' G) = 'not' G by A1,Def2,Th2,Th5; hence thesis by QC_LANG1:def 18,def 19; end; theorem H is biconditional implies H is conjunctive & the_left_argument_of H is conditional & the_right_argument_of H is conditional proof given F,G such that A1: H = F <=> G; H = (F => G) '&' (G => F) & the_left_argument_of (F => G) '&' (G => F) = F => G & the_right_argument_of (F => G) '&' (G => F) = G => F by A1,Def4,Th5; hence thesis by Def11,QC_LANG1:def 19; end; theorem H is existential implies H is negative & the_argument_of H is universal & the_scope_of the_argument_of H is negative proof given x,H1 such that A1: H = Ex(x,H1); H = 'not' All(x,'not' H1) & the_argument_of 'not' All(x,'not' H1) = All(x,'not' H1) & the_scope_of All(x,'not' H1) = 'not' H1 by A1,Def5,Th2,Th8; hence thesis by QC_LANG1:def 18,def 20; end; theorem H is disjunctive implies H = (the_left_disjunct_of H) 'or' (the_right_disjunct_of H) proof given F,G such that A1: H = F 'or' G; the_left_disjunct_of H = F & the_right_disjunct_of H = G by A1,Th45; hence thesis by A1; end; theorem H is conditional implies H = (the_antecedent_of H) => (the_consequent_of H) proof given F,G such that A1: H = F => G; the_antecedent_of H = F & the_consequent_of H = G by A1,Th46; hence thesis by A1; end; theorem H is biconditional implies H = (the_left_side_of H) <=> (the_right_side_of H) proof given F,G such that A1: H = F <=> G; the_left_side_of H = F & the_right_side_of H = G by A1,Th47; hence thesis by A1; end; theorem H is existential implies H = Ex(bound_in the_argument_of H, the_argument_of the_scope_of the_argument_of H) proof given x,H1 such that A1: H = Ex(x,H1); H = 'not' All(x,'not' H1) & the_argument_of 'not' All(x,'not' H1) = All(x,'not' H1) & the_scope_of All(x,'not' H1) = 'not' H1 & the_argument_of 'not' H1 = H1 & bound_in All(x,'not' H1) = x by A1,Def5,Th2,Th8; hence thesis by A1; end; :: :: Immediate constituents of QC-formulae :: definition let G,H be Element of QC-WFF; pred G is_immediate_constituent_of H means: Def20: H = 'not' G or (ex F being Element of QC-WFF st H = G '&' F or H = F '&' G) or ex x being bound_QC-variable st H = All(x,G); end; reserve x,y,z for bound_QC-variable, k,n,m for Nat, P for (QC-pred_symbol of k), V for QC-variable_list of k; canceled; theorem Th58: not H is_immediate_constituent_of VERUM proof assume A1: not thesis; 'not' H is negative by QC_LANG1:def 18; then A2: (@VERUM.1)`1 = 0 & (@('not' H).1)`1 = 1 by QC_LANG1:49; now given H1 being Element of QC-WFF such that A3: VERUM = H '&' H1 or VERUM = H1 '&' H; H '&' H1 is conjunctive & H1 '&' H is conjunctive by QC_LANG1:def 19 ; hence contradiction by A3,QC_LANG1:49; end; then consider z such that A4: VERUM = All(z,H) by A1,A2,Def20; All(z,H) is universal by QC_LANG1:def 20; hence contradiction by A4, QC_LANG1:49; end; theorem Th59: not H is_immediate_constituent_of P!V proof assume A1: not thesis; P!V is atomic & 'not' H is negative by QC_LANG1:def 17,def 18; then A2: (@(P!V).1)`1 <> 0 & (@(P!V).1)`1 <> 1 & (@(P!V).1)`1 <> 2 & (@(P!V).1)`1 <> 3 & (@('not' H).1)`1 = 1 by QC_LANG1:49,50; now given H1 being Element of QC-WFF such that A3: P!V = H '&' H1 or P!V = H1 '&' H; H '&' H1 is conjunctive & H1 '&' H is conjunctive by QC_LANG1:def 19 ; hence contradiction by A2,A3,QC_LANG1:49; end; then consider z such that A4: P!V = All(z,H) by A1,A2,Def20; All(z,H) is universal by QC_LANG1:def 20; hence contradiction by A2,A4,QC_LANG1:49; end; theorem Th60: F is_immediate_constituent_of 'not' H iff F = H proof thus F is_immediate_constituent_of 'not' H implies F = H proof assume A1: 'not' H = 'not' F or ( ex H1 st 'not' H = F '&' H1 or 'not' H = H1 '&' F ) or ex x st 'not' H = All(x,F); 'not' H is negative by QC_LANG1:def 18; then A2: (@('not' H).1)`1 = 1 by QC_LANG1:49; A3: now given H1 such that A4: 'not' H = F '&' H1 or 'not' H = H1 '&' F; F '&' H1 is conjunctive & H1 '&' F is conjunctive by QC_LANG1:def 19 ; hence contradiction by A2,A4,QC_LANG1:49; end; now given x such that A5: 'not' H = All(x,F); All(x,F) is universal by QC_LANG1:def 20; hence contradiction by A2,A5,QC_LANG1:49; end; hence thesis by A1,A3,Th1; end; thus thesis by Def20; end; theorem H is_immediate_constituent_of FALSUM iff H = VERUM by Def1,Th60; theorem Th62: F is_immediate_constituent_of G '&' H iff F = G or F = H proof thus F is_immediate_constituent_of G '&' H implies F = G or F = H proof assume A1: G '&' H = 'not' F or (ex H1 st G '&' H = F '&' H1 or G '&' H = H1 '&' F) or ex x st G '&' H = All(x,F); G '&' H is conjunctive by QC_LANG1:def 19; then A2: (@(G '&' H).1)`1 = 2 by QC_LANG1:49; A3: now assume A4: G '&' H = 'not' F; 'not' F is negative by QC_LANG1:def 18; hence contradiction by A2,A4 ,QC_LANG1:49; end; now given x such that A5: G '&' H = All(x,F); All(x,F) is universal by QC_LANG1:def 20; hence contradiction by A2,A5,QC_LANG1:49; end; hence