Processing math: 100%
:: Several Differentiable Formulas of Special Functions
:: by Yan Zhang and Xiquan Liang
::
:: Received July 6, 2005
:: Copyright (c) 2005-2021 Association of Mizar Users
:: 1
f.x=ln(a+x)
theorem
Th1
:
:: FDIFF_4:1
for
a
being
Real
for
Z
being
open
Subset
of
REAL
for
f
being
PartFunc
of
REAL
,
REAL
st
Z
c=
dom
(
ln
*
f
)
& ( for
x
being
Real
st
x
in
Z
holds
(
f
.
x
=
a
+
x
&
f
.
x
>
0
) ) holds
(
ln
*
f
is_differentiable_on
Z
& ( for
x
being
Real
st
x
in
Z
holds
(
(
ln
*
f
)
`|
Z
)
.
x
=
1
/
(
a
+
x
)
) )
proof
end;
:: 2
f.x=ln(x-a)
theorem
Th2
:
:: FDIFF_4:2
for
a
being
Real
for
Z
being
open
Subset
of
REAL
for
f
being
PartFunc
of
REAL
,
REAL
st
Z
c=
dom
(
ln
*
f
)
& ( for
x
being
Real
st
x
in
Z
holds
(
f
.
x
=
x
-
a
&
f
.
x
>
0
) ) holds
(
ln
*
f
is_differentiable_on
Z
& ( for
x
being
Real
st
x
in
Z
holds
(
(
ln
*
f
)
`|
Z
)
.
x
=
1
/
(
x
-
a
)
) )
proof
end;
:: 3
f.x=-ln(a-x)
theorem
:: FDIFF_4:3
for
a
being
Real
for
Z
being
open
Subset
of
REAL
for
f
being
PartFunc
of
REAL
,
REAL
st
Z
c=
dom
(
-
(
ln
*
f
)
)
& ( for
x
being
Real
st
x
in
Z
holds
(
f
.
x
=
a
-
x
&
f
.
x
>
0
) ) holds
(
-
(
ln
*
f
)
is_differentiable_on
Z
& ( for
x
being
Real
st
x
in
Z
holds
(
(
-
(
ln
*
f
)
)
`|
Z
)
.
x
=
1
/
(
a
-
x
)
) )
proof
end;
:: 4 f.x=x-a*ln
a+x
theorem
:: FDIFF_4:4
for
a
being
Real
for
Z
being
open
Subset
of
REAL
for
f
,
f1
being
PartFunc
of
REAL
,
REAL
st
Z
c=
dom
(
(
id
Z
)
-
(
a
(#)
f
)
)
&
f
=
ln
*
f1
& ( for
x
being
Real
st
x
in
Z
holds
(
f1
.
x
=
a
+
x
&
f1
.
x
>
0
) ) holds
(
(
id
Z
)
-
(
a
(#)
f
)
is_differentiable_on
Z
& ( for
x
being
Real
st
x
in
Z
holds
(
(
(
id
Z
)
-
(
a
(#)
f
)
)
`|
Z
)
.
x
=
x
/
(
a
+
x
)
) )
proof
end;
:: 5 f.x=
2*a
*ln
a+x
-x
theorem
:: FDIFF_4:5
for
a
being
Real
for
Z
being
open
Subset
of
REAL
for
f
,
f1
being
PartFunc
of
REAL
,
REAL
st
Z
c=
dom
(
(
(
2
*
a
)
(#)
f
)
-
(
id
Z
)
)
&
f
=
ln
*
f1
& ( for
x
being
Real
st
x
in
Z
holds
(
f1
.
x
=
a
+
x
&
f1
.
x
>
0
) ) holds
(
(
(
2
*
a
)
(#)
f
)
-
(
id
Z
)
is_differentiable_on
Z
& ( for
x
being
Real
st
x
in
Z
holds
(
(
(
(
2
*
a
)
(#)
f
)
-
(
id
Z
)
)
`|
Z
)
.
x
=
(
a
-
x
)
/
(
a
+
x
)
) )
proof
end;
:: 6 f.x=x-
2*a
*ln
x+a
theorem
:: FDIFF_4:6
for
a
being
Real
for
Z
being
open
Subset
of
REAL
for
f
,
f1
being
PartFunc
of
REAL
,
REAL
st
Z
c=
dom
(
(
id
Z
)
-
(
(
2
*
a
)
(#)
f
)
)
&
f
=
ln
*
f1
& ( for
x
being
Real
st
x
in
Z
holds
(
f1
.
x
=
x
+
a
&
f1
.
x
>
0
) ) holds
(
(
id
Z
)
-
(
(
2
*
a
)
(#)
f
)
is_differentiable_on
Z
& ( for
x
being
Real
st
x
in
Z
holds
(
(
(
id
Z
)
-
(
(
2
*
a
)
(#)
f
)
)
`|
Z
)
.
x
=
(
x
-
a
)
/
(
x
+
a
)
) )
proof
end;
:: 7 f.x=x +
2*a
*ln
x-a
theorem
:: FDIFF_4:7
for
a
being
Real
for
Z
being
open
Subset
of
REAL
for
f
,
f1
being
PartFunc
of
REAL
,
REAL
st
Z
c=
dom
(
(
id
Z
)
+
(
(
2
*
a
)
(#)
f
)
)
&
f
=
ln
*
f1
& ( for
x
being
Real
st
x
in
Z
holds
(
f1
.
x
=
x
-
a
&
f1
.
x
>
0
) ) holds
(
(
id
Z
)
+
(
(
2
*
a
)
(#)
f
)
is_differentiable_on
Z
& ( for
x
being
Real
st
x
in
Z
holds
(
(
(
id
Z
)
+
(
(
2
*
a
)
(#)
f
)
)
`|
Z
)
.
