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Abstract

Two questions drive the dissertation:

• What can one discover in a formal mathematical theory?
• What more do we know of a mathematical theorem when it has been formally proved

than that it is provable?

These questions spring from the provocative philosophy of mathematics of Imre Lakatos.
They are tackled in two ways: by evaluating the philosophical foundations of Lakatos’s
work, and by studying contemporary work in formal mathematics, specifically formal proof
checking technology.

The dissertation has a technical part and a philosophical part. The first part considers
some philosophical problems raised (or brought into focus) by formal mathematical proofs.
The second, technical part attempts to answer mathematical questions raised in the first
part. The bridge between the two is a formal proof of a famous mathematical result known
as Euler’s polyhedron formula, whose history Lakatos has reconstructed and which serves
as the central example for his philosophy of mathematics. The aim of the dissertation is to
explore some of the philosophical problems suggested by such formalization efforts.

The argument of the dissertation has three components. In the first component, I ex-
plain how Lakatos’s philosophy of mathematics poses a challenge to formal proof checking
technology. The second component is to respond to the challenge by formalizing Euler’s
polyhedron formula. Finally, the third component evaluates the technical, formal proof
response.

The dissertation is timely because, owing to developments in logic and computing in the last
half-century, the concept of a formal proof, which used to be at best a model of mathemat-
ical argumentation, has become more concrete and practical. It has now become possible
to actually formalize significant mathematical proofs. These contemporary developments
are a source of problems for a philosophy of mathematics that is sensitive to mathematical
practice. This movement within the philosophy of mathematics is to no small degree in-
spired by Lakatos’s work. The time is ripe for returning to some of the basic philosophical
problems that Lakatos and other philosophers pointed to long ago, and to examine new
problems that come from the development of what might be called proof technology, tools
for helping mathematicians construct and evaluate proofs.
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In chapter 1, I lay out some of the main questions and problems about formal proofs and
explain how they are related to central issues within mainstream philosophy, particularly
epistemology and philosophy of science. The development of formal proof technology is
based on classical 19th and 20th century results in mathematical logic but depends crucially
on computers. Chapter 1 also surveys the variety of uses of computers in mathematical
practice and discusses the variety of philosophical problems they pose.

The next step in the discussion of formal proofs will be a critical evaluation of the philosophy
of mathematics of Imre Lakatos. His Proofs and Refutations (1963) attacks formalist
philosophies of mathematics. Since much proof technology is to some extent based on or
requires a certain formalist view of mathematics, the question naturally arises how Lakatos’s
philosophy bears on these developments. Chapter 2 addresses these concerns. I focus also
on some epistemological problems suggested by formal proofs, such as the question of
defining rigor and the problem of whether and how one improves one’s justification for a
mathematical claim through formalization of a proof of it.

The cornerstone of Lakatos’s Proofs and Refutations is a history of a particular math-
ematical theorem known as Euler’s polyhedron formula, which is a certain geometrical-
combinatorial claim with a rather colorful history. I have formalized a proof of this math-
ematical result; chapter 3 contains a discussion of the proof and its formalization.

Thanks to the work carried out in chapter 3, Euler’s polyhedron formula (understood in a
certain abstract or combinatorial way that is explained in chapter 3) is shown to be a first-
order consequence a certain first-order theory of sets. Because of the peculiarities of the
particular proof technology with which the formal proof was carried out, the theory of sets
that is used is much stronger than what is intuitively required for Euler’s theorem. A natural
proof-theoretic question thereby arises: can one do better? Are the strong assumptions
really necessary? In chapter 4, I identify a weaker theory in which to carry out a formal proof
Euler’s formula. Also discussed are some formal problems about expressibility problems
for combinatorial polyhedra, and related issues.

In chapter 5, I return to some of the issues that Lakatos raised in connection with formal
proofs in light of the formal work that is carried out in chapter 3. This work provides
some resources for taking on the two questions that were initially asked. I show that
Lakatos’s philosophy, its strong reservations against ‘formalism’ notwithstanding, applies
quite naturally to formal mathematics.
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0

1 Introduction

Mathematics can be distinguished from other intellectual disciplines by its argumentative

practices: only the most rigorous arguments—proofs—are allowed. Indeed, one might char-

acterize mathematics as the discipline whose claims to knowledge require proof ; an argument

is mathematical to the extent that it is a proof. Within the study of argumentation, one

ought to be especially interested in proofs, since they are perhaps the most sophisticated

and rigorous arguments that we can produce.

But a proof is not merely any convincing argument; examples of bad convincing arguments

are only too easy to find. What distinguishes mathematical proofs from other kinds of

arguments? What is a proof? The question is quite broad, and of course hardly new.

The central theme of this dissertation is the concept of a formal proof, an argument exe-

cuted according to the rules of a precisely specified mechanism. Depending on one’s views,

this study will be either one of contrasts (emphasizing the ways in which formal proofs

differ from non-formal proofs) or of similarities (one sees non-formal proofs as more or less

straightforward approximations of formal proofs).

Yet the dissertation is not merely a comparison of formal and non-formal proofs. I hope

to show how questions about formal proofs touch on some central issues in mainstream

philosophy. In this respect, the philosophy of Imre Lakatos animates the whole dissertation.

Lakatos’s major work, Proofs and Refutations [1], arising from his own dissertation, is a

refreshing critique of certain approaches to the philosophy of mathematics which emphasize

formal over non-formal proofs. Lakatos is not an enemy of formal proofs as such, but in

his work he critiques philosophies of mathematics that hold that formal proofs ought to

be somehow privileged, either philosophically or methodologically, over non-formal proofs.

Lakatos’ work engages deftly with the history of mathematics, but it does not shy away

from some of the enduring questions of philosophy.

Two questions spur on the work:
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• What can one discover in a formal theory?

• What more do we know of a mathematical theorem when it has been formally proved

than that it is provable?

The structure of the dissertation will be as follows. There are two parts: a philosophical

part and a technical part. The bridge between the two parts will be the central example of

Lakatos’s Proofs and Refutations: Euler’s polyhedron formula. The first part will consider

some philosophical problems raised (or brought into focus) by formal proofs. The second

part is technical and attempts to answer mathematical questions raised in the first half.

In chapter 1, we will discuss some of the main questions and problems about formal proofs

and show how they are related to central issues within mainstream philosophy.

By definition, a formal proof is a construction that is carried out according to the rules

of a rigorously specified language and proof system. We lay down rules for what counts

as a deduction: the statements appearing in it must be formulas within some specific

formal language, and the steps in the deduction must be justified by appealing to certain

mechanical rules. In general, the rules of inference in a proof system capture, or correspond

to, only the particularly simple kinds of inferences that one might carry out in non-formal

contexts. Thus, when formalizing a non-formal argument, invariably one ends up with a

rather more detailed and considerably longer result compared with what one started with.

For this reason, and the fact that the rules of inference are generally mechanical rules that

can be implemented on a computer, the questions arising from the study of formal proofs

generally goes hand-in-hand with questions arising from the use of computers. We shall

also discuss these issues in chapter 1.

The next step in our discussion of formal proofs will be toward the philosophy of Imre

Lakatos, who was already mentioned. Lakatos is remembered in philosophy of science for

his work on what he called the methodology of scientific research programs, but he got

his career started in earnest as a philosopher of mathematics. His Proofs and Refutations

was a literary tour de force, attacking what he called formalist or Euclidean philosophies of
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mathematics according to which mathematics is best understood as a structure consisting

of axioms at the top and theorems at the bottom, with a “truth-value injection” making all

the theorems indubitably true. Lakatos’s work is multi-faceted, but the concept of proof is

the central hub from which everything else radiates. In chapter 2, we discuss how Lakatos’

“dialectical” philosophy of mathematics bears on the subject of formal proofs and what we

can learn from it. We will see how Lakatos’s thought poses a challenge for the formalists.

Chapter 3 takes off where the chapter 2 left off, which was a discussion of Euler’s polyhedron

formula, the mathematical theorem that forms the cornerstone of Lakatos’s Proofs and

Refutations. The questions that shall occupy us in chapter 3 have to do with the problem

of giving a formal proof of Euler’s polyhedron formula. Other mathematical examples

would likely have illustrated the same points, but the study of Euler’s polyhedron formula

in particular is motivated by the desire to engage with Lakatos’s text as much as possible

on the formal, mathematical side. Chapter 3, then, will be a discussion of a formal proof

of Euler’s polyhedron formula. We will describe what it means to formalize the theorem

and we will compare it in detail with the informal proof on which it is based. (The actual

formal text can be found in Appendix 1.)

Thanks to the work described in chapter 3, we have that Euler’s polyhedron formula (under-

stood in a certain combinatorial sense) is a first-order consequence of Tarski-Grothendieck

set theory (TG). This theory of sets is quite strong in comparison to more familiar systems

such as Zermelo-Fraenkel set theory (ZF). It is even much stronger than ZF together with

the axiom of choice (the system ZFC): TG is an extension of ZFC together with an axiom

that asserts the existence of arbitrarily large strongly inaccessible cardinal numbers. But

clearly Euler’s polyhedron formula does not require a theory as strong as TG for its proof.

If we formalize Euler’s formula as a certain arithmetical-combinatorial statement, then it

seems plausible that Euler’s formula could be proved in a theory far weaker than TG. In

chapter 4, we shall identify a weaker theory in which to carry out a proof Euler’s formula.

We shall also discuss a number of metamathematical problems brought about polyhedra,

specifically concerning expressibility of various properties in certain formal languages.
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Finally, in chapter 5, we will step back and reflect on what has been accomplished by

formalizing so many proofs and how we can use them to respond to Lakatos’s challenge,

which is set forth in chapter 2. By studying formal proofs of non-trivial mathematical

theorems, what more can we say about the difference between formal and non-formal proofs?

The dissertation does not take any sides on the debate between formalists and non-formalists

in the philosophy of mathematics, nor does it advocate any particular position for or against

formal proofs. The dissertation is rather undertaken with a more neutral point of view in

mind. Indeed, we hope that one of the main lessons of the dissertation is that whatever

gulf does exist between those who favor and those who oppose formal proofs is not as wide

as meets the eye.
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2 Formal Proofs in Mathematics

2.1 Introduction

Our discussion begins with a survey of the development of what I call formal proof tech-

nology: tools for the production, recording, and evaluation of mathematical proofs. Such

technology, and its mathematical and philosophical significance, constitutes the central

theme of the work. In this chapter we will learn about the growth and development of

formal proof technology to set the stage for a more sustained critical discussion, based on

the philosophy of mathematics of Imre Lakatos. Lakatos’s philosophy will be the subject of

later chapters; the purpose of this chapter is to set the stage for a philosophical engagement

with Lakatos based on modern formal proof technology.

2.2 Formal Proof Technology: Three Strands

The history of what I am calling formal proof technology can be seen as a bundle of three

strands in the history of logic.

The first strand concerns early technical developments in mathematical logic in the late

19th and early 20th centuries. A landmark result in the subject that is of interest here

is the completeness theorem for first-order logic, which demonstrated to us that it is

possible to lay down axioms and rules of inference in such a way that (first-order) logical

consequence implies provability from these rules and axioms.1 Thus, at least in the case of

first-order logic, one can give formal proofs to establish any logical consequence.

By inspection of the rules and axioms for the traditional proof formalisms—natural deduc-

tion, Hilbert-style systems, tableaus, and sequent calculi—it seems clear that they deliver

a concept of a gap-free proof, that is, one all of whose logical details are explicitly stated.

If one further identifies (if only as a first approximation) the concept of mathematical

consequence with first-order logical consequence, then the completeness theorem tells us

that any mathematical consequence can be given by a gap-free formal proof. In principle,
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then, one can rely on formal proof (in first-order logic) to establish any (first-order) logical

consequence.

The second strand in the history of logic that I wish to emphasize is the formalization

of mathematical knowledge. The idea is to express mathematical propositions in precisely

specified formal languages. Major actors in this direction are Peano, Frege, and Russell and

Whitehead. Peano, for example, was interested in the symbolic aspects of mathematics and

indeed catalogued some of the notations of mathematics that existed at his time, and even

invented new notations [2]2, such as ∈ (for set membership), ∩ (for set intersection), and

∪ (for set union). Frege designed a notation—a concept script, or Begriffsschrift—to lay

out the content of mathematical propositions and proof. Although logicians did not adopt

Frege’s notation, his contributions to logic were independent of his notation and proved

to be fundamental. Russell and Whitehead, in their monumental Principia Mathematica,

aimed to formally represent a small but central part of mathematical knowledge.

Project such as Peano’s, Frege’s, and Russell and Whitehead’s, although they did not

advance far into the reaches of mathematical knowledge, made it plausible that everyday

mathematics—its concepts, propositions, and proofs—could be given in a totally formal

way.

The third thread in the history of mathematical logic that is important for our purposes is

the use of computers, especially in formalized mathematics. Such use is possible because

of the finitist nature of the languages and proof systems that have been developed. More

precisely, the problem of deciding whether a sequence of symbols (in some specified alphabet

or pool of possible symbols) constitutes a well-formed formula is supposed to be decidable.

Likewise, the problem of whether a figure is a deduction should be decidable. Such a

representation is quite natural for formalized mathematics: for this to be a real possibility

for humans, it should be possible to determine, in a finite amount of time (which is all

any of us have) to say whether a string of symbols is a statement of a deduction. (If this

were not the case, results like the completeness theorem would lose their significance for

‘human-level’ formalization.)
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Indeed, the use of computers as tools for the recording, evaluating, and production of

(formalized) mathematical proofs occurred quite early in the history of the computer.3 For

example, H. Wang, already in the 1950’s (before modern-day computers were even a decade

old), worked on the problem of generating formalizations of proofs taken from Principia

Mathematica. Early work on implementing decisions procedures for certain axiomatized

theories such as Davis’s implementation [3] of a decision procedure for Presburger arith-

metic, and on propositional satisfiability, were implemented early in the history of the

computer.

But experience with formal proofs shows that they can become quite large and unman-

ageable.4 A skeptical attitude toward formal proofs would then be quite justified; putting

aside questions of what kind of knowledge one could gain from carrying out formal proofs,

one can reasonably ask whether formal proofs are really accessible to us. Can one really

give a surveyable, accessible proof of a non-trivial mathematical result?

Putting together these three strands in the history of mathematical logic we can see the

ingredients for the development of modern formal proof technology. In the next section,

we shall survey some of the results of the growth of this technology.

2.3 Early Growth of Formal Proof Technology

Concerning the problem of representing and evaluating mathematical proofs, J. McCarthy

also figures into this early history, in his proposal (expressed, naturally, in lisp) for a

program to check mathematical proofs [4]. One of the earliest sustained efforts in this

direction is the automath project [5] by N. G. de Bruijn, begun in the late 1960’s. A

major result of the automath project was a formalization [6] of E. Landau’s Grundlagen

der Analysis in their framework. The mizar project, a proof representation and proof

checking system, began in the early 1970’s and remains active today; it is thus likely the

oldest proof checking system that enjoys an active community of formalizers and developers.

(mizar also enjoys one of the largest collections of formalized mathematical knowledge.)
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The 1970’s also witnessed the creation of the the Boyer-Moore theorem prover [7] (which

has since developed in the modern acl2 system [8]).

The roots of formal mathematics can be clearly seen in the work of Leibniz, who imagined

a calculus of reasoning (calculus ratiocinator) with which one could calculate whether any

given argument is correct [9]. Formal mathematics also takes inspiration from Frege’s

idea of a gap-free proof, a mathematical argument whose every logical step is spelled out

explicitly. In the 20th century David Hilbert, Kurt Gödel, Gerhard Gentzen, and others

forged a new path, which gave rise to proof theory. Hilbert called for the formalization of

mathematics as one component of the research tradition that now bears his name (Hilbert’s

program) [10]. Thanks to his completeness theorem, Gödel shows us that, if we restrict

ourselves to first-order logic, then every valid argument can in principle be articulated

as a gap-free proof. The exciting new subject of proof theory took on a new dimension

with the advent of computers: these early results in logic assured us of the possibility of

carrying out mathematics formally, but to realize the ideal—to move from ‘theoretical’

proof theory to what might be called concrete proof theory—required the assistance of

computers. Formal mathematics builds on the fundamental contributions of mathematical

logic, as well as insight gained into programming languages and system design, to construct

computer systems that help us to carry out mathematical reasoning.

To formalize a piece of mathematical knowledge (e.g., a theorem, a definition, or a proof)

is to capture it using a formal language. A formalization starts with a pre-existing mathe-

matical text and reconstructs it within a formal language.

But formalization is not mere reconstruction. The product of a formalization is a recon-

struction of the complete logical structure of a piece of mathematical knowledge. The word

‘complete’ is used to emphasize that all logical details are to be given; the argument is

expressed so candidly and explicitly that its validity can be mechanically checked. One

might view the computer as a highly skeptical participant in a mathematical conversation:

it accepts only those steps of the argument that are logically given in detail; it requires us

to be careful with out definitions and with the statements of results. And since it does not
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accept appeals to intuition, common sense reasoning, and other conversational moves on

which we typically rely when presenting an argument to another human, the result of such

a human-computer interaction is an argument whose logical structure is apparent and in

whose validity we can have considerable confidence.

To craft a formal proof so that its validity can be mechanically checked, one must invest a

considerable amount of energy to bring to light the logical and mathematical details of an

informal proof that are often left implicit and unstated. Some of this uncovered knowledge

is, to be sure, of a routine nature and is not necessarily notable. Yet often one uncovers

interesting mathematical (or metamathematical) details that one might not have come

across had one not formalized.

One does not need to view formal and informal mathematics as in competition with each

other. Formal mathematics is to informal (or standard, normal) mathematics as implemen-

tations of algorithms are to algorithms. There is, of course, considerable value in algorithm

design, and methods of solving problems. An informal argument is like pseudocode for

a computer program, whereas a formal argument is like an implementation. One designs

programming languages with which to express algorithms, and then of course on has to

implement algorithms in particular programming languages for it to do anything.

The analogy between informal arguments and pseudocode also helps to explain the value of

formal mathematics. One gains a different insight into an algorithm when one implements

it; one understands the solution to a problem in one way in terms of pseudocode, and one

sees other aspects when implementing it. Avigad, for example, has considered this issue [11–

13] in detail. Implementation of algorithms is important because we want computers to

carry out certain tasks for us; formalizing mathematics is important because we want to

understand fully the justificatory structure of an (informal) mathematical proof.

2.4 Contemporary Developments in Formal Proof Technology

A number of major mathematical results have been given formal proofs in modern proof

representation and proof checking systems. These include:
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• Gödel’s first incompleteness theorem [14],

• The Jordan curve theorem [15–16],

• The four color theorem [17],

• The prime number theorem [18].

This is but a sample of the ‘named’ theorems that have been proved formally.5 The body of

unnamed theorems, lemmas, definitions and proofs that have been formalized is very large

indeed. These results show that formalization is generally possible, and often tractable. Of

course, if one were to try to carry out these formal proofs by hand, the possibility of error

(not to mention the likelihood that such projects would even be justified or completed)

would be very high. It is only with the help of computers that these projects are possible.

2.4.1 The QED Project

In the 1990’s, interest in formal mathematics grew and led to an international attempt,

called the QED Project, to unify efforts. The participants drafted a ‘manifesto’ [20] so as

to take a common stand toward the problem of formalizing mathematical knowledge. The

goals of the project are:

1. to help mathematicians cope with the explosion in mathematical knowledge,

2. to help development of highly complex IT systems by facilitating the use of formal

techniques,

3. to help in mathematical education,

4. to provide a cultural monument to “the fundamental reality of truth”,

5. to help preserve mathematics from corruption,

6. to help reduce the ‘noise level’ of published mathematics,

7. to help make mathematics more coherent,

8. to add to the body of explicitly formulated mathematics, and

9. to help improve the low level of self-consciousness in mathematics.
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The method to achieve these goals is through the design and implementation of large-scale

systems for dealing with formal mathematics.

J. Harrison, a major figure in the field that I am calling formal proof technology, places his

hopes for the field in two points [21]:

• Supplementing, or even partly replacing, the process of peer review for mainstream

mathematical papers with an objective and mechanizable criterion for the correctness

of proofs.

• Extending rigorous proof from pure mathematics to the verification of computer systems

(programs, hardware systems, protocols, etc.), a process that presently relies largely on

testing.

Harrison’s second goal clearly aligns with the second goal of the QED Manifesto, but

Harrison’s first goal represents an objective that does not appear in the QED Manifesto

(although perhaps it can be seen spread across some of the items, such as 6 and 7). It

seems plausible to extend the QED Manifesto to include Harrison’s goal.6

The aims of the QED Project are significant and its success would be a major contribution.

Interest in the project, however, seems to have crested in the mid-90’s. Although it is not

clear that widespread interest in the project (or any related project) remains, the goals of

the QED Project seem to have survived in any number of systems, such as mizar [22], hol

light [23], coq [24], etc.

2.5 Digression: Computers in Mathematics

Since formal proofs are generally rather large constructions that cannot easily be completely

handled with traditional ‘small scale’ tools such as pencil and paper, when working with

formal proofs one typically relies on a computer. The computer stores the data and allows

the formalizer to organize and manipulate it in ways that are not practically possible

otherwise. The computer also takes charge of evaluating formal arguments. Such tasks

could in principle be carried out by the human formalizer; the computer is, after all,



Digression: Computers in Mathematics

11

applying computable functions. Because formalization does not, as a matter of definition,

involve the use of computers or other new tools, we can disentangle from our discussion the

question of the purpose or value of formalization and the role of computers in mathematical

practice. This section is devoted to the latter question.

The main subject of the dissertation is computer-checked formal proofs. We are engaged in

computer-checked formal proofs when we give to a computer a formal argument d, expressed

in a formal language, and expect that the computer will check whether d is a proof. This

is clearly but one of the many ways in which computers are used in mathematics. The

inquiry begins with a survey of how computers are used in mathematics; the first step is

to delimit the enterprise of computer-checked formal proofs from the other kinds of uses of

computers in mathematics. The goal is to isolate the philosophical issues that pertain to

computer-checked formal proofs from those which arise because of other uses. Of course,

some issues are the same (does one trust a machine?); but some are bound to be different

(e.g., some have claimed that computers are helping to change our concept of proof, but it

seems clear that the enterprise of computer-checked formal proofs is based on adherence to

a traditional view of proof).

Producing formal proofs is but one way in which computers are used by mathematicians

to assist them with their proofs. Notable examples of computer-assisted proofs that are

not computer-checked formal proofs include the Appel-Haken solution [25] of the four-color

problem and the results of so-called experimental mathematics [26–27]. But since the aim of

computer-checked formal proofs is to produce genuinely formal proofs, they can complement

other uses of computers. Indeed, one way of justifying the enterprise of computer-checked

formal proofs is to point out that they can be used to ‘rein in’ other kinds of computer-

assisted mathematics by bringing them more in line with a classical formal conception of

proof.

Let us discuss these examples (the Appel-Haken proof of the four-color theorem and ex-

perimental mathematics) in more detail.
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The four-color theorem asserts that one needs only four colors so that one can assign dif-

ferent colors to countries on a map in such a way that neighboring countries do not get the

same color. The problem was posed in 1852. Finally, in 1976, Kenneth Appel and Wolfgang

Haken announced a solution. A key part of their proof involved the use of a computer to

check a very large number of cases into which they had decomposed the problem; the cal-

culation took more than 1200 hours (50 days). According to the philosopher T. Tymoczko,

the Appel-Haken work was a new kind of mathematical proof [28]. Tymoczko claimed that

the Appel-Haken solution to the four-color problem was a new kind of proof because it was

non-surveyable, and introduced fallible, empirical elements into mathematical knowledge,

which one might regard as a priori and certain.

Putting aside the question of whether Tymoczko is right about the Appel-Haken solution

to the four-color problem, it is not clear that his claims about non-surveyable and fallible

aspects of mathematical knowledge apply to computer-checked formal proofs. For, these

proofs are, by design, surveyable: a human formalizer crafts the proof; the computer’s role

is to check the formalizer’s text for validity. Appel and Haken could not feasibly check all

the details of the manifold cases into which they divided their problem; a human formalizer,

however, did check all (or nearly all) the details in the proof that they constructed.

As for fallibility and the use of empirical methods, again it is not clear that these features,

which (we can assume for the sake of discussion) make sense for the Appel-Haken proof, ap-

ply in the case of computer-checked formal proofs. These proofs are constructed according

to the norms of formal logic; the results of these proofs are deductions in the strict sense

of the term. The warrant that formal proofs provide for mathematical knowledge therefore

seems to admit very little room for fallibility or ‘empirical elements’. It seems clear that

fallibility and empirical elements enter into formal proofs to no greater degree than they

already do in ordinary mathematical practice.

Independently, it is worth pointing out that Tymoczko’s claims about the use of comput-

ers in mathematics—that computers introduce hitherto unknown features of mathematical
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justification and knowledge—is not universally agreed upon. Tymoczko’s claim that com-

puters present a kind of inscrutable source of justification may not be tenable [29], and the

idea that computer provide a new kind of justification (as opposed to, say, providing just

a faster way to carry out what we ourselves could do in principle) is also debatable [30].

So much for Tymoczko’s well-known philosophy about the use of computers in mathematics.

Another prominent source for arguments about how computers are changing mathemati-

cal practice centers on what is called experimental mathematics. There may not be any

strong unifying theme for this subject, but as a first approach the idea behind experimen-

tal mathematics is that the computer is regarded as a kind of laboratory for carrying out

mathematical experiments. A characteristic feature of some of the results of experimental

mathematics is that one is able to obtain, after some computation, a result which, though

possibly false, is true with extremely high margins of confidence. Or, in the laboratory, one

finds patterns which suggest generalizations and further experimentation.

The characterization thus far is, of course, rather coarse, but it suffices for our discussion.

The question in front of us is whether this kind of work justifies the claim that the nature

of mathematical proof is changing.

Indeed, it seems clear that experimental mathematics is not fundamentally changing the

face of mathematical proof. After discussing some examples in experimental mathematics

which render various results true with extremely high probabilities, Borwein and Bailey,

champions of the experimental approach to mathematics, concede that extensive computa-

tions do not amount to rigorous proofs. However, they write that ‘in many cases compu-

tations constitute very strong evidence, evidence that it at least as compelling as some of

the more complex formal proofs in the literature’ [31]. They go on to write:

Independent checks and extremely high numerical confidence levels still do not constitute

formal proofs of correctness. Even so, one can argue that many computational results are as

reliable, if not more so, than a highly complicated piece of human mathematics. For example,

perhaps only 50 or 100 people alive can, given enough time, digest all of Andrew Wiles’
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extraordinarily sophisticated proof of Fermat’s Last Theorem. If there is even a one percent

chance that each has overlooked the same subtle error (and they may be psychologically

predisposed to do so, given the numerous earlier results that Wiles’ result relies on), then we

must conclude that computational results are in many cases actually more secure than the

proof of Fermat’s Last Theorem. [31]

They then align their work with Thomas Kuhn’s Structure of Scientific Revolutions [32]

and assert that, thanks to developments with the computer, a paradigm shift is taking

place or about to take place.7 They assert that

We acknowledge that the experimental approach to mathematics that we propose will be

difficult for some people in the field to swallow. Many may still insist that mathematics is all

about formal proof, and from their viewpoint, computations have no place in mathematics.

But in our view, mathematics is not ultimately about formal proof; it is instead about secure

mathematical knowledge.

Both kinds of uses of computers (large computations which are in principle completely

correct, and computations which in principle warrant at most high confidence in a result)

suggest that what’s being counted as a proof in contemporary mathematics does not seem

to adhere to the traditional view. Sociologist Donald MacKenzie has drawn attention to

the divisions among some mathematicians engendered by the computer. MacKenzie writes

For some, to put one’s trust in the results of computer analysis is to violate the very essence

of mathematics as an activity in which one’s own human, personal understanding is central.

To others, using a computer is no different in principle from using pencil and paper, which

is of course universally accepted. . . .Those who find the assistance of the computer natural,

typically see it as more reliable than the human mathematician. [34]

Such a sociological divide is quite interesting, but again it should be emphasized that the

different reactions that one can have to mathematical proofs in which computers have

played some role are at the same time differences in conceptions of proof.
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We mention now, finally, an on-going (at the time of writing) episode in the history of

mathematics that involves computers and controversy about proof. The example is Hales’s

solution of the Kepler conjecture. This conjecture, roughly speaking, asserts that the

densest packing of spheres in space is the hexagonal pattern that we see in markets and

grocery stores.8 Like the four-color theorem, the Kepler conjecture was an open problem

for many years before it was solved: Kepler posed the problem in 1611, but it wasn’t

solved until 1998.9 And like the Appel-Haken solution to the four-color theorem, Hales’s

1998 proof involved a tremendous amount of computer resources: several gigabytes of data

were required. However, unlike the Appel-Haken solution, Hales’s use of the computer did

not amount merely to a very large calculation. The computer was used, for example, to

even get an initial decomposition of the problem [36]. Interestingly, after Hales submitted

his work to the Annals of Mathematics, the editors wrote back, four years later, saying

that they were 99% certain that his arguments were correct. The missing 1% came from

the failure to certify the correctness of the computer programs that Hales had used in

his argument. Hales’s paper was eventually published, but the episode led the editors of

the Annals of Mathematics to revise their policy [37] on computer-assisted proofs. Hales

is now engaged in a project [38] to give a formal proof (expressed in a formal, artificial

language) of his result. Thus, he has moved to computer-checked formal proofs from an

originally ‘unorthodox’ position. Although it may take a long time to finish the project

(Hales estimates it may take 20 man-years), at the end the result will likely be the largest

amount of mathematics that has even been formalized.

2.6 Formal Proof Technology: A Philosophical Error?

We have surveyed some of the historical features of what I am calling formal proof technol-

ogy (tools for the production, evaluation, and storage of mathematical proofs). Obviously,

all of these results take for granted, or require, a certain formal approach to mathematical

knowledge. To carry out proofs in these systems require, in addition to mathematical skill,

a facility with formal logic.
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There seems to be a consensus that the limitations of proof checking are merely techni-

cal. Although at present proof representation and proof checking systems—formal proof

technology—forms a rather small (and arguably insignificant) part of contemporary math-

ematical practice, the consensus among the developers of such systems, and among those

outside it who are nonetheless interested in proof checking, is that the only gaps in the field

are technical, the only problems one of engineering and not philosophy.

Limitations of engineering notwithstanding, is it not possible that these systems—which

apparently require a kind of formal, modern view of mathematics—somehow not giving us

what we want out of mathematical proof? Are they based on a philosophically erroneous

view of mathematics? The gains in rigor that formal proof technology can deliver is unde-

niable, but at what philosophical cost does this progress come? In the next chapter we shall

investigate a famous critique of such ‘formalist’ philosophies of mathematics, Imre Lakatos.

We shall see that Lakatos presents a compelling challenge to the approach to mathematics

that formal proof technology takes for granted.
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3 A Lakatosian Challenge

3.1 Introduction

Mathematics provides a variety of knowledge that most plausibly qualifies for superlative

epistemological qualities such as certainty, indubitability, a priority, infallibility, and so

forth. One of the main questions in the philosophy of mathematics is to account for this:

to explain how it is that mathematical knowledge has these properties (or, if they do not,

to account for the appearance that they do). One way to explain the superlative features of

mathematical knowledge is to point to the methodology by which mathematical truths are

justified: the standard for claims to mathematical knowledge is proof. The epistemological

features of mathematics can be explained by its standard for justification.

The Hungarian philosopher Imre Lakatos responded to claims like these in his famous

Proofs and Refutations [1]. Written as a dialogue, Proofs and Refutations argues that

Informal, quasi-empirical, mathematics does not grow through a monotonous increase in the

number of indubitably established theorems but through the incessant improvement of guesses

by speculation and criticism, by the logic of proofs and refutations.

Formalism for Lakatos is “the school of mathematical philosophy which tends to identify

mathematics with its formal axiomatic abstraction (and the philosophy of mathematics

with metamathematics)”. A serious problem, for Lakatos, is that formalism disconnects

mathematical knowledge from its history. Moreover, Lakatos argues that mathematical

knowledge does not have the superlative epistemological features that we commonly assume

that it has. Invoking Kant, Lakatos writes:

The history of mathematics, lacking the guidance of philosophy, has become blind, while the

philosophy of mathematics, turning its back on the most intriguing phenomena in the history

of mathematics, has become empty.

For Lakatos, the formalist holds that mathematical theorems and proofs are more or less

certain things from their birth. Mathematical statements are either unknown or irrefutably
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known with certainty. For Lakatos’s formalist, knowledge and certain knowledge amount

to the same thing (at least in the case of mathematics).

Proofs and Refutations is intended as the beginnings of a serious critique of formalism;

Lakatos even believes that by looking at the history of mathematics we can show fairly

conclusively that formalism is inadequate:

The history of mathematics and the logic of mathematical discovery cannot be developed

with the criticism and ultimate rejection of formalism.

In other words, the history of mathematics shows that formalism is not a viable philosophy

of mathematics.

This chapter presents Lakatos’s philosophy of mathematics as a challenge for formal proof

technology, as explained in chapter 1; the challenge is taken up in chapter 3, and in chapter

5 we shall evaluate the Lakatos’s philosophy in greater detail.

Lakatos’s philosophy involves more substance than what will be discussed here. I am

focusing on his philosophy insofar as it applies to formal proof technology. Consequently, I

neglect a discussion of, say, concept formation, ancient history of mathematics, pedagogical

aspects of mathematics, and so forth, all of which are discussed in detail by Lakatos. Such

aspects of Lakatos’s philosophy are philosophically rich, but they do not bear directly on

the project contained here.

3.1.1 Digression: the problem of interpreting Proofs and Refutations

Before getting into the details of Lakatos’s philosophy, we should be clear on how to make

sense of Proofs and Refutations. Because it is largely written as a dialogue, we have to

be careful about claims like “Lakatos said X” or “Lakatos holds that p”. The reason is

that it is not clear which character (or characters) in the dialogue are taking Lakatos’s

position. The situation is similar to that of Plato’s dialogues, but, in a way, with Proofs

and Refutations we are in a worse position: whereas (the character) Socrates plays the lead

role in most of the Platonic dialogues, no analogous character in Proofs and Refutations



A LAKATOSIAN CHALLENGE

20

can be found. The scene of the Lakatos’s dialogue is a classroom of students and a teacher.

One might be tempted to assert that Teacher is Lakatos; but that’s not obvious, and

in any case the role of Teacher is often just to summarize what has been said and to

keep the discussion on track (as a real teacher does); Teacher generally does not offer

significant new points; that is done by the students.

Unlike the Platonic dialogues, Proofs and Refutations opens with an expository introduc-

tion in which Lakatos introduces his work. The many footnotes in the text take place

outside the dialogue. And, unlike the Platonic dialogues, where at times a character holds

forth, stating and arguing for a position in detail, such passages are rare in Lakatos’s text.

Thus it often seems that we are not really arguing with Lakatos directly, but rather with

our own informed guesses about what he might be saying.

However, all is not hopeless. As in the Platonic dialogues, we can reasonably infer what

Lakatos thinks by the questions and problems that are raised in the dialogue, and the

responses and solutions that are given. We need to live with the fact that some questions

are not answered definitively.

Thus, although there is room for debate about the precise statement of Lakatos’s philosophy

of mathematics, we can be fairly sure which issues Lakatos thinks are important, even if we

can’t discern a clear position that Lakatos takes on them. And even in those places where

we are not certain what Lakatos himself thought, we can take Proofs and Refutations as

an “authorless” source of ideas constituting the beginnings of a philosophy of mathematics.

Before proceeding, it is worthwhile to pause to comment on the style of Lakatos’s philos-

ophy. The quotes already given should make it clear that Lakatos takes a strong stand

against ‘formalists’ and emphatically holds that they are getting something wrong about

the history and philosophy of mathematics. One can criticize Lakatos for failing to seriously

characterize the formalist position. That he takes issue with some position in the philoso-

phy of mathematics is clear enough; what is less clear is precisely what he is attacking, or

whether anyone robustly holds the ‘formalist’ view that he is eager to refute. Putting aside
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for the moment the tension between history and philosophy, it seems clear that any serious

philosophy of mathematics should be able to account to some extent for the growth and

development of mathematics. Lakatos seems to be rather uncharitable here when he casts a

wide net to capture all those ‘formalists’ who flagrantly ignore the history of mathematics.

Even though Lakatos takes rather strong and occasionally uncharitable positions toward

his philosophical rivals, that should not lead us to dismiss him outright. Lakatos is as

original as he is combative. His views do deserve to be taken seriously. In Lakatos one

sees a challenge to modern formal proof technology. This chapter sets the stage for the

challenge by, first, surveying Lakatos’s philosophy of mathematics and, second, by posing

the terms of the debate. In the next chapter, we will see in detail a formal proof of the

mathematical theorem known as Euler’s polyhedron formula (EPF), whose history Lakatos

traces in Proofs and Refutations.

3.2 Main Features of Lakatos’s Philosophy of Mathematics

The heart of Lakatos’s philosophy of mathematics is that mathematical theorems are de-

feasible and subject to refutations not unlike claims in empirical sciences. The main idea

is to extend Popper’s critical philosophy of science to mathematics. For Popper, roughly

speaking, universal scientific claims cannot be confirmed, but only refuted. Lakatos wants

to extend this idea from natural science (where Popper’s claim seems quite credible) to

mathematics (to which Popper himself did not venture to apply his ideas). Mathematical

theorems are not irrefutably true statements, but conjectures: one cannot know that a

theorem will not be refuted.

To illustrate this thesis, Lakatos appealed to the history of Euler’s polyhedron formula,

which asserts that for a polyhedron p we have V − E + F = 2, where V , E, and F are,

respectively, the number of vertices, edges, and faces of p. He showed how Euler’s theorem

and the concepts involved in it evolved through proofs, counterexamples and proofs modified

in light of the counterexamples, thereby illustrating the fallibility of mathematics.
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In addition to his view that mathematical knowledge is fallible, one of the Lakatos’s central

contributions to the discussion of proof in the philosophy of mathematics is his characteri-

zation of the concept of mathematical proof. As we shall see, his definition plays a crucial

role in his discussion and helps us to understand a good deal of Lakatos’s philosophy.

Lakatos’s definition occurs near the beginning of the text:

Teacher: I propose to retain the time-honoured technical term ‘proof’ for a thought-experiment—or

‘quasi-experiment’—which suggests a decomposition of the original conjecture into subconjectures or

lemmas, thus embedding it in a possibly quite distant body of knowledge.

Thus, for Lakatos, a proof is a kind of experiment that we can perform; to justify the

conclusion of the experiment, we appeal to some previously accepted mathematical knowl-

edge. Such a characterization of proof may be appealing. Notice, though, that it lacks (at

least at this early stage of the text) of any relation between proof and truth, between the

‘decomposition’ and validity. Later in the dialogue, we find:

Lambda: The proof is only a stage of the mathematician’s work which has to be followed by proof-

analysis and refutations and concluded by the rigorous theorem.

Thus, proof is not the end (as we might normally think) but rather the beginning of a

theorem.

With this definition of proof, Lakatos is able to say that a mathematical statement can be

both proved and refuted. This sounds oxymoronic but it is crucial to Lakatos’s fallibilist

philosophy of mathematics, in which proofs do not guarantee the truth of the statement

being proved but instead invite us to search for counterexamples.

3.2.1 The method of proofs and refutations

To understand the heuristic development of informal proofs, Lakatos proposes four rules

according to which one can improve mathematical knowledge. Before stating the rules,

though, we must study two terms: local counterexample and global counterexample.
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The context in which the local and global counterexamples occur is in the study of proofs.

Suppose that we are studying a mathematical statement A whose logical form is ∀xϕ(x),

and we find (somehow) a mathematical object a for which ¬ϕ(a). Such an object shows that

the statement A is refuted, and is called a global counterexample. Global counterexamples

are what we normally think of as counterexamples: mathematical objects that show some

universal statement to be false.1 For example, the number 2 is a global counterexample

to the statement “every even natural number is the sum of two primes”, because 2 is the

smallest prime number.

To say whether a mathematical object is a global counterexample does not require any

reference to the proof of that statement. A local counterexample, by contrast, is a property

not of a statement but of a proof of the statement. To understand proof, though, we

should turn to Lakatos, who understands the term proof as a method of decomposition.

Suppose that we have decomposed the proof of a statement A into a number of statements

A1, A2, . . . , An. Suppose that the logical form of, say, Ak is universal: Ak is ∀xϕ(x) for

some statement ϕ(x). If we have a mathematical object a for which ¬ϕ(a), Lakatos calls

that a is a local counterexample to the original statement A that we are trying to prove.

Thus the definition of a local counterexample refers both to a statement and to a proof of

it, regarded as a sequence of other statements.

Now that we are familiar with the terms local and global counterexample, we are ready to

study the official statement of the method of proofs and refutations:

Lambda: Let me state [the] main aspects [of the method of proofs and refutations] in three heuristic

rules: Rule 1. If you have a conjecture, set out to prove it and to refute it. Inspect the proof carefully

to prepare a list of non-trivial lemmas (proof-analysis); find counterexamples both to the conjecture

(global counterexamples) and to the suspect lemmas (local counterexamples).

Rule 2. If you have a global counterexample discard the conjecture, add to your proof-analysis a

suitable lemma that will be refuted by the counterexample, and replace the discarded conjecture by an
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improved one that incorporates that lemma as a condition. Do not allow a refutation to be dismissed

as a monster. Try to make all ‘hidden lemmas’ explicit.

Rule 3. If you have a local counterexample, check to see whether it is not also a global counterexample.

If it is, you can easily apply Rule 2.

Later in the dialogue, a fourth rule is added:

Rule 4. If you have a counterexample which is local but not global, try to improve your proof analysis

by replacing the refuted lemma by an unfalsified one.

3.2.2 Lakatos on proof (continued)

Lakatos’s characterization of the concept of mathematical proof does have some merits.

For example, Lakatos’s definition of proof allows us to understand statements such as

Wiles’s proof of Fermat’s Last Theorem was incorrect.

and questions like

What’s wrong with Euler’s proof of his polyhedron formula?

at face value. Although the statement and the question make sense, they might appear to

be self-contradictory if by ‘proof’ we understand a deductively valid argument. Lakatos’s

definition allows us to make sense of these statements by dropping (at least initially) any

connection between mathematical proof and error-free or valid argument. Wiles’s proof and

Euler’s proof are thought experiments; they may admit counterexamples, but we can revise

their proofs (though experiments) to deal with them. This sounds reasonable; Lakatos

captures part of our everyday use of the term ‘proof’.

How might a proof be incorrect? A proof could be incorrect if

• its conclusion is not true, or

• one of the steps in the proof is not valid (the assumptions in play at the step could be

true while the conclusion of the step is false).
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The idea, then, is that mathematical proofs are a certain kind of valid argument. To then

say that a proof is ‘incorrect’ is to contradict oneself.

How can we make sense of the philosophical knots that we have gotten into? There are

two approaches. We could insist that statements such as ‘Euler’s proof of his polyhedron

formula is incorrect’ make sense and drop the condition that a mathematical proof is a

deductively valid argument. Another response is to retain the property that mathematical

proofs are deductively valid arguments and say, in response to situations like those described

above, that there was just some error:

Wiles’s believed that his argument for Fermat’s Last Theorem was a proof, but his judgment

was incorrect.

These two avenues for response show that two different views of mathematical proof are

available:

• One view emphasizes the ideal of proof as a deductively valid, (in principle) error-free

argument; let us call this the ‘deductivist’ view.

• The other view demurs from the ‘deductivist’ view. An argument can be a proof and

yet fail to be logically valid.

The second view merely dissents from the first view. Expanding on the second view, one

might say that, for the non-deductivist, proof is just what mathematicians do. They are

interested, of course, in getting arguments right. But what matters more than correctness or

deductive validity is the invention of new mathematical concepts and methods, the fruitful

application and combination of previously accepted mathematical knowledge. Another way

of making sense of the second alternative is to say that proofs are, in some essential way,

social entities. (This is the approach taken by, for example, de Millo, Lipton and Perlis [39].)

These considerations thus favor a Lakatos-like understanding of ‘proof’.

We thus appreciate Lakatos’s stance toward proof. By admitting multiple conceptions of

the concept, the problem arises to explain the relationship between them. We are not taking

the position that mathematical proofs are not (ideally) deductively valid arguments.
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Although Lakatos’s definition of proof can help us to make sense of our everyday use

of the term, there remains the burden of accounting for the argumentative structure of

mathematical arguments and their relation to mathematical truth. The non-deductivist

needs to explain why mathematical argumentation differs from other kinds of arguments

in science and everyday life. Mathematical arguments certainly appear to be deductively

valid, and the mathematician apparently strives for deductive validity in his proofs.

In fact, Lakatos recognizes this issue and does account for it. To see that, we need to

investigate Lakatos’s conception of mathematical rigor. Tracing the history of Euler’s

formula (which, we are to assume, is but one concrete example that Lakatos develops

to illustrate a more general claim about mathematics), we see that the proofs evolve.

The goal of the development is a rigorous theorem, which Lakatos calls the principle of

retransmission of falsity holds, namely that all global counterexamples be local. That

is, any counterexample to the theorem should be a counterexample to some step in the

proof of the theorem (purported falsity ‘transmits’ from the theorem to some part of its

proof):

Lambda: A proof-analysis is ‘rigorous’ or ‘valid’ and the corresponding mathematical theorem true

if, and only if, there is no ‘third-type’ counterexample to it.

(The third-type counterexamples are those that are global—they refute the theorem at

hand—but not local—they do not falsify any step of the proof.) To make sense of this,

we need to explain Lakatos’s distinction between proof and proof analysis. Lakatos’s con-

ception of proof has already been discussed. Roughly speaking, proof analysis is the

production of what we might normally call the proof: the list of ‘lemmas’ into which the

proof (thought experiment) was decomposed. We are doing proof analysis when we study

the precise conditions under which the moves taken in the proof can be made, or are

correct.2
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3.2.3 Digression: Lakatos and Pólya

The mathematician G. Pólya, in a number of works [40–42], studies mathematical discovery

and heuristic and thus touches on many of the same issues that Lakatos discusses. Indeed, it

was Pólya himself who suggested to Lakatos to focus on the example of Euler’s polyhedron

formula. Lakatos places his own work in the context of Pólya’s:

This paper (i.e., [43]) should be seen against the background of Pólya’s revival of mathematical

heuristic, and of Popper’s critical philosophy.

Lakatos translated Pólya’s classic How to Solve It [44] from English to Hungarian.

Lakatos explains his own work as being an extension of Pólya’s:

The phase of conjecturing and testing in the case of V − E + F = 2 is discussed in Pólya.

Pólya stopped here, and does not deal with the phase of proving—though of course he points

out the need for a heuristic of ‘problems to prove’. Our discussion starts where Pólya stops.

In Proofs and Refutations, Lakatos starts with a more or less completely specified proof

of Euler’s polyhedron formula, presented to the students by Teacher, and the ensuing

critical discussion about the proof takes off from there. For Lakatos, the ‘dialectical’ nature

of mathematics, its fallibility, and its relation to epistemology and philosophy of science

are central, whereas Pólya does not discuss these issues.

At the same time, the spheres of interest of Lakatos and Pólya overlap. Concerning the

practice of not stopping at a proof but rather searching further for counterexamples, Lakatos

cites Pólya as giving an early description:

This standard pattern [of lemma incorporation] is essentially the one described in the classic

of Pólya and Szegő: ‘One should scrutinise each proof to see if one has in fact made use of all

the assumptions; one should try to get the same consequence from fewer assumptions. . . and

one should not be satisfied until counterexamples show that one has arrived at the boundary

of the possibilities.’
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Moreover, in discussing the different responses (monster barring, exception barring, monster

adjustment) that one can take in the course of a proof and purported counterexamples to

it, Lakatos again cites Pólya as:

Monsterbarring in defense of the theorem is an important pattern in informal mathematics:

‘What is wrong with the examples in which Euler’s formula fails? Which geometrical con-

ditions, rendering more precise the meanings of F , V , and E, would ensure the validity of

Euler’s formula?’ (Pólya [40], I, Exercise 29.) The cylinder is given in Exercise 24. The

answer is: ‘. . . an edge. . . should terminate in corners’. Pólya formulates this generally: ‘The

situation, not infrequent in mathematical research is this: A theorem has already been for-

mulated but we have to give a more precise meaning to the terms in which it is formulated

in order to render it strictly correct’.

In the preface to the paperback version of Proofs and Refutations Lakatos also thanks

Pólya (and van der Waerden) for helping him to improve the discussion of the so-called

exception barring method.

We thus see that Lakatos and Pólya certainly agree on many points (and arguably Pólya is

the source of some of Lakatos’s ideas). Nonetheless, it is also clear that Lakatos intended

his work to be a contribution to the philosophy of mathematics, specifically its epistemol-

ogy, whereas Pólya was concerned more practically with the education and training of the

mathematical mind.

3.3 Summary of Lakatos scholarship

Proofs and Refutations has its origins in Lakatos’s Ph.D. dissertation [45]. It was written

between 1956 and 1960. The dialogue portion of the dissertation was extracted, modified,

and serialized in four parts in the British Journal for the Philosophy of Science [43]. Apart

from Proofs and Refutations, the only other work on the philosophy of mathematics that

Lakatos published in his lifetime was Infinite regress and the foundations of mathemat-

ics [46]. When he died in 1976, Lakatos left behind a number of unfinished essays on the
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subject [47–49]. After Proofs and Refutations, Lakatos focused on the philosophy of science

(he is famous for his debates with Kuhn and Feyerabend) rather than on the philosophy of

mathematics.

After his death, Lakatos’s students E. Zahar and J. Worrall prepared a new edition [1] of

Proofs and Refutations, making it available in book form. The book also includes two other

essays by Lakatos as appendices. Available as a book, Proofs and Refutations became more

widely known; most scholarship on Lakatos thus begins then.

Zahar and Worrall added a handful of editor’s footnotes to Lakatos’s text. These editorial

footnotes largely seek to temper some of Lakatos’s claims against, for example, the ‘rigorists’

who have tried to make mathematical arguments ever more rigorous in the hope of achieving

more certain knowledge. In addition to the editorial footnotes, Zahar and Worrall actually

extend Lakatos’s dialogue, adding at the end some discussion on proof checking.

Zahar and Worrall have been criticized for their editorial additions. The consensus seems

to be that Zahar and Worrall miss Lakatos’s point. Davis and Hersh [50], for example,

are critical of the additions, saying that Zahar and Worral’s claims about mechanical proof

checking go against the grain of Lakatos’s entire project. Bloor [51] says that Zahar and

Worrall have “discharged their duty oddly” by qualifying Lakatos’s remarks as they did.

Larvor [52] also takes Zahar and Worrall to task for their editorial additions.

Lakatos’s work has been reviewed by a number of famous philosophers. Quine [53], for

example, reviewed it favorably (though briefly). Quine writes:

The geometry is fascinating, but the purpose is philosophical. Lakatos is opposing the for-

malists’ conception of mathematical proofs, which represents them as effectively testable and,

once tested, incontrovertible. He is opposing the notion, so central to logical positivism, that

mathematics and natural science are methodologically unlike.

