begin
theorem
for
f being non
constant standard special_circular_sequence for
k being
Element of
NAT st 1
<= k &
k + 2
<= len f holds
for
i,
j being
Element of
NAT st 1
<= i &
i + 1
<= len (GoB f) & 1
<= j &
j + 2
<= width (GoB f) &
f /. (k + 1) = (GoB f) * (
(i + 1),
(j + 1)) & ( (
f /. k = (GoB f) * (
(i + 1),
j) &
f /. (k + 2) = (GoB f) * (
(i + 1),
(j + 2)) ) or (
f /. (k + 2) = (GoB f) * (
(i + 1),
j) &
f /. k = (GoB f) * (
(i + 1),
(j + 2)) ) ) holds
LSeg (
((1 / 2) * (((GoB f) * (i,j)) + ((GoB f) * ((i + 1),(j + 1))))),
((1 / 2) * (((GoB f) * (i,(j + 1))) + ((GoB f) * ((i + 1),(j + 2))))))
misses L~ f
theorem
for
f being non
constant standard special_circular_sequence for
k being
Element of
NAT st 1
<= k &
k + 2
<= len f holds
for
i,
j being
Element of
NAT st 1
<= i &
i + 2
<= len (GoB f) & 1
<= j &
j + 2
<= width (GoB f) &
f /. (k + 1) = (GoB f) * (
(i + 1),
(j + 1)) & ( (
f /. k = (GoB f) * (
(i + 2),
(j + 1)) &
f /. (k + 2) = (GoB f) * (
(i + 1),
(j + 2)) ) or (
f /. (k + 2) = (GoB f) * (
(i + 2),
(j + 1)) &
f /. k = (GoB f) * (
(i + 1),
(j + 2)) ) ) holds
LSeg (
((1 / 2) * (((GoB f) * (i,j)) + ((GoB f) * ((i + 1),(j + 1))))),
((1 / 2) * (((GoB f) * (i,(j + 1))) + ((GoB f) * ((i + 1),(j + 2))))))
misses L~ f
theorem
for
f being non
constant standard special_circular_sequence for
k being
Element of
NAT st 1
<= k &
k + 2
<= len f holds
for
i,
j being
Element of
NAT st 1
<= i &
i + 2
<= len (GoB f) & 1
<= j &
j + 2
<= width (GoB f) &
f /. (k + 1) = (GoB f) * (
(i + 1),
(j + 1)) & ( (
f /. k = (GoB f) * (
(i + 2),
(j + 1)) &
f /. (k + 2) = (GoB f) * (
(i + 1),
j) ) or (
f /. (k + 2) = (GoB f) * (
(i + 2),
(j + 1)) &
f /. k = (GoB f) * (
(i + 1),
j) ) ) holds
LSeg (
((1 / 2) * (((GoB f) * (i,j)) + ((GoB f) * ((i + 1),(j + 1))))),
((1 / 2) * (((GoB f) * (i,(j + 1))) + ((GoB f) * ((i + 1),(j + 2))))))
misses L~ f
theorem
for
f being non
constant standard special_circular_sequence for
k being
Element of
NAT st 1
<= k &
k + 2
<= len f holds
for
i,
j being
Element of
NAT st 1
<= i &
i + 1
<= len (GoB f) & 1
<= j &
j + 2
<= width (GoB f) &
f /. (k + 1) = (GoB f) * (
i,
(j + 1)) & ( (
f /. k = (GoB f) * (
i,
j) &
f /. (k + 2) = (GoB f) * (
i,
(j + 2)) ) or (
f /. (k + 2) = (GoB f) * (
i,
j) &
f /. k = (GoB f) * (
i,
(j + 2)) ) ) holds
LSeg (
((1 / 2) * (((GoB f) * (i,j)) + ((GoB f) * ((i + 1),(j + 1))))),
((1 / 2) * (((GoB f) * (i,(j + 1))) + ((GoB f) * ((i + 1),(j + 2))))))
misses L~ f
theorem
for
f being non
constant standard special_circular_sequence for