x
=
(
x
+
a
)
/
(
x
-
a
)
) )
proof
end;
:: 8 f.x=x+
a-b
*ln
x+b
theorem
:: FDIFF_4:8
for
a
,
b
being
Real
for
Z
being
open
Subset
of
REAL
for
f
,
f1
being
PartFunc
of
REAL
,
REAL
st
Z
c=
dom
(
(
id
Z
)
+
(
(
a
-
b
)
(#)
f
)
)
&
f
=
ln
*
f1
& ( for
x
being
Real
st
x
in
Z
holds
(
f1
.
x
=
x
+
b
&
f1
.
x
>
0
) ) holds
(
(
id
Z
)
+
(
(
a
-
b
)
(#)
f
)
is_differentiable_on
Z
& ( for
x
being
Real
st
x
in
Z
holds
(
(
(
id
Z
)
+
(
(
a
-
b
)
(#)
f
)
)
`|
Z
)
.
x
=
(
x
+
a
)
/
(
x
+
b
)
) )
proof
end;
:: 9 f.x=x+
a+b
*ln
x-b
theorem
:: FDIFF_4:9
for
a
,
b
being
Real
for
Z
being
open
Subset
of
REAL
for
f
,
f1
being
PartFunc
of
REAL
,
REAL
st
Z
c=
dom
(
(
id
Z
)
+
(
(
a
+
b
)
(#)
f
)
)
&
f
=
ln
*
f1
& ( for
x
being
Real
st
x
in
Z
holds
(
f1
.
x
=
x
-
b
&
f1
.
x
>
0
) ) holds
(
(
id
Z
)
+
(
(
a
+
b
)
(#)
f
)
is_differentiable_on
Z
& ( for
x
being
Real
st
x
in
Z
holds
(
(
(
id
Z
)
+
(
(
a
+
b
)
(#)
f
)
)
`|
Z
)
.
x
=
(
x
+
a
)
/
(
x
-
b
)
) )
proof
end;
:: 10 f.x=x-
a+b
*ln
x+b
theorem
:: FDIFF_4:10
for
a
,
b
being
Real
for
Z
being
open
Subset
of
REAL
for
f
,
f1
being
PartFunc
of
REAL
,
REAL
st
Z
c=
dom
(
(
id
Z
)
-
(
(
a
+
b
)
(#)
f
)
)
&
f
=
ln
*
f1
& ( for
x
being
Real
st
x
in
Z
holds
(
f1
.
x
=
x
+
b
&
f1
.
x
>
0
) ) holds
(
(
id
Z
)
-
(
(
a
+
b
)
(#)
f
)
is_differentiable_on
Z
& ( for
x
being
Real
st
x
in
Z
holds
(
(
(
id
Z
)
-
(
(
a
+
b
)
(#)
f
)
)
`|
Z
)
.
x
=
(
x
-
a
)
/
(
x
+
b
)
) )
proof
end;
:: 11 f.x=x+
b-a
*ln
x-b
theorem
:: FDIFF_4:11
for
a
,
b
being
Real
for
Z
being
open
Subset
of
REAL
for
f
,
f1
being
PartFunc
of
REAL
,
REAL
st
Z
c=
dom
(
(
id
Z
)
+
(
(
b
-
a
)
(#)
f
)
)
&
f
=
ln
*
f1
& ( for
x
being
Real
st
x
in
Z
holds
(
f1
.
x
=
x
-
b
&
f1
.
x
>
0
) ) holds
(
(
id
Z
)
+
(
(
b
-
a
)
(#)
f
)
is_differentiable_on
Z
& ( for
x
being
Real
st
x
in
Z
holds
(
(
(
id
Z
)
+
(
(
b
-
a
)
(#)
f
)
)
`|
Z
)
.
x
=
(
x
-
a
)
/
(
x
-
b
)
) )
proof
end;
:: 12 f.x=a+b*x+c*x^2
theorem
Th12
:
:: FDIFF_4:12
for
a
,
b
,
c
being
Real
for
Z
being
open
Subset
of
REAL
for
f1
,
f2
being
PartFunc
of
REAL
,
REAL
st
Z
c=
dom
(
f1
+
(
c
(#)
f2
)
)
& ( for
x
being
Real
st
x
in
Z
holds
f1
.
x
=
a
+
(
b
*
x
)
) &
f2
=
#Z
2 holds
(
f1
+
(
c
(#)
f2
)
is_differentiable_on
Z
& ( for
x
being
Real
st
x
in
Z
holds
(
(
f1
+
(
c
(#)
f2
)
)
`|
Z
)
.
x
=
b
+
(
(
2
*
c
)
*
x
)
) )
proof
end;
:: 13 f.x=ln
a+b*x+c*x^2
theorem
Th13
:
:: FDIFF_4:13
for
a
,
b
,
c
being
Real
for
Z
being
open
Subset
of
REAL
for
f1
,
f2
being
PartFunc
of
REAL
,
REAL
st
Z
c=
dom
(
ln
*
(
f1
+
(
c
(#)
f2
)
)
)
&
f2
=
#Z
2 & ( for
x
being
Real
st
x
in
Z
holds
(
f1
.
x
=
a
+
(
b
*
x
)
&
(
f1
+
(
c
(#)
f2
)
)
.
x
>
0
) ) holds
(
ln
*
(
f1
+
(
c
(#)
f2
)
)
is_differentiable_on
Z
& ( for
x
being
Real
st
x
in
Z
holds
(
(
ln
*
(
f1
+
(
c
(#)
f2
)
)
)
`|
Z
)
.
x
=
(
b
+
(
(
2
*
c
)
*
x
)
)
/
(
(
a
+
(
b
*
x
)
)
+
(
c
*
(
x
|^
2
)
)
)
) )
proof
end;
:: 14 f.x=1/
a+x
theorem
Th14
:
:: FDIFF_4:14
for
a
being
Real
for
Z
being
open
Subset
of
REAL
for
f
being
PartFunc
of
REAL
,
REAL
st
Z
c=
dom
f
& ( for
x
being
Real
st
x
in
Z
holds
(
f
.
