LMSIN1:
for n being Nat holds sin . (n * PI) = 0
LMOP3:
[#] (REAL 2) = { <*x,t*> where x, t is Real : ( x in [#] REAL & t in [#] REAL ) }
LM001:
for f being PartFunc of REAL,REAL
for Z being Subset of REAL
for x0 being Real st Z is open & x0 in Z & f is_differentiable_in x0 holds
( f | Z is_differentiable_in x0 & diff (f,x0) = diff ((f | Z),x0) )
LM02:
for x, t being Real holds <*x,t*> in REAL 2
LM03:
for x, t being Real
for z being Element of REAL 2 st z = <*x,t*> holds
( (proj (1,2)) . z = x & (proj (2,2)) . z = t )
theorem LM11:
for
f,
g being
PartFunc of
REAL,
REAL for
u being
PartFunc of
(REAL 2),
REAL for
x0,
t0 being
Real for
z being
Element of
REAL 2 st
dom u = { <*x,t*> where x, t is Real : ( x in dom f & t in dom g ) } & ( for
x,
t being
Real st
x in dom f &
t in dom g holds
u /. <*x,t*> = (f /. x) * (g /. t) ) &
z = <*x0,t0*> &
x0 in dom f &
t0 in dom g holds
(
u * (reproj (1,z)) = (g /. t0) (#) f &
u * (reproj (2,z)) = (f /. x0) (#) g )
theorem
for
f,
g being
PartFunc of
REAL,
REAL for
u being
PartFunc of
(REAL 2),
REAL for
x0,
t0 being
Real for
z being
Element of
REAL 2 st
x0 in dom f &
t0 in dom g &
z = <*x0,t0*> &
dom u = { <*x,t*> where x, t is Real : ( x in dom f & t in dom g ) } &
f is_differentiable_in x0 & ( for
x,
t being
Real st
x in dom f &
t in dom g holds
u /. <*x,t*> = (f /. x) * (g /. t) ) holds
(
u is_partial_differentiable_in z,1 &
partdiff (
u,
z,1)
= (diff (f,x0)) * (g /. t0) )
theorem
for
f,
g being
PartFunc of
REAL,
REAL for
u being
PartFunc of
(REAL 2),
REAL for
x0,
t0 being
Real for
z being
Element of
REAL 2 st
x0 in dom f &
t0 in dom g &
z = <*x0,t0*> &
dom u = { <*x,t*> where x, t is Real : ( x in dom f & t in dom g ) } &
g is_differentiable_in t0 & ( for
x,
t being
Real st
x in dom f &
t in dom g holds
u /. <*x,t*> = (f /. x) * (g /. t) ) holds
(
u is_partial_differentiable_in z,2 &
partdiff (
u,
z,2)
= (f /. x0) * (diff (g,t0)) )
theorem LM20:
for
X,
T being
Subset of
REAL for
Z being
Subset of
(REAL 2) for
f,
g being
PartFunc of
REAL,
REAL for
u being
PartFunc of
(REAL 2),
REAL st
X c= dom f &
T c= dom g &
X is
open &
T is
open &
Z is
open &
Z = { <*x,t*> where x, t is Real : ( x in X & t in T ) } &
dom u = { <*x,t*> where x, t is Real : ( x in dom f & t in dom g ) } &
f is_differentiable_on X &
g is_differentiable_on T & ( for
x,
t being
Real st
x in dom f &
t in dom g holds
u /. <*x,t*> = (f /. x) * (g /. t) ) holds
(
u is_partial_differentiable_on Z,
<*1*> & ( for
x,
t being
Real st
x in X &
t in T holds
(u `partial| (Z,<*1*>)) /. <*x,t*> = (diff (f,x)) * (g /. t) ) &
u is_partial_differentiable_on Z,
<*2*> & ( for
x,
t being
Real st
x in X &
t in T holds
(u `partial| (Z,<*2*>)) /. <*x,t*> = (f /. x) * (diff (g,t)) ) )
theorem LM30:
for
X,
T being
Subset of
REAL for
Z being
Subset of
(REAL 2) for
f,
g being
PartFunc of
REAL,
REAL for
u being
PartFunc of
(REAL 2),
REAL st
X c= dom f &
T c= dom g &
X is
open &
T is
open &
Z is
open &