k being
Element of
NAT st 1
<= k &
k + 2
<= len f holds
for
i,
j being
Element of
NAT st 1
<= i &
i + 2
<= len (GoB f) & 1
<= j &
j + 2
<= width (GoB f) &
f /. (k + 1) = (GoB f) * (
(i + 1),
(j + 1)) & ( (
f /. k = (GoB f) * (
i,
(j + 1)) &
f /. (k + 2) = (GoB f) * (
(i + 1),
(j + 2)) ) or (
f /. (k + 2) = (GoB f) * (
i,
(j + 1)) &
f /. k = (GoB f) * (
(i + 1),
(j + 2)) ) ) holds
LSeg (
((1 / 2) * (((GoB f) * ((i + 1),j)) + ((GoB f) * ((i + 2),(j + 1))))),
((1 / 2) * (((GoB f) * ((i + 1),(j + 1))) + ((GoB f) * ((i + 2),(j + 2))))))
misses L~ f
theorem
for
f being non
constant standard special_circular_sequence for
k being
Element of
NAT st 1
<= k &
k + 2
<= len f holds
for
i,
j being
Element of
NAT st 1
<= i &
i + 2
<= len (GoB f) & 1
<= j &
j + 2
<= width (GoB f) &
f /. (k + 1) = (GoB f) * (
(i + 1),
(j + 1)) & ( (
f /. k = (GoB f) * (
i,
(j + 1)) &
f /. (k + 2) = (GoB f) * (
(i + 1),
j) ) or (
f /. (k + 2) = (GoB f) * (
i,
(j + 1)) &
f /. k = (GoB f) * (
(i + 1),
j) ) ) holds
LSeg (
((1 / 2) * (((GoB f) * ((i + 1),j)) + ((GoB f) * ((i + 2),(j + 1))))),
((1 / 2) * (((GoB f) * ((i + 1),(j + 1))) + ((GoB f) * ((i + 2),(j + 2))))))
misses L~ f
theorem
for
f being non
constant standard special_circular_sequence for
k being
Element of
NAT st 1
<= k &
k + 2
<= len f holds
for
i being
Element of
NAT st 1
<= i &
i + 2
<= len (GoB f) &
f /. (k + 1) = (GoB f) * (
(i + 1),1) & ( (
f /. k = (GoB f) * (
(i + 2),1) &
f /. (k + 2) = (GoB f) * (
(i + 1),2) ) or (
f /. (k + 2) = (GoB f) * (
(i + 2),1) &
f /. k = (GoB f) * (
(i + 1),2) ) ) holds
LSeg (
(((1 / 2) * (((GoB f) * (i,1)) + ((GoB f) * ((i + 1),1)))) - |[0,1]|),
((1 / 2) * (((GoB f) * (i,1)) + ((GoB f) * ((i + 1),2)))))
misses L~ f
theorem
for
f being non
constant standard special_circular_sequence for
k being
Element of
NAT st 1
<= k &
k + 2
<= len f holds
for
i being
Element of
NAT st 1
<= i &
i + 2
<= len (GoB f) &
f /. (k + 1) = (GoB f) * (
(i + 1),1) & ( (
f /. k = (GoB f) * (
i,1) &
f /. (k + 2) = (GoB f) * (
(i + 1),2) ) or (
f /. (k + 2) = (GoB f) * (
i,1) &
f /. k = (GoB f) * (
(i + 1),2) ) ) holds
LSeg (
(((1 / 2) * (((GoB f) * ((i + 1),1)) + ((GoB f) * ((i + 2),1)))) - |[0,1]|),
((1 / 2) * (((GoB f) * ((i + 1),1)) + ((GoB f) * ((i + 2),2)))))
misses L~ f
theorem
for
f being non
constant standard special_circular_sequence for
k being
Element of
NAT st 1
<= k &
k + 2
<= len f holds
for
i being
Element of
NAT st 1
<= i &
i + 2
<= len (GoB f) &
f /. (k + 1) = (GoB f) * (