x
=
a
+
x
&
f
.
x
<>
0
) ) holds
(
f
^
is_differentiable_on
Z
& ( for
x
being
Real
st
x
in
Z
holds
(
(
f
^
)
`|
Z
)
.
x
=
-
(
1
/
(
(
a
+
x
)
^2
)
)
) )
proof
end;
:: 15 f.x=-1/
a+x
theorem
:: FDIFF_4:15
for
a
being
Real
for
Z
being
open
Subset
of
REAL
for
f
being
PartFunc
of
REAL
,
REAL
st
Z
c=
dom
(
(
-
1
)
(#)
(
f
^
)
)
& ( for
x
being
Real
st
x
in
Z
holds
(
f
.
x
=
a
+
x
&
f
.
x
<>
0
) ) holds
(
(
-
1
)
(#)
(
f
^
)
is_differentiable_on
Z
& ( for
x
being
Real
st
x
in
Z
holds
(
(
(
-
1
)
(#)
(
f
^
)
)
`|
Z
)
.
x
=
1
/
(
(
a
+
x
)
^2
)
) )
proof
end;
:: 16 f.x=1/
a-x
theorem
:: FDIFF_4:16
for
a
being
Real
for
Z
being
open
Subset
of
REAL
for
f
being
PartFunc
of
REAL
,
REAL
st
Z
c=
dom
f
& ( for
x
being
Real
st
x
in
Z
holds
(
f
.
x
=
a
-
x
&
f
.
x
<>
0
) ) holds
(
f
^
is_differentiable_on
Z
& ( for
x
being
Real
st
x
in
Z
holds
(
(
f
^
)
`|
Z
)
.
x
=
1
/
(
(
a
-
x
)
^2
)
) )
proof
end;
:: 17 f.x=a^2+x^2
theorem
Th17
:
:: FDIFF_4:17
for
a
being
Real
for
Z
being
open
Subset
of
REAL
for
f1
,
f2
being
PartFunc
of
REAL
,
REAL
st
Z
c=
dom
(
f1
+
f2
)
& ( for
x
being
Real
st
x
in
Z
holds
f1
.
x
=
a
^2
) &
f2
=
#Z
2 holds
(
f1
+
f2
is_differentiable_on
Z
& ( for
x
being
Real
st
x
in
Z
holds
(
(
f1
+
f2
)
`|
Z
)
.
x
=
2
*
x
) )
proof
end;
:: 18 f.x=ln
a^2+x^2
theorem
:: FDIFF_4:18
for
a
being
Real
for
Z
being
open
Subset
of
REAL
for
f1
,
f2
being
PartFunc
of
REAL
,
REAL
st
Z
c=
dom
(
ln
*
(
f1
+
f2
)
)
&
f2
=
#Z
2 & ( for
x
being
Real
st
x
in
Z
holds
(
f1
.
x
=
a
^2
&
(
f1
+
f2
)
.
x
>
0
) ) holds
(
ln
*
(
f1
+
f2
)
is_differentiable_on
Z
& ( for
x
being
Real
st
x
in
Z
holds
(
(
ln
*
(
f1
+
f2
)
)
`|
Z
)
.
x
=
(
2
*
x
)
/
(
(
a
^2
)
+
(
x
|^
2
)
)
) )
proof
end;
:: 19 f.x=-ln
a^2-x^2
theorem
:: FDIFF_4:19
for
a
being
Real
for
Z
being
open
Subset
of
REAL
for
f1
,
f2
being
PartFunc
of
REAL
,
REAL
st
Z
c=
dom
(
-
(
ln
*
(
f1
-
f2
)
)
)
&
f2
=
#Z
2 & ( for
x
being
Real
st
x
in
Z
holds
(
f1
.
x
=
a
^2
&
(
f1
-
f2
)
.
x
>
0
) ) holds
(
-
(
ln
*
(
f1
-
f2
)
)
is_differentiable_on
Z
& ( for
x
being
Real
st
x
in
Z
holds
(
(
-
(
ln
*
(
f1
-
f2
)
)
)
`|
Z
)
.
x
=
(
2
*
x
)
/
(
(
a
^2
)
-
(
x
|^
2
)
)
) )
proof
end;
:: 20 f.x=a+x^3
theorem
Th20
:
:: FDIFF_4:20
for
a
being
Real
for
Z
being
open
Subset
of
REAL
for
f1
,
f2
being
PartFunc
of
REAL
,
REAL
st
Z
c=
dom
(
f1
+
f2
)
& ( for
x
being
Real
st
x
in
Z
holds
f1
.
x
=
a
) &
f2
=
#Z
3 holds
(
f1
+
f2
is_differentiable_on
Z
& ( for
x
being
Real
st
x
in
Z
holds
(
(
f1
+
f2
)
`|
Z
)
.
x
=
3
*
(
x
|^
2
)
) )
proof
end;
:: 21 f.x=ln
a+x^3
theorem
:: FDIFF_4:21
for
a
being
Real
for
Z
being
open
Subset
of
REAL
for
f1
,
f2
being
PartFunc
of
REAL
,
REAL
st
Z
c=
dom
(
ln
*
(
f1
+
f2
)
)
&
f2
=
#Z
3 & ( for
x
being
Real
st
x
in
Z
holds
(
f1
.
x
=
a
&
(
f1
+
f2
)
.
x
>
0
) ) holds
(
ln
*
(
f1
+
f2
)
is_differentiable_on
Z
& ( for
x
being
Real
st
x
in
Z
holds
(
(
ln
*
(
f1
+
f2
)
)
`|
Z
)
.
