theorem
for
s0,
s1,
s2,
s3,
s4,
s5,
s6,
s7,
ns0,
ns1,
ns2,
ns3,
ns4,
ns5,
ns6,
ns7,
q1,
q2,
q3,
nq1,
nq2,
nq3 being
set holds
not ( ( not
s0 is
empty implies not
AND3 (
(NOT1 q3),
(NOT1 q2),
(NOT1 q1)) is
empty ) & ( not
AND3 (
(NOT1 q3),
(NOT1 q2),
(NOT1 q1)) is
empty implies not
s0 is
empty ) & ( not
s1 is
empty implies not
AND3 (
(NOT1 q3),
(NOT1 q2),
q1) is
empty ) & ( not
AND3 (
(NOT1 q3),
(NOT1 q2),
q1) is
empty implies not
s1 is
empty ) & ( not
s2 is
empty implies not
AND3 (
(NOT1 q3),
q2,
(NOT1 q1)) is
empty ) & ( not
AND3 (
(NOT1 q3),
q2,
(NOT1 q1)) is
empty implies not
s2 is
empty ) & ( not
s3 is
empty implies not
AND3 (
(NOT1 q3),
q2,
q1) is
empty ) & ( not
AND3 (
(NOT1 q3),
q2,
q1) is
empty implies not
s3 is
empty ) & ( not
s4 is
empty implies not
AND3 (
q3,
(NOT1 q2),
(NOT1 q1)) is
empty ) & ( not
AND3 (
q3,
(NOT1 q2),
(NOT1 q1)) is
empty implies not
s4 is
empty ) & ( not
s5 is
empty implies not
AND3 (
q3,
(NOT1 q2),
q1) is
empty ) & ( not
AND3 (
q3,
(NOT1 q2),
q1) is
empty implies not
s5 is
empty ) & ( not
s6 is
empty implies not
AND3 (
q3,
q2,
(NOT1 q1)) is
empty ) & ( not
AND3 (
q3,
q2,
(NOT1 q1)) is
empty implies not
s6 is
empty ) & ( not
s7 is
empty implies not
AND3 (
q3,
q2,
q1) is
empty ) & ( not
AND3 (
q3,
q2,
q1) is
empty implies not
s7 is
empty ) & ( not
ns0 is
empty implies not
AND3 (
(NOT1 nq3),
(NOT1 nq2),
(NOT1 nq1)) is
empty ) & ( not
AND3 (
(NOT1 nq3),
(NOT1 nq2),
(NOT1 nq1)) is
empty implies not
ns0 is
empty ) & ( not
ns1 is
empty implies not
AND3 (
(NOT1 nq3),
(NOT1 nq2),
nq1) is
empty ) & ( not
AND3 (
(NOT1 nq3),
(NOT1 nq2),
nq1) is
empty implies not
ns1 is
empty ) & ( not
ns2 is
empty implies not
AND3 (
(NOT1 nq3),
nq2,
(NOT1 nq1)) is
empty ) & ( not
AND3 (
(NOT1 nq3),
nq2,
(NOT1 nq1)) is
empty implies not
ns2 is
empty ) & ( not
ns3 is
empty implies not
AND3 (
(NOT1 nq3),
nq2,
nq1) is
empty ) & ( not
AND3 (
(NOT1 nq3),
nq2,
nq1) is
empty implies not
ns3 is
empty ) & ( not
ns4 is
empty implies not
AND3 (
nq3,
(NOT1 nq2),
(NOT1 nq1)) is
empty ) & ( not
AND3 (
nq3,
(NOT1 nq2),
(NOT1 nq1)) is
empty implies not
ns4 is
empty ) & ( not
ns5 is
empty implies not
AND3 (
nq3,
(NOT1 nq2),
nq1) is
empty ) & ( not
AND3 (
nq3,
(NOT1 nq2),
nq1) is
empty implies not
ns5 is
empty ) & ( not
ns6 is
empty implies not
AND3 (
nq3,
nq2,
(NOT1 nq1)) is
empty ) & ( not
AND3 (
nq3,
nq2,
(NOT1 nq1)) is
empty implies not
ns6 is
empty ) & ( not
ns7 is
empty implies not
AND3 (
nq3,
nq2,
nq1) is
empty ) & ( not
AND3 (
nq3,
nq2,
nq1) is
empty implies not
ns7 is
empty ) & ( not
nq1 is
empty implies not
NOT1 q1 is
empty ) & ( not
NOT1 q1 is
empty implies not
nq1 is
empty ) & ( not
nq2 is
empty implies not
XOR2 (
q1,
q2) is
empty ) & ( not
XOR2 (
q1,
q2) is
empty implies not
nq2 is
empty ) & ( not
nq3 is
empty implies not
OR2 (
(AND2 (q3,(NOT1 q1))),
(AND2 (q1,(XOR2 (q2,q3))))) is
empty ) & ( not
OR2 (
(AND2 (q3,(NOT1 q1))),
(AND2 (q1,(XOR2 (q2,q3))))) is