In conclusion, Quine says:
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Lakatos does not in the end deny the feasibility of full formalistic rigour in mathematical

proof, but he makes an eloquent and conclusive case for preferring the heuristic style of

conjecture and refutation in mathematical treatises and textbooks.

(In Proofs and Refutations Lakatos takes aim at Quine, offering him up as an example

of those who apparently have nothing to say about mathematical discovery. That Quine

reviewed Lakatos’s work positively might be odd, given that Lakatos seems to lump Quine

in with the ‘formalists’ whom Lakatos is eager to attack.)

Not everyone has been so taken with Lakatos’s work. Feferman [54], for example, while

acknowledging the impressiveness of Proofs and Refutations, is nonetheless critical of it

in several respects. He thinks that Lakatos’s philosophy is too narrow and doesn’t go far

enough. Lakatos’s philosophy focuses too much, for example, on claims of the form “All A’s

are B’s” to the exclusion of claims having different logical forms, such as existential claims

(‘There is an odd perfect number’) or singular propositions such as “
√

2 is irrational”.

Feferman points out that Lakatos’s philosophy does not account for other ways in which

mathematical knowledge grows, especially at higher conceptual levels instead of at the

level of particular proofs. Examples of this kind of development that Feferman cites is the

development of linear algebra, group theory, and topology. These theories arise through

conceptual unification (he calls such developments “internal organizational, foundational

moves”). Feferman also asks “What constitutes improvement in a proof?”, “Is there no

end to guessing?”, and “What constitutes an initial proof? Where does it come from?”

He argues that Lakatos either provides no answers or gives inadequate answers to these

questions. Concerning the question of what counts as an improvement of a proof, Feferman’s

response that we do have informal criteria for this property is similar Sherry’s view [55],

who likewise argues that informal proofs can provide an answer to Feferman’s question.

A number of scholars have been impressed by Proofs and Refutations to try to bring

more prominence to the issues that Lakatos raises. But although Lakatos’s Proofs and

Refutations is an inspiring, rich, work, it is troubled. A Lakatos scholar, Brendan Larvor,

writes:



Summary of Lakatos scholarship

31

The fate of Proofs and Refutations is [. . . ] paradoxical. Widely praised, it has enjoyed very

little serious scholarly attention. This is perhaps because, unlike [. . . ] Kuhn’s scientific rev-

olutions, Proofs and Refutations does not offer a simple logical scheme for philosophers to

apply more or less mechanically to the history of any given discipline. Proofs and Refutations

is, perhaps, too complex and ambiguous to be the first of a genre. [52]

If Proofs and Refutations is so troubled, then, what are we to make of Lakatos’s project?

According to Larvor, the legacy of Lakatos should not be an obsession with counterexamples

and fallibility but rather in the “inner life” of mathematics [56]. A Lakatosian program,

for Larvor, should be based on a sensitivity to the history of mathematics, an appreciation

for the dynamics of its concepts and standards, and its relation with other fields.

Recent writers have been returning to Lakatos not so much because they wish to criticize or

extend his work, but to be inspired by it and treat it as the beginnings of a new ‘practice’-

oriented philosophy of mathematics. This is the sentiment of the famous introduction [57]

to a volume [58] on the history and philsophy of mathematics, in which the authors single

out what they call the ‘Maverick Tradition’ in the philosophy of mathematics, of which

Lakatos is a central figure. More terms have been coined to try to self-identify a new

approach to the philosophy of mathematics, such as ‘phenomenological’:

The phenomenological philosopher of mathematics starts by look at mathematics, and only

then asks, and tries to answer, philosophical questions about the discipline. While the name

‘phenomenological’ has not always been used in describing this sort of philosophical approach

to mathematics, papers advocating the phenomenological method so understood have been

around at least since Lakatos’s influential study, Proofs and Refutations. ([59], p. 3)

Others in the so-called phenomenological tradition include Rav [60–61], Corfield [62], Leng [59],

and Hersh, who has written many papers [50, 63–69] on the ‘practice’-based philosophy of

mathematics.

What is new about the phenomenological/practice-oriented approach to the philosophy of

mathematics? There is much less of an emphasis on ontological or metaphysical questions
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in mathematics (such as “Are mathematical objects real?” and “What are numbers?”).

The attitude toward foundational questions (such as “What set-theoretic axioms suffice

to formally reconstruct mathematics?” and “What is computability?”), which tends to fa-

vor formalism, is hostile (e.g., Lakatos, Rav) or at least demurring (e.g., Leng, Corfield).

New questions raised by the ‘maverick’ tradition include “How does (informal) mathemat-

ics grow?”, “What are the main features of (informal) mathematical proof?”, “How do

mathematical concepts evolve?”; other questions are “How are computers changing math-

ematical practice?”, “To what extent is mathematical knowledge founded on contingent

social practices?”

The ‘maverick’ tradition does not necessary eschew traditional questions in the philosophy

of mathematics; indeed, some of the older questions take on new aspects. For example,

Kant’s main transcendental question [70] is “How is pure mathematics possible?” For Kant,

mathematical knowledge is synthetic and a priori; the central question for him is to say

how such knowledge is possible. In light of the increased prominence of social aspects

of knowledge, one can re-ask Kant’s question: if our knowledge of mathematics depends,

at least in part, on a community of mathematicians who maintain a body of knowledge,

then how can such knowledge be a priori? It has been argued that formal mathematics

seeks to undermine the strong social component of mathematical verification [39]. It seems,

though, that rather than undermining or supplanting, the goal of formal mathematics is

to enhance and support traditional mathematical work. This argument is made explicitly

by Shankar [14], an early proponent of formal mathematics. (A recent expository article

by Friedman [71] discusses in more detail the current situation in formal mathematics;

Harrison [72] discusses some more of the background history of the subject.)

Another twist to the question arises in connection with computers in mathematics: can we

have a priori mathematical knowledge on the basis of calculations/computations carried

out by computer? Burge, for example, advocates [73–74] a theory of the a priori according
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to which testimony (such as a computer’s testimony) preserves a priority. That the ‘mav-

erick’ tradition is asking important questions is evidenced by the fact that ‘mainstream’

philosophers (such as Burge) are taking their questions seriously. But we digress.

Although many have been impressed by Lakatos, not all agree on how to interpret his

work; nor is there widespread agreement that Lakatos is right on many of his central

claims. Lakatos takes pains to exhibit mathematics as fallible, in the same (or a related)

sense in which natural science is fallible. This means that mathematical propositions are

essentially defeasible; they are conjectures, and they are in principle revisable. That natural

science is fallible is a basic assumption in the philosophy of science; it is far less clear, and

perhaps implausible, to extend fallibility to mathematics. But this is just what Lakatos

does. What are the so-called potential falsifiers? What are the objects or phenomena which

can show mathematical claims to be false? For Lakatos, proofs are akin to tests; proofs can

show claims to be false. But this analogy is likely mistaken, and needs to be reinterpreted

to make sense in mathematics [75]. And not everyone is happy to regard mathematics as

fallible. See section 3.5 for a more thorough discussion of Lakatos’s skepticism.

So much for a review of the literature on Lakatos. In the remainder of the chapter I describe

my own interpretation of Lakatos in connection with formal proofs.

3.4 Some Basic Philosophical Issues in Lakatos’s Work

Although Lakatos is regarded as a source or inspiration for a new approach to the philosophy

of mathematics (the ‘maverick’ or ‘phenomenological’ approach), Lakatos does not avoid

issues and questions in classical philosophy of mathematics. Nor can Lakatos avoid some

of the main questions which ‘foundationalist’ philosophers ask.3 There are at least three

main philosophical worries that run through Lakatos’s text:

• How can we claim to have knowledge a priori if our methods and concepts by which we

come to have that knowledge are not fixed?

• What is fallible knowledge?

• How can we justify mathematical knowledge?
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These are major questions in epistemology, and Lakatos deserves credit for bringing them

up in the context of mathematics, where we might be a bit too quick (Lakatos would say

dogmatic) to dismiss them, or diminish their importance.

Concerning the last question, Lakatos might reject it as ill-posed: he would say that to

justify mathematical knowledge is to prove that it is true, which would establish it with

certainty. But to say that a claim is justified is not to say that it is certainly true; it just

means that we have adequate reasons to believe that it is true. Our reasons might not in

fact be adequate; and even if they are, the claim that is justified might be false.

Lakatos is interested throughout Proofs and Refutations in justification, on what we might

call the justificatory structure of mathematical arguments. Lakatos emphasizes that proofs

in ordinary mathematics are informal, which are a source of interesting philosophical issues:

The subject matter of metamathematics is an abstraction of mathematics in which mathe-

matical theories are replaced by formal systems, proofs by certain sequence of well-formed

formulae, definitions by ‘abbreviatory devices’ which are ‘theoretically dispensable’ but ‘ty-

pographically convenient’. This abstraction was devised by Hilbert to provide a powerful

technique for approaching some of the problems of the methodology of mathematics. At the

same time there are problems which fall outside the range of metamathematical abstractions.

Among these are all problems relating to the informal (inhaltliche) mathematics and to its

growth, and all problems relating to the situational logic of mathematical problem solving.

To accomplish his historically informed project, Lakatos traces the history of Euler’s polyhe-

dron formula (EPF) and shows that, although the theorem was proved, it was also refuted,

and then reproved, and re-refuted.

Lakatos does more than simply point out that mathematical knowledge evolves, or that

mathematicians make mistakes (which goes without saying). Lakatos makes the more

specific claim that mathematical knowledge (or at least some of it) grows through what he

calls the method of proofs and refutations (MPR), as we discussed earlier. We shall look

at the precise statement of MPR later, but for now we can understand it as the claim that
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mathematical claims may be both proved and refuted, and that proofs are improved by

dealing with the refutations.4

We must also distinguish claims about the history of mathematics from claims about the

nature of mathematics. Thus we must separate claims like the history of Euler’s polyhe-

dron formula illustrates the method of proofs and refutations from questions about what

mathematical knowledge is like once we’ve reached the end of the method of proofs and

refutations.

3.5 Lakatos and Mathematical Skepticism

Is Lakatos a skeptic about mathematics? If so, what kind of skeptic is he?

Certainly the tenor of Lakatos’s work suggests that he is a skeptic about mathematics,

in the sense that the central aim of his project is to limit our claims to mathematical

knowledge, or to qualify the kind of knowledge produced by mathematical proofs. Let us

approach the question by examining passages in Proofs and Refutations in which Lakatos

explicitly advocates an apparently skeptical view:

Teacher: I hope that now all of you see that proofs, even though they may not prove, certainly do

help to improve our conjecture. [. . . ]

Using the Pólya’s distinction between problems to find (in which the aim is to discover a

mathematical object, such as a number or a figure, that satisfies certain conditions) and

problems to prove (in which the aim is to demonstrate that a claim is true or false), Lakatos

again reiterates his apparently skeptical view:

Alpha: It is wrong to assert that ‘the aim of a “problem to prove” is to show conclusively that a

certain clearly stated assertion is true, or else to show that it is false’. The real aim of a ‘problem

to prove’ should be to improve—in fact, perfect—the original, ‘naive’ conjecture into a genuine

‘theorem’.

Also, in a footnote, Lakatos writes:
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About 1800 the rigour of proof (crystal-clear thought experiment or construction) was con-

trasted with muddled argument and inductive generalisation. This was what Euler meant

by ‘rigida demonstratio’, and Kant’s idea of infallible mathematics too was based on this

concept. It was also thought that one proves what one has set out to prove. It did not occur

to anybody that the verbal articulation of a thought-experiment involves any real difficulty.

[. . . ] The proof or thought-experiment carried full conviction without any deductive pattern

or ‘logical’ structure.

The dialogue continues with Alpha expanding on his comments:

Alpha: Our naive conjecture was ‘All polyhedra are Eulerian’.

The monsterbarring method defends the naive conjecture by reinterpreting its terms in such a way

that at the end we have a monsterbarring theorem: ‘All polyhedra are Eulerian’. But the identity

of the linguistic expressions of the naive conjecture and the monsterbarring theorem hides, behind

surreptitious changes in the meaning of terms, an essential improvement.

The exception-barring method introduced an element which is really extraneous to the argument:

convexity. The exception-barring theorem was: ‘All convex polyhedra are Eulerian’.

The lemma-incorporating method relies on the argument—i.e. on the proof—and on nothing else.

It virtually summed up the proof in the lemma-incorporating theorem: ‘All simple polyhedra with

simply-connected faces are Eulerian’.

This shows that (now I am using the term ‘proving’ in the traditional sense) one does not prove

what one sets out to prove. Therefore no proof should conclude with the words: ‘Quod erat demon-

strandum.’

Scholarship on Lakatos and contributions to the philosophy of mathematics that are in-

spired by Lakatos emphasize, to some extent, his focus on mistakes in mathematical ar-

gumentation. A recent contribution to Lakatos scholarship begins by saying that the 19th

century was “a time of error for mathematics: not trivial oversights or amateurish con-

fusions but fundamental mistakes in the understanding of mathematical concepts and the
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formulation of mathematical proofs” [77]. P. Davis defines the ‘authenticity’ of a mathe-

matical proof and asserts that this property is established ‘by verifying that a sequence of

transformations of atomic strings is legitimate’ [78]. He goes on to argue, based on a dis-

cussion of long calculations, that ‘the authenticity of a mathematical proof is not absolute,

but only probabilistic’. A consequence:

Proofs cannot be too long, else their probabilities go down and they baffle the checking

process. To put it another way: all really deep theorems are false (or at best unproved or

unprovable). All true theorems are trivial.

(It is not clear how philosophically sustainable this position really is.) P. Ernest, in his

review of [55] (which will be discussed soon), writes that

Fallibilism claims that mathematical knowledge (and truth) are relative, contingent, historical

constructs. Absolute judgements with regard to truth/falsity and correctness/incorrectness

cannot be made. The criteria and definitions involved vary with time, context, and never

attain a final state. We can be pretty sure of some results, but the possibility of future

revision or rejection cannot be eliminated. The source of this position is the early work of

Lakatos.

R. Hersh also repeats Lakatos’s emphasis on mistakes: enumerating some neglected aspects

of mathematics, we find:

Mathematical knowledge is fallible. Like science, mathematics can advance by making mis-

takes and then correcting and recorrecting them. (This “fallibilism” is brilliantly argued in

Lakatos’s Proofs and Refutations.) [66]

To be sure, some who work on Lakatos do not entirely accept the Lakatos’s apparent

skepticism. D. Sherry, for example, takes issue with Lakatos’s ‘fallibilist’ philosophy:

That mathematicians are fallible is hardly news. More newsworthy is the thesis that mathe-

matics itself is fallible. Fallibilists believe that long standing communities of mathematicians
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have been or can be in error about cherished results. They point to the historical record as ev-

idence of the ‘fallible, corrigible, tentative and evolving’ nature of mathematics (Tymoczko,

1986, p. 21). Prima facie it is difficult to deny propositions like ‘7+5=12’. Even so, the

fallibilist claims there are propositions thought to have been established only to have been

overturned in the progress of mathematics. Frequently mentioned is Euler’s conjecture that

the vertices and faces of a polyhedron outnumber its edges by 2. Crowe (1988) is typical:

‘Euler’s claim was repeatedly falsified’ (p. 264). But our epigraph warrants caution, and, in

fact, standard historical cases fail to support the thesis that mathematics is fallible, corrigible

or tentative; they serve only as evidence that mathematics is evolving. Errors implicating an

entire community of mathematicians do not exist in any but a philosophically problematic

sense.

Sherry argues [55] that case-studies such as Lakatos’s history of Euler’s polyhedron formula

show at best that mathematics is evolving, not that it is fallible. T. Koetsier [79] argues

similarly. M. Leng criticizes those who, taken with Lakatos’s case-study, do not “[take] pains

to provide further examples which show mathematics to be fallible in any philosophically

interesting sense” [59].

Moreover, it is not at all clear that a sensitivity to the history of mathematics demands that

one give up on the epistemological unique features of mathematical knowledge. Lakatos

is eager to show that mathematical knowledge is ‘fallible’ and ‘quasi-empirical’, but the

argument for that simply seems to be that in the history of mathematics one can perceive

clear mistakes being committed by mathematicians. Such observations should give us

pause and back away from simple-minded dogmatism about mathematical knowledge and

concede at least some sense in which mathematical knowledge is fallible. That is, if the

only evidence for fallibilism in mathematics is the sparse existence of ‘mistakes’ (even by

great mathematicians), then the fallibilism we obtain is not yet philosophically substantial.

Lakatos seems to want point to something deeper than just the existence of errors, but it

is not yet clear precisely how that is to be accomplished. These epistemological issues will

be discussed later in the chapter.
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Despite the overall tenor of Lakatos’s work, one should not be too quick to ascribe to

Lakatos a simple kind of skepticism. The reason for his skepticism about mathematical

knowledge is not that humans make mistakes. In the introduction to Proofs and Refuta-

tions, Lakatos places his work in the context of a long-standing discussion:

For more than two thousand years there has been an argument between dogmatists and

sceptics. The dogmatists hold that—by the power of our human intellect and/or senses—we

can attain truth and know that we have attained it. The sceptics on the other hand either

hold that we cannot attain the truth at all (unless with the help of mystical experience), or

that we cannot know if we can attain it or that we have attained it. In this great debate, in

which arguments are time and again brought up to date, mathematics has been the proud

fortress of dogmatism. [. . . ] Most sceptics resigned themselves to the impregnability of this

stronghold of dogmatist philosophy. A challenge is now overdue.

Lakatos does indeed challenge the dogmatist stronghold, and thus is apparently taking

up the skeptical banner. There are two reasons, though, to refrain from putting Lakatos

squarely in the skeptical camp.

First, by invoking a very old debate between two named parties, it would seem that Lakatos

is trying to distance himself from both of the parties and thus position himself as trying to

transcend the apparently intractable fight. This reminds us of Kant’s attempt to try to go

beyond the old fights between the rationalists and the empiricists. (At the same time, it

is acknowledged that Lakatos does, at the end of the passage, seem to take the side of the

skeptics.)

The second reason to hesitate to brand Lakatos a skeptic, or at least to qualify his skep-

ticism, is to examine whether his philosophy is successful at establishing skepticism on his

own terms. Thanks to Proofs and Refutations, can we conclude that

• we cannot attain mathematical truth, or

• we cannot know if we can attain mathematical truth, or

• we cannot know if we have attained mathematical truth?
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It is not clear that any of these are clearly present in Lakatos’s philosophy. To be sure,

concerning, say, claim (1), this is apparently consistent with Lakatos’s philosophy, especially

in what Lakatos calls ‘mature theories’.

Teacher: The theorem does not always differ from the naive conjecture. We do not necessarily

improve by proving. Proofs improve when the proof-idea discovers unexpected aspects of the naive

conjecture which then appear in the theorem. But in mature theories this might not be the case. It

is certainly the case in young, growing theories. This intertwining of discovery and justification, of

improving and proving is primarily characteristic of the latter.

In mature mathematical theories, then, some kind of stability is achieved. Proofs carried

out in such theories may not reveal any unexpected elements, so that proofs can come to

an end. Of course, Lakatos does not say that truth is attained or that we know that truth

is attained, but this is perhaps as close as Lakatos will come to allowing that.

3.5.1 Fallibilism in mathematics

I would submit that another troublesome problem for those who would champion a Lakatosian

philosophy of mathematics is, first of all, to articulate a fallibilist epistemology that, sec-

ond, acknowledges that there is something special about mathematical knowledge. Even if

mathematical knowledge turns out to be fallible in some robust sense—which is not based

merely on the (inevitable) presence of ‘mistakes’—one would want a satisfying account of

why mathematical knowledge is (or appears to be) so epistemically privileged.

One problem, in the first place, is to even say what fallible knowledge is. Some work has

already been done in this direction. One of the first problems is to even say what fallibilist

knowledge is. Following the traditional analysis of knowledge as justified true belief, to say

that something is known fallibly involves us, at least initially, in a problem: if p is known

fallibly, then, roughly speaking, p could have been false. But in the case of mathematical

knowledge, which is supposed to be necessary, it could not be false. Thus, if p is a piece of

mathematical knowledge, then it cannot be known fallibly, because it could not be false.

Some early work by S. Haack, for example, articulates the problem.
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When it comes to the question of whether we are fallible, not only with respect to our ordi-

nary, empirical beliefs, but also with respect to our mathematical beliefs, Peirce’s confident

anti-dogmatism seems to falter. Peirce believes that the truths of mathematics are necessary.

And he seems to suspect that the necessity of mathematical truths somehow precludes the

possibility of our being mistaken in our mathematical beliefs; for when he claims that falli-

bilism does extend even to mathematics he is tempted to compromise his commitment to the

necessity of mathematical truths, and to hint that mathematical inference is, after all, only

probable, and when, elsewhere he stresses the necessary character of mathematical truths, he

also hints that we are fallible only with respect to our factual beliefs.

In Haack’s brief summary of Peirce’s philosophy we can perhaps see an example of what

Lakatos was referring to when he mentions how the skeptics ‘resigned themselves to the

impregnability of this stronghold of dogmatist epistemology’ (that is, mathematics). She

goes on to survey some senses of ‘fallibilism’ that might have given rise to Peirce’s waffling,

and she relates her discussion to Lakatos’s fallibilist philosophy of mathematics. B. Reed

also lays out the problem: although fallibilism seems to be a plausible feature of our

knowledge, it is not incompatible with the existence of necessary truths (e.g., mathematical

truths); the puzzle is to explain such fallible knowledge.

3.6 A Lakatosian Challenge

An interest or even a defense of formal proofs does not imply that there are not problems in

the philosophy of mathematics that cannot be well understood as questions about formal

proofs. If this is the kind of philosophy of mathematics against which Lakatos was reacting,

then surely Lakatos is in the right.

But Proofs and Refutations cannot help but being a work about proofs, and therefore

at least in part about the structure of justification in mathematics. One of the central

questions of Proofs and Refutations is: what is the structure of justification in informal

mathematics as contrasted with formal mathematics? As a response, Lakatos advances (or

rather: describes) the method of proofs and refutations (MPR). If I have been successful,
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I will have argued that MPR is characteristic of mathematical proof no matter whether

formal or informal.
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4 A Formal Proof of Euler’s Polyhedron Formula

4.1 Introduction

In this chapter I discus a formalization of Euler’s polyhedron formula, which asserts for a

polyhedron p that

V − E + F = 2,

where V , E, and F are, respectively, the numbers of vertices, edges, and faces of p.

Section 4.2 is a brief survey of the history of Euler’s formula, and justifies the choice of

the particular informal proof, due to Poincaré, that was singled out for formalization.1

Section 4.3 sketches Poincaré’s linear algebraic proof, as presented by Lakatos. Section

4.4 is devoted to the formalization itself. Finally, I reflect on some of problems related

to the formalization in section 4.5 and close with some suggestions for further avenues of

research in section 4.6.

4.2 A Brief History of Euler’s Polyhedron Formula

Lakatos’s history [1] of Euler’s polyhedron formula is an entertaining discussion of some of

the historical twists and philosophical problems surrounding the result. Indeed, a motiva-

tion for carrying out the formalization described here was to study Lakatos’s philosophy of

mathematics.

Euler first discussed his formula in a 1750 letter to Christian Goldbach:

Recently it occurred to me to determine the general properties of solids bounded by plane

faces, because there is no doubt that general theorems should be found for them, just as

for plane rectilinear figures, whose properties are: (1) that in every plane figure the number

of sides is equal to the number of angles, and (2) that the sum of all the angles is equal

to twice as many right angles as there are sides, less four. Whereas for plane figures only

sides and angles need to be considered, for the case of solids more parts must be taken into

account. [80]
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Euler does not use the term polyhedra but rather ‘solids bounded by plane faces’. He goes

on to enumerate some interesting propositions about polyhedra such as:

6. In every solid enclosed by plane faces the aggregate of the number of faces and the number

of solid angles exceeds by two the number of edges, or F + V = E + 2.2

and

11. The sum of all plane angles is equal to four times as many right angles as there are solid

angles, less eight, that is 4V − 8 right angles.3

Euler expresses surprise that he has not been able to find a precedent for these relations:

I find it surprising that these general results in solid geometry have not been previously noted

by anyone, so far as I am aware;4 and furthermore, that the important ones, Theorems 6 and

11, are so difficult that I have not yet been able to prove them in a satisfactory way.

It was not long before Euler presented his results publicly [84]. Like the letter to Goldbach,

Euler’s paper was programmatic: he was trying to encourage the study of three-dimensional

solids as an extension of planar geometry. The ‘most difficult’ propositions he mentioned

to Goldbach were discussed in detail, though he acknowledges that his presentation does

not constitute a proof. Indeed, in the preface to his paper Euler qualifies his work thus:

I for one have to admit that I have not yet been able to devise a strict proof of this theorem.

As however the truth of it has been established in so many cases, there can be no doubt that

it holds good for any solid. Thus the proposition seems to be satisfactorily demonstrated.

Euler was not satisfied with the unfinished state of his theorem and continued working with

polyhedra. Eventually he did find a satisfactory proof [85].

Perhaps because of its simplicity and elegance, many other mathematicians studied the

polyhedron formula and tried to give new proofs of Euler’s polyhedron formula. Cauchy,

for example, connected the study of polyhedra to planar graphs: project a polyhedron onto

a plane, triangulate it, and take away one triangle at a time in a way that preserves χ until

only a triangle remains; we obtain the desired result χ = 2 by noting that the projection
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with which we started ‘removes’ a face from the polyhedron (which effectively sends one of

the polyhedron’s faces onto an unbounded planar region). Unlike Euler, whose conception

of polyhedra was that of solid (which one can slice, as with a knife), Cauchy apparently

viewed polyhedra as wireframes.

Poincaré provided a new conception of polyhedra based on incidence matrices with which

he gave his own proof [86–87] of Euler’s formula.5 Poincaré’s abstract, combinatorial con-

ception of polyhedra makes no mention of points in R3, nor does it come from projecting

polyhedra onto a plane. Poincaré’s approach even allows for polyhedra of arbitrary dimen-

sion; the general result6 states that
d−1∑
k=0

(−1)kNk = 1 + (−1)d+1,

where the integer d is the dimension of p and Nk is the number of k-polytopes of p. The

classical three-dimensional version stated by Euler is obtained by setting d := 3. The

familiar property of a polygon that the number of vertices is equal to the number of edges

is obtained by putting d := 2. (And a 1-dimensional polyhedron is just a line segment with

its two endpoints, which also falls out of the general Euler relation by putting d := 1.)

So far no definition of polyhedron has been given, nor has any restriction been imposed on

the domain of validity of Euler’s relation. It is a commonplace that one has to be careful

with how one defines one’s terms, and the term ‘polyhedron’ is no exception. Grünbaum

writes:

The ‘Original Sin’ in the theory of polyhedra goes back to Euclid, and through Kepler,

Poinsot, Cauchy, and many others . . . in that at each stage, the writers failed to define what

are the ‘polyhedra’. [88]

In addition to defining polyhedra, it is a further task to specify the domain of validity for

Euler’s relation to hold; it turns out that around the time of Cauchy’s proof in the early

19th century, it started to become clear to mathematicians that Euler’s polyhedron formula

does not hold for all polyhedra. In 1811, for example, L’Hullier described ‘exceptions’ to
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Euler’s polyhedron formula, classifying them into three kinds. Research on polyhedra in

the 19th century gradually revealed that for Euler’s relation to hold one should focus on

the property of being a homology sphere.

Poincaré’s definition, on which the formalization to be described is based, is probably the

simplest to describe. Following Poincaré, a polyhedron is characterized by a list of incidence

matrices, which can be understood as functions f from a cartesian product A×B of sets A

and B to {0, 1}, where f(a, b) = 1 is understood as ‘a is incident with b’ and f(a, b) = 0 is

understood as ‘a is not incident with b’. Thus to specify a polyhedron of dimension d+ 1,

one just gives d incidence matrices. Let us call such a structure an abstract or combinatorial

polyhedron.

4.3 Poincaré’s Proof of Euler’s Polyhedron Formula

As part of his algebraic topological program, Poincaré gave a new proof of Euler’s polyhe-

dron formula. This section sketches Poincaré’s proof; for a more detailed discussion, consult

Lakatos [1] (chapter 2) or Coxeter [89] (chapter 9).

Later I discuss the relationship between the concepts of polyhedron and the crucial condition

of being a homology sphere as they are defined by Lakatos and in alternative definitions.

The advanced reader should note before proceeding that the definitions of polyhedron and

being a homology sphere employed in Lakatos’s proof and which are about to be disucssed

are not the same as the concepts that come out of other (perhaps more familiar) approaches

to polyhedra. The polyhedra that we shall consider here lack a good deal of geometric

content; they are essentially combinatorial structures.

In Poincaré’s framework (as presented by Lakatos), a (three-dimensional) polyhedron is

determined by five pieces of data:

• A set of vertices (the 0-polytopes),

• A set of edges (the 1-polytopes),

• A set of faces (the 2-polytopes),
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• An incidence matrix that says which vertices belong to which edges, and

• An incidence matrix that says which edges belong to which faces.7

Conventionally there is also a 3-polytope, namely the whole polyhedron p, and there is a

(derived) incidence matrix declaring that all faces are incident with p. Symmetrically, there

is a single (−1)-polytope and we declare that is incident with each vertex.

More generally, a d-dimensional polyhedron is characterized by a pair (F , I) (F for ‘faces’,

I for ‘incidences’) of finite sequences, where

• d = lenF ,

• lenF > 0,

• len I = lenF − 1,

• For 0 ≤ n < lenF , we have that Fn is a non-empty finite set (the set of k-polytopes of

p), and

• For 0 ≤ n < len I, we have that In is an incidence matrix for Fn and Fn+1.

In the more general setting we again have the stipulation that there is one d-dimensional

polytope, namely p, that is incident with all (d−1)-polytopes; also, there is the stipulation

that there is a −1-dimensional polytope that is incident with all 0-polytopes.

Theorem 1 For every simply connected polyhedron p of dimension d > 0, we have
d−1∑
k=0
Nk = 1 + (−1)d+1,

where d is the dimension of p and Nk is the number of polytopes of p of dimension k.

For a polyhedron p and an integer k, let the k-chains of p be the powerset of the set of

k-polytopes of p. The k-chains of p naturally form a vector space over the two-element

field F2, where vector addition is represented by symmetric difference; call this space Ck.

The relation between Ck and polyhedra can be seen in the fact that the dimension of Ck
is precisely Nk, the number of k-polytopes of p. (Reason: the singleton subsets of Fk are

a basis for Ck.) The boundary ∂kc of a k-chain c is the (k − 1)-chain
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{x ∈ Fk−1:x is incident with an odd number of k-polytopes of c}.

In other words, a (k − 1)-polytope x belongs to the boundary of a k-chain c iff∑
y∈c
Ik−1(x, y) = 1,

where the sum is taken modulo 2. The boundary operation ∂k is a linear transformation

from Ck to Ck−1. It turns out that the k-chains c whose boundary is empty (all (k − 1)-

polytopes are incident with c an even number of times) form a subspace, Zk, of Ck. Such

k-chains are called k-circuits (sometimes also called k-cycles). Another important subspace

of the k-chain space Ck consists of those k-chains that are the boundary of a (k+ 1)-chain;

for lack of a better name, let Bk (for ‘bounding’) denote this subspace.

The property of being a homology sphere is the property that Bk = Zk, that the k-circuits

are the bounding k-chains. The inclusion Bk ⊆ Zk says that ∂k+1∂k ≡ 0. The reverse

inclusion intuitively says that the only way something can be a cycle is if it ‘traverses’ a

‘face’. This fails in cases where, for example, a face has a hole in it (one can go around the

boundary of the inner hole, but there’s no face that one is traversing).

We are now ready to prove Theorem 1.

Proof. If p is a homology sphere, then

Zk = Bk,

so that

dimZk = dimBk.

Since Nk = dimCk, we have by the rank+nullity theorem that

Nk = dimCk = dimBk−1 + dimZk = dimBk−1 + dimBk.

Thus
d−1∑
k=0

(−1)kNk =
d−1∑
k=0

(−1)k(dimBk−1 + dimBk) = dimB−1 + (−1)d−1 dimBd−1.
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The last equation follows because of the hypothesis the p is a homology sphere. Now

dimB−1 = 1, since B−1 is a two-element vector space (it contains the empty chain as well

as the singleton chain containing the unique −1-polytope). And dimBd−1 = 1 for the same

reason: it contains the empty chain as well as the ‘full’ chain containing all the (d − 1)-

polytopes, so that it has at least two elements; if c is a (d−1)-chain different from the ‘full’

(d− 1)-chain and the empty chain, then it is not in the range of ∂d, since by stipulation all

(d− 1)-polytopes are incident to the unique d-polytope p. The proof is complete. �

4.4 The Formalization

This section describes the formalization of Poincaré’s proof of Euler’s polyhedron formula

that was carried out in the mizar system.

mizar is based on classical first-order logic with equality and Tarski-Grothendieck set

theory, a strong theory of sets that is equivalent to the Zermelo-Fraenkel theory together

with an axiom asserting the existence of arbitrarily large inaccessible cardinals.

Among the many candidate systems (e.g., isabelle, hol light, coq) with which the for-

malization could have been carried out, mizar was selected because of its familiar logical

foundations (first-order set theory), its everyday knowledge representation language (de-

pendent types, structures, flexible notation for functions and predicates), its standard proof

language (a kind of natural deduction), and its large library of formalized mathematical

knowledge on which one can build.8 But it must be admitted that the choice of mizar over

the other candidates was somewhat arbitrary. Nonetheless, it seems plausible that, if one

were to compare the formalization in mizar under discussion with a formalization of the

same proof in some other system, one would find considerable overlap.9

4.4.1 Main formalizations

One often finds when formalizing that, in addition to the logical and mathematical de-

tails in a formal proof that must be supplied, one must also formalize various kinds of
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‘background’ knowledge. And one often finds that the simplest mathematical facts are

(apparently) missing from the library of formalized mathematics10. Like Euler writing

to Goldbach, one might be surprised that ‘these general results have not been previously

noted by anyone’.11 The formalization of Poincaré’s proof of Euler’s polyhedron formula in

mizar was no exception to this phenomenon. But this is understandable; just as libraries

of implemented algorithms for various programming languages do not eliminate the need

for programmers to adjust them to their specific problems, so too do general mathematical

facts in a formal library require further specification before they can be applied.

The contribution naturally divided into three mizar ‘articles’ (collections of definitions,

theorems). They were:

• RANKNULL: The rank+nullity theorem [91];

• BSPACE: The vector space of subsets of a set based on symmetric difference [92]; and

• POLYFORM: Euler’s polyhedron formula [93].

I now briefly discuss some notable features of these formalizations.

4.4.1.1 The rank+nullity theorem

The rank+nullity theorem states that if T is a linear transformation from a finite-dimensional

vector space V to a finite-dimensional space W , then

dimV = dim imT + dim kerT.

I was able to straightforwardly formalize a standard proof [94] of the result, but some formal

groundwork had to be laid for that to be possible.

Much basic linear algebra has already been formalized in mizar; there are a number of

theorems and definitions concerning subspaces [95], linear combinations [96], dimensions of

vector spaces [97] and linear spans of sets of vectors [98]. But some of the linear algebraic

facts involved in a proof of the rank+nullity theorem were unavailable and had to be

formalized. To carry out the formalization, I defined:



A FORMAL PROOF OF EULER’S POLYHEDRON FORMULA

52

1. the image and kernel of a linear transformation, and the fact that these form subspaces

of the domain and range of a linear transformation;

2. the restriction of a linear combination to a set of vectors; and

3. the image and inverse image of a linear combination under a linear transformation.

The first item is straightforward, but the second and third items may require some expla-

nation. In mizar, a linear combination is represented as a function from a vector space to

the field of scalars whose carrier (the set of vectors not mapped to zero) is finite.12 The

restriction of a linear combination l on a vector space V to a subset X of V is thus naturally

represented by the function

λv ∈ V.

{
l(v) if v ∈ X

0V otherwise
.

Suppose that T is a linear transformation from a vector space V to a vector space W , both

over a field F , and that l is a linear combination of vectors in V . Thus l represents the

linear combination

a1v1 + · · ·+ anvn,

where n is a natural number, ak ∈ F and vk ∈ V and ak 6= 0F (1 ≤ k ≤ n). Since T is a

linear transformation, we ought to have

T (a1v1 + · · ·+ anvn) = a1T (v1) + · · ·+ anT (vn).

Thus, it is natural to define the image of l under T to be the mizar-linear combination

λw ∈W.

{
l(T−1({w})) if w ∈ imT

0F otherwise
.

The problem with this definition is that it works only if T is injective. We are supposed to

define the image of any linear transformation T on any linear combination l, so we need to

allow for the possibility that some of the T (vi)’s are equal. A definition that gets around

this problem is

T (l) := λw ∈W.
∑
l(T−1(w)).
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This definition allows us to add together the coefficients, given by l, of those vectors in V

that are identified by T . It is interesting to note how the formal definition of the image of a

linear combination under a linear transformation differs from the informal (or semi-formal)

notation above. This case provides an interesting example of a formal analysis of informal

notation.

The inverse image operation also deserves to be mentioned. Suppose that X is a subset

of a vector space V , that T is a linear transformation from V to W , and that l is a linear

combination of T (X) (that is, that l is a function from W to F with finite support whose

value is 0F outside of T (X)). This is a precise way of saying that l looks like

b1T (v1) + · · ·+ bnT (vn),

for some natural number n and vk ∈ X. We want to say that the inverse image of l is the

linear combination

b1v1 + · · ·+ bnvn.

This is correct, but only on the assumption that the vectors T (v1), . . . , T (vn) are distinct.

One way to ensure this is by requiring that T |X is one-to-one, and that is in fact what I

did when defining the inverse image operation in mizar and suited the formalization task

at hand. As it stands, the inverse image operation in mizar is a partial operation. The

restriction of injectivity of the restriction is, however, not entirely unnecessary and it would

be valuable to extend the formalization to account for the general case.

4.4.1.2 The vector space of subsets of a set based on symmetric difference

Another result needed for a formalization of Poincaré’s proof of Euler’s polyhedron formula

is the fact that the power set of a set forms a vector space over the two-element field F2.

Vector addition is symmetric difference, and scalar multiplication is defined by

0 · x := ∅, 1 · x := x.
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This fact is to be standard, but I was unable to find any conventional name for this space.

For lack of a better notation, let B(X) (for ‘Boole’) be the vector space of subsets of X

based on symmetric difference.

Approximately half of the article BSPACE is devoted to proving that B(X) is indeed a vector

space. The other half is devoted to some facts about the linear algebraic features of the

family of singleton subsets of X, namely that

• they are a linearly independent set of vectors, and

• if X is finite, then they span B(X).13

4.4.1.3 Polyhedra

Perhaps surprisingly, the formalization of Poincaré’s proof was rather straightforward. The

highlight of the article is the generalized Euler polyhedron formula, as well as special cases

for one-, two-, and three-dimensional polyhedra. The statement of the main theorem, in

the mizar syntax, is

1 p is homology-sphere implies p is eulerian;

where of course p has type polyhedron. The term ‘Eulerian’ is a neologism that means

that a polyhedron satisfies Euler’s relation; it appears in Lakatos [1]. The definitions of

the two properties are

1 p is homology-sphere
2 means
3 for k being Integer
4 holds k-circuits(p) = k-bounding-chains(p);

and

1 p is eulerian
2 means
3 Sum (alternating-proper-f-vector(p))
4 = 1 + (-1)|^(dim(p)+1);

(The f -vector of a polyhedron p is the sequence of natural numbers
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s := N−1, N0, N1, . . . , Nd,

where d = dim p and Nk is the number of polytopes of dimension k. (It could also be

reasonably defined as a bi-infinite sequence indexed by the integers containing the terms

displayed above with all other terms being 0.) The terminology is standard [99], but to

ease the formalization two related neologisms were coined: proper f -vector and alternating

proper f -vector. By definition deleting the first and last terms of s gives the proper f -vector

of p; alternating the signs of the sequence yields the alternating proper f -vector of p.) I also

proved a lemma on telescoping sums that apparently did not exist in the mizar library:

1 for a,b,s being FinSequence of INT
2 st len s > 0 &
3 len a = len s & len b = len s &
4 (for n being Nat st 1 <= n & n <= len s
5 holds s.n = a.n + b.n) &
6 (for k being Nat st 1 <= k & k < len s
7 holds b.k = -(a.(k+1)))
8 holds Sum s = (a.1) + (b.(len s))

The lemma is a formalization of the claim that if s, a, and b are are sequences of integers,

all of the same length n, and if s = a+b but bk = −ak+1, then
∑
s = a1 +bn. In Poincaré’s

proof, thanks to the property of being a homology sphere, the sum on the left-hand side of

the Euler relation turns out to be telescoping in this way.

4.5 Discussion

4.5.1 Definition of polyhedron and being a homology sphere

Lakatos’s presentation of Poincaré’s proof of Euler’s polyheron formula differs from Poin-

caré’s own presentation, and his definitions differ from the definition of polyhedron and the

property of being a homology sphere that grew out of Poincaré’s work.

The polyhedra that Lakatos considers have very little geometric content; they are essen-

tially combinatorial structures. They are essentially structures for a three-sorted first-order

language L with sorts for vertices, edges, and faces, together with two binary relations for
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the incidence relations. (One could equally well consider a single binary relation, taken

as the union of the two relations in Lakatos’s definition.) Perhaps a better term for these

structures would be something like ‘pre-polyhedron’; a ‘polyhedron’ would then be a struc-

ture for L that satisfies the property that ∂k∂k+1 ≡ 0. A better label for what Lakatos

is defscribing would be perhaps ‘abstract polyhedra’. One could then object and say that

Lakatos has not proved Euler’s formula for polyhedra, but rather just for abstract polyhedra.

Following this line of thought, one could object to the claim that Lakatos (in the guise of

the character Epsilon) has given a proof of Euler’s polyhedron formula; from this it follows

that the formalization described above is not a formal proof of Euler’s polyhedron formula.

In the following subsection a more geometrically contentful definition of polyhedron—which

flows from Poincaré’s original work—will be described. From that perspective we will be

able to better understand Lakatos’s abstract/combinatorial definition.

4.5.1.1 Algebraic topological definition of polyhedron

The material in this section is based largely on a standard treatment (by L. S. Pontryagin)

of algebraic topology [100]. We shall eventually define a geometrically contentful concept of

polyhedron, then abstract polyhedron. The latter, though lacking some geometric content,

has more structure than Lakatos’s polyhedra.

Definition 1 A simplex of dimension d is the convex hull of an affinely independent

set of d− 1 points in a real linear space.

Intuitively, then, a simplex is a generalization of a tetrahedron; it is supposed to be the

simplest kind of geometrical arrangement.

Definition 2 A complex is a finite set K of simplexes of a finite-dimensional real

linear space such that

1. If A is in K, then every face of A is also in K, and

2. Every two simplexes in K are properly situated.
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We then define:

Definition 3 A polyhedron is the union of the simplexes in a complex.

Polyhedra as thus defined clearly have considerable geometric content. Their points are

contained in a (finite-dimensional) real linear space, whereas Lakatos’s polyhedra are mere

combinatorial objects. We can abstract away from the analytic character and position of

the parts of a polyhedra as just defined to get the concept of an abstract complex.

Definition 4 An abstract complex is a subset K of the powerset P(X) of a finite

set X such that

1. Every singleton subset of X is a member of K, and

2. If A is in K, then every non-empty subset of A is also in K.

As a simple example, we have that for any finite set X, the set PX − {emptyset,X} is an

abstract complex.

We can also see in this example why it is natural to include both ∅ and the set of all vertices

of an abstract polyhedron as belonging to it. We obtain ∅ by relaxing the second condition

in 4 to say that if A is in K, then every subset of A is also in K (not just the non-empty

subsets of A). And allowing the set of all vertices of K to be a member of K both conditions

in the definition are maintained. The dimension of the new abstract simplex ∅ is naturally

−1, and the dimension of the set of vertices of K is naturally dimK+ 1. Let us define this

new concept.

Definition 5 A extended abstract complex with vertices X is a subset of PX such

that

1. Every singleton subset of X is a member of K,

2. If A is in K, then every subset of A is also in K, and

3. X is in K.
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Clearly, from an abstract complex K with vertices X we produce an extended abstract

complex K′ with vertices X: K′ = K ∪ {∅, X}.

It is with the help of abstract complexes that we can understand Lakatos’s definition of

polyhedra. Pointryagin uses the term abstract simplex to mean a member of an abstract

complex. If we use the term ‘polytope’ instead, we start using Lakatos’s terminology. Given

an abstract complex K, we can define a binary relation R on K by the rule

R(a, b) iff there exists a vertex x of K such that a ∪ {x} = b

R holds between abstract simplexes a and b of K just in case b is exactly one vertex larger

than a.

Using this relation, we can convert an abstract complex K into a Lakatos polyhedron p in

a natural way: the k-polytopes of p are precisely the abstract simplexes of K of cardinality

k+ 1, and the incidence matrices of p are just the restrictions of the induced relation R to

the k and the (k + 1)-polytopes of p.

This transformation process also works for extended abstract complexes. Note that, when

applied to extended abstract complexes, we get that ∅, the unique −1-dimensional abstract

simplex, is incident with every 0-dimensional abstract simplex. We also get that the set X

of vertices (assumed to be among the abstract simplexes of an extended abstract complex)

is incident with every abstract simplex of the form X−{a} (a ∈ X). This is precisely what

Lakatos asks us to postulate.

Let us denote by P (K) the Lakatos polyhedron that is obtained from an (extended) abstract

complex K in this way. To verify that P (K is really a Laktos polyhedron, we must check

that ∂k ◦ ∂ ≡ 0.

Theorem 2 For every extended abstract complex K with vertices X, we have that

P (K) is a Lakatos polyhedron, i.e., P (K) satisfies the condition that ∂k ◦ ∂k+1 ≡ 0, for

every 0 < k ≤ dimK.
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Proof. First, we shall give a set-theoretic characterization of the boundary operator on

the P (K)’s. Using that characterization we shall show that ∂∂ ≡ ∅.

The boundary ∂k(a) of a k-polytope a is simple to describe: it is {a − {x} : x ∈ a}. This

just reflects condition (2) in the definition of extended abstract complexes.

The description of ∂k(C) for k-chains C is somewhat more complex. This reflects the fact

that the k-polytopes in the k-chain C can share elements. We need to keep track of the

parity of incidences.

Indeed, we have the following characterization: A ∈ ∂k(C) iff there exists a vertex x and

an element c of C such that A = c − {x} and x ∈ ∆(c). Here ∆(c) is understood as a

generalized symmetric difference operator defined on collection of sets:

∆(Y ) := {y ∈
⋃
Y : |{Z ∈ Y : y ∈ Z}| is odd}.

Given this characterization, we have that A ∈ ∂k∂k+1(C) iff there exists a vertex x and an

element d of ∂k+1(C) such that A = c − {x} and x ∈ ∆(∂k(C)). But the condition that

x ∈ ∆(∂k+1(C)), is impossible. For

x ∈ ∆(∂k+1(C))

iff

|{B ∈ ∂k(C) : x ∈ B}| is odd,

which holds, by definition of ∂, iff

|{B : ∃c∃y(c ∈ C ∧ y ∈ X ∧B = c− {b} ∧ y ∈ ∆(c) ∧ y ∈ B}| is odd.

But note that the condition that B is supposed to satisfy is contradictory: B = c − {v},

so B excludes v, but the last condition asserts that y is in B. So the comprehended set is

empty, so its cardinality is certainly not odd. �

Thus the incidence structure P (K) is indeed a Lakatos polyhedron.

The Lakatos polyhedra that we obtain in this way from (extended) abstract complexes are

a special subclass of the class of all Lakatos polyhedra. The main feature of P (K) is that
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a (k + 1)-polytope is incident only with k + 1 k-polytopes. This property is not shared by

all Lakatos polyhedra.

The reader may be familiar with another definition of ‘polyhedron’ in algebraic topology as

the set of points of a complex. In such a setting one has chains and a boundary operator.

The approach taken here is rather more general than the approach taken in algebraic topol-

ogy in terms of complexes because the polyhedra of this approach are more abstract; they

lack a good deal of geometrical content that’s contained in the definition of complex (even

abstract complex). The main difference is that, with complexes (even abstract complexes),

one has that the boundary operator satisfies ∂k∂k+1 ≡ 0. However, in the approach taken

here, the boundary operator is not nilpotent. (See § 6.2.2.3 for a simple counterexample.)

One needs to build nilpotency in as an assumption on the class of ‘polyhedra structures’

considered here.

In the approach to polyhedra taken here, there are −1- and (dim p)-dimensional polytopes,

even though those don’t appear in the usual definition of the term ‘polyhedra’, and don’t

necessarily arise in the algebraic topological approach. These objects are conventions.

Another important difference between the approach to polyhedra in algebraic topology and

the approach here is that here there is no apparent discussion of an orientation of the

vertices of a polyhedron.14 This is related to the fact that the vector spaces that we are

considering are over the two-element field F2. One can prove in the algebraic topological

setting that, if one considers coefficients for chains as coming from F2, then orientation

indeed plays no role (because positvely and negatively oriented polytopes are the same

thing, as +a = −a over F2.).

4.5.1.2 Simple connectedness and homology spheres

The definition of simple connectedness employed in Lakatos is somewhat at odds with

current mathematical terminology. Recall that a Lakatos polyhedron p is called simply

connected if it satisfies Bk ⊆ Zk for every set integer k.
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Another approach is the following. Let X be a topological space. X is called path con-

nected if for any two points p and q in X, there exists a continuous function f from the

real interval [0, 1] to X such that f(0) = p and f(1) = q. Let S1 be the unit circle in R2

(i.e., all pairs (x, y) of real numbers satisfying x2 + y2 = 1), and let D2 be the unit disk

(i.e., the set of all pairs (x, y) of real numbers such that x2 + y2 ≤ 1).

Definition 6 A topological space X is simply connected if it is path connected and

every continuous function f from S1 to X can be extended to a continuous function from

D2 to X.

This definition clearly differs from Lakatos’s. First of all, it applies to topological spaces,

so it is not obvious that it can be modified in a straightforward way to Lakatos polyhedra.

There is, however, a relation, given by the following fact:

Theorem 3 Every two-dimensional manifoldM for which H1(M,F2) is trivial is sim-

ply connected.

H1(M,F2) is the so-called first homology group of the manifold M , which is by definition

Z1(M,F2)/B1(M,F2), where

• Z1(M,F2) is the group of 1-chains (over F2) of M whose boundary is 0, and

• B1(M,F2) is the group of 1-chains (over F2) ofM that are the boundary of some 2-chain.

The definition makes sense because, in this setting, we have that ∂∂ ≡ 0, i.e., Br ⊆ Zr, as a

basic theorem. To say thatH1(M,F2) is trivial just means thatBr = Zr. Lakatos thus takes

the property ‘the first homology group is trivial’ as his defnition of simple connectedness.

From this it follows (by a result known as the universal coefficient theorem [101]) that

H1(M,F2) is the trivial group.