x
=
(
3
*
(
x
|^
2
)
)
/
(
a
+
(
x
|^
3
)
)
) )
proof
end;
:: 22 f.x=ln
(a+x
/
a-x
)
theorem
:: FDIFF_4:22
for
a
being
Real
for
Z
being
open
Subset
of
REAL
for
f1
,
f2
being
PartFunc
of
REAL
,
REAL
st
Z
c=
dom
(
ln
*
(
f1
/
f2
)
)
& ( for
x
being
Real
st
x
in
Z
holds
(
f1
.
x
=
a
+
x
&
f1
.
x
>
0
&
f2
.
x
=
a
-
x
&
f2
.
x
>
0
) ) holds
(
ln
*
(
f1
/
f2
)
is_differentiable_on
Z
& ( for
x
being
Real
st
x
in
Z
holds
(
(
ln
*
(
f1
/
f2
)
)
`|
Z
)
.
x
=
(
2
*
a
)
/
(
(
a
^2
)
-
(
x
^2
)
)
) )
proof
end;
:: 23 f.x=ln
(x-a
/
x+a
)
theorem
:: FDIFF_4:23
for
a
being
Real
for
Z
being
open
Subset
of
REAL
for
f1
,
f2
being
PartFunc
of
REAL
,
REAL
st
Z
c=
dom
(
ln
*
(
f1
/
f2
)
)
& ( for
x
being
Real
st
x
in
Z
holds
(
f1
.
x
=
x
-
a
&
f1
.
x
>
0
&
f2
.
x
=
x
+
a
&
f2
.
x
>
0
) ) holds
(
ln
*
(
f1
/
f2
)
is_differentiable_on
Z
& ( for
x
being
Real
st
x
in
Z
holds
(
(
ln
*
(
f1
/
f2
)
)
`|
Z
)
.
x
=
(
2
*
a
)
/
(
(
x
^2
)
-
(
a
^2
)
)
) )
proof
end;
:: 24 f.x=ln
(x-a
/
x-b
)
theorem
Th24
:
:: FDIFF_4:24
for
a
,
b
being
Real
for
Z
being
open
Subset
of
REAL
for
f1
,
f2
being
PartFunc
of
REAL
,
REAL
st
Z
c=
dom
(
ln
*
(
f1
/
f2
)
)
& ( for
x
being
Real
st
x
in
Z
holds
(
f1
.
x
=
x
-
a
&
f1
.
x
>
0
&
f2
.
x
=
x
-
b
&
f2
.
x
>
0
) ) holds
(
ln
*
(
f1
/
f2
)
is_differentiable_on
Z
& ( for
x
being
Real
st
x
in
Z
holds
(
(
ln
*
(
f1
/
f2
)
)
`|
Z
)
.
x
=
(
a
-
b
)
/
(
(
x
-
a
)
*
(
x
-
b
)
)
) )
proof
end;
:: 25 f.x=
1/(a-b
)*ln
(x-a
/
x-b
)
theorem
:: FDIFF_4:25
for
a
,
b
being
Real
for
Z
being
open
Subset
of
REAL
for
f
,
f1
,
f2
being
PartFunc
of
REAL
,
REAL
st
Z
c=
dom
(
(
1
/
(
a
-
b
)
)
(#)
f
)
&
f
=
ln
*
(
f1
/
f2
)
& ( for
x
being
Real
st
x
in
Z
holds
(
f1
.
x
=
x
-
a
&
f1
.
x
>
0
&
f2
.
x
=
x
-
b
&
f2
.
x
>
0
&
a
-
b
<>
0
) ) holds
(
(
1
/
(
a
-
b
)
)
(#)
f
is_differentiable_on
Z
& ( for
x
being
Real
st
x
in
Z
holds
(
(
(
1
/
(
a
-
b
)
)
(#)
f
)
`|
Z
)
.
x
=
1
/
(
(
x
-
a
)
*
(
x
-
b
)
)
) )
proof
end;
:: 26 f.x=ln
(x-a
/x^2)
theorem
:: FDIFF_4:26
for
a
being
Real
for
Z
being
open
Subset
of
REAL
for
f1
,
f2
being
PartFunc
of
REAL
,
REAL
st
Z
c=
dom
(
ln
*
(
f1
/
f2
)
)
&
f2
=
#Z
2 & ( for
x
being
Real
st
x
in
Z
holds
(
f1
.
x
=
x
-
a
&
f1
.
x
>
0
&
f2
.
x
>
0
&
x
<>
0
) ) holds
(
ln
*
(
f1
/
f2
)
is_differentiable_on
Z
& ( for
x
being
Real
st
x
in
Z
holds
(
(
ln
*
(
f1
/
f2
)
)
`|
Z
)
.
x
=
(
(
2
*
a
)
-
x
)
/
(
x
*
(
x
-
a
)
)
) )
proof
end;
:: irrational function
:: 27 f.x=
a+x
^
3/2
theorem
Th27
:
:: FDIFF_4:27
for
a
being
Real
for
Z
being
open
Subset
of
REAL
for
f
being
PartFunc
of
REAL
,
REAL
st
Z
c=
dom
(
(
#R
(
3
/
2
)
)
*
f
)
& ( for
x
being
Real
st
x
in
Z
holds
(
f
.
x
=
a
+
x
&
f
.
x
>
0
) ) holds
(
(
#R
(
3
/
2
)
)
*
f
is_differentiable_on
Z
& ( for
x
being
Real
st
x
in
Z
holds
(
(
(
#R
(
3
/
2
)
)
*
f
)
`|
Z
)
.
x
=
(
3
/
2
)
*
(
(
a
+
x
)
#R
(
1
/
2
)
)
) )
proof
end;
:: 28 f.x=
a+x
^
2/3
theorem
:: FDIFF_4:28
for
a
being
Real
for
Z
being
open
Subset
of
REAL
for
f
being
PartFunc
of
REAL
,
REAL
st
Z
c=
dom
(
(
2
/
3
)
(#)
(
(
#R
(
3
/
2
)
)
*
f
)
)
& ( for
x
being
Real
st
x
in
Z
holds
(
f
.
