:: Propositional Calculus for Boolean Valued Functions, I
:: by Shunichi Kobayashi and Yatsuka Nakamura
::
:: Received March 13, 1999
:: Copyright (c) 1999-2021 Association of Mizar Users
theorem
:: BVFUNC_5:1
for
Y
being non
empty
set
for
a
,
b
being
Function
of
Y
,
BOOLEAN
holds
( (
a
=
I_el
Y
&
b
=
I_el
Y
) iff
a
'&'
b
=
I_el
Y
)
proof
end;
theorem
Th2
:
:: BVFUNC_5:2
for
Y
being non
empty
set
for
b
being
Function
of
Y
,
BOOLEAN
st
(
I_el
Y
)
'imp'
b
=
I_el
Y
holds
b
=
I_el
Y
proof
end;
theorem
:: BVFUNC_5:3
for
Y
being non
empty
set
for
a
,
b
being
Function
of
Y
,
BOOLEAN
st
a
=
I_el
Y
holds
a
'or'
b
=
I_el
Y
proof
end;
theorem
:: BVFUNC_5:4
for
Y
being non
empty
set
for
a
,
b
being
Function
of
Y
,
BOOLEAN
st
b
=
I_el
Y
holds
a
'imp'
b
=
I_el
Y
proof
end;
theorem
:: BVFUNC_5:5
for
Y
being non
empty
set
for
a
,
b
being
Function
of
Y
,
BOOLEAN
st
'not'
a
=
I_el
Y
holds
a
'imp'
b
=
I_el
Y
proof
end;
theorem
:: BVFUNC_5:6
for
Y
being non
empty
set
for
a
being
Function
of
Y
,
BOOLEAN
holds
'not'
(
a
'&'
(
'not'
a
)
)
=
I_el
Y
proof
end;
theorem
:: BVFUNC_5:7
for
Y
being non
empty
set
for
a
being
Function
of
Y
,
BOOLEAN
holds
a
'imp'
a
=
I_el
Y
proof
end;
theorem
:: BVFUNC_5:8
for
Y
being non
empty
set
for
a
,
b
being
Function
of
Y
,
BOOLEAN
holds
(
a
'imp'
b
=
I_el
Y
iff
(
'not'
b
)
'imp'
(
'not'
a
)
=
I_el
Y
)
proof
end;
theorem
:: BVFUNC_5:9
for
Y
being non
empty
set
for
a
,
b
,
c
being
Function
of
Y
,
BOOLEAN
st
a
'imp'
b
=
I_el
Y
&
b
'imp'
c
=
I_el
Y
holds
a
'imp'
c
=
I_el
Y
proof
end;
theorem
:: BVFUNC_5:10
for
Y
being non
empty
set
for
a
,
b
being
Function
of
Y
,
BOOLEAN
st
a
'imp'
b
=
I_el
Y
&
a
'imp'
(
'not'
b
)
=
I_el
Y
holds
'not'
a
=
I_el
Y
proof
end;
theorem
:: BVFUNC_5:11
for
Y
being non
empty
set
for
a
being
Function
of
Y
,
BOOLEAN
holds
(
(
'not'
a
)
'imp'
a
)
'imp'
a
=
I_el
Y
proof
end;
theorem
:: BVFUNC_5:12
for
Y
being non
empty
set
for
a
,
b
,
c
being
Function
of
Y
,
BOOLEAN
holds
(
a
'imp'
b
)
'imp'
(
(
'not'
(
b
'&'
c
)
)
'imp'
(
'not'
(
a
'&'
c
)
)
)
=
I_el
Y
proof
end;
theorem
:: BVFUNC_5:13
for
Y
being non
empty
set
for
a
,
b
,
c
being
Function
of
Y
,
BOOLEAN
holds
(
a
'imp'
b
)
'imp'
(
(
b
'imp'
c
)
'imp'
(
a
'imp'
c
)
)
=
I_el
Y
proof
end;
theorem
Th14
:
:: BVFUNC_5:14
for
Y
being non
empty
set
for
a
,
b
,
c
being
Function
of
Y
,
BOOLEAN