(i + 1),
(width (GoB f))) & ( (
f /. k = (GoB f) * (
(i + 2),
(width (GoB f))) &
f /. (k + 2) = (GoB f) * (
(i + 1),
((width (GoB f)) -' 1)) ) or (
f /. (k + 2) = (GoB f) * (
(i + 2),
(width (GoB f))) &
f /. k = (GoB f) * (
(i + 1),
((width (GoB f)) -' 1)) ) ) holds
LSeg (
((1 / 2) * (((GoB f) * (i,((width (GoB f)) -' 1))) + ((GoB f) * ((i + 1),(width (GoB f)))))),
(((1 / 2) * (((GoB f) * (i,(width (GoB f)))) + ((GoB f) * ((i + 1),(width (GoB f)))))) + |[0,1]|))
misses L~ f
theorem
for
f being non
constant standard special_circular_sequence for
k being
Element of
NAT st 1
<= k &
k + 2
<= len f holds
for
i being
Element of
NAT st 1
<= i &
i + 2
<= len (GoB f) &
f /. (k + 1) = (GoB f) * (
(i + 1),
(width (GoB f))) & ( (
f /. k = (GoB f) * (
i,
(width (GoB f))) &
f /. (k + 2) = (GoB f) * (
(i + 1),
((width (GoB f)) -' 1)) ) or (
f /. (k + 2) = (GoB f) * (
i,
(width (GoB f))) &
f /. k = (GoB f) * (
(i + 1),
((width (GoB f)) -' 1)) ) ) holds
LSeg (
((1 / 2) * (((GoB f) * ((i + 1),((width (GoB f)) -' 1))) + ((GoB f) * ((i + 2),(width (GoB f)))))),
(((1 / 2) * (((GoB f) * ((i + 1),(width (GoB f)))) + ((GoB f) * ((i + 2),(width (GoB f)))))) + |[0,1]|))
misses L~ f
theorem
for
f being non
constant standard special_circular_sequence for
k being
Element of
NAT st 1
<= k &
k + 2
<= len f holds
for
i,
j being
Element of
NAT st 1
<= j &
j + 1
<= width (GoB f) & 1
<= i &
i + 2
<= len (GoB f) &
f /. (k + 1) = (GoB f) * (
(i + 1),
(j + 1)) & ( (
f /. k = (GoB f) * (
i,
(j + 1)) &
f /. (k + 2) = (GoB f) * (
(i + 2),
(j + 1)) ) or (
f /. (k + 2) = (GoB f) * (
i,
(j + 1)) &
f /. k = (GoB f) * (
(i + 2),
(j + 1)) ) ) holds
LSeg (
((1 / 2) * (((GoB f) * (i,j)) + ((GoB f) * ((i + 1),(j + 1))))),
((1 / 2) * (((GoB f) * ((i + 1),j)) + ((GoB f) * ((i + 2),(j + 1))))))
misses L~ f
theorem
for
f being non
constant standard special_circular_sequence for
k being
Element of
NAT st 1
<= k &
k + 2
<= len f holds
for
j,
i being
Element of
NAT st 1
<= j &
j + 2
<= width (GoB f) & 1
<= i &
i + 2
<= len (GoB f) &
f /. (k + 1) = (GoB f) * (
(i + 1),
(j + 1)) & ( (
f /. k = (GoB f) * (
(i + 1),
(j + 2)) &
f /. (k + 2) = (GoB f) * (
(i + 2),
(j + 1)) ) or (
f /. (k + 2) = (GoB f) * (
(i + 1),
(j + 2)) &
f /. k = (GoB f) * (
(i + 2),
(j + 1)) ) ) holds
LSeg (
((1 / 2) * (((GoB f) * (i,j)) + ((GoB f) * ((i + 1),(j + 1))))),
((1 / 2) * (((GoB f) * ((i + 1),j)) + ((GoB f) * ((i + 2),(j + 1))))))
misses L~ f
theorem
for
f being non
constant standard special_circular_sequence for