empty implies not
nq3 is
empty ) & not ( ( not
ns1 is
empty implies not
s0 is
empty ) & ( not
s0 is
empty implies not
ns1 is
empty ) & ( not
ns2 is
empty implies not
s1 is
empty ) & ( not
s1 is
empty implies not
ns2 is
empty ) & ( not
ns3 is
empty implies not
s2 is
empty ) & ( not
s2 is
empty implies not
ns3 is
empty ) & ( not
ns4 is
empty implies not
s3 is
empty ) & ( not
s3 is
empty implies not
ns4 is
empty ) & ( not
ns5 is
empty implies not
s4 is
empty ) & ( not
s4 is
empty implies not
ns5 is
empty ) & ( not
ns6 is
empty implies not
s5 is
empty ) & ( not
s5 is
empty implies not
ns6 is
empty ) & ( not
ns7 is
empty implies not
s6 is
empty ) & ( not
s6 is
empty implies not
ns7 is
empty ) & ( not
ns0 is
empty implies not
s7 is
empty ) & ( not
s7 is
empty implies not
ns0 is
empty ) ) )
theorem
for
a,
b,
c,
d being
set holds
( not
AND3 (
(AND2 (a,d)),
(AND2 (b,d)),
(AND2 (c,d))) is
empty iff not
AND2 (
(AND3 (a,b,c)),
d) is
empty )
theorem
for
a,
b,
c,
d being
set holds
( (
AND2 (
a,
b) is
empty implies not
OR2 (
(NOT1 a),
(NOT1 b)) is
empty ) & ( not
OR2 (
(NOT1 a),
(NOT1 b)) is
empty implies
AND2 (
a,
b) is
empty ) & ( not
OR2 (
a,
b) is
empty & not
OR2 (
c,
b) is
empty implies not
OR2 (
(AND2 (a,c)),
b) is
empty ) & ( not
OR2 (
(AND2 (a,c)),
b) is
empty implies ( not
OR2 (
a,
b) is
empty & not
OR2 (
c,
b) is
empty ) ) & ( not
OR2 (
a,
b) is
empty & not
OR2 (
c,
b) is
empty & not
OR2 (
d,
b) is
empty implies not
OR2 (
(AND3 (a,c,d)),
b) is
empty ) & ( not
OR2 (
(AND3 (a,c,d)),
b) is
empty implies ( not
OR2 (
a,
b) is
empty & not
OR2 (
c,
b) is
empty & not
OR2 (
d,
b) is
empty ) ) & not ( not
OR2 (
a,
b) is
empty & ( not
a is
empty implies not
c is
empty ) & ( not
c is
empty implies not
a is
empty ) &
OR2 (
c,
b) is
empty ) )
theorem
for
s0,
s1,
s2,
s3,
s4,
s5,
s6,
s7,
ns0,
ns1,
ns2,
ns3,
ns4,
ns5,
ns6,
ns7,
q1,
q2,
q3,
nq1,
nq2,
nq3,
R being
set holds
not ( ( not
s0 is
empty implies not
AND3 (
(NOT1 q3),
(NOT1 q2),
(NOT1 q1)) is
empty ) & ( not
AND3 (
(NOT1 q3),
(NOT1 q2),
(NOT1 q1)) is
empty implies not
s0 is
empty ) & ( not
s1 is
empty implies not
AND3 (
(NOT1 q3),
(NOT1 q2),
q1) is
empty ) & ( not
AND3 (
(NOT1 q3),
(NOT1 q2),
q1) is
empty implies not
s1 is
empty ) & ( not
s2 is
empty implies not
AND3 (
(NOT1 q3),
q2,
(NOT1 q1)) is
empty ) & ( not
AND3 (
(NOT1 q3),
q2,
(NOT1 q1)) is
empty implies not
s2 is
empty ) & ( not
s3 is
empty implies not
AND3 (
(NOT1 q3),
q2,
q1) is
empty ) & ( not
AND3 (
(NOT1 q3),
q2,
q1) is
empty implies not
s3 is
empty ) & ( not
s4 is
empty implies not
AND3 (
q3,
(NOT1 q2),
(NOT1 q1)) is
empty ) & ( not
AND3 (
q3,
(NOT1 q2),
(NOT1 q1)) is
empty implies not
s4 is
empty ) & ( not
s5 is
empty implies not
AND3 (
q3,
(NOT1 q2),
q1) is
empty ) & ( not
AND3 (
q3,
(NOT1 q2),
q1) is
empty implies not
s5 is
empty ) & ( not
s6 is
empty implies not
AND3 (
q3,
q2,
(NOT1 q1)) is
empty ) & ( not
AND3 (
q3,
q2,
(NOT1 q1)) is
