:: Propositional Calculus For Boolean Valued Functions, III
:: by Shunichi Kobayashi
::
:: Received April 23, 1999
:: Copyright (c) 1999-2011 Association of Mizar Users
begin
theorem
:: BVFUNC_7:1
for
Y
being non
empty
set
for
a
,
b
being
Element
of
Funcs
(
Y
,
BOOLEAN
) holds
(
a
'imp'
b
)
'&'
(
(
'not'
a
)
'imp'
b
)
=
b
proof
end;
theorem
:: BVFUNC_7:2
for
Y
being non
empty
set
for
a
,
b
being
Element
of
Funcs
(
Y
,
BOOLEAN
) holds
(
a
'imp'
b
)
'&'
(
a
'imp'
(
'not'
b
)
)
=
'not'
a
proof
end;
theorem
:: BVFUNC_7:3
for
Y
being non
empty
set
for
a
,
b
,
c
being
Element
of
Funcs
(
Y
,
BOOLEAN
) holds
a
'imp'
(
b
'or'
c
)
=
(
a
'imp'
b
)
'or'
(
a
'imp'
c
)
proof
end;
theorem
:: BVFUNC_7:4
for
Y
being non
empty
set
for
a
,
b
,
c
being
Element
of
Funcs
(
Y
,
BOOLEAN
) holds
a
'imp'
(
b
'&'
c
)
=
(
a
'imp'
b
)
'&'
(
a
'imp'
c
)
proof
end;
theorem
:: BVFUNC_7:5
for
Y
being non
empty
set
for
a
,
b
,
c
being
Element
of
Funcs
(
Y
,
BOOLEAN
) holds
(
a
'or'
b
)
'imp'
c
=
(
a
'imp'
c
)
'&'
(
b
'imp'
c
)
proof
end;
theorem
:: BVFUNC_7:6
for
Y
being non
empty
set
for
a
,
b
,
c
being
Element
of
Funcs
(
Y
,
BOOLEAN
) holds
(
a
'&'
b
)
'imp'
c
=
(
a
'imp'
c
)
'or'
(
b
'imp'
c
)
proof
end;
theorem
Th7
:
:: BVFUNC_7:7
for
Y
being non
empty
set
for
a
,
b
,
c
being
Element
of
Funcs
(
Y
,
BOOLEAN
) holds
(
a
'&'
b
)
'imp'
c
=
a
'imp'
(
b
'imp'
c
)
proof
end;
theorem
:: BVFUNC_7:8
for
Y
being non
empty
set
for
a
,
b
,
c
being
Element
of
Funcs
(
Y
,
BOOLEAN
) holds
(
a
'&'
b
)
'imp'
c
=
a
'imp'
(
(
'not'
b
)
'or'
c
)
proof
end;
theorem
:: BVFUNC_7:9
for
Y
being non
empty
set
for
a
,
b
,
c
being
Element
of
Funcs
(
Y
,
BOOLEAN
) holds
a
'imp'
(
b
'or'
c
)
=
(
a
'&'
(
'not'
b
)
)
'imp'
c
proof
end;
theorem
:: BVFUNC_7:10
for
Y
being non
empty
set
for
a
,
b
being
Element
of
Funcs
(
Y
,
BOOLEAN
) holds
a
'&'
(
a
'imp'
b
)
=
a
'&'
b
proof
end;
theorem
:: BVFUNC_7:11
for
Y
being non
empty
set
for
a
,
b
being
Element
of
Funcs
(
Y
,
BOOLEAN
) holds
(
a
'imp'
b
)
'&'
(
'not'
b
)
=
(
'not'
a
)
'&'
(
'not'
b
)
proof
end;
theorem
:: BVFUNC_7:12
for
Y
being non
empty
set
for
a
,
b
,
c
being
Element
of
Funcs
(
Y
,
BOOLEAN
) holds
(
a
'imp'
b
)
'&'
(
b
'imp'
c
)
=
(
(
a
'imp'
b
)
'&'
(
b
'imp'
c
)
)
'&'
(
a
'imp'
c
)
proof
end;
theorem
:: BVFUNC_7:13
for
Y
being non