thesis by A1,A3,Th3; end; assume F = G or F = H; hence thesis by Def20; end; theorem Th63: F is_immediate_constituent_of All(x,H) iff F = H proof thus F is_immediate_constituent_of All(x,H) implies F = H proof assume A1: All(x,H) = 'not' F or (ex H1 st All(x,H) = F '&' H1 or All(x,H) = H1 '&' F) or ex y st All(x,H) = All(y,F); All(x,H) is universal by QC_LANG1:def 20; then A2: (@All(x,H).1)`1 = 3 by QC_LANG1:49; A3: now assume A4: All(x,H) = 'not' F; 'not' F is negative by QC_LANG1:def 18; hence contradiction by A2,A4 ,QC_LANG1:49; end; now given G such that A5: All(x,H) = F '&' G or All(x,H) = G '&' F; F '&' G is conjunctive & G '&' F is conjunctive by QC_LANG1:def 19 ; hence contradiction by A2,A5,QC_LANG1:49; end; hence thesis by A1,A3,Th6; end; thus thesis by Def20; end; theorem Th64: H is atomic implies not F is_immediate_constituent_of H proof assume ex k,P,V st H = P!V; hence thesis by Th59; end; theorem Th65: H is negative implies (F is_immediate_constituent_of H iff F = the_argument_of H) proof assume H is negative; then H = 'not' the_argument_of H by QC_LANG1:def 23; hence thesis by Th60; end; theorem Th66: H is conjunctive implies (F is_immediate_constituent_of H iff F = the_left_argument_of H or F = the_right_argument_of H) proof assume H is conjunctive; then H = (the_left_argument_of H)'&' the_right_argument_of H by Th4; hence thesis by Th62; end; theorem Th67: H is universal implies (F is_immediate_constituent_of H iff F = the_scope_of H) proof assume H is universal; then H = All(bound_in H, the_scope_of H) by Th7; hence thesis by Th63; end; :: :: Subformulae of QC-formulae :: reserve L,L' for FinSequence; definition let G,H; pred G is_subformula_of H means: Def21: ex n,L st 1 <= n & len L = n & L.1 = G & L.n = H & for k st 1 <= k & k < n ex G1,H1 being Element of QC-WFF st L.k = G1 & L.(k+1) = H1 & G1 is_immediate_constituent_of H1; reflexivity proof let H; reconsider L = <*H*> as FinSequence; take 1 , L; thus 1 <= 1 & len L = 1 & L.1 = H & L.1 = H by FINSEQ_1:57; let k; assume 1 <= k & k < 1; hence thesis; end; end; definition let H,F; pred H is_proper_subformula_of F means: Def22: H is_subformula_of F & H <> F; irreflexivity; end; canceled 3; theorem Th71: H is_immediate_constituent_of F implies len @H < len @F proof assume A1: H is_immediate_constituent_of F; F = VERUM or F is atomic or F is negative or F is conjunctive or F is universal by QC_LANG1:33; then F is negative & H = the_argument_of F or F is conjunctive & H = the_left_argument_of F or F is conjunctive & H = the_right_argument_of F or F is universal & H = the_scope_of F by A1,Th58,Th64,Th65,Th66,Th67; hence thesis by QC_LANG1:45,46,47; end; theorem Th72: H is_immediate_constituent_of F implies H is_subformula_of F proof assume A1: H is_immediate_constituent_of F; take n = 2 , L = <* H,F *>; thus 1 <= n; thus len L = n by FINSEQ_1:61; thus L.1 = H & L.n = F by FINSEQ_1:61; let k; assume A2: 1 <= k & k < n; then k < 1 + 1; then k <= 1 by NAT_1:38; then A3: k = 1 by A2,AXIOMS:21; take H,F; thus L.k = H & L.(k + 1) = F by A3,FINSEQ_1:61; thus thesis by A1; end; theorem Th73: H is_immediate_constituent_of F implies H is_proper_subformula_of F proof assume A1: H is_immediate_constituent_of F; hence H is_subformula_of F by Th72; assume H = F; then len @H = len @F & len @H < len @F by A1,Th71; hence contradiction; end; theorem Th74: H is_proper_subformula_of F implies len @H < len @F proof given n,L such that A1: 1 <= n & len L = n & L.1 = H & L.n = F and A2: for k st 1 <= k & k < n ex H1,F1 being Element of QC-WFF st L.k = H1 & L.(k + 1) = F1 & H1 is_immediate_constituent_of F1; assume H <> F; then 1 < n by A1,REAL_1:def 5; then A3: 1 + 1 <= n by NAT_1:38; defpred P[Nat] means 1 <= $1 & $1 < n implies for H1 st L.($1 + 1) = H1 holds len @H < len @H1; A4: P[0]; A5: for k st P[k] holds P[k+1] proof let k such that A6: 1 <= k & k < n implies for H1 st L.(k + 1) = H1 holds len @H < len @H1 and A7: 1 <= k + 1 & k + 1 < n; let H1 such that A8: L.(k + 1 + 1) = H1; consider F1,G be Element of QC-WFF such that A9: L.(k + 1) = F1 & L.(k + 1 + 1) = G & F1 is_immediate_constituent_of G by A2,A7; A10: k = 0 implies len @H < len @H1 by A1,A8,A9,Th71; now given m be Nat such that A11: k = m + 1; A12: len @H < len @F1 by A6,A7,A9,A11,NAT_1:29,38; len @F1 < len @H1 by A8,A9,Th71; hence len @H < len @H1 by A12,AXIOMS:22; end; hence len @H < len @H1 by A10,NAT_1:22; end; A13: for k holds P[k] from Ind(A4,A5); consider k such that A14: n = 2 + k by A3,NAT_1:28; A15: 1 + 1 + k = (1 + k) + 1 by XCMPLX_1:1; then 1 + k < n & 1 <= 1 + k by A14,NAT_1:29,38; hence len @H < len @F by A1,A13,A14,A15; end; theorem Th75: H is_proper_subformula_of F implies ex G st G is_immediate_constituent_of F proof given n,L such that A1: 1 <= n & len L = n & L.1 = H & L.n = F and A2: for k st 1 <= k & k < n ex H1,F1 being Element of QC-WFF st L.k = H1 & L.