Z = { <*x,t*> where x, t is Real : ( x in X & t in T ) } &
dom u = { <*x,t*> where x, t is Real : ( x in dom f & t in dom g ) } &
f is_differentiable_on 2,
X &
g is_differentiable_on 2,
T & ( for
x,
t being
Real st
x in dom f &
t in dom g holds
u /. <*x,t*> = (f /. x) * (g /. t) ) holds
(
u is_partial_differentiable_on Z,
<*1*> ^ <*1*> & ( for
x,
t being
Real st
x in X &
t in T holds
(u `partial| (Z,(<*1*> ^ <*1*>))) /. <*x,t*> = (((diff (f,X)) . 2) /. x) * (g /. t) ) &
u is_partial_differentiable_on Z,
<*2*> ^ <*2*> & ( for
x,
t being
Real st
x in X &
t in T holds
(u `partial| (Z,(<*2*> ^ <*2*>))) /. <*x,t*> = (f /. x) * (((diff (g,T)) . 2) /. t) ) )
theorem LM40:
for
f,
g being
Function of
REAL,
REAL for
u being
PartFunc of
(REAL 2),
REAL for
c being
Real st
f is_differentiable_on 2,
[#] REAL &
g is_differentiable_on 2,
[#] REAL &
dom u = [#] (REAL 2) & ( for
x,
t being
Real holds
u /. <*x,t*> = (f /. x) * (g /. t) ) & ( for
x,
t being
Real holds
(f /. x) * (((diff (g,([#] REAL))) . 2) /. t) = ((c ^2) * (((diff (f,([#] REAL))) . 2) /. x)) * (g /. t) ) holds
(
u is_partial_differentiable_on [#] (REAL 2),
<*1*> ^ <*1*> & ( for
x,
t being
Real st
x in [#] REAL &
t in [#] REAL holds
(u `partial| (([#] (REAL 2)),(<*1*> ^ <*1*>))) /. <*x,t*> = (((diff (f,([#] REAL))) . 2) /. x) * (g /. t) ) &
u is_partial_differentiable_on [#] (REAL 2),
<*2*> ^ <*2*> & ( for
x,
t being
Real st
x in [#] REAL &
t in [#] REAL holds
(u `partial| (([#] (REAL 2)),(<*2*> ^ <*2*>))) /. <*x,t*> = (f /. x) * (((diff (g,([#] REAL))) . 2) /. t) ) & ( for
x,
t being
Real holds
(u `partial| (([#] (REAL 2)),(<*2*> ^ <*2*>))) /. <*x,t*> = (c ^2) * ((u `partial| (([#] (REAL 2)),(<*1*> ^ <*1*>))) /. <*x,t*>) ) )
LM410:
for A, e being Real
for f being PartFunc of REAL,REAL st f = A (#) (cos * (e (#) (id ([#] REAL)))) holds
( f is_differentiable_on [#] REAL & ( for x being Real st x in [#] REAL holds
(f `| ([#] REAL)) . x = - ((A * e) * (sin . (e * x))) ) )
LM411:
for A, e being Real
for f being PartFunc of REAL,REAL st f = A (#) (sin * (e (#) (id ([#] REAL)))) holds
( f is_differentiable_on [#] REAL & ( for x being Real st x in [#] REAL holds
(f `| ([#] REAL)) . x = (A * e) * (cos . (e * x)) ) )
theorem LM43:
for
A,
B,
C,
d,
c,
e being
Real for
f,
g being
Function of
REAL,
REAL st ( for
x being
Real holds
f . x = (A * (cos . (e * x))) + (B * (sin . (e * x))) ) & ( for
t being
Real holds
g . t = (C * (cos . ((e * c) * t))) + (d * (sin . ((e * c) * t))) ) holds
for
x,
t being
Real holds
(f /. x) * (((diff (g,([#] REAL))) . 2) /. t) = ((c ^2) * (((diff (f,([#] REAL))) . 2) /. x)) * (g /. t)
theorem LM50:
for
c being
Real for
f,
g being
Function of
REAL,
REAL for
u being
Function of
(REAL 2),
REAL st
f is_differentiable_on 2,
[#] REAL &
g is_differentiable_on 2,
[#] REAL & ( for
x,
t being
Real holds
(f /. x) * (((diff (g,([#] REAL))) . 2) /. t) = ((c ^2) * (((diff (f,([#] REAL))) . 2) /. x)) * (g /. t) ) & ( for
x,
t being
Real holds