However, for every n ≥ 4 there exist compact smooth manifolds of dimension n for which

H1(M,Z/) is trivial, but which are nonetheless not simply connected. Poincaré also found

an example that works in dimension three.
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The examples show that ‘simply connected’ is a minsomer. The terminology is appropriate

for polyhedra of dimension at most 2 (i.e., two-dimensional surface sitting in R3), but

that is so only because of a classification theorem for 2-manifolds. A better word for what

the property that Lakatos calls ‘simply connected’ would be ‘homologous to a sphere’, or

‘homology sphere’. This is the terminology that I’ve adopted.

4.5.2 A proof-theoretic question

The result of the formalization is that Euler’s polyhedron formula (understood à la Poin-

caré) is a first-order logical consequence of the axioms of Tarski-Grothendieck set theory

(TG). But it should be clear that the full strength of TG set is not required for Poincaré’s

proof; it would be quite surprising if Poincaré’s proof of Euler’s polyhedron formula re-

quired the existence of arbitrarily large inaccessible cardinals. After all, following Poincaré,

polyhedra are conceived as certain combinatorial structures that, presumably, could be

completely captured in an arithmetical theory. And thanks to the level of detail in the for-

mal proof of Euler’s polyhedron formula, one has a clear basis with which to prove Euler’s

polyhedron formula in a weaker theory than TG.

The characteristic axiom of TG asserts: for every set N there exists a set M such that

• N ∈M ,

• M is closed under taking subsets,

• M is closed under the powerset operation, and

• if X ⊆M and X 6∼M , then X ∈M .

Such a setM might be called a universe containing N ; accordingly, let us call this principle

the universe axiom. Some important consequences of the universe axiom (none of which

are axioms of TG) are:

• The existence of an infinite set,

• The axiom of choice, and

• Powerset.
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When one inspects the deduction underlying the mizar proof of Euler’s polyhedron formula,

one can trace the argument through each of the three principles mentioned above. Since

each of these three principles are consequences of the universe axiom (together, of course,

with other axioms of TG), we see that the mizar proof of Euler’s polyhedron formula uses

the universe axiom. But in mizar this is to be expected. Indeed, the proof of every theorem

in the mizar mathematical library that involves natural numbers uses the universe axiom

by way of the existence of an infinite set (obtained by applying the universe axiom to ∅).

It may be somewhat surprising that the axiom of choice appears in the proof of Euler’s

polyhedron formula. To be clear, what is claimed is not that Euler’s polyhedron formula

ineliminably depends on the axiom of choice in the way that, say, the well-ordering principle

does. Instead, what is claimed is that there is a deduction of Euler’s polyhedron formula

that uses choice. The use occurs in the proof of the rank+nullity theorem theorem. The

proof proceeds by starting with a linear transformation T from a finite-dimensional vector

space V to a finite-dimensional vector space W . The first step is to choose a basis A for

kerT ; one then extends A to a basis B for all of V and, finally, one shows that T (B − A)

is a basis of imT . In the actual mizar proof of the rank+nullity theorem, the justification

for the first step (choosing a basis for kerT ) appeals to the theorem [98] that every vector

space has a basis.15

But clearly the principle that every vector space has a basis (which, perhaps surprisingly,

is equivalent over ZF [102] to the axiom of choice) is stronger than what is required for

the purpose of proving the rank+nullity theorem, which after all deals with only finite-

dimensional vector spaces.16 And for finite-dimensional vector spaces, it is clear that we

can produce a basis through an iterative search procedure whose formalization requires

only arithmetical principles.

Some custom software (building on Josef Urban’s work [104]) for computing dependency

relations in mizar texts provides evidence that the only way that the universe axiom is

used is by way of the three principles mentioned above (infinity, choice, powerset). This

in turn is evidence that, from the provability judgment TG ` EPF we have the improved
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judgment ZFC ` EPF, where ‘EPF’ is the Poincaré/combinatorial formalization of Euler’s

polyhedron formula.17

Applying ‘Schoenfield’s trick’ to the Poincaré/combinatorial understanding of Euler’s poly-

hedron formula, from the judgment ZFC ` EPF we can drop choice and conclude that

ZF ` EPF. We have thus moved from the heights of TG to the more modest realm of ZF

by studying the mizar deduction of Euler’s polyhedron formula; we have established a new

provability judgment without actually producing a new deduction.

One can continue the process of trying to further weaken the theory with which proof is

carried out. It seems plausible that one can get away without having a set of natural

numbers. That is, it seems plausible that one can eschew the axiom of infinity and deal

with the natural numbers not as a set but as a proper class. Accepting that for the moment,

we see, using the equivalence of ZF− Infinity and Peano Arithmetic (PA), that Poincaré’s

proof of Euler’s polyhedron formula can be carried out in PA.

Based on some initial studies, it appears that a formalization of Poincaré’s proof can be

carried out in the theory I∆0(exp), a first-order arithmetical theory in a language with

addition, multiplication, ordering, and exponentiation with an induction scheme for ∆0-

formulas (which are permitted to contain exponentiation) [105]. It also appears that some

kind of exponentiation is required. In the next chapter, we shall take up these issues in

somewhat more detail.

4.5.3 Streamlining the formalization

At the time of writing, no mechanism for binders (apart from the quantifiers ∀ and ∃) has

been implemented in the mizar language. (Wiedijk has a proposal [106] for this as-yet-

unimplemented feature.) For example, the definition of the so-called incidence sequence

Ix,c generated by a (k − 1)-polytope x and a k-chain c. Using one common notation for

sequences [107], Ix,c can be defined as

〈v@Pk,n · [x ∈ Pk,n]: 1 ≤ n ≤ Np,k〉,



Conclusion and Further Work

65

The bracket notation ‘[x ∈ Pk,n]’, from Knuth [108], denotes 1 or 0 according as the relation

does or does not hold.18 The actual mizar definition is somewhat more complicated:

1 incidence-sequence(x,v) -> FinSequence of F2
2 means
3 ((k-1)-polytopes(p) is empty implies it = <*>{}) &
4 ((k-1)-polytopes(p) is non empty implies
5 len it = num-polytopes(p,k) &
6 for n being Nat
7 st 1 <= n & n <= num-polytopes(p,k)
8 holds
9 it.n =

10 (v@(n-th-polytope(p,k)))*incidence-value(x,n-th-polytope(p,k)));

A binder syntax would simplify this definition. It would also help to simplify the examples

involving linear combinations that have already been discussed (in light of the fact that

in mizar linear combinations are represented as functions). Even if these examples are

unconvincing, it should be clear that, in general, notations for sequences, functions (λ-

abstraction), relations, and other mathematical objects would help to streamline the mizar

language and make it even more attractive as a formal language for mathematics than it

already is.

4.6 Conclusion and Further Work

Poincaré’s abstract, combinatorial conception of polyhedra facilitated formalization because

the definition could be easily captured using mizar structures. Following Poincaré, the

messy details are largely suppressed; one just formalizes the definition of being a homology

sphere and carries out the linear algebraic proof. Whether one regards this as a problem

or a feature of Poincaré’s approach is left for the reader to decide. A further challenge for

formal mathematics would be to treat Euler’s proof of his relation, involving ‘concrete’ or

‘real’ polyhedra. One could start with the relatively easy case of convex polyhedra (with

which Euler was arguably working [109], even though his definition apparently permits non-

convex polyhedra). It would be especially interesting to take on Euler’s argument because

of the subtle flaws that it was found to contain. The main problem was that Euler did
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not specify just how to carry out the slicing procedure. One can see, by inspecting simple

examples, that one must be careful about the vertex about which the slicing procedure is

done, because for some polyhedra and some choices of the vertex, Euler’s method can lead

to strange results:

It is not at all obvious that this slicing procedure can always be carried out, and it may give

rise to ‘degenerate’ polyhedra for which the meaning of the formula is ambiguous. [110]

Samelson [111] has repaired this gap in Euler’s proof. Are there any others?

As mentioned earlier, for the purposes of the formalization is was not necessary to define

in full generality the notion of the inverse T−1(l) of a linear combination l under a linear

transformation T . It would be valuable for future formalizations in mizar of linear algebra

to deal with the full generality of inverse images.

The property of a polyhedron satisfying ∂∂ ≡ 0 is part of the definition of being a homology

sphere. This property is equivalent to the inclusion Bk ⊆ Zk, which says that boundaries

are circuits. One might regard this not as the definition of the property of being a homology

sphere, but rather as part of the definition of polyhedron; one would then define the property

of being a homology sphere as the converse inclusion Zk ⊆ Bk (circuits are boundaries).

For future formalizations using combinatorial polyhedra in mizar, it may be valuable (if

not necessary) to carry out this rearrangement.

A further step would be to give a formal proof of Steinitz’s theorem relating convex ‘analytic’

polyhedra (whose points are in R3) to planar graphs [99, 112–113].
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5 Metamathematical Problems about Polyhedra

5.1 Introduction

This chapter digresses from our main thread, which focuses on Lakatos’s philosophy of

mathematics; the next chapter takes up that thread again. Here we discuss some metamath-

ematical problems that naturally arise when considering polyhedra as abstract structures.

The topics treated are:

• expressibility problems concerning polyhedra (model theory, specifically finite model

theory),

• formal theories of polyhedra, and

• a proof-theoretic question about Lakatos’s proof of Euler’s polyhedron formula (proof

theory, more specifically bounded arithmetic).

Although this chapter digresses from the main philosophical thrust of the dissertation, the

problems discussed here nonetheless relate to Lakatos’s philosophy of mathematics insofar

as they illustrate how, when certain mathematical problems are considered entirely for-

mally, we can obtain interesting results that might not have occurred had we not treated

them formally. Lakatos himself points out [48] the possibility that new informal metamath-

ematical problems may arise through the formalization of informal mathematical theories.

This chapter is a contribution in that spirit.

5.2 Expressibility Problems for Combinatorial Polyhedra

This section takes up the problem of formally expressing certain properties of combinato-

rial polyhedra, by which we understand polyhedra considered as incidence structures (as

opposed to certain kind of spatial figures or regions).

To ensure a uniform treatment, let us define the following language:
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Definition 7 The first-order signature π consists of three unary relation symbols V ,

E, and F , and one binary relation symbol I.

First-order structures for the signature π can be regarded as graphs whose nodes are colored

in one of three ‘colors’ (V , E, or F ).

What properties of polyhedra can be express using π? Can one express, for example,

that a polyhedron is eulerian, i.e., that a finite π-structure A satisfies the property that

|V A| − |EA| + |FA| = 2? What about the property of being a homology sphere? What

about the property that ∂ ◦ ∂ ≡ ∅? And can we express that an π-structure comes from a

convex three-dimensional polyhedron?

The answer to most of these questions is ‘no’, especially in the case of first-order logic.

Some of the aforementioned properties, however, can be captured using certain extensions

of first-order logic, which we shall see.

Note that the aforementioned properties properties are straightforwardly computable: if

one is given a finite π-structure A, one can compute in a finite amount of time whether A is

eulerian, whether it satisfies the property that ∂ ◦ ∂ ≡ ∅, whether it ‘comes from’ a convex

polyhedron. (The latter is not immediately obvious; one needs to appeal to a basic result

known as Steinitz’s theorem for that. Steinitz’s theorem will be discussed later.) Indeed,

it seems clear that one can compute these properties in time polynomial in the cardinality

|A| of the structure A, assuming that one can test in constant time whether an element

satisfies the predicates V , E, or F . Thus, by Fagin’s theorem [114], which says, roughly,

that existential second-order logic captures the complexity class NP, all these properties of

finite π-structures can be captured in existential second-order logic. Our investigation seeks

to place these properties in rather weaker extensions of first-order logic than full existential

second-order logic.

5.2.1 Being a homology sphere

The property of being a homology sphere, recall, is that every cycle is a boundary: the

only way of being for a k-chain to ‘go all the way around’ is for it to go around something.
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The most interesting case for us of the property of being a homology sphere is that, for

every 1-cycle c, there exists a 2-chain d such that ∂2(d) = c. For this property we have the

following result.

Theorem 4 The property of being a homology sphere is not expressible by a first-

order sentence in π.

Proof. The proof uses Hanf locality. Suppose to the contrary that there exists a sentence

γ of π such that, for every finite π-structure A, we have

A � γ iff A is a homology sphere

Let d be the Hanf locality degree of γ. Consider now the two families of structures Ak and

Bk, defined as follows:

• Both A and B are loop-free undirected graphs, so that R is interpreted as an irreflexive

symmetric relation;

• A is a single ring;

• B is a double ring (annulus) consisting of an outer ring and an inner ring;

• A bounds a single face; it is the only face of A;

• B, considered as an annulus, has one face in the region between the two rings; that is

the only face of B;

• |V A| = |V B| = 4k;

• the inner ring and the outer ring of A have 2d vertices;

The structure B is such that the boundary of the inner ring is empty, but it does not

bound any face (i.e., the inner ring is not the boundary of the unique face of B). Let f be

a bijection from A to B that sends the face of A to the face of B, the edges of A to the

edges of B, and the vertices of A to the vertices of B. We have set up the structures in

such a way that the d-neighborhoods of any element a in A and the corresponding element

f(a) in B are essentially the same:
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• if a is the unique face of A, then f(a) is the unique face of B; a is incident with 4k

edges and 4k vertices, and so is f(a), so their d < 4k neighborhoods are essentially the

same;

• if a is an edge of A and x is in the d-neighborhood of a, then x is either the face of A

(in which case f(x) is the unique face of B); if x is an edge of A, the it is one of the

d < 2k edges around a, but there are precisely the same number of edges around f(a)

in B; and likewise in the case where x is a vertex of A;

• if a is a vertex of A, then by reasoning as in the previous item we can argue that the

d-neighborhood of a is essentially the same as the d-neighborhood of f(a).

�

5.2.2 Eulerianness

Definition 8 A π-structure A is called eulerian if it satisfies the equation

|V A| − |EA|+ |FA| = 2.

Question: is this property expressible in π? If not, in what extensions of first-order logic

can it be expressed? These questions shall occupy us in this section.

Restricting attention first of all to first-order logic, the answer to our question is ‘no’.

Theorem 5 There is no first-order sentence φ of the signature π such that for all

finite π-structures A, we have

A � φ iff A is eulerian

.

Proof. By the (negative) corollary to the Ehrenfeucht-Fraïssé theorem, it suffices to pro-

duce a sequence (An, Bn) of pairs of finite π-structures such that, for all k ≥ 0,
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• Ak is eulerian,

• Bk is not eulerian, but

• Ak ≡k Bk.

Our structures will be defined as follows:

1. The domains of Ak and Bk will both be the disjoint unions of the interpretations of the

relation symbols V , E, and F ;

2. V Ak = V Bk is a set of k elements;

3. EAk = EBk is a set of 2k elements;

4. FAk is a set of k + 2 elements;

5. FBk is a set of k + 3 elements;

6. IAk = IBk = ∅.

By 1–4, Ak is eulerian (k − 2k + (k + 2) = 2); and by 1–3 and 5, Bk is not eulerian

(k − 2k + (k + 3) = 3).

It remains to show that Ak ≡k Bk. To define a winning strategy for duplicator in the

length k Ehrenfeucht-Fraïssé game based on Ak and Bk, note that we can set up a simple

one-to-one correspondence between V Ak and V Bk and EAk and EBk . The only potential

trouble for duplicator occurs in the F parts of the two structures, where there in fact is

some difference that could be detected.

We need not specify a correspondence between the F ’s in Ak and Bk; it should be clear that

whatever element spoiler chooses, if it is an E element, then there are enough E elements

in the other structure for duplicator to respond. In other words, a winning strategy for

duplicator is simply to respond to spoiler’s chosen element by choosing any element in the

other structure of the same kind (i.e., if spoiler chooses a V , the duplicator responds with

an arbitrarily chosen V , etc.). �
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5.2.2.1 Extending the result: euler characteristic and general-dimensional
polyhedra

We can extend the result further by introducing the notion of an euler characteristic—

which will show that there is nothing special about the constant 2 in the key equation

V − E + F = 2—and by permitting polyhedra of arbitrary (finite) dimensions, thereby

showing that there is nothing special about dimension 3 polyhedra.

Definition 9 The euler characteristic χ(A) for a finite π-structure A is the integer

χ(A) := |V A| − |EA|+ |FA|.

The main theorem shows that the property of having euler characteristic 2 is not expressible

by a first-order sentence (of the signature π).

Theorem 6 For every integer k, the property of finite π-structures of having euler

characteristic k is not expressible by a first-order sentence of π.

Proof. Given an integer k, ‘normalize’ the equation V − E + F = k by adding E to both

sides and adding k to both sides if k is negative. We are thus dealing with the property

V + F = E + k, or V + F + (−k) = E, if k is negative.

Define a sequence (An, Bn) of finite π-structures such that, for all n ≥ 0,

• An has euler characteristic k,

• Bn does not have euler characteristic k, but

• An ≡n Bn.

The description of the game (and the winning strategy) uses the ‘normalized’ equation.

Thus, if we wanted to show that the property of having euler characteristic equal to −9,

note that we are dealing with the equation V + F + 9 = E. Now consider the sequence

structures (Ak,−9, Bk,−9) (k ≥ 0) defined as
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1. The domains of Ak,−9 and Bk,−9 will both be the disjoint unions of the interpretations

of the relation symbols V , E, and F ;

2. V Ak,−9 = V Bk,−9 is a set of k elements;

3. EAk,−9 is a set of 2k + 9 elements;

4. EBk,−9 is a set of 2k + 10 elements;

5. FAk,−9 = FBk,−9 is a set of k elements;

6. IAk,−9 = IBk,−9 = ∅.

It is clear that duplicator has a winning strategy in the length k Ehrenfeucht-Fraïssé game

based on Ak,−9 and Bk,−9; the description of the winning strategy follows the same outline

as we have in the case where we considered π-structures whose euler characteristics were

2. �

Thus, as one might have expected, there is nothing special about the constant 2. Moreover,

there is nothing special about the dimension 3.

Definition 10 For a positive natural number d, let πd be a signature with d unary

relation symbols P0, P1, . . . , Pd−1.

Intuitively, πd gives us a language for talking about d-dimensional combinatorial polyhedra.

(The letter ‘P’ in the names of the unary predicates stands for ‘polytope’. Pk is intended

to denote the set of k-dimensional polytopes.) The ‘polyhedral’ signature π that we have

been using is the special case d = 3. There is a natural extension of the notion of euler

characteristic from three-dimensional polyhedra to polyhedra of any positive dimension.

Definition 11 The euler characteristic for a finite πd-structure A is the alternating

sum
d−1∑
k=0

(−1)k|PAk |.

(This coheres with the case of d = 3, where the euler characteristic was defined as the

alternating sum V − E + F .)
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The definition comes from Schläfli’s generalization of Euler’s polyhedron formula to poly-

hedra of arbitrary dimension1. The alternating sum can be motivated by observing that

• a polyhedron of dimension 1 is a line segment, and thus has two vertices, whence V = 2;

• a polyhedron of dimension 2 is a polygon, and thus has an equal number of vertices and

edges, whence V = E, i.e., V − E = 0;

• a polyhedron of dimension 3 satisfies Euler’s relation, whence V − E + F = 2.

As the dimension of the polyhedra increases, the right-hand side of the equation oscillates

between 2 and 0. Also, the left-hand side starts with a positive term counting the number

of polytopes of lowest dimension (0, or vertices) and alternates in sign as polytopes of

increasing dimension are considered.

Theorem 7 For every natural number d ≥ 2, and every integer k, the property of

finite πd-structures of having euler characteristic k is not expressible by a first-order sentence

(of the signature πd).

Before getting into the proof, let us pause to explain why the condition that d be at least 2 is

necessary. We cannot claim that the result holds for d = 1, because we do have expressibility

results in that case, at least for non-negative euler characteristics. For example, in the case

of d = 1, we can express that the euler characteristic of a π1-structure is 2:

∃x∃y(P0(x) ∧ P0(y) ∧ x 6= y).

Clearly for every natural number n we can write a first-order formula in the signature π1

saying that there are exactly n vertices, which, in this trivial low-dimensional case, is the

property of the euler characteristic being equal to n. Of course, we cannot write a first-order

formula saying that there negatively many vertices.

Proof. An easy generalization of the case d = 3. For example, if d = 4 and k = 42,

consider the structures (An, Bn) (n ≥ 0) defined as:
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1. the domains of An,4,42 and Bn,4,42 will both be the disjoint unions of the interpretations

of the relation symbols P0, P1, P2, and P3;

2. PAn,4,42
0 = PBn,4,42

0 is a set of k elements;

3. PAn,4,42
1 = PBn,4,42

1 is a set of k elements;

4. PAn,4,42
2 is a set of k + 42 elements;

5. PBn,4,42
2 is a set of k + 43 elements;

6. PAn,4,42
3 = PBn,4,42

4 is a set of k elements;

7. IAn,4,42 = IBn,4,42 = ∅.

By design, the euler characteristic of An,4,42 is 42, but that of Bn,4,42 is 43. The only

potentially detectable difference between the two structures is in the P2 part; but there are

enough such elements to ensure that An,4,42 ≡n Bn,4,42 by simply responding arbitrarily to

whatever move spoiler makes (provided, of course, the duplicator responds to a P0 move

by choosing a P0 element, etc.). �

The general-dimensional approach has among its consequences a familiar result from finite

model theory:

Corollary 1 There does not exist a first-order sentence φ, in a signature using two

unary predicate symbols R and S (together with equality), which is such that

A � φ iff |RA| = |SA|.

Proof. In the previous theorem, put d = 2 and k = 0. �

In the proofs of the preceding theorems on eulerianness and euler characteristics, we have

used Ehrenfeucht-Fraïssé games. One would reasonably wonder whether more sophisticated

tools, such as Hanf locality, might have led to these results more efficiently. The answer is

that such tools might very well apply in these cases, but one initial obstacle to applying

them is that the properties here are ‘cardinal’ properties, that is, they are defined as

relations holding among the cardinalities of the various parts of the structures involved.

We described structures in which duplicator can win, but the structures had different
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cardinalities: one structure was always bigger than the other by one. However, when

applying Hanf locality, one must take care that the structures involved have the same

cardinality. This consideration is presented not as a decisive obstacle to using Hanf locality

for establishing non-expressibility of cardinality properties such as eulerianness (or any

other euler characteristic). If that is right, then the cardinal properties here seem to be

‘basic’ in some sense.

5.2.2.2 Monadic second-order logic

We have seen that eulerianness cannot be captured in first-order logic by a sentence in

our ‘polyhedron language’ π; what about for extensions of first-order logic? In this section

we consider monadic second-order logic, which extends first-order logic by permitting set

quantifiers. Can eulerianness be expressed with monadic second-order logic?

The answer is, once again, ‘no’.

Theorem 8 Eulerianness is not expressible as a sentence of π in monadic second-order

logic.

The proof uses the modification of Ehrenfeucht-Fraïssé games that are suitable for monadic

second-order logic.2 For these games for monadic second-order logic, we have an express-

ibility result analogous to what we had for first-order logic. We shall use the notation

A ≡MSO
k B to indicate that duplicator has a winning strategy in the length k monadic

second-order logic Ehrenfeucht-Fraïssé game based on the structures A and B.

Theorem 9 A property P of finite structures (over a relational signature π) is ex-

pressible in monadic second-order logic iff there exists a natural number n such that for

every two π-structures A and B, if A has property P and A ≡MSO
k B, then B has property

P .

For a proof, see Libkin [114].

As before, we are interested in applying this result to prove non-expressibility.
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Proof. A sequence (Ck, Dk) of pairs structures that work for the monadic second-order

case is closely related to the sequence of pairs of structures that worked for the proof in

the first-order case. Interestingly, thanks to the increased expressive power of monadic

second-order logic, duplicator needs more ‘room’ to carry out his ‘deception’ of spoiler.

Define Ck := A2k and Dk := B2k+1. Note that for Ck we have

V Ck − ECk + FCk = (2k + 1)− 4k + (2k + 1) = 2,

whereas for Dk we have

V Dk − EDk + FDk = (2k + 1)− 4k + (2k + 2) = 3.

Thus Ck is eulerian but Dk is not. We need to argue that Ck ≡MSO
k Dk.

To define a winning strategy for duplicator, proceed as follows. If duplicator make a point

move (i.e., selects an element of one of the structures), then duplicator is to respond in the

same way as was done in the previously described first-order Ehrenfeucht-Fraïssé game. If

spoiler makes a set move (i.e., chooses a subset of one of the structures), then duplicator is

to respond in the following way:

• If spoiler chose ∅ in either structure, respond with ∅;

• If spoiler chose a singleton subset {x} of either structure, respond with the singleton sub-

set {y}, where y corresponds to x in the first-order Ehrenfeucht-Fraïssé game described

above;

• If spoiler makes a set move that contains elements satisfying V or E, then respond with

a set move containing the corresponding elements in the other structure satisfying V

or E. The idea is that since the V and E parts of the two structures Ck and Dk are

‘identical’, duplicator can easily respond to any move that takes place in those ‘parts’

of the structures;

• If spoiler makes a set move X in Dk (where |FDk | is exactly one larger than |FCk |, then

respond with a set Y in Ck in the following way:

− If |X ∩FDk | ≤ k, then for Y choose a subset of Ck such that |Y ∩FCk | = |X ∩FDk |;
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− If |X∩FDk | > k, then for Y choose a subset of Ck such that |Y ∩FCk |+1 = |X∩FDk |.

• If spoiler makes a set move X in Ck, then respond with a set Y in Dk in the following

way (exactly analogous to the previous case):

− If |X ∩FCk | ≤ k, then for Y choose a subset of Dk such that |Y ∩FDk | = |X ∩FCk |;

− If |X∩FCk | > k, then for Y choose a subset ofDk such that |Y ∩FDk | = |X∩FCk |+1.

To get a sense of how this strategy works, let us consider some possible set moves that

spoiler could make that might lead to a loss for duplicator, and how duplicator can respond

to them. If spoiler chooses, say, all the F ’s in Ck, the duplicator needs to respond by

choosing all the F ’s in Dk, and vice versa. For if duplicator responds by choosing a proper

subset X of the F ’s, then spoiler can choose an F in the complement of X, and duplicator

loses. From below, we can consider what happens if spoiler chooses a small subset of the F ’s

in one of the structures, say an unordered pair. Duplicator needs to respond (assuming that

we are dealing with the trivial cases where k is 0, 1, or 2) by choosing an unordered pair in

the other structure; otherwise, spoiler can discover a difference in the cardinalities of these

two sets in three moves. Thus, from below, duplicator needs to respond by choosing sets

with the same cardinality as spoilers sets. From above, we know that, since the cardinality

of the F ’s in the two structures is not the same, there must come a point when duplicator

cannot always respond by choosing a set with exactly the same cardinality. In the last two

moves above, we choose cardinality k as the transition point: for sets of cardinality at most

k, duplicator responds by choosing sets with precisely the same cardinality as spoiler’s sets;

after k, duplicator responds to spoiler’s ‘large’ set moves by responding with another ‘large’

set whose size differs by exactly one. By playing this way only for ‘large’ sets (cardinality

greater than k), spoiler cannot tell—in k moves—that there is a difference between the two

structures. �

As we had in the case of first-order logic, the result extends to arbitrary euler characteristics

and arbitrary dimensions (at least two).
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Theorem 10 For each integer k, the property of finite π-structure of having euler

characteristic k is not expressible by a monadic second-order sentence of the signature π.

Proof. Uses the same (sequence of) structures that worked when we were concerned with

first-order logic in the case of arbitrary euler characteristics, but ‘doubled’ as we just saw in

the previous proof. (Such doubling—increasing the size of the structures involved to give

duplicator more ‘room’—appears to be necessary.) �

5.2.2.3 Expressibility using an equicardinality generalized quantifier

The investigation of expressibility of eulerianness has so far been negative; neither first-

order logic nor monadic second-order logic were able to capture this property in a single

sentence. The discussion now turns in a more positive direction.

This section concerns an extension of first-order logic obtained by adding a new quantifier

for equicardinality. Syntactically, the quantifier binds one variable and two formulas α(x)

and β(x). Formally, it is characterized as follows:

Definition 12 Let A be a first-order structure, x a variable, α and β two formulas, and

let s be a variable assignment for A. Define

A � eq-cardx(α, β) iff |{a ∈ A:A � α[s(x|a)]}| = |{a ∈ A:A � β[s(x|a)]}|

.

Using such a quantifier, it turns our that we can express eulerianness. But we first place a

condition on our structures:

Definition 13 A π-structure A is called partitioned if its domain is the disjoint union

of the interpretations in A of the unary predicates V , E, and F .

The condition of being partitioned ensures that every element is one of the three kinds

(intuitively, every element is either a vertex, an edge, or a face), and that no element is
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of two (or more) kinds. Note that the class of partitioned structures is elementary: it is

axiomatized by the π-sentence

∀x[V (x) ∨ E(x) ∨ F (x)] ∧



V (x)→ ¬E(x) ∧ ¬F (x)

∧

E(x)→ ¬V (x) ∧ ¬F (x)

∧

F (x)→ ¬V (x) ∧ ¬E(x)


.

Theorem 11 For each integer k, the property of finite partitioned π-structures having

euler characteristic k is expressible by a sentence of first-order logic with a generalized

quantifier for equicardinality.

Proof. The proof goes by example. To warm up, consider the case k = 0. Claim: the

formula

φ0 := eq-cardx(E(x), V (x) ∨ F (x)).

works. A finite partitioned first-order structure A whose domain is the satisfies φ0 iff

the |V A| + |FA| = |EA|, i.e., |V |A − |E|A + |F |A = 0. This is essentially read off from

the satisfaction conditions for the equicardinality quantifier and the definition of being

partitioned.

Now consider the case k = 1. To say that a finite π-structure has euler characteristic 1

means that V − E + F = 1, i.e., V + F = E + 1, so that there is (exactly) one more

vertex-or-face element than there are edges. We can express this using the equicardinality

quantifier as

φ1 := ∃x([V (x) ∨ F (x)] ∧ eq-cardy(E(y), [V (y) ∨ F (y)] ∧ y 6= x)).

A finite partitioned first-order structure A satisfies φ1 iff the euler characteristic of A is 1.

If k = −1, we have to express the property V −E+F = −1, or V +F + 1 = E. A formula

φ−1 that works for k = −1 looks like φ1. �
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The condition of the structures as being partitioned is essential: if we drop this condition

and allow elements satisfy none of these predicates V , E, and F , or more than one of them,

then our expressibility results fail. For a counterexample, consider a structure A with one

point, satisfying both V and F . The euler characteristic of A is 2, but the formula φ0

above, using the equal cardinality quantifier, is false in this structure (the cardinality of

the set of elements that satisfy V (x) ∨ F (x) is 1, but the cardinality of the set of elements

that satisfy E(x) is 0).

It is not clear that there exists a formula using the equicardinality quantifier that will

work in the class of all structures, as opposed to the class of partitioned structures. One

approach toward expressing this class of structures would be to use the principle of inclusion-

exclusion3, well known from elementary combinatorics. We leave this as an open question.

5.2.2.4 Expressibility in dyadic existential second-order logic

Theorem 12 For each integer k, the property of finite partitioned π-structures of hav-

ing euler characteristic k is expressible by a sentence of (dyadic) existential second-order

logic.

Proof. By example. Consider k = 0, and look at the sentence

∃R([R is a one-to-one functional] ∧ [domR = V ∪ F ] ∧ [ranR = E]).

The formula expresses that there exists a bijective relation whose domain is the union

of the vertices and faces (assumed to be disjoint) and whose range is the set of edges.

The conditions written in text (that R is one-to-one, that R is functional, etc) can all be

expressed as first-order sentences using R as a parameter. This clearly works.

For other k’s, we can use the same idea as we used when using the equicardinality quantifier.

For example, for k = 3, we can capture the class of partitioned π-structures whose euler

characteristic is 3 with the help of the sentence:
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∃R∃x∃y∃z



x 6= y ∧ y 6= z ∧ z 6= x

∧

[R is a one-to-one functional relation]

∧

[domR = (V ∪ F )− {x, y, z}]

∧

[ranR = E]


.

In other words, V − E + F = 3 holds iff V + F = E + 3, which, for finite partitioned

π-structures, means that there are exactly 3 vertex-or-face elements more than there are

edge elements. The relation R enforces this. �

5.2.3 Convexity

We now investigate the problem of expressing convexity: can we write down a sentence γ of

π such that a finite π-structure A satisfies γ iff A is isomorphic to the incidence structure of

a convex three-dimensional polyhedron? The answer seems to be ‘no’, in light of Steinitz’s

theorem [115]:

Theorem 13 A graph g is isomorphic to the 1-skeleton of a three-dimensional convex

polyhedron p iff g is planar and 3-connected.

The 1-skeleton of a three-dimensional polyhedron is obtained by looking at only the vertices

and edges (the ‘skeleton’), ignoring the faces. A graph is said to be 3-connected if there

is no pair of vertices whose removal disconnects the graph.

We now formulate a conjecture:

Conjecture 1 The property of being isomorphic to the incidence structure of a convex

three-dimensional polyhedron is not expressible by a first-order sentence in π.
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The properties of planarity and 3-connectedness are each known to be not expressible in

a first-order language for graphs with just an incidence relation, and likewise for both a

representation of graphs with both vertices and edges as objects. It would thus appear,

in light of Steinitz’s result and its connection with properties that are known to be not

expressible in a language for graphs, that convexity (that is, being isomorphic to the inci-

dence structure of a convex three-dimensional polytope) is likewise not expressible in our

language.

The reason for hesitation in concluding that Steinitz’s theorem gives us a new undefinability

result, and for calling this a conjecture rather than a theorem, is that our language, π, is

richer than just a pure language for graphs. We have a unary predicate for faces, but the

previous undefinability results dealt with languages in which, at most, there were predicates

for vertices and edges. It seems plausible, but not obvious, that convexity is not expressible

in π. Private correspondence with B. Grünbaum, an expert in polyhedra, graph theory,

and Steinitz’s theorem, has made it clear that Steinitz’s result immediately applies to our

richer language.

5.3 Formal Theories of Polyhedra

In this section we catalog a handful of various theories of polyhedra. None of these theories

are due to me. Nonetheless, it is valuable to list them because they provide an interesting

testbed for a formal investigation of polyhedra.

5.3.1 Steinitz-Rademacher polyhedral complexes

The first theory that we shall discuss is due to Steinitz and Rademacher [116].

Definition 14 A polyhedral complex is a π-structure that satisfies the following con-

ditions:
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• I is symmetric,

• No two elements from the sets V , E, and F are incident (i.e., ∀x∀y(¬I(x, y)), and the

same goes for the sets E and F ), and

• If v, e and f are such that v ∈ V , e ∈ E, f ∈ F , I(v, e) and I(e, f), then I(v, f).

• Every edge is incident with two vertices,

• Every edge is incident with two faces,

• For every vertex v and every face f such that v is incident with f , there are exactly two

edges incident with both v and f , and

• Every vertex and every face is incident to at least one other element.

It is clear that the axioms for structural and polyhedral complexes can be straightforwardly

formalized using a first-order language with three unary relation symbols V , E, and F and

one binary relation symbol I.

The smallest polyhedral complex has cardinality six: there are two vertices, two edges,

and two faces. To visualize this structure, imagine a circle cut in half by a diameter; the

endpoints of the diameter are the two vertices; the two arcs of the circle cut by the diameter

are the two edges; and the space between the diameter and the two arcs are the two faces.

One can verify this claim using a first-order model generation program (such as mace 4)

and verifying that there are no polyhedral complexes of size 1, 2, 3, 4, or 5; and that one

of the models of size 6 corresponds to the description just given. (One can even verify that

this structure is, up to isomorphism, the only polyhedral complex of size 6.)

5.3.1.1 Digression: expressibility of eulerianness in the class of polyhedral
complexes

Earlier we saw that the property of being an eulerian polyhedron is not expressible in first-

order logic, in a signature π with unary predicate symbols V , E, and F , and one binary

predicate symbol I for incidence. We used Ehrenfeucht-Fraïssé games to establish that

result, by defining a sequence (Ak, Bk) of pairs of structures such that
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• Ak is eulerian,

• Bk is not eulerian, but

• Ak ≡k Bk.

The incidence relation in the structures Ak and Bk was defined to be empty. The geometric

content of the non-expressibility result, then, is perhaps questionable. Although the the-

orem shows that eulerianness is not expressible in the class of all π-structures, one might

wish to re-ask the question, this time restricting attention to π-structures that have some

geometric content. Polyhedral complexes form such a class. Our question is: is eulerianness

expressible by a first-order π-sentence in the class of polyhedral complexes? That is, does

there exist a π-sentence φ such that, for all polyhedral complexes A, we have

A � φ iff A is eulerian?

The answer is ‘no’. We can use Ehrenfeucht-Fraïssé games once again to establish this

result. The argument in this case, however, is more difficult; we can no longer use the

structures Ak and Bk, because they had no geometric content. To establish the negative

result, it suffices to find a sequence (Ck, Dk) of pairs of polyhedral complexes such that, for

all k ≥ 0,

• Ck is eulerian,

• Dk is not eulerian, but

• Ck ≡k Dk.

It turns out that the following structures work: Ck is a tower of 2k consisting of copies

of (2k + 2)-gons; Dk is a disjoint union of two copies of Ck. (The ‘+2’ is to ensure that

the number of vertices in the polygons is at least 3, even when k = 0.) To see that these

structures are such that, for all k, we have Ck ≡ Dk, see the argument in section 4.3.6 for the

proof that the class of Grünbaum polyhedra is not elementary. The argument shows at the

same time that the class of Grünbaum polyhedra is not elementary, as well as showing that

eulerianness is not first-order expressible in the class of polyhedral complexes, because the
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structures Ck are both Grünbaum polyhedra and polyhedral complexes, and the structures

Dk are neither Grünbaum polyhedra nor eulerian.

5.3.2 Extensional theory

The theory of polyhedral complexes permits different edges to share the same endpoints.

That is, polyhedral complexes permit so-called multi-edges. We may wish to investigate

polyhedral complexes in which this is not the case, that is, polyhedral complexes that

satisfy the laws

∀e1∀e2(∀v(R(v, e1)↔ R(v, e2))→ e1 = e2).

and

∀f1∀f2(∀e(R(e, f1)↔ R(e, f2))→ f1 = f2).

This reminds us of the axiom of extensionality for sets, so we may call the polyhedral

complexes that satisfy this additional principle extensional polyhedral complexes.

The polyhedral complex of cardinality 6 is not an extensional polyhedral complex (its

two edges are both incident with its two vertices). Its smallest model seems to be the

tetrahedron, of cardinality 14 (four vertices, six edges, four faces). As before, one can

verify this claim using a first-order model generation program such as mace 4.

5.3.3 Simplicial polyhedral complexes

One can obtain a further refinement of Steinitz-Rademacher polyhedral complexes by fo-

cusing on simplicial polyhedral complexes, which, roughly speaking, are the polyhedral

complexes that are maximally triangulated.

Definition 15 A simplicial polyhedral complex is a polyhedral complex that satis-

fies the property:

• Every face is a triangle (i.e., for every face f there exists exactly three edges that are

incident with it).
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One might ask whether the non-expressibility results that we had before, especially con-

cerning eulerianness, still hold even in the case of simplicial polyhedral complexes. The

answer appears to be ‘no’, but this remains an open problem. (The reason for suspecting

that the answer is ‘no’ is that it seems that one can triangulate the polygons that were used

in the non-expressibility of eulerianness relative to the class of all polyhedral complexes.)

5.3.4 Digression: infinite models

The existence of infinite models of the first-order theories treated previously follows by

the compactness theorem for first-order logic, since there exist models of arbitrary finite

cardinality. What is an ‘infinite’ model of these theories? As it stands, from the application

of compactness alone all we can infer is that there exists a polyhedron structure at least

one of whose sorts is infinite.

In fact, one can see that there exist infinite polyhedron structures that have:

• infinitely many vertices, but finitely many edges and finitely many faces (‘refinement’

of, say, a tetrahedron obtained by inserting in new vertices on the edges);

• infinitely many vertices, infinitely many edges, and infinitely many faces (tessellations)

However, if a polyhedron structure has infinitely many edges, then it must have infinitely

many vertices as well; and if it has infinitely many edges, then it has infinitely many faces,

too.

An interesting problem associated with such polyhedra would be to classify them. One

basic question that one might ask: are the two kinds of infinite polyhedra (‘refinements’

and tessellations) the only kinds of infinite models?

5.3.5 Digression: logical complexity

The theories considered above, with the exception of Grünbaum’s, can be expressed in a

straightforward way using the first-order language π. (Proofs that some of Grünbaum’s
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axioms cannot be expressed in π will appear in the next section.) Thus, for each of the

theories, we are dealing with an axiomatizable class of structures. In fact, they are all

elementary classes. One basic question that can be asked about these classes of structures

are the complexities of the formulas required to express them. Besides being of intrinsic

interest, such complexity problems are important as preparatory questions for investigations

using automated deduction tools. As stated, the theories involve a number of existential

quantifiers; when these theories are thus put into clausal form, numerous Skolem functions

arise, which complicates the search process.

For example: can the Steinitz-Rademacher theory of polyhedral complexes be axiomatized

by a π1 formula, that is, one whose prenex normal form has a prefix of only universal

quantifiers?

We can see that the answer to this question is ‘no’. If the class C of polyhedral complexes

were axiomatized by a π1 formula φ, then, by downward preservation of π1 formulas, C

would be closed under taking substructures. But evidently it is not. For the smallest

polyhedral complex has two vertices, two edges, and two faces. This polyhedral complex

has many proper substructures, but none of them can also be polyhedral complexes, by

minimality.

Indeed, a naive inspection of the axioms suggests that the class of polyhedral complexes is a

π3 class, i.e., axiomatized by a formula whose prenex normal form has the quantifier prefix

∀∃∀. The second block of universal quantifiers ensures uniqueness of some of the objects

introduced by the existential quantifiers. Indeed, this seems to be the sharpest result that

can be given, but no proof is given here. We leave it here as an open problem that the class

of polyhedral complexes is not axiomatized by a π1 sentence.

5.3.6 Grünbaum’s polyhedron theory

B. Grünbaum has proposed a theory of polyhedra as well [115]. His axioms are:
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1. Every edge is incident with precisely two vertices and two faces;

2. If a vertex and a face are incident there are exactly two distinct edges that are incident

with both;

3. For each face (vertex) the vertices (faces) and edges incident with it form a simple circuit

of length at least 3;

4. If two edges are incident with the same two vertices (faces), then the four faces (vertices)

incident with the two edges are distinct;

5. Each pair of faces (vertices) is connected through a finite chain of incident edges and

vertices.

It is clear that axioms 1, 2, and 4 of Grünbaum’s theory can be captured in a first-order

language. Axiom 3, on the other hand, asserts that the vertices and edges that are incident

with a face have the structure of a cycle. (And, dually, the axiom asserts that the faces and

edges incident with a vertex likewise form a cycle.) We shall see later that this property is

not first-order expressible. Axiom 5 asserts that the set of faces and the set of vertices are

connected: any vertex can be reached from any other vertex, and likewise for faces. This

property also turns out to be not expressible in first-order logic, as we will see later.

Returning to Grünbaum’s theory, we have already remarked (but not yet proved) that the

class of Grünbaum polyhedra is not elementary (with respect to the signature π). The heart

of the matter is to consider the two axioms of Grünbaum’s theory that are not first-order

expressible, namely

• For each face, the vertices and edges incident with it form a simple circuit whose length

is at least 3, and likewise for vertices; and

• Any two vertices are connected, as are any two faces.

Let us state the main result about Grünbaum polyhedra.

Theorem 14 There is no first-order sentence φ of π such that, for every finite π-

structure A, we have that
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A � X iff A is a Grünbaum polyhedron

Proof. We use Ehrenfeucht-Fraïssé games. Consider the sequences of π-structures (Ak, Bk),

for k ≥ 0, defined as follows:

• Ak is a convex polyhedron that has 2k+2 vertices (to ensure that we have a polygon even

when k = 0) arranged as a regular polygon about the origin (of R3) in the xy-plane, with

2k regular 2k-gons stacked on top, each shrinking in diameter but still centered about

the origin, capped off with a single vertex at the top. This construction is repeated

below the polygon in the xy-plane as well.

• Bk is the disjoint union of two copies of Ak.

The interpretation of vertex, edge, and face for these two structures is clear. Of course, Bk
is not a Grünbaum polyhedron because it fails to satisfy the requirement of connectivity.

Nonetheless, we shall show that Ak ≡k Bk, that is, duplicator has a winning strategy in

the k-round Ehrenfeucht-Fraïssé game based on Ak and Bk. The idea is that, although Bk
consists of two disjoint convex polyhedra, it it has enough structure to ‘simulate’ the single

convex polyhedron Ak. �

5.3.7 Lakatos polyhedra

In chapter 2 of Proofs and Refutations Lakatos offers a theory of polyhedra, too. He

attributes the conception/definition to Poincaré. For Lakatos a polyhedron is a structure

of vertices, edges, and faces arranged in such a way that ∂k◦∂k+1 ≡ ∅ for all integers k, where

∂k is the boundary operator on the set of k-chains (the values of ∂k are (k−1)-chains). The

definition of Lakatos polyhedra requires several preliminary definitions (the definition of k-

chain, the extremal chain cases, the k-boundary operator). Lakatos’s definition of polyhedra

is the broadest of all the conceptions we have seen so far because it admits a great variety

of mathematical objects as polyhedra that might not normally be considered as polyhedra.

For example, a single edge with two vertices—no faces—is a Lakatos polyhedron, but is
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neither a Grünbaum polyhedron nor is it a polyhedral complex in the Steinitz-Rademacher

sense. Moreover, because of the arithmetic involved in the definition it seems unlikely that

one could even define Lakatos polyhedra in a first-order way. We shall see in the next

section that that is so.

5.3.7.1 Digression: Lakatos polyhedra and polyhedral complexes

How do polyhedral complexes relate to Lakatos polyhedra? Both can be understood as

first-order structures of a certain kind. Is it true that all Lakatos polyhedra are polyhedral

complexes? Are all polyhedral complexes Lakatos polyhedra?

First of all, it is not true that every Lakatos polyhedron is a polyhedral complex. The

condition that ∂∂ ≡ ∅ is very weak; structures can satisfy that condition without satisfying

the axioms for polyhedral complexes. For example, consider the Lakatos ‘polyhedron’

consisting of exactly one vertex, one edge, and one face, but with an empty incidence

relation. It is, trivially, a Lakatos polyhedron. Such a Lakatos polyhedron, considered as

a first-order structure, is not a polyhedral complex: there is only one vertex (there should

be at least two), there is only one face (there should be at least two), and there is only one

edge (there should be at least two).

The more interesting question is whether every polyhedral complex is a Lakatos polyhedron.

Indeed, this is the case.

Theorem 15 Every polyhedral complex is a Lakatos polyhedron.

Proof. There are only a few cases to consider: we have to check

1. ∂0∂1,

2. ∂1∂2,

3. ∂2∂3.
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For other values of k (namely k < 0 and k > 3), the desired equation holds trivially. The

most interesting case to consider is 2. We shall treat this case first, and turn to 1 and 3

later.

Proof that ∂1 ◦ ∂2 ≡ ∅. We have to show that for every 2-chain c, we have ∂1(∂2(C)) = ∅.

Thus, let C = {f1, f2, . . . , fn} for some n ≥ 0. The set ∂2(C) is a 1-chain that contains

those edges that are incident with an odd number of faces of C. But, by ?, an edge e can be

incident with either 0, 1, or 2 faces; it cannot be incident with three or more faces. Thus,

if an edge belongs to ∂2(C), it is incident with exactly one face of C.

Now suppose, toward a contradiction, that a vertex v belongs to ∂1(∂2(C)). Thus v is

incident with an odd number of elements of ∂2(C). We shall show that this is impossible.

The argument proceeds by considering a slight reformulation of the problem. Taking the

neighborhood N(v) of a vertex v (i.e., the set of edges and faces with which v is incident),

we can imagine a finite ‘wheel’ of which v is the central hub; the edges with which v is

incident are the ‘spokes’ of the wheel. The gaps between two spokes correspond to the faces

to which v is incident. Now, the 2-chain C gives rise to a coloring of the circular sectors

between spokes: a face be either in C or not, so it can be regarded as colored or not. Call

an edge balanced if it is adjacent to one colored and one uncolored face.

In fact, the neighborhood of a vertex of a polyhedral complex is a union of disjoint cycles;

thus, there may be more than one ‘wheel’ for which v is the ‘hub’. We shall now show that,

within such a cycle, there are an even number of balanced edges. This shows that there

cannot be an odd number of balanced edges, i.e., that v cannot be incident with an odd

number of members of ∂2(C).

To see that every wheel must have an even number of balanced spokes, proceed by cases.

Either there are no balanced spokes (so that the claim s true), or there does exist at least

one balanced spoke. In the latter case, choose a balanced spoke s1 and move clockwise

among the spokes. We need to specify the ‘partner’ s′1 for s1. For s′1, let it be the next

balanced spoke of the wheel in the enumeration of all spokes following s1 in clockwise order.
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We cannot have that s′1 = s1 by the definition of what it means to be a balanced spoke (the

colors of the faces adjacent to s1 are opposite). Either there are no more balanced spokes

in the clockwise enumeration or there are such spokes; in the latter case let s2 be the next

spoke after s′1, and proceed as before to find the ‘partner’ s′2 for s2. As before, s′2 6= s2.

We can see that, by induction, there must be an even number of finite spokes for any wheel

for which v is a ‘hub’. This shows that the condition v ∈ ∂1(∂2(C), i.e., that v is incident

with an odd number of elements of ∂2(C), is impossible for any 2-chain C.

Turning now to case 1, we have to show that it is not the case, for a 1-chain C, that ε, the

unique −1-polytope, belongs to ∂0(∂1(C)). Since, by convention, ε is incident with every

0-polytope, we just have to show that ∂1(C) cannot have odd cardinality.

The argument in this case is somewhat more complex. Divide the vertices in ∂1(C) into

equivalence classes using the reachability relation R(u, v), defined as

R(u, v)↔ u = v ∨ there exists a path from u to v.

We shall show that each equivalence class has even cardinality. This will imply that ∂1(C)

itself has even cardinality (since it is the union of finite many sets of even cardinality).

To show that each equivalence class of vertices under the reachability relation has even

cardinality, note first of all that no equivalence class can have cardinality 1. So each

equivalence class has cardinality at least 2.

Within an equivalence class there may be cycles. Indeed, the whole equivalence class may

be a cycle. But we can safely ignore the cycles: each vertex in a cycle is incident with

two edges, so it need not concern us. If we disregard cycles, then, we can prove that the

equivalence class has an even number of vertices as follows. Since we are ignoring cycles,

there must be two ‘extreme’ vertices u and v in the sense that u is ‘leftmost’ and v is

‘rightmost’. Pair u with v and continue. We are left with either zero vertices, or at least

2 (there cannot be exactly one). In the former case we are done; in the latter case we

can repeat the ‘trimming’ construction to decrease the number of vertices by 2. We have
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thus produced a construction that shows that each equivalence class has an even number

of elements in it.