x
=
a
+
x
&
f
.
x
>
0
) ) holds
(
(
2
/
3
)
(#)
(
(
#R
(
3
/
2
)
)
*
f
)
is_differentiable_on
Z
& ( for
x
being
Real
st
x
in
Z
holds
(
(
(
2
/
3
)
(#)
(
(
#R
(
3
/
2
)
)
*
f
)
)
`|
Z
)
.
x
=
(
a
+
x
)
#R
(
1
/
2
)
) )
proof
end;
:: 29 f.x=
-2/3
*
a+x
^
2/3
theorem
:: FDIFF_4:29
for
a
being
Real
for
Z
being
open
Subset
of
REAL
for
f
being
PartFunc
of
REAL
,
REAL
st
Z
c=
dom
(
(
-
(
2
/
3
)
)
(#)
(
(
#R
(
3
/
2
)
)
*
f
)
)
& ( for
x
being
Real
st
x
in
Z
holds
(
f
.
x
=
a
-
x
&
f
.
x
>
0
) ) holds
(
(
-
(
2
/
3
)
)
(#)
(
(
#R
(
3
/
2
)
)
*
f
)
is_differentiable_on
Z
& ( for
x
being
Real
st
x
in
Z
holds
(
(
(
-
(
2
/
3
)
)
(#)
(
(
#R
(
3
/
2
)
)
*
f
)
)
`|
Z
)
.
x
=
(
a
-
x
)
#R
(
1
/
2
)
) )
proof
end;
:: 30 f.x=2*
a+x
^
1/2
theorem
:: FDIFF_4:30
for
a
being
Real
for
Z
being
open
Subset
of
REAL
for
f
being
PartFunc
of
REAL
,
REAL
st
Z
c=
dom
(
2
(#)
(
(
#R
(
1
/
2
)
)
*
f
)
)
& ( for
x
being
Real
st
x
in
Z
holds
(
f
.
x
=
a
+
x
&
f
.
x
>
0
) ) holds
( 2
(#)
(
(
#R
(
1
/
2
)
)
*
f
)
is_differentiable_on
Z
& ( for
x
being
Real
st
x
in
Z
holds
(
(
2
(#)
(
(
#R
(
1
/
2
)
)
*
f
)
)
`|
Z
)
.
x
=
(
a
+
x
)
#R
(
-
(
1
/
2
)
)
) )
proof
end;
:: 31 f.x=
-2
*
a-x
^
1/2
theorem
:: FDIFF_4:31
for
a
being
Real
for
Z
being
open
Subset
of
REAL
for
f
being
PartFunc
of
REAL
,
REAL
st
Z
c=
dom
(
(
-
2
)
(#)
(
(
#R
(
1
/
2
)
)
*
f
)
)
& ( for
x
being
Real
st
x
in
Z
holds
(
f
.
x
=
a
-
x
&
f
.
x
>
0
) ) holds
(
(
-
2
)
(#)
(
(
#R
(
1
/
2
)
)
*
f
)
is_differentiable_on
Z
& ( for
x
being
Real
st
x
in
Z
holds
(
(
(
-
2
)
(#)
(
(
#R
(
1
/
2
)
)
*
f
)
)
`|
Z
)
.
x
=
(
a
-
x
)
#R
(
-
(
1
/
2
)
)
) )
proof
end;
:: 32 f.x=
2/(3*b
)*
(a+b*x
^
3/2
)
theorem
:: FDIFF_4:32
for
a
,
b
being
Real
for
Z
being
open
Subset
of
REAL
for
f
being
PartFunc
of
REAL
,
REAL
st
Z
c=
dom
(
(
2
/
(
3
*
b
)
)
(#)
(
(
#R
(
3
/
2
)
)
*
f
)
)
& ( for
x
being
Real
st
x
in
Z
holds
(
f
.
x
=
a
+
(
b
*
x
)
&
b
<>
0
&
f
.
x
>
0
) ) holds
(
(
2
/
(
3
*
b
)
)
(#)
(
(
#R
(
3
/
2
)
)
*
f
)
is_differentiable_on
Z
& ( for
x
being
Real
st
x
in
Z
holds
(
(
(
2
/
(
3
*
b
)
)
(#)
(
(
#R
(
3
/
2
)
)
*
f
)
)
`|
Z
)
.
x
=
(
a
+
(
b
*
x
)
)
#R
(
1
/
2
)
) )
proof
end;
:: 33 f.x=
-2/(3*b
)*
(a-b*x
^
3/2
)
theorem
:: FDIFF_4:33
for
a
,
b
being
Real
for
Z
being
open
Subset
of
REAL
for
f
being
PartFunc
of
REAL
,
REAL
st
Z
c=
dom
(
(
-
(
2
/
(
3
*
b
)
)
)
(#)
(
(
#R
(
3
/
2
)
)
*
f
)
)
& ( for
x
being
Real
st
x
in
Z
holds
(
f
.
x
=
a
-
(
b
*
x
)
&
b
<>
0
&
f
.
x
>
0
) ) holds
(
(
-
(
2
/
(
3
*
b
)
)
)
(#)
(
(
#R
(
3
/
2
)
)
*
f
)
is_differentiable_on
Z
& ( for
x
being
Real
st
x
in
Z
holds
(
(
(
-
(
2
/
(
3
*
b
)
)
)
(#)
(
(
#R
(
3
/
2
)
)
*
f
)
)
`|
Z
)
.