u /. <*x,t*> = (f /. x) * (g /. t) ) holds
(
u is_partial_differentiable_on [#] (REAL 2),
<*1*> & ( for
x,
t being
Real holds
(u `partial| (([#] (REAL 2)),<*1*>)) /. <*x,t*> = (diff (f,x)) * (g /. t) ) &
u is_partial_differentiable_on [#] (REAL 2),
<*2*> & ( for
x,
t being
Real holds
(u `partial| (([#] (REAL 2)),<*2*>)) /. <*x,t*> = (f /. x) * (diff (g,t)) ) &
f is_differentiable_on 2,
[#] REAL &
g is_differentiable_on 2,
[#] REAL &
u is_partial_differentiable_on [#] (REAL 2),
<*1*> ^ <*1*> & ( for
x,
t being
Real holds
(u `partial| (([#] (REAL 2)),(<*1*> ^ <*1*>))) /. <*x,t*> = (((diff (f,([#] REAL))) . 2) /. x) * (g /. t) ) &
u is_partial_differentiable_on [#] (REAL 2),
<*2*> ^ <*2*> & ( for
x,
t being
Real holds
(u `partial| (([#] (REAL 2)),(<*2*> ^ <*2*>))) /. <*x,t*> = (f /. x) * (((diff (g,([#] REAL))) . 2) /. t) ) & ( for
x,
t being
Real holds
(u `partial| (([#] (REAL 2)),(<*2*> ^ <*2*>))) /. <*x,t*> = (c ^2) * ((u `partial| (([#] (REAL 2)),(<*1*> ^ <*1*>))) /. <*x,t*>) ) )
theorem Th10:
for
A,
B,
C,
d,
e,
c being
Real for
u being
Function of
(REAL 2),
REAL st ( for
x,
t being
Real holds
u /. <*x,t*> = ((A * (cos . (e * x))) + (B * (sin . (e * x)))) * ((C * (cos . ((e * c) * t))) + (d * (sin . ((e * c) * t)))) ) holds
(
u is_partial_differentiable_on [#] (REAL 2),
<*1*> & ( for
x,
t being
Real holds
(u `partial| (([#] (REAL 2)),<*1*>)) /. <*x,t*> = ((- ((A * e) * (sin . (e * x)))) + ((B * e) * (cos . (e * x)))) * ((C * (cos . ((e * c) * t))) + (d * (sin . ((e * c) * t)))) ) &
u is_partial_differentiable_on [#] (REAL 2),
<*2*> & ( for
x,
t being
Real holds
(u `partial| (([#] (REAL 2)),<*2*>)) /. <*x,t*> = ((A * (cos . (e * x))) + (B * (sin . (e * x)))) * ((- ((C * (e * c)) * (sin . ((e * c) * t)))) + ((d * (e * c)) * (cos . ((e * c) * t)))) ) &
u is_partial_differentiable_on [#] (REAL 2),
<*1*> ^ <*1*> & ( for
x,
t being
Real holds
(
(u `partial| (([#] (REAL 2)),(<*1*> ^ <*1*>))) /. <*x,t*> = - (((e ^2) * ((A * (cos . (e * x))) + (B * (sin . (e * x))))) * ((C * (cos . ((e * c) * t))) + (d * (sin . ((e * c) * t))))) &
u is_partial_differentiable_on [#] (REAL 2),
<*2*> ^ <*2*> & ( for
x,
t being
Real holds
(u `partial| (([#] (REAL 2)),(<*2*> ^ <*2*>))) /. <*x,t*> = - ((((e * c) ^2) * ((A * (cos . (e * x))) + (B * (sin . (e * x))))) * ((C * (cos . ((e * c) * t))) + (d * (sin . ((e * c) * t))))) ) ) ) & ( for
x,
t being
Real holds
(u `partial| (([#] (REAL 2)),(<*2*> ^ <*2*>))) /. <*x,t*> = (c ^2) * ((u `partial| (([#] (REAL 2)),(<*1*> ^ <*1*>))) /. <*x,t*>) ) )
theorem
for
C,
d,
c being
Real for
n being
Nat for
u being
Function of
(REAL 2),
REAL st ( for
x,
t being
Real holds
u /. <*x,t*> = (sin . ((n * PI) * x)) * ((C * (cos . (((n * PI) * c) * t))) + (d * (sin . (((n * PI) * c) * t)))) ) holds
(
u is_partial_differentiable_on [#] (REAL 2),
<*1*> & ( for
x,
t being
Real holds
(u `partial| (([#] (REAL 2)),<*1*>)) /. <*x,t*> = ((n * PI) * (cos . ((n * PI) * x))) * ((C * (cos . (((n * PI) * c) * t))) + (d * (sin . (((n * PI) * c) * t)))) ) &