Turning finally to the last case, 3, note that if C is the empty 3-chain, then ∂2(∂3(C)) = ∅,

so we need only consider the case where C = {p}, where p is the ‘whole’ polyhedron, which

is by convention incident with every 2-polytope. Thus ∂3({p}) is the set of all 2-polytopes,

and the hypothesis that an edge e is in ∂2(∂3({p}) amounts to saying that e is incident with

an odd number of faces. But that’s impossible: edges are incident with two faces.

�

5.3.7.2 Digression: the value of a formal proof of Euler’s polyhedron formula
for Lakatos polyhedra

Because they lack so much geometric content, one could argue that the formalization of

Euler’s polyhedron formula for Lakatos polyhedra is not as interesting as it would be for,

say, polyhedral or simplicial complexes. There is a grain of truth to this; we want to learn

something about polyhedra, in the intuitive sense of the term; instead, we have a proof

that is about an apparently purely combinatorial structure. The only geometric content

that Lakatos polyhedra can claim to have is that they are assumed to satisfy the condition

‘∂∂ = 0’. This condition rules out some ‘polyhedra’, to be sure, but at the same time the

sole condition does allow for structures that clearly have nothing to do with polyhedra in

the intuitive sense of the term.

Their lack of geometric content notwithstanding, the fact that we have a proof of Euler’s

polyhedron formula for Lakatos polyhedra shows that the conditions

• Bk ⊆ Zk,

• Zk ⊆ Bk

are sufficient for Euler’s polyhedron formula. The fact that there are Lakatos polyhedra

that satisfy these conditions but which do not have any clear geometric meaning is, to some

extent, a strength of the abstract approach rather than a weakness. If we were to focus on



METAMATHEMATICAL PROBLEMS ABOUT POLYHEDRA

96

only geometric polyhedra, we might have missed the fact that these above conditions are

the ones ‘responsible’ for Euler’s polyhedron formula.

5.3.7.3 Non-elementarity of the class of Lakatos polyhedra

The property of a polyhedron structure A that ∂k(∂k+1(c)) ≡ 0 for every (k + 1)-chain c

and every integer k, is not expressible in our polyhedron language π.

Before embarking on the argument, recall that, as we saw before, every polyhedral complex

satisfies the property that ∂k◦∂k+1 ≡ ∅, so in the class of polyhedral complexes any logically

true formula (e.g., ∀x(V (x) ∨ ¬V (x))) suffices for us. And since the class of polyhedral

complexes is elementary (take the conjunction of its finitely many axioms), our problem

seems to be solved.

But this is clearly not what we are after. We want to find a sentence φ in the polyhedron

language π such that for all finite π-structures A, we have

A � φ iff for all integers k and all (k + 1)-chains c of A, we have ∂k(∂k+1(c)) = ∅

The conjunction of the axioms for polyhedral complexes solves only half of the problem:

it gives us the left-to-right implication, but not the right-to-left direction. That this is so

can be seen by considering π-structures for which the ‘∂ ◦ ∂ ≡ ∅’ property holds but which

are not polyhedral complexes. Indeed, any π-structure A for which the incidence relation

IA is empty trivially satisfies the desired property because all boundaries are empty. But

no polyhedral complex can have an empty incidence relation.4 Thus we cannot take the

conjunction of the axioms for polyhedral complexes as a solution to our problem.

Since our language π does not have predicate or function symbols for sets, and since the

property in question quantifies over sets, it seems unlikely that our desired query is ex-

pressible in π. To make the problem more tractable, then, we refine the query to a special

case: can we define the property that ∂1(∂2({f}) = ∅ for every face f (i.e., for every object

that satisfies the predicate F )? That is, can we define the property that the boundary of

the boundary of a face is empty?
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Since ∂2({f}) is just the set of edges incident with the face f , we are to check whether

∃v∃f(|{e:V (v) ∧ E(e) ∧ F (f) ∧ I(v, e) ∧ I(e, f)}| is odd)

holds in a polyhedron structure. This property expresses the existence of a counterexample

to the universal claim that for every face f we have ∂1(∂2({f})) = ∅.

Because it involves parity, this property resembles others for which inexpressibility results

are known, such as testing (using only equality) whether a finite first-order structure has

even or odd cardinality, or testing whether the extension of a unary predicate symbol in

first-order structure has even or odd cardinality [114]. Our problem fits a more general

pattern: can we test whether a certain definable set of elements in a structure has even

cardinality?

Theorem 16 There does not exist a first-order sentence in the signature π such that,

for all finite π-structures A, we have

A � φ iff for every face f of A, we have ∂1(∂2({f})) = ∅

Proof. We shall use Hanf locality. Suppose that, to the contrary, the property in question

were expressible as a π-sentence φ, and suppose that the Hanf locality rank of φ is d. Let

A and B be the π-structures defined as follows:

• Both A and B have exactly one face;

• A has 2d+ 1 vertices, all incident with the unique face of A,

• B has 2d+ 2 vertices, all incident with the unique face of B,

• All edges of A are incident with the unique face of A,

• All edges of B are incident with the unique face of B,

• The edges and vertices of A form K2d+1, the complete graph on 2d+ 1 vertices,

• The edges and vertices of A form K2d+2, the complete graph on 2d+ 2 vertices.

In both A and B, we have that ∂2({f}) is the set of all edges of A and B, respectively,

where f is understood as the unique face of the structures. The d-neighborhoods of any

element of A and B are the same (enough vertices and edges were chosen to ensure that
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A and B are similar enough in this respect). But every vertex of A is incident with an

even number of edges, and every vertex of B is incident with an odd number of edges.

Thus, in A, we have a face f such that ∂1(∂2(f)) 6= ∅, but in B for every face f we have

∂1(∂2(f)) = ∅. �

5.4 Proving Euler’s Polyhedron Formula in Weaker Theories

5.4.1 Introduction

This section of the chapter is devoted to the problem of formalizing Poincaré’s proof of

Euler’s polyhedron formula in ‘weaker theories’. Here, weaker means: weaker than Tarski-

Grothendieck set theory. Thanks to the formalization described in the previous chapter,

we know that there exists a first-order deduction from the axioms of Tarski-Grothendieck

set theory whose conclusion is a (formalization of) Euler’s polyhedron formula.

But this formalization result should sit uncomfortably with us. Tarski-Grothendieck set

theory (TG) is a very strong extension of Zermelo-Fraenkel set theory (ZF): the charac-

teristic axiom of TG implies the existence of arbitrarily large inaccessible cardinals; the

existence of even one such cardinal is unprovable in ZF.5 On the other hand, the concept of

polyhedron employed in Poincaré’s proof is entirely combinatorial, based as it is on finite

sets and finite relations on these sets. Moreover, the vector spaces that arise in the course

of the proof are finite (and hence finite-dimensional). It thus should be quite plausible that

the full strength of TG is not required to formalize Poincaré’s proof. Our question in this

section is: Our question is:

Question 1 What is the weakest mathematical theory in which we can carry out

Poincaré’s proof of Euler’s polyhedron formula?

We shall see that there are a number of natural candidates theories in which Poincaré’s

proof, each weaker than the next. The main result is:
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Theorem 17 Poincaré’s proof of Euler’s polyhedron formula can be formally proved

in I∆0(exp),

which is a certain weak theory of arithmetic that will be defined later.

To be able to even state Euler’s theorem, we need to ensure that we can adequately represent

the concept of a polyhedron, an incidence matrix, and enough of the linear algebra that

goes into the proof of the rank-nullity theorem. However, the project is largely a study of

how much of the linear algebra on which Poincaré’s proof is based goes through in formal

systems weaker than TG.

5.4.2 First refinement

We wish to prove that we can carry out Poincaré’s proof of EPF in a theory weaker than

TG.

One place to focus is on the places in the argument where the methods do not strike us being

obviously formalizable in a theory weaker than TG. The first such step in the argument is

the application of the rank+nullity theorem.

Theorem 18 For every linear transformation T from a finite-dimensional vector space

V to a finite-dimensional vector space W , we have

dimV = dim imT + dim kerT.

The proof is not difficult, and we will not give it in full detail here. It suffices to point out

the parts of the argument that are most noteworthy from the perspective of a formalization

in weak theories occur at the very beginning. Following a standard proof, the argument

proceeds as follows:

Proof. Let A be a basis for kerT , and let B be a basis for V that extends B. Now show

that T (B −A) is a basis for imT . �

The problem is the first and the second step. The most natural explanation for these two

steps is that we have used the fact that
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Every vector space has a basis

and the fact that

Every linearly independent set can be extended to a basis.

Note:

• These two theorems are equivalent to each other. To see that the second implies the

first, note that ∅ is a linearly independent set. To prove the second from the first, let

X be a linearly independent set of vectors; we have to show that there exists a basis A

such that X ⊆ A. Consider L(V −L(X)), the linear span of the “complement” of X in

V . This is a subspace of V , and so has a basis by the first theorem; call it B. Claim:

X ∪ B is a basis of all of V . Proof: that it spans the space is obvious; we just need to

prove independence. Suppose that we have

a1v1 + · · ·+ anvn = 0,

where all the vj ’s are in X ∪B. If all are actually in X or all are in B, then we obtain

the desired result, since X and B are linearly independent. So suppose that some of

the vj ’s are in X, and some are in B. Separate them by writing

bi1vi1 + · · ·+ bimvim = cj1vj1 + · · ·+ cjnvjn−m ,

where the i’s and j’s exhaust [1, n] and the bi’s and cj ’s exhaust [a1, . . . , an], and all vi’s

are in X and all vj ’s are in B. Since L(V −L(X))∩L(X) = {0}, we obtain the desired

result.

• The first theorem is known to be equivalent (over ZF) to AC [102]. Thus, by the

preceding result, we have two equivalents of AC.

These observations suggest that the rank+nullity theorem in full generality is actually quite

a strong statement. Of course, we do not have a proof that the rank+nullity theorem is

in fact equivalent to such strong set theoretical results. When we stepped back from the

proof of the rank+nullity theorem and isolated the statements that did not seem to be

formalizable in a weak theory, we found statements that were equivalent to the axiom of
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choice. If we want to see whether our result can go through in, say, ZF − Infinity—where

choice does not (in general) hold—we must try to give a more careful analysis. Can we do

better?

Indeed, we can. We isolated the statements “every vector space has a basis” and “every

linearly independent set can be extended to a basis”. But these statements are stronger

than what we need for the purposes of formalizing Poincaré’s proof of Euler’s polyhedron

formula because for that proof we need only that they hold for every finite-dimensional

vector space. (The only vector spaces that arise in the proof are finite, and hence finite-

dimensional.) In other words, what we need are

1. Every finite-dimensional vector space has a basis, and

2. Every linearly independent set of vectors from a finite-dimensional vector space can be

extended to a basis.

Statement (1) now is trivially true, since to say that a vector space is finite-dimensional is

to say that there exists a basis for it that is finite. Statement (2) is more interesting. It

seems likely that statement (2) can be proved in ZF− Infinity.

Even more refinement is possible. We applied the rank+nullity theorem for only finite vec-

tor spaces, namely, the k-chain spaces Ck and the k-circuit and k-bounding chain subspaces

Zk and Bk. Thus, all we need are the principles:

• Every finite vector space has a basis.

• Every linearly independent set of vectors from a finite vector space can be extended to

a basis.

From the perspective of strong set theories such as ZFCand TG, this process of refinement

is redundant, since much more general linear algebraic facts hold in those broad settings.

However, the process of refinement now makes it clear that we might be able to get just

what we need in theories much weaker than ZFCand TG.
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But even more refinement is possible, if all we are looking for is a weak theory in which to

carry out only Poincaré’s proof, without necessarily setting for ourselves the goal of proving

a good deal of linear algebra to also be proved in that weak theory. Thus, all we need is

• For every integer k, there exists a basis for ker ∂k that can be extended to a basis for

Ck.

Although it is sufficient to show that this claim can be proved in ZF − Infinity, doing so

would be somewhat unsatisfactory. Presumable, more linear algebra can be carried out in

ZF− Infinitythan just this specific fact. It would be more satisfying if we could show that

one of the broader claims can be formalized in ZF− Infinity. Since the most general claim

implies all more specific claims (and presumably, this implication holds in ZF − Infinity),

we will first attempt to prove the following claim:

Claim 1 In ZF − Infinity, we have that for every finite-dimensional vector space

V and every linearly independent subset X of V , there exists a basis A of V such that

X ⊆ A.

A standard argument for this claim goes as follows.

Proof. Let V be a finite-dimensional vector space, and let X be a linearly independent

subset of V . Define X0 := X. If L(X0) = V , then X0 is a basis for V and we are done.

Otherwise, there exists a vector v1 in V such that v1 6∈ L(X0). Put X1 := X0 ∪ {v1}. Then

X0 ⊂ X1 and X1 is linearly independent. If L(X1) = V , then X1 is a basis and we are

done. Otherwise, there exists a vector v2 in V such that v2 6∈ L(X1). Put X2 := X1 ∪{v2}.

Then X1 ⊂ X2, and X2 is linearly independent. We repeat the process until we reach a

basis, i.e., a linearly independent set Xn for which L(Xn) = V . �

Our task is to show that the preceding argument can indeed by formalized in ZF− Infinity.

Let us begin with the following (slightly) more formal version of the preceding proof.
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Proof. Let V be a finite-dimensional vector space, and let X be a linearly independent

subset of V . Let B be a basis for V (given by the condition that V is finite-dimensional).

Consider the predicate P [k] defined as

For all linearly independent subsets Y of V ,

if |B| − |Y | = k, then there exists a basis A of V

such that X ⊆ A.

The desired claim we are after is implied by ∀nP [n], so it makes sense to prove this by

induction.

Base Case. If |B| − |Y | = 0, then Y is a basis for V , and we are done.

Inductive Step. Assume P [k], and that |B|− |Y | = k+ 1. Since Y is a linearly independent

subset of V , we have |Y | ≤ |B|. Thus, there exists a vector b in B such that b 6∈ L(Y );

otherwise Y would be spanning, and we would have |B| − |Y | = 0, since all bases have the

same cardinality. Then Y ∪ {b} is a linearly independent, and |B| − |Y ∪ {b}| = k. Now

apply the inductive hypothesis. �

We shall use this result throughout the rest of this section.

5.4.3 Formalizing Poincaré’s proof in ACA0

It is known [103] that the claim “every countable vector space over a countable field has a

basis” is equivalent over RCA0 to ACA0. Assuming then that the only step in Poincaré’s

proof of EPF that does obviously go through in ACA0, we have the following theorem:

Theorem 19 Poincaré’s proof of EPF can be formalized in ACA0.

We would like to continue to weaken the system in which we are carrying out the proofs

even more. Can we get Poincaré’s proof to go through even in RCA0? It seems that

it is possible; we do not need the full generality of “every countable vector space over a

countable field has a basis”. Rather, we can get by with a much weaker result: all we need
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is that any finite field over F2 has a basis. The restriction to F2 is probably not important,

so we formulate the following problem:

Problem 1 Show that RCA0 proves that every finite vector space over a finite field

has a basis.

To see whether this is possible, let’s try to see whether the argument in [103] goes through

in RCA0.

To begin with, we need to concept of a field. Of course, we shall just mimic in our arith-

metical theory the usual definition.

field(x) ≡



Seq(x) ∧ lh(x) = 5

∧

(x)1 ∈ (x)0 ∧ (x)2 ∈ (x)1

∧

binary-operation-on((x)3, (x)0) ∧ binary-operation-on((x)4, (x)0)

∧

〈(x)3 is associative and commutative, with (x)1 as its left zero〉

∧

〈(x)4 is associative and commutative, with (x)2 as its left zero〉

∧

∀a(a ∈ (x)0 → ∀b(b ∈ (x)0 → ∀c(c ∈ (x)0

→
app-bin-op((x)4, a, app-bin-op((x)3, b, c))

=

app-bin-op((x)3, app-bin-op((x)4, a, b), app-bin-op((x)4, a, c))

)))




Here app-bin-op(f, a, b) is the value of the binary operation f on arguments a and b (in

that order), which of course are assumed to belong to the domain of f . We’ve omitted

saying explicitly what formula we mean when we write “(x)3 is associative” (for example);

using app-bin-op it is clear what is intended.
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The definition of vector spaces follows a similar pattern.

Given a vector space V , we define a function f as follows:
f(−1) := ∅

f(n+ 1) :=
{
f(n) ∪ {n+ 1} if n+ 1 ∈ LV (f(n))

f(n) otherwise
.

Claim 2 f(n) ⊂ f(n+ 1) for all n.

This is obvious from the definition of f .

Claim 3 f(|V |+ 1) spans V .

Proof. The more specific claim is true: for all n, if n ∈ V , then n ∈ LV (f(n)). This is

clear from the definition of f . �

Claim 4 f(|V |+ 1) is linearly independent.

Proof. If f(|V |+ 1) were linearly dependent, then there would be a vector v of f(|V |+ 1)

such that v ∈ L(|V |); this follows by 2. But that is impossible, again by inspecting the

definition of f . �

The result of these claims is that f(|V |+ 1) is a basis of V . We’ve thus proved that every

finite vector space has a basis.

It seems that the proof does not require any induction, apart from that necessary to intro-

duce the concept of ordered pair, finite sequence, the cardinality operator on finite sets, and

the property of belonging to the linear span of a set of vectors, and to prove the handful of

properties that we need in the proof. However, the existence of the function f does require

induction; this can be done in IΣ1, as proved in [105].

5.4.3.1 Refined argument

The idea behind the function f above seems simple enough, but let’s look at the details to

convince ourselves that the function really will do the trick. Let us look into the parts of

the definition of f that need to be accounted for:
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• Taking singletons;

• Taking unions;

• Projecting onto the 0-th component of V ;

• Testing membership; and

• Calculating the linear span of V .

Let us take these in turn.

Following Hájek and Pudlák, as well as Rose [118], let’s make sure that the function f

really is primitive recursive.

We shall use the relation

x ∈ y iff the x’th bit in the binary representation of y is 1.

In terms of this representation of sets, it is clear that the definition of f above is primitive

recursive: we need only recall that the component operations in its definition—successor,

membership, and union—are primitive recursive. For details, see Rose [118]

5.4.4 Arithmetic

Euler’s formula involves integers and not just natural numbers. To do that, we introduce,

in a standard way, a new unary predicate symbol N(x), to be interpreted as “x is a natural

number”, in the usual way using equivalence classes of differences m − n. We then define

addition, multiplication, and subtraction. The result is then that the natural numbers have

been extended to the ring of integers.

Poincaré’s proof makes uses of a basic theorem on telescoping sequences: for all finite

sequences a and b of integers of length n+ 1, we have
n∑
k=0

(−1)k(ak + ak+1) = a0 + (−1)nan.

This can be proved by induction on n using the above equation as the inductive formula.

1. The singleton {x} of x is represented by 2x. This is clearly a primitive recursive function

of x.
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2. The union of x and y turns out to be their sum x+ y.

3. The function (s)k, projecting onto the k-th component of the sequence s, is clearly

primitive recursive.

4. Testing membership. This is dealt with by noting the functionM(x, y), the characteristic

function of the relation x ∈ y, is primitive recursive.

5. Calculating the linear span of a set of elements. This item requires more care.

Following the development [96] of the theory of linear combinations in mizar, let us say

that linear combination on a vector space is a function L from (carrier of) V to the (carrier

of) field of V . For our purposes, we modify the definition slightly and declare that a linear

combination is is a function from a subset of (the carrier of) V to (the carrier of) the field

of V . In [96] they naturally require that the carrier of L—the set of elements v of V such

that L(v) 6= 0V—is finite. In our case, though, since all sets are finite, we do not need to

add this additional condition.

Formally, for a vector space V , we define the relation LC(V,L,X) to be the property:

X ⊆ (V )0 ∧ FunctionOf(L,X, (V )3) ∧ ∀x(x ∈ (V )0 ∧ x 6∈ X → L(x) = 0field(V )),

where, recall, (V )0 is the carrier of V and (V )3 is the carrier of the field of V .

We now define the sum of a linear combination L over a vector space V .

SumV (L) :=
{

0V if L = ∅

(L(h(L, V )) ·V h(L, V )) +V SumV (L− {〈h(L, V )〉}
,

where h(L, V ) is the auxiliary function

h(L, V ) := µk(k ∈ dom(L)).

We can now define the property of a vector v in a V being a linear combination of some

subset X of V :
LV (X, v) := ∃X∃L(LC(V,L,X) ∧ SumV (L) = v)

The problem is how to bound L and X. A natural bound for X, since it is a subset of V , is

just V itself; but for L, we need to consider all linear combinations, so the bound is |V ||X|.
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5.4.5 Geometry

It remains to formally define, in arithmetic, the concepts involved in the statement of

Euler’s polyhedron formula. We begin with the notion of an incidence matrix.

incidence-matrix(I,X, Y )↔


Seq(I)

∧

∀x(x ∈ X → ∀y(y ∈ Y → ∃!k(k < lh(I) ∧ ∃e(e < 2 ∧ 〈〈x, y〉e〉 ∈ I))))


Then, following [93], we say that a polyhedron is a certain kind of pair, consisting of

polytope sets and incidence matrices:

polyhedron(p)↔



Seq(x) ∧ lh(x) = 2

∧

Seq((x)0) ∧ Seq((x)1)

∧

lh((x)1 + 1 = lh((x)0)

∧

∀n(n < lh((x)1)→ incidence-matrix((x)1)k, ((x)0)k, ((x)0)k+1)



5.4.6 Final refinement

Now we would like to explore an even more refined result by replacing “PRA” in Theorem

2 with a weaker theory.

Theorem 20 Poincaré’s proof of EPF can be formalized in I∆0(exp).

This should now seems plausible; the length of the computation required for computing

the basis of a vector space are all bounded by a polynomial (the size the underlying space).

As the ∆0-definable functions of I∆0(exp) are those that are bounded by finite iterations

of the exponential function [119], it should be clear that the proof can be carried out in

I∆0(exp).
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5.5 Conclusion and Future Work

In this section we have explored a number of problems that arise naturally when polyhedra

are considered from a formal perspective. The main problems to be attacked are ‘axiom-

atizing’ polyhedra in the sense of giving formal theories whose models are polyhedra and

polyhedra-like objects, posing definability problems, and investigating the proof-theoretic

strength of principles such as Euler’s polyhedron formula. Many of the approaches dis-

cussed here are preliminary; we have not yet identified deep problems, results, or methods.

Nonetheless, it seems clear that there are a number of paths to be explored further.

We have thus seen a number of expressibility and non-expressibility results for various

logics, always focused on the property of eulerianness. This project could be continued in

a number of ways. In a later section we shall see how they can be extended to certain

elementary classes of structures that have some geometric content. At present, though, we

leave a number of open problems:

• Ordered structures. In finite model theory, one often restricts attention to structures

that are linearly ordered. The idea is that one has at hand a binary relation < that

can be assumed to be a linear order (although one does not assume anything about

how the elements of a structure are ordered, in particular). Above, we did not consider

ordered structures; our structures were unordered. We formulate two conjectures about

the possibility of extending our results to the ordered setting:

Conjecture 2 Over ordered structures, eulerianness is not expressible by a first-

order sentence of the three-dimensional signature π3; moreover, generalized eulerianness

is not expressible by a first-order sentence of the general-dimensional signatures πd.

On the other hand, we do have a positive conjecture.

Conjecture 3 Over ordered structures, eulerianness is expressible by a monadic

second-order sentence in the signature π3.
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The suspicion is that the problem of expressing eulerianness over ordered structures is

similar to the problem of expressing even cardinality, which is known to be not express-

ible in monadic second-order logic over unordered structures, but which is expressible

in monadic second-order logic over ordered structures. Some initial explorations of this

problem lead us to suspect that eulerianness and the property of having even cardinality

are sufficiently closely related that the positive result for evenness might also hold for

eulerianness.

• Another way to add geometric content to the results would be to require connectedness

to the incidence relation. As we shall see later, we are able to establish non-expressibility

results for certain axiomatized classes of structures using Ehrenfeucht-Fraïssé games and

sequences of pairs (An, Bn) of structures such that, for every n, An satisfies the property

in question Bn does not, but An ≡n Bn. It is not entirely satisfying that the incidence

relation in the structures Bn is not connected (in fact, Bn is a disjoint union of two

copies of An). It would be valuable to investigating expressibility in the context of

connected structures (i.e., structures in which the incidence relation is connected). It is

conceivable that properties that are not expressible become expressible when restricting

one can assume that the structures one is working with are connected.

• We have focused attention on only a handful of possible extensions of first-order logic:

monadic second-order logic, dyadic second order logic, and first-order logic with an

equicardinality quantifier. Further exploration with logics for counting [114] would be

valuable.
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6 Responding to the Lakatosian Challenge

6.1 Introduction

In this chapter we come to the task of evaluating the formal work, described in chapter 3,

of a formal proof of Euler’s polyhedron formula as a response to Lakatos’s challenge, as

laid out in chapter 2.

The main difficulty, as I see it, is that Lakatos emphasizes the development of informal

proofs without recognizing or stating that his interests are not entirely disjoint from those

of the ‘formalists’ he’s attacking. The formalization described in chapter 3 provides a good

test case to evaluate Lakatos’s claims about the growth of mathematical knowledge. I shall

argue that Lakatos has cast his net rather too wide, that when he criticizes formalists he

ends up undermining his own claims about the growth of mathematical knowledge.

In this chapter three responses to Lakatos are carried out. In section 2, I argue that

What I would like to advance here is the view that Lakatos’s views actually are strengthened

and reinforced thanks to the development of formal proofs. Although he apparently sets his

sights squarely on formal proofs, hoping to show how very different they are from everyday

informal proofs, I submit that Lakatos would be engaging in “friendly fire”, that is, harming

his own case. I argue here that the central idea of Proofs and Refutations, the method of

proofs and refutations, applies to the development of formal proofs as well as it does to

informal proofs.

Let us recall the statement of the method of proofs and refutations:
Rule 1. If you have a conjecture, set out to prove it and to refute it. Inspect the proof
carefully to prepare a list of non-trivial lemmas (proof-analysis); find counterexamples both
to the conjecture and to the suspect lemmas.
Rule 2. If you have a global counterexample discard your conjecture, add to your proof-
analysis a suitable lemma that will be refuted by the counterexample, and replace the dis-
carded conjecture by an improved one that incorporates that lemmas as a condition. Do not
allow a refutation to be dismissed as a monster. Try to make all ‘hidden lemmas’ explicit.



What Can One Discover in a Formalized Mathematical Theory?

113

Rule 3. If you have a local counterexample, check to see whether it is not also a global

counterexample. If it is, you can easily apply Rule 2.

Lakatos allows that by following the method of proofs and refutations, we can improve

proofs to the point where a kind of stability is reached. The stability characterizes mature

mathematical theories; the “intertwining of discovery and justification, of improving and

proving is primarily characteristic of [young, growing theories].” By allowing that theorems

in mature mathematical theories enjoy a certain stability, his view that all theorems are

conjectures becomes less plausible. If, at least in some cases, we can refine a proof into

a valid argument, then why hold that all theorems are conjectures? With formal proofs,

one can see the idea of proof analysis—making explicit the background assumptions and

knowledge that are invoked in a proof—taken, in a sense, to its limit. The very method

that Lakatos describes is the force that drives a proof toward a valid argument.

‘Conjecture’, then, is perhaps the wrong word. To say of a proposition that it is a conjecture

is to imply that we could in principle resolve the question of whether the proposition is

true. But for Lakatos, the claim that mathematical propositions are, as it were, permanently

conjectural seems to suggest that, no matter how good our justification is for the truth or

falsity of the proposition in question, it will remain a conjecture. Nothing we can do can

transform the epistemic status of a proposition from conjecture to non-conjecture.

6.2 What Can One Discover in a Formalized Mathematical Theory?

The problem of discovery is to explain how knowledge comes to be known. This chap-

ter concerns a special case: What can one discover in a formalized mathematical theory?

The question was taken up by Lakatos in his famous Proofs and Refutations [1]. One of

Lakatos’s central tasks in this book is to develop a logic of discovery, rules for characterizing

the growth of mathematical knowledge. He carries out his task impressively for informal

mathematics, but Lakatos gives a pessimistic answer to the analogous question for formal

mathematics. In this chapter I argue for for a rather more optimistic outlook.
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The problem of discovery in mathematics can be distinguished, at least at first blush,

from the more general problem of discovery in science. The difference is methodological:

mathematics differs from other sciences insofar as it is wholly deductive; the only acceptable

justifications in mathematics are proofs. We can sharpen the discussion by appealing to

the special character of mathematical proofs. Developments in logic in the 19th and 20th

centuries has given us the concept of a formal proof, a representation of a mathematical

proof laid down in accordance with strict rules of inference and linguistic rigidity. The ideal

of formal proof is powerful; one might even go so far as to characterize mathematical proof

as in-principle-formalizable arguments [120]. Logician have studied formal proofs in various

settings and have given us deductive systems, such as Hilbert- or Frege-style systems, natural

deduction systems, sequent calculi. Thanks to soundness and completeness results for these

various deductive systems, in principle any valid argument can be formally represented in

them.

But would a formal gap-free proof have any value? Our study begins when, in Proofs and

Refutations, Lakatos takes aim at those who, in his view, overemphasize the formal nature

of mathematics. The question that shall concern us in this paper can be seen in one of

Proofs and Refutations’s trenchant passages:

According to formalists, mathematics is identical with formalized mathematics. But what can

one discover in a formalized theory? Two sorts of things. First, one can discover the solution

to problems which a suitably programmed Turing machine could solve in a finite time (such

as: is a certain alleged proof a proof or not?). No mathematician is interested in following out

the dreary mechanical ‘method’ prescribed by such decision procedures. Secondly, one can

discover the solutions to problems (such as: is a certain formula in a non-decidable theory a

theorem or not?), where one can be guided by only by the ‘method’ of ‘unregimented insight

and good fortune’.

Lakatos’s response is, in part, polemical. He uses the concept of discovery as a foil against

the ‘formalists’ who would identify mathematics with formalized mathematics. Evidently,

then, for Lakatos the prospects for discovery in formal mathematics are rather bleak. The
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first possible discovery available in a formalized mathematical theory (that a certain com-

binatorial figure is a deduction) is impractical (‘no mathematician is interested in following

out the dreary mechanical ‘method’ prescribed by such decision procedures’. The second

kind of discovery (that a formula is provable), in the words of Quine1, arises apparently at

random; the search for a proof is apparently random and is in any case driven by factors

(insight, luck) that cannot be explained in terms the formal theory at hand.

Having satisfactorily exposed the comedy of formal mathematics, Lakatos goes on to mo-

tivate his work thus:

Now this bleak alternative between the rationalism of a machine and the irrationalism of blind

guessing does not hold for live mathematics: an investigation of informal mathematics will

yield a rich situational logic for working mathematicians, a situational logic which is neither

mechanical nor irrational, but which cannot be recognized and still less, stimulated, by the

formalist philosophy.

Polemics aside, the thesis of this paper is that Lakatos’s view on the kinds of discoveries

that can be had in formalized mathematical theories is too narrow. Modern formalization

enterprises, in which one constructs formal proofs of mathematical theorems, give us, I

submit, a wider view of discovery in formalized mathematical theories. It is not that

Lakatos is wrong to draw attention to the development of informal mathematics. This is

a genuinely interesting subject that poses many worthy problems to the philosophy and

history of mathematics. Instead, this paper makes the case that the prospects for discovery

in formal mathematics are wider than Lakatos imagined.

Although I shall argue that discovery does occur in formal mathematics, to avoid poten-

tial misunderstanding we should be clear on how I am using the term ‘discovery’. The

discoveries that I will describe are, to be sure, quite modest. They are not on a par with

the discovery that the Earth revolves around the sun, Einstein’s discovery of relativity the-

ory, or Mendeleev’s discovery of the table of the elements. Even restricting attention to
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mathematics, the discoveries that we will see are more humble than the discovery of irra-

tional numbers, of the consistency of non-Euclidean geometry, or Gödel’s incompleteness

theorem. Nonetheless, the term ‘discovery’ is apt because, thanks to formalization, we can

improve our knowledge. Something was unknown before the formalization that was known

afterward.

This paper is but one piece in a project to re-assess Lakatos’s philosophical project.

Nonetheless, Lakatos offers fresh insights into the philosophy of mathematics and his

thought deserves to be taken seriously.

Although this paper disagrees with Lakatos’s claim about the kinds of discoveries that

can arise in formal mathematics, I believe that the results of formal mathematics, rather

than contradicting Lakatos, actually support his conclusions. Indeed, one could argue that

developments in formal mathematics illustrate Lakatos’s philosophy. But Lakatos’s broader

philosophy is the subject for another discussion; this paper is not an overall assessment of

Lakatos’s project in Proofs and Refutations, but rather a concentrated study of his views

on discovery in formal mathematics.

The heart of my argument rests on three case studies taken from my own work [91–93] in

formal mathematics. The next couple of sections discuss Lakatos’s answers in detail and

some of the technical and technological background for my response to Lakatos. Section

6.2.2 contains the three case studies in formal mathematics. Using those case studies,

section 4.5 argues that in both of them discoveries can be found.

6.2.1 Lakatos’s answer

Before moving on the specific case studies, it may be worthwhile to reflect on Lakatos’s

answer to his question about what can be discovered in a formal mathematical theory. To

reiterate, the thesis of this paper is not that Lakatos’s answer is incorrect, but rather that

it is too narrow.
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Lakatos’s interest in Proofs and Refutations is on the development of mathematics. His

‘speedy philosophising’ notwithstanding [76], his philosophy is refreshing because it offers

up a number of issues that do not normally arise in traditional philosophy of mathematics.

One of the main challenges in evaluating Proofs and Refutations is: what is Lakatos’s

point? Worrall, an editor of Lakatos’s works, offers two views on this matter:

Lakatos sometimes described himself as extending Popper’s fallibilist-falsificationist view of

science into the field of mathematics, and there are even hints of Lakatos’s Hegelian past in

some of the claims about the autonomous development of mathematics. An alternative view,

however, is that the main significance of his work is to cast light simply, though importantly,

on the development of mathematics—on how mathematical truth is arrived at—and that it

has nothing distinctive to say about the epistemological status of mathematical truths once

they have been arrived at. But even if this alternative view is correct, there is a good of

undoubtedly epistemological significance in some of the particular issues raised (for example,

what he calls the problem of translation highlighting issues about how the formal systems,

within which effectively infallible proof can be achieved, relate to the informal mathematics

said to be captured by those formal systems). [122]

There have been a number of discussions [123–126] concerning the extent to which Lakatos

was trying to extend to mathematics Popper’s philosophy of science, and whether he was

(or could be) successful. What concerns us here is the second alternative to which Worrall

points. Even adopting the view that Lakatos is just trying to get us to pay attention to the

development of mathematics, we still need to decide whether Lakatos’s apparent antipathy

toward ‘formalism’ is justified. Is it really true that the possibilities for discovery in formal

mathematics are as poor as Lakatos makes them out to be?

To some extent, Lakatos’s pessimistic assessment of the opportunities for discovery in formal

mathematical theories is justified. It certainly would be just a dreary exercise to check, for

example, whether a sequence of first-order formulas that looks like
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∀x∀y(xy = yx),∀x∀y∀z(x(y + z) = xy + xz), 〈many omitted axioms〉, . . . ,

. . . , 〈many omitted proof steps〉,∀n(∃k(2k = n)→ (∃k∃y[y = n+ 1 ∧ y + 1 = 2k]))

is a deduction in Peano Arithmetic of the familiar result that if n is an even natural number

then n+ 1 is odd. (The consequent in the matrix of the final term of the sequence can be

understood as: odd(n + 1), where odd(x) is understood as: ∃k(2 · k = x + 1).2 Doing so

would require pattern matching: one would have to check, of each term in the sequence,

whether (i) it is an axiom (pattern-matching against the axioms and the axiom scheme of

induction), or (ii) it is an application of the inference rule modus ponens. Surely the effort

to carry out this exercise greatly exceeds whatever payoff might be attained.

No one wants to go through the task of verifying whether a sequence of formulas is a

deduction. But no one has to: early results of proof theory, especially the completeness

theorem for first-order logic, show that we can give a complete proof system for first-order

logic that is also decidable: we can just compute whether a sequence of formulas is a

deduction. Such dreariness can safely be left to a computer. Lakatos points out that

checking an informal proof, in contrast to that of a formal proof, can involve quite a lot

of mathematical ingenuity. The triviality of checking proofs (in, say, first-order logic),

when compared to the complexity of checking an informal proof, shows that the two are

clearly quite different. The comparison is supposed to be a blow for ‘formalism’. But what

‘formalist’ would deny the difference between formal and informal proofs?

I mentioned earlier that the problem of checking formal proofs can be safely left to com-

puters. This should be contrasted with the result that the validity problem for first-order

logic is undecidable; there is no computable function that, given a formula in an arbitrary

first-order language, can decide whether the formula is provable. Thus, if a mathematician

wants to construct a formal proof of some theorem, in general he has to do some work; he

has to discover the formal proof.

This leads us to discuss Lakatos’s second kind of discovery. Imagine we are dealing with

an undecidable theory: given a formula in the language of the theory, we cannot simply
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execute a computer program to decide whether it is a theorem. We can fumble around,

trying to discover a deduction of the formula from the axioms of theory. Logic alone doesn’t

specify how we should organize our search for a deduction.3 Perhaps we will get lucky and

stumble upon a deduction of the formula; we would thereby discover (but only by chance)

that it is a theorem.

Moreover, it can be significant if, after investing much energy into designing a formal proof,

one discovers that, contrary to expectations, it is invalid. The fact that a certain step in a

purported proof is invalid can come as a surprise; it spurs one to discover the reasons for

the invalidity, which may lead to new mathematical insight.4 This kind of discovery will be

illustrated in the examples.

In the next section I discuss the two case studies that are used to give my own answer to

Lakatos’s question.

6.2.2 Examples

This section is devoted to two case studies of discovery in formal mathematics. The next

section is devoted to the problem of understanding the kinds of discoveries that are discussed

in this section. These examples came from my efforts to construct a formal proof of a

theorem that Lakatos himself studies, namely Euler’s polyhedron formula, discussed in

detail in chapter 3.

Before getting into the details, it is worth mentioning that these examples are rather typical

in formal mathematics. Although the case studies to be described arose in the course of a

formalization of a specific mathematical proof, the issues these examples raise can be found

throughout formal mathematics.
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6.2.2.1 Example 1: The image of a linear combination under a linear trans-
formation

The example that I wish to discuss concerns the problem of specifying the image of a

so-called linear combination under a linear transformation. Roughly speaking, a linear

combination is a sum of vectors:
a1 · v1 + a2 · v2 + · · ·+ an · vn (6.1)

It is said that a formula like 6.1 is a linear combination of v1, v2, . . . , vn. The simplest non-

trivial example of a linear combination is the sum u + v of two vectors u and v; another

is the sum 2 · u+ v; another is 1
2 · u+ 2

3v. A more clever example of a linear combination

of u and v is just u (the coefficient of v is 0); an even more clever example is just 0 (the

coefficient of both vectors is 0). (This example shows that the zero vector of A is a linear

combination of any set of vectors.) There is nothing special about adding together two

vectors; u+ v+w is a linear combination of u, v and w (each of whose coefficients is 1); so

is 1
2 · u+ 2

3 · v + 3
4 ·w. Being clever again, we see that u+ v is also a linear combination of

u, v, and w. (More generally, every linear combination of u and v is a linear combination

of u, v, and w.)

If we apply a linear transformation T to a linear combination a1 · v1 + a2 · v2 + · · ·+ an · vn,

we should get

T (a1 · v1 + a2 · v2 + · · ·+ an · vn) = a1 · T (v1) + a2 · T (v2) + · · ·+ an · T (vn)

(To rigorously prove this one uses mathematical induction together with the associativity

of vector addition.) Thus the image of a linear combination of v1, v2, . . . , vn is a linear

combination of T (v1), T (v2), . . . , T (vn).

All this seems to be correct, but we still haven’t said precisely what a linear combination

is; no definition has been given except ‘a sum of scalar multiples of some vectors’. A

linear combination is not a kind of vector (note that every vector is automatically a linear

combination of itself), nor is it a property of sets or sequences of vectors. What is it,

exactly?
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Two approaches to defining linear combinations suggest themselves. One could say that

a linear combination is not really an object of linear algebra but a form. To make the

idea of form precise, imagine that we are dealing with a many-sorted language for linear

algebra. There are two sorts: one for vectors, another for scalars. In this language, we

could define linear combinations as terms; any term is a linear combination. If we add a

new unary function symbol T to the language, we could then prove, by induction on n,

that T (a1 ·v1 +a2 ·v2 + · · ·+an ·vn) = a1 ·T (v1) +a2 ·T (v2) + · · ·+an ·T (vn). The problem

would then be solved, though it would have the possibly unwanted feature of requiring a

mix of language and metalanguage.

Another approach is to define linear combinations as first-order objects rather than as

linguistic forms. One could say that a linear combination of vectors v1, v2, . . . , vn is a

certain kind of function l from A to k. The idea is that an equation l(v) = a is to be

interpreted as: the coefficient of v is a. Thus the sum u+v of u and v would be represented

as the function from A to k that sends u and v to 1 and every other vector in A to 0.

Linear combinations are supposed to represent finite sums of vectors: infinite sums such as

a1 · v1 + a2 · v2 ·+ · · ·

are not generally regarded as linear combinations, at least not without further assumptions

on the vector space (one would want some notation of limit or order with which one could

distinguish those infinite sums that converge to a vector and and those that diverge and do

not represent any vector). As it stands, though, our definition of linear combination does

not rule out infinite sums. We need to add a technical condition to our definition.

Definition 16 A linear combination is a function from A to k with finite support,

that is, a function l from A to k such that the set

{v ∈ V : l(v) 6= 0}

is finite.5
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In other words, a linear combination is a function that can take on only finitely many

non-zero values.

We still have not defined the notion of the application of a linear transformation to a

linear combination. A linear transformation is a certain kind of function from one vector

space to another. Note that under Definition 6.1 is not a vector. Strictly speaking it is

meaningless to apply a linear transformation to a linear combination: a linear combination

is a function from A to k, and linear transformation is a function from A to B, so they

cannot be composed in the usual set-theoretic sense. How to combine these to get a linear

combination on B, i.e., a function from B to k?

To help make our way to an appropriate definition, let us invent the notation ‘@’ and

let ‘T@l’ denote the application of a linear transformation T to a linear combination l.

Intuitively, T@l is a linear combination of vectors in B (the image space of T ), so it should

be a certain kind of function from B to k. What function? How does the function depend

on the data T and l?

To calculate T@l for a vector w in B, first find T−1({w}), the set of those vectors v in A

that are mapped to w. There may be zero, one, or many such vectors. Add together the

l(v)’s that one obtains with v’s in T−1({w}). The result is the vector we want. We can

concisely capture this algorithm with λ-notation:

T@l := λw ∈W.
∑
l(T−1({w}))

Note that the definition neatly deals with the special case where the set T−1({w}) is empty,

because the sum of an empty set of elements of k is 0. This agrees with what we had before,

but we now do not need to single out this special case in our definition.

There is one potential problem with our definition: what if T−1({w}) is infinite? The sum

of a finite set of members of k makes sense because of the assumption on associativity and

commutativity of +; the sum of an infinite subset of a field does not, in general, make sense.

The problem is overcome by recalling that, by definition, a linear combination has finitely

many non-zero values. Thus, l(T−1({w})) is finite even if T−1({w}) is infinite. There can
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be only finitely many non-zero values of T (i.e., non-0 values); if T−1({w}) is infinite, then

‘almost all’ values of T on elements of this set must be 0f .

The potential difficulty with our definition of T@l has been explained. The revised definition

is in fact how the notion of the image of a linear combination under a linear transformation

is defined in the mizar proof-checking system [91].6

6.2.2.2 Example 2: A counterexample to a ‘natural’ linear algebraic lemma

The second example is also linear algebraic. All technical terms are defined in the appendix.

It involves a basic theorem of linear algebra known as the rank+nullity theorem.

Theorem 21 If T is a linear transformation from a finite-dimensional vector space A

to a vector space B, then dimV = dim imT + dim kerT .

(The numbers dim imT and dim kerT are often called the rank and the nullity of T , re-

spectively, whence the name of the theorem.) A proof of the theorem is simple enough:

Proof. 0 Let k be a field, let A and B be vector spaces over k, and let T be a linear

transformation from A to B. 1 Let A be a basis for kerT , and let B be a basis for A that

extends A. 2 Put C := T (B −A), and put D := L(C). 3 We have |C| = |B −A|. 4

We have that D = imT . 5 The inclusion D ⊂ imT is obvious. 6 To prove the reverse

inclusion, let v = T (u) be an element of imT . 7 Since u 6∈ L(A), we have u ∈ L(B −A).

8 Thus, C spans B, and the proof is complete. �

It is not necessary to understand this argument in detail. The informal proof discussed

above seems to be perfectly correct; indeed, one can formalize statements 1–8 and mechan-

ically verify that the argument is valid; one then needs to give justifications for each of the

steps. However, it turns out that statement 7 simply cannot be proved; it is not a logical

consequence of the assumptions in play at that stage. A counterexample: let A := R2 (the

real plane), X := {(0, 1)}, Y := A ∪ {(1, 0)}, x := (7, 5) shows that statement cannot be

proved.
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The problem was solved by realizing that the proof had to proceed along slightly different

lines than those sketched above. Eventually, a correct proof was formalized. What is

important about this example is that the error was discovered through formalization. Only

by decomposing the proof of the above theorem into sufficiently fine-grained steps did the

error become apparent.

The first example concerns linear algebra. I wanted to formally state and prove the state-

ment: “if A ⊆ B, where A and B are subsets of a vector space V over a field F , and if

x ∈ L(B) but x 6∈ L(A), then x ∈ L(B −A)”. This one of the lemmas into which I decom-

posed one of the main theorems leading up to EPF. Using my proof checking system, I had

checked the my list of lemmas into which I had decomposed the main theorem did indeed

logically imply the main theorem. So all I had to do was give a proof of that theorem. The

expression of the formula in the particular proof formalism that I was using looks like this:

1 for F being Field,
2 V being VectSp of F,
3 A,B being Subset of V,
4 x being Element of V
5 st A c= B &
6 not x is Element of Lin A &
7 x is Element of Lin B
8 holds
9 x is Element of Lin (B \ A)

The main theorem that I was trying to prove was an important theorem in linear algebra

known as the rank+nullity theorem. The formal expression of that theorem looks like this:

1 for F being Field,
2 V,W being finite-dimensional VectSp of F,
3 T being linear-transformation of V,W
4 holds
5 dim V = rank(T) + nullity(T)

(You can see clearly why this might be called the rank+nullity theorem.)

The outline of the proof of the the rank+nullity theorem that I had in mind, which I

intended to formalize, goes as follows:
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9 Let F be a field, let V andW be vector spaces over F , and let T be a linear transformation

from V to W . 10 Let A be a basis for kerT , and let B be a basis for V that extends A. 11

Put C := T (B − A), and put D := L(C). 12 We have |C| = |B − A|. 13 We have that

D = imT . 14 The inclusion D ⊂ imT is obvious. 15 To prove the reverse inclusion, let

v = T (u) be an element of imT . 16 Since u 6∈ L(A), we have u ∈ L(B − A). 17 Thus, C

spans W , and the proof is complete.

It is not necessary to understand linear algebra to see that I had decomposed the proof

fairly finely, and that sentence 7 corresponds to the statement given just above.

The problem is that statement 7 is simply not true. After trying to get the proof to go

through (i.e., to have the proof certified as valid by the proof checking system), I realized

to my chagrin that it is false. The example where V := R2 (the plane), A := {(0, 1)},

B := A ∪ {(1, 0)}, x := (7, 5) (for example) shows that my statements is false.

But this counterexample was local, not global. So I had to apply Rule 4: I had to modify

my decomposition of the rank+nullity theorem to get around the problem (“replace the

refuted lemma by an unfalsified one”). I therefore had to try out a different proof of the

rank+nullity theorem.

This was an example where I had a local but not global counterexample. Global counterex-

amples can also arise when working with formal proofs. The following example came up in

my formalization of EPF.

1 for F being Field,
2 V being VectSp of F,
3 A being Subset of V,
4 l being Linear_Combination of A,
5 x being Element of V,
6 p being FinSequence of V,
7 a being Element of F
8 st rng p = Carrier l &
9 p is one-to-one &

10 a <> 0.F
11 holds Sum ((l +* (x,a)) (#) p)
12 = Sum (l (#) p) - (l.x)*x + a*x
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What all that means is not important. What’s important is that I believed that the

statement was true and that I could give a proof of it. In fact, as in the preceding example,

I had provided a proof that was almost correct (i.e., there were very few errors reported by

the proof checking program).

It’s also important to note that my statement was false, and that became clear where I

was trying to fix the errors reported by the proof checker. It turned out that there was an

assumption that I neglected to include; the correct statement of the problem is

1 theorem
2 for F being Field,
3 V being VectSp of F,
4 A being Subset of V,
5 l being Linear_Combination of A,
6 x being Element of V,
7 p being FinSequence of V,
8 a being Element of F
9 st rng p = Carrier l &

10 p is one-to-one &
11 a <> 0.F &
12 x in Carrier l
13 holds Sum ((l +* (x,a)) (#) p)
14 = Sum (l (#) p) - (l.x)*x + a*x

The additional assumption posed no problem, because the theorem of which the current

theorem was a lemma actually did have that assumption. So passing the assumption along

from the main theorem’s hypothesis to the local lemma’s hypotheses was unproblematic.

What’s the difference between what I did and “ If you have a global counterexample discard

the conjecture, add to your proof-analysis a suitable lemma that will be refuted by the

counterexample, and replace the discarded conjecture by an improved one that incorporates

that lemma as a condition. Do not allow a refutation to be dismissed as a monster. Try

to make all ‘hidden lemmas’ explicit.” But that’s just Rule 2 of the method of proofs and

refutations!

These two examples7 are offered to illustrate how the development of formal proofs can

follow the method of proofs and refutations (MPR). Insofar as Lakatos intends MPR to be

a characteristic feature of informal mathematics, he seems to be narrowing his philosophy
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too much. It seems to me that what Lakatos is doing is focusing on the development of

informal mathematics as a response to claims about the status of formal mathematics. But

if he had looked at the development of formal mathematics, he might have found an “ally

among the enemies” in the guise of modern formal mathematics.

6.2.2.3 Example 3: A condition on polyhedra

My formalization [93] of a proof of Euler’s polyhedron formula is based on Lakatos’s presen-

tation of Poincaré’s proof; it is contained in chapter 2 of Proofs and Refutations. Lakatos’s

purpose is to allow one of the characters of his dialogue to give a ‘final’ proof of Euler’s

formula. My formalization follows that discussion. I gave a definition of polyhedron and

described the condition (what Lakatos calls simple connectedness, but which is better re-

ferred to as being a homology sphere) that is sufficient for a polyhedron to satisfy Euler’s

relation (V −E+F = 2). The formal proof was nearly complete until a gap was uncovered:

and essential condition was missed!

It turned out that there was a rather crucial part of the argument that was overlooked. In

his discussion of Poincaré’s proof, we find this exchange:

Gamma: I think that the boundary of a decent k-chain should be closed. For instance I could not

possibly accept as a polyhedron a cube with the top missing; and I could not possibly accept as a

polygon a square with an edge missing. Can you prove, that the boundary of any k-chain is closed?