(k + 1) = F1 & H1 is_immediate_constituent_of F1; assume H <> F; then 1 < n by A1,REAL_1:def 5; then 1 + 1 <= n by NAT_1:38; then consider k such that A3: n = 2 + k by NAT_1:28; A4: 1 + 1 + k = (1 + k) + 1 by XCMPLX_1:1; then 1 + k < n & 1 <= 1 + k by A3,NAT_1:29,38; then consider H1,F1 be Element of QC-WFF such that A5: L.(1 + k) = H1 & L.(1 + k + 1) = F1 & H1 is_immediate_constituent_of F1 by A2; take H1; thus thesis by A1,A3,A4,A5; end; theorem Th76: F is_proper_subformula_of G & G is_proper_subformula_of H implies F is_proper_subformula_of H proof assume A1: F is_proper_subformula_of G & G is_proper_subformula_of H; then F is_subformula_of G by Def22; then consider n,L such that A2: 1 <= n & len L = n & L.1 = F & L.n = G and A3: for k st 1 <= k & k < n ex H1,F1 being Element of QC-WFF st L.k = H1 & L.(k + 1) = F1 & H1 is_immediate_constituent_of F1 by Def21; 1 < n by A1,A2,REAL_1:def 5; then A4: 1 + 1 <= n by NAT_1:38; G is_subformula_of H by A1,Def22; then consider m,L' such that A5: 1 <= m & len L' = m & L'.1 = G & L'.m = H and A6: for k st 1 <= k & k < m ex H1,F1 being Element of QC-WFF st L'.k = H1 & L'.(k + 1) = F1 & H1 is_immediate_constituent_of F1 by Def21; consider k such that A7: n = 2 + k by A4,NAT_1:28; reconsider L1 = L|(Seg(1 + k)) as FinSequence by FINSEQ_1:19; thus F is_subformula_of H proof take l = 1 + k + m , K = L1^L'; m <= m + (1 + k) & m + (1 + k) = 1 + k + m by NAT_1:29; hence 1 <= l by A5,AXIOMS:22; A8: 1 + 1 + k = 1 + k + 1 by XCMPLX_1:1; then A9: 1 + k <= n by A7,NAT_1:29; then A10: len L1 = 1 + k by A2,FINSEQ_1:21; hence A11: len K = l by A5,FINSEQ_1:35; A12: now let j be Nat; assume 1 <= j & j <= 1 + k; then A13: j in Seg(1 + k) by FINSEQ_1:3; then j in dom L1 by A2,A9,FINSEQ_1:21; then K.j = L1.j by FINSEQ_1:def 7; hence K.j = L.j by A13,FUNCT_1:72; end; 1 <= 1 + k & 1 <= 1 by NAT_1:29; hence K.1 = F by A2,A12; len L1 + 1 <= len L1 + m by A5,REAL_1:55; then len L1 < l & l <= l by A10,NAT_1:38; then A14: K.l = L'.(l - len L1) by A11,FINSEQ_1:37; 1 + k + m - (1 + k) = m + (1 + k) + -(1 + k) by XCMPLX_0:def 8 .= m + ((1 + k) + -(1 + k)) by XCMPLX_1:1 .= m + 0 by XCMPLX_0:def 6 .= m; hence K.l = H by A2,A5,A9,A14,FINSEQ_1:21; let j be Nat such that A15: 1 <= j & j < l; j + 0 <= j + 1 & j + 0 = j by REAL_1:55; then A16: 1 <= j + 1 by A15,AXIOMS:22; A17: now assume j < 1 + k; then A18: j <= 1 + k & j + 1 <= 1 + k by NAT_1:38; then j + 1 <= n by A9,AXIOMS:22; then j < n by NAT_1:38; then consider F1,G1 be Element of QC-WFF such that A19: L.j = F1 & L.(j + 1) = G1 & F1 is_immediate_constituent_of G1 by A3, A15; take F1, G1; thus K.j = F1 & K.(j + 1) = G1 & F1 is_immediate_constituent_of G1 by A12,A15,A16,A18,A19; end; A20: now assume A21: j = 1 + k; then A22: 1 + k < j + 1 & j + 1 <= l by A15,NAT_1:38; A23: j + 1 = 1 + j & j + 1 - j = j + 1 + -j & 1 + j + -j = 1 + (j + -j) & j + -j = 0 by XCMPLX_0:def 6,def 8,XCMPLX_1:1; K.j = L.j & j < 1 + k + 1 by A12,A15,A21,NAT_1:38; then consider F1,G1 be Element of QC-WFF such that A24: L.j = F1 & L.(j + 1) = G1 & F1 is_immediate_constituent_of G1 by A3,A7,A8,A15; take F1, G1; thus K.j = F1 & K.(j + 1) = G1 & F1 is_immediate_constituent_of G1 by A2,A5,A7,A8,A10,A11,A12,A15,A21,A22,A23,A24,FINSEQ_1:37; end; now assume A25: 1 + k < j; then A26: 1 + k < j + 1 & j <= l & j + 1 <= l by A15,NAT_1:38; 1 + k + 1 <= j by A25,NAT_1:38; then consider j1 be Nat such that A27: j = 1 + k + 1 + j1 by NAT_1:28; A28: 1 + k + 1 + j1 = 1 + k + (1 + j1) & 1 + k + (1 + j1) = 1 + j1 + (1 + k) & 1 + j1 + (1 + k) - (1 + k) = 1 + j1 + (1 + k) + -(1 + k) & 1 + j1 + (1 + k) + -(1 + k) = 1 + j1 + (1 + k + -(1 + k)) & 1 + k + -(1 + k) = 0 & 1 + j1 + 0 = 1 + j1 by XCMPLX_0:def 6,def 8,XCMPLX_1:1; A29: j + 1 - len L1 = 1 + j + -len L1 by XCMPLX_0:def 8 .= 1 + (j + -len L1) by XCMPLX_1:1 .= 1 + j1 + 1 by A2,A9,A27,A28,FINSEQ_1:21; A30: 1 + k + m - (1 + k) = m + (1 + k) + -(1 + k) by XCMPLX_0:def 8 .= m + (1 + k + -(1 + k)) by XCMPLX_1:1 .= m + 0 by XCMPLX_0:def 6 .= m; 1 <= 1 + j1 & j - (1 + k) < l - (1 + k) by A15,NAT_1:29,REAL_1:54; then consider F1,G1 be Element of QC-WFF such that A31: L'.(1 + j1) = F1 & L'.(1 + j1 + 1) = G1 & F1 is_immediate_constituent_of G1 by A6,A27,A28,A30; take F1, G1; thus K.j = F1 & K.