k being
Element of
NAT st 1
<= k &
k + 2
<= len f holds
for
j,
i being
Element of
NAT st 1
<= j &
j + 2
<= width (GoB f) & 1
<= i &
i + 2
<= len (GoB f) &
f /. (k + 1) = (GoB f) * (
(i + 1),
(j + 1)) & ( (
f /. k = (GoB f) * (
(i + 1),
(j + 2)) &
f /. (k + 2) = (GoB f) * (
i,
(j + 1)) ) or (
f /. (k + 2) = (GoB f) * (
(i + 1),
(j + 2)) &
f /. k = (GoB f) * (
i,
(j + 1)) ) ) holds
LSeg (
((1 / 2) * (((GoB f) * (i,j)) + ((GoB f) * ((i + 1),(j + 1))))),
((1 / 2) * (((GoB f) * ((i + 1),j)) + ((GoB f) * ((i + 2),(j + 1))))))
misses L~ f
theorem
for
f being non
constant standard special_circular_sequence for
k being
Element of
NAT st 1
<= k &
k + 2
<= len f holds
for
j,
i being
Element of
NAT st 1
<= j &
j + 1
<= width (GoB f) & 1
<= i &
i + 2
<= len (GoB f) &
f /. (k + 1) = (GoB f) * (
(i + 1),
j) & ( (
f /. k = (GoB f) * (
i,
j) &
f /. (k + 2) = (GoB f) * (
(i + 2),
j) ) or (
f /. (k + 2) = (GoB f) * (
i,
j) &
f /. k = (GoB f) * (
(i + 2),
j) ) ) holds
LSeg (
((1 / 2) * (((GoB f) * (i,j)) + ((GoB f) * ((i + 1),(j + 1))))),
((1 / 2) * (((GoB f) * ((i + 1),j)) + ((GoB f) * ((i + 2),(j + 1))))))
misses L~ f
theorem
for
f being non
constant standard special_circular_sequence for
k being
Element of
NAT st 1
<= k &
k + 2
<= len f holds
for
j,
i being
Element of
NAT st 1
<= j &
j + 2
<= width (GoB f) & 1
<= i &
i + 2
<= len (GoB f) &
f /. (k + 1) = (GoB f) * (
(i + 1),
(j + 1)) & ( (
f /. k = (GoB f) * (
(i + 1),
j) &
f /. (k + 2) = (GoB f) * (
(i + 2),
(j + 1)) ) or (
f /. (k + 2) = (GoB f) * (
(i + 1),
j) &
f /. k = (GoB f) * (
(i + 2),
(j + 1)) ) ) holds
LSeg (
((1 / 2) * (((GoB f) * (i,(j + 1))) + ((GoB f) * ((i + 1),(j + 2))))),
((1 / 2) * (((GoB f) * ((i + 1),(j + 1))) + ((GoB f) * ((i + 2),(j + 2))))))
misses L~ f
theorem
for
f being non
constant standard special_circular_sequence for
k being
Element of
NAT st 1
<= k &
k + 2
<= len f holds
for
j,
i being
Element of
NAT st 1
<= j &
j + 2
<= width (GoB f) & 1
<= i &
i + 2
<= len (GoB f) &
f /. (k + 1) = (GoB f) * (
(i + 1),
(j + 1)) & ( (
f /. k = (GoB f) * (
(i + 1),
j) &
f /. (k + 2) = (GoB f) * (
i,
(j + 1)) ) or (
f /. (k + 2) = (GoB f) * (
(i + 1),
j) &
f /. k = (GoB f) * (
i,
(j + 1)) ) ) holds
LSeg (
((1 / 2) * (((GoB f) * (i,(j + 1))) + ((GoB f) * ((i + 1),(j + 2))))),
((1 / 2) * (((GoB f) * ((i + 1),(j + 1))) + ((GoB f) * ((i + 2),(j + 2))))))
misses L~ f
theorem
for
f being non
constant standard special_circular_sequence for
k being
Element of
NAT st 1
<= k &
k + 2
<= len f holds
for
j being