st
a
'imp'
b
=
I_el
Y
holds
(
b
'imp'
c
)
'imp'
(
a
'imp'
c
)
=
I_el
Y
proof
end;
theorem
Th15
:
:: BVFUNC_5:15
for
Y
being non
empty
set
for
a
,
b
being
Function
of
Y
,
BOOLEAN
holds
b
'imp'
(
a
'imp'
b
)
=
I_el
Y
proof
end;
theorem
:: BVFUNC_5:16
for
Y
being non
empty
set
for
a
,
b
,
c
being
Function
of
Y
,
BOOLEAN
holds
(
(
a
'imp'
b
)
'imp'
c
)
'imp'
(
b
'imp'
c
)
=
I_el
Y
proof
end;
theorem
:: BVFUNC_5:17
for
Y
being non
empty
set
for
a
,
b
being
Function
of
Y
,
BOOLEAN
holds
b
'imp'
(
(
b
'imp'
a
)
'imp'
a
)
=
I_el
Y
proof
end;
theorem
:: BVFUNC_5:18
for
Y
being non
empty
set
for
a
,
b
,
c
being
Function
of
Y
,
BOOLEAN
holds
(
c
'imp'
(
b
'imp'
a
)
)
'imp'
(
b
'imp'
(
c
'imp'
a
)
)
=
I_el
Y
proof
end;
theorem
:: BVFUNC_5:19
for
Y
being non
empty
set
for
a
,
b
,
c
being
Function
of
Y
,
BOOLEAN
holds
(
b
'imp'
c
)
'imp'
(
(
a
'imp'
b
)
'imp'
(
a
'imp'
c
)
)
=
I_el
Y
proof
end;
theorem
:: BVFUNC_5:20
for
Y
being non
empty
set
for
a
,
b
,
c
being
Function
of
Y
,
BOOLEAN
holds
(
b
'imp'
(
b
'imp'
c
)
)
'imp'
(
b
'imp'
c
)
=
I_el
Y
proof
end;
theorem
Th21
:
:: BVFUNC_5:21
for
Y
being non
empty
set
for
a
,
b
,
c
being
Function
of
Y
,
BOOLEAN
holds
(
a
'imp'
(
b
'imp'
c
)
)
'imp'
(
(
a
'imp'
b
)
'imp'
(
a
'imp'
c
)
)
=
I_el
Y
proof
end;
theorem
:: BVFUNC_5:22
for
Y
being non
empty
set
for
a
,
b
being
Function
of
Y
,
BOOLEAN
st
a
=
I_el
Y
holds
(
a
'imp'
b
)
'imp'
b
=
I_el
Y
proof
end;
theorem
:: BVFUNC_5:23
for
Y
being non
empty
set
for
a
,
b
,
c
being
Function
of
Y
,
BOOLEAN
st
c
'imp'
(
b
'imp'
a
)
=
I_el
Y
holds
b
'imp'
(
c
'imp'
a
)
=
I_el
Y
proof
end;
theorem
:: BVFUNC_5:24
for
Y
being non
empty
set
for
a
,
b
,
c
being
Function
of
Y
,
BOOLEAN
st
c
'imp'
(
b
'imp'
a
)
=
I_el
Y
&
b
=
I_el
Y
holds
c
'imp'
a
=
I_el
Y
proof
end;
theorem
Th25
:
:: BVFUNC_5:25
for
Y
being non
empty
set
for
a
being
Function
of
Y
,
BOOLEAN
st
(
I_el
Y
)
'imp'
(
(
I_el
Y
)
'imp'
a
)
=
I_el
Y
holds
a
=
I_el
Y
proof
end;
theorem
:: BVFUNC_5:26
for
Y
being non
empty
set
for
b
,
c
being
Function
of
Y
,
BOOLEAN
st
b
'imp'
(
b
'imp'
c
)
=
I_el
Y
holds
b
'imp'
c
=
I_el
Y
proof
end;
theorem
:: BVFUNC_5:27
for
Y
being non
empty
set
for
a
,
b
,
c
being
Function
of
Y
,
BOOLEAN
st
a
'imp'
(
b
'imp'
c
)
=
I_el
Y
holds
(
a
'imp'
b
)
'imp'
(
a
'imp'
c
)
=
I_el
Y
proof
end;
theorem
:: BVFUNC_5:28
for
Y