(j + 1) = G1 & F1 is_immediate_constituent_of G1 by A10,A11,A25,A26,A27,A28,A29,A31,FINSEQ_1:37; end; hence thesis by A17,A20,REAL_1:def 5; end; len @F < len @G & len @G < len @H by A1,Th74; hence F <> H; end; theorem Th77: F is_subformula_of G & G is_subformula_of H implies F is_subformula_of H proof assume A1: F is_subformula_of G & G is_subformula_of H; now assume F <> G; then A2: F is_proper_subformula_of G by A1,Def22; now assume G <> H; then G is_proper_subformula_of H by A1,Def22; then F is_proper_subformula_of H by A2,Th76; hence thesis by Def22; end; hence thesis by A1; end; hence thesis by A1; end; theorem Th78: G is_subformula_of H & H is_subformula_of G implies G = H proof assume A1: G is_subformula_of H & H is_subformula_of G; assume G <> H; then G is_proper_subformula_of H & H is_proper_subformula_of G by A1,Def22 ; then len @G < len @H & len @H < len @G by Th74; hence contradiction; end; theorem Th79: not (G is_proper_subformula_of H & H is_subformula_of G) proof assume G is_subformula_of H & G <> H & H is_subformula_of G; hence contradiction by Th78; end; theorem not (G is_proper_subformula_of H & H is_proper_subformula_of G) proof assume G is_subformula_of H & G <> H & H is_proper_subformula_of G; hence contradiction by Th79; end; theorem Th81: not (G is_subformula_of H & H is_immediate_constituent_of G) proof assume A1: G is_subformula_of H & H is_immediate_constituent_of G; then H is_proper_subformula_of G by Th73; hence contradiction by A1,Th79; end; theorem Th82: not (G is_proper_subformula_of H & H is_immediate_constituent_of G) proof assume G is_subformula_of H & G <> H & H is_immediate_constituent_of G; hence contradiction by Th81; end; theorem Th83: F is_proper_subformula_of G & G is_subformula_of H or F is_subformula_of G & G is_proper_subformula_of H or F is_subformula_of G & G is_immediate_constituent_of H or F is_immediate_constituent_of G & G is_subformula_of H or F is_proper_subformula_of G & G is_immediate_constituent_of H or F is_immediate_constituent_of G & G is_proper_subformula_of H implies F is_proper_subformula_of H proof assume A1: F is_proper_subformula_of G & G is_subformula_of H or F is_subformula_of G & G is_proper_subformula_of H or F is_subformula_of G & G is_immediate_constituent_of H or F is_immediate_constituent_of G & G is_subformula_of H or F is_proper_subformula_of G & G is_immediate_constituent_of H or F is_immediate_constituent_of G & G is_proper_subformula_of H; then F is_subformula_of G & G is_subformula_of H by Def22,Th72; hence F is_subformula_of H by Th77; thus thesis by A1,Th79,Th81,Th82; end; theorem not F is_proper_subformula_of VERUM by Th58,Th75; theorem Th85: not F is_proper_subformula_of P!V proof assume F is_proper_subformula_of P!V; then ex G st G is_immediate_constituent_of P!V by Th75; hence contradiction by Th59; end; theorem Th86: F is_subformula_of H iff F is_proper_subformula_of 'not' H proof H is_immediate_constituent_of 'not' H by Th60; hence F is_subformula_of H implies F is_proper_subformula_of 'not' H by Th83; given n,L such that A1: 1 <= n & len L = n & L.1 = F & L.n = 'not' H and A2: for k st 1 <= k & k < n ex H1,F1 being Element of QC-WFF st L.k = H1 & L.(k + 1) = F1 & H1 is_immediate_constituent_of F1; assume F <> 'not' H; then 1 < n by A1,REAL_1:def 5; then 1 + 1 <= n by NAT_1:38; then consider k such that A3: n = 2 + k by NAT_1:28; reconsider L1 = L|(Seg(1 + k)) as FinSequence by FINSEQ_1:19; take m = 1 + k , L1; thus A4: 1 <= m by NAT_1:29; A5: 1 + 1 + k = 1 + k + 1 by XCMPLX_1:1; 1 + k <= 1 + k + 1 by NAT_1:29; hence len L1 = m by A1,A3,A5,FINSEQ_1:21; A6: now let j be Nat; assume 1 <= j & j <= m; then j in Seg(1 + k) by FINSEQ_1:3; hence L1.j = L.j by FUNCT_1:72; end; hence L1.1 = F by A1,A4; m < m + 1 by NAT_1:38; then consider F1,G1 be Element of QC-WFF such that A7: L.m = F1 & L.(m + 1) = G1 & F1 is_immediate_constituent_of G1 by A2,A3,A4, A5; F1 = H by A1,A3,A5,A7,Th60; hence L1.m = H by A4,A6,A7; let j be Nat; assume A8: 1 <= j & j < m; then A9: 1 <= 1 + j & 1 + j = j + 1 & j <= m & j + 1 <= m by NAT_1:38; m <= m + 1 by NAT_1:29; then j < n by A3,A5,A8,AXIOMS:22; then consider F1,G1 be Element of QC-WFF such that A10: L.j = F1 & L.(j + 1) = G1 & F1 is_immediate_constituent_of G1 by A2,A8; take F1,G1; thus thesis by A6,A8,A9,A10; end; theorem 'not' F is_subformula_of H implies F is_proper_subformula_of H proof F is_proper_subformula_of 'not' F by Th86; hence thesis by Th83; end; theorem F is_proper_subformula_of FALSUM iff F is_subformula_of VERUM by Def1,Th86; theorem Th89: F is_subformula_of G or F is_subformula_of H iff F is_proper_subformula_of G '&' H proof G is_immediate_constituent_of G '&' H & H is_immediate_constituent_of G '&' H by Th62; hence F is_subformula_of G or F is_subformula_of H implies F is_proper_subformula_of G '&' H by Th83; given n,L such that A1: 1 <= n & len L = n & L.1 = F & L.n = G '&' H and A2: for k st 1 <= k & k < n ex H1,F1 be Element of QC-WFF st L.k = H1 & L.(k + 1) = F1 & H1 is_immediate_constituent_of F1; assume F <> G '&' H; then 1 < n by A1,REAL_1:def 5; then 1 + 1 <= n by NAT_1:38; then consider k such that A3: n = 2 + k by NAT_1:28; reconsider L1 = L|(Seg(1 + k)) as FinSequence by FINSEQ_1:19; A4: 1 + 1 + k = 1 + k + 1 by XCMPLX_1:1; then 1 <= 1 + k & 1 + k < n by A3,NAT_1:29,38; then consider H1,G1 be Element of QC-WFF such that A5: L.(1 + k) = H1 & L.