:: Integrability Formulas -- Part {II}
:: by Bo Li , Na Ma and Xiquan Liang
::
:: Received February 4, 2010
:: Copyright (c) 2010-2021 Association of Mizar Users
Lm1
:
for
Z
being
open
Subset
of
REAL
st
0
in
Z
holds
(
id
Z
)
"
{
0
}
=
{
0
}
proof
end;
Lm2
:
right_open_halfline
0
=
{
g
where
g
is
Real
:
0
<
g
}
by
XXREAL_1:230
;
:: f.x = 1/(sin.x*cos.x)
theorem
:: INTEGR13:1
for
A
being non
empty
closed_interval
Subset
of
REAL
for
f
being
PartFunc
of
REAL
,
REAL
for
Z
being
open
Subset
of
REAL
st
A
c=
Z
&
f
=
(
sin
(#)
cos
)
^
&
Z
c=
dom
(
ln
*
tan
)
&
Z
=
dom
f
&
f
|
A
is
continuous
holds
integral
(
f
,
A
)
=
(
(
ln
*
tan
)
.
(
upper_bound
A
)
)
-
(
(
ln
*
tan
)
.
(
lower_bound
A
)
)
proof
end;
:: f.x = -1/(sin.x*cos.x)
theorem
:: INTEGR13:2
for
A
being non
empty
closed_interval
Subset
of
REAL
for
f
being
PartFunc
of
REAL
,
REAL
for
Z
being
open
Subset
of
REAL
st
A
c=
Z
&
f
=
-
(
(
sin
(#)
cos
)
^
)
&
Z
c=
dom
(
ln
*
cot
)
&
Z
=
dom
f
&
f
|
A
is
continuous
holds
integral
(
f
,
A
)
=
(
(
ln
*
cot
)
.
(
upper_bound
A
)
)
-
(
(
ln
*
cot
)
.
(
lower_bound
A
)
)
proof
end;
::f.x=2 * exp_R.x * sin.x
theorem
:: INTEGR13:3
for
A
being non
empty
closed_interval
Subset
of
REAL
for
f
being
PartFunc
of
REAL
,
REAL
for
Z
being
open
Subset
of
REAL
st
A
c=
Z
&
f
=
2
(#)
(
exp_R
(#)
sin
)
&
Z
c=
dom
(
exp_R
(#)
(
sin
-
cos
)
)
&
Z
=
dom
f
&
f
|
A
is
continuous
holds
integral
(
f
,
A
)
=
(
(
exp_R
(#)
(
sin
-
cos
)
)
.
(
upper_bound
A
)
)
-
(
(
exp_R
(#)
(
sin
-
cos
)
)
.
(
lower_bound
A
)
)
proof
end;
::f.x=2 * exp_R.x * cos.x
theorem
:: INTEGR13:4
for
A
being non
empty
closed_interval
Subset
of
REAL
for
f
being
PartFunc
of
REAL
,
REAL
for
Z
being
open
Subset
of
REAL
st
A
c=
Z
&
f
=
2
(#)
(
exp_R
(#)
cos
)
&
Z
c=
dom
(
exp_R
(#)
(
sin
+
cos
)
)
&
Z
=
dom
f
&
f
|
A
is
continuous
holds
integral
(
f
,
A
)
=
(
(
exp_R
(#)
(
sin
+
cos
)
)
.
(
upper_bound
A
)
)
-
(
(
exp_R
(#)
(
sin
+
cos
)
)
.
(
lower_bound
A
)
)
proof
end;
::f.x=cos.x-sin.x
theorem
:: INTEGR13:5
for
A
being non
empty
closed_interval
Subset
of
REAL
for
Z
being
open
Subset
of
REAL
st
A
c=
Z
&
Z
=
dom
(
cos
-
sin
)
&
(
cos
-
sin
)
|
A
is
continuous
holds
integral
(
(
cos
-
sin
)
,
A
)
=
(
(
sin
+
cos
)
.
(
upper_bound
A
)
)
-
(
(
sin
+
cos
)
.
(
lower_bound
A
)
)
proof
end;
::f.x=cos.x+sin.x
theorem
:: INTEGR13:6
for
A
being non
empty
closed_interval
Subset
of
REAL
for
Z
being
open
Subset
of
REAL
st
A
c=
Z
&
Z
=
dom
(
cos
+
sin
)
&
(
cos
+
sin
)
|
A
is
continuous
holds
integral
(
(
cos
+
sin
)
,
A
)
=
(
(
sin
-
cos
)
.
(
upper_bound
A
)
)
-
(
(
sin
-
cos
)
.
(
lower_bound
A
)
)
proof
end;
theorem
Th7
:
:: INTEGR13:7
for
Z
being
open
Subset
of
REAL
st
Z
c=
dom
(
(
-
(
1
/
2
)
)
(#)
(
(
sin
+
cos
)
/
exp_R
)
)
holds
(
(
-
(
1
/
2
)
)
(#)
(
(
sin
+
cos
)
/
exp_R
)
is_differentiable_on
Z
& ( for
x
being
Real
st
x
in
Z
holds
(
(
(
-
(
1
/
2
)
)
(#)
(
(
sin
+
cos
)
/
exp_R
)
)
`|
Z
)
.
x
=
(
sin
.
x
)
/
(
exp_R
.
x
)
) )
proof
end;
::f.x=sin.x/exp_R.x
theorem
:: INTEGR13:8
for
A
being non
empty
closed_interval
Subset
of
REAL
for
f
being
PartFunc
of
REAL
,
REAL
for
Z
being
open
Subset
of
REAL
st
A
c=
Z
&
f
=
sin
/
exp_R
&
Z
c=
dom
(
(
-
(
1
/
2
)
)
(#)
(
(
sin
+
cos
)
/
exp_R
)
)
&
Z
=
dom
f
&
f
|
A
is
continuous
holds
integral
(
f
,
A
)
=
(
(
(
-
(
1
/
2
)
)
(#)
(
(
sin
+
cos
)
/
exp_R
)
)
.