being non
empty
set
for
a
,
b
,
c
being
Function
of
Y
,
BOOLEAN
st
a
'imp'
(
b
'imp'
c
)
=
I_el
Y
&
a
'imp'
b
=
I_el
Y
holds
a
'imp'
c
=
I_el
Y
proof
end;
theorem
:: BVFUNC_5:29
for
Y
being non
empty
set
for
a
,
b
,
c
being
Function
of
Y
,
BOOLEAN
st
a
'imp'
(
b
'imp'
c
)
=
I_el
Y
&
a
'imp'
b
=
I_el
Y
&
a
=
I_el
Y
holds
c
=
I_el
Y
proof
end;
theorem
:: BVFUNC_5:30
for
Y
being non
empty
set
for
a
,
b
,
c
,
d
being
Function
of
Y
,
BOOLEAN
st
a
'imp'
(
b
'imp'
c
)
=
I_el
Y
&
a
'imp'
(
c
'imp'
d
)
=
I_el
Y
holds
a
'imp'
(
b
'imp'
d
)
=
I_el
Y
proof
end;
theorem
:: BVFUNC_5:31
for
Y
being non
empty
set
for
a
,
b
being
Function
of
Y
,
BOOLEAN
holds
(
(
'not'
a
)
'imp'
(
'not'
b
)
)
'imp'
(
b
'imp'
a
)
=
I_el
Y
proof
end;
theorem
:: BVFUNC_5:32
for
Y
being non
empty
set
for
a
,
b
being
Function
of
Y
,
BOOLEAN
holds
(
a
'imp'
b
)
'imp'
(
(
'not'
b
)
'imp'
(
'not'
a
)
)
=
I_el
Y
proof
end;
theorem
:: BVFUNC_5:33
for
Y
being non
empty
set
for
a
,
b
being
Function
of
Y
,
BOOLEAN
holds
(
a
'imp'
(
'not'
b
)
)
'imp'
(
b
'imp'
(
'not'
a
)
)
=
I_el
Y
proof
end;
theorem
:: BVFUNC_5:34
for
Y
being non
empty
set
for
a
,
b
being
Function
of
Y
,
BOOLEAN
holds
(
(
'not'
a
)
'imp'
b
)
'imp'
(
(
'not'
b
)
'imp'
a
)
=
I_el
Y
proof
end;
theorem
:: BVFUNC_5:35
for
Y
being non
empty
set
for
a
being
Function
of
Y
,
BOOLEAN
holds
(
a
'imp'
(
'not'
a
)
)
'imp'
(
'not'
a
)
=
I_el
Y
proof
end;
theorem
:: BVFUNC_5:36
for
Y
being non
empty
set
for
a
,
b
being
Function
of
Y
,
BOOLEAN
holds
(
'not'
a
)
'imp'
(
a
'imp'
b
)
=
I_el
Y
proof
end;
theorem
:: BVFUNC_5:37
for
Y
being non
empty
set
for
a
,
b
,
c
being
Function
of
Y
,
BOOLEAN
holds
'not'
(
(
a
'&'
b
)
'&'
c
)
=
(
(
'not'
a
)
'or'
(
'not'
b
)
)
'or'
(
'not'
c
)
proof
end;
theorem
:: BVFUNC_5:38
for
Y
being non
empty
set
for
a
,
b
,
c
being
Function
of
Y
,
BOOLEAN
holds
'not'
(
(
a
'or'
b
)
'or'
c
)
=
(
(
'not'
a
)
'&'
(
'not'
b
)
)
'&'
(
'not'
c
)
proof
end;
theorem
:: BVFUNC_5:39
for
Y
being non
empty
set
for
a
,
b
,
c
,
d
being
Function
of
Y
,
BOOLEAN
holds
a
'or'
(
(
b
'&'
c
)
'&'
d
)
=
(
(
a
'or'
b
)
'&'
(
a
'or'
c
)
)
'&'
(
a
'or'
d
)
proof
end;
theorem
:: BVFUNC_5:40
for
Y
being non
empty
set
for
a
,
b
,
c
,
d
being
Function
of
Y
,
BOOLEAN
holds
a
'&'
(
(
b
'or'
c
)
'or'
d
)
=
(
(
a
'&'
b
)
'or'
(
a
'&'
c
)
)
'or'
(
a
'&'
d
)
proof
end;