(1 + k + 1) = G1 & H1 is_immediate_constituent_of G1 by A2; F is_subformula_of H1 proof take m = 1 + k , L1; thus A6: 1 <= m by NAT_1:29; 1 + k <= 1 + k + 1 by NAT_1:29; hence len L1 = m by A1,A3,A4,FINSEQ_1:21; A7: now let j be Nat; assume 1 <= j & j <= m; then j in Seg(1 + k) by FINSEQ_1:3; hence L1.j = L.j by FUNCT_1:72; end; hence L1.1 = F by A1,A6; thus L1.m = H1 by A5,A6,A7; let j be Nat; assume A8: 1 <= j & j < m; then A9: 1 <= 1 + j & 1 + j = j + 1 & j <= m & j + 1 <= m by NAT_1:38; m <= m + 1 by NAT_1:29; then j < n by A3,A4,A8,AXIOMS:22; then consider F1,G1 be Element of QC-WFF such that A10: L.j = F1 & L.(j + 1) = G1 & F1 is_immediate_constituent_of G1 by A2,A8 ; take F1,G1; thus thesis by A7,A8,A9,A10; end; hence thesis by A1,A3,A4,A5,Th62; end; theorem F '&' G is_subformula_of H implies F is_proper_subformula_of H & G is_proper_subformula_of H proof F is_proper_subformula_of F '&' G & G is_proper_subformula_of F '&' G by Th89; hence thesis by Th83; end; theorem Th91: F is_subformula_of H iff F is_proper_subformula_of All(x,H) proof H is_immediate_constituent_of All(x,H) by Th63; hence F is_subformula_of H implies F is_proper_subformula_of All(x,H) by Th83; given n,L such that A1: 1 <= n & len L = n & L.1 = F & L.n = All(x,H) and A2: for k st 1 <= k & k < n ex H1,F1 being Element of QC-WFF st L.k = H1 & L.(k + 1) = F1 & H1 is_immediate_constituent_of F1; assume F <> All(x,H); then 1 < n by A1,REAL_1:def 5; then 1 + 1 <= n by NAT_1:38; then consider k such that A3: n = 2 + k by NAT_1:28; reconsider L1 = L|(Seg(1 + k)) as FinSequence by FINSEQ_1:19; take m = 1 + k , L1; thus A4: 1 <= m by NAT_1:29; A5: 1 + 1 + k = 1 + k + 1 by XCMPLX_1:1; 1 + k <= 1 + k + 1 by NAT_1:29; hence len L1 = m by A1,A3,A5,FINSEQ_1:21; A6: now let j be Nat; assume 1 <= j & j <= m; then j in Seg(1 + k) by FINSEQ_1:3; hence L1.j = L.j by FUNCT_1:72; end; hence L1.1 = F by A1,A4; m < m + 1 by NAT_1:38; then consider F1,G1 be Element of QC-WFF such that A7: L.m = F1 & L.(m + 1) = G1 & F1 is_immediate_constituent_of G1 by A2,A3,A4, A5; F1 = H by A1,A3,A5,A7,Th63; hence L1.m = H by A4,A6,A7; let j be Nat; assume A8: 1 <= j & j < m; then A9: 1 <= 1 + j & 1 + j = j + 1 & j <= m & j + 1 <= m by NAT_1:38; m <= m + 1 by NAT_1:29; then j < n by A3,A5,A8,AXIOMS:22; then consider F1,G1 be Element of QC-WFF such that A10: L.j = F1 & L.(j + 1) = G1 & F1 is_immediate_constituent_of G1 by A2,A8; take F1,G1; thus thesis by A6,A8,A9,A10; end; theorem All(x,H) is_subformula_of F implies H is_proper_subformula_of F proof H is_proper_subformula_of All(x,H) by Th91; hence thesis by Th83; end; theorem F '&' 'not' G is_proper_subformula_of F => G & F is_proper_subformula_of F => G & 'not' G is_proper_subformula_of F => G & G is_proper_subformula_of F => G proof F => G = 'not'(F '&' 'not' G) & F '&' 'not' G is_subformula_of F '&' 'not' G by Def2; hence A1: F '&' 'not' G is_proper_subformula_of F => G by Th86; F is_proper_subformula_of F '&' 'not' G & 'not' G is_proper_subformula_of F '&' 'not' G by Th89; hence A2: F is_proper_subformula_of F => G & 'not' G is_proper_subformula_of F => G by A1,Th76; G is_proper_subformula_of 'not' G by Th86; hence thesis by A2,Th76; end; theorem 'not' F '&' 'not' G is_proper_subformula_of F 'or' G & 'not' F is_proper_subformula_of F 'or' G & 'not' G is_proper_subformula_of F 'or' G & F is_proper_subformula_of F 'or' G & G is_proper_subformula_of F 'or' G proof F 'or' G = 'not'('not' F '&' 'not' G) & 'not' F '&' 'not' G is_subformula_of 'not' F '&' 'not' G by Def3; hence A1: 'not' F '&' 'not' G is_proper_subformula_of F 'or' G by Th86; 'not' F is_proper_subformula_of 'not' F '&' 'not' G & 'not' G is_proper_subformula_of 'not' F '&' 'not' G by Th89; hence A2: 'not' F is_proper_subformula_of F 'or' G & 'not' G is_proper_subformula_of F 'or' G by A1,Th76; G is_proper_subformula_of 'not' G & F is_proper_subformula_of 'not' F by Th86; hence thesis by A2,Th76; end; theorem H is atomic implies not F is_proper_subformula_of H proof assume ex k,P,V st H = P!V; hence thesis by Th85; end; theorem H is negative implies the_argument_of H is_proper_subformula_of H proof assume H is negative; then the_argument_of H is_immediate_constituent_of H by Th65; hence thesis by Th73; end; theorem H is conjunctive implies the_left_argument_of H is_proper_subformula_of H & the_right_argument_of H is_proper_subformula_of H proof assume H is conjunctive; then the_left_argument_of H is_immediate_constituent_of H & the_right_argument_of H is_immediate_constituent_of H by Th66; hence thesis by Th73; end; theorem H is universal implies the_scope_of H is_proper_subformula_of H proof assume H is universal; then the_scope_of H is_immediate_constituent_of H by Th67; hence thesis by Th73; end; theorem Th99: H is_subformula_of VERUM iff H = VERUM proof thus H is_subformula_of VERUM implies H = VERUM