x
=
(
a
-
(
b
*
x
)
)
#R
(
1
/
2
)
) )
proof
end;
:: 34 f.x=
a^2+x|^2
^
1/2
theorem
:: FDIFF_4:34
for
a
being
Real
for
Z
being
open
Subset
of
REAL
for
f
,
f1
,
f2
being
PartFunc
of
REAL
,
REAL
st
Z
c=
dom
(
(
#R
(
1
/
2
)
)
*
f
)
&
f
=
f1
+
f2
&
f2
=
#Z
2 & ( for
x
being
Real
st
x
in
Z
holds
(
f1
.
x
=
a
^2
&
f
.
x
>
0
) ) holds
(
(
#R
(
1
/
2
)
)
*
f
is_differentiable_on
Z
& ( for
x
being
Real
st
x
in
Z
holds
(
(
(
#R
(
1
/
2
)
)
*
f
)
`|
Z
)
.
x
=
x
*
(
(
(
a
^2
)
+
(
x
|^
2
)
)
#R
(
-
(
1
/
2
)
)
)
) )
proof
end;
:: 35 f.x=-
a^2-x|^2
^
1/2
theorem
:: FDIFF_4:35
for
a
being
Real
for
Z
being
open
Subset
of
REAL
for
f
,
f1
,
f2
being
PartFunc
of
REAL
,
REAL
st
Z
c=
dom
(
-
(
(
#R
(
1
/
2
)
)
*
f
)
)
&
f
=
f1
-
f2
&
f2
=
#Z
2 & ( for
x
being
Real
st
x
in
Z
holds
(
f1
.
x
=
a
^2
&
f
.
x
>
0
) ) holds
(
-
(
(
#R
(
1
/
2
)
)
*
f
)
is_differentiable_on
Z
& ( for
x
being
Real
st
x
in
Z
holds
(
(
-
(
(
#R
(
1
/
2
)
)
*
f
)
)
`|
Z
)
.
x
=
x
*
(
(
(
a
^2
)
-
(
x
|^
2
)
)
#R
(
-
(
1
/
2
)
)
)
) )
proof
end;
:: 36 f.x=
x+x|^2
^
1/2
theorem
:: FDIFF_4:36
for
Z
being
open
Subset
of
REAL
for
f
,
f1
,
f2
being
PartFunc
of
REAL
,
REAL
st
Z
c=
dom
(
2
(#)
(
(
#R
(
1
/
2
)
)
*
f
)
)
&
f
=
f1
+
f2
&
f2
=
#Z
2 & ( for
x
being
Real
st
x
in
Z
holds
(
f1
.
x
=
x
&
f
.
x
>
0
) ) holds
( 2
(#)
(
(
#R
(
1
/
2
)
)
*
f
)
is_differentiable_on
Z
& ( for
x
being
Real
st
x
in
Z
holds
(
(
2
(#)
(
(
#R
(
1
/
2
)
)
*
f
)
)
`|
Z
)
.
x
=
(
(
2
*
x
)
+
1
)
*
(
(
(
x
|^
2
)
+
x
)
#R
(
-
(
1
/
2
)
)
)
) )
proof
end;
:: trigonometric functions
:: 37 f.x=sin
a*x+b
theorem
:: FDIFF_4:37
for
a
,
b
being
Real
for
Z
being
open
Subset
of
REAL
for
f
being
PartFunc
of
REAL
,
REAL
st
Z
c=
dom
(
sin
*
f
)
& ( for
x
being
Real
st
x
in
Z
holds
f
.
x
=
(
a
*
x
)
+
b
) holds
(
sin
*
f
is_differentiable_on
Z
& ( for
x
being
Real
st
x
in
Z
holds
(
(
sin
*
f
)
`|
Z
)
.
x
=
a
*
(
cos
.
(
(
a
*
x
)
+
b
)
)
) )
proof
end;
:: 38 f.x=sin
a*x+b
theorem
:: FDIFF_4:38
for
a
,
b
being
Real
for
Z
being
open
Subset
of
REAL
for
f
being
PartFunc
of
REAL
,
REAL
st
Z
c=
dom
(
cos
*
f
)
& ( for
x
being
Real
st
x
in
Z
holds
f
.
x
=
(
a
*
x
)
+
b
) holds
(
cos
*
f
is_differentiable_on
Z
& ( for
x
being
Real
st
x
in
Z
holds
(
(
cos
*
f
)
`|
Z
)
.
x
=
-
(
a
*
(
sin
.
(
(
a
*
x
)
+
b
)
)
)
) )
proof
end;
:: 39 f.x=1/cos.x
theorem
:: FDIFF_4:39
for
Z
being
open
Subset
of
REAL
st ( for
x
being
Real
st
x
in
Z
holds
cos
.
x
<>
0
) holds
(
cos
^
is_differentiable_on
Z
& ( for
x
being
Real
st
x
in
Z
holds
(
(
cos
^
)
`|
Z
)
.
x
=
(
sin
.
x
)
/
(
(
cos
.
x
)
^2
)
) )
proof
end;
:: 40 f.x=1/sin.x
theorem
:: FDIFF_4:40
for
Z
being
open
Subset
of
REAL
st ( for
x
being
Real
st
x
in
Z
holds
sin
.
x
<>
0
) holds
(
sin
^
is_differentiable_on
Z
& ( for
x
being
Real
st
x
in
Z
holds
(
(
sin
^
)
`|
Z
)
.
x
=
-
(
(
cos
.
x
)
/
(
(
sin
.
x
)
^2
)
)
) )
proof
end;
:: 41 f.x=sin.x*cos.x
theorem
:: FDIFF_4:41
for
Z
being
open
Subset
of
REAL
st
Z
c=
dom
(
sin
(#)
cos
)
holds
(
sin
(#)
cos
is_differentiable_on
Z
& ( for
x
being
Real
st
x
in
Z
holds
(
(
sin
(#)
cos
)
`|
Z
)
.