(
upper_bound
A
)
)
-
(
(
(
-
(
1
/
2
)
)
(#)
(
(
sin
+
cos
)
/
exp_R
)
)
.
(
lower_bound
A
)
)
proof
end;
theorem
Th9
:
:: INTEGR13:9
for
Z
being
open
Subset
of
REAL
st
Z
c=
dom
(
(
1
/
2
)
(#)
(
(
sin
-
cos
)
/
exp_R
)
)
holds
(
(
1
/
2
)
(#)
(
(
sin
-
cos
)
/
exp_R
)
is_differentiable_on
Z
& ( for
x
being
Real
st
x
in
Z
holds
(
(
(
1
/
2
)
(#)
(
(
sin
-
cos
)
/
exp_R
)
)
`|
Z
)
.
x
=
(
cos
.
x
)
/
(
exp_R
.
x
)
) )
proof
end;
::f.x=cos.x/exp_R.x
theorem
:: INTEGR13:10
for
A
being non
empty
closed_interval
Subset
of
REAL
for
f
being
PartFunc
of
REAL
,
REAL
for
Z
being
open
Subset
of
REAL
st
A
c=
Z
&
f
=
cos
/
exp_R
&
Z
c=
dom
(
(
1
/
2
)
(#)
(
(
sin
-
cos
)
/
exp_R
)
)
&
Z
=
dom
f
&
f
|
A
is
continuous
holds
integral
(
f
,
A
)
=
(
(
(
1
/
2
)
(#)
(
(
sin
-
cos
)
/
exp_R
)
)
.
(
upper_bound
A
)
)
-
(
(
(
1
/
2
)
(#)
(
(
sin
-
cos
)
/
exp_R
)
)
.
(
lower_bound
A
)
)
proof
end;
::f.x=exp_R.x*(sin.x+cos.x)
theorem
:: INTEGR13:11
for
A
being non
empty
closed_interval
Subset
of
REAL
for
f
being
PartFunc
of
REAL
,
REAL
for
Z
being
open
Subset
of
REAL
st
A
c=
Z
&
f
=
exp_R
(#)
(
sin
+
cos
)
&
Z
c=
dom
(
exp_R
(#)
sin
)
&
Z
=
dom
f
&
f
|
A
is
continuous
holds
integral
(
f
,
A
)
=
(
(
exp_R
(#)
sin
)
.
(
upper_bound
A
)
)
-
(
(
exp_R
(#)
sin
)
.
(
lower_bound
A
)
)
proof
end;
::f.x=exp_R.x*(cos.x-sin.x)
theorem
:: INTEGR13:12
for
A
being non
empty
closed_interval
Subset
of
REAL
for
f
being
PartFunc
of
REAL
,
REAL
for
Z
being
open
Subset
of
REAL
st
A
c=
Z
&
f
=
exp_R
(#)
(
cos
-
sin
)
&
Z
c=
dom
(
exp_R
(#)
cos
)
&
Z
=
dom
f
&
f
|
A
is
continuous
holds
integral
(
f
,
A
)
=
(
(
exp_R
(#)
cos
)
.
(
upper_bound
A
)
)
-
(
(
exp_R
(#)
cos
)
.
(
lower_bound
A
)
)
proof
end;
::f.x=-sin.x/cos.x/x^2+1/x/(cos.x)^2
theorem
:: INTEGR13:13
for
A
being non
empty
closed_interval
Subset
of
REAL
for
f
,
f1
being
PartFunc
of
REAL
,
REAL
for
Z
being
open
Subset
of
REAL
st
A
c=
Z
&
f1
=
#Z
2 &
f
=
(
-
(
(
sin
/
cos
)
/
f1
)
)
+
(
(
(
id
Z
)
^
)
/
(
cos
^2
)
)
&
Z
c=
dom
(
(
(
id
Z
)
^
)
(#)
tan
)
&
Z
=
dom
f
&
f
|
A
is
continuous
holds
integral
(
f
,
A
)
=
(
(
(
(
id
Z
)
^
)
(#)
tan
)
.
(
upper_bound
A
)
)
-
(
(
(
(
id
Z
)
^
)
(#)
tan
)
.
(
lower_bound
A
)
)
proof
end;
::f.x=-cos.x/sin.x/x^2-1/x/(sin.x)^2
theorem
:: INTEGR13:14
for
A
being non
empty
closed_interval
Subset
of
REAL
for
f
,
f1
being
PartFunc
of
REAL
,
REAL
for
Z
being
open
Subset
of
REAL
st
A
c=
Z
&
f
=
(
-
(
(
cos
/
sin
)
/
f1
)
)
-
(
(
(
id
Z
)
^
)
/
(
sin
^2
)
)
&
f1
=
#Z
2 &
Z
c=
dom
(
(
(
id
Z
)
^
)
(#)
cot
)
&
Z
=
dom
f
&
f
|
A
is
continuous
holds
integral
(
f
,
A
)
=
(
(
(
(
id
Z
)
^
)
(#)
cot
)
.
(
upper_bound
A
)
)
-
(
(
(
(
id
Z
)
^
)
(#)
cot
)
.
(
lower_bound
A
)
)
proof
end;
::f.x=sin.x/cos.x/x+ln.x/(cos.x)^2
theorem
:: INTEGR13:15
for
A
being non
empty
closed_interval
Subset
of
REAL
for
f
being
PartFunc
of
REAL
,
REAL
for
Z
being
open
Subset
of
REAL
st
A
c=
Z
&
f
=
(
(
sin
/
cos
)
/
(
id
Z
)
)
+
(
ln
/
(
cos
^2
)
)
&
Z
c=
dom
(
ln
(#)
tan
)
&
Z
=
dom
f
&
f
|
A
is
continuous
holds
integral
(
f
,
A
)
=
(
(
ln
(#)
tan
)
.