proof assume A1: H is_subformula_of VERUM; assume H <> VERUM; then H is_proper_subformula_of VERUM by A1,Def22; hence contradiction by Th58,Th75; end; thus thesis; end; theorem Th100: H is_subformula_of P!V iff H = P!V proof thus H is_subformula_of P!V implies H = P!V proof assume A1: H is_subformula_of P!V; assume H <> P!V; then H is_proper_subformula_of P!V by A1,Def22; then ex F st F is_immediate_constituent_of P!V by Th75; hence contradiction by Th59; end; thus thesis; end; theorem Th101: H is_subformula_of FALSUM iff H = FALSUM or H = VERUM proof thus H is_subformula_of FALSUM implies H = FALSUM or H = VERUM proof assume H is_subformula_of FALSUM & H <> FALSUM; then H is_proper_subformula_of FALSUM by Def22; then H is_subformula_of VERUM by Def1,Th86; hence thesis by Th99; end; VERUM is_immediate_constituent_of FALSUM by Def1,Def20; then VERUM is_proper_subformula_of FALSUM by Th73; hence thesis by Def22; end; :: :: Set of subformulae of QC-formulae :: definition let H; func Subformulae H -> set means: Def23: for a being set holds a in it iff ex F st F = a & F is_subformula_of H; existence proof defpred P[set] means ex F st F = $1 & F is_subformula_of H; consider X be set such that A1: for a being set holds a in X iff a in QC-WFF & P[a] from Separation; take X; let a be set; thus a in X implies ex F st F = a & F is_subformula_of H by A1; given F such that A2: F = a & F is_subformula_of H; thus a in X by A1,A2; end; uniqueness proof defpred P[set] means ex F st F = $1 & F is_subformula_of H; let X,Y be set such that A3: for a being set holds a in X iff P[a] and A4: for a being set holds a in Y iff P[a]; thus thesis from Extensionality(A3,A4); end; end; canceled; theorem Th103: G in Subformulae H implies G is_subformula_of H proof assume G in Subformulae H; then ex F st F = G & F is_subformula_of H by Def23; hence G is_subformula_of H; end; theorem Th104: F is_subformula_of H implies Subformulae F c= Subformulae H proof assume A1: F is_subformula_of H; let a be set; assume a in Subformulae F; then consider F1 be Element of QC-WFF such that A2: F1 = a & F1 is_subformula_of F by Def23; F1 is_subformula_of H by A1,A2,Th77; hence a in Subformulae H by A2,Def23; end; theorem G in Subformulae H implies Subformulae G c= Subformulae H proof assume G in Subformulae H; then G is_subformula_of H by Th103; hence thesis by Th104; end; canceled; theorem Th107: Subformulae(VERUM) = { VERUM } proof thus Subformulae VERUM c= { VERUM } proof let a be set; assume a in Subformulae VERUM; then consider F such that A1: F = a & F is_subformula_of VERUM by Def23; F = VERUM by A1,Th99; hence thesis by A1,TARSKI:def 1; end; let a be set; assume a in { VERUM }; then a = VERUM & VERUM is_subformula_of VERUM by TARSKI:def 1; hence a in Subformulae VERUM by Def23; end; theorem Th108: Subformulae(P!V) = { P!V } proof thus Subformulae(P!V) c= { P!V } proof let a be set; assume a in Subformulae(P!V); then consider F such that A1: F = a & F is_subformula_of P!V by Def23; F = P!V by A1,Th100; hence thesis by A1,TARSKI:def 1; end; let a be set; assume a in { P!V }; then a = P!V & P!V is_subformula_of P!V by TARSKI:def 1; hence a in Subformulae(P!V) by Def23; end; theorem Subformulae(FALSUM) = { VERUM, FALSUM } proof thus Subformulae(FALSUM) c= { VERUM, FALSUM } proof let a be set; assume a in Subformulae(FALSUM); then ex F st F = a & F is_subformula_of FALSUM by Def23; then a = FALSUM or a = VERUM by Th101; hence thesis by TARSKI:def 2; end; let a be set; assume A1: a in { VERUM, FALSUM }; then A2: a = VERUM or a = FALSUM by TARSKI:def 2; reconsider a as Element of QC-WFF by A1,TARSKI:def 2; a is_subformula_of FALSUM by A2,Th101; hence thesis by Def23; end; theorem Th110: Subformulae 'not' H = Subformulae H \/ { 'not' H } proof thus Subformulae 'not' H c= Subformulae H \/ { 'not' H } proof let a be set; assume a in Subformulae 'not' H; then consider F such that A1: F = a & F is_subformula_of 'not' H by Def23; now assume F <> 'not' H; then F is_proper_subformula_of 'not' H by A1,Def22; then F is_subformula_of H by Th86; hence a in Subformulae H by A1,Def23; end; then a in Subformulae H or a in { 'not' H } by A1,TARSKI:def 1; hence thesis by XBOOLE_0:def 2; end; let a be set such that A2: a in Subformulae H \/ { 'not' H }; A3: now assume a in Subformulae H; then consider F such that A4: F = a & F is_subformula_of H by Def23; H is_immediate_constituent_of 'not' H by Def20; then H is_proper_subformula_of 'not' H by Th73; then H is_subformula_of 'not' H by Def22; then F is_subformula_of 'not' H by A4,Th77; hence a in Subformulae 'not' H by A4,Def23; end; now assume a in { 'not' H }; then a = 'not' H & 'not' H is_subformula_of 'not' H by TARSKI:def 1; hence a in Subformulae 'not' H by Def23; end; hence a in Subformulae 'not' H by A2,A3,XBOOLE_0:def 2; end; theorem Th111: Subformulae (H '&' F) = Subformulae H \/ Subformulae F \/ { H '&' F } proof thus Subformulae H '&' F c= Subformulae H \/ Subformulae F \/ { H '&' F } proof let a be set; assume a in Subformulae H '&' F; then consider G such that A1: G = a & G is_subformula_of H '&' F by Def23; now assume G <> H '&' F; then G is_proper_subformula_of H '&' F by A1,Def22; then G is_subformula_of H or G is_subformula_of F by Th89; then a in Subformulae H or a in Subformulae F by A1,Def23; hence a in Subformulae H \/ Subformulae F by XBOOLE_0:def 2; end; then a in Subformulae H \/ Subformulae F or a in { H '&' F } by A1,TARSKI:def 1; hence thesis by XBOOLE_0:def 2; end; let a be set such that A2: a in Subformulae H \/ Subformulae F \/ { H '&' F }; A3: a in Subformulae H \/ Subformulae F implies a in Subformulae H or a in Subformulae F by XBOOLE_0:def 2; A4: now assume a in Subformulae H; then consider G such that A5: G = a & G is_subformula_of H by Def23; H is_immediate_constituent_of H '&' F by Th62; then H is_proper_subformula_of H '&' F by Th73; then H is_subformula_of H '&' F by Def22; then G is_subformula_of H '&' F by A5,Th77; hence a in Subformulae H '&' F by A5,Def23; end; A6: now assume a in Subformulae F; then consider G such that A7: G = a & G is_subformula_of F by Def23; F is_immediate_constituent_of H '&' F by Th62; then F is_proper_subformula_of H '&' F by Th73; then F is_subformula_of H '&' F by Def22; then G is_subformula_of H '&' F by A7,Th77; hence a in Subformulae H '&' F by A7,Def23; end; now assume a in { H '&' F }; then a = H '&' F & H '&' F is_subformula_of H '&' F by TARSKI:def 1; hence a in Subformulae H '&' F by Def23; end; hence a in Subformulae H '&' F by A2,A3,A4,A6,XBOOLE_0:def 2; end; theorem Th112: Subformulae All(x,H) = Subformulae H \/ { All(x,H) } proof thus Subformulae All(x,H) c= Subformulae H \/ { All(x,H) } proof let a be set; assume a in Subformulae All(x,H); then consider F such that A1: F = a & F is_subformula_of All(x,H) by Def23; now assume F <> All(x,H); then F is_proper_subformula_of All(x,H) by A1,Def22; then F is_subformula_of H by Th91; hence a in Subformulae H by A1,Def23; end; then a in Subformulae H or a in { All(x,H) } by A1,TARSKI:def 1; hence thesis by XBOOLE_0:def 2; end; let a be set such that A2: a in Subformulae H \/ { All(x,H) }; A3: now assume a in Subformulae H; then consider F such that A4: F = a & F is_subformula_of H by Def23; H is_immediate_constituent_of All(x,H) by Th63; then H is_proper_subformula_of All(x,H) by Th73; then H is_subformula_of All(x,H) by Def22; then F is_subformula_of All(x,H) by A4,Th77; hence a in Subformulae All(x,H) by A4,Def23; end; now assume a in { All(x,H) }; then a = All(x,H) & All(x,H) is_subformula_of All(x,H) by TARSKI:def 1; hence a in Subformulae All(x,H) by Def23; end; hence a in Subformulae All(x,H) by A2,A3,XBOOLE_0:def 2; end; theorem Th113: Subformulae (F => G) = Subformulae F \/ Subformulae G \/ { 'not' G, F '&' 'not' G, F => G } proof F => G = 'not'(F '&' 'not' G) by Def2; hence Subformulae (F => G) = Subformulae (F '&' 'not' G) \/ { F => G } by Th110 .= Subformulae F \/ Subformulae 'not' G \/ {F '&' 'not' G} \/ {F => G} by Th111 .= Subformulae F \/ (Subformulae G \/ {'not' G}) \/ {F '&' 'not' G} \/ { F => G } by Th110 .= Subformulae F \/ Subformulae G \/ {'not' G} \/ {F '&' 'not' G} \/ { F => G } by XBOOLE_1:4 .= Subformulae F \/ Subformulae G \/ {'not' G} \/ ({F '&' 'not' G} \/ { F => G }) by XBOOLE_1:4 .= Subformulae F \/ Subformulae G \/ ({'not' G} \/ ({F '&' 'not' G} \/ { F => G })) by XBOOLE_1:4 .= Subformulae F \/ Subformulae G \/ ({'not' G} \/ { F '&' 'not' G,F => G }) by ENUMSET1:41 .= Subformulae F \/ Subformulae G \/ { 'not' G,F '&' 'not' G,F => G } by ENUMSET1:42; end; theorem Subformulae (F 'or' G) = Subformulae F \/ Subformulae G \/ {'not' G, 'not' F, 'not' F '&' 'not' G, F 'or' G} proof F 'or' G = 'not'('not' F '&' 'not' G) by Def3; hence Subformulae (F 'or' G) = Subformulae ('not' F '&' 'not' G) \/ { F 'or' G } by Th110 .= Subformulae 'not' F \/ Subformulae 'not' G \/ {'not' F '&' 'not' G} \/ {F 'or' G} by Th111 .= Subformulae 'not' F \/ (Subformulae G \/ {'not' G}) \/ {'not' F '&' 'not' G} \/ {F 'or' G} by Th110 .= Subformulae F \/ {'not' F} \/ (Subformulae G \/ {'not' G}) \/ {'not' F '&' 'not' G} \/ {F 'or' G} by Th110 .= Subformulae F \/ ((Subformulae G \/ {'not' G}) \/ {'not' F}) \/ {'not' F '&' 'not' G} \/ {F 'or' G} by XBOOLE_1:4 .= Subformulae F \/ (Subformulae G \/ ({'not' G} \/ {'not' F})) \/ {'not' F '&' 'not' G} \/ {F 'or' G} by XBOOLE_1:4 .= Subformulae F \/ (Subformulae G \/ {'not' G,'not' F}) \/ {'not' F '&' 'not' G} \/ {F 'or' G} by ENUMSET1:41 .= Subformulae F \/ Subformulae G \/ {'not' G,'not' F} \/ {'not' F '&' 'not' G} \/ {F 'or' G} by XBOOLE_1:4 .= Subformulae F \/ Subformulae G \/ {'not' G,'not' F} \/ ({'not' F '&' 'not' G} \/ {F 'or' G}) by XBOOLE_1:4 .