Epsilon: Can I prove that the boundary of the boundary of any k-chain is zero?

Gamma: That is it.

Epsilon: No, I cannot. This is indubitably true. It is an axiom. There is no need to prove it.

Lakatos is right that this principle must be an ‘axiom’ in some form. The significance of

this passage was revealed to me thanks to the formalization.

To appreciate the significance of the missing condition, we need to lay down terminology

for polyhedra. A polyhedron, for the purposes of the proof that I formalized, is given by
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three sets (of vertices, edges, and faces), and two so-called incidence matrices: one that

says which vertices are incident with which edges, and another that says which edges are

incident with which faces. To make the terminology uniform, for an integer k we say that

a k-chain is a subset of the set of k-polytopes, where a k-polytope is supposed to be one

of the basic elements of dimension k. (Thus a 0-polytope is a vertex, a 1-polytope is an

edge, and a 2-polytope is a face.) For each integer k one can define a boundary operation,

denoted ∂k, whose domain is the set of k-chains and whose range is included in the set of

(k−1)-chains. (Thus the boundary of an edge, a 1-chain, is a set of vertices, i.e., a 0-chain;

the boundary of a face, a 2-chain, is a set of edges, i.e., a 1-chain.) Among the k-chains

we can distinguish those that go all the way around, such as the edges of a polygon. Such

k-chains are, appropriately enough, called k-circuits (also known as k-cycles). And some

k-chains can be obtained by applying the boundary operation on a (k + 1)-chain; such

k-chains are called bounding.

Using this terminology, Lakatos lays down a condition on polyhedra that is standardly

referred to as simple connectedness: a polyhedron p is simply connected if every k-circuit

is bounding. (Again, this is Lakatos’s terminology; a better term, and one that is actually

used in the formal proof, is being a homology sphere.) In other words, the only way one can

‘go around’ is if one goes around something. Such is the case with polygons, for example:

the reason why the set of edges of a polygon forms a circuit is that the edges ‘traverse’

a face. A failure of simple connectedness arises when one permits faces of polyhedra to

have holes in them. Imagine a cube with hole in the top face: one can going around the

perimeter of the hole, but one is not going around a face.
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At one step in the proof it seemed that what was necessary is the converse to simple

connectedness: every k-circuit is a boundary. Indeed, this feeling that something was

missing, first suggested by the proof checker, turns out to be well founded: a counterexample

to Euler’s formula can be found if one does not assume this extra condition. Take the

example of a circle (only one face in this polyhedron), whose perimeter is the only edge,

which contains precisely one vertex.

f ev

More formally, the incidence matrices that characterize this polyhedron are: {(v, e)} to

represent the incidences between the vertices and the edges and {(e, f)} to represent the

incidences between the edges and the faces. Yet in this case, the boundary of the 2-polytope

f is the 1-chain {e}, whose boundary is {v}. Euler’s formula is false, because V − E + F

for this polyhedron is 1. Yet it is simply connected! (The condition that every circuit is a

boundary is satisfied because there are no non-trivial circuits at all.)

6.2.3 Two Discoveries

The case studies of the two examples above illustrate that there are (at least) two kinds of

discoveries to be had in formal mathematical theories. In the first example, we saw how,

by formalizing the mathematical concept of a linear transformation as we did, we faced

the problem of defining the notion of the application of a linear transformation to a linear

combination. The second example we considered had to do with logical gaps that were

exposed thanks to the requirement of strict formality. We discuss these two examples in

more detail in the following two subsections.
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6.2.3.1 First discovery: analysis of informal notation

The lesson that I take away from the formal work involved in defining the notion of the

application of a linear transformation to a linear combination is an appreciation for how

flexible our (informal or semi-formal) mathematical notation can be. In some cases, it is

straightforward to formalize a mathematical concept, notation, theorem, or definition. In

other cases, as this example shows, the problem of coming up with an adequate formal-

ization itself requires some mathematical insight. Furthermore, once a decision is made

concerning how to formally represent an informal mathematical notion, certain derived

obligations arise, such as the obligation to prove that the l(T−1({w})) is a finite subset

of k. Arguably, the formalization has taught us something about our notation. When we

write that
T (a1 · v1 + a2 · v2 + · · ·+ an · vn) = a1 · T (v1) + a2 · T (v2) + · · ·+ an · T (vn),

there does seem to be an implicit assumption that the T (vk)’s are different. But the informal

notation gets it right. If, say, n = 3 and T (v1) = T (v2), then

a1 · T (v1) + a2 · T (v2) + a3 · T (v3) = (a1 + a2) · T (v1) + a3 · T (v3),

which falls out of our formal definition. The definition of T@l also shows us that there

is more to our informal notation than meets the eye. Who would have guessed that to

formalize the apparently simple property of linear transformations would, formally, involve

inverses and sums of subsets of k, and that we would further have to justify our notation

by proving that no infinite sums arise?

This example challenges Lakatos’s answer to his question (‘What can one discover in a

formal mathematical theory?’). By working in a formal mathematical theory, we ‘force

the issue’ of the definitions of our terms. In the formal development of linear algebra, we

would be forced eventually to say what linear combinations are, and to say what it means

to apply a linear transformation to a linear combination. To meet this formal challenge,

we had to engage in mathematical work that led to an unexpected result. Our discovery of

the definition of the application of a linear transformation to a linear combination surely
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wins no awards for mathematical ingenuity, nor does it break new mathematical ground.

Nonetheless, the unexpected features of the definition (unbounded sums, inverses) suggest

that there is a bit more to the notion of linear combination than meets the eye. And we

found that out through formalization.

6.2.3.2 Second discovery: gaps

In the second and third examples above, we saw that, thanks to the requirement of strict

formality, we were able to spot a gap in a proof that might have been overlooked. What is

claimed is not that formalization is the only way that the problem could have been discov-

ered. If that were the case, then it would be necessary to describe the precise formalism that

was used in considerably more detail. But (thankfully) that is unnecessary; the result is

not ineliminably tied to the particular formalism that was used. What I claim is something

rather more modest: thanks to formalization, an error that might have gone undetected

was brought clearly to light.

The examples involving logical gaps leads into the broader epistemological question of how

formal proofs can in any sense be epistemically ‘superior’ to non-formal proofs. Is there any

philosophical justification for the enterprise of computer-checked formal proofs? One could

take a skeptical view toward mathematical proof and hold that only completely formal

proofs deserve to be called (genuine) proofs. Yet in the history of formal mathematics,

one has to acknowledge the paucity of genuinely interesting logical gaps that have been

exposed. The skeptical justification, which doubt the validity of virtually every proof in

mathematics and regards all proofs are informal and (potentially) rife with logical gaps, is

untenable. The failure to uncover interesting gaps—oversights, ambiguities, or errors that,

once exposed, would alter the views of the working mathematician—is not to be taken

lightly [55, 59, 130]. One might say that a formalized proof of a theorem gives us better

grounds to believe the theorem than were available before the proof was formalized, but at

present it seems to be an open philosophical challenge to say why this should be so, while

acknowledging the rarity of interesting gaps [13].
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6.2.4 Comments

We thus see the potential for formal mathematics to be a source for mathematical discov-

eries, rather than as an obstacle.

These thoughts are echoed by G. Gonthier, who designed a formal proof of the famous

four-color theorem, which was discussed previously. He clearly lays out his motivation for

his work:

While we tackled this project mainly to explore the capabilities of a modern formal proof

system—at first, to benchmark speed—we were pleasantly surprised to uncover new and

rather elegant nuggets of mathematics in the process. In hindsight this might have been

expected: to produce a formal proof one must make explicit every single logical step of a

proof; this both provides new insight in the structure of the proof, and forces one to use

this insight to discover every possible symmetry, simplification, and generalization, if only to

cope with the sheer amount of imposed detail. . . .Perhaps this is the most promising aspect

of formal proof: it is not merely a method to make absolutely sure we have not made a

mistake in a proof, but also a tool that shows us and compels us to understand why a proof

works. [131]

Gonthier thus sees the formalizer’s burden—arguments be specified in more or less complete

logical detail—not as an obstacle but as a potential source of innovation. The formalizer is

spurred to try to discover refinements to the argument under consideration so as to make

the formalization more tractable. Thus formalization provides, to some extent, a means of

discovery.

Gonthier identifies at least two sources for potential innovation that come from formaliza-

tion. In a formal proof:

• one must seek symmetries, simplifications, and generalizations to help make the formal-

ization more tractable; and

• one cannot appeal to visual reasoning, nor to unformalized results.
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Although Gonthier is a passionate and convincing advocate for the value of formalization,

we should note that his conclusions are not necessarily the case for all formalizations.

Although interesting discoveries are potentially at hand in any non-trivial formalization

effort, innovation might not occur for two reasons.

First, the argument that Gonthier formalized was a rather substantial one (and has a

complex history, too). It is not clear—and practice with proof-checking systems suggests—

that we cannot expect interesting discoveries to routinely arise from the formalization of

smaller or more straightforward proofs.

Second, Gonthier himself is a talented mathematician whose skills at programming and

logic are clearly quite advanced. Had a mathematician with lesser skills taken on the same

problem (to give a formal proof of the four color theorem), the discoveries that Gonthier

made might not have arisen. The potential for discovery does not lie solely in the tools

(the proof checker), nor in the proof to be formalized, but in the way that the formalizer

uses his tools in his formalization.

6.3 Further Worries

6.3.1 The problem of translation

One question that often arises in response to formal proofs of mathematical theorems is: are

we sure that the definitions of the concepts involved in the proof are accurately represented

in the formalization? The worry is that if we have not accurately formalized our concepts,

then the value of the formal proof is diminished, if it is meaningful at all.

Lakatos raises the problem of translation in connection with Poincaré’s proof of EPF. The

problem is, roughly: how do we know that the terms in Poincaré’s proof have the same

meaning as the terms outside of Poincaré’s proof? We are interested in polyhedra, in

some more-or-less intuitive sense; does Poincaré’s proof show us that polyhedra, in our

more-or-less intuitive sense, satisfy Euler’s formula?
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The problem of translation comes up just after Epsilon has finished giving his (Poincaré’s)

proof of EPF:

Alpha: Before you do let me raise a second question about your proof, or rather about the finality

and certainty that you claim for it. Is the polyhedron in fact a model of your vector-algebraic struc-

ture? Are you sure that your translation of ‘polyhedron’ into vector theory was a true translation?

Epsilon: I have already said that it is true. If something startles you that is no reason for doubting

it. ‘I am following the great school of mathematicians who, in virtue of a series of startling definitions,

have saved mathematics from the sceptics, and provided a rigid demonstration of its propositions.’

Teacher: I indeed think that this method of translation is the heart of the matter of the certainty

and finality of Epsilon’s proof. I think we should call it translation-procedure.

Epsilon/Poincaré modeled polyhedra with the help of incidence matrices, from which vari-

ous vector spaces were defined. Alpha asks whether what Epsilon has done is a true “trans-

lation” of the intuitive concept of polyhedron into a linear algebraic framework. Later in

the dialogue, Alpha again states the problem:

Alpha: But you [Epsilon] lose something which is much more important. You have to restrict your

Euclidean programme to theories with perfectly known concepts, and when you want to pull theories

with vague concepts into the scope of this programme, you cannot do this by your translational

technique: as you said, you do not translate, rather you create new meaning. But even if you tried

to translate the old meaning, some essential aspects of the original vague concept may get lost in

this translation. The new clear concept may not serve for the solution of the problem for which the

old concept was meant to serve. If you regard your translations as infallible, or, if you consciously

scrap the old meaning, both these extremes will yield the same result: you may push out the original

problem into the limbo of the history of thought—which in fact you do not want to do. So if you

calm down, you have to admit that definition must have a touch of modified essentialism: it must

preserve some relevant aspects of the old meaning, it must transfer relevant elements of meaning

from left to right.
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The worry is that some essential aspects of the intuitive concept of polyhedron may get lost.

I take it that an ‘essential’ loss here means such a modification of the intuitive concept that

can no longer confidently state that the mathematical theorem is about what we intended

it to be about.

Does the problem of translation apply to formal proofs? At first glance it would appear

that the problem applies to a greater degree to formal proofs as it does to informal proofs

(such as Poincaré’s): formal proofs are written in a non-natural language, with which we

are less familiar, so we lack standards for what counts as an adequate expression in the

non-natural language of our intuitive concepts.

One way of putting the problem of translation is that there can be different translations

of one and the same informal statement into a more formal language; the translations are

different because they imply different statements.

But does that really arise in the case of formal proofs? I would urge that they do not;

it seems to me that there are often unproblematic translations from informal to formal

language. For example: translate “a polyhedron is determined by three sets V , E, and F

consisting of its vertices, edges, and faces” as

1 definition
2 mode polyhedron
3 means
4 ex V begin set, E begin set, F being set st it = [V,E,F];

Here “ex” means “exists” and “st” means “such that”; the notation “[V,E,F]” refers to

the ordered triple of the three sets V , E, and F . (That V , E and F are translated as sets

is given by the being set construction.) The it is an indexical; we are defining the type

polyhedron by a formula with one free variable, called it.

This snippet of mizar code is an unproblematic translation of the expression “a polyhedron

is determined by three sets V , E, and F”. Somewhat more formally, this statement is

understood as: “to say that something is a polyhedron is to say that there exist three sets
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V , E, and F that determine the polyhedron”. If one doubts that ordered triples adequately

determine their data, one should be swayed by the following facts in the mml:

1 definition
2 let X1, X2, X3 be set;
3 func [:X1,X2,X3:] -> set
4 equals
5 [:[:X1,X2:],X3:];

and the formal theorem

1 for X1,X2,Y1,Y2 being set
2 st [:X1,Y1:] = [:X2,Y2:]
3 holds X1 = X2 & Y1 = Y2;

It is perhaps not always so simple for formal proofs. But I submit that the problem of

translation, insofar as it applies between informal and formal proofs, is largely unproblem-

atic. Experience shows that formal proofs and informal proofs are already fairly close to

one another; whatever essential content that has been lost has been lost at an earlier stage

in the development of the theorem and proof.

As for the problem of translation for informal proofs, we may respond by pointing out

that, at least in the case of Euler’s formula, the objection that Poincaré’s polyhedra are

simply too abstract to count as genuine polyhedra, is not unique to Lakatos. Indeed,

mathematicians themselves—even those who are quite sympathetic to formal proofs—are

sensitive to the issue.

One response to the problem of Poincaré’s polyhedra is given by Steinitz’s theorem which

shows how to relate abstract polyhedra to analytic ones, i.e., ones with which we are more

familiar. Steinitz’s theorem is discussed in chapter 4; here is a brief restatement of the

result. Let G(P ) be the graph determined by the vertices and edges of a convex polytope

P . It is not difficult to show that G(P ) is planar and 3-connected (i.e., no removal of two

vertices disconnects the graph) for every 3-polytope P . Steinitz’s theorem is eseentialy the

converse:
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Theorem 22 A graph C is isomorphic to the graph G(P ) of a 3-polytope P iff C is

planar and 3-connected.

For a proof, see Barnette and Grünbaum [132]. The theorem relates combinatorial struc-

tures arising from polyhedra to the polyhedra themselves.

Thus, the mathematical community themselves wondered what the connection was between

abstract polyhedra and our intuitive geometric concept of polyhedra. The problem of

translation may be a problem, but it is not an obstacle that we cannot address.

In the latter part of Proofs and Refutations, after Epsilon/ presents Poincaré’s proof of

Euler’s polyhedron formula, some other characters ask whether we can be confident that

we have now proved Euler’s formula.

Alpha: Is the polyhedron in fact a model of your vector-algebraic structure? Are you sure that

your translation of ‘polyhedron’ into vector theory was a true translation?

Epsilon: I have already said that it is true. If something startles you that is no reason for doubting

it. ‘I am following the great school of mathematicians who, in virtue of a series of startling definitions,

have saved mathematics from the sceptics, and provided a rigid demonstration of its propositions.’

Teacher: I indeed think that this method of translation is the heart of the matter of the certainty

and finality of Epsilon’s proof. I think we should call it translation-procedure.

The problem here is that Poincaré’s/Epsilon’s proof of Euler’s formula involved a particular

definition of the concept of polyhedron as a certain kind of combinatorial structure. Earlier

in the discussion of Poincaré’s/Epsilon’s proof there was a question of whether the definition

is appropriate:

Gamma: I am a bit puzzled by your definition of polyhedra. In the first place, as you bother to

define the notion of a polyhedron at all, I conclude that you do not consider it to be perfectly

well known. But then where do you take your definition from? You defined the obscure concept

of polyhedron in terms of the ‘perfectly known’ concepts of faces, edges, and vertices. But your

definition—namely that the polyhedron is a set of vertices, plus a set of edges, plus a set of faces,
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plus an incidence matrix, obviously fails to capture the intuitive notion of a polyhedron. It implies,

for instance, that any polygon is a polyhedron, as is, say, a polygon with a free edge standing out

of it.

Gamma is right that Poincaré’s/Epsilon’s definition of polyhedron that is advanced at this

stage of the proof is clearly too broad; any set of vertices, edges, and faces, arranged in

any way, falls under Epsilon’s combinatorial definition. One could take Gamma’s worry

farther and note that, at this stage, Euler’s polyhedron formula is surely invalid. Consider,

for example, a ‘polyhedron’ with no vertices, no edges, and no faces. Such a degenerate

structure falls under the combinatorial definition so far, but it falsifies the formula (0− 0 +

0 = 0, not 2).

Some kind of condition needs to be imposed on combinatorial polyhedra. And indeed, a

condition is eventually added: the combinatorial polyhedron must be simply connected. A

good deal of discussion in chapter 2 of Proofs and Refutations is devoted to understanding

this condition on polyhedra. Epsilon does lay down a definition, but to appreciate its

geometrical significance, a number of examples are considered.

In Lakatos’s words, the question is whether combinatorial polyhedra are a good model of

polyhedra. The problem seems to be that there are two realms of mathematical objects, or

two concepts: combinatorial polyhedra and polyhedra. The former concept is clearly defined

in the language of set theory; the latter is not so well defined, but there are any number

of uncontroversial examples. For combinatorial polyhedra we can lay down a rigorously

defined condition, simple connectedness, and rigorously prove that all simply-connected

combinatorial polyhedra are Eulerian. For (pre-theoretical) polyhedra we apparently lack a

proof. The problem of translation can be stated as: can we transfer the knowledge that we

get from the Epsilon’s proof for combinatorial polyhedra to non-combinatorial polyhedra?

Or: even if we grant the most secure knowledge of one realm of objects, can we conclude

that we have the same kind of knowledge for another realm of objects?
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It would seem that, initially, the intention behind asking the question is to be skeptical

about claims to mathematical knowledge. At least for some mathematical domains—such

as the study of polyhedra, where the objects are apparently richly structured than we

might initially take them to be—the best the mathematician can do is to lay down certain

definitions of his concepts and rigorously prove properties of whatever objects satisfy those

definitions. His proof may even be specified to the highest level of logical detail, as is th

case with computer-checked formal proofs. But at the end of the day, when he has finished

his proof, the mathematician has only his proof. He cannot move from the claim

I know with certainty that this argument is valid

to

I know with certainty the proposition proved is true

because he does not know that the definitions employed in his proof are correct.

This reminds us of the usual distinction between validity and soundness of arguments. The

validity of an argument can be determined by the data given in the argument itself. The

soundness of the argument, on the other hand, cannot in general be determined from the

data of the argument. Some external knowledge seems to be required.

Lakatos may ultimately be right; it may be that, philosophically, there are limits on what

we can know about mathematical concepts. Yet although this may seem to be correct in

the case of polyhedra, for other mathematical structures knowledge suffers less from the

problem of translation. Let us consider two examples.

First, let us consider the natural numbers. Like polyhedra, these are mathematical objects

about which we have much intuition. We can give a formal proof in, say, Peano Arithmetic

that 4 is an even number, a formal proof of the statement ∃k((1 + 1) ·k = 1 + (1 + (1 + 1))).

Does this show that 4 is an even number? If we agree that the number 4 is accurately

expressed in the language of Peano Arithmetic by the term ‘1 + (1 + (1 + 1))’, and if we

agree that the concept of evenness of an number a is accurately expressed in the language of
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Peano Arithmetic by the existential formula ‘∃kp2q ·k = paq’, if the number 2 is accurately

captured by ‘1 + 1’, and if we agree that the axioms of Peano Arithmetic express valid laws

of arithmetic, then we can be confidently claim that d gives us justification that 4 is an

even number.

We can see that the validity of our deduction d can be established by looking only at the

deduction itself. No knowledge of arithmetic needed to see that the figure d is in fact a

deduction. However, we have to admit that to infer from the deduction that 4 is an even

number requires more than the deduction itself. Our knowledge that 4 is an even number

is grounded not merely by the deduction d. We have to set up coordination principles

between our non-formal concepts and certain formal expressions. And those coordination

principles (such as: ‘the number 4 is accurately expressed by the term 1+(1+(1+1))’) can

be true or false, and the truth or falsity is not given by d. Although we can have certain

knowledge that d is a deduction, our knowledge that the proposition we intended to prove

is in fact proved is mediated by the coordination principles. That is: the certainty of the

‘deductionhood’ of d does not imply that we know with certainty that 4 is an even number.

To be clear, this example was chosen not to mock Lakatos’s philosophy. The example was

not chosen to show that, in fact, we can have certain knowledge that our coordination

principles are correct—and thus Lakatos is wrong. In the case of natural numbers, it

seems fairly clear that we can have irrefragable confidence (or something near enough) in

the correctness of our coordination principles: the term 1 + (1 + (1 + 1)) is an adequate

formalization of the number 4; the formula ∃k((1+1)·k = paq) is an adequate formalization

of the property of the number a being even. This is not dogmatic table-thumping. It is

consistent with Lakatos’s philosophy that we can have certain or near-certain knowledge of

the correctness of our coordination principles. Lakatos is not a skeptic who wishes to deny

that we can have mathematical knowledge of the highest epistemological nature. Rather,

the more modest lesson to take away from this example is that the quality of our formally

proved mathematical knowledge is limited by the quality of our coordination principles.
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The second example that I wish to consider is algebraic. A group is a mathematical structure

equipped with a binary function that is associative, has a left and right identity, and left

and right inverses. These properties can be straightforwardly formalized using the language

of first-order logic.8 One simple theorem about groups is Lagrange’s theorem: for a finite

groups, the order of a subgroup of a group G always divides the cardinality of G. One can

give a formal proof of this fact (as has been done in, for example, the mizar system [133]).

In the case of groups and other similarly-defined algebraic structures, the possibility of

uncertainty is considerably reduced. The coordination principle that allows to infer from

a formal proof of Lagrange’s theorem that the property it expresses lies almost exclusively

in the convention that the concept of a group just is any structure that satisfies the group

axioms. Other coordination principles are at play as well: since the proof involves some

arithmetic, a formal proof of Lagrange’s theorem needs to have formalizations for the

relevant arithmetical concepts and theorems.

The purpose of these two examples is to contrast the example of Euler’s polyhedron formula

from other mathematical results. For polyhedra, the status of our coordination principles

is more contentious than they are in the case of arithmetic and algebraic structures such

as groups, which admit a definition by convention. Again, the lesson to take away from

these examples is not that Lakatos is wrong. Lakatos is not intended to be a skeptic who

insists that through formal proof we cannot have any mathematical knowledge. Rather,

these examples are chosen to help us to understand Lakatos’s point that the soundness

of our formal proofs depends not only on the proofs themselves but also on coordination

principles that relate the formal expressions to informal concepts. In some cases, these

coordination principles can be very good, apparently irrefragable. In other cases, such as

polyhedra, they can be more controversial.

6.3.1.1 Aside: Comparing Lakatos’s problem of translation with Quine’s
problem of the indeterminacy of translation

In Word and Object [134] and later works [135–136], Quine posed a problem that is ap-

parently related to the problem that Lakatos raises. Quine called it the indeterminacy
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of translation. The words suggest that Quine and Lakatos are dealing with a similar

problem. But the two problems are quite different.

Quine’s problem involves a thought experiment of ‘radical translation’, where a ‘field lin-

guist’ in the jungle is trying to communicate with natives whose language he does not

understand. Radical translation is an interpersonal situation, and the resulting indeter-

minacy is a critique of meaning. The problem problem is intersubjective and linguistic;

it has to do with the problem of communication between people whose native languages

differ. Lakatos’s problem of translation is not inherently linguistic, nor is it a problem of

intersubjectivity.

We can further distinguish indeterminacy of translation from the problem, well known the

philosophy of science, of underdetermination of theory by date: Contrasting these two

problems, Quine writes:

If translators disagree on the translation of a Jungle sentence but no behavior on the part of

the Jungle people could bear on the disagreement, then there is simply no fact of the matter.

In the case of natural science, on the other hand, there is a fact of the matter, even if all

possible observations are insufficient to reveal it uniquely. [136]

Contrasted with Quine’s problem of the indeterminacy of translation, Lakatos’s problem

of translation is (apparently) not interpersonal, nor is it (inherently) linguistic. Rather, it

seems to be a problem about mathematical concepts.

Lakatos’s point seems to be that to express our mathematical arguments (and hence, to

formalize them), we must take an stand toward the salient mathematical concepts. We thus

are not proving anything about a mathematical concept (or concepts), but rather about

some articulation/conception of them.

6.4 Conclusion

By ‘forcing the issues’ of (1) exactly how mathematical concepts are formally represented,

and of (2) the precise structure of a mathematical proof, it would seem that the formal
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viewpoint behind modern proof-checking enterprises, far from standing in opposition to

Lakatos, actually support his philosophy of mathematics. Lakatos is interested in the

development of mathematical concepts and proofs.
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7 Conclusion

The project described here was an engagement with the philosophy of mathematics of

Imre Lakatos. The main task was to present Lakatos as offering a challenge to those who

work with (what I have called) modern formal proof technology. There, formal proofs are,

of course, the central object of study to the extent that they are actually constructed.

Lakatos, on the other hand, is generally quite negative about such proofs and their value

for philosophy of mathematics, arguing specifically that they have little to say about the

growth of mathematics, and mathematical discovery.

If I have responded well to Lakatos’s challenge, then I have successfully argued that, first

of all, that Lakatos’s central insight into the methodology of mathematics—what he calls

the method of proofs and refutations—applies as well to formal mathematics as it does

to informal mathematics. Moreover, I hope to have mitigated Lakatos’s skepticism about

the methodology of mathematics by arguing that the view of mathematical knowledge as

conjectural is not well supported.

If, as Worrall suggests [122], the aim of Proofs and Refutations is to call attention to merely

call attention to the growth and history of mathematics without offering any distinctive

new view about the epistemology of mathematics, then the strength of the argument is

considerably mitigated. Surely no one can object to an expansion of the scope of the

philosophy of mathematics to include such case studies as Lakatos’s. Relatedly, if all

Lakatos is arguing is that it is a mistake to identify the philosophy of mathematics with

metamathematics, then again there is little room for disagreement. Feferman put it well

when he concedes that ‘logic as it stands fails to give a direct account either of the historical

growth of mathematics or the day-to-day experience of its practitioners’ [54]. If that is

Lakatos’s main point, then again there seems to be little room for disagreement. And if

Lakatos is just trying to get us to all be a little more modest about our proofs and to

prefer the heuristic presentation of mathematics in the classroom, then this seems to be a

laudable goal and I think we can all support it.
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Assuming, then, that Lakatos is in fact trying to develop some new epistemological features

of mathematical knowledge, then more room is available in which to carry out the discus-

sion. My hope is to have contributed to Lakatos scholarship by bringing him ‘up to date’

with developments in modern formal proof technology that Lakatos could only imagine.

I aimed to take up the tenor Lakatos’s new insights into the philosophy of mathematics

while, at the same time, taking issue with some of the places where he overreaches. The

work is written in the hope that it would take Lakatos on in his own terms; I hope to

have avoided the charge of belonging to the camp of ‘dogmatists’ that Lakatos describes in

the introduction to Proofs and Refutations, as those who simply simply take mathematical

knowledge to be uncriticizable, infallible, deserving of our immediate assent, or any other

heavy-handed epistemological feature.

At the same time, Lakatos might charge me with taking up the ‘dogmatist’ line of thought

because I question the extent to which his skeptical view applies. It is not clear, for example,

that Lakatos has given an argument that mathematical knowledge is not a priori or that

mathematical proofs do not provide a priori justifications. It is consistent with Lakatos’s

view that mathematical knowledge differs from ‘everyday’ knowledge of the world, and that

even if mathematical knowledge is fallible, the character of its fallibility differs from that of

other kind of knowledge, and, relatedly, mathematical proofs are justify knowledge in rather

special way.

I have also discussed a handful of problems as they arise from the combinatorial treatment

of polyhedra. The problems there are (meta)mathematical. A number of problems remain

in this direction.

The project contained here suggests a number of fruitful directions for further research.

They are, mainly, philosophical approaches; they focus, moreover, primarily on the episte-

mology of mathematics. Lakatos has inspired research in the philosophy of mathematics

on several fronts that promise to shed new light and help us to better appreciate one of the

oldest and arguable epistemically most interesting aspects of human intellectual life.
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A Endnotes

A.1 Chapter 2: Formal Proofs in Mathematics
Historically, it was Hilbert and Bernays who gave completeness as an open problem in their Grundzüge der1

theoretischen Logik. By adapting a result of Skolem, Gödel was able to solve the problem.
Peano remained active in the project of formalization for years. As a side note, Peano was clearly quite2

interested in language more generally: he designed his own language—Latino sine Flexione (Latin without
inflections)—in which his book was written. (The citation [2] is to to the French translation.)
What follows is a discussion of notable events in the 20th century. But arguably this presents far too modern3

of a point of view; already, in the imaginings of thinkers from long ago, such as Leibniz, we see the idea of
computers being used in connection with proofs as they are used today.
Work by (for example) Orevkov gives a sense in which formal proofs (in some proof formalisms) can be so4

large as to be practically impossible to completely survey. What we have in mind here is something more
mundane that Orevkov-style results: that the problem of producing formal proofs can result in deductions
that are much larger than the informal proofs from which they come.
A list of 100 interesting mathematical theorems, and their status as formalized or unformalized (and, if5

formalized, in which of the many contemporary proof checking systems) is maintained [19] by F. Wiedijk.
Harrison is not the only one to articulate this goal for an ideal proof system: one can hear this goal in6

informal conversation among those who are active in the subject.
Another work connecting Kuhn and Lakatos, not motivated by experimental mathematics, is [33].7

In more mathematical terms, the Kepler conjecture states that the density of a packing of congruent spheres8

in R3 is not greater than π/
√

18.
Another famous long-standing problem in mathematics, Fermat’s Last Theorem, was stated around 1637 [35],9

and solved by Andrew Wiles in 1995 (after Wiles’s 1993 proof was found to be flawed). The difference between
the time when the problem was solved and when it was posed for Fermat’s last theorem and the Kepler
conjecture are, respectively, 358 and 387 years.

A.2 Chapter 3: A Lakatosian Challenge
Feferman has criticized Lakatos for focusing on mathematical statements that have only a universal form1

∀xϕ(x), but many mathematical statements do not have such a form, such as “
√

2 is irrational” and “there
are exactly two integers that divide all other integers”. The logical form of a great many of the statements
of mathematics is, however, universal.
At one point Lakatos simply says that the proof analysis of a proof just is the list of ‘lemmas’ coming from2

the proof: the character Kappa criticizes the way that Teacher is responding to the critique that the
students are giving of Teacher’s initial proof of Euler’s polyhedron formula:

Kappa: You improved the proof-analysis, i.e. the list of lemmas; but the thought-experiment which you called ‘the
proof’ has disappeared.

Nonetheless, Lakatos places more weight on the idea of proof analysis as an activity of investigating the
conditions under which the moves carried out in the proof can be made, or are correct. This can lead to a
refinement of the list of lemmas.
It seems to me that one issue that classical philosophy of mathematics addresses and which Lakatos does3

not are metaphysical and ontological questions about mathematical objects. But one reviewer has noted [76]
an interesting metaphysical corollary of Lakatos’s case study of Euler’s formula: “In the beginning Euler’s
theorem was false; in the end it is true because we have come to formulate a concept of polyhedron that
makes it true. The theorem has been ‘analytified’. Yet making it true by convention was not matter of
fiat but the product of refined analysis. This doctrine of analytification has unsettling consequences. The
Platonist cannot welcome a view which makes the truth of the proposition in the end something embedded in
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the canons of mathematical language, where the ideas are stripped of their dignity. They are no longer what
makes mathematics true, nor the subject matter of mathematics. Yet the nominalist is equally disconcerted,
for even if we end up with truth by convention, the convention seems to be organising a ‘reality’ that has
nothing to do with words.”
Again, we shall see later what MPR amounts to, but for now, to ward off any misunderstanding, Lakatos4

is not saying that strict deductions of a universal claim ∀xϕ(x) and crystal-clear counterexample ¬ϕ(a),
in which there is no equivocation of the terms in the two claims, are simultaneously allowed. That, of
course, would be irrational. As one might expect Lakatos is using the words “proof” and “refutation” in a
special sense related to but different from our usual use of the words. We can see that “proof” doesn’t mean
something like “deduction in Fitch” and counterexample means something like “configuration in Tarski’s
World/ showing a universal statement to be false”. Fitch and Tarski’s World/ are dealing with a
concept of proof as formal deduction, and counterexample as object in a structure for which a negation
holds, following Tarski’s definition of truth. For these concepts we have the soundness and completeness
theorem, which imply that logical validity coincides with provability. Thus, if a statement is proved in this
sense, then, by the soundness theorem, if is impossible to give a counterexample.

A.3 Chapter 4: A Formal Proof of Euler’s Polyhedron Formula
Many results could be called ‘Euler’s formula’; Euler was a prolific mathematician who made fundamental1

contributions to any number of areas of mathematics. A result arguably more famous than the polyhedron
formula that could be the referent of ‘Euler’s formula’ is the famous relation eix = cosx + i sin x, one of
whose special cases is the remarkable eiπ + 1 = 0. In this paper, ‘Euler’s formula’ is short for ‘Euler’s
polyhedron formula’.
Euler’s text has been modified to bring it into line with the notation used in this paper: he did not use the2

conventional English abbreviations ‘V ’, ‘E’, and ‘F ’.
Euler proved that proposition 6 is equivalent to proposition 11. This is an interesting equivalence because3

one statement has a combinatorial flavor, while the other has an analytic flavor. Proposition 11 can be seen
in the famous Gauss-Bonnet formula [81].
Unknown to Euler, Descartes had actually given a proof of Proposition 11 [82]. This result of Descartes’s,4

seems to have been missing at Euler’s time; it was rediscovered in the 19th century, long after Euler’s
death [83].
Poincaré was interested more broadly in the new subject of topology, of which he was one of the earliest5

explorers; his new proof of Euler’s polyhedron formula was but one element in his wider topological program.
Poincaré was not the first to generalize Euler’s polyhedron formula to higher dimensions; that was done by6

L’Hullier.
In fact, Poincaré used a single incidence matrix to represent a polyhedron. The matrix is a block matrix,7

two of whose blocks are just the zero matrix, expressing the fact that vertices are not (strictly speaking)
incident with faces but only with edges.
At the time the formalization began, no formal proof of Euler’s formula was known. But independently,8

another formal proof has been carried out in the coq system [90].
It would be interesting to discover cases where one learns something different about a proof (and not about9

the different systems or the different logics on which they are built) when formalizing it in one system as
compared with what one learns from another formalization of the same proof.
There are two kinds of missing knowledge: well-known (perhaps named) mathematical results can be con-10

trasted with details that, in an less formal context, are left tacit.
And, conversely, often one discovers that mathematical knowledge that was previously thought to be unfor-11

malized does in fact exist in the library. At one point I thought that he had a proof that the mizar library
did not contain a formalization of the fact that {0, 1} can be regarded as a two-element field. This turned
out to be mistaken.
This is a case where a representation of a mathematical object contains more information than meets the12

eye. When represented this way, linear combinations tacitly build in the commutativity of vector addition.
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u+ v is represented by a function f that sends u and v to 1 and every other vector to 0. The same function
f also represents v + u.
The condition of finiteness is necessary because linear combinations must be finite; if X is infinite no finite13

set of singletons can span X.
In fact, if one inspects the formal proof one sees that polytope sets are assumed to be ordered. However, it14

is still the case that orientation plays no role in this development: the ordering is assumed to make certain
definitions simpler; an unordered approach would have worked just as well.
In the mml version 4.110.1033, released September 9, 2008, the exact mizar item is VECTSP_7:def 3.15

Every type in mizar must be provably non-empty. Interestingly, the theorem that every vector space has
a basis appears not as a mizar theorem per se, but rather as the justification for the non-emptiness of the
type Basis of V, where V itself has the dependent type VectSp of F, where, finally, F has type Field.
The proof of the non-emptiness of the Basis type appeals to the theorem that every linearly independent
subset of a vector space can be extended to a linearly independent spanning set, i.e., a basis.
Simpson has shown that the principle ‘Every vector space has a basis’ is equivalent, over the second-order16

arithmetical theory RCA0 (for ‘recursive comprehension axiom’), to the principle of arithmetical compre-
hension [103].
The custom code is not yet complete; certain features of the mizar system are not yet accounted for, such as17

so-called registrations and the implicit uses of Hilbert’s ε-operator. Thus it is possible that some important
dependency relations are not being taken into account with the present version of the software.
Perhaps even this notation could be implemented in mizar, but its logical properties are peculiar and would18

be a challenge to formally specify.

A.4 Chapter 5: Metamathematical Problems about Polyhedra
For more information about Schläfli’s work, see Coxeter [89].1

The games proceed as before, but with a new kind of move: not only can the players choose elements of2

structures, but also subsets. Spoiler chooses one of the structures and either a subset or an element of it;
duplicator chooses from the other structure either a subset or an element of it, corresponding to the kind of
move that spoiler made. Duplicator wins the game after k turns if the structures, with the chosen elements
and chosen subsets, are partially isomorphic. See Libkin [114], chapter 7.
This is the principle which, in its simplest form, states that |A∪B| = |A|+ |B|− |A∩B|. This involves only3

two terms; for more terms, the principle becomes more complicated.
The argument is simple: since every element of a polyhedral complex satisfies exactly one of V , E, or F ,4

there must be at least one vertex, at least one edge, or at least one face. In the first and the third case,
axiom ? ensures that there is some other element to which the element is incident. And if there is an edge,
then, by ?, there are vertices with which the edge is incident.
That can be seen because one can prove that if there is an inaccessible cardinal κ (and if ZF is consistent),5

then Vκ is a model of ZF. If ZF were to prove the existence of an inaccessible cardinal, then it would prove
its own consistency. See Kunen [117] for more details.

A.5 Chapter 6: Responding to the Lakatosian Challenge
“This reflects the characteristic mathematical situation: the mathematician hits upon his proof by unregi-1

mented insight and good fortune, but afterwards other mathematicians can check his proof.” [121] Lakatos
upbraids Quine for this statement, accusing him of equivocating on the meaning of ‘mathematics’ by using
the word in both its formal and informal (‘ordinary’) senses. Lakatos points out that “often the checking of
an ordinary proof is a very delicate enterprise, and to hit on a ‘mistake’ requires as much insight and luck
as to hit on a proof”.
Oddness could have been formalized differently. We could have said: n is odd iff there exists a natural2

number k such that 2 · k + 1 = n. With this definition of oddness, the proof that if n is even then n+ 1 is
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odd does not require any number-theoretic axioms: by definition, there exists a natural number k such that
2 · k = n; adding one to both sides gives 2 · k + 1 = n+ 1 (which follows by an axiom for equality), so that
n+ 1 is odd. Summary: the k that witnesses the evenness of n also witnesses the oddness of k+ 1. In other
words, the evenness of n (first-order) logically implies the oddness of n + 1. The exercise becomes more
involved if one uses the definition of oddness given in the text, for then the evenness of n does not logically
imply the oddness of n+ 1; to prove that n+ 1 is odd one must appeal to some non-logical number-theoretic
axioms.
The statement that logic alone doesn’t specify how we should organize a search for a deduction is cor-3

rect enough as it stands, but there is considerable interest within the automated reasoning community on
developing heuristics for how this search can be carried out. [127]. The community has been somewhat
successful; they can claim to have discovered a formal proof of a theorem (the solution to the so-called
Robbins conjecture) that no human had found. [128–129]
It is somewhat peculiar that Lakatos didn’t highlight this potential value of formal proofs. After all, one4

reason for the failure of a sequence of formulas to be a deduction is that the theorem to be proved suffers
from a so-called global counterexample, or perhaps the problem is rather more isolated (local counterexample).
This echoes a point made by Feferman. [54]
The function l that represents the simple linear combination u+ v also represents v + u. More generally, if5

l represents a1 · v1 + a2 · v2 + · · ·+ an · vn, then l also represents any permutation of the terms. Thus, our
choice of representation for linear combinations tacitly builds in the commutativity of vector addition.
And in fact, to justify the definition in the mizar system, one has to prove that the definition does make6

sense by showing that the application of l to T−1({w}) is finite.
These examples follow the pattern of Feferman’s “logical analysis” scheme [54].7

There are a variety of possible axiomatizations of group theory. One can formulate the axioms using a8

constant symbol for the identity, or not; one can require that the identity be both left and right, or just
right (in which case one has to assume that one can cancel on the left).
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B A mizar Proof of Euler’s Polyhedron Formula

This appendix contains the formal text, expressed in the mizar language, of a proof of

Euler’s polyhedron formula. The formal work is laid out in three stages:

1. First, a formal proof the rank+nullity theorem (which is the main linear algebraic result

in Poincaré’s proof);

2. Second, a formal development of the construction of a vector space based on the powerset

of a set;

3. Finally, a formal development of Poincaré’s proof.

The three stages build on each other. Moreover, the work does not take place ex nihilo;

the proof makes extensive use of much mathematical knowledge that has already been

formalized in the mizar Mathematical Library.

The software with which one can verify these proofs can be downloaded from the mizar

homepage [22].

B.1 The rank+nullity theorem

1 :: The Rank+Nullity Theorem
2 :: by Jesse Alama
3 ::
4 :: Received July 31, 2007
5 :: Copyright (c) 2007 Association of Mizar Users
7 environ
9 vocabularies RANKNULL, VECTSP_1, MATRLIN, VECTSP10, VECTSP_9, RLVECT_3,

10 RLSUB_1, FUNCT_1, FINSET_1, SUBSET_1, BOOLE, CARD_1, RELAT_1, RLVECT_1,
11 RLVECT_2, INCSP_1, RLSUB_2, FINSEQ_1, QC_LANG1, FUNCT_2, TARSKI, ARYTM_1,
12 FUNCOP_1, LOPBAN_1, SEQ_1, FINSEQ_4, FUNCT_4, CAT_1, COMPLEX1, TDGROUP,
13 ARYTM, GROUP_1;
14 notations TARSKI, XBOOLE_0, SUBSET_1, DOMAIN_1, RELAT_1, RELSET_1, FUNCT_1,
15 NAT_1, NUMBERS, FUNCOP_1, PARTFUN1, FUNCT_2, FUNCT_4, XCMPLX_0, XXREAL_0,
16 CARD_1, FINSET_1, FINSEQ_1, FINSEQOP, STRUCT_0, RLVECT_1, RLVECT_2,
17 VECTSP_1, FUNCT_7, VECTSP_4, VECTSP_5, VECTSP_6, VECTSP_7, MOD_2,
18 MATRLIN, VECTSP_9, LOPBAN_1;
19 constructors NAT_1, FINSEQOP, HAHNBAN, VECTSP_6, VECTSP_7, MOD_2, VECTSP_9,
20 REALSET1, RLVECT_2, WELLORD2, LOPBAN_1, VECTSP_5, FUNCT_7, FUNCT_4,
21 XXREAL_0, MATRLIN;
22 registrations RELAT_1, FUNCT_1, FUNCT_2, STRUCT_0, CARD_1, FINSET_1, FRAENKEL,
23 VECTSP_9, XBOOLE_0, VECTSP_7, MATRLIN, FUNCOP_1, ORDINAL1, XREAL_0,
24 SUBSET_1, VECTSP_1;


:: The Rank+Nullity Theorem
::  by Jesse Alama
::
:: Received July 31, 2007
:: Copyright (c) 2007 Association of Mizar Users

environ

 vocabularies RANKNULL, VECTSP_1, MATRLIN, VECTSP10, VECTSP_9, RLVECT_3,
      RLSUB_1, FUNCT_1, FINSET_1, SUBSET_1, BOOLE, CARD_1, RELAT_1, RLVECT_1,
      RLVECT_2, INCSP_1, RLSUB_2, FINSEQ_1, QC_LANG1, FUNCT_2, TARSKI, ARYTM_1,
      FUNCOP_1, LOPBAN_1, SEQ_1, FINSEQ_4, FUNCT_4, CAT_1, COMPLEX1, TDGROUP,
      ARYTM, GROUP_1;
 notations TARSKI, XBOOLE_0, SUBSET_1, DOMAIN_1, RELAT_1, RELSET_1, FUNCT_1,
      NAT_1, NUMBERS, FUNCOP_1, PARTFUN1, FUNCT_2, FUNCT_4, XCMPLX_0, XXREAL_0,
      CARD_1, FINSET_1, FINSEQ_1, FINSEQOP, STRUCT_0, RLVECT_1, RLVECT_2,
      VECTSP_1, FUNCT_7, VECTSP_4, VECTSP_5, VECTSP_6, VECTSP_7, MOD_2,
      MATRLIN, VECTSP_9, LOPBAN_1;
 constructors NAT_1, FINSEQOP, HAHNBAN, VECTSP_6, VECTSP_7, MOD_2, VECTSP_9,
      REALSET1, RLVECT_2, WELLORD2, LOPBAN_1, VECTSP_5, FUNCT_7, FUNCT_4,
      XXREAL_0, MATRLIN;
 registrations RELAT_1, FUNCT_1, FUNCT_2, STRUCT_0, CARD_1, FINSET_1, FRAENKEL,
      VECTSP_9, XBOOLE_0, VECTSP_7, MATRLIN, FUNCOP_1, ORDINAL1, XREAL_0,
      SUBSET_1, VECTSP_1;
 requirements BOOLE, SUBSET, NUMERALS, ARITHM;
 definitions TARSKI, RELAT_1, FUNCT_1, FINSEQ_1, VECTSP_4, VECTSP_6, XBOOLE_0,
      RLVECT_1, STRUCT_0, MOD_2, MATRLIN, FUNCOP_1, LOPBAN_1, FUNCT_2;
 theorems TARSKI, ZFMISC_1, RELAT_1, FINSET_1, FINSEQ_1, FUNCT_1, VECTSP_7,
      VECTSP_9, CARD_2, XBOOLE_1, FUNCT_2, SUBSET_1, XBOOLE_0, VECTSP_1,
      RLVECT_1, VECTSP_4, VECTSP_6, STRUCT_0, RLVECT_2, MOD_2, MATRLIN, CARD_1,
      FUNCOP_1, VECTSP_5, FUNCT_7, FINSEQ_2, FUNCT_4, ENUMSET1, ORDINAL1,
      PARTFUN1;
 schemes CLASSES1;

begin

theorem Th1:
  for f,g being Function
  st g is one-to-one & f|(rng g) is one-to-one & rng g c= dom f
  holds f*g is one-to-one
proof
  let f,g be Function such that
A1: g is one-to-one and
A2: f|(rng g) is one-to-one and
A3: rng g c= dom f;
  set h = f*g;
A4: dom h = dom g
  proof
    thus dom h c= dom g
    proof
      let x be set such that
A5:   x in dom h;
      thus thesis by A5,FUNCT_1:21;
    end;
    thus dom g c= dom h
    proof
      let x be set such that
A6:   x in dom g;
      g.x in rng g by A6,FUNCT_1:12;
      hence thesis by A3,A6,FUNCT_1:21;
    end;
  end;
  for x1,x2 being set st x1 in dom h & x2 in dom h & h.x1 = h.x2 holds x1 = x2
  proof
    let x1,x2 be set such that
A7: x1 in dom h and
A8: x2 in dom h and
A9: h.x1 = h.x2;
A10: h.x1 = f.(g.x1) by A7,FUNCT_1:22;
A11: h.x2 = f.(g.x2) by A8,FUNCT_1:22;
A12: g.x2 in rng g by A4,A8,FUNCT_1:12;
A13: f.(g.x1) = (f|(rng g)).(g.x1) by A4,A7,FUNCT_1:12,72;
A14: f.(g.x2) = (f|(rng g)).(g.x2) by A4,A8,FUNCT_1:12,72;
    dom (f|(rng g)) = rng g by A3,RELAT_1:91;
    then
A15: g.x1 in dom (f|(rng g)) by A4,A7,FUNCT_1:12;
    g.x2 in dom (f|(rng g)) by A3,A12,RELAT_1:91;
    then g.x1 = g.x2 by A2,A9,A10,A11,A13,A14,A15,FUNCT_1:def 8;
    hence thesis by A1,A4,A7,A8,FUNCT_1:def 8;
  end;
  hence thesis by FUNCT_1:def 8;
end;

:: If a function is one-to-one on a set X, then it is one-to-one on
:: any subset of X.