(
upper_bound
A
)
)
-
(
(
ln
(#)
tan
)
.
(
lower_bound
A
)
)
proof
end;
::f.x=cos.x/sin.x/x-ln.x/(sin.x)^2
theorem
:: INTEGR13:16
for
A
being non
empty
closed_interval
Subset
of
REAL
for
f
being
PartFunc
of
REAL
,
REAL
for
Z
being
open
Subset
of
REAL
st
A
c=
Z
&
f
=
(
(
cos
/
sin
)
/
(
id
Z
)
)
-
(
ln
/
(
sin
^2
)
)
&
Z
c=
dom
(
ln
(#)
cot
)
&
Z
=
dom
f
&
f
|
A
is
continuous
holds
integral
(
f
,
A
)
=
(
(
ln
(#)
cot
)
.
(
upper_bound
A
)
)
-
(
(
ln
(#)
cot
)
.
(
lower_bound
A
)
)
proof
end;
::f.x=tan.x/x+ln.x/(cos.x)^2
theorem
:: INTEGR13:17
for
A
being non
empty
closed_interval
Subset
of
REAL
for
f
being
PartFunc
of
REAL
,
REAL
for
Z
being
open
Subset
of
REAL
st
A
c=
Z
&
f
=
(
tan
/
(
id
Z
)
)
+
(
ln
/
(
cos
^2
)
)
&
Z
c=
dom
(
ln
(#)
tan
)
&
Z
c=
dom
tan
&
Z
=
dom
f
&
f
|
A
is
continuous
holds
integral
(
f
,
A
)
=
(
(
ln
(#)
tan
)
.
(
upper_bound
A
)
)
-
(
(
ln
(#)
tan
)
.
(
lower_bound
A
)
)
proof
end;
::f.x=cot.x/x-ln.x/(sin.x)^2
theorem
:: INTEGR13:18
for
A
being non
empty
closed_interval
Subset
of
REAL
for
f
being
PartFunc
of
REAL
,
REAL
for
Z
being
open
Subset
of
REAL
st
A
c=
Z
&
f
=
(
cot
/
(
id
Z
)
)
-
(
ln
/
(
sin
^2
)
)
&
Z
c=
dom
(
ln
(#)
cot
)
&
Z
c=
dom
cot
&
Z
=
dom
f
&
f
|
A
is
continuous
holds
integral
(
f
,
A
)
=
(
(
ln
(#)
cot
)
.
(
upper_bound
A
)
)
-
(
(
ln
(#)
cot
)
.
(
lower_bound
A
)
)
proof
end;
::f.x=arctan.x/x+ln.x/(1+x^2)
theorem
:: INTEGR13:19
for
A
being non
empty
closed_interval
Subset
of
REAL
for
f
,
f1
being
PartFunc
of
REAL
,
REAL
for
Z
being
open
Subset
of
REAL
st
A
c=
Z
& ( for
x
being
Real
st
x
in
Z
holds
f1
.
x
=
1 ) &
f
=
(
arctan
/
(
id
Z
)
)
+
(
ln
/
(
f1
+
(
#Z
2
)
)
)
&
Z
c=
].
(
-
1
)
,1
.[
&
Z
=
dom
f
&
f
|
A
is
continuous
holds
integral
(
f
,
A
)
=
(
(
ln
(#)
arctan
)
.
(
upper_bound
A
)
)
-
(
(
ln
(#)
arctan
)
.
(
lower_bound
A
)
)
proof
end;
::f.x=arccot.x/x-ln.x/(1+x^2)
theorem
:: INTEGR13:20
for
A
being non
empty
closed_interval
Subset
of
REAL
for
f
,
f1
being
PartFunc
of
REAL
,
REAL
for
Z
being
open
Subset
of
REAL
st
A
c=
Z
& ( for
x
being
Real
st
x
in
Z
holds
f1
.
x
=
1 ) &
f
=
(
arccot
/
(
id
Z
)
)
-
(
ln
/
(
f1
+
(
#Z
2
)
)
)
&
Z
c=
].
(
-
1
)
,1
.[
&
Z
=
dom
f
&
f
|
A
is
continuous
holds
integral
(
f
,
A
)
=
(
(
ln
(#)
arccot
)
.
(
upper_bound
A
)
)
-
(
(
ln
(#)
arccot
)
.
(
lower_bound
A
)
)
proof
end;
::f.x=exp_R.(tan.x)/(cos.x)^2
theorem
:: INTEGR13:21
for
A
being non
empty
closed_interval
Subset
of
REAL
for
f
being
PartFunc
of
REAL
,
REAL
for
Z
being
open
Subset
of
REAL
st
A
c=
Z
&
f
=
(
exp_R
*
tan
)
/
(
cos
^2
)
&
Z
=
dom
f
&
f
|
A
is
continuous
holds
integral
(
f
,
A
)
=
(
(
exp_R
*
tan
)
.
(
upper_bound
A
)
)
-
(
(
exp_R
*
tan
)
.
(
lower_bound
A
)
)
proof
end;
::f.x=-exp_R.(cot.x)/(sin.x)^2
theorem
:: INTEGR13:22
for
A
being non
empty
closed_interval
Subset
of
REAL
for
f
being
PartFunc
of
REAL
,
REAL
for
Z
being
open
Subset
of
REAL
st
A
c=
Z
&
f
=
-
(
(
exp_R
*
cot
)
/
(
sin
^2
)
)
&
Z
=
dom
f
&
f
|
A
is
continuous
holds
integral
(
f
,
A
)
=
(
(
exp_R
*
cot
)
.
(
upper_bound
A
)
)
-
(
(
exp_R
*
cot
)
.
(
lower_bound
A
)
)
proof
end;
theorem
Th23
:
:: INTEGR13:23
for
Z
being
open
Subset
of
REAL
st
Z
c=
dom
(
exp_R
*
cot
)
holds
(
-
(
exp_R
*
cot
)
is_differentiable_on
Z
& ( for
x
being
Real
st
x
in
Z
holds
(
(
-
(
exp_R
*
cot
)
)
`|
Z
)
.
x
=
(
exp_R
.
