theorem Lmbcd:
for
b,
c,
d being
Real st
b > 0 &
c > 0 &
d > 0 holds
(b - d) / (b / c) < c
theorem F633:
for
a,
b,
c being
Real for
f,
g,
h being
Function of
REAL,
REAL st
a <= b &
b <= c &
f is
continuous &
g is
continuous &
h | [.a,c.] = (f | [.a,b.]) +* (g | [.b,c.]) &
f . b = g . b holds
integral (
h,
['a,c'])
= (integral (f,['a,b'])) + (integral (g,['b,c']))
theorem INTEGR241:
for
f being
Function of
REAL,
REAL for
a,
b,
c being
Real st
a <= b &
b <= c &
['a,c'] c= dom f &
f | ['a,b'] is
bounded &
f | ['b,c'] is
bounded &
f is_integrable_on ['a,b'] &
f is_integrable_on ['b,c'] holds
(
f is_integrable_on ['a,c'] &
integral (
f,
a,
c)
= (integral (f,a,b)) + (integral (f,b,c)) )
theorem INTEGRA617:
for
a,
b,
c being
Real for
f being
Function of
REAL,
REAL st
a <= c &
f is_integrable_on ['a,c'] &
f | ['a,c'] is
bounded &
['a,c'] c= dom f &
b in ['a,c'] holds
(
f is_integrable_on ['a,b'] &
f is_integrable_on ['b,c'] &
integral (
f,
a,
c)
= (integral (f,a,b)) + (integral (f,b,c)) )
theorem
for
a,
b,
c being
Real for
f,
g,
h being
Function of
REAL,
REAL st
a <= b &
b <= c &
f is_integrable_on ['a,c'] &
f | ['a,c'] is
bounded &
g is_integrable_on ['a,c'] &
g | ['a,c'] is
bounded &
h = (f | ].-infty,b.]) +* (g | [.b,+infty.[) &
f . b = g . b holds
integral (
h,
['a,c'])
= (integral (f,['a,b'])) + (integral (g,['b,c']))
theorem
for
f,
g,
h being
Function of
REAL,
REAL for
a,
b,
c being
Real st
a <= b &
b <= c &
f is
continuous &
g is
continuous &
h | [.a,c.] = (f | [.a,b.]) +* (g | [.b,c.]) &
integral (
f,
['a,b'])
<> 0 &
integral (
g,
['b,c'])
<> 0 &
f . b = g . b holds
centroid (
h,
['a,c'])
= (1 / (integral (h,['a,c']))) * (((centroid (f,['a,b'])) * (integral (f,['a,b']))) + ((centroid (g,['b,c'])) * (integral (g,['b,c']))))
theorem
for
A being non
empty closed_interval Subset of
REAL for
a,
b,
c,
d being
Real for
f being
Function of
REAL,
REAL st
b > 0 &
c > 0 &
d > 0 &
['(a - c),(a + c)'] c= A &
d < b & ( for
x being
Real holds
f . x = min (
d,
(max (0,(b - |.((b * (x - a)) / c).|)))) ) holds
centroid (
f,
A)
= centroid (
f,
['(a - c),(a + c)'])
theorem
for
a,
b,
c,
d being
Real for
f,
F being
Function of
REAL,
REAL st
b > 0 &
c > 0 &
d > 0 & ( for
x being
Real holds
f . x = max (
0,
(b - |.((b * (x - a)) / c).|)) ) & ( for
x being
Real holds
F . x = min (
d,
(max (0,(b - |.((b * (x - a)) / c).|)))) ) holds
centroid (
f,
['(a - c),(a + c)'])
= centroid (
F,
['(a - c),(a + c)'])
theorem
for
a,
b,
c,
d being
Real for
f being
Function of
REAL,
REAL st
b > 0 &
c > 0 &
d > 0 &
d < b & ( for
x being
Real holds
f . x = min (
d,
(max (0,(b - |.((b * (x - a)) / c).|)))) ) holds
f | [.(a - c),(a + c).] = (((AffineMap ((b / c),(b - ((a * b) / c)))) | [.(a - c),(a + ((d - b) / (b / c))).]) +* ((AffineMap (0,d)) | [.(a + ((d - b) / (b / c))),(a + ((b - d) / (b / c))).])) +* ((AffineMap ((- (b / c)),(b + ((a * b) / c)))) | [.(a + ((b - d) / (b / c))),(a + c).])