u is_partial_differentiable_on [#] (REAL 2),
<*2*> & ( for
x,
t being
Real holds
(u `partial| (([#] (REAL 2)),<*2*>)) /. <*x,t*> = (sin . ((n * PI) * x)) * ((- ((C * ((n * PI) * c)) * (sin . (((n * PI) * c) * t)))) + ((d * ((n * PI) * c)) * (cos . (((n * PI) * c) * t)))) ) &
u is_partial_differentiable_on [#] (REAL 2),
<*1*> ^ <*1*> & ( for
x,
t being
Real holds
(
(u `partial| (([#] (REAL 2)),(<*1*> ^ <*1*>))) /. <*x,t*> = - ((((n * PI) ^2) * (sin . ((n * PI) * x))) * ((C * (cos . (((n * PI) * c) * t))) + (d * (sin . (((n * PI) * c) * t))))) &
u is_partial_differentiable_on [#] (REAL 2),
<*2*> ^ <*2*> & ( for
x,
t being
Real holds
(u `partial| (([#] (REAL 2)),(<*2*> ^ <*2*>))) /. <*x,t*> = - (((((n * PI) * c) ^2) * (sin . ((n * PI) * x))) * ((C * (cos . (((n * PI) * c) * t))) + (d * (sin . (((n * PI) * c) * t))))) ) ) ) & ( for
t being
Real holds
(
u /. <*0,t*> = 0 &
u /. <*1,t*> = 0 ) ) & ( for
x,
t being
Real holds
(u `partial| (([#] (REAL 2)),(<*2*> ^ <*2*>))) /. <*x,t*> = (c ^2) * ((u `partial| (([#] (REAL 2)),(<*1*> ^ <*1*>))) /. <*x,t*>) ) )
theorem Th30Y:
for
u,
v being
PartFunc of
(REAL 2),
REAL for
Z being
Subset of
(REAL 2) for
c being
Real st
Z is
open &
Z c= dom u &
Z c= dom v &
u is_partial_differentiable_on Z,
<*1*> ^ <*1*> &
u is_partial_differentiable_on Z,
<*2*> ^ <*2*> & ( for
x,
t being
Real st
<*x,t*> in Z holds
(u `partial| (Z,(<*2*> ^ <*2*>))) /. <*x,t*> = (c ^2) * ((u `partial| (Z,(<*1*> ^ <*1*>))) /. <*x,t*>) ) &
v is_partial_differentiable_on Z,
<*1*> ^ <*1*> &
v is_partial_differentiable_on Z,
<*2*> ^ <*2*> & ( for
x,
t being
Real st
<*x,t*> in Z holds
(v `partial| (Z,(<*2*> ^ <*2*>))) /. <*x,t*> = (c ^2) * ((v `partial| (Z,(<*1*> ^ <*1*>))) /. <*x,t*>) ) holds
(
Z c= dom (u + v) &
u + v is_partial_differentiable_on Z,
<*1*> ^ <*1*> &
u + v is_partial_differentiable_on Z,
<*2*> ^ <*2*> & ( for
x,
t being
Real st
<*x,t*> in Z holds
((u + v) `partial| (Z,(<*2*> ^ <*2*>))) /. <*x,t*> = (c ^2) * (((u + v) `partial| (Z,(<*1*> ^ <*1*>))) /. <*x,t*>) ) )
theorem
for
u being
Functional_Sequence of
(REAL 2),
REAL for
Z being
Subset of
(REAL 2) for
c being
Real st
Z is
open & ( for
i being
Nat holds
(
Z c= dom (u . i) &
dom (u . i) = dom (u . 0) &
u . i is_partial_differentiable_on Z,
<*1*> ^ <*1*> &
u . i is_partial_differentiable_on Z,
<*2*> ^ <*2*> & ( for
x,
t being
Real st
<*x,t*> in Z holds
((u . i) `partial| (Z,(<*2*> ^ <*2*>))) /. <*x,t*> = (c ^2) * (((u . i) `partial| (Z,(<*1*> ^ <*1*>))) /. <*x,t*>) ) ) ) holds
for
i being
Nat holds
(
Z c= dom ((Partial_Sums u) . i) &
(Partial_Sums u) . i is_partial_differentiable_on Z,
<*1*> ^ <*1*> &
(Partial_Sums u) . i is_partial_differentiable_on Z,
<*2*> ^ <*2*> & ( for
x,
t being
Real st
<*x,t*> in Z holds
(((Partial_Sums u) . i) `partial| (Z,(<*2*> ^ <*2*>))) /. <*x,t*> = (c ^2) * ((((Partial_Sums u) . i) `partial| (Z,(<*1*> ^ <*1*>))) /. <*x,t*>) ) )