(
cot
.
x
)
)
/
(
(
sin
.
x
)
^2
)
) )
proof
end;
::f.x=exp_R.(cot.x)/(sin.x)^2
theorem
:: INTEGR13:24
for
A
being non
empty
closed_interval
Subset
of
REAL
for
f
being
PartFunc
of
REAL
,
REAL
for
Z
being
open
Subset
of
REAL
st
A
c=
Z
&
f
=
(
exp_R
*
cot
)
/
(
sin
^2
)
&
Z
=
dom
f
&
f
|
A
is
continuous
holds
integral
(
f
,
A
)
=
(
(
-
(
exp_R
*
cot
)
)
.
(
upper_bound
A
)
)
-
(
(
-
(
exp_R
*
cot
)
)
.
(
lower_bound
A
)
)
proof
end;
::f.x=1/(x*(cos.(ln.x))^2)
theorem
:: INTEGR13:25
for
A
being non
empty
closed_interval
Subset
of
REAL
for
f
being
PartFunc
of
REAL
,
REAL
for
Z
being
open
Subset
of
REAL
st
A
c=
Z
&
f
=
(
(
id
Z
)
(#)
(
(
cos
*
ln
)
^2
)
)
^
&
Z
c=
dom
(
tan
*
ln
)
&
Z
=
dom
f
&
f
|
A
is
continuous
holds
integral
(
f
,
A
)
=
(
(
tan
*
ln
)
.
(
upper_bound
A
)
)
-
(
(
tan
*
ln
)
.
(
lower_bound
A
)
)
proof
end;
::f.x= -1/(x*(sin.(ln.x))^2)
theorem
:: INTEGR13:26
for
A
being non
empty
closed_interval
Subset
of
REAL
for
f
being
PartFunc
of
REAL
,
REAL
for
Z
being
open
Subset
of
REAL
st
A
c=
Z
&
f
=
-
(
(
(
id
Z
)
(#)
(
(
sin
*
ln
)
^2
)
)
^
)
&
Z
c=
dom
(
cot
*
ln
)
&
Z
=
dom
f
&
f
|
A
is
continuous
holds
integral
(
f
,
A
)
=
(
(
cot
*
ln
)
.
(
upper_bound
A
)
)
-
(
(
cot
*
ln
)
.
(
lower_bound
A
)
)
proof
end;
theorem
Th27
:
:: INTEGR13:27
for
Z
being
open
Subset
of
REAL
st
Z
c=
dom
(
cot
*
ln
)
holds
(
-
(
cot
*
ln
)
is_differentiable_on
Z
& ( for
x
being
Real
st
x
in
Z
holds
(
(
-
(
cot
*
ln
)
)
`|
Z
)
.
x
=
1
/
(
x
*
(
(
sin
.
(
ln
.
x
)
)
^2
)
)
) )
proof
end;
::f.x= 1/(x*(sin.(ln.x))^2)
theorem
:: INTEGR13:28
for
A
being non
empty
closed_interval
Subset
of
REAL
for
f
being
PartFunc
of
REAL
,
REAL
for
Z
being
open
Subset
of
REAL
st
A
c=
Z
&
f
=
(
(
id
Z
)
(#)
(
(
sin
*
ln
)
^2
)
)
^
&
Z
c=
dom
(
cot
*
ln
)
&
Z
=
dom
f
&
f
|
A
is
continuous
holds
integral
(
f
,
A
)
=
(
(
-
(
cot
*
ln
)
)
.
(
upper_bound
A
)
)
-
(
(
-
(
cot
*
ln
)
)
.
(
lower_bound
A
)
)
proof
end;
::f.x=exp_R.x/(cos.(exp_R.x))^2
theorem
:: INTEGR13:29
for
A
being non
empty
closed_interval
Subset
of
REAL
for
f
being
PartFunc
of
REAL
,
REAL
for
Z
being
open
Subset
of
REAL
st
A
c=
Z
&
f
=
exp_R
/
(
(
cos
*
exp_R
)
^2
)
&
Z
c=
dom
(
tan
*
exp_R
)
&
Z
=
dom
f
&
f
|
A
is
continuous
holds
integral
(
f
,
A
)
=
(
(
tan
*
exp_R
)
.
(
upper_bound
A
)
)
-
(
(
tan
*
exp_R
)
.
(
lower_bound
A
)
)
proof
end;
::f.x=-exp_R.x/(sin.(exp_R.x))^2
theorem
:: INTEGR13:30
for
A
being non
empty
closed_interval
Subset
of
REAL
for
f
being
PartFunc
of
REAL
,
REAL
for
Z
being
open
Subset
of
REAL
st
A
c=
Z
&
f
=
-
(
exp_R
/
(
(
sin
*
exp_R
)
^2
)
)
&
Z
c=
dom
(
cot
*
exp_R
)
&
Z
=
dom
f
&
f
|
A
is
continuous
holds
integral
(
f
,
A
)
=
(
(
cot
*
exp_R
)
.
(
upper_bound
A
)
)
-
(
(
cot
*
exp_R
)
.
(
lower_bound
A
)
)
proof
end;
theorem
Th31
:
:: INTEGR13:31
for
Z
being
open
Subset
of
REAL
st
Z
c=
dom
(
cot
*
exp_R
)
holds
(
-
(
cot
*
exp_R
)
is_differentiable_on
Z
& ( for
x
being
Real
st
x
in
Z
holds
(
(
-
(
cot
*
exp_R
)
)
`|
Z
)
.
x
=
(
exp_R
.
x
)
/
(
(
sin
.