theorem Th23a:
for
a,
b,
c,
d,
r,
s being
Real st
a < b &
b < c &
c < d holds
(
(AffineMap ((r / (b - a)),(- ((a * r) / (b - a))))) . a = 0 &
(AffineMap ((r / (b - a)),(- ((a * r) / (b - a))))) . b = r &
(AffineMap (((s - r) / (c - b)),(s - ((c * (s - r)) / (c - b))))) . b = r &
(AffineMap (((s - r) / (c - b)),(s - ((c * (s - r)) / (c - b))))) . c = s &
(AffineMap (((- s) / (d - c)),(- ((d * (- s)) / (d - c))))) . c = s &
(AffineMap (((- s) / (d - c)),(- ((d * (- s)) / (d - c))))) . d = 0 )
theorem Th23:
for
a,
b,
c,
d,
r,
s being
Real for
f being
Function of
REAL,
REAL st
a < b &
b < c &
c < d &
f | [.a,d.] = (((AffineMap ((r / (b - a)),(- ((a * r) / (b - a))))) | [.a,b.]) +* ((AffineMap (((s - r) / (c - b)),(s - ((c * (s - r)) / (c - b))))) | [.b,c.])) +* ((AffineMap (((- s) / (d - c)),(- ((d * (- s)) / (d - c))))) | [.c,d.]) holds
integral (
((id REAL) (#) f),
['a,d'])
= ((integral (((id REAL) (#) (AffineMap ((r / (b - a)),(- ((a * r) / (b - a)))))),['a,b'])) + (integral (((id REAL) (#) (AffineMap (((s - r) / (c - b)),(s - ((c * (s - r)) / (c - b)))))),['b,c']))) + (integral (((id REAL) (#) (AffineMap (((- s) / (d - c)),(- ((d * (- s)) / (d - c)))))),['c,d']))
theorem Th24:
for
a,
b,
c,
d,
r,
s being
Real for
f being
Function of
REAL,
REAL st
a < b &
b < c &
c < d &
f | [.a,d.] = (((AffineMap ((r / (b - a)),(- ((a * r) / (b - a))))) | [.a,b.]) +* ((AffineMap (((s - r) / (c - b)),(s - ((c * (s - r)) / (c - b))))) | [.b,c.])) +* ((AffineMap (((- s) / (d - c)),(- ((d * (- s)) / (d - c))))) | [.c,d.]) holds
integral (
f,
['a,d'])
= ((integral ((AffineMap ((r / (b - a)),(- ((a * r) / (b - a))))),['a,b'])) + (integral ((AffineMap (((s - r) / (c - b)),(s - ((c * (s - r)) / (c - b))))),['b,c']))) + (integral ((AffineMap (((- s) / (d - c)),(- ((d * (- s)) / (d - c))))),['c,d']))
theorem Lm1:
for
a,
b,
c,
d,
r,
s,
x being
Real st
a < b &
b < c &
c < d &
r >= 0 &
s >= 0 & (
x < a or
d < x ) holds
((((AffineMap ((r / (b - a)),(- ((a * r) / (b - a))))) | ].-infty,b.]) +* ((AffineMap (((s - r) / (c - b)),(s - ((c * (s - r)) / (c - b))))) | [.b,c.])) +* ((AffineMap (((- s) / (d - c)),(- ((d * (- s)) / (d - c))))) | [.c,+infty.[)) . x <= 0
theorem Lm2:
for
a,
b,
c,
d,
r,
s,
x being
Real st
a < b &
b < c &
c < d &
r >= 0 &
s >= 0 &
x in [.a,d.] holds
((((AffineMap ((r / (b - a)),(- ((a * r) / (b - a))))) | ].-infty,b.]) +* ((AffineMap (((s - r) / (c - b)),(s - ((c * (s - r)) / (c - b))))) | [.b,c.])) +* ((AffineMap (((- s) / (d - c)),(- ((d * (- s)) / (d - c))))) | [.c,+infty.[)) . x >= 0
theorem
for
a,
b,
c,
d,
r,
s being
Real st
a < b &
b < c &
c < d &
r >= 0 &
s >= 0 &
r = s holds
for
x being
Real holds
(r (#) (TrapezoidalFS (a,b,c,d))) . x = max+ (((((AffineMap ((r / (b - a)),(- ((a * r) / (b - a))))) | ].-infty,b.]) +* ((AffineMap (((s - r) / (c - b)),(s - ((c * (s - r)) / (c - b))))) | [.b,c.])) +* ((AffineMap (((- s) / (d - c)),(- ((d * (- s)) / (d - c))))) | [.c,+infty.[)) . x)
theorem
for
a,
b,
c,
d,
r,
s being
Real for
f being
Function of
REAL,
REAL st
a < b &
b < c &
c < d &
f | [.a,d.] = (((AffineMap ((r / (b - a)),(- ((a * r) / (b - a))))) | [.a,b.]) +* ((AffineMap (((s - r) / (c - b)),(s - ((c * (s - r)) / (c - b))))) | [.b,c.])) +* ((AffineMap (((- s) / (d - c)),(- ((d * (- s)) / (d - c))))) | [.c,d.]) holds
centroid (
f,
['a,d'])
= ((((b - a) * ((((r / (b - a)) * (((b * b) + (b * a)) + (a * a))) / 3) + (((- ((a * r) / (b - a))) * (b + a)) / 2))) + ((c - b) * (((((s - r) / (c - b)) * (((c * c) + (c * b)) + (b * b))) / 3) + (((s - ((c * (s - r)) / (c - b))) * (c + b)) / 2)))) + ((d - c) * (((((- s) / (d - c)) * (((d * d) + (d * c)) + (c * c))) / 3) + (((- ((d * (- s)) / (d - c))) * (d + c)) / 2)))) / ((((b - a) * ((((r / (b - a)) * (b + a)) / 2) + (- ((a * r) / (b - a))))) + ((c - b) * (((((s - r) / (c - b)) * (c + b)) / 2) + (s - ((c * (s - r)) / (c - b)))))) + ((d - c) * (((((- s) / (d - c)) * (d + c)) / 2) + (- ((d * (- s)) / (d - c))))))
theorem
for
a,
b,
c,
p,
q being
Real st
a < b &
b < c holds
((AffineMap (p,q)) | [.a,b.]) +* ((AffineMap (p,q)) | [.b,c.]) = (AffineMap (p,q)) | [.a,c.]