Element of
NAT st 1
<= j &
j + 2
<= width (GoB f) &
f /. (k + 1) = (GoB f) * (1,
(j + 1)) & ( (
f /. k = (GoB f) * (1,
(j + 2)) &
f /. (k + 2) = (GoB f) * (2,
(j + 1)) ) or (
f /. (k + 2) = (GoB f) * (1,
(j + 2)) &
f /. k = (GoB f) * (2,
(j + 1)) ) ) holds
LSeg (
(((1 / 2) * (((GoB f) * (1,j)) + ((GoB f) * (1,(j + 1))))) - |[1,0]|),
((1 / 2) * (((GoB f) * (1,j)) + ((GoB f) * (2,(j + 1))))))
misses L~ f
theorem
for
f being non
constant standard special_circular_sequence for
k being
Element of
NAT st 1
<= k &
k + 2
<= len f holds
for
j being
Element of
NAT st 1
<= j &
j + 2
<= width (GoB f) &
f /. (k + 1) = (GoB f) * (1,
(j + 1)) & ( (
f /. k = (GoB f) * (1,
j) &
f /. (k + 2) = (GoB f) * (2,
(j + 1)) ) or (
f /. (k + 2) = (GoB f) * (1,
j) &
f /. k = (GoB f) * (2,
(j + 1)) ) ) holds
LSeg (
(((1 / 2) * (((GoB f) * (1,(j + 1))) + ((GoB f) * (1,(j + 2))))) - |[1,0]|),
((1 / 2) * (((GoB f) * (1,(j + 1))) + ((GoB f) * (2,(j + 2))))))
misses L~ f
theorem
for
f being non
constant standard special_circular_sequence for
k being
Element of
NAT st 1
<= k &
k + 2
<= len f holds
for
j being
Element of
NAT st 1
<= j &
j + 2
<= width (GoB f) &
f /. (k + 1) = (GoB f) * (
(len (GoB f)),
(j + 1)) & ( (
f /. k = (GoB f) * (
(len (GoB f)),
(j + 2)) &
f /. (k + 2) = (GoB f) * (
((len (GoB f)) -' 1),
(j + 1)) ) or (
f /. (k + 2) = (GoB f) * (
(len (GoB f)),
(j + 2)) &
f /. k = (GoB f) * (
((len (GoB f)) -' 1),
(j + 1)) ) ) holds
LSeg (
((1 / 2) * (((GoB f) * (((len (GoB f)) -' 1),j)) + ((GoB f) * ((len (GoB f)),(j + 1))))),
(((1 / 2) * (((GoB f) * ((len (GoB f)),j)) + ((GoB f) * ((len (GoB f)),(j + 1))))) + |[1,0]|))
misses L~ f
theorem
for
f being non
constant standard special_circular_sequence for
k being
Element of
NAT st 1
<= k &
k + 2
<= len f holds
for
j being
Element of
NAT st 1
<= j &
j + 2
<= width (GoB f) &
f /. (k + 1) = (GoB f) * (
(len (GoB f)),
(j + 1)) & ( (
f /. k = (GoB f) * (
(len (GoB f)),
j) &
f /. (k + 2) = (GoB f) * (
((len (GoB f)) -' 1),
(j + 1)) ) or (
f /. (k + 2) = (GoB f) * (
(len (GoB f)),
j) &
f /. k = (GoB f) * (
((len (GoB f)) -' 1),
(j + 1)) ) ) holds
LSeg (
((1 / 2) * (((GoB f) * (((len (GoB f)) -' 1),(j + 1))) + ((GoB f) * ((len (GoB f)),(j + 2))))),
(((1 / 2) * (((GoB f) * ((len (GoB f)),(j + 1))) + ((GoB f) * ((len (GoB f)),(j + 2))))) + |[1,0]|))
misses L~ f
theorem Th21:
theorem Th22:
theorem Th23:
theorem Th24:
theorem
theorem
theorem
theorem
theorem
theorem
theorem
theorem
theorem
theorem
theorem
theorem
theorem
theorem