(
exp_R
.
x
)
)
^2
)
) )
proof
end;
::f.x=exp_R.x/(sin.(exp_R.x))^2
theorem
:: INTEGR13:32
for
A
being non
empty
closed_interval
Subset
of
REAL
for
f
being
PartFunc
of
REAL
,
REAL
for
Z
being
open
Subset
of
REAL
st
A
c=
Z
&
f
=
exp_R
/
(
(
sin
*
exp_R
)
^2
)
&
Z
c=
dom
(
cot
*
exp_R
)
&
Z
=
dom
f
&
f
|
A
is
continuous
holds
integral
(
f
,
A
)
=
(
(
-
(
cot
*
exp_R
)
)
.
(
upper_bound
A
)
)
-
(
(
-
(
cot
*
exp_R
)
)
.
(
lower_bound
A
)
)
proof
end;
::f.x=-1/(x^2*(cos.(1/x))^2)
theorem
:: INTEGR13:33
for
A
being non
empty
closed_interval
Subset
of
REAL
for
f
being
PartFunc
of
REAL
,
REAL
for
Z
being
open
Subset
of
REAL
st
A
c=
Z
& ( for
x
being
Real
st
x
in
Z
holds
f
.
x
=
-
(
1
/
(
(
x
^2
)
*
(
(
cos
.
(
1
/
x
)
)
^2
)
)
)
) &
Z
c=
dom
(
tan
*
(
(
id
Z
)
^
)
)
&
Z
=
dom
f
&
f
|
A
is
continuous
holds
integral
(
f
,
A
)
=
(
(
tan
*
(
(
id
Z
)
^
)
)
.
(
upper_bound
A
)
)
-
(
(
tan
*
(
(
id
Z
)
^
)
)
.
(
lower_bound
A
)
)
proof
end;
theorem
Th34
:
:: INTEGR13:34
for
Z
being
open
Subset
of
REAL
st
Z
c=
dom
(
tan
*
(
(
id
Z
)
^
)
)
holds
(
-
(
tan
*
(
(
id
Z
)
^
)
)
is_differentiable_on
Z
& ( for
x
being
Real
st
x
in
Z
holds
(
(
-
(
tan
*
(
(
id
Z
)
^
)
)
)
`|
Z
)
.
x
=
1
/
(
(
x
^2
)
*
(
(
cos
.
(
1
/
x
)
)
^2
)
)
) )
proof
end;
::f.x=1/(x^2*(cos.(1/x))^2)
theorem
:: INTEGR13:35
for
A
being non
empty
closed_interval
Subset
of
REAL
for
f
being
PartFunc
of
REAL
,
REAL
for
Z
being
open
Subset
of
REAL
st
A
c=
Z
& ( for
x
being
Real
st
x
in
Z
holds
f
.
x
=
1
/
(
(
x
^2
)
*
(
(
cos
.
(
1
/
x
)
)
^2
)
)
) &
Z
c=
dom
(
tan
*
(
(
id
Z
)
^
)
)
&
Z
=
dom
f
&
f
|
A
is
continuous
holds
integral
(
f
,
A
)
=
(
(
-
(
tan
*
(
(
id
Z
)
^
)
)
)
.
(
upper_bound
A
)
)
-
(
(
-
(
tan
*
(
(
id
Z
)
^
)
)
)
.
(
lower_bound
A
)
)
proof
end;
::f.x=1/(x^2*(sin.(1/x))^2)
theorem
:: INTEGR13:36
for
A
being non
empty
closed_interval
Subset
of
REAL
for
f
being
PartFunc
of
REAL
,
REAL
for
Z
being
open
Subset
of
REAL
st
A
c=
Z
& ( for
x
being
Real
st
x
in
Z
holds
f
.
x
=
1
/
(
(
x
^2
)
*
(
(
sin
.
(
1
/
x
)
)
^2
)
)
) &
Z
c=
dom
(
cot
*
(
(
id
Z
)
^
)
)
&
Z
=
dom
f
&
f
|
A
is
continuous
holds
integral
(
f
,
A
)
=
(
(
cot
*
(
(
id
Z
)
^
)
)
.
(
upper_bound
A
)
)
-
(
(
cot
*
(
(
id
Z
)
^
)
)
.
(
lower_bound
A
)
)
proof
end;
::f.x=1/((1+x^2)*arctan.x)
theorem
:: INTEGR13:37
for
A
being non
empty
closed_interval
Subset
of
REAL
for
f
,
f1
being
PartFunc
of
REAL
,
REAL
for
Z
being
open
Subset
of
REAL
st
A
c=
Z
& ( for
x
being
Real
st
x
in
Z
holds
(
f1
.
x
=
1 &
arctan
.
x
>
0
) ) &
f
=
(
(
f1
+
(
#Z
2
)
)
(#)
arctan
)
^
&
Z
c=
].
(
-
1
)
,1
.[
&
Z
c=
dom
(
ln
*
arctan
)
&
Z
=
dom
f
&
f
|
A
is
continuous
holds
integral
(
f
,
A
)
=
(
(
ln
*
arctan
)
.
(
upper_bound
A
)
)
-
(
(
ln
*
arctan
)
.
(
lower_bound
A
)
)
proof
end;
::f.x=n*(arctan.x) #Z (n-1) / (1+x^2)
theorem
:: INTEGR13:38
for
n
being
Element
of
NAT
for
A
being non
empty
closed_interval
Subset
of
REAL
for
f
,
f1
being
PartFunc
of
REAL
,
REAL
for
Z
being
open
Subset
of
REAL
st
A
c=
Z
&
f
=
n
(#)
(
(
(
#Z
(
n
-
1
)
)
*
arctan
)
/
(
f1
+
(
#Z
2
)
)
)
& ( for
x
being
Real
st
x
in
Z
holds
f1
.
x
=
1 ) &
Z
c=
].
(
-
1
)
,1
.[
&
Z
c=
dom
(
(
#Z
n
)
*
arctan
)
&
Z
=
dom
f
&
f
|
A
is
continuous
holds
integral
(
f
,
A
)
=
(
(
(
#Z
n
)
*
arctan
)
.