x
=
cos
(
2
*
x
)
) )
proof
end;
:: 42 f.x=ln
cos.x
theorem
:: FDIFF_4:42
for
Z
being
open
Subset
of
REAL
st
Z
c=
dom
(
ln
*
cos
)
& ( for
x
being
Real
st
x
in
Z
holds
cos
.
x
>
0
) holds
(
ln
*
cos
is_differentiable_on
Z
& ( for
x
being
Real
st
x
in
Z
holds
(
(
ln
*
cos
)
`|
Z
)
.
x
=
-
(
tan
x
)
) )
proof
end;
:: 43 f.x=ln
sin.x
theorem
:: FDIFF_4:43
for
Z
being
open
Subset
of
REAL
st
Z
c=
dom
(
ln
*
sin
)
& ( for
x
being
Real
st
x
in
Z
holds
sin
.
x
>
0
) holds
(
ln
*
sin
is_differentiable_on
Z
& ( for
x
being
Real
st
x
in
Z
holds
(
(
ln
*
sin
)
`|
Z
)
.
x
=
cot
x
) )
proof
end;
:: 44 f.x=-x*cos.x
theorem
Th44
:
:: FDIFF_4:44
for
Z
being
open
Subset
of
REAL
st
Z
c=
dom
(
(
-
(
id
Z
)
)
(#)
cos
)
holds
(
(
-
(
id
Z
)
)
(#)
cos
is_differentiable_on
Z
& ( for
x
being
Real
st
x
in
Z
holds
(
(
(
-
(
id
Z
)
)
(#)
cos
)
`|
Z
)
.
x
=
(
-
(
cos
.
x
)
)
+
(
x
*
(
sin
.
x
)
)
) )
proof
end;
:: f.x=x*sin.x
theorem
Th45
:
:: FDIFF_4:45
for
Z
being
open
Subset
of
REAL
st
Z
c=
dom
(
(
id
Z
)
(#)
sin
)
holds
(
(
id
Z
)
(#)
sin
is_differentiable_on
Z
& ( for
x
being
Real
st
x
in
Z
holds
(
(
(
id
Z
)
(#)
sin
)
`|
Z
)
.
x
=
(
sin
.
x
)
+
(
x
*
(
cos
.
x
)
)
) )
proof
end;
:: 46 f.x=-x*cos.x+sin.x
theorem
:: FDIFF_4:46
for
Z
being
open
Subset
of
REAL
st
Z
c=
dom
(
(
(
-
(
id
Z
)
)
(#)
cos
)
+
sin
)
holds
(
(
(
-
(
id
Z
)
)
(#)
cos
)
+
sin
is_differentiable_on
Z
& ( for
x
being
Real
st
x
in
Z
holds
(
(
(
(
-
(
id
Z
)
)
(#)
cos
)
+
sin
)
`|
Z
)
.
x
=
x
*
(
sin
.
x
)
) )
proof
end;
:: 47 f.x=x*sin.x+cos.x
theorem
:: FDIFF_4:47
for
Z
being
open
Subset
of
REAL
st
Z
c=
dom
(
(
(
id
Z
)
(#)
sin
)
+
cos
)
holds
(
(
(
id
Z
)
(#)
sin
)
+
cos
is_differentiable_on
Z
& ( for
x
being
Real
st
x
in
Z
holds
(
(
(
(
id
Z
)
(#)
sin
)
+
cos
)
`|
Z
)
.
x
=
x
*
(
cos
.
x
)
) )
proof
end;
:: 48 f.x=2*
sin.x ^ (1/2
)
theorem
:: FDIFF_4:48
for
Z
being
open
Subset
of
REAL
st
Z
c=
dom
(
2
(#)
(
(
#R
(
1
/
2
)
)
*
sin
)
)
& ( for
x
being
Real
st
x
in
Z
holds
sin
.
x
>
0
) holds
( 2
(#)
(
(
#R
(
1
/
2
)
)
*
sin
)
is_differentiable_on
Z
& ( for
x
being
Real
st
x
in
Z
holds
(
(
2
(#)
(
(
#R
(
1
/
2
)
)
*
sin
)
)
`|
Z
)
.
x
=
(
cos
.
x
)
*
(
(
sin
.
x
)
#R
(
-
(
1
/
2
)
)
)
) )
proof
end;
theorem
Th49
:
:: FDIFF_4:49
for
Z
being
open
Subset
of
REAL
st
Z
c=
dom
(
(
1
/
2
)
(#)
(
(
#Z
2
)
*
sin
)
)
holds
(
(
1
/
2
)
(#)
(
(
#Z
2
)
*
sin
)
is_differentiable_on
Z
& ( for
x
being
Real
st
x
in
Z
holds
(
(
(
1
/
2
)
(#)
(
(
#Z
2
)
*
sin
)
)
`|
Z
)
.
x
=
(
sin
.
x
)
*
(
cos
.
x
)
) )
proof
end;
:: 50 f.x=sin.x+
1/2
*
sin.x ^ 2
theorem
:: FDIFF_4:50
for
Z
being
open
Subset
of
REAL
st
Z
c=
dom
(
sin
+
(
(
1
/
2
)
(#)
(
(
#Z
2
)
*
sin
)
)
)
& ( for
x
being
Real
st
x
in
Z
holds
(
sin
.
x
>
0
&
sin
.
x
<
1 ) ) holds
(
sin
+
(
(
1
/
2
)
(#)
(
(
#Z
2
)
*
sin
)
)
is_differentiable_on
Z
& ( for
x
being
Real
st
x
in
Z
holds
(
(
sin
+
(
(
1
/
2
)
(#)
(
(
#Z
2
)
*
sin
)
)
)
`|
Z
)
.
x
=
(
(
cos
.
x
)
|^
3
)
/
(
1
-
(
sin
.