= Subformulae F \/ Subformulae G \/ {'not' G,'not' F} \/ {'not' F '&' 'not' G, F 'or' G} by ENUMSET1:41 .= Subformulae F \/ Subformulae G \/ ({'not' G,'not' F} \/ {'not' F '&' 'not' G, F 'or' G}) by XBOOLE_1:4 .= Subformulae F \/ Subformulae G \/ {'not' G, 'not' F, 'not' F '&' 'not' G, F 'or' G} by ENUMSET1:45; end; theorem Subformulae (F <=> G) = Subformulae F \/ Subformulae G \/ { 'not' G, F '&' 'not' G, F => G, 'not' F, G '&' 'not' F, G => F, F <=> G } proof F <=> G = (F => G) '&' (G => F) by Def4; hence Subformulae (F <=> G) = Subformulae(F => G) \/ Subformulae(G => F) \/ {F <=> G} by Th111 .= Subformulae F \/ Subformulae G \/ { 'not' G, F '&' 'not' G, F => G } \/ Subformulae(G => F) \/ {F <=> G} by Th113 .= Subformulae F \/ Subformulae G \/ { 'not' G, F '&' 'not' G, F => G } \/ (Subformulae F \/ Subformulae G \/ { 'not' F, G '&' 'not' F, G => F }) \/ {F <=> G} by Th113 .= Subformulae F \/ Subformulae G \/ ((Subformulae F \/ Subformulae G \/ { 'not' G, F '&' 'not' G, F => G }) \/ { 'not' F, G '&' 'not' F, G => F }) \/ {F <=> G} by XBOOLE_1:4 .= Subformulae F \/ Subformulae G \/ (Subformulae F \/ Subformulae G \/ ({ 'not' G, F '&' 'not' G, F => G } \/ { 'not' F, G '&' 'not' F, G => F })) \/ {F <=> G} by XBOOLE_1:4 .= Subformulae F \/ Subformulae G \/ (Subformulae F \/ Subformulae G) \/ ({ 'not' G, F '&' 'not' G, F => G } \/ { 'not' F, G '&' 'not' F, G => F }) \/ {F <=> G} by XBOOLE_1:4 .= Subformulae F \/ Subformulae G \/ { 'not' G, F '&' 'not' G, F => G, 'not' F, G '&' 'not' F, G => F } \/ {F <=> G} by ENUMSET1:53 .= Subformulae F \/ Subformulae G \/ ({ 'not' G, F '&' 'not' G, F => G, 'not' F, G '&' 'not' F, G => F } \/ {F <=> G}) by XBOOLE_1:4 .= Subformulae F \/ Subformulae G \/ { 'not' G, F '&' 'not' G, F => G, 'not' F, G '&' 'not' F, G => F, F <=> G } by ENUMSET1:61; end; theorem H = VERUM or H is atomic iff Subformulae H = { H } proof H is atomic implies Subformulae H = { H } proof assume ex k,P,V st H = P!V; hence thesis by Th108; end; hence H = VERUM or H is atomic implies Subformulae H = { H } by Th107; assume A1: Subformulae H = { H }; assume H <> VERUM & not H is atomic; then H is negative or H is conjunctive or H is universal by QC_LANG1:33; then A2: H = 'not' the_argument_of H or H = (the_left_argument_of H) '&' the_right_argument_of H or H = All(bound_in H,the_scope_of H) by Th4,Th7,QC_LANG1:def 23; A3: now assume H = 'not' the_argument_of H; then A4: the_argument_of H is_immediate_constituent_of H by Th60; then the_argument_of H is_proper_subformula_of H by Th73; then the_argument_of H is_subformula_of H by Def22; then A5: the_argument_of H in Subformulae H by Def23; len @(the_argument_of H) <> len @H by A4,Th71; hence contradiction by A1,A5,TARSKI:def 1; end; now assume H = (the_left_argument_of H) '&' the_right_argument_of H; then A6: the_left_argument_of H is_immediate_constituent_of H & the_right_argument_of H is_immediate_constituent_of H by Th62; then the_left_argument_of H is_proper_subformula_of H & the_right_argument_of H is_proper_subformula_of H by Th73; then the_left_argument_of H is_subformula_of H & the_right_argument_of H is_subformula_of H by Def22; then A7: the_left_argument_of H in Subformulae H & the_right_argument_of H in Subformulae H by Def23; len @(the_left_argument_of H) <> len @H & len @(the_right_argument_of H) <> len @H by A6,Th71; hence contradiction by A1,A7,TARSKI:def 1; end; then A8: the_scope_of H is_immediate_constituent_of H by A2,A3,Th63; then the_scope_of H is_proper_subformula_of H by Th73; then the_scope_of H is_subformula_of H by Def22; then A9: the_scope_of H in Subformulae H by Def23; len @(the_scope_of H) <> len @H by A8,Th71; hence contradiction by A1,A9,TARSKI:def 1; end; theorem H is negative implies Subformulae H = Subformulae the_argument_of H \/ { H } proof assume H is negative; then H = 'not' the_argument_of H by QC_LANG1:def 23; hence thesis by Th110; end; theorem H is conjunctive implies Subformulae H = Subformulae the_left_argument_of H \/ Subformulae the_right_argument_of H \/ { H } proof assume H is conjunctive; then H = (the_left_argument_of H) '&' the_right_argument_of H by Th4; hence thesis by Th111; end; theorem H is universal implies Subformulae H = Subformulae the_scope_of H \/ { H } proof assume H is universal; then H = All(bound_in H,the_scope_of H) by Th7; hence thesis by Th112; end; theorem (H is_immediate_constituent_of G or H is_proper_subformula_of G or H is_subformula_of G) & G in Subformulae F implies H in Subformulae F proof assume A1: (H is_immediate_constituent_of G or H is_proper_subformula_of G or H is_subformula_of G) & G in Subformulae F; then H is_proper_subformula_of G or H is_subformula_of G by Th73; then H is_subformula_of G & G is_subformula_of F by A1,Def22,Th103; then H is_subformula_of F by Th77; hence thesis by Def23; end;