(
upper_bound
A
)
)
-
(
(
(
#Z
n
)
*
arctan
)
.
(
lower_bound
A
)
)
proof
end;
::f.x=-n*(arccot.x) #Z (n-1) / (1+x^2)
theorem
:: INTEGR13:39
for
n
being
Element
of
NAT
for
A
being non
empty
closed_interval
Subset
of
REAL
for
f
,
f1
being
PartFunc
of
REAL
,
REAL
for
Z
being
open
Subset
of
REAL
st
A
c=
Z
& ( for
x
being
Real
st
x
in
Z
holds
f1
.
x
=
1 ) &
f
=
-
(
n
(#)
(
(
(
#Z
(
n
-
1
)
)
*
arccot
)
/
(
f1
+
(
#Z
2
)
)
)
)
&
Z
c=
].
(
-
1
)
,1
.[
&
Z
c=
dom
(
(
#Z
n
)
*
arccot
)
&
Z
=
dom
f
&
f
|
A
is
continuous
holds
integral
(
f
,
A
)
=
(
(
(
#Z
n
)
*
arccot
)
.
(
upper_bound
A
)
)
-
(
(
(
#Z
n
)
*
arccot
)
.
(
lower_bound
A
)
)
proof
end;
theorem
Th40
:
:: INTEGR13:40
for
n
being
Element
of
NAT
for
Z
being
open
Subset
of
REAL
st
Z
c=
dom
(
(
#Z
n
)
*
arccot
)
&
Z
c=
].
(
-
1
)
,1
.[
holds
(
-
(
(
#Z
n
)
*
arccot
)
is_differentiable_on
Z
& ( for
x
being
Real
st
x
in
Z
holds
(
(
-
(
(
#Z
n
)
*
arccot
)
)
`|
Z
)
.
x
=
(
n
*
(
(
arccot
.
x
)
#Z
(
n
-
1
)
)
)
/
(
1
+
(
x
^2
)
)
) )
proof
end;
::f.x=n*(arccot.x) #Z (n-1) / (1+x^2)
theorem
:: INTEGR13:41
for
n
being
Element
of
NAT
for
A
being non
empty
closed_interval
Subset
of
REAL
for
f
,
f1
being
PartFunc
of
REAL
,
REAL
for
Z
being
open
Subset
of
REAL
st
A
c=
Z
& ( for
x
being
Real
st
x
in
Z
holds
f1
.
x
=
1 ) &
f
=
n
(#)
(
(
(
#Z
(
n
-
1
)
)
*
arccot
)
/
(
f1
+
(
#Z
2
)
)
)
&
Z
c=
].
(
-
1
)
,1
.[
&
Z
c=
dom
(
(
#Z
n
)
*
arccot
)
&
Z
=
dom
f
&
f
|
A
is
continuous
holds
integral
(
f
,
A
)
=
(
(
-
(
(
#Z
n
)
*
arccot
)
)
.
(
upper_bound
A
)
)
-
(
(
-
(
(
#Z
n
)
*
arccot
)
)
.
(
lower_bound
A
)
)
proof
end;
::f.x=arctan.x / (1+x^2)
theorem
:: INTEGR13:42
for
A
being non
empty
closed_interval
Subset
of
REAL
for
f
,
f1
being
PartFunc
of
REAL
,
REAL
for
Z
being
open
Subset
of
REAL
st
A
c=
Z
& ( for
x
being
Real
st
x
in
Z
holds
f1
.
x
=
1 ) &
f
=
arctan
/
(
f1
+
(
#Z
2
)
)
&
Z
c=
].
(
-
1
)
,1
.[
&
Z
c=
dom
(
(
#Z
2
)
*
arctan
)
&
Z
=
dom
f
&
f
|
A
is
continuous
holds
integral
(
f
,
A
)
=
(
(
(
1
/
2
)
(#)
(
(
#Z
2
)
*
arctan
)
)
.
(
upper_bound
A
)
)
-
(
(
(
1
/
2
)
(#)
(
(
#Z
2
)
*
arctan
)
)
.
(
lower_bound
A
)
)
proof
end;
::f.x=-arccot.x / (1+x^2)
theorem
:: INTEGR13:43
for
A
being non
empty
closed_interval
Subset
of
REAL
for
f
,
f1
being
PartFunc
of
REAL
,
REAL
for
Z
being
open
Subset
of
REAL
st
A
c=
Z
& ( for
x
being
Real
st
x
in
Z
holds
f1
.
x
=
1 ) &
f
=
-
(
arccot
/
(
f1
+
(
#Z
2
)
)
)
&
Z
c=
].
(
-
1
)
,1
.[
&
Z
c=
dom
(
(
#Z
2
)
*
arccot
)
&
Z
=
dom
f
&
f
|
A
is
continuous
holds
integral
(
f
,
A
)
=
(
(
(
1
/
2
)
(#)
(
(
#Z
2
)
*
arccot
)
)
.
(
upper_bound
A
)
)
-
(
(
(
1
/
2
)
(#)
(
(
#Z
2
)
*
arccot
)
)
.
(
lower_bound
A
)
)
proof
end;
theorem
Th44
:
:: INTEGR13:44
for
Z
being
open
Subset
of
REAL
st
Z
c=
dom
(
(
#Z
2
)
*
arccot
)
&
Z
c=
].
(
-
1
)
,1
.[
holds
(
-
(
(
1
/
2
)
(#)
(
(
#Z
2
)
*
arccot
)
)
is_differentiable_on
Z
& ( for
x
being
Real
st
x
in
Z
holds
(
(
-
(
(
1
/
2
)
(#)
(
(
#Z
2
)
*
arccot
)
)
)
`|
Z
)
.
x
=
(
arccot
.
x
)
/
(
1
+
(
x
^2
)
)
) )
proof
end;
::f.x=arccot.x / (1+x^2)
theorem
:: INTEGR13:45
for
A
being non
empty
closed_interval
Subset
of
REAL
for
f
,
f1
being
PartFunc
of
REAL
,
REAL
for
Z
being
open
Subset
of
REAL
st
A
c=
Z
& ( for
x
being
Real
st
x
in
Z
holds
f1
.
x
=
1 ) &
f
=
arccot
/
(
f1
+
(
#Z
2
)
)
&
Z
c=
].