empty implies not
s6 is
empty ) & ( not
s7 is
empty implies not
AND3 (
q3,
q2,
q1) is
empty ) & ( not
AND3 (
q3,
q2,
q1) is
empty implies not
s7 is
empty ) & ( not
ns0 is
empty implies not
AND3 (
(NOT1 nq3),
(NOT1 nq2),
(NOT1 nq1)) is
empty ) & ( not
AND3 (
(NOT1 nq3),
(NOT1 nq2),
(NOT1 nq1)) is
empty implies not
ns0 is
empty ) & ( not
ns1 is
empty implies not
AND3 (
(NOT1 nq3),
(NOT1 nq2),
nq1) is
empty ) & ( not
AND3 (
(NOT1 nq3),
(NOT1 nq2),
nq1) is
empty implies not
ns1 is
empty ) & ( not
ns2 is
empty implies not
AND3 (
(NOT1 nq3),
nq2,
(NOT1 nq1)) is
empty ) & ( not
AND3 (
(NOT1 nq3),
nq2,
(NOT1 nq1)) is
empty implies not
ns2 is
empty ) & ( not
ns3 is
empty implies not
AND3 (
(NOT1 nq3),
nq2,
nq1) is
empty ) & ( not
AND3 (
(NOT1 nq3),
nq2,
nq1) is
empty implies not
ns3 is
empty ) & ( not
ns4 is
empty implies not
AND3 (
nq3,
(NOT1 nq2),
(NOT1 nq1)) is
empty ) & ( not
AND3 (
nq3,
(NOT1 nq2),
(NOT1 nq1)) is
empty implies not
ns4 is
empty ) & ( not
ns5 is
empty implies not
AND3 (
nq3,
(NOT1 nq2),
nq1) is
empty ) & ( not
AND3 (
nq3,
(NOT1 nq2),
nq1) is
empty implies not
ns5 is
empty ) & ( not
ns6 is
empty implies not
AND3 (
nq3,
nq2,
(NOT1 nq1)) is
empty ) & ( not
AND3 (
nq3,
nq2,
(NOT1 nq1)) is
empty implies not
ns6 is
empty ) & ( not
ns7 is
empty implies not
AND3 (
nq3,
nq2,
nq1) is
empty ) & ( not
AND3 (
nq3,
nq2,
nq1) is
empty implies not
ns7 is
empty ) & ( not
nq1 is
empty implies not
AND2 (
(NOT1 q1),
R) is
empty ) & ( not
AND2 (
(NOT1 q1),
R) is
empty implies not
nq1 is
empty ) & ( not
nq2 is
empty implies not
AND2 (
(XOR2 (q1,q2)),
R) is
empty ) & ( not
AND2 (
(XOR2 (q1,q2)),
R) is
empty implies not
nq2 is
empty ) & ( not
nq3 is
empty implies not
AND2 (
(OR2 ((AND2 (q3,(NOT1 q1))),(AND2 (q1,(XOR2 (q2,q3)))))),
R) is
empty ) & ( not
AND2 (
(OR2 ((AND2 (q3,(NOT1 q1))),(AND2 (q1,(XOR2 (q2,q3)))))),
R) is
empty implies not
nq3 is
empty ) & not ( ( not
ns1 is
empty implies not
AND2 (
s0,
R) is
empty ) & ( not
AND2 (
s0,
R) is
empty implies not
ns1 is
empty ) & ( not
ns2 is
empty implies not
AND2 (
s1,
R) is
empty ) & ( not
AND2 (
s1,
R) is
empty implies not
ns2 is
empty ) & ( not
ns3 is
empty implies not
AND2 (
s2,
R) is
empty ) & ( not
AND2 (
s2,
R) is
empty implies not
ns3 is
empty ) & ( not
ns4 is
empty implies not
AND2 (
s3,
R) is
empty ) & ( not
AND2 (
s3,
R) is
empty implies not
ns4 is
empty ) & ( not
ns5 is
empty implies not
AND2 (
s4,
R) is
empty ) & ( not
AND2 (
s4,
R) is
empty implies not
ns5 is
empty ) & ( not
ns6 is
empty implies not
AND2 (
s5,
R) is
empty ) & ( not
AND2 (
s5,
R) is
empty implies not
ns6 is
empty ) & ( not
ns7 is
empty implies not
AND2 (
s6,
R) is
empty ) & ( not
AND2 (
s6,
R) is
empty implies not
ns7 is
empty ) & ( not
ns0 is
empty implies not
OR2 (
s7,
(NOT1 R)) is
empty ) & ( not
OR2 (
s7,
(NOT1 R)) is
empty implies not
ns0 is
empty ) ) )
::state transition: s0 (000) -> s1 (001)-> s2 (010) -> ... ->s7 (111) -> s0 (000).