theorem
for
r,
x0,
x1 being
Real for
f1,
f2 being
Function of
REAL,
REAL holds
[!((r (#) f1) + f2),x0,x1!] = (r * [!f1,x0,x1!]) + [!f2,x0,x1!]
theorem
for
r,
x0,
x1 being
Real for
f1,
f2 being
Function of
REAL,
REAL holds
[!((r (#) f1) - f2),x0,x1!] = (r * [!f1,x0,x1!]) - [!f2,x0,x1!]
theorem
for
r,
x0,
x1 being
Real for
f1,
f2 being
Function of
REAL,
REAL holds
[!(f1 + (r (#) f2)),x0,x1!] = [!f1,x0,x1!] + (r * [!f2,x0,x1!])
theorem
for
r,
x0,
x1 being
Real for
f1,
f2 being
Function of
REAL,
REAL holds
[!(f1 - (r (#) f2)),x0,x1!] = [!f1,x0,x1!] - (r * [!f2,x0,x1!])
theorem
for
r1,
r2,
x0,
x1 being
Real for
f1,
f2 being
Function of
REAL,
REAL holds
[!((r1 (#) f1) - (r2 (#) f2)),x0,x1!] = (r1 * [!f1,x0,x1!]) - (r2 * [!f2,x0,x1!])
theorem
for
x0,
x1,
x2 being
Real for
f being
Function of
REAL,
REAL st
x0,
x1,
x2 are_mutually_distinct holds
[!f,x0,x1,x2!] = [!f,x0,x2,x1!]
theorem
for
h,
x being
Real for
f1,
f2 being
Function of
REAL,
REAL for
S being
Seq_Sequence st ( for
n,
i being
Nat st
i <= n holds
(S . n) . i = ((n choose i) * (((bdif (f1,h)) . i) . x)) * (((bdif (f2,h)) . (n -' i)) . (x - (i * h))) ) holds
(
((bdif ((f1 (#) f2),h)) . 1) . x = Sum (
(S . 1),1) &
((bdif ((f1 (#) f2),h)) . 2) . x = Sum (
(S . 2),2) )
theorem
for
h,
x being
Real for
f1,
f2 being
Function of
REAL,
REAL for
S being
Seq_Sequence st ( for
n,
i being
Nat st
i <= n holds
(S . n) . i = ((n choose i) * (((cdif (f1,h)) . i) . (x + ((n -' i) * (h / 2))))) * (((cdif (f2,h)) . (n -' i)) . (x - (i * (h / 2)))) ) holds
(
((cdif ((f1 (#) f2),h)) . 1) . x = Sum (
(S . 1),1) &
((cdif ((f1 (#) f2),h)) . 2) . x = Sum (
(S . 2),2) )
theorem
for
x0,
x1,
x2,
x3 being
Real for
f being
Function of
REAL,
REAL st ( for
x being
Real holds
f . x = sqrt x ) &
x0,
x1,
x2,
x3 are_mutually_distinct &
x0 > 0 &
x1 > 0 &
x2 > 0 &
x3 > 0 holds
[!f,x0,x1,x2,x3!] = ((((sqrt x0) + (sqrt x1)) + (sqrt x2)) + (sqrt x3)) / (((((((sqrt x0) + (sqrt x1)) * ((sqrt x0) + (sqrt x2))) * ((sqrt x0) + (sqrt x3))) * ((sqrt x1) + (sqrt x2))) * ((sqrt x1) + (sqrt x3))) * ((sqrt x2) + (sqrt x3)))
theorem
for
x0,
x1,
x2,
x3 being
Real for
f being
Function of
REAL,
REAL st ( for
x being
Real holds
f . x = x ^2 ) &
x0,
x1,
x2,
x3 are_mutually_distinct holds
[!f,x0,x1,x2,x3!] = 0