(
-
1
)
,1
.[
&
Z
c=
dom
(
(
#Z
2
)
*
arccot
)
&
Z
=
dom
f
&
f
|
A
is
continuous
holds
integral
(
f
,
A
)
=
(
(
-
(
(
1
/
2
)
(#)
(
(
#Z
2
)
*
arccot
)
)
)
.
(
upper_bound
A
)
)
-
(
(
-
(
(
1
/
2
)
(#)
(
(
#Z
2
)
*
arccot
)
)
)
.
(
lower_bound
A
)
)
proof
end;
::f.x=arctan.x + x/(1+x^2)
theorem
:: INTEGR13:46
for
A
being non
empty
closed_interval
Subset
of
REAL
for
f
,
f1
being
PartFunc
of
REAL
,
REAL
for
Z
being
open
Subset
of
REAL
st
A
c=
Z
& ( for
x
being
Real
st
x
in
Z
holds
f1
.
x
=
1 ) &
f
=
arctan
+
(
(
id
Z
)
/
(
f1
+
(
#Z
2
)
)
)
&
Z
c=
].
(
-
1
)
,1
.[
&
Z
=
dom
f
&
f
|
A
is
continuous
holds
integral
(
f
,
A
)
=
(
(
(
id
Z
)
(#)
arctan
)
.
(
upper_bound
A
)
)
-
(
(
(
id
Z
)
(#)
arctan
)
.
(
lower_bound
A
)
)
proof
end;
::f.x=arccot.x - x/(1+x^2)
theorem
:: INTEGR13:47
for
A
being non
empty
closed_interval
Subset
of
REAL
for
f
,
f1
being
PartFunc
of
REAL
,
REAL
for
Z
being
open
Subset
of
REAL
st
A
c=
Z
& ( for
x
being
Real
st
x
in
Z
holds
f1
.
x
=
1 ) &
f
=
arccot
-
(
(
id
Z
)
/
(
f1
+
(
#Z
2
)
)
)
&
Z
c=
].
(
-
1
)
,1
.[
&
Z
=
dom
f
&
f
|
A
is
continuous
holds
integral
(
f
,
A
)
=
(
(
(
id
Z
)
(#)
arccot
)
.
(
upper_bound
A
)
)
-
(
(
(
id
Z
)
(#)
arccot
)
.
(
lower_bound
A
)
)
proof
end;
::f.x=exp_R.(arctan.x)/(1+x^2)
theorem
:: INTEGR13:48
for
A
being non
empty
closed_interval
Subset
of
REAL
for
f
,
f1
being
PartFunc
of
REAL
,
REAL
for
Z
being
open
Subset
of
REAL
st
A
c=
Z
&
Z
c=
].
(
-
1
)
,1
.[
&
f
=
(
exp_R
*
arctan
)
/
(
f1
+
(
#Z
2
)
)
& ( for
x
being
Real
st
x
in
Z
holds
f1
.
x
=
1 ) &
Z
=
dom
f
&
f
|
A
is
continuous
holds
integral
(
f
,
A
)
=
(
(
exp_R
*
arctan
)
.
(
upper_bound
A
)
)
-
(
(
exp_R
*
arctan
)
.
(
lower_bound
A
)
)
proof
end;
::f.x=-exp_R.(arccot.x)/(1+x^2)
theorem
:: INTEGR13:49
for
A
being non
empty
closed_interval
Subset
of
REAL
for
f
,
f1
being
PartFunc
of
REAL
,
REAL
for
Z
being
open
Subset
of
REAL
st
A
c=
Z
&
Z
c=
].
(
-
1
)
,1
.[
&
f
=
-
(
(
exp_R
*
arccot
)
/
(
f1
+
(
#Z
2
)
)
)
& ( for
x
being
Real
st
x
in
Z
holds
f1
.
x
=
1 ) &
Z
=
dom
f
&
f
|
A
is
continuous
holds
integral
(
f
,
A
)
=
(
(
exp_R
*
arccot
)
.
(
upper_bound
A
)
)
-
(
(
exp_R
*
arccot
)
.
(
lower_bound
A
)
)
proof
end;
theorem
Th50
:
:: INTEGR13:50
for
Z
being
open
Subset
of
REAL
st
Z
c=
dom
(
exp_R
*
arccot
)
&
Z
c=
].
(
-
1
)
,1
.[
holds
(
-
(
exp_R
*
arccot
)
is_differentiable_on
Z
& ( for
x
being
Real
st
x
in
Z
holds
(
(
-
(
exp_R
*
arccot
)
)
`|
Z
)
.
x
=
(
exp_R
.
(
arccot
.
x
)
)
/
(
1
+
(
x
^2
)
)
) )
proof
end;
::f.x=exp_R.(arccot.x)/(1+x^2)
theorem
:: INTEGR13:51
for
A
being non
empty
closed_interval
Subset
of
REAL
for
f
,
f1
being
PartFunc
of
REAL
,
REAL
for
Z
being
open
Subset
of
REAL
st
A
c=
Z
&
Z
c=
].
(
-
1
)
,1
.[
&
f
=
(
exp_R
*
arccot
)
/
(
f1
+
(
#Z
2
)
)
& ( for
x
being
Real
st
x
in
Z
holds
f1
.
x
=
1 ) &
Z
=
dom
f
&
f
|
A
is
continuous
holds
integral
(
f
,
A
)
=
(
(
-
(
exp_R
*
arccot
)
)
.
(
upper_bound
A
)
)
-
(
(
-
(
exp_R
*
arccot
)
)
.