empty
set
for
a
being
Element
of
Funcs
(
Y
,
BOOLEAN
) holds
(
I_el
Y
)
'imp'
a
=
a
proof
end;
theorem
:: BVFUNC_7:14
for
Y
being non
empty
set
for
a
being
Element
of
Funcs
(
Y
,
BOOLEAN
) holds
a
'imp'
(
O_el
Y
)
=
'not'
a
proof
end;
theorem
:: BVFUNC_7:15
for
Y
being non
empty
set
for
a
being
Element
of
Funcs
(
Y
,
BOOLEAN
) holds
(
O_el
Y
)
'imp'
a
=
I_el
Y
proof
end;
theorem
:: BVFUNC_7:16
for
Y
being non
empty
set
for
a
being
Element
of
Funcs
(
Y
,
BOOLEAN
) holds
a
'imp'
(
I_el
Y
)
=
I_el
Y
proof
end;
theorem
:: BVFUNC_7:17
for
Y
being non
empty
set
for
a
being
Element
of
Funcs
(
Y
,
BOOLEAN
) holds
a
'imp'
(
'not'
a
)
=
'not'
a
proof
end;
theorem
:: BVFUNC_7:18
for
Y
being non
empty
set
for
a
,
b
,
c
being
Element
of
Funcs
(
Y
,
BOOLEAN
) holds
a
'imp'
b
'<'
(
c
'imp'
a
)
'imp'
(
c
'imp'
b
)
proof
end;
theorem
:: BVFUNC_7:19
for
Y
being non
empty
set
for
a
,
b
,
c
being
Element
of
Funcs
(
Y
,
BOOLEAN
) holds
a
'eqv'
b
'<'
(
a
'eqv'
c
)
'eqv'
(
b
'eqv'
c
)
proof
end;
theorem
:: BVFUNC_7:20
for
Y
being non
empty
set
for
a
,
b
,
c
being
Element
of
Funcs
(
Y
,
BOOLEAN
) holds
a
'eqv'
b
'<'
(
a
'imp'
c
)
'eqv'
(
b
'imp'
c
)
proof
end;
theorem
:: BVFUNC_7:21
for
Y
being non
empty
set
for
a
,
b
,
c
being
Element
of
Funcs
(
Y
,
BOOLEAN
) holds
a
'eqv'
b
'<'
(
c
'imp'
a
)
'eqv'
(
c
'imp'
b
)
proof
end;
theorem
:: BVFUNC_7:22
for
Y
being non
empty
set
for
a
,
b
,
c
being
Element
of
Funcs
(
Y
,
BOOLEAN
) holds
a
'eqv'
b
'<'
(
a
'&'
c
)
'eqv'
(
b
'&'
c
)
proof
end;
theorem
:: BVFUNC_7:23
for
Y
being non
empty
set
for
a
,
b
,
c
being
Element
of
Funcs
(
Y
,
BOOLEAN
) holds
a
'eqv'
b
'<'
(
a
'or'
c
)
'eqv'
(
b
'or'
c
)
proof
end;
theorem
:: BVFUNC_7:24
for
Y
being non
empty
set
for
a
,
b
being
Element
of
Funcs
(
Y
,
BOOLEAN
) holds
a
'<'
(
(
a
'eqv'
b
)
'eqv'
(
b
'eqv'
a
)
)
'eqv'
a
proof
end;
theorem
:: BVFUNC_7:25
for
Y
being non
empty
set
for
a
,
b
being
Element
of
Funcs
(
Y
,
BOOLEAN
) holds
a
'<'
(
a
'imp'
b
)
'eqv'
b
proof
end;
theorem
:: BVFUNC_7:26
for
Y
being non
empty
set
for
a
,
b
being
Element
of
Funcs
(
Y
,
BOOLEAN
) holds
a
'<'
(
b
'imp'
a
)
'eqv'
a
proof
end;
theorem
:: BVFUNC_7:27
for
Y
being non
empty
set
for
a
,
b
being
Element
of
Funcs
(
Y
,
BOOLEAN
) holds
a
'<'
(
(
a
'&'
b
)
'eqv'
(
b
'&'
a
)
)
'eqv'
a
proof
end;