x
)
)
) )
proof
end;
:: 51 f.x=
1/2
*
sin.x ^ 2
-cos.x
theorem
:: FDIFF_4:51
for
Z
being
open
Subset
of
REAL
st
Z
c=
dom
(
(
(
1
/
2
)
(#)
(
(
#Z
2
)
*
sin
)
)
-
cos
)
& ( for
x
being
Real
st
x
in
Z
holds
(
sin
.
x
>
0
&
cos
.
x
<
1 ) ) holds
(
(
(
1
/
2
)
(#)
(
(
#Z
2
)
*
sin
)
)
-
cos
is_differentiable_on
Z
& ( for
x
being
Real
st
x
in
Z
holds
(
(
(
(
1
/
2
)
(#)
(
(
#Z
2
)
*
sin
)
)
-
cos
)
`|
Z
)
.
x
=
(
(
sin
.
x
)
|^
3
)
/
(
1
-
(
cos
.
x
)
)
) )
proof
end;
:: 52 f.x=sin.x-
1/2
*
sin ^ 2
theorem
:: FDIFF_4:52
for
Z
being
open
Subset
of
REAL
st
Z
c=
dom
(
sin
-
(
(
1
/
2
)
(#)
(
(
#Z
2
)
*
sin
)
)
)
& ( for
x
being
Real
st
x
in
Z
holds
(
sin
.
x
>
0
&
sin
.
x
>
-
1 ) ) holds
(
sin
-
(
(
1
/
2
)
(#)
(
(
#Z
2
)
*
sin
)
)
is_differentiable_on
Z
& ( for
x
being
Real
st
x
in
Z
holds
(
(
sin
-
(
(
1
/
2
)
(#)
(
(
#Z
2
)
*
sin
)
)
)
`|
Z
)
.
x
=
(
(
cos
.
x
)
|^
3
)
/
(
1
+
(
sin
.
x
)
)
) )
proof
end;
:: 53 f.x=-cos.x-
1/2
*
sin.x ^ 2
theorem
:: FDIFF_4:53
for
Z
being
open
Subset
of
REAL
st
Z
c=
dom
(
(
-
cos
)
-
(
(
1
/
2
)
(#)
(
(
#Z
2
)
*
sin
)
)
)
& ( for
x
being
Real
st
x
in
Z
holds
(
sin
.
x
>
0
&
cos
.
x
>
-
1 ) ) holds
(
(
-
cos
)
-
(
(
1
/
2
)
(#)
(
(
#Z
2
)
*
sin
)
)
is_differentiable_on
Z
& ( for
x
being
Real
st
x
in
Z
holds
(
(
(
-
cos
)
-
(
(
1
/
2
)
(#)
(
(
#Z
2
)
*
sin
)
)
)
`|
Z
)
.
x
=
(
(
sin
.
x
)
|^
3
)
/
(
1
+
(
cos
.
x
)
)
) )
proof
end;
:: 54 f.x=
1/n
*
sin.x ^ n
theorem
:: FDIFF_4:54
for
n
being
Element
of
NAT
for
Z
being
open
Subset
of
REAL
st
Z
c=
dom
(
(
1
/
n
)
(#)
(
(
#Z
n
)
*
sin
)
)
&
n
>
0
holds
(
(
1
/
n
)
(#)
(
(
#Z
n
)
*
sin
)
is_differentiable_on
Z
& ( for
x
being
Real
st
x
in
Z
holds
(
(
(
1
/
n
)
(#)
(
(
#Z
n
)
*
sin
)
)
`|
Z
)
.
x
=
(
(
sin
.
x
)
#Z
(
n
-
1
)
)
*
(
cos
.
x
)
) )
proof
end;
:: exponential function
:: 55 f.x=exp.x*
x-1
theorem
:: FDIFF_4:55
for
Z
being
open
Subset
of
REAL
for
f
being
PartFunc
of
REAL
,
REAL
st
Z
c=
dom
(
exp_R
(#)
f
)
& ( for
x
being
Real
st
x
in
Z
holds
f
.
x
=
x
-
1 ) holds
(
exp_R
(#)
f
is_differentiable_on
Z
& ( for
x
being
Real
st
x
in
Z
holds
(
(
exp_R
(#)
f
)
`|
Z
)
.
x
=
x
*
(
exp_R
.
x
)
) )
proof
end;
:: 56 f.x=ln
exp.x/(exp.x+1
)
theorem
:: FDIFF_4:56
for
Z
being
open
Subset
of
REAL
for
f
being
PartFunc
of
REAL
,
REAL
st
Z
c=
dom
(
ln
*
(
exp_R
/
(
exp_R
+
f
)
)
)
& ( for
x
being
Real
st
x
in
Z
holds
f
.
x
=
1 ) holds
(
ln
*
(
exp_R
/
(
exp_R
+
f
)
)
is_differentiable_on
Z
& ( for
x
being
Real
st
x
in
Z
holds
(
(
ln
*
(
exp_R
/
(
exp_R
+
f
)
)
)
`|
Z
)
.
x
=
1
/
(
(
exp_R
.
x
)
+
1
)
) )
proof
end;
:: 57 f.x=ln
(exp.x-1
/exp.x)
theorem
:: FDIFF_4:57
for
Z
being
open
Subset
of
REAL
for
f
being
PartFunc
of
REAL
,
REAL
st
Z
c=
dom
(
ln
*
(
(
exp_R
-
f
)
/
exp_R
)
)
& ( for
x
being
Real
st
x
in
Z
holds
(
f
.
x
=
1 &
(
exp_R
-
f
)
.
x
>
0
) ) holds
(
ln
*
(
(
exp_R
-
f
)
/
exp_R
)
is_differentiable_on
Z
& ( for
x
being
Real
st
x
in
Z
holds
(
(
ln
*
(
(
exp_R
-
f
)
/
exp_R
)
)
`|
Z
)
.
x
=
1
/
(
(
exp_R
.
x
)
-
1
)
) )
proof
end;