(
lower_bound
A
)
)
proof
end;
::f.x=x/(1+x^2)
theorem
:: INTEGR13:52
for
A
being non
empty
closed_interval
Subset
of
REAL
for
f
,
f1
,
f2
being
PartFunc
of
REAL
,
REAL
for
Z
being
open
Subset
of
REAL
st
A
c=
Z
&
Z
c=
dom
(
ln
*
(
f1
+
f2
)
)
&
f
=
(
id
Z
)
/
(
f1
+
f2
)
&
f2
=
#Z
2 & ( for
x
being
Real
st
x
in
Z
holds
f1
.
x
=
1 ) &
Z
=
dom
f
&
f
|
A
is
continuous
holds
integral
(
f
,
A
)
=
(
(
(
1
/
2
)
(#)
(
ln
*
(
f1
+
f2
)
)
)
.
(
upper_bound
A
)
)
-
(
(
(
1
/
2
)
(#)
(
ln
*
(
f1
+
f2
)
)
)
.
(
lower_bound
A
)
)
proof
end;
::f.x=x/(a*(1+(x/a)^2))
theorem
:: INTEGR13:53
for
a
being
Real
for
A
being non
empty
closed_interval
Subset
of
REAL
for
f
,
h
,
f1
,
f2
being
PartFunc
of
REAL
,
REAL
for
Z
being
open
Subset
of
REAL
st
A
c=
Z
&
Z
c=
dom
(
ln
*
(
f1
+
f2
)
)
&
f
=
(
id
Z
)
/
(
a
(#)
(
f1
+
f2
)
)
& ( for
x
being
Real
st
x
in
Z
holds
(
h
.
x
=
x
/
a
&
f1
.
x
=
1 ) ) &
a
<>
0
&
f2
=
(
#Z
2
)
*
h
&
Z
=
dom
f
&
f
|
A
is
continuous
holds
integral
(
f
,
A
)
=
(
(
(
a
/
2
)
(#)
(
ln
*
(
f1
+
f2
)
)
)
.
(
upper_bound
A
)
)
-
(
(
(
a
/
2
)
(#)
(
ln
*
(
f1
+
f2
)
)
)
.
(
lower_bound
A
)
)
proof
end;
theorem
Th54
:
:: INTEGR13:54
for
Z
being
open
Subset
of
REAL
st
Z
c=
dom
(
(
(
id
Z
)
^
)
(#)
arctan
)
&
Z
c=
].
(
-
1
)
,1
.[
holds
(
-
(
(
(
id
Z
)
^
)
(#)
arctan
)
is_differentiable_on
Z
& ( for
x
being
Real
st
x
in
Z
holds
(
(
-
(
(
(
id
Z
)
^
)
(#)
arctan
)
)
`|
Z
)
.
x
=
(
(
arctan
.
x
)
/
(
x
^2
)
)
-
(
1
/
(
x
*
(
1
+
(
x
^2
)
)
)
)
) )
proof
end;
theorem
Th55
:
:: INTEGR13:55
for
Z
being
open
Subset
of
REAL
st
Z
c=
dom
(
(
(
id
Z
)
^
)
(#)
arccot
)
&
Z
c=
].
(
-
1
)
,1
.[
holds
(
-
(
(
(
id
Z
)
^
)
(#)
arccot
)
is_differentiable_on
Z
& ( for
x
being
Real
st
x
in
Z
holds
(
(
-
(
(
(
id
Z
)
^
)
(#)
arccot
)
)
`|
Z
)
.
x
=
(
(
arccot
.
x
)
/
(
x
^2
)
)
+
(
1
/
(
x
*
(
1
+
(
x
^2
)
)
)
)
) )
proof
end;
::f.x=arctan.x/(x^2)-1/(x*(1+x^2))
theorem
:: INTEGR13:56
for
A
being non
empty
closed_interval
Subset
of
REAL
for
f
,
f1
being
PartFunc
of
REAL
,
REAL
for
Z
being
open
Subset
of
REAL
st
A
c=
Z
& ( for
x
being
Real
st
x
in
Z
holds
f1
.
x
=
1 ) &
f
=
(
arctan
/
(
#Z
2
)
)
-
(
(
(
id
Z
)
(#)
(
f1
+
(
#Z
2
)
)
)
^
)
&
Z
c=
dom
(
(
(
id
Z
)
^
)
(#)
arctan
)
&
Z
c=
].
(
-
1
)
,1
.[
&
Z
=
dom
f
&
f
|
A
is
continuous
holds
integral
(
f
,
A
)
=
(
(
-
(
(
(
id
Z
)
^
)
(#)
arctan
)
)
.
(
upper_bound
A
)
)
-
(
(
-
(
(
(
id
Z
)
^
)
(#)
arctan
)
)
.
(
lower_bound
A
)
)
proof
end;
::f.x=arccot.x/(x^2)+1/(x*(1+x^2))
theorem
:: INTEGR13:57
for
A
being non
empty
closed_interval
Subset
of
REAL
for
f
,
f1
being
PartFunc
of
REAL
,
REAL
for
Z
being
open
Subset
of
REAL
st
A
c=
Z
& ( for
x
being
Real
st
x
in
Z
holds
f1
.
x
=
1 ) &
f
=
(
arccot
/
(
#Z
2
)
)
+
(
(
(
id
Z
)
(#)
(
f1
+
(
#Z
2
)
)
)
^
)
&
Z
c=
dom
(
(
(
id
Z
)
^
)
(#)
arccot
)
&
Z
c=
].
(
-
1
)
,1
.[
&
Z
=
dom
f
&
f
|
A
is
continuous
holds
integral
(
f
,
A
)
=
(
(
-
(
(
(
id
Z
)
^
)
(#)
arccot
)
)
.
(
upper_bound
A
)
)
-
(
(
-
(
(
(
id
Z
)
^
)
(#)
arccot
)
)
.
(
lower_bound
A
)
)
proof
end;