theorem Th2:
  for f being Function, X,Y being set st X c= Y & f|Y is one-to-one
  holds f|X is one-to-one
proof
  let f be Function, X,Y be set such that
A1: X c= Y and
A2: f|Y is one-to-one;
  f|X = (f|Y)|X by A1,RELAT_1:103;
  hence thesis by A2,FUNCT_1:84;
end;

theorem Th3:
  for V being 1-sorted, X,Y being Subset of V
  holds X meets Y iff ex v being Element of V st v in X & v in Y
proof
  let V be 1-sorted, X,Y be Subset of V;
  X meets Y implies ex v being Element of V st v in X & v in Y
  proof
    assume X meets Y;
    then consider z being set such that
A1: z in X and
A2: z in Y by XBOOLE_0:3;
    reconsider v = z as Element of V by A1;
    take v;
    thus thesis by A1,A2;
  end;
  hence thesis by XBOOLE_0:3;
end;

reserve F for Field,
  V,W for VectSp of F;

registration
  let F be Field, V be finite-dimensional VectSp of F;
  cluster finite Basis of V;
  existence
  proof
    consider A being finite Subset of V such that
A1: A is Basis of V by MATRLIN:def 3;
    reconsider A as Basis of V by A1;
    take A;
    thus thesis;
  end;
end;

registration
  let F be Field, V,W be VectSp of F;
  cluster linear Function of V,W;
  existence
  proof
    set f = FuncZero ([#]V,W);
    reconsider f as Function of V,W;
A1: f is linear
    proof
      thus for x,y being Vector of V holds f.(x+y) = (f.x)+(f.y)
      proof
        let x,y be Vector of V;
A2:     f.(x+y) = 0.W by FUNCOP_1:13;
A3:     f.x = 0.W by FUNCOP_1:13;
        f.y = 0.W by FUNCOP_1:13;
        hence thesis by A2,A3,RLVECT_1:def 7;
      end;
      thus for a being Element of F, x being Element of V
      holds f.(a*x) = a*(f.x)
      proof
        let a be Element of F, x be Element of V;
A4:     f.(a*x) = 0.W by FUNCOP_1:13;
        f.x = 0.W by FUNCOP_1:13;
        hence thesis by A4,VECTSP_1:59;
      end;
    end;
    take f;
    thus thesis by A1;
  end;
end;

theorem Th4:
  [#]V is finite implies V is finite-dimensional
proof
  assume
A1: [#]V is finite;
  consider B being Basis of V;
  reconsider B as finite Subset of V by A1;
  take B;
  thus thesis;
end;

theorem
  for V being finite-dimensional VectSp of F st card ([#]V) = 1
  holds dim V = 0
proof
  let V be finite-dimensional VectSp of F such that
A1: card ([#]V) = 1;
  [#]V = {0.V}
  proof
    consider y being set such that
A2: [#]V = {y} by A1,CARD_2:60;
    thus thesis by A2,TARSKI:def 1;
  end;
  then (Omega).V = (0).V by VECTSP_4:def 3;
  hence thesis by VECTSP_9:33;
end;

theorem
  card ([#]V) = 2 implies dim V = 1
proof
  assume
A1: card ([#]V) = 2;
A3: [#]V is finite by A1;
  reconsider C = [#]V as finite set by A1;
A4: card ([#]V) = card (C);
  reconsider V as finite-dimensional VectSp of F by A3,Th4;
  ex v being Vector of V st v <> 0.V & (Omega).V = Lin ({v})
  proof
    consider x,y being set such that
A5: x <> y and
A6: [#]V = {x,y} by A1,A4,CARD_2:79;
    per cases by A6,TARSKI:def 2;
    suppose
A7:   x = 0.V;
      reconsider y as Element of V by A6,TARSKI:def 2;
      reconsider x as Element of V by A7;
      set L = Lin ({y});
A8:   for v being Element of V holds v in (Omega).V iff v in L
      proof
        let v be Element of V;
        v in (Omega).V implies v in L
        proof
          assume v in (Omega).V;
A9:       y in {y} by TARSKI:def 1;
A10:      0.L in L by STRUCT_0:def 5;
          per cases by A6,TARSKI:def 2;
          suppose v = x;
            hence thesis by A7,A10,VECTSP_4:def 2;
          end;
          suppose v = y;
            hence thesis by A9,VECTSP_7:13;
          end;
        end;
        hence thesis by STRUCT_0:def 5;
      end;
      take y;
      thus thesis by A5,A7,A8,VECTSP_4:38;
    end;
    suppose
A11:  y = 0.V;
      then reconsider y as Element of V;
      reconsider x as Element of V by A6,TARSKI:def 2;
      set L = Lin ({x});
A12:  for v being Element of V holds v in (Omega).V iff v in L
      proof
        let v be Element of V;
        v in (Omega).V implies v in L
        proof
          assume v in (Omega).V;
A13:      x in {x} by TARSKI:def 1;
A14:      0.L in L by STRUCT_0:def 5;
          per cases by A6,TARSKI:def 2;
          suppose v = y;
            hence thesis by A11,A14,VECTSP_4:def 2;
          end;
          suppose v = x;
            hence thesis by A13,VECTSP_7:13;
          end;
        end;
        hence thesis by STRUCT_0:def 5;
      end;
      take x;
      thus thesis by A5,A11,A12,VECTSP_4:38;
    end;
  end;
  hence thesis by VECTSP_9:34;
end;

begin :: Basic facts of linear transformations

definition
  let F be Field, V,W be VectSp of F;
  mode linear-transformation of V,W is linear Function of V,W;
end;

reserve T for linear-transformation of V,W;

theorem Th7:
  for V, W being non empty 1-sorted, T being Function of V,W holds
  dom T = [#]V & rng T c= [#]W
proof
  let V, W be non empty 1-sorted, T be Function of V,W;
  T is Element of Funcs([#]V,[#]W) by FUNCT_2:11;
  hence thesis by FUNCT_2:169;
end;

theorem Th8:
  for x,y being Element of V holds T.x - T.y = T.(x - y)
proof
  let x,y be Element of V;
A1: T.(x - y) = T.x + T.(-y) by MOD_2:def 5;
A2: -y = (-1.F)*y by VECTSP_1:59;
  T.((-1.F)*y) = (-1.F)*(T.y) by MOD_2:def 5;
  hence thesis by A1,A2,VECTSP_1:59;
end;

theorem Th9:
  T.(0.V) = 0.W
proof
  0.V = (0.F)*(0.V) by VECTSP_1:59;
  then T.(0.V) = (0.F)*T.(0.V) by MOD_2:def 5
    .= 0.W by VECTSP_1:59;
  hence thesis;
end;

definition
  let F be Field, V,W be VectSp of F, T be linear-transformation of V,W;
  func ker T -> strict Subspace of V means
  :Def1:
  [#]it = { u where u is Element of V : T.u = 0.W };
  existence
  proof
    set K = { u where u is Element of V : T.u = 0.W };
    K c= [#]V
    proof
      let x be set such that
A1:   x in K;
      consider u being Element of V such that
A2:   u = x and T.u = 0.W by A1;
      thus thesis by A2;
    end;
    then reconsider K as Subset of V;
A3: for v being Element of V st v in K holds T.v = 0.W
    proof
      let v be Element of V such that
A4:   v in K;
      consider u being Element of V such that
A5:   u = v and
A6:   T.u = 0.W by A4;
      thus thesis by A5,A6;
    end;
    K <> {} & K is linearly-closed
    proof
      T.(0.V) = 0.W by Th9;
      then 0.V in K;
      hence K <> {};
      thus K is linearly-closed
      proof
A7:     now
          let u,v be Element of V such that
A8:       u in K and
A9:       v in K;
A10:      T.u = 0.W by A3,A8;
          T.v = 0.W by A3,A9;
          then T.(u+v) = 0.W + 0.W by A10,MOD_2:def 5
            .= 0.W by RLVECT_1:def 7;
          hence u+v in K;
        end;
        now
          let u be Element of V, a be Element of F such that
A11:      u in K;
          T.u = 0.W by A3,A11;
          then T.(a*u) = a*(0.W) by MOD_2:def 5
            .= 0.W by VECTSP_1:59;
          hence a*u in K;
        end;
        then for a being Element of F, u being Element of V st u in K
        holds a*u in K;
        hence thesis by A7,VECTSP_4:def 1;
      end;
    end;
    then consider W being strict Subspace of V such that
A12: K = the carrier of W by VECTSP_4:42;
    take W;
    thus thesis by A12;
  end;
  uniqueness by VECTSP_4:37;
end;

theorem Th10:
  for x being Element of V holds x in ker T iff T.x = 0.W
proof
  let x be Element of V;
  thus x in ker T implies T.x = 0.W
  proof
    assume x in ker T;
    then
A1: x in [#]ker T by STRUCT_0:def 5;
    [#]ker T = { u where u is Element of V : T.u = 0.W } by Def1;
    then consider u being Element of V such that
A2: u = x and
A3: T.u = 0.W by A1;
    thus thesis by A2,A3;
  end;
  assume T.x = 0.W;
  then x in { u where u is Element of V : T.u = 0.W };
  then x in [#]ker T by Def1;
  hence thesis by STRUCT_0:def 5;
end;

definition
  let V,W be non empty 1-sorted, T be Function of V,W, X be Subset of V;
  redefine func T .: X -> Subset of W;
  coherence
  proof
A1: rng T c= [#]W by Th7;
    T .: X c= rng T by RELAT_1:144;
    hence thesis by A1,XBOOLE_1:1;
  end;
end;

definition
  let F be Field, V,W be VectSp of F, T be linear-transformation of V,W;
  func im T -> strict Subspace of W means
  :Def2:
  [#]it = T .: [#]V;
  existence
  proof
    reconsider U = T .: [#]V as Subset of W;
A1: for u being Element of W holds
    u in U iff ex v being Element of V st T.v = u
    proof
      let u be Element of W;
      thus u in U implies ex v being Element of V st T.v = u
      proof
        assume u in U;
        then consider x being set such that x in dom T and
A2:     x in [#]V and
A3:     u = T.x by FUNCT_1:def 12;
        reconsider x as Element of V by A2;
        take x;
        thus thesis by A3;
      end;
      thus (ex v being Element of V st T.v = u) implies u in U
      proof
        given v being Element of V such that
A4:     T.v = u;
        v in [#]V;
        then v in dom T by Th7;
        hence thesis by A4,FUNCT_1:def 12;
      end;
    end;
    U <> {} & U is linearly-closed
    proof
      thus U <> {}
      proof
        T.(0.V) = 0.W by Th9;
        hence thesis by A1;
      end;
      thus U is linearly-closed
      proof
A5:     now
          let u,v be Element of W such that
A6:       u in U and
A7:       v in U;
          consider x being Element of V such that
A8:       T.x = u by A1,A6;
          consider y being Element of V such that
A9:       T.y = v by A1,A7;
          u+v = T.(x+y) by A8,A9,MOD_2:def 5;
          hence u+v in U by A1;
        end;
        now
          let a be Element of F, w be Element of W such that
A10:      w in U;
          consider v being Element of V such that
A11:      T.v = w by A1,A10;
          T.(a*v) = a*w by A11,MOD_2:def 5;
          hence a*w in U by A1;
        end;
        hence thesis by A5,VECTSP_4:def 1;
      end;
    end;
    then consider A being strict Subspace of W such that
A12: U = the carrier of A by VECTSP_4:42;
    take A;
    thus thesis by A12;
  end;
  uniqueness by VECTSP_4:37;
end;

theorem
  0.V in ker T
proof
  T.(0.V) = 0.W
  proof
    0.V = (0.F)*(0.V) by VECTSP_1:59;
    then T.(0.V) = (0.F)*T.(0.V) by MOD_2:def 5
      .= 0.W by VECTSP_1:59;
    hence thesis;
  end;
  hence thesis by Th10;
end;

theorem Th12:
  for X being Subset of V holds T .: X is Subset of im T
proof
  let X be Subset of V;
  [#](im T) = T .: [#]V by Def2;
  hence thesis by RELAT_1:156;
end;

theorem Th13:
  for y being Element of W
  holds y in im T iff ex x being Element of V st y = T.x
proof
  let y be Element of W;
A1: y in im T implies ex x being Element of V st y = T.x
  proof
    assume y in im T;
    then reconsider y as Element of im T by STRUCT_0:def 5;
    [#](im T) = T .: [#]V by Def2;
    then consider x being set such that x in dom T and
A2: x in [#]V and
A3: y = T.x by FUNCT_1:def 12;
    reconsider x as Element of V by A2;
    take x;
    thus thesis by A3;
  end;
  (ex x being Element of V st y = T.x) implies y in im T
  proof
    assume ex x being Element of V st y = T.x;
    then consider x being Element of V such that
A4: y = T.x;
    dom T = [#]V by Th7;
    then y in T .: [#]V by A4,FUNCT_1:def 12;
    then y in [#](im T) by Def2;
    hence thesis by STRUCT_0:def 5;
  end;
  hence thesis by A1;
end;

theorem
  for x being Element of ker T holds T.x = 0.W
proof
  let x be Element of ker T;
  reconsider y = x as Element of V by VECTSP_4:18;
  y in ker T by STRUCT_0:def 5;
  hence thesis by Th10;
end;

theorem Th15:
  T is one-to-one implies ker T = (0).V
proof
  assume
A1: T is one-to-one;
  reconsider Z = (0).V as Subspace of ker T by VECTSP_4:50;
  for v being Element of ker T holds v in Z
  proof
    let v be Element of ker T;
    assume
A2: not v in Z;
A3: T.(0.V) = 0.W by Th9;
A4: not v = 0.V by A2,VECTSP_4:46;
A5: v in ker T by STRUCT_0:def 5;
    reconsider v as Element of V by VECTSP_4:18;
A6: T.v = 0.W by A5,Th10;
    dom T = [#]V by Th7;
    hence thesis by A1,A3,A4,A6,FUNCT_1:def 8;
  end;
  hence thesis by VECTSP_4:40;
end;

theorem Th16:
  for V being finite-dimensional VectSp of F holds dim ((0).V) = 0
proof
  let V be finite-dimensional VectSp of F;
  (Omega).((0).V) = (0).((0).V) by VECTSP_4:47;
  hence thesis by VECTSP_9:33;
end;

theorem Th17:
  for x,y being Element of V st T.x = T.y holds x - y in ker T
proof
  let x,y be Element of V such that
A1: T.x = T.y;
  T.(x - y) = T.x - T.y by Th8
    .= 0.W by A1,VECTSP_1:66;
  hence thesis by Th10;
end;

theorem Th18:
  for A being Subset of V, x,y being Element of V st x - y in Lin A
  holds x in Lin (A \/ {y})
proof
  let A be Subset of V, x,y be Element of V such that
A1: x - y in Lin A;
  y in {y} by TARSKI:def 1;
  then
A2: y in Lin ({y}) by VECTSP_7:13;
A3: (x - y) + y = x - (y - y) by RLVECT_1:43
    .= x - 0.V by VECTSP_1:66
    .= x by RLVECT_1:26;
  Lin (A \/ {y}) = (Lin A) + (Lin {y}) by VECTSP_7:20;
  hence thesis by A1,A2,A3,VECTSP_5:5;
end;

begin :: Some basic facts about linearly independent subsets and linear
      :: combinations

theorem Th19:
  for X being Subset of V st V is Subspace of W holds X is Subset of W
proof
  let X be Subset of V;
  assume V is Subspace of W;
  then
A1: [#]V c= [#]W by VECTSP_4:def 2;
  X c= [#]W
  proof
    let x be set such that
A2: x in X;
    x in [#]V by A2;
    hence thesis by A1;
  end;
  hence thesis;
end;

:: A linearly independent set is a basis of its linear span.

theorem Th20:
  for A being Subset of V st A is linearly-independent
  holds A is Basis of Lin A
proof
  let A be Subset of V such that
A1: A is linearly-independent;
  A c= [#](Lin A)
  proof
    let x be set such that
A2: x in A;
    reconsider x as Element of V by A2;
    x in Lin A by A2,VECTSP_7:13;
    hence thesis by STRUCT_0:def 5;
  end;
  then reconsider B = A as Subset of Lin A;
A3: B is linearly-independent by A1,VECTSP_9:16;
  Lin B = Lin A by VECTSP_9:21;
  hence thesis by A3,VECTSP_7:def 3;
end;

:: Adjoining an element x to A that is already in its linear span
:: results in a linearly dependent set.

theorem Th21:
  for A being Subset of V, x being Element of V st x in Lin A & not x in A
  holds A \/ {x} is linearly-dependent
proof
  let A be Subset of V, x be Element of V such that
A1: x in Lin A and
A2: not x in A;
  per cases;
  suppose A is linearly-independent;
    then reconsider A' = A as Basis of Lin A by Th20;
    x in [#](Lin A) by A1,STRUCT_0:def 5;
    then reconsider X = {x} as Subset of Lin A by SUBSET_1:63;
A3: X misses A'
    proof
      assume X meets A';
      then consider y being set such that
A4:   y in X and
A5:   y in A' by XBOOLE_0:3;
      thus contradiction by A2,A4,A5,TARSKI:def 1;
    end;
    reconsider B = A' \/ X as Subset of Lin A;
A6: B is linearly-dependent by A3,VECTSP_9:19;
    thus thesis by A6,VECTSP_9:16;
  end;
  suppose
A7: A is linearly-dependent;
    thus thesis by A7,VECTSP_7:2,XBOOLE_1:7;
  end;
end;

theorem Th22:
  for A being Subset of V, B being Basis of V st A is Basis of ker T & A c= B
  holds T|(B \ A) is one-to-one
proof
  let A be Subset of V, B be Basis of V such that
A1: A is Basis of ker T and
A2: A c= B;
  set f = T|(B \ A);
  let x1,x2 be set such that
A3: x1 in dom f and
A4: x2 in dom f and
A5: f.x1 = f.x2 and
A6: x1 <> x2;
A7: dom T = [#]V by Th7;
  reconsider x1 as Element of V by A3;
  reconsider x2 as Element of V by A4;
  reconsider A' = A as Subset of V;
A8: x1 in B \ A by A3,A7,RELAT_1:91;
A9: x2 in B \ A by A4,A7,RELAT_1:91;
A10: f.x1 = T.x1 by A8,FUNCT_1:72;
  f.x2 = T.x2 by A9,FUNCT_1:72;
  then
A11: x1 - x2 in ker T by A5,A10,Th17;
  reconsider A as Basis of ker T by A1;
  ker T = Lin A by VECTSP_7:def 3;
  then x1 - x2 in Lin A' by A11,VECTSP_9:21;
  then
A12: x1 in Lin (A' \/ {x2}) by Th18;
A13: (A' \/ {x2}) \/ {x1} = A' \/ {x1,x2}
  proof
    {x2} \/ {x1} = {x1,x2} by ENUMSET1:41;
    hence thesis by XBOOLE_1:4;
  end;
A14: not x1 in (A' \/ {x2})
  proof
    assume
A15: x1 in A' \/ {x2};
    per cases by A15,XBOOLE_0:def 3;
    suppose x1 in A';
      hence contradiction by A8,XBOOLE_0:def 5;
    end;
    suppose x1 in {x2};
      hence contradiction by A6,TARSKI:def 1;
    end;
  end;
A16: A' \/ {x1,x2} c= B
  proof
    {x1,x2} c= B
    proof
      let z be set such that
A17:  z in {x1,x2};
      per cases by A17,TARSKI:def 2;
      suppose z = x1;
        hence thesis by A8,XBOOLE_0:def 5;
      end;
      suppose z = x2;
        hence thesis by A9,XBOOLE_0:def 5;
      end;
    end;
    hence thesis by A2,XBOOLE_1:8;
  end;
  B is linearly-independent by VECTSP_7:def 3;
  hence thesis by A12,A13,A14,A16,Th21,VECTSP_7:2;
end;

theorem
  for A being Subset of V, l being Linear_Combination of A,
  x being Element of V, a being Element of F
  holds l +* (x,a) is Linear_Combination of A \/ {x}
proof
  let A be Subset of V, l be Linear_Combination of A, x be Element of V,
  a be Element of F;
  set m = l +* (x,a);
  m is Element of Funcs ([#]V,[#]F)
  proof
A1: dom m = [#]V
    proof
A2:   dom l = [#]V by FUNCT_2:169;
      then
A3:   m = l +* (x .--> a) by FUNCT_7:def 3;
A4:   dom (x .--> a) = {x} by FUNCOP_1:19;
      dom m = (dom l) \/ (dom (x .--> a)) by A3,FUNCT_4:def 1;
      hence thesis by A2,A4,XBOOLE_1:12;
    end;
    rng m c= [#]F
    proof
      let y be set such that
A5:   y in rng m;
      consider x' being set such that
A6:   x' in dom m and
A7:   m.x' = y by A5,FUNCT_1:def 5;
A8:   x' in dom l by A1,A6,FUNCT_2:169;
      per cases;
      suppose x' = x;
        then m.x' = a by A8,FUNCT_7:33;
        hence thesis by A7;
      end;
      suppose x' <> x;
        then
A9:     m.x' = l.x' by FUNCT_7:34;
A10:    l.x' in rng l by A8,FUNCT_1:12;
        rng l c= [#]F by FUNCT_2:169;
        hence thesis by A7,A9,A10;
      end;
    end;
    hence thesis by A1,FUNCT_2:def 2;
  end;
  then reconsider m as Element of Funcs ([#]V,[#]F);
  set T = Carrier l \/ {x};
  for v being Element of V st not v in T holds m.v = 0.F
  proof
    let v be Element of V such that
A11: not v in T;
A12: not v in Carrier l by A11,XBOOLE_0:def 3;
    not v in {x} by A11,XBOOLE_0:def 3;
    then v <> x by TARSKI:def 1;
    then m.v = l.v by FUNCT_7:34;
    hence thesis by A12;
  end;
  then reconsider m as Linear_Combination of V by VECTSP_6:def 4;
A13: Carrier m c= T
  proof
    let y be set such that
A14: y in Carrier m;
    consider z being Element of V such that
A15: y = z and
A16: m.z <> 0.F by A14;
    per cases;
    suppose
A17:  z = x;
A18:  x in {x} by TARSKI:def 1;
      {x} c= T by XBOOLE_1:7;
      hence thesis by A15,A17,A18;
    end;
    suppose z <> x;
      then m.z = l.z by FUNCT_7:34;
      then
A19:  z in Carrier l by A16;
      Carrier l c= T by XBOOLE_1:7;
      hence thesis by A15,A19;
    end;
  end;
  T c= A \/ {x}
  proof
    Carrier l c= A by VECTSP_6:def 7;
    hence thesis by XBOOLE_1:9;
  end;
  then Carrier m c= A \/ {x} by A13,XBOOLE_1:1;
  hence thesis by VECTSP_6:def 7;
end;

definition
  let V be 1-sorted, X be Subset of V;
  func V \ X -> Subset of V equals

  [#]V \ X;
  coherence;
end;

definition
  let F be Field, V be VectSp of F, l be Linear_Combination of V,
  X be Subset of V;
  redefine func l .: X -> Subset of F;
  coherence
  proof
    l .: X c= [#]F;
    hence thesis;
  end;
end;

reserve l for Linear_Combination of V;

registration
  let F be Field, V be VectSp of F;
  cluster linearly-dependent Subset of V;
  existence
  proof
    reconsider S = {0.V} as Subset of V;
A1: 0.V in S by TARSKI:def 1;
    take S;
    thus thesis by A1,VECTSP_7:3;
  end;
end;

:: Restricting a linear combination to a given set

definition
  let F be Field, V be VectSp of F, l be Linear_Combination of V,
  A be Subset of V;
  func l!A -> Linear_Combination of A equals

  (l|A) +* ((V \ A) --> 0.F);
  coherence
  proof
    set f = (l|A) +* ((V \ A) --> 0.F);
A1: dom f = dom (l|A) \/ dom ((V \ A) --> 0.F) by FUNCT_4:def 1;
    dom l = [#]V by FUNCT_2:169;
    then
A2: dom (l|A) = A by RELAT_1:91;
A3: dom ((V \ A) --> 0.F) = V \ A by FUNCOP_1:19;
A4: A \/ ([#]V \ A) = [#]V by XBOOLE_1:45;
A5: dom f = [#]V by A1,A2,A3,XBOOLE_1:45;
    rng f c= [#]F
    proof
      let y be set such that
A6:   y in rng f;
      consider x being set such that
A7:   x in dom f and
A8:   y = f.x by A6,FUNCT_1:def 5;
      reconsider x as Element of V by A1,A2,A3,A7,XBOOLE_1:45;
      per cases by A4,XBOOLE_0:def 3;
      suppose
A9:     x in A;
        then not x in dom ((V \ A) --> 0.F) by XBOOLE_0:def 5;
        then
A10:    f.x = (l|A).x by FUNCT_4:12;
        (l|A).x = l.x by A9,FUNCT_1:72;
        hence thesis by A8,A10;
      end;
      suppose
A11:    x in V \ A;
        then x in dom ((V \ A) --> 0.F) by FUNCOP_1:19;
        then f.x = ((V \ A) --> 0.F).x by FUNCT_4:14
          .= 0.F by A11,FUNCOP_1:13;
        hence thesis by A8;
      end;
    end;
    then reconsider f as Element of Funcs([#]V,[#]F) by A5,FUNCT_2:def 2;
    ex T being finite Subset of V st
    for v being Element of V st not v in T holds f.v = 0.F
    proof
      set C = Carrier l;
      set D = { v where v is Element of V : f.v <> 0.F };
      D is Subset of V
      proof
        D c= [#]V
        proof
          let x be set such that
A12:      x in D;
          consider v being Element of V such that
A13:      x = v and f.v <> 0.F by A12;
          thus thesis by A13;
        end;
        hence thesis;
      end;
      then reconsider D as Subset of V;
      D c= C
      proof
        let x be set such that
A14:    x in D;
        consider v being Element of V such that
A15:    x = v and
A16:    f.v <> 0.F by A14;
A17:    dom ((V \ A) --> 0.F) = V \ A by FUNCOP_1:19;
A18:    now
          assume
A19:      v in V \ A;
          then f.v = ((V \ A) --> 0.F).v by A1,A5,A17,FUNCT_4:def 1
            .= 0.F by A19,FUNCOP_1:13;
          hence contradiction by A16;
        end;
        then not v in dom ((V \ A) --> 0.F);
        then
A20:    f.v = (l|A).v by FUNCT_4:12;
        v in A by A18,XBOOLE_0:def 5;
        then (l|A).v = l.v by FUNCT_1:72;
        hence thesis by A15,A16,A20;
      end;
      then reconsider D as finite Subset of V;
      take D;
      thus thesis;
    end;
    then reconsider f as Linear_Combination of V by VECTSP_6:def 4;
    Carrier f c= A
    proof
      let x be set such that
A21:  x in Carrier f;
      reconsider x as Element of V by A21;
A22:  f.x <> 0.F by A21,VECTSP_6:20;
      now
        assume not x in A;
        then
A23:    x in V \ A by XBOOLE_0:def 5;
        then x in dom (l|A) \/ (dom ((V \ A) --> 0.F)) by A3,XBOOLE_0:def 3;
        then f.x = ((V \ A) --> 0.F).x by A3,A23,FUNCT_4:def 1;
        hence contradiction by A22,A23,FUNCOP_1:13;
      end;
      hence thesis;
    end;
    hence thesis by VECTSP_6:def 7;
  end;
end;

theorem Th24:
  l = l!Carrier l
proof
  set f = l|(Carrier l);
  set g = (V \ Carrier l) --> 0.F;
  set m = f +* g;
A1: dom l = [#]V by FUNCT_2:169;
  then
A2: dom f = Carrier l by RELAT_1:91;
A3: dom g = V \ (Carrier l) by FUNCOP_1:19;
  then
A4: (dom f) \/ (dom g) = [#]V by A2,XBOOLE_1:45;
  then
A5: dom l = dom m by A1,FUNCT_4:def 1;
  for x being set st x in dom l holds l.x = m.x
  proof
    let x be set such that
A6: x in dom l;
    reconsider x as Element of V by A6;
    per cases;
    suppose
A7:   x in Carrier l;
      then not x in dom g by XBOOLE_0:def 5;
      then m.x = f.x by A4,FUNCT_4:def 1;
      hence thesis by A7,FUNCT_1:72;
    end;
    suppose
A8:   not x in Carrier l;
      then
A9:   x in V \ (Carrier l) by XBOOLE_0:def 5;
      then
A10:  m.x = g.x by A3,A4,FUNCT_4:def 1;
      g.x = 0.F by A9,FUNCOP_1:13;
      hence thesis by A8,A10;
    end;
  end;
  hence thesis by A5,FUNCT_1:def 17;
end;

Lm1: for X being Subset of V holds l .: X is finite
proof
  let X be Subset of V;
A1: l = l!(Carrier l) by Th24;
A2: rng (l|Carrier l) is finite
  proof
    rng (l|Carrier l) = l .: Carrier l by RELAT_1:148;
    hence thesis;
  end;
  rng ((V \ (Carrier l)) --> 0.F) c= {0.F}
  proof
    set f = ((V \ (Carrier l)) --> 0.F);
    per cases;
    suppose V \ (Carrier l) = {};
      then f = {};
      hence thesis by RELAT_1:60,XBOOLE_1:2;
    end;
    suppose V \ (Carrier l) <> {};
      hence thesis by FUNCOP_1:14;
    end;
  end;
  then rng ((V \ (Carrier l)) --> 0.F) is finite;
  then (rng (l|Carrier l)) \/ rng ((V \ (Carrier l)) --> 0.F) is finite
  by A2;
  then rng l is finite by A1,FINSET_1:13,FUNCT_4:18;
  hence thesis by FINSET_1:13,RELAT_1:144;
end;

theorem Th25:
  for A being Subset of V, v being Element of V st v in A holds (l!A).v = l.v
proof
  let A be Subset of V, v be Element of V such that
A1: v in A;
  not v in V \ A by A1,XBOOLE_0:def 5;
  then
A2: not v in dom ((V \ A) --> 0.F);
  dom (l!A) = [#]V by FUNCT_2:169;
  then (dom (l|A)) \/ (dom ((V \ A) --> 0.F)) = [#]V by FUNCT_4:def 1;
  then (l!A).v = (l|A).v by A2,FUNCT_4:def 1
    .= l.v by A1,FUNCT_1:72;
  hence thesis;
end;

theorem Th26:
  for A being Subset of V, v being Element of V st not v in A
  holds (l!A).v = 0.F
proof
  let A be Subset of V, v be Element of V such that
A1: not v in A;
A2: dom ((V \ A) --> 0.F) = V \ A by FUNCOP_1:19;
A3: dom (l!A) = (dom (l|A)) \/ (dom ((V \ A) --> 0.F)) by FUNCT_4:def 1;
A4: dom (l!A) = [#]V by FUNCT_2:169;
A5: v in V \ A by A1,XBOOLE_0:def 5;
  then (l!A).v = ((V \ A) --> 0.F).v by A2,A3,A4,FUNCT_4:def 1
    .= 0.F by A5,FUNCOP_1:13;
  hence thesis;
end;

theorem Th27:
  for A,B being Subset of V, l being Linear_Combination of B st A c= B
  holds l = (l!A) + (l!(B\A))
proof
  let A,B be Subset of V, l be Linear_Combination of B such that
A1: A c= B;
  set r = (l!A) + (l!(B\A));
  let v be Element of V;
A2: (v in B) implies (v in A or v in B \ A)
  proof
    assume
A3: v in B;
    B = A \/ (B \ A) by A1,XBOOLE_1:45;
    hence thesis by A3,XBOOLE_0:def 3;
  end;
  per cases by A2;
  suppose
A4: v in A;
    then not v in B \ A by XBOOLE_0:def 5;
    then
A5: (l!(B\A)).v = 0.F by Th26;
    (l!A).v = l.v by A4,Th25;
    then r.v = l.v + 0.F by A5,VECTSP_6:def 11
      .= l.v by RLVECT_1:10;
    hence l.v = r.v;
  end;
  suppose
A6: v in B\A;
    then not v in A by XBOOLE_0:def 5;
    then
A7: (l!A).v = 0.F by Th26;
    (l!(B\A)).v = l.v by A6,Th25;
    then r.v = 0.F + l.v by A7,VECTSP_6:def 11
      .= l.v by RLVECT_1:10;
    hence l.v = r.v;
  end;
  suppose
A8: not v in B;
    then
A9: not v in B\A by XBOOLE_0:def 5;
    not v in A by A1,A8;
    then
A10: (l!A).v = 0.F by Th26;
A11: (l!(B\A)).v = 0.F by A9,Th26;
    Carrier l c= B by VECTSP_6:def 7;
    then
A12: not v in Carrier l by A8;
    r.v = 0.F + 0.F by A10,A11,VECTSP_6:def 11
      .= 0.F by RLVECT_1:10;
    hence l.v = r.v by A12;
  end;
end;

registration
  let F be Field, V be VectSp of F, l be Linear_Combination of V,
  X be Subset of V;
  cluster l .: X -> finite;
  coherence by Lm1;
end;

definition
  let V,W be non empty 1-sorted, T be Function of V,W, X be Subset of W;
  redefine func T"X -> Subset of V;
  coherence
  proof
    dom T = [#]V by Th7;
    hence thesis by RELAT_1:167;
  end;
end;

theorem Th28:
  for X being Subset of V st X misses Carrier l holds l .: X c= {0.F}
proof
  let X be Subset of V such that
A1: X misses Carrier l;
  set M = l .: X;
  let y be set such that
A2: y in M;
  consider x being set such that
A3: x in dom l and
A4: x in X and
A5: y = l.x by A2,FUNCT_1:def 12;
  reconsider x as Element of V by A3;
  now
    assume l.x <> 0.F;
    then x in Carrier l;
    then x in (Carrier l) /\ X by A4,XBOOLE_0:def 4;
    hence contradiction by A1,XBOOLE_0:def 7;
  end;
  hence thesis by A5,TARSKI:def 1;
end;

:: The image of a linear combination under a linear transformation:
::
::   T(a1*v1 + a2*v2 + ... + an*vn)
::     =  a1*T(v1) + a2*T(v2) + ... + an*T(vn).
::
:: Linear combinations are represented as functions from the space to
:: the underlying field having finite support, so to define a new
:: linear combination it is enough to say what its values are for the
:: elements of W and to prove that its support is finite.
::
:: The only difficulty is that some values T(vi) and T(vj) may be
:: equal.  In this case, the new linear combination should be the sum
:: of the coefficients ai and aj, i.e., l(vi) and l(vj).

definition
  let F be Field, V,W be VectSp of F, l be Linear_Combination of V,
  T be linear-transformation of V,W;
  func T@l -> Linear_Combination of W means
  :Def5:
  for w being Element of W holds it.w = Sum (l .: (T"{w}));
  existence
  proof
    defpred P[set,set] means
    ex w being Element of W st $1 = w & $2 = Sum (l .: (T"{w}));
A2: for x being set st x in [#]W holds ex y being set st P[x,y]
    proof
      let x be set such that
A3:   x in [#]W;
      reconsider x as Element of W by A3;
      take Sum (l .: (T"{x}));
      thus thesis;
    end;
    consider f being Function such that
A4: dom f = [#]W and
A5: for x being set st x in [#]W holds P[x,f.x] from CLASSES1:sch 1(A2);
A6: for w being Element of W holds f.w = Sum (l .: (T"{w}))
    proof
      let w be Element of W;
      consider w' being Element of W such that
A7:   w = w' and
A8:   f.w = Sum (l .: (T"{w'})) by A5;
      thus thesis by A7,A8;
    end;
    rng f c= [#]F
    proof
      let y be set such that
A9:   y in rng f;
      consider x being set such that
A10:  x in dom f and
A11:  f.x = y by A9,FUNCT_1:def 5;
      consider w being Element of W such that x = w and
A12:  f.x = Sum (l .: (T"{w})) by A4,A5,A10;
      thus thesis by A11,A12;
    end;
    then reconsider f as Element of Funcs([#]W,[#]F) by A4,FUNCT_2:def 2;
    ex T being finite Subset of W
    st for w being Element of W st not w in T holds f.w = 0.F
    proof
      set C = Carrier l;
      reconsider TC = T .: C as Subset of W;
      set X = { w where w is Element of W : f.w <> 0.F };
      X is Subset of W
      proof
        X c= [#]W
        proof
          let x be set such that
A13:      x in X;
          consider w being Element of W such that
A14:      x = w and f.w <> 0.F by A13;
          thus thesis by A14;
        end;
        hence thesis;
      end;
      then reconsider X as Subset of W;
      X c= TC
      proof
        let x be set such that
A15:    x in X;
        consider w being Element of W such that
A16:    x = w and
A17:    f.w <> 0.F by A15;
        T"{w} meets Carrier l
        proof
          assume
A18:      T"{w} misses Carrier l;
          then
A19:      l .: T"{w} c= {0.F} by Th28;
          Sum (l .: T"{w}) = 0.F
          proof
            per cases;
            suppose l .: T"{w} = {}F;
              hence thesis by RLVECT_2:14;
            end;
            suppose
A20:          l .: T"{w} <> {}F;
              l .: T"{w} = {0.F}
              proof
                thus l .: T"{w} c= {0.F} by A18,Th28;
                thus {0.F} c= l .: T"{w}
                proof
                  let y be set such that
A21:              y in {0.F};
A22:              y = 0.F by A21,TARSKI:def 1;
                  consider z being set such that
A23:              z in l .: T"{w} by A20,XBOOLE_0:def 1;
                  thus thesis by A19,A22,A23,TARSKI:def 1;
                end;
              end;
              hence thesis by RLVECT_2:15;
            end;
          end;
          hence contradiction by A6,A17;
        end;
        then consider y being set such that
A24:    y in T"{w} and
A25:    y in Carrier l by XBOOLE_0:3;
        reconsider y as Element of V by A25;
A26:    dom T = [#]V by Th7;
        T.y in {w} by A24,FUNCT_1:def 13;
        then T.y = w by TARSKI:def 1;
        hence thesis by A16,A25,A26,FUNCT_1:def 12;
      end;
      then reconsider X as finite Subset of W;
      take X;
      thus thesis;
    end;
    then reconsider f as Linear_Combination of W by VECTSP_6:def 4;
A27: for w being Element of W holds f.w = Sum (l .: (T"{w}))
    proof
      let w be Element of W;
      consider w' being Element of W such that
A28:  w = w' and
A29:  f.w = Sum (l .: (T"{w'})) by A5;
      thus thesis by A28,A29;
    end;
    take f;
    thus thesis by A27;
  end;
  uniqueness
  proof
    let f,g be Linear_Combination of W such that
A30: for w being Element of W holds f.w = Sum (l .: (T"{w})) and
A31: for w being Element of W holds g.w = Sum (l .: (T"{w}));
A32: dom f = [#]W by FUNCT_2:169;
A33: dom g = [#]W by FUNCT_2:169;
    for x being set st x in dom f holds f.x = g.x
    proof
      let x be set such that
A34:  x in dom f;
      reconsider x as Element of W by A34;
      f.x = Sum (l .: (T"{x})) by A30;
      hence thesis by A31;
    end;
    hence thesis by A32,A33,FUNCT_1:def 17;
  end;
end;

theorem Th29:
  T@l is Linear_Combination of T .: (Carrier l)
proof
  Carrier (T@l) c= T .: (Carrier l)
  proof
    let w be set such that
A1: w in Carrier (T@l);
    reconsider w as Element of W by A1;
A2: (T@l).w <> 0.F by A1,VECTSP_6:20;
    now
      assume
A3:   T"{w} misses Carrier l;
      then
A4:   l .: T"{w} c= {0.F} by Th28;
      Sum (l .: T"{w}) = 0.F
      proof
        per cases;
        suppose l .: T"{w} = {}F;
          hence thesis by RLVECT_2:14;
        end;
        suppose
A5:       l .: T"{w} <> {}F;
          l .: T"{w} = {0.F}
          proof
            thus l .: T"{w} c= {0.F} by A3,Th28;
            thus {0.F} c= l .: T"{w}
            proof
              let y be set such that
A6:           y in {0.F};
A7:           y = 0.F by A6,TARSKI:def 1;
              consider z being set such that
A8:           z in l .: T"{w} by A5,XBOOLE_0:def 1;
              thus thesis by A4,A7,A8,TARSKI:def 1;
            end;
          end;
          hence thesis by RLVECT_2:15;
        end;
      end;
      hence contradiction by A2,Def5;
    end;
    then consider x being set such that
A9: x in T"{w} and
A10: x in Carrier l by XBOOLE_0:3;
A11: x in dom T by A9,FUNCT_1:def 13;
A12: T.x in {w} by A9,FUNCT_1:def 13;
    reconsider x as Element of V by A9;
    T.x = w by A12,TARSKI:def 1;
    hence thesis by A10,A11,FUNCT_1:def 12;
  end;
  hence thesis by VECTSP_6:def 7;
end;

theorem Th30:
  Carrier (T@l) c= T .: (Carrier l)
proof
  T@l is Linear_Combination of T .: (Carrier l) by Th29;
  hence thesis by VECTSP_6:def 7;
end;

theorem Th31:
  for l,m being Linear_Combination of V st (Carrier l) misses (Carrier m)
  holds Carrier (l + m) = (Carrier l) \/ (Carrier m)
proof
  let l,m be Linear_Combination of V such that
A1: (Carrier l) misses (Carrier m);
  thus Carrier (l+m) c= (Carrier l) \/ (Carrier m) by VECTSP_6:51;
  thus (Carrier l) \/ (Carrier m) c= Carrier (l+m)
  proof
    let v be set such that
A2: v in (Carrier l) \/ (Carrier m);
    per cases by A2,XBOOLE_0:def 3;
    suppose
A3:   v in Carrier l;
      then reconsider v as Element of V;
A4:   (l+m).v = (l.v) + (m.v) by VECTSP_6:def 11;
A5:   l.v <> 0.F by A3,VECTSP_6:20;
      not v in Carrier m by A1,A2,A3,XBOOLE_0:5;
      then m.v = 0.F;
      then (l+m).v = l.v by A4,RLVECT_1:10;
      hence thesis by A5;
    end;
    suppose
A6:   v in Carrier m;
      then reconsider v as Element of V;
A7:   (l+m).v = (l.v) + (m.v) by VECTSP_6:def 11;
A8:   m.v <> 0.F by A6,VECTSP_6:20;
      not v in Carrier l by A1,A2,A6,XBOOLE_0:5;
      then l.v = 0.F;
      then (l+m).v = m.v by A7,RLVECT_1:10;
      hence thesis by A8;
    end;
  end;
end;

theorem Th32:
  for l,m being Linear_Combination of V st (Carrier l) misses (Carrier m)
  holds Carrier (l - m) = (Carrier l) \/ (Carrier m)
proof
  let l,m be Linear_Combination of V such that
A1: (Carrier l) misses (Carrier m);
  Carrier (-m) = Carrier m by VECTSP_6:69;
  hence thesis by A1,Th31;
end;

theorem Th33:
  for A,B being Subset of V st A c= B & B is Basis of V
  holds V is_the_direct_sum_of Lin A, Lin (B \ A)
proof
  let A,B be Subset of V such that
A1: A c= B and
A2: B is Basis of V;
A3: (Omega).V = (Lin A) + (Lin (B \ A))
  proof
    set U = (Lin A) + (Lin (B \ A));
    [#]U = [#]V
    proof
      thus [#]U c= [#]V by VECTSP_4:def 2;
      thus [#]V c= [#]U
      proof
        let v be set such that
A4:     v in [#]V;
        reconsider v as Element of V by A4;
        v in Lin B by A2,VECTSP_9:14;
        then consider l being Linear_Combination of B such that
A5:     v = Sum l by VECTSP_7:12;
        set m = l!A;
        set n = l!(B\A);
A6:     l = m + n by A1,Th27;
        ex v1,v2 being Element of V
        st v1 in Lin A & v2 in Lin (B \ A) & v = v1 + v2
        proof
          take Sum m, Sum n;
          thus thesis by A5,A6,VECTSP_6:77,VECTSP_7:12;
        end;
        then v in (Lin A) + (Lin (B \ A)) by VECTSP_5:5;
        hence thesis by STRUCT_0:def 5;
      end;
    end;
    hence thesis by VECTSP_4:37;
  end;
  (Lin A) /\ (Lin (B \ A)) = (0).V
  proof
    set U = (Lin A) /\ (Lin (B \ A));
    reconsider W = (0).V as strict Subspace of U by VECTSP_4:50;
    for v being Element of U holds v in W
    proof
      let v be Element of U;
A7:   v in U by STRUCT_0:def 5;
      then
A8:   v in Lin A by VECTSP_5:7;
A9:   v in Lin (B \ A) by A7,VECTSP_5:7;
      consider l being Linear_Combination of A such that
A10:  v = Sum l by A8,VECTSP_7:12;
      consider m being Linear_Combination of B \ A such that
A11:  v = Sum m by A9,VECTSP_7:12;
A12:  0.V = (Sum l) - (Sum m) by A10,A11,VECTSP_1:66
        .= Sum (l - m) by VECTSP_6:80;
A13:  Carrier (l - m) c= (Carrier l) \/ (Carrier m) by VECTSP_6:74;
A14:  Carrier l c= A by VECTSP_6:def 7;
A15:  Carrier m c= B \ A by VECTSP_6:def 7;
A16:  A \/ (B \ A) = B by A1,XBOOLE_1:45;
      (Carrier l) \/ (Carrier m) c= A \/ (B \ A) by A14,A15,XBOOLE_1:13;
      then Carrier (l - m) c= B by A13,A16,XBOOLE_1:1;
      then reconsider n = l - m as Linear_Combination of B by VECTSP_6:def 7;
      B is linearly-independent by A2,VECTSP_7:def 3;
      then
A17:  Carrier n = {} by A12,VECTSP_7:def 1;
      A misses (B \ A) by XBOOLE_1:79;
      then Carrier n = (Carrier l) \/ (Carrier m) by A14,A15,Th32,XBOOLE_1:64;
      then Carrier l = {} by A17;
      then l = ZeroLC(V) by VECTSP_6:def 6;
      then Sum l = 0.V by VECTSP_6:41;
      hence thesis by A10,VECTSP_4:46;
    end;
    hence thesis by VECTSP_4:40;
  end;
  hence thesis by A3,VECTSP_5:def 4;
end;

theorem Th34:
  for A being Subset of V, l being Linear_Combination of A,
  v being Element of V st T|A is one-to-one & v in A
  holds ex X being Subset of V st X misses A & T"{T.v} = {v} \/ X
proof
  let A be Subset of V, l be Linear_Combination of A,
  v be Element of V such that
A1: T|A is one-to-one and
A2: v in A;
  set X = T"{T.v} \ {v};
A3: {v} c= T"{T.v}
  proof
    let x be set such that
A4: x in {v};
A5: x = v by A4,TARSKI:def 1;
A6: dom T = [#]V by Th7;
    T.v in {T.v} by TARSKI:def 1;
    hence thesis by A5,A6,FUNCT_1:def 13;
  end;
A7: X misses A
  proof
    assume X meets A;
    then consider x being set such that
A8: x in X and
A9: x in A by XBOOLE_0:3;
A10: x in T"{T.v} by A8,XBOOLE_0:def 5;
    not x in {v} by A8,XBOOLE_0:def 5;
    then
A11: x <> v by TARSKI:def 1;
    T.x in {T.v} by A10,FUNCT_1:def 13;
    then
A12: T.x = T.v by TARSKI:def 1;
    T.x = (T|A).x by A9,FUNCT_1:72;
    then
A13: (T|A).v = (T|A).x by A2,A12,FUNCT_1:72;
    dom T = [#]V by Th7;
    then dom (T|A) = A by RELAT_1:91;
    hence thesis by A1,A2,A9,A11,A13,FUNCT_1:def 8;
  end;
  take X;
  thus thesis by A3,A7,XBOOLE_1:45;
end;

theorem Th35:
  for X being Subset of V st X misses Carrier l & X <> {} holds l .: X = {0.F}
proof
  let X be Subset of V such that
A1: X misses Carrier l and
A2: X <> {};
A3: l .: X c= {0.F} by A1,Th28;
  dom l = [#]V by FUNCT_2:169;
  then l .: X <> {} by A2,RELAT_1:152;
  hence thesis by A3,ZFMISC_1:39;
end;

theorem Th36:
  for w being Element of W st w in Carrier (T@l) holds T"{w} meets Carrier l
proof
  let w be Element of W such that
A1: w in Carrier (T@l);
A2: (T@l).w <> 0.F by A1,VECTSP_6:20;
  assume
A3: T"{w} misses Carrier l;
  per cases;
  suppose T"{w} = {};
    then Sum (l .: T"{w}) = Sum ({}F) by RELAT_1:149
      .= 0.F by RLVECT_2:14;
    hence thesis by A2,Def5;
  end;
  suppose T"{w} <> {};
    then l .: T"{w} = {0.F} by A3,Th35;
    then Sum (l .: T"{w}) = 0.F by RLVECT_2:15;
    hence thesis by A2,Def5;
  end;
end;

theorem Th37:
  for v being Element of V st T|(Carrier l) is one-to-one & v in Carrier l
  holds (T@l).(T.v) = l.v
proof
  let v be Element of V such that
A1: T|(Carrier l) is one-to-one and
A2: v in Carrier l;
  consider X being Subset of V such that
A3: X misses Carrier l and
A4: T"{T.v} = {v} \/ X by A1,A2,Th34;
  per cases;
  suppose
A5: X = {};
A6: dom l = [#]V by FUNCT_2:169;
    l .: {v} = Im (l,v)
      .= {l.v} by A6,FUNCT_1:117;
    then Sum (l .: T"{T.v}) = l.v by A4,A5,RLVECT_2:15;
    hence thesis by Def5;
  end;
  suppose
A7: X <> {};
A8: l .: T"{T.v} = (l .: {v}) \/ (l .: X) by A4,RELAT_1:153;
A9: dom l = [#]V by FUNCT_2:169;
A10: l .: {v} = Im (l,v)
      .= {l.v} by A9,FUNCT_1:117;
A11: l .: X = {0.F}
    proof
A12:  {0.F} c= l .: X
      proof
        let x be set such that
A13:    x in {0.F};
A14:    x = 0.F by A13,TARSKI:def 1;
        consider y being set such that
A15:    y in X by A7,XBOOLE_0:def 1;
A16:    now
          assume y in Carrier l;
          then y in (Carrier l) /\ X by A15,XBOOLE_0:def 4;
          hence contradiction by A3,XBOOLE_0:def 7;
        end;
        reconsider y as Element of V by A15;
        l.y = x by A14,A16;
        hence thesis by A9,A15,FUNCT_1:def 12;
      end;
      l .: X c= {0.F}
      proof
        let y be set such that
A17:    y in l .: X;
        consider x being set such that
A18:    x in dom l and
A19:    x in X and
A20:    y = l.x by A17,FUNCT_1:def 12;
A21:    now
          assume x in Carrier l;
          then x in (Carrier l) /\ X by A19,XBOOLE_0:def 4;
          hence contradiction by A3,XBOOLE_0:def 7;
        end;
        reconsider x as Element of V by A18;
        l.x = 0.F by A21;
        hence thesis by A20,TARSKI:def 1;
      end;
      hence thesis by A12,XBOOLE_0:def 10;
    end;
    l .: X misses l .: {v}
    proof
A22:  dom l = [#]V by FUNCT_2:169;
A23:  l .: {v} = Im (l,v)
        .= {l.v} by A22,FUNCT_1:117;
      assume l .: X meets l .: {v};
      then consider x being set such that
A24:  x in l .: X and
A25:  x in l .: {v} by XBOOLE_0:3;
A26:  x = 0.F by A11,A24,TARSKI:def 1;
      x = l.v by A23,A25,TARSKI:def 1;
      hence thesis by A2,A26,VECTSP_6:20;
    end;
    then Sum (l .: T"{T.v}) = (Sum (l .: {v})) + (Sum (l .: X)) by A8,
RLVECT_2:18
      .= l.v + (Sum ({0.F})) by A10,A11,RLVECT_2:15
      .= l.v + 0.F by RLVECT_2:15
      .= l.v by RLVECT_1:10;
    hence thesis by Def5;
  end;
end;

theorem Th38:
  for G being FinSequence of V
  st rng G = Carrier l & T|(Carrier l) is one-to-one
  holds T*(l (#) G) = (T@l) (#) (T*G)
proof
  let G be FinSequence of V such that
A1: rng G = Carrier l and
A2: T|(Carrier l) is one-to-one;
  reconsider L = T*(l (#) G) as FinSequence of W;
  reconsider R = (T@l) (#) (T*G) as FinSequence of W;
A3: len L = len (l (#) G) by FINSEQ_2:37
    .= len G by VECTSP_6:def 8;
A4: len R = len (T*G) by VECTSP_6:def 8
    .= len G by FINSEQ_2:37;
  for k being Nat st 1 <= k & k <= len L holds L.k = R.k
  proof
    let k be Nat such that
A5: 1 <= k and
A6: k <= len L;
    len (l (#) G) = len G by VECTSP_6:def 8;
    then
A7: dom (l (#) G) = Seg len G by FINSEQ_1:def 3;
    k in NAT by ORDINAL1:def 13;
    then
A8: k in dom (l (#) G) by A3,A5,A6,A7;
    then
A9: k in dom G by A7,FINSEQ_1:def 3;
    then
A10: G.k in rng G by FUNCT_1:12;
    reconsider gk = G/.k as Element of V;
A11: (l (#) G).k = (l.gk)*gk by A8,VECTSP_6:def 8;
A12: G.k = G/.k by A9,PARTFUN1:def 8;
    then reconsider Gk = G.k as Element of V;
    (T*G).k = T.Gk by A9,FUNCT_1:23;
    then reconsider TGk = (T*G).k as Element of W;
A13: L.k = T.((l.gk)*gk) by A8,A11,FUNCT_1:23
      .= (l.gk)*(T.gk) by MOD_2:def 5
      .= (l.Gk)*TGk by A9,A12,FUNCT_1:23;
A14: dom R = Seg len G by A4,FINSEQ_1:def 3;
    dom T = [#]V by Th7;
    then dom (T*G) = dom G by A1,RELAT_1:46;
    then
A15: (T*G)/.k = (T*G).k by A9,PARTFUN1:def 8;
    (T@l).((T*G).k) = l.(G.k)
    proof
      (T*G).k = T.(G.k) by A9,FUNCT_1:23;
      hence thesis by A1,A2,A10,Th37;
    end;
    hence thesis by A7,A8,A13,A14,A15,VECTSP_6:def 8;
  end;
  hence thesis by A3,A4,FINSEQ_1:18;
end;

theorem Th39:
  T|(Carrier l) is one-to-one implies T .: (Carrier l) = Carrier (T@l)
proof
  assume
A1: T|(Carrier l) is one-to-one;
A2: Carrier (T@l) c= T .: (Carrier l) by Th30;
  T .: (Carrier l) c= Carrier (T@l)
  proof
    let w be set such that
A3: w in T .: (Carrier l);
    consider v being set such that
A4: v in dom T and
A5: v in Carrier l and
A6: T.v = w by A3,FUNCT_1:def 12;
    reconsider v as Element of V by A4;
A7: (T@l).(T.v) = l.v by A1,A5,Th37;
    l.v <> 0.F by A5,VECTSP_6:20;
    hence thesis by A6,A7;
  end;
  hence thesis by A2,XBOOLE_0:def 10;
end;

theorem Th40:
  for A being Subset of V, B being Basis of V,
  l being Linear_Combination of B \ A st A is Basis of ker T & A c= B
  holds T.(Sum l) = Sum (T@l)
proof
  let A be Subset of V, B be Basis of V,
  l be Linear_Combination of B \ A such that
A1: A is Basis of ker T and
A2: A c= B;
  consider G being FinSequence of V such that
A3: G is one-to-one and
A4: rng G = Carrier l and
A5: Sum l = Sum (l (#) G) by VECTSP_6:def 9;
  set H = T*G;
  reconsider H as FinSequence of W;
A6: T|(B \ A) is one-to-one by A1,A2,Th22;
  Carrier l c= B \ A by VECTSP_6:def 7;
  then
A7: (T|(B \ A))|(Carrier l) = T|(Carrier l) by RELAT_1:103;
  then
A8: T|(Carrier l) is one-to-one by A6,FUNCT_1:84;
  dom T = [#]V by Th7;
  then
A9: H is one-to-one by A3,A4,A6,A7,Th1,FUNCT_1:84;
A10: rng H = T .: (Carrier l) by A4,RELAT_1:160
    .= Carrier (T@l) by A8,Th39;
A11: T*(l (#) G) = (T@l) (#) H by A4,A8,Th38;
  Sum (T@l) = Sum ((T@l) (#) H) by A9,A10,VECTSP_6:def 9;
  hence thesis by A5,A11,MATRLIN:20;
end;

theorem Th41:
  for X being Subset of V st X is linearly-dependent
  holds ex l being Linear_Combination of X st Carrier l <> {} & Sum l = 0.V
proof
  let X be Subset of V such that
A1: X is linearly-dependent;
  not (for l being Linear_Combination of X st Sum l = 0.V
  holds Carrier l = {}) by A1,VECTSP_7:def 1;
  hence thesis;
end;

:: "Pulling back" a linear combination from the image space of a
:: linear transformation to the base space.

definition
  let F be Field, V,W be VectSp of F, X be Subset of V,
  T be linear-transformation of V,W, l be Linear_Combination of T .: X;
  assume
A1: T|X is one-to-one;
  func T#l -> Linear_Combination of X equals
  :Def6:
  (l*T) +* ((V \ X) --> 0.F);
  coherence
  proof
    set f = (l*T) +* ((V \ X) --> 0.F);
    dom l = [#]W by FUNCT_2:169;
    then rng T c= dom l by Th7;
    then
A2: dom (l*T) = dom T by RELAT_1:46;
A3: dom ((V \ X) --> 0.F) = [#]V \ X by FUNCOP_1:19;
A4: dom T = [#]V by Th7;
    [#]V \/ ([#]V \ X) = [#]V by XBOOLE_1:12;
    then
A5: dom f = [#]V by A2,A3,A4,FUNCT_4:def 1;
A6: rng f c= rng (l*T) \/ rng ((V \ X) --> 0.F) by FUNCT_4:18;
A7: rng (l*T) c= rng l by RELAT_1:45;
    rng ((V \ X) --> 0.F) c= {0.F} by FUNCOP_1:19;
    then
A8: rng ((V \ X) --> 0.F) c= [#]F by XBOOLE_1:1;
    rng l c= [#]F by FUNCT_2:169;
    then rng (l*T) c= [#]F by A7,XBOOLE_1:1;
    then rng (l*T) \/ rng ((V \ X) --> 0.F) c= [#]F by A8,XBOOLE_1:8;
    then rng f c= [#]F by A6,XBOOLE_1:1;
    then reconsider f as Element of Funcs ([#]V,[#]F) by A5,FUNCT_2:def 2;
    ex T being finite Subset of V st
    for v being Element of V st not v in T holds f.v = 0.F
    proof
      set C = { v where v is Element of V : f.v <> 0.F };
      C c= [#]V
      proof
        let x be set such that
A9:     x in C;
        consider v being Element of V such that
A10:    v = x and f.v <> 0.F by A9;
        thus thesis by A10;
      end;
      then reconsider C as Subset of V;
      C is finite
      proof
        card C c= card Carrier l
        proof
          ex g being Function
          st g is one-to-one & dom g = C & rng g c= Carrier l
          proof
            set S = (T"(Carrier l)) /\ X;
            set g = T|S;
A11:        S = C
            proof
A12:          S c= C
              proof
                let x be set such that
A13:            x in S;
A14:            x in X by A13,XBOOLE_0:def 4;
A15:            x in T"(Carrier l) by A13,XBOOLE_0:def 4;
                then
A16:            x in dom T by FUNCT_1:def 13;
A17:            T.x in Carrier l by A15,FUNCT_1:def 13;
                reconsider x as Element of V by A13;
                not x in dom ((V \ X) --> 0.F) by A14,XBOOLE_0:def 5;
                then
A18:            f.x = (l*T).x by FUNCT_4:12;
A19:            (l*T).x = l.(T.x) by A16,FUNCT_1:23;
                l.(T.x) <> 0.F by A17,VECTSP_6:20;
                hence thesis by A18,A19;
              end;
              C c= S
              proof
                let x be set such that
A20:            x in C;
                consider v being Element of V such that
A21:            v = x and
A22:            f.v <> 0.F by A20;
                reconsider x as Element of V by A21;
A23:            now
                  assume not x in X;
                  then
A24:              x in V \ X by XBOOLE_0:def 5;
                  then x in dom ((V \ X) --> 0.F) by FUNCOP_1:19;
                  then f.x = ((V \ X) --> 0.F).x by FUNCT_4:14;
                  hence contradiction by A21,A22,A24,FUNCOP_1:13;
                end;
                x in T"(Carrier l)
                proof
A25:              dom T = [#]V by Th7;
                  T.x in Carrier l
                  proof
                    not x in V \ X by A23,XBOOLE_0:def 5;
                    then
A26:                f.x = (l*T).x by A3,FUNCT_4:12;
                    (l*T).x = l.(T.x) by A25,FUNCT_1:23;
                    hence thesis by A21,A22,A26;
                  end;
                  hence thesis by A25,FUNCT_1:def 13;
                end;
                hence thesis by A23,XBOOLE_0:def 4;
              end;
              hence thesis by A12,XBOOLE_0:def 10;
            end;
A27:        dom g = S
            proof
              dom T = [#]V by Th7;
              hence thesis by RELAT_1:91;
            end;
A28:        rng g c= Carrier l
            proof
              let y be set such that
A29:          y in rng g;
              consider x being set such that
A30:          x in dom g and
A31:          y = g.x by A29,FUNCT_1:def 5;
              x in T"(Carrier l) by A27,A30,XBOOLE_0:def 4;
              then T.x in Carrier l by FUNCT_1:def 13;
              hence thesis by A27,A30,A31,FUNCT_1:72;
            end;
            take g;
            thus thesis by A1,A11,A27,A28,Th2,XBOOLE_1:17;
          end;
          hence thesis by CARD_1:26;
        end;
        hence thesis;
      end;
      then reconsider C as finite Subset of V;
      take C;
      thus thesis;
    end;
    then reconsider f as Linear_Combination of V by VECTSP_6:def 4;
    Carrier f c= X
    proof
      let x be set such that
A32:  x in Carrier f;
      reconsider x as Element of V by A32;
      now
        assume not x in X;
        then
A33:    x in V \ X by XBOOLE_0:def 5;
        then f.x = ((V \ X) --> 0.F).x by A3,FUNCT_4:14
          .= 0.F by A33,FUNCOP_1:13;
        hence contradiction by A32,VECTSP_6:20;
      end;
      hence thesis;
    end;
    hence thesis by VECTSP_6:def 7;
  end;
end;

theorem Th42:
  for X being Subset of V, l being Linear_Combination of T .: X,
  v being Element of V st v in X & T|X is one-to-one holds (T#l).v = l.(T.v)
proof
  let X be Subset of V, l be Linear_Combination of T .: X,
  v be Element of V such that
A1: v in X and
A2: T|X is one-to-one;
A3: not v in dom ((V \ X) --> 0.F) by A1,XBOOLE_0:def 5;
  T#l = (l*T) +* ((V \ X) --> 0.F) by A2,Def6;
  then
A4: (T#l).v = (l*T).v by A3,FUNCT_4:12;
  dom T = [#]V by Th7;
  hence thesis by A4,FUNCT_1:23;
end;

:: # is a right inverse of @

theorem Th43:
  for X being Subset of V, l being Linear_Combination of T .: X
  st T|X is one-to-one holds T@(T#l) = l
proof
  let X be Subset of V, l be Linear_Combination of T .: X such that
A1: T|X is one-to-one;
  set m = T@(T#l);
  let w be Element of W;
  per cases;
  suppose
A2: w in Carrier l;
    then
A3: l.w <> 0.F by VECTSP_6:20;
    Carrier l c= T .: X by VECTSP_6:def 7;
    then consider v being set such that
A4: v in dom T and
A5: v in X and
A6: w = T.v by A2,FUNCT_1:def 12;
    reconsider v as Element of V by A4;
    consider B being Subset of V such that
A7: B misses X and
A8: T"{T.v} = {v} \/ B by A1,A5,Th34;
A9: dom (T#l) = [#]V by FUNCT_2:169;
A10: (T#l).v = l.(T.v) by A1,A5,Th42;
A11: (T#l) .: {v} = Im (T#l,v)
      .= {(T#l).v} by A9,FUNCT_1:117;
A12: m.w = Sum ((T#l) .: T"{T.v}) by A6,Def5
      .= Sum ({l.(T.v)} \/ ((T#l) .: B)) by A8,A10,A11,RELAT_1:153;
    per cases;
    suppose B = {};
      then m.w = Sum ({l.(T.v)} \/ {}F) by A12,RELAT_1:149
        .= l.w by A6,RLVECT_2:15;
      hence thesis;
    end;
    suppose
A13:  B <> {};
      Carrier (T#l) c= X by VECTSP_6:def 7;
      then B misses Carrier (T#l) by A7,XBOOLE_1:63;
      then m.w = Sum ({l.(T.v)} \/ {0.F}) by A12,A13,Th35
        .= Sum ({l.(T.v)}) + Sum ({0.F}) by A3,A6,RLVECT_2:18,ZFMISC_1:17
        .= l.(T.v) + Sum ({0.F}) by RLVECT_2:15
        .= l.(T.v) + 0.F by RLVECT_2:15
        .= l.w by A6,RLVECT_1:10;
      hence thesis;
    end;
  end;
  suppose
A14: not w in Carrier l;
    then
A15: l.w = 0.F;
    now
      assume
A16:  m.w <> 0.F;
      then w in Carrier m;
      then T"{w} meets Carrier (T#l) by Th36;
      then consider v being Element of V such that
A17:  v in T"{w} and
A18:  v in Carrier (T#l) by Th3;
      T.v in {w} by A17,FUNCT_1:def 13;
      then
A19:  T.v = w by TARSKI:def 1;
A20:  Carrier (T#l) c= X by VECTSP_6:def 7;
      then T|(Carrier (T#l)) is one-to-one by A1,Th2;
      then m.w = (T#l).v by A18,A19,Th37
        .= 0.F by A1,A15,A18,A19,A20,Th42;
      hence contradiction by A16;
    end;
    hence thesis by A14;
  end;
end;

begin :: The rank+nullity theorem

definition
  let F be Field, V,W be finite-dimensional VectSp of F,
  T be linear-transformation of V,W;
  func rank(T) -> Nat equals

  dim (im T);
  coherence;
  func nullity(T) -> Nat equals

  dim (ker T);
  coherence;
end;

theorem Th44:
  for V,W being finite-dimensional VectSp of F,
  T being linear-transformation of V,W holds dim V = rank(T) + nullity(T)
proof
  let V,W be finite-dimensional VectSp of F,
  T be linear-transformation of V,W;
  consider A being finite Basis of ker T;
  reconsider A' = A as Subset of V by Th19;
  consider B being Basis of V such that
A1: A c= B by VECTSP_9:17;
  reconsider B as finite Subset of V by VECTSP_9:24;
  reconsider X = B \ A' as finite Subset of B by XBOOLE_1:36;
  reconsider X as finite Subset of V;
A2: B = A \/ X by A1,XBOOLE_1:45;
  reconsider C = T .: X as finite Subset of W;
  reconsider A as finite Basis of ker T;
  reconsider B as finite Basis of V;
A3: T|X is one-to-one by A1,Th22;
A4: X c= dom (T|X)
  proof
    dom T = [#]V by Th7;
    hence thesis by RELAT_1:91;
  end;
A5: card C = card X
  proof
    X,(T|X) .: X are_equipotent by A3,A4,CARD_1:60;
    then X,C are_equipotent by RELAT_1:162;
    hence thesis by CARD_1:21;
  end;
A6: C is linearly-independent
  proof
    assume C is linearly-dependent;
    then consider l being Linear_Combination of C such that
A7: Carrier l <> {} and
A8: Sum l = 0.W by Th41;
    ex m being Linear_Combination of X st l = T@m
    proof
      reconsider l' = l as Linear_Combination of T .: X;
      set m = T#(l');
      take m;
      thus thesis by A3,Th43;
    end;
    then consider m being Linear_Combination of B \ A' such that
A9: l = T@m;
    T.(Sum m) = 0.W by A1,A8,A9,Th40;
    then Sum m in ker T by Th10;
    then Sum m in Lin A by VECTSP_7:def 3;
    then Sum m in Lin A' by VECTSP_9:21;
    then consider n being Linear_Combination of A' such that
A10: Sum m = Sum n by VECTSP_7:12;
    (Sum m) - (Sum n) = 0.V by A10,VECTSP_1:66;
    then
A11: Sum (m - n) = 0.V by VECTSP_6:80;
A12: Carrier (m - n) c= (Carrier m) \/ (Carrier n) by VECTSP_6:74;
A13: Carrier m c= B \ A' by VECTSP_6:def 7;
A14: Carrier n c= A by VECTSP_6:def 7;
A15: (B \ A') \/ A' = B by A1,XBOOLE_1:45;
    (Carrier m) \/ (Carrier n) c= (B \ A') \/ A by A13,A14,XBOOLE_1:13;
    then Carrier (m - n) c= B by A12,A15,XBOOLE_1:1;
    then reconsider o = m - n as Linear_Combination of B by VECTSP_6:def 7;
    B is linearly-independent by VECTSP_7:def 3;
    then
A16: Carrier o = {} by A11,VECTSP_7:def 1;
    A' misses B \ A' by XBOOLE_1:79;
    then Carrier (m - n) = (Carrier m) \/ (Carrier n) by A13,A14,Th32,
XBOOLE_1:64;
    then Carrier m = {} by A16;
    then T .: (Carrier m) = {} by RELAT_1:149;
    hence thesis by A7,A9,Th30,XBOOLE_1:3;
  end;
  reconsider C as finite Subset of im T by Th12;
  reconsider L = Lin C as strict Subspace of im T;
  for v being Element of im T holds v in L
  proof
    let v be Element of im T;
A17: v in im T by STRUCT_0:def 5;
    reconsider v' = v as Element of W by VECTSP_4:18;
    consider u being Element of V such that
A18: T.u = v' by A17,Th13;
    reconsider A' = A as Subset of V by Th19;
    V is_the_direct_sum_of Lin A', Lin (B \ A') by A1,Th33;
    then
A19: (Omega).V = (Lin A') + (Lin (B \ A')) by VECTSP_5:def 4;
    u in (Omega).V by STRUCT_0:def 5;
    then consider u1, u2 being Element of V such that
A20: u1 in Lin A' and
A21: u2 in Lin (B \ A') and
A22: u = u1 + u2 by A19,VECTSP_5:5;
A23: T.u = T.u1 + T.u2 by A22,MOD_2:def 5;
    Lin A = ker T by VECTSP_7:def 3;
    then u1 in ker T by A20,VECTSP_9:21;
    then T.u1 = 0.W by Th10;
    then
A24: T.u = T.u2 by A23,RLVECT_1:10;
    consider l being Linear_Combination of B \ A' such that
A25: u2 = Sum l by A21,VECTSP_7:12;
A26: T@l is Linear_Combination of T .: (Carrier l) by Th29;
A27: Carrier l c= B \ A' by VECTSP_6:def 7;
    reconsider C' = C as Subset of W;
    reconsider m = T@l as Linear_Combination of C' by A26,A27,RELAT_1:156
,VECTSP_6:25;
    ex m being Linear_Combination of C' st v = Sum m
    proof
      take m;
      thus thesis by A1,A18,A24,A25,Th40;
    end;
    then v in Lin C' by VECTSP_7:12;
    hence thesis by VECTSP_9:21;
  end;
  then
A28: Lin C = im T by VECTSP_4:40;
  reconsider C as linearly-independent Subset of im T by A6,VECTSP_9:16;
  reconsider C as finite Basis of im T by A28,VECTSP_7:def 3;
A29: nullity T = card A by VECTSP_9:def 2;
A30: rank T = card C by VECTSP_9:def 2;
  dim V = card B by VECTSP_9:def 2
    .= rank T + nullity T by A2,A5,A29,A30,CARD_2:53,XBOOLE_1:79;
  hence thesis;
end;

theorem
  for V,W being finite-dimensional VectSp of F,
  T being linear-transformation of V,W st T is one-to-one holds dim V = rank T
proof
  let V,W be finite-dimensional VectSp of F,
  T be linear-transformation of V,W such that
A1: T is one-to-one;
  ker T = (0).V by A1,Th15;
  then
A2: nullity(T) = 0 by Th16;
  dim V = rank(T) + nullity(T) by Th44
    .= rank(T) by A2;
  hence thesis;
end;
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25 requirements BOOLE, SUBSET, NUMERALS, ARITHM;
26 definitions TARSKI, RELAT_1, FUNCT_1, FINSEQ_1, VECTSP_4, VECTSP_6, XBOOLE_0,
27 RLVECT_1, STRUCT_0, MOD_2, MATRLIN, FUNCOP_1, LOPBAN_1, FUNCT_2;
28 theorems TARSKI, ZFMISC_1, RELAT_1, FINSET_1, FINSEQ_1, FUNCT_1, VECTSP_7,
29 VECTSP_9, CARD_2, XBOOLE_1, FUNCT_2, SUBSET_1, XBOOLE_0, VECTSP_1,
30 RLVECT_1, VECTSP_4, VECTSP_6, STRUCT_0, RLVECT_2, MOD_2, MATRLIN, CARD_1,
31 FUNCOP_1, VECTSP_5, FUNCT_7, FINSEQ_2, FUNCT_4, ENUMSET1, ORDINAL1,
32 PARTFUN1;
33 schemes CLASSES1;
35 begin
37 theorem Th1:
38 for f,g being Function
39 st g is one-to-one & f|(rng g) is one-to-one & rng g c= dom f
40 holds f*g is one-to-one
41 proof
42 let f,g be Function such that
43 A1: g is one-to-one and
44 A2: f|(rng g) is one-to-one and
45 A3: rng g c= dom f;
46 set h = f*g;
47 A4: dom h = dom g
48 proof
49 thus dom h c= dom g
50 proof
51 let x be set such that
52 A5: x in dom h;
53 thus thesis by A5,FUNCT_1:21;
54 end;
55 thus dom g c= dom h
56 proof
57 let x be set such that
58 A6: x in dom g;
59 g.x in rng g by A6,FUNCT_1:12;
60 hence thesis by A3,A6,FUNCT_1:21;
61 end;
62 end;
63 for x1,x2 being set st x1 in dom h & x2 in dom h & h.x1 = h.x2 holds x1 = x2
64 proof
65 let x1,x2 be set such that
66 A7: x1 in dom h and
67 A8: x2 in dom h and
68 A9: h.x1 = h.x2;
69 A10: h.x1 = f.(g.x1) by A7,FUNCT_1:22;
70 A11: h.x2 = f.(g.x2) by A8,FUNCT_1:22;
71 A12: g.x2 in rng g by A4,A8,FUNCT_1:12;
72 A13: f.(g.x1) = (f|(rng g)).(g.x1) by A4,A7,FUNCT_1:12,72;
73 A14: f.(g.x2) = (f|(rng g)).(g.x2) by A4,A8,FUNCT_1:12,72;
74 dom (f|(rng g)) = rng g by A3,RELAT_1:91;
75 then
76 A15: g.x1 in dom (f|(rng g)) by A4,A7,FUNCT_1:12;
77 g.x2 in dom (f|(rng g)) by A3,A12,RELAT_1:91;
78 then g.x1 = g.x2 by A2,A9,A10,A11,A13,A14,A15,FUNCT_1:def 8;
79 hence thesis by A1,A4,A7,A8,FUNCT_1:def 8;
80 end;
81 hence thesis by FUNCT_1:def 8;
82 end;
84 :: If a function is one-to-one on a set X, then it is one-to-one on
85 :: any subset of X.
87 theorem Th2:
88 for f being Function, X,Y being set st X c= Y & f|Y is one-to-one
89 holds f|X is one-to-one
90 proof
91 let f be Function, X,Y be set such that
92 A1: X c= Y and
93 A2: f|Y is one-to-one;
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94 f|X = (f|Y)|X by A1,RELAT_1:103;
95 hence thesis by A2,FUNCT_1:84;
96 end;
98 theorem Th3:
99 for V being 1-sorted, X,Y being Subset of V

100 holds X meets Y iff ex v being Element of V st v in X & v in Y
101 proof
102 let V be 1-sorted, X,Y be Subset of V;
103 X meets Y implies ex v being Element of V st v in X & v in Y
104 proof
105 assume X meets Y;
106 then consider z being set such that
107 A1: z in X and
108 A2: z in Y by XBOOLE_0:3;
109 reconsider v = z as Element of V by A1;
110 take v;
111 thus thesis by A1,A2;
112 end;
113 hence thesis by XBOOLE_0:3;
114 end;
116 reserve F for Field,
117 V,W for VectSp of F;
119 registration
120 let F be Field, V be finite-dimensional VectSp of F;
121 cluster finite Basis of V;
122 existence
123 proof
124 consider A being finite Subset of V such that
125 A1: A is Basis of V by MATRLIN:def 3;
126 reconsider A as Basis of V by A1;
127 take A;
128 thus thesis;
129 end;
130 end;
132 registration
133 let F be Field, V,W be VectSp of F;
134 cluster linear Function of V,W;
135 existence
136 proof
137 set f = FuncZero ([#]V,W);
138 reconsider f as Function of V,W;
139 A1: f is linear
140 proof
141 thus for x,y being Vector of V holds f.(x+y) = (f.x)+(f.y)
142 proof
143 let x,y be Vector of V;
144 A2: f.(x+y) = 0.W by FUNCOP_1:13;
145 A3: f.x = 0.W by FUNCOP_1:13;
146 f.y = 0.W by FUNCOP_1:13;
147 hence thesis by A2,A3,RLVECT_1:def 7;
148 end;
149 thus for a being Element of F, x being Element of V
150 holds f.(a*x) = a*(f.x)
151 proof
152 let a be Element of F, x be Element of V;
153 A4: f.(a*x) = 0.W by FUNCOP_1:13;
154 f.x = 0.W by FUNCOP_1:13;
155 hence thesis by A4,VECTSP_1:59;
156 end;
157 end;
158 take f;
159 thus thesis by A1;
160 end;
161 end;



The rank+nullity theorem

153

163 theorem Th4:
164 [#]V is finite implies V is finite-dimensional
165 proof
166 assume
167 A1: [#]V is finite;
168 consider B being Basis of V;
169 reconsider B as finite Subset of V by A1;
170 take B;
171 thus thesis;
172 end;
174 theorem
175 for V being finite-dimensional VectSp of F st card ([#]V) = 1
176 holds dim V = 0
177 proof
178 let V be finite-dimensional VectSp of F such that
179 A1: card ([#]V) = 1;
180 [#]V = {0.V}
181 proof
182 consider y being set such that
183 A2: [#]V = {y} by A1,CARD_2:60;
184 thus thesis by A2,TARSKI:def 1;
185 end;
186 then (Omega).V = (0).V by VECTSP_4:def 3;
187 hence thesis by VECTSP_9:33;
188 end;
190 theorem
191 card ([#]V) = 2 implies dim V = 1
192 proof
193 assume
194 A1: card ([#]V) = 2;
195 A3: [#]V is finite by A1;
196 reconsider C = [#]V as finite set by A1;
197 A4: card ([#]V) = card (C);
198 reconsider V as finite-dimensional VectSp of F by A3,Th4;
199 ex v being Vector of V st v <> 0.V & (Omega).V = Lin ({v})
200 proof
201 consider x,y being set such that
202 A5: x <> y and
203 A6: [#]V = {x,y} by A1,A4,CARD_2:79;
204 per cases by A6,TARSKI:def 2;
205 suppose
206 A7: x = 0.V;
207 reconsider y as Element of V by A6,TARSKI:def 2;
208 reconsider x as Element of V by A7;
209 set L = Lin ({y});
210 A8: for v being Element of V holds v in (Omega).V iff v in L
211 proof
212 let v be Element of V;
213 v in (Omega).V implies v in L
214 proof
215 assume v in (Omega).V;
216 A9: y in {y} by TARSKI:def 1;
217 A10: 0.L in L by STRUCT_0:def 5;
218 per cases by A6,TARSKI:def 2;
219 suppose v = x;
220 hence thesis by A7,A10,VECTSP_4:def 2;
221 end;
222 suppose v = y;
223 hence thesis by A9,VECTSP_7:13;
224 end;
225 end;
226 hence thesis by STRUCT_0:def 5;
227 end;
228 take y;
229 thus thesis by A5,A7,A8,VECTSP_4:38;
230 end;
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231 suppose
232 A11: y = 0.V;
233 then reconsider y as Element of V;
234 reconsider x as Element of V by A6,TARSKI:def 2;
235 set L = Lin ({x});
236 A12: for v being Element of V holds v in (Omega).V iff v in L
237 proof
238 let v be Element of V;
239 v in (Omega).V implies v in L
240 proof
241 assume v in (Omega).V;
242 A13: x in {x} by TARSKI:def 1;
243 A14: 0.L in L by STRUCT_0:def 5;
244 per cases by A6,TARSKI:def 2;
245 suppose v = y;
246 hence thesis by A11,A14,VECTSP_4:def 2;
247 end;
248 suppose v = x;
249 hence thesis by A13,VECTSP_7:13;
250 end;
251 end;
252 hence thesis by STRUCT_0:def 5;
253 end;
254 take x;
255 thus thesis by A5,A11,A12,VECTSP_4:38;
256 end;
257 end;
258 hence thesis by VECTSP_9:34;
259 end;
261 begin :: Basic facts of linear transformations
263 definition
264 let F be Field, V,W be VectSp of F;
265 mode linear-transformation of V,W is linear Function of V,W;
266 end;
268 reserve T for linear-transformation of V,W;
270 theorem Th7:
271 for V, W being non empty 1-sorted, T being Function of V,W holds
272 dom T = [#]V & rng T c= [#]W
273 proof
274 let V, W be non empty 1-sorted, T be Function of V,W;
275 T is Element of Funcs([#]V,[#]W) by FUNCT_2:11;
276 hence thesis by FUNCT_2:169;
277 end;
279 theorem Th8:
280 for x,y being Element of V holds T.x - T.y = T.(x - y)
281 proof
282 let x,y be Element of V;
283 A1: T.(x - y) = T.x + T.(-y) by MOD_2:def 5;
284 A2: -y = (-1.F)*y by VECTSP_1:59;
285 T.((-1.F)*y) = (-1.F)*(T.y) by MOD_2:def 5;
286 hence thesis by A1,A2,VECTSP_1:59;
287 end;
289 theorem Th9:
290 T.(0.V) = 0.W
291 proof
292 0.V = (0.F)*(0.V) by VECTSP_1:59;
293 then T.(0.V) = (0.F)*T.(0.V) by MOD_2:def 5
294 .= 0.W by VECTSP_1:59;
295 hence thesis;
296 end;
298 definition
299 let F be Field, V,W be VectSp of F, T be linear-transformation of V,W;
300 func ker T -> strict Subspace of V means
301 :Def1:
302 [#]it = { u where u is Element of V : T.u = 0.W };
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303 existence
304 proof
305 set K = { u where u is Element of V : T.u = 0.W };
306 K c= [#]V
307 proof
308 let x be set such that
309 A1: x in K;
310 consider u being Element of V such that
311 A2: u = x and T.u = 0.W by A1;
312 thus thesis by A2;
313 end;
314 then reconsider K as Subset of V;
315 A3: for v being Element of V st v in K holds T.v = 0.W
316 proof
317 let v be Element of V such that
318 A4: v in K;
319 consider u being Element of V such that
320 A5: u = v and
321 A6: T.u = 0.W by A4;
322 thus thesis by A5,A6;
323 end;
324 K <> {} & K is linearly-closed
325 proof
326 T.(0.V) = 0.W by Th9;
327 then 0.V in K;
328 hence K <> {};
329 thus K is linearly-closed
330 proof
331 A7: now
332 let u,v be Element of V such that
333 A8: u in K and
334 A9: v in K;
335 A10: T.u = 0.W by A3,A8;
336 T.v = 0.W by A3,A9;
337 then T.(u+v) = 0.W + 0.W by A10,MOD_2:def 5
338 .= 0.W by RLVECT_1:def 7;
339 hence u+v in K;
340 end;
341 now
342 let u be Element of V, a be Element of F such that
343 A11: u in K;
344 T.u = 0.W by A3,A11;
345 then T.(a*u) = a*(0.W) by MOD_2:def 5
346 .= 0.W by VECTSP_1:59;
347 hence a*u in K;
348 end;
349 then for a being Element of F, u being Element of V st u in K
350 holds a*u in K;
351 hence thesis by A7,VECTSP_4:def 1;
352 end;
353 end;
354 then consider W being strict Subspace of V such that
355 A12: K = the carrier of W by VECTSP_4:42;
356 take W;
357 thus thesis by A12;
358 end;
359 uniqueness by VECTSP_4:37;
360 end;
362 theorem Th10:
363 for x being Element of V holds x in ker T iff T.x = 0.W
364 proof
365 let x be Element of V;
366 thus x in ker T implies T.x = 0.W
367 proof
368 assume x in ker T;
369 then
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370 A1: x in [#]ker T by STRUCT_0:def 5;
371 [#]ker T = { u where u is Element of V : T.u = 0.W } by Def1;
372 then consider u being Element of V such that
373 A2: u = x and
374 A3: T.u = 0.W by A1;
375 thus thesis by A2,A3;
376 end;
377 assume T.x = 0.W;
378 then x in { u where u is Element of V : T.u = 0.W };
379 then x in [#]ker T by Def1;
380 hence thesis by STRUCT_0:def 5;
381 end;
383 definition
384 let V,W be non empty 1-sorted, T be Function of V,W, X be Subset of V;
385 redefine func T .: X -> Subset of W;
386 coherence
387 proof
388 A1: rng T c= [#]W by Th7;
389 T .: X c= rng T by RELAT_1:144;
390 hence thesis by A1,XBOOLE_1:1;
391 end;
392 end;
394 definition
395 let F be Field, V,W be VectSp of F, T be linear-transformation of V,W;
396 func im T -> strict Subspace of W means
397 :Def2:
398 [#]it = T .: [#]V;
399 existence
400 proof
401 reconsider U = T .: [#]V as Subset of W;
402 A1: for u being Element of W holds
403 u in U iff ex v being Element of V st T.v = u
404 proof
405 let u be Element of W;
406 thus u in U implies ex v being Element of V st T.v = u
407 proof
408 assume u in U;
409 then consider x being set such that x in dom T and
410 A2: x in [#]V and
411 A3: u = T.x by FUNCT_1:def 12;
412 reconsider x as Element of V by A2;
413 take x;
414 thus thesis by A3;
415 end;
416 thus (ex v being Element of V st T.v = u) implies u in U
417 proof
418 given v being Element of V such that
419 A4: T.v = u;
420 v in [#]V;
421 then v in dom T by Th7;
422 hence thesis by A4,FUNCT_1:def 12;
423 end;
424 end;
425 U <> {} & U is linearly-closed
426 proof
427 thus U <> {}
428 proof
429 T.(0.V) = 0.W by Th9;
430 hence thesis by A1;
431 end;
432 thus U is linearly-closed
433 proof
434 A5: now
435 let u,v be Element of W such that
436 A6: u in U and
437 A7: v in U;
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438 consider x being Element of V such that
439 A8: T.x = u by A1,A6;
440 consider y being Element of V such that
441 A9: T.y = v by A1,A7;
442 u+v = T.(x+y) by A8,A9,MOD_2:def 5;
443 hence u+v in U by A1;
444 end;
445 now
446 let a be Element of F, w be Element of W such that
447 A10: w in U;
448 consider v being Element of V such that
449 A11: T.v = w by A1,A10;
450 T.(a*v) = a*w by A11,MOD_2:def 5;
451 hence a*w in U by A1;
452 end;
453 hence thesis by A5,VECTSP_4:def 1;
454 end;
455 end;
456 then consider A being strict Subspace of W such that
457 A12: U = the carrier of A by VECTSP_4:42;
458 take A;
459 thus thesis by A12;
460 end;
461 uniqueness by VECTSP_4:37;
462 end;
464 theorem
465 0.V in ker T
466 proof
467 T.(0.V) = 0.W
468 proof
469 0.V = (0.F)*(0.V) by VECTSP_1:59;
470 then T.(0.V) = (0.F)*T.(0.V) by MOD_2:def 5
471 .= 0.W by VECTSP_1:59;
472 hence thesis;
473 end;
474 hence thesis by Th10;
475 end;
477 theorem Th12:
478 for X being Subset of V holds T .: X is Subset of im T
479 proof
480 let X be Subset of V;
481 [#](im T) = T .: [#]V by Def2;
482 hence thesis by RELAT_1:156;
483 end;
485 theorem Th13:
486 for y being Element of W
487 holds y in im T iff ex x being Element of V st y = T.x
488 proof
489 let y be Element of W;
490 A1: y in im T implies ex x being Element of V st y = T.x
491 proof
492 assume y in im T;
493 then reconsider y as Element of im T by STRUCT_0:def 5;
494 [#](im T) = T .: [#]V by Def2;
495 then consider x being set such that x in dom T and
496 A2: x in [#]V and
497 A3: y = T.x by FUNCT_1:def 12;
498 reconsider x as Element of V by A2;
499 take x;
500 thus thesis by A3;
501 end;
502 (ex x being Element of V st y = T.x) implies y in im T
503 proof
504 assume ex x being Element of V st y = T.x;
505 then consider x being Element of V such that
506 A4: y = T.x;
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507 dom T = [#]V by Th7;
508 then y in T .: [#]V by A4,FUNCT_1:def 12;
509 then y in [#](im T) by Def2;
510 hence thesis by STRUCT_0:def 5;
511 end;
512 hence thesis by A1;
513 end;
515 theorem
516 for x being Element of ker T holds T.x = 0.W
517 proof
518 let x be Element of ker T;
519 reconsider y = x as Element of V by VECTSP_4:18;
520 y in ker T by STRUCT_0:def 5;
521 hence thesis by Th10;
522 end;
524 theorem Th15:
525 T is one-to-one implies ker T = (0).V
526 proof
527 assume
528 A1: T is one-to-one;
529 reconsider Z = (0).V as Subspace of ker T by VECTSP_4:50;
530 for v being Element of ker T holds v in Z
531 proof
532 let v be Element of ker T;
533 assume
534 A2: not v in Z;
535 A3: T.(0.V) = 0.W by Th9;
536 A4: not v = 0.V by A2,VECTSP_4:46;
537 A5: v in ker T by STRUCT_0:def 5;
538 reconsider v as Element of V by VECTSP_4:18;
539 A6: T.v = 0.W by A5,Th10;
540 dom T = [#]V by Th7;
541 hence thesis by A1,A3,A4,A6,FUNCT_1:def 8;
542 end;
543 hence thesis by VECTSP_4:40;
544 end;
546 theorem Th16:
547 for V being finite-dimensional VectSp of F holds dim ((0).V) = 0
548 proof
549 let V be finite-dimensional VectSp of F;
550 (Omega).((0).V) = (0).((0).V) by VECTSP_4:47;
551 hence thesis by VECTSP_9:33;
552 end;
554 theorem Th17:
555 for x,y being Element of V st T.x = T.y holds x - y in ker T
556 proof
557 let x,y be Element of V such that
558 A1: T.x = T.y;
559 T.(x - y) = T.x - T.y by Th8
560 .= 0.W by A1,VECTSP_1:66;
561 hence thesis by Th10;
562 end;
564 theorem Th18:
565 for A being Subset of V, x,y being Element of V st x - y in Lin A
566 holds x in Lin (A \/ {y})
567 proof
568 let A be Subset of V, x,y be Element of V such that
569 A1: x - y in Lin A;
570 y in {y} by TARSKI:def 1;
571 then
572 A2: y in Lin ({y}) by VECTSP_7:13;
573 A3: (x - y) + y = x - (y - y) by RLVECT_1:43
574 .= x - 0.V by VECTSP_1:66
575 .= x by RLVECT_1:26;
576 Lin (A \/ {y}) = (Lin A) + (Lin {y}) by VECTSP_7:20;
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577 hence thesis by A1,A2,A3,VECTSP_5:5;
578 end;
580 begin :: Some basic facts about linearly independent subsets and linear
581 :: combinations
583 theorem Th19:
584 for X being Subset of V st V is Subspace of W holds X is Subset of W
585 proof
586 let X be Subset of V;
587 assume V is Subspace of W;
588 then
589 A1: [#]V c= [#]W by VECTSP_4:def 2;
590 X c= [#]W
591 proof
592 let x be set such that
593 A2: x in X;
594 x in [#]V by A2;
595 hence thesis by A1;
596 end;
597 hence thesis;
598 end;
600 :: A linearly independent set is a basis of its linear span.
602 theorem Th20:
603 for A being Subset of V st A is linearly-independent
604 holds A is Basis of Lin A
605 proof
606 let A be Subset of V such that
607 A1: A is linearly-independent;
608 A c= [#](Lin A)
609 proof
610 let x be set such that
611 A2: x in A;
612 reconsider x as Element of V by A2;
613 x in Lin A by A2,VECTSP_7:13;
614 hence thesis by STRUCT_0:def 5;
615 end;
616 then reconsider B = A as Subset of Lin A;
617 A3: B is linearly-independent by A1,VECTSP_9:16;
618 Lin B = Lin A by VECTSP_9:21;
619 hence thesis by A3,VECTSP_7:def 3;
620 end;
622 :: Adjoining an element x to A that is already in its linear span
623 :: results in a linearly dependent set.
625 theorem Th21:
626 for A being Subset of V, x being Element of V st x in Lin A & not x in A
627 holds A \/ {x} is linearly-dependent
628 proof
629 let A be Subset of V, x be Element of V such that
630 A1: x in Lin A and
631 A2: not x in A;
632 per cases;
633 suppose A is linearly-independent;
634 then reconsider A’ = A as Basis of Lin A by Th20;
635 x in [#](Lin A) by A1,STRUCT_0:def 5;
636 then reconsider X = {x} as Subset of Lin A by SUBSET_1:63;
637 A3: X misses A’
638 proof
639 assume X meets A’;
640 then consider y being set such that
641 A4: y in X and
642 A5: y in A’ by XBOOLE_0:3;
643 thus contradiction by A2,A4,A5,TARSKI:def 1;
644 end;
645 reconsider B = A’ \/ X as Subset of Lin A;
646 A6: B is linearly-dependent by A3,VECTSP_9:19;
647 thus thesis by A6,VECTSP_9:16;
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648 end;
649 suppose
650 A7: A is linearly-dependent;
651 thus thesis by A7,VECTSP_7:2,XBOOLE_1:7;
652 end;
653 end;
655 theorem Th22:
656 for A being Subset of V, B being Basis of V st A is Basis of ker T & A c= B
657 holds T|(B \ A) is one-to-one
658 proof
659 let A be Subset of V, B be Basis of V such that
660 A1: A is Basis of ker T and
661 A2: A c= B;
662 set f = T|(B \ A);
663 let x1,x2 be set such that
664 A3: x1 in dom f and
665 A4: x2 in dom f and
666 A5: f.x1 = f.x2 and
667 A6: x1 <> x2;
668 A7: dom T = [#]V by Th7;
669 reconsider x1 as Element of V by A3;
670 reconsider x2 as Element of V by A4;
671 reconsider A’ = A as Subset of V;
672 A8: x1 in B \ A by A3,A7,RELAT_1:91;
673 A9: x2 in B \ A by A4,A7,RELAT_1:91;
674 A10: f.x1 = T.x1 by A8,FUNCT_1:72;
675 f.x2 = T.x2 by A9,FUNCT_1:72;
676 then
677 A11: x1 - x2 in ker T by A5,A10,Th17;
678 reconsider A as Basis of ker T by A1;
679 ker T = Lin A by VECTSP_7:def 3;
680 then x1 - x2 in Lin A’ by A11,VECTSP_9:21;
681 then
682 A12: x1 in Lin (A’ \/ {x2}) by Th18;
683 A13: (A’ \/ {x2}) \/ {x1} = A’ \/ {x1,x2}
684 proof
685 {x2} \/ {x1} = {x1,x2} by ENUMSET1:41;
686 hence thesis by XBOOLE_1:4;
687 end;
688 A14: not x1 in (A’ \/ {x2})
689 proof
690 assume
691 A15: x1 in A’ \/ {x2};
692 per cases by A15,XBOOLE_0:def 3;
693 suppose x1 in A’;
694 hence contradiction by A8,XBOOLE_0:def 5;
695 end;
696 suppose x1 in {x2};
697 hence contradiction by A6,TARSKI:def 1;
698 end;
699 end;
700 A16: A’ \/ {x1,x2} c= B
701 proof
702 {x1,x2} c= B
703 proof
704 let z be set such that
705 A17: z in {x1,x2};
706 per cases by A17,TARSKI:def 2;
707 suppose z = x1;
708 hence thesis by A8,XBOOLE_0:def 5;
709 end;
710 suppose z = x2;
711 hence thesis by A9,XBOOLE_0:def 5;
712 end;
713 end;
714 hence thesis by A2,XBOOLE_1:8;
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715 end;
716 B is linearly-independent by VECTSP_7:def 3;
717 hence thesis by A12,A13,A14,A16,Th21,VECTSP_7:2;
718 end;
720 theorem
721 for A being Subset of V, l being Linear_Combination of A,
722 x being Element of V, a being Element of F
723 holds l +* (x,a) is Linear_Combination of A \/ {x}
724 proof
725 let A be Subset of V, l be Linear_Combination of A, x be Element of V,
726 a be Element of F;
727 set m = l +* (x,a);
728 m is Element of Funcs ([#]V,[#]F)
729 proof
730 A1: dom m = [#]V
731 proof
732 A2: dom l = [#]V by FUNCT_2:169;
733 then
734 A3: m = l +* (x .--> a) by FUNCT_7:def 3;
735 A4: dom (x .--> a) = {x} by FUNCOP_1:19;
736 dom m = (dom l) \/ (dom (x .--> a)) by A3,FUNCT_4:def 1;
737 hence thesis by A2,A4,XBOOLE_1:12;
738 end;
739 rng m c= [#]F
740 proof
741 let y be set such that
742 A5: y in rng m;
743 consider x’ being set such that
744 A6: x’ in dom m and
745 A7: m.x’ = y by A5,FUNCT_1:def 5;
746 A8: x’ in dom l by A1,A6,FUNCT_2:169;
747 per cases;
748 suppose x’ = x;
749 then m.x’ = a by A8,FUNCT_7:33;
750 hence thesis by A7;
751 end;
752 suppose x’ <> x;
753 then
754 A9: m.x’ = l.x’ by FUNCT_7:34;
755 A10: l.x’ in rng l by A8,FUNCT_1:12;
756 rng l c= [#]F by FUNCT_2:169;
757 hence thesis by A7,A9,A10;
758 end;
759 end;
760 hence thesis by A1,FUNCT_2:def 2;
761 end;
762 then reconsider m as Element of Funcs ([#]V,[#]F);
763 set T = Carrier l \/ {x};
764 for v being Element of V st not v in T holds m.v = 0.F
765 proof
766 let v be Element of V such that
767 A11: not v in T;
768 A12: not v in Carrier l by A11,XBOOLE_0:def 3;
769 not v in {x} by A11,XBOOLE_0:def 3;
770 then v <> x by TARSKI:def 1;
771 then m.v = l.v by FUNCT_7:34;
772 hence thesis by A12;
773 end;
774 then reconsider m as Linear_Combination of V by VECTSP_6:def 4;
775 A13: Carrier m c= T
776 proof
777 let y be set such that
778 A14: y in Carrier m;
779 consider z being Element of V such that
780 A15: y = z and
781 A16: m.z <> 0.F by A14;
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782 per cases;
783 suppose
784 A17: z = x;
785 A18: x in {x} by TARSKI:def 1;
786 {x} c= T by XBOOLE_1:7;
787 hence thesis by A15,A17,A18;
788 end;
789 suppose z <> x;
790 then m.z = l.z by FUNCT_7:34;
791 then
792 A19: z in Carrier l by A16;
793 Carrier l c= T by XBOOLE_1:7;
794 hence thesis by A15,A19;
795 end;
796 end;
797 T c= A \/ {x}
798 proof
799 Carrier l c= A by VECTSP_6:def 7;
800 hence thesis by XBOOLE_1:9;
801 end;
802 then Carrier m c= A \/ {x} by A13,XBOOLE_1:1;
803 hence thesis by VECTSP_6:def 7;
804 end;
806 definition
807 let V be 1-sorted, X be Subset of V;
808 func V \ X -> Subset of V equals
810 [#]V \ X;
811 coherence;
812 end;
814 definition
815 let F be Field, V be VectSp of F, l be Linear_Combination of V,
816 X be Subset of V;
817 redefine func l .: X -> Subset of F;
818 coherence
819 proof
820 l .: X c= [#]F;
821 hence thesis;
822 end;
823 end;
825 reserve l for Linear_Combination of V;
827 registration
828 let F be Field, V be VectSp of F;
829 cluster linearly-dependent Subset of V;
830 existence
831 proof
832 reconsider S = {0.V} as Subset of V;
833 A1: 0.V in S by TARSKI:def 1;
834 take S;
835 thus thesis by A1,VECTSP_7:3;
836 end;
837 end;
839 :: Restricting a linear combination to a given set
841 definition
842 let F be Field, V be VectSp of F, l be Linear_Combination of V,
843 A be Subset of V;
844 func l!A -> Linear_Combination of A equals
846 (l|A) +* ((V \ A) --> 0.F);
847 coherence
848 proof
849 set f = (l|A) +* ((V \ A) --> 0.F);
850 A1: dom f = dom (l|A) \/ dom ((V \ A) --> 0.F) by FUNCT_4:def 1;
851 dom l = [#]V by FUNCT_2:169;
852 then
853 A2: dom (l|A) = A by RELAT_1:91;
854 A3: dom ((V \ A) --> 0.F) = V \ A by FUNCOP_1:19;
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855 A4: A \/ ([#]V \ A) = [#]V by XBOOLE_1:45;
856 A5: dom f = [#]V by A1,A2,A3,XBOOLE_1:45;
857 rng f c= [#]F
858 proof
859 let y be set such that
860 A6: y in rng f;
861 consider x being set such that
862 A7: x in dom f and
863 A8: y = f.x by A6,FUNCT_1:def 5;
864 reconsider x as Element of V by A1,A2,A3,A7,XBOOLE_1:45;
865 per cases by A4,XBOOLE_0:def 3;
866 suppose
867 A9: x in A;
868 then not x in dom ((V \ A) --> 0.F) by XBOOLE_0:def 5;
869 then
870 A10: f.x = (l|A).x by FUNCT_4:12;
871 (l|A).x = l.x by A9,FUNCT_1:72;
872 hence thesis by A8,A10;
873 end;
874 suppose
875 A11: x in V \ A;
876 then x in dom ((V \ A) --> 0.F) by FUNCOP_1:19;
877 then f.x = ((V \ A) --> 0.F).x by FUNCT_4:14
878 .= 0.F by A11,FUNCOP_1:13;
879 hence thesis by A8;
880 end;
881 end;
882 then reconsider f as Element of Funcs([#]V,[#]F) by A5,FUNCT_2:def 2;
883 ex T being finite Subset of V st
884 for v being Element of V st not v in T holds f.v = 0.F
885 proof
886 set C = Carrier l;
887 set D = { v where v is Element of V : f.v <> 0.F };
888 D is Subset of V
889 proof
890 D c= [#]V
891 proof
892 let x be set such that
893 A12: x in D;
894 consider v being Element of V such that
895 A13: x = v and f.v <> 0.F by A12;
896 thus thesis by A13;
897 end;
898 hence thesis;
899 end;
900 then reconsider D as Subset of V;
901 D c= C
902 proof
903 let x be set such that
904 A14: x in D;
905 consider v being Element of V such that
906 A15: x = v and
907 A16: f.v <> 0.F by A14;
908 A17: dom ((V \ A) --> 0.F) = V \ A by FUNCOP_1:19;
909 A18: now
910 assume
911 A19: v in V \ A;
912 then f.v = ((V \ A) --> 0.F).v by A1,A5,A17,FUNCT_4:def 1
913 .= 0.F by A19,FUNCOP_1:13;
914 hence contradiction by A16;
915 end;
916 then not v in dom ((V \ A) --> 0.F);
917 then
918 A20: f.v = (l|A).v by FUNCT_4:12;
919 v in A by A18,XBOOLE_0:def 5;
920 then (l|A).v = l.v by FUNCT_1:72;
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921 hence thesis by A15,A16,A20;
922 end;
923 then reconsider D as finite Subset of V;
924 take D;
925 thus thesis;
926 end;
927 then reconsider f as Linear_Combination of V by VECTSP_6:def 4;
928 Carrier f c= A
929 proof
930 let x be set such that
931 A21: x in Carrier f;
932 reconsider x as Element of V by A21;
933 A22: f.x <> 0.F by A21,VECTSP_6:20;
934 now
935 assume not x in A;
936 then
937 A23: x in V \ A by XBOOLE_0:def 5;
938 then x in dom (l|A) \/ (dom ((V \ A) --> 0.F)) by A3,XBOOLE_0:def 3;
939 then f.x = ((V \ A) --> 0.F).x by A3,A23,FUNCT_4:def 1;
940 hence contradiction by A22,A23,FUNCOP_1:13;
941 end;
942 hence thesis;
943 end;
944 hence thesis by VECTSP_6:def 7;
945 end;
946 end;
948 theorem Th24:
949 l = l!Carrier l
950 proof
951 set f = l|(Carrier l);
952 set g = (V \ Carrier l) --> 0.F;
953 set m = f +* g;
954 A1: dom l = [#]V by FUNCT_2:169;
955 then
956 A2: dom f = Carrier l by RELAT_1:91;
957 A3: dom g = V \ (Carrier l) by FUNCOP_1:19;
958 then
959 A4: (dom f) \/ (dom g) = [#]V by A2,XBOOLE_1:45;
960 then
961 A5: dom l = dom m by A1,FUNCT_4:def 1;
962 for x being set st x in dom l holds l.x = m.x
963 proof
964 let x be set such that
965 A6: x in dom l;
966 reconsider x as Element of V by A6;
967 per cases;
968 suppose
969 A7: x in Carrier l;
970 then not x in dom g by XBOOLE_0:def 5;
971 then m.x = f.x by A4,FUNCT_4:def 1;
972 hence thesis by A7,FUNCT_1:72;
973 end;
974 suppose
975 A8: not x in Carrier l;
976 then
977 A9: x in V \ (Carrier l) by XBOOLE_0:def 5;
978 then
979 A10: m.x = g.x by A3,A4,FUNCT_4:def 1;
980 g.x = 0.F by A9,FUNCOP_1:13;
981 hence thesis by A8,A10;
982 end;
983 end;
984 hence thesis by A5,FUNCT_1:def 17;
985 end;
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987 Lm1: for X being Subset of V holds l .: X is finite
988 proof
989 let X be Subset of V;
990 A1: l = l!(Carrier l) by Th24;
991 A2: rng (l|Carrier l) is finite
992 proof
993 rng (l|Carrier l) = l .: Carrier l by RELAT_1:148;
994 hence thesis;
995 end;
996 rng ((V \ (Carrier l)) --> 0.F) c= {0.F}
997 proof
998 set f = ((V \ (Carrier l)) --> 0.F);
999 per cases;

1000 suppose V \ (Carrier l) = {};
1001 then f = {};
1002 hence thesis by RELAT_1:60,XBOOLE_1:2;
1003 end;
1004 suppose V \ (Carrier l) <> {};
1005 hence thesis by FUNCOP_1:14;
1006 end;
1007 end;
1008 then rng ((V \ (Carrier l)) --> 0.F) is finite;
1009 then (rng (l|Carrier l)) \/ rng ((V \ (Carrier l)) --> 0.F) is finite
1010 by A2;
1011 then rng l is finite by A1,FINSET_1:13,FUNCT_4:18;
1012 hence thesis by FINSET_1:13,RELAT_1:144;
1013 end;
1015 theorem Th25:
1016 for A being Subset of V, v being Element of V st v in A holds (l!A).v = l.v
1017 proof
1018 let A be Subset of V, v be Element of V such that
1019 A1: v in A;
1020 not v in V \ A by A1,XBOOLE_0:def 5;
1021 then
1022 A2: not v in dom ((V \ A) --> 0.F);
1023 dom (l!A) = [#]V by FUNCT_2:169;
1024 then (dom (l|A)) \/ (dom ((V \ A) --> 0.F)) = [#]V by FUNCT_4:def 1;
1025 then (l!A).v = (l|A).v by A2,FUNCT_4:def 1
1026 .= l.v by A1,FUNCT_1:72;
1027 hence thesis;
1028 end;
1030 theorem Th26:
1031 for A being Subset of V, v being Element of V st not v in A
1032 holds (l!A).v = 0.F
1033 proof
1034 let A be Subset of V, v be Element of V such that
1035 A1: not v in A;
1036 A2: dom ((V \ A) --> 0.F) = V \ A by FUNCOP_1:19;
1037 A3: dom (l!A) = (dom (l|A)) \/ (dom ((V \ A) --> 0.F)) by FUNCT_4:def 1;
1038 A4: dom (l!A) = [#]V by FUNCT_2:169;
1039 A5: v in V \ A by A1,XBOOLE_0:def 5;
1040 then (l!A).v = ((V \ A) --> 0.F).v by A2,A3,A4,FUNCT_4:def 1
1041 .= 0.F by A5,FUNCOP_1:13;
1042 hence thesis;
1043 end;
1045 theorem Th27:
1046 for A,B being Subset of V, l being Linear_Combination of B st A c= B
1047 holds l = (l!A) + (l!(B\A))
1048 proof
1049 let A,B be Subset of V, l be Linear_Combination of B such that
1050 A1: A c= B;
1051 set r = (l!A) + (l!(B\A));
1052 let v be Element of V;
1053 A2: (v in B) implies (v in A or v in B \ A)
1054 proof
1055 assume
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1056 A3: v in B;
1057 B = A \/ (B \ A) by A1,XBOOLE_1:45;
1058 hence thesis by A3,XBOOLE_0:def 3;
1059 end;
1060 per cases by A2;
1061 suppose
1062 A4: v in A;
1063 then not v in B \ A by XBOOLE_0:def 5;
1064 then
1065 A5: (l!(B\A)).v = 0.F by Th26;
1066 (l!A).v = l.v by A4,Th25;
1067 then r.v = l.v + 0.F by A5,VECTSP_6:def 11
1068 .= l.v by RLVECT_1:10;
1069 hence l.v = r.v;
1070 end;
1071 suppose
1072 A6: v in B\A;
1073 then not v in A by XBOOLE_0:def 5;
1074 then
1075 A7: (l!A).v = 0.F by Th26;
1076 (l!(B\A)).v = l.v by A6,Th25;
1077 then r.v = 0.F + l.v by A7,VECTSP_6:def 11
1078 .= l.v by RLVECT_1:10;
1079 hence l.v = r.v;
1080 end;
1081 suppose
1082 A8: not v in B;
1083 then
1084 A9: not v in B\A by XBOOLE_0:def 5;
1085 not v in A by A1,A8;
1086 then
1087 A10: (l!A).v = 0.F by Th26;
1088 A11: (l!(B\A)).v = 0.F by A9,Th26;
1089 Carrier l c= B by VECTSP_6:def 7;
1090 then
1091 A12: not v in Carrier l by A8;
1092 r.v = 0.F + 0.F by A10,A11,VECTSP_6:def 11
1093 .= 0.F by RLVECT_1:10;
1094 hence l.v = r.v by A12;
1095 end;
1096 end;
1098 registration
1099 let F be Field, V be VectSp of F, l be Linear_Combination of V,
1100 X be Subset of V;
1101 cluster l .: X -> finite;
1102 coherence by Lm1;
1103 end;
1105 definition
1106 let V,W be non empty 1-sorted, T be Function of V,W, X be Subset of W;
1107 redefine func T"X -> Subset of V;
1108 coherence
1109 proof
1110 dom T = [#]V by Th7;
1111 hence thesis by RELAT_1:167;
1112 end;
1113 end;
1115 theorem Th28:
1116 for X being Subset of V st X misses Carrier l holds l .: X c= {0.F}
1117 proof
1118 let X be Subset of V such that
1119 A1: X misses Carrier l;
1120 set M = l .: X;
1121 let y be set such that
1122 A2: y in M;
1123 consider x being set such that
1124 A3: x in dom l and
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1125 A4: x in X and
1126 A5: y = l.x by A2,FUNCT_1:def 12;
1127 reconsider x as Element of V by A3;
1128 now
1129 assume l.x <> 0.F;
1130 then x in Carrier l;
1131 then x in (Carrier l) /\ X by A4,XBOOLE_0:def 4;
1132 hence contradiction by A1,XBOOLE_0:def 7;
1133 end;
1134 hence thesis by A5,TARSKI:def 1;
1135 end;
1137 :: The image of a linear combination under a linear transformation:
1138 ::
1139 :: T(a1*v1 + a2*v2 + ... + an*vn)
1140 :: = a1*T(v1) + a2*T(v2) + ... + an*T(vn).
1141 ::
1142 :: Linear combinations are represented as functions from the space to
1143 :: the underlying field having finite support, so to define a new
1144 :: linear combination it is enough to say what its values are for the
1145 :: elements of W and to prove that its support is finite.
1146 ::
1147 :: The only difficulty is that some values T(vi) and T(vj) may be
1148 :: equal. In this case, the new linear combination should be the sum
1149 :: of the coefficients ai and aj, i.e., l(vi) and l(vj).
1151 definition
1152 let F be Field, V,W be VectSp of F, l be Linear_Combination of V,
1153 T be linear-transformation of V,W;
1154 func T@l -> Linear_Combination of W means
1155 :Def5:
1156 for w being Element of W holds it.w = Sum (l .: (T"{w}));
1157 existence
1158 proof
1159 defpred P[set,set] means
1160 ex w being Element of W st $1 = w & $2 = Sum (l .: (T"{w}));
1161 A2: for x being set st x in [#]W holds ex y being set st P[x,y]
1162 proof
1163 let x be set such that
1164 A3: x in [#]W;
1165 reconsider x as Element of W by A3;
1166 take Sum (l .: (T"{x}));
1167 thus thesis;
1168 end;
1169 consider f being Function such that
1170 A4: dom f = [#]W and
1171 A5: for x being set st x in [#]W holds P[x,f.x] from CLASSES1:sch 1(A2);
1172 A6: for w being Element of W holds f.w = Sum (l .: (T"{w}))
1173 proof
1174 let w be Element of W;
1175 consider w’ being Element of W such that
1176 A7: w = w’ and
1177 A8: f.w = Sum (l .: (T"{w’})) by A5;
1178 thus thesis by A7,A8;
1179 end;
1180 rng f c= [#]F
1181 proof
1182 let y be set such that
1183 A9: y in rng f;
1184 consider x being set such that
1185 A10: x in dom f and
1186 A11: f.x = y by A9,FUNCT_1:def 5;
1187 consider w being Element of W such that x = w and
1188 A12: f.x = Sum (l .: (T"{w})) by A4,A5,A10;
1189 thus thesis by A11,A12;
1190 end;
1191 then reconsider f as Element of Funcs([#]W,[#]F) by A4,FUNCT_2:def 2;
1192 ex T being finite Subset of W
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1193 st for w being Element of W st not w in T holds f.w = 0.F
1194 proof
1195 set C = Carrier l;
1196 reconsider TC = T .: C as Subset of W;
1197 set X = { w where w is Element of W : f.w <> 0.F };
1198 X is Subset of W
1199 proof
1200 X c= [#]W
1201 proof
1202 let x be set such that
1203 A13: x in X;
1204 consider w being Element of W such that
1205 A14: x = w and f.w <> 0.F by A13;
1206 thus thesis by A14;
1207 end;
1208 hence thesis;
1209 end;
1210 then reconsider X as Subset of W;
1211 X c= TC
1212 proof
1213 let x be set such that
1214 A15: x in X;
1215 consider w being Element of W such that
1216 A16: x = w and
1217 A17: f.w <> 0.F by A15;
1218 T"{w} meets Carrier l
1219 proof
1220 assume
1221 A18: T"{w} misses Carrier l;
1222 then
1223 A19: l .: T"{w} c= {0.F} by Th28;
1224 Sum (l .: T"{w}) = 0.F
1225 proof
1226 per cases;
1227 suppose l .: T"{w} = {}F;
1228 hence thesis by RLVECT_2:14;
1229 end;
1230 suppose
1231 A20: l .: T"{w} <> {}F;
1232 l .: T"{w} = {0.F}
1233 proof
1234 thus l .: T"{w} c= {0.F} by A18,Th28;
1235 thus {0.F} c= l .: T"{w}
1236 proof
1237 let y be set such that
1238 A21: y in {0.F};
1239 A22: y = 0.F by A21,TARSKI:def 1;
1240 consider z being set such that
1241 A23: z in l .: T"{w} by A20,XBOOLE_0:def 1;
1242 thus thesis by A19,A22,A23,TARSKI:def 1;
1243 end;
1244 end;
1245 hence thesis by RLVECT_2:15;
1246 end;
1247 end;
1248 hence contradiction by A6,A17;
1249 end;
1250 then consider y being set such that
1251 A24: y in T"{w} and
1252 A25: y in Carrier l by XBOOLE_0:3;
1253 reconsider y as Element of V by A25;
1254 A26: dom T = [#]V by Th7;
1255 T.y in {w} by A24,FUNCT_1:def 13;
1256 then T.y = w by TARSKI:def 1;
1257 hence thesis by A16,A25,A26,FUNCT_1:def 12;
1258 end;
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1259 then reconsider X as finite Subset of W;
1260 take X;
1261 thus thesis;
1262 end;
1263 then reconsider f as Linear_Combination of W by VECTSP_6:def 4;
1264 A27: for w being Element of W holds f.w = Sum (l .: (T"{w}))
1265 proof
1266 let w be Element of W;
1267 consider w’ being Element of W such that
1268 A28: w = w’ and
1269 A29: f.w = Sum (l .: (T"{w’})) by A5;
1270 thus thesis by A28,A29;
1271 end;
1272 take f;
1273 thus thesis by A27;
1274 end;
1275 uniqueness
1276 proof
1277 let f,g be Linear_Combination of W such that
1278 A30: for w being Element of W holds f.w = Sum (l .: (T"{w})) and
1279 A31: for w being Element of W holds g.w = Sum (l .: (T"{w}));
1280 A32: dom f = [#]W by FUNCT_2:169;
1281 A33: dom g = [#]W by FUNCT_2:169;
1282 for x being set st x in dom f holds f.x = g.x
1283 proof
1284 let x be set such that
1285 A34: x in dom f;
1286 reconsider x as Element of W by A34;
1287 f.x = Sum (l .: (T"{x})) by A30;
1288 hence thesis by A31;
1289 end;
1290 hence thesis by A32,A33,FUNCT_1:def 17;
1291 end;
1292 end;
1294 theorem Th29:
1295 T@l is Linear_Combination of T .: (Carrier l)
1296 proof
1297 Carrier (T@l) c= T .: (Carrier l)
1298 proof
1299 let w be set such that
1300 A1: w in Carrier (T@l);
1301 reconsider w as Element of W by A1;
1302 A2: (T@l).w <> 0.F by A1,VECTSP_6:20;
1303 now
1304 assume
1305 A3: T"{w} misses Carrier l;
1306 then
1307 A4: l .: T"{w} c= {0.F} by Th28;
1308 Sum (l .: T"{w}) = 0.F
1309 proof
1310 per cases;
1311 suppose l .: T"{w} = {}F;
1312 hence thesis by RLVECT_2:14;
1313 end;
1314 suppose
1315 A5: l .: T"{w} <> {}F;
1316 l .: T"{w} = {0.F}
1317 proof
1318 thus l .: T"{w} c= {0.F} by A3,Th28;
1319 thus {0.F} c= l .: T"{w}
1320 proof
1321 let y be set such that
1322 A6: y in {0.F};
1323 A7: y = 0.F by A6,TARSKI:def 1;
1324 consider z being set such that
1325 A8: z in l .: T"{w} by A5,XBOOLE_0:def 1;
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1326 thus thesis by A4,A7,A8,TARSKI:def 1;
1327 end;
1328 end;
1329 hence thesis by RLVECT_2:15;
1330 end;
1331 end;
1332 hence contradiction by A2,Def5;
1333 end;
1334 then consider x being set such that
1335 A9: x in T"{w} and
1336 A10: x in Carrier l by XBOOLE_0:3;
1337 A11: x in dom T by A9,FUNCT_1:def 13;
1338 A12: T.x in {w} by A9,FUNCT_1:def 13;
1339 reconsider x as Element of V by A9;
1340 T.x = w by A12,TARSKI:def 1;
1341 hence thesis by A10,A11,FUNCT_1:def 12;
1342 end;
1343 hence thesis by VECTSP_6:def 7;
1344 end;
1346 theorem Th30:
1347 Carrier (T@l) c= T .: (Carrier l)
1348 proof
1349 T@l is Linear_Combination of T .: (Carrier l) by Th29;
1350 hence thesis by VECTSP_6:def 7;
1351 end;
1353 theorem Th31:
1354 for l,m being Linear_Combination of V st (Carrier l) misses (Carrier m)
1355 holds Carrier (l + m) = (Carrier l) \/ (Carrier m)
1356 proof
1357 let l,m be Linear_Combination of V such that
1358 A1: (Carrier l) misses (Carrier m);
1359 thus Carrier (l+m) c= (Carrier l) \/ (Carrier m) by VECTSP_6:51;
1360 thus (Carrier l) \/ (Carrier m) c= Carrier (l+m)
1361 proof
1362 let v be set such that
1363 A2: v in (Carrier l) \/ (Carrier m);
1364 per cases by A2,XBOOLE_0:def 3;
1365 suppose
1366 A3: v in Carrier l;
1367 then reconsider v as Element of V;
1368 A4: (l+m).v = (l.v) + (m.v) by VECTSP_6:def 11;
1369 A5: l.v <> 0.F by A3,VECTSP_6:20;
1370 not v in Carrier m by A1,A2,A3,XBOOLE_0:5;
1371 then m.v = 0.F;
1372 then (l+m).v = l.v by A4,RLVECT_1:10;
1373 hence thesis by A5;
1374 end;
1375 suppose
1376 A6: v in Carrier m;
1377 then reconsider v as Element of V;
1378 A7: (l+m).v = (l.v) + (m.v) by VECTSP_6:def 11;
1379 A8: m.v <> 0.F by A6,VECTSP_6:20;
1380 not v in Carrier l by A1,A2,A6,XBOOLE_0:5;
1381 then l.v = 0.F;
1382 then (l+m).v = m.v by A7,RLVECT_1:10;
1383 hence thesis by A8;
1384 end;
1385 end;
1386 end;
1388 theorem Th32:
1389 for l,m being Linear_Combination of V st (Carrier l) misses (Carrier m)
1390 holds Carrier (l - m) = (Carrier l) \/ (Carrier m)
1391 proof
1392 let l,m be Linear_Combination of V such that
1393 A1: (Carrier l) misses (Carrier m);
1394 Carrier (-m) = Carrier m by VECTSP_6:69;



The rank+nullity theorem

171

1395 hence thesis by A1,Th31;
1396 end;
1398 theorem Th33:
1399 for A,B being Subset of V st A c= B & B is Basis of V
1400 holds V is_the_direct_sum_of Lin A, Lin (B \ A)
1401 proof
1402 let A,B be Subset of V such that
1403 A1: A c= B and
1404 A2: B is Basis of V;
1405 A3: (Omega).V = (Lin A) + (Lin (B \ A))
1406 proof
1407 set U = (Lin A) + (Lin (B \ A));
1408 [#]U = [#]V
1409 proof
1410 thus [#]U c= [#]V by VECTSP_4:def 2;
1411 thus [#]V c= [#]U
1412 proof
1413 let v be set such that
1414 A4: v in [#]V;
1415 reconsider v as Element of V by A4;
1416 v in Lin B by A2,VECTSP_9:14;
1417 then consider l being Linear_Combination of B such that
1418 A5: v = Sum l by VECTSP_7:12;
1419 set m = l!A;
1420 set n = l!(B\A);
1421 A6: l = m + n by A1,Th27;
1422 ex v1,v2 being Element of V
1423 st v1 in Lin A & v2 in Lin (B \ A) & v = v1 + v2
1424 proof
1425 take Sum m, Sum n;
1426 thus thesis by A5,A6,VECTSP_6:77,VECTSP_7:12;
1427 end;
1428 then v in (Lin A) + (Lin (B \ A)) by VECTSP_5:5;
1429 hence thesis by STRUCT_0:def 5;
1430 end;
1431 end;
1432 hence thesis by VECTSP_4:37;
1433 end;
1434 (Lin A) /\ (Lin (B \ A)) = (0).V
1435 proof
1436 set U = (Lin A) /\ (Lin (B \ A));
1437 reconsider W = (0).V as strict Subspace of U by VECTSP_4:50;
1438 for v being Element of U holds v in W
1439 proof
1440 let v be Element of U;
1441 A7: v in U by STRUCT_0:def 5;
1442 then
1443 A8: v in Lin A by VECTSP_5:7;
1444 A9: v in Lin (B \ A) by A7,VECTSP_5:7;
1445 consider l being Linear_Combination of A such that
1446 A10: v = Sum l by A8,VECTSP_7:12;
1447 consider m being Linear_Combination of B \ A such that
1448 A11: v = Sum m by A9,VECTSP_7:12;
1449 A12: 0.V = (Sum l) - (Sum m) by A10,A11,VECTSP_1:66
1450 .= Sum (l - m) by VECTSP_6:80;
1451 A13: Carrier (l - m) c= (Carrier l) \/ (Carrier m) by VECTSP_6:74;
1452 A14: Carrier l c= A by VECTSP_6:def 7;
1453 A15: Carrier m c= B \ A by VECTSP_6:def 7;
1454 A16: A \/ (B \ A) = B by A1,XBOOLE_1:45;
1455 (Carrier l) \/ (Carrier m) c= A \/ (B \ A) by A14,A15,XBOOLE_1:13;
1456 then Carrier (l - m) c= B by A13,A16,XBOOLE_1:1;
1457 then reconsider n = l - m as Linear_Combination of B by VECTSP_6:def 7;
1458 B is linearly-independent by A2,VECTSP_7:def 3;
1459 then
1460 A17: Carrier n = {} by A12,VECTSP_7:def 1;
1461 A misses (B \ A) by XBOOLE_1:79;
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1462 then Carrier n = (Carrier l) \/ (Carrier m) by A14,A15,Th32,XBOOLE_1:64;
1463 then Carrier l = {} by A17;
1464 then l = ZeroLC(V) by VECTSP_6:def 6;
1465 then Sum l = 0.V by VECTSP_6:41;
1466 hence thesis by A10,VECTSP_4:46;
1467 end;
1468 hence thesis by VECTSP_4:40;
1469 end;
1470 hence thesis by A3,VECTSP_5:def 4;
1471 end;
1473 theorem Th34:
1474 for A being Subset of V, l being Linear_Combination of A,
1475 v being Element of V st T|A is one-to-one & v in A
1476 holds ex X being Subset of V st X misses A & T"{T.v} = {v} \/ X
1477 proof
1478 let A be Subset of V, l be Linear_Combination of A,
1479 v be Element of V such that
1480 A1: T|A is one-to-one and
1481 A2: v in A;
1482 set X = T"{T.v} \ {v};
1483 A3: {v} c= T"{T.v}
1484 proof
1485 let x be set such that
1486 A4: x in {v};
1487 A5: x = v by A4,TARSKI:def 1;
1488 A6: dom T = [#]V by Th7;
1489 T.v in {T.v} by TARSKI:def 1;
1490 hence thesis by A5,A6,FUNCT_1:def 13;
1491 end;
1492 A7: X misses A
1493 proof
1494 assume X meets A;
1495 then consider x being set such that
1496 A8: x in X and
1497 A9: x in A by XBOOLE_0:3;
1498 A10: x in T"{T.v} by A8,XBOOLE_0:def 5;
1499 not x in {v} by A8,XBOOLE_0:def 5;
1500 then
1501 A11: x <> v by TARSKI:def 1;
1502 T.x in {T.v} by A10,FUNCT_1:def 13;
1503 then
1504 A12: T.x = T.v by TARSKI:def 1;
1505 T.x = (T|A).x by A9,FUNCT_1:72;
1506 then
1507 A13: (T|A).v = (T|A).x by A2,A12,FUNCT_1:72;
1508 dom T = [#]V by Th7;
1509 then dom (T|A) = A by RELAT_1:91;
1510 hence thesis by A1,A2,A9,A11,A13,FUNCT_1:def 8;
1511 end;
1512 take X;
1513 thus thesis by A3,A7,XBOOLE_1:45;
1514 end;
1516 theorem Th35:
1517 for X being Subset of V st X misses Carrier l & X <> {} holds l .: X = {0.F}
1518 proof
1519 let X be Subset of V such that
1520 A1: X misses Carrier l and
1521 A2: X <> {};
1522 A3: l .: X c= {0.F} by A1,Th28;
1523 dom l = [#]V by FUNCT_2:169;
1524 then l .: X <> {} by A2,RELAT_1:152;
1525 hence thesis by A3,ZFMISC_1:39;
1526 end;
1528 theorem Th36:
1529 for w being Element of W st w in Carrier (T@l) holds T"{w} meets Carrier l
1530 proof
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1531 let w be Element of W such that
1532 A1: w in Carrier (T@l);
1533 A2: (T@l).w <> 0.F by A1,VECTSP_6:20;
1534 assume
1535 A3: T"{w} misses Carrier l;
1536 per cases;
1537 suppose T"{w} = {};
1538 then Sum (l .: T"{w}) = Sum ({}F) by RELAT_1:149
1539 .= 0.F by RLVECT_2:14;
1540 hence thesis by A2,Def5;
1541 end;
1542 suppose T"{w} <> {};
1543 then l .: T"{w} = {0.F} by A3,Th35;
1544 then Sum (l .: T"{w}) = 0.F by RLVECT_2:15;
1545 hence thesis by A2,Def5;
1546 end;
1547 end;
1549 theorem Th37:
1550 for v being Element of V st T|(Carrier l) is one-to-one & v in Carrier l
1551 holds (T@l).(T.v) = l.v
1552 proof
1553 let v be Element of V such that
1554 A1: T|(Carrier l) is one-to-one and
1555 A2: v in Carrier l;
1556 consider X being Subset of V such that
1557 A3: X misses Carrier l and
1558 A4: T"{T.v} = {v} \/ X by A1,A2,Th34;
1559 per cases;
1560 suppose
1561 A5: X = {};
1562 A6: dom l = [#]V by FUNCT_2:169;
1563 l .: {v} = Im (l,v)
1564 .= {l.v} by A6,FUNCT_1:117;
1565 then Sum (l .: T"{T.v}) = l.v by A4,A5,RLVECT_2:15;
1566 hence thesis by Def5;
1567 end;
1568 suppose
1569 A7: X <> {};
1570 A8: l .: T"{T.v} = (l .: {v}) \/ (l .: X) by A4,RELAT_1:153;
1571 A9: dom l = [#]V by FUNCT_2:169;
1572 A10: l .: {v} = Im (l,v)
1573 .= {l.v} by A9,FUNCT_1:117;
1574 A11: l .: X = {0.F}
1575 proof
1576 A12: {0.F} c= l .: X
1577 proof
1578 let x be set such that
1579 A13: x in {0.F};
1580 A14: x = 0.F by A13,TARSKI:def 1;
1581 consider y being set such that
1582 A15: y in X by A7,XBOOLE_0:def 1;
1583 A16: now
1584 assume y in Carrier l;
1585 then y in (Carrier l) /\ X by A15,XBOOLE_0:def 4;
1586 hence contradiction by A3,XBOOLE_0:def 7;
1587 end;
1588 reconsider y as Element of V by A15;
1589 l.y = x by A14,A16;
1590 hence thesis by A9,A15,FUNCT_1:def 12;
1591 end;
1592 l .: X c= {0.F}
1593 proof
1594 let y be set such that
1595 A17: y in l .: X;
1596 consider x being set such that
1597 A18: x in dom l and
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1598 A19: x in X and
1599 A20: y = l.x by A17,FUNCT_1:def 12;
1600 A21: now
1601 assume x in Carrier l;
1602 then x in (Carrier l) /\ X by A19,XBOOLE_0:def 4;
1603 hence contradiction by A3,XBOOLE_0:def 7;
1604 end;
1605 reconsider x as Element of V by A18;
1606 l.x = 0.F by A21;
1607 hence thesis by A20,TARSKI:def 1;
1608 end;
1609 hence thesis by A12,XBOOLE_0:def 10;
1610 end;
1611 l .: X misses l .: {v}
1612 proof
1613 A22: dom l = [#]V by FUNCT_2:169;
1614 A23: l .: {v} = Im (l,v)
1615 .= {l.v} by A22,FUNCT_1:117;
1616 assume l .: X meets l .: {v};
1617 then consider x being set such that
1618 A24: x in l .: X and
1619 A25: x in l .: {v} by XBOOLE_0:3;
1620 A26: x = 0.F by A11,A24,TARSKI:def 1;
1621 x = l.v by A23,A25,TARSKI:def 1;
1622 hence thesis by A2,A26,VECTSP_6:20;
1623 end;
1624 then Sum (l .: T"{T.v}) = (Sum (l .: {v})) + (Sum (l .: X)) by A8,
1625 RLVECT_2:18
1626 .= l.v + (Sum ({0.F})) by A10,A11,RLVECT_2:15
1627 .= l.v + 0.F by RLVECT_2:15
1628 .= l.v by RLVECT_1:10;
1629 hence thesis by Def5;
1630 end;
1631 end;
1633 theorem Th38:
1634 for G being FinSequence of V
1635 st rng G = Carrier l & T|(Carrier l) is one-to-one
1636 holds T*(l (#) G) = (T@l) (#) (T*G)
1637 proof
1638 let G be FinSequence of V such that
1639 A1: rng G = Carrier l and
1640 A2: T|(Carrier l) is one-to-one;
1641 reconsider L = T*(l (#) G) as FinSequence of W;
1642 reconsider R = (T@l) (#) (T*G) as FinSequence of W;
1643 A3: len L = len (l (#) G) by FINSEQ_2:37
1644 .= len G by VECTSP_6:def 8;
1645 A4: len R = len (T*G) by VECTSP_6:def 8
1646 .= len G by FINSEQ_2:37;
1647 for k being Nat st 1 <= k & k <= len L holds L.k = R.k
1648 proof
1649 let k be Nat such that
1650 A5: 1 <= k and
1651 A6: k <= len L;
1652 len (l (#) G) = len G by VECTSP_6:def 8;
1653 then
1654 A7: dom (l (#) G) = Seg len G by FINSEQ_1:def 3;
1655 k in NAT by ORDINAL1:def 13;
1656 then
1657 A8: k in dom (l (#) G) by A3,A5,A6,A7;
1658 then
1659 A9: k in dom G by A7,FINSEQ_1:def 3;
1660 then
1661 A10: G.k in rng G by FUNCT_1:12;
1662 reconsider gk = G/.k as Element of V;
1663 A11: (l (#) G).k = (l.gk)*gk by A8,VECTSP_6:def 8;
1664 A12: G.k = G/.k by A9,PARTFUN1:def 8;
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1665 then reconsider Gk = G.k as Element of V;
1666 (T*G).k = T.Gk by A9,FUNCT_1:23;
1667 then reconsider TGk = (T*G).k as Element of W;
1668 A13: L.k = T.((l.gk)*gk) by A8,A11,FUNCT_1:23
1669 .= (l.gk)*(T.gk) by MOD_2:def 5
1670 .= (l.Gk)*TGk by A9,A12,FUNCT_1:23;
1671 A14: dom R = Seg len G by A4,FINSEQ_1:def 3;
1672 dom T = [#]V by Th7;
1673 then dom (T*G) = dom G by A1,RELAT_1:46;
1674 then
1675 A15: (T*G)/.k = (T*G).k by A9,PARTFUN1:def 8;
1676 (T@l).((T*G).k) = l.(G.k)
1677 proof
1678 (T*G).k = T.(G.k) by A9,FUNCT_1:23;
1679 hence thesis by A1,A2,A10,Th37;
1680 end;
1681 hence thesis by A7,A8,A13,A14,A15,VECTSP_6:def 8;
1682 end;
1683 hence thesis by A3,A4,FINSEQ_1:18;
1684 end;
1686 theorem Th39:
1687 T|(Carrier l) is one-to-one implies T .: (Carrier l) = Carrier (T@l)
1688 proof
1689 assume
1690 A1: T|(Carrier l) is one-to-one;
1691 A2: Carrier (T@l) c= T .: (Carrier l) by Th30;
1692 T .: (Carrier l) c= Carrier (T@l)
1693 proof
1694 let w be set such that
1695 A3: w in T .: (Carrier l);
1696 consider v being set such that
1697 A4: v in dom T and
1698 A5: v in Carrier l and
1699 A6: T.v = w by A3,FUNCT_1:def 12;
1700 reconsider v as Element of V by A4;
1701 A7: (T@l).(T.v) = l.v by A1,A5,Th37;
1702 l.v <> 0.F by A5,VECTSP_6:20;
1703 hence thesis by A6,A7;
1704 end;
1705 hence thesis by A2,XBOOLE_0:def 10;
1706 end;
1708 theorem Th40:
1709 for A being Subset of V, B being Basis of V,
1710 l being Linear_Combination of B \ A st A is Basis of ker T & A c= B
1711 holds T.(Sum l) = Sum (T@l)
1712 proof
1713 let A be Subset of V, B be Basis of V,
1714 l be Linear_Combination of B \ A such that
1715 A1: A is Basis of ker T and
1716 A2: A c= B;
1717 consider G being FinSequence of V such that
1718 A3: G is one-to-one and
1719 A4: rng G = Carrier l and
1720 A5: Sum l = Sum (l (#) G) by VECTSP_6:def 9;
1721 set H = T*G;
1722 reconsider H as FinSequence of W;
1723 A6: T|(B \ A) is one-to-one by A1,A2,Th22;
1724 Carrier l c= B \ A by VECTSP_6:def 7;
1725 then
1726 A7: (T|(B \ A))|(Carrier l) = T|(Carrier l) by RELAT_1:103;
1727 then
1728 A8: T|(Carrier l) is one-to-one by A6,FUNCT_1:84;
1729 dom T = [#]V by Th7;
1730 then
1731 A9: H is one-to-one by A3,A4,A6,A7,Th1,FUNCT_1:84;
1732 A10: rng H = T .: (Carrier l) by A4,RELAT_1:160
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1733 .= Carrier (T@l) by A8,Th39;
1734 A11: T*(l (#) G) = (T@l) (#) H by A4,A8,Th38;
1735 Sum (T@l) = Sum ((T@l) (#) H) by A9,A10,VECTSP_6:def 9;
1736 hence thesis by A5,A11,MATRLIN:20;
1737 end;
1739 theorem Th41:
1740 for X being Subset of V st X is linearly-dependent
1741 holds ex l being Linear_Combination of X st Carrier l <> {} & Sum l = 0.V
1742 proof
1743 let X be Subset of V such that
1744 A1: X is linearly-dependent;
1745 not (for l being Linear_Combination of X st Sum l = 0.V
1746 holds Carrier l = {}) by A1,VECTSP_7:def 1;
1747 hence thesis;
1748 end;
1750 :: "Pulling back" a linear combination from the image space of a
1751 :: linear transformation to the base space.
1753 definition
1754 let F be Field, V,W be VectSp of F, X be Subset of V,
1755 T be linear-transformation of V,W, l be Linear_Combination of T .: X;
1756 assume
1757 A1: T|X is one-to-one;
1758 func T#l -> Linear_Combination of X equals
1759 :Def6:
1760 (l*T) +* ((V \ X) --> 0.F);
1761 coherence
1762 proof
1763 set f = (l*T) +* ((V \ X) --> 0.F);
1764 dom l = [#]W by FUNCT_2:169;
1765 then rng T c= dom l by Th7;
1766 then
1767 A2: dom (l*T) = dom T by RELAT_1:46;
1768 A3: dom ((V \ X) --> 0.F) = [#]V \ X by FUNCOP_1:19;
1769 A4: dom T = [#]V by Th7;
1770 [#]V \/ ([#]V \ X) = [#]V by XBOOLE_1:12;
1771 then
1772 A5: dom f = [#]V by A2,A3,A4,FUNCT_4:def 1;
1773 A6: rng f c= rng (l*T) \/ rng ((V \ X) --> 0.F) by FUNCT_4:18;
1774 A7: rng (l*T) c= rng l by RELAT_1:45;
1775 rng ((V \ X) --> 0.F) c= {0.F} by FUNCOP_1:19;
1776 then
1777 A8: rng ((V \ X) --> 0.F) c= [#]F by XBOOLE_1:1;
1778 rng l c= [#]F by FUNCT_2:169;
1779 then rng (l*T) c= [#]F by A7,XBOOLE_1:1;
1780 then rng (l*T) \/ rng ((V \ X) --> 0.F) c= [#]F by A8,XBOOLE_1:8;
1781 then rng f c= [#]F by A6,XBOOLE_1:1;
1782 then reconsider f as Element of Funcs ([#]V,[#]F) by A5,FUNCT_2:def 2;
1783 ex T being finite Subset of V st
1784 for v being Element of V st not v in T holds f.v = 0.F
1785 proof
1786 set C = { v where v is Element of V : f.v <> 0.F };
1787 C c= [#]V
1788 proof
1789 let x be set such that
1790 A9: x in C;
1791 consider v being Element of V such that
1792 A10: v = x and f.v <> 0.F by A9;
1793 thus thesis by A10;
1794 end;
1795 then reconsider C as Subset of V;
1796 C is finite
1797 proof
1798 card C c= card Carrier l
1799 proof
1800 ex g being Function
1801 st g is one-to-one & dom g = C & rng g c= Carrier l
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1802 proof
1803 set S = (T"(Carrier l)) /\ X;
1804 set g = T|S;
1805 A11: S = C
1806 proof
1807 A12: S c= C
1808 proof
1809 let x be set such that
1810 A13: x in S;
1811 A14: x in X by A13,XBOOLE_0:def 4;
1812 A15: x in T"(Carrier l) by A13,XBOOLE_0:def 4;
1813 then
1814 A16: x in dom T by FUNCT_1:def 13;
1815 A17: T.x in Carrier l by A15,FUNCT_1:def 13;
1816 reconsider x as Element of V by A13;
1817 not x in dom ((V \ X) --> 0.F) by A14,XBOOLE_0:def 5;
1818 then
1819 A18: f.x = (l*T).x by FUNCT_4:12;
1820 A19: (l*T).x = l.(T.x) by A16,FUNCT_1:23;
1821 l.(T.x) <> 0.F by A17,VECTSP_6:20;
1822 hence thesis by A18,A19;
1823 end;
1824 C c= S
1825 proof
1826 let x be set such that
1827 A20: x in C;
1828 consider v being Element of V such that
1829 A21: v = x and
1830 A22: f.v <> 0.F by A20;
1831 reconsider x as Element of V by A21;
1832 A23: now
1833 assume not x in X;
1834 then
1835 A24: x in V \ X by XBOOLE_0:def 5;
1836 then x in dom ((V \ X) --> 0.F) by FUNCOP_1:19;
1837 then f.x = ((V \ X) --> 0.F).x by FUNCT_4:14;
1838 hence contradiction by A21,A22,A24,FUNCOP_1:13;
1839 end;
1840 x in T"(Carrier l)
1841 proof
1842 A25: dom T = [#]V by Th7;
1843 T.x in Carrier l
1844 proof
1845 not x in V \ X by A23,XBOOLE_0:def 5;
1846 then
1847 A26: f.x = (l*T).x by A3,FUNCT_4:12;
1848 (l*T).x = l.(T.x) by A25,FUNCT_1:23;
1849 hence thesis by A21,A22,A26;
1850 end;
1851 hence thesis by A25,FUNCT_1:def 13;
1852 end;
1853 hence thesis by A23,XBOOLE_0:def 4;
1854 end;
1855 hence thesis by A12,XBOOLE_0:def 10;
1856 end;
1857 A27: dom g = S
1858 proof
1859 dom T = [#]V by Th7;
1860 hence thesis by RELAT_1:91;
1861 end;
1862 A28: rng g c= Carrier l
1863 proof
1864 let y be set such that
1865 A29: y in rng g;
1866 consider x being set such that
1867 A30: x in dom g and
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1868 A31: y = g.x by A29,FUNCT_1:def 5;
1869 x in T"(Carrier l) by A27,A30,XBOOLE_0:def 4;
1870 then T.x in Carrier l by FUNCT_1:def 13;
1871 hence thesis by A27,A30,A31,FUNCT_1:72;
1872 end;
1873 take g;
1874 thus thesis by A1,A11,A27,A28,Th2,XBOOLE_1:17;
1875 end;
1876 hence thesis by CARD_1:26;
1877 end;
1878 hence thesis;
1879 end;
1880 then reconsider C as finite Subset of V;
1881 take C;
1882 thus thesis;
1883 end;
1884 then reconsider f as Linear_Combination of V by VECTSP_6:def 4;
1885 Carrier f c= X
1886 proof
1887 let x be set such that
1888 A32: x in Carrier f;
1889 reconsider x as Element of V by A32;
1890 now
1891 assume not x in X;
1892 then
1893 A33: x in V \ X by XBOOLE_0:def 5;
1894 then f.x = ((V \ X) --> 0.F).x by A3,FUNCT_4:14
1895 .= 0.F by A33,FUNCOP_1:13;
1896 hence contradiction by A32,VECTSP_6:20;
1897 end;
1898 hence thesis;
1899 end;
1900 hence thesis by VECTSP_6:def 7;
1901 end;
1902 end;
1904 theorem Th42:
1905 for X being Subset of V, l being Linear_Combination of T .: X,
1906 v being Element of V st v in X & T|X is one-to-one holds (T#l).v = l.(T.v)
1907 proof
1908 let X be Subset of V, l be Linear_Combination of T .: X,
1909 v be Element of V such that
1910 A1: v in X and
1911 A2: T|X is one-to-one;
1912 A3: not v in dom ((V \ X) --> 0.F) by A1,XBOOLE_0:def 5;
1913 T#l = (l*T) +* ((V \ X) --> 0.F) by A2,Def6;
1914 then
1915 A4: (T#l).v = (l*T).v by A3,FUNCT_4:12;
1916 dom T = [#]V by Th7;
1917 hence thesis by A4,FUNCT_1:23;
1918 end;
1920 :: # is a right inverse of @
1922 theorem Th43:
1923 for X being Subset of V, l being Linear_Combination of T .: X
1924 st T|X is one-to-one holds T@(T#l) = l
1925 proof
1926 let X be Subset of V, l be Linear_Combination of T .: X such that
1927 A1: T|X is one-to-one;
1928 set m = T@(T#l);
1929 let w be Element of W;
1930 per cases;
1931 suppose
1932 A2: w in Carrier l;
1933 then
1934 A3: l.w <> 0.F by VECTSP_6:20;
1935 Carrier l c= T .: X by VECTSP_6:def 7;
1936 then consider v being set such that
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1937 A4: v in dom T and
1938 A5: v in X and
1939 A6: w = T.v by A2,FUNCT_1:def 12;
1940 reconsider v as Element of V by A4;
1941 consider B being Subset of V such that
1942 A7: B misses X and
1943 A8: T"{T.v} = {v} \/ B by A1,A5,Th34;
1944 A9: dom (T#l) = [#]V by FUNCT_2:169;
1945 A10: (T#l).v = l.(T.v) by A1,A5,Th42;
1946 A11: (T#l) .: {v} = Im (T#l,v)
1947 .= {(T#l).v} by A9,FUNCT_1:117;
1948 A12: m.w = Sum ((T#l) .: T"{T.v}) by A6,Def5
1949 .= Sum ({l.(T.v)} \/ ((T#l) .: B)) by A8,A10,A11,RELAT_1:153;
1950 per cases;
1951 suppose B = {};
1952 then m.w = Sum ({l.(T.v)} \/ {}F) by A12,RELAT_1:149
1953 .= l.w by A6,RLVECT_2:15;
1954 hence thesis;
1955 end;
1956 suppose
1957 A13: B <> {};
1958 Carrier (T#l) c= X by VECTSP_6:def 7;
1959 then B misses Carrier (T#l) by A7,XBOOLE_1:63;
1960 then m.w = Sum ({l.(T.v)} \/ {0.F}) by A12,A13,Th35
1961 .= Sum ({l.(T.v)}) + Sum ({0.F}) by A3,A6,RLVECT_2:18,ZFMISC_1:17
1962 .= l.(T.v) + Sum ({0.F}) by RLVECT_2:15
1963 .= l.(T.v) + 0.F by RLVECT_2:15
1964 .= l.w by A6,RLVECT_1:10;
1965 hence thesis;
1966 end;
1967 end;
1968 suppose
1969 A14: not w in Carrier l;
1970 then
1971 A15: l.w = 0.F;
1972 now
1973 assume
1974 A16: m.w <> 0.F;
1975 then w in Carrier m;
1976 then T"{w} meets Carrier (T#l) by Th36;
1977 then consider v being Element of V such that
1978 A17: v in T"{w} and
1979 A18: v in Carrier (T#l) by Th3;
1980 T.v in {w} by A17,FUNCT_1:def 13;
1981 then
1982 A19: T.v = w by TARSKI:def 1;
1983 A20: Carrier (T#l) c= X by VECTSP_6:def 7;
1984 then T|(Carrier (T#l)) is one-to-one by A1,Th2;
1985 then m.w = (T#l).v by A18,A19,Th37
1986 .= 0.F by A1,A15,A18,A19,A20,Th42;
1987 hence contradiction by A16;
1988 end;
1989 hence thesis by A14;
1990 end;
1991 end;
1993 begin :: The rank+nullity theorem
1995 definition
1996 let F be Field, V,W be finite-dimensional VectSp of F,
1997 T be linear-transformation of V,W;
1998 func rank(T) -> Nat equals
2000 dim (im T);
2001 coherence;
2002 func nullity(T) -> Nat equals
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2004 dim (ker T);
2005 coherence;
2006 end;
2008 theorem Th44:
2009 for V,W being finite-dimensional VectSp of F,
2010 T being linear-transformation of V,W holds dim V = rank(T) + nullity(T)
2011 proof
2012 let V,W be finite-dimensional VectSp of F,
2013 T be linear-transformation of V,W;
2014 consider A being finite Basis of ker T;
2015 reconsider A’ = A as Subset of V by Th19;
2016 consider B being Basis of V such that
2017 A1: A c= B by VECTSP_9:17;
2018 reconsider B as finite Subset of V by VECTSP_9:24;
2019 reconsider X = B \ A’ as finite Subset of B by XBOOLE_1:36;
2020 reconsider X as finite Subset of V;
2021 A2: B = A \/ X by A1,XBOOLE_1:45;
2022 reconsider C = T .: X as finite Subset of W;
2023 reconsider A as finite Basis of ker T;
2024 reconsider B as finite Basis of V;
2025 A3: T|X is one-to-one by A1,Th22;
2026 A4: X c= dom (T|X)
2027 proof
2028 dom T = [#]V by Th7;
2029 hence thesis by RELAT_1:91;
2030 end;
2031 A5: card C = card X
2032 proof
2033 X,(T|X) .: X are_equipotent by A3,A4,CARD_1:60;
2034 then X,C are_equipotent by RELAT_1:162;
2035 hence thesis by CARD_1:21;
2036 end;
2037 A6: C is linearly-independent
2038 proof
2039 assume C is linearly-dependent;
2040 then consider l being Linear_Combination of C such that
2041 A7: Carrier l <> {} and
2042 A8: Sum l = 0.W by Th41;
2043 ex m being Linear_Combination of X st l = T@m
2044 proof
2045 reconsider l’ = l as Linear_Combination of T .: X;
2046 set m = T#(l’);
2047 take m;
2048 thus thesis by A3,Th43;
2049 end;
2050 then consider m being Linear_Combination of B \ A’ such that
2051 A9: l = T@m;
2052 T.(Sum m) = 0.W by A1,A8,A9,Th40;
2053 then Sum m in ker T by Th10;
2054 then Sum m in Lin A by VECTSP_7:def 3;
2055 then Sum m in Lin A’ by VECTSP_9:21;
2056 then consider n being Linear_Combination of A’ such that
2057 A10: Sum m = Sum n by VECTSP_7:12;
2058 (Sum m) - (Sum n) = 0.V by A10,VECTSP_1:66;
2059 then
2060 A11: Sum (m - n) = 0.V by VECTSP_6:80;
2061 A12: Carrier (m - n) c= (Carrier m) \/ (Carrier n) by VECTSP_6:74;
2062 A13: Carrier m c= B \ A’ by VECTSP_6:def 7;
2063 A14: Carrier n c= A by VECTSP_6:def 7;
2064 A15: (B \ A’) \/ A’ = B by A1,XBOOLE_1:45;
2065 (Carrier m) \/ (Carrier n) c= (B \ A’) \/ A by A13,A14,XBOOLE_1:13;
2066 then Carrier (m - n) c= B by A12,A15,XBOOLE_1:1;
2067 then reconsider o = m - n as Linear_Combination of B by VECTSP_6:def 7;
2068 B is linearly-independent by VECTSP_7:def 3;
2069 then
2070 A16: Carrier o = {} by A11,VECTSP_7:def 1;



The rank+nullity theorem

181

2071 A’ misses B \ A’ by XBOOLE_1:79;
2072 then Carrier (m - n) = (Carrier m) \/ (Carrier n) by A13,A14,Th32,
2073 XBOOLE_1:64;
2074 then Carrier m = {} by A16;
2075 then T .: (Carrier m) = {} by RELAT_1:149;
2076 hence thesis by A7,A9,Th30,XBOOLE_1:3;
2077 end;
2078 reconsider C as finite Subset of im T by Th12;
2079 reconsider L = Lin C as strict Subspace of im T;
2080 for v being Element of im T holds v in L
2081 proof
2082 let v be Element of im T;
2083 A17: v in im T by STRUCT_0:def 5;
2084 reconsider v’ = v as Element of W by VECTSP_4:18;
2085 consider u being Element of V such that
2086 A18: T.u = v’ by A17,Th13;
2087 reconsider A’ = A as Subset of V by Th19;
2088 V is_the_direct_sum_of Lin A’, Lin (B \ A’) by A1,Th33;
2089 then
2090 A19: (Omega).V = (Lin A’) + (Lin (B \ A’)) by VECTSP_5:def 4;
2091 u in (Omega).V by STRUCT_0:def 5;
2092 then consider u1, u2 being Element of V such that
2093 A20: u1 in Lin A’ and
2094 A21: u2 in Lin (B \ A’) and
2095 A22: u = u1 + u2 by A19,VECTSP_5:5;
2096 A23: T.u = T.u1 + T.u2 by A22,MOD_2:def 5;
2097 Lin A = ker T by VECTSP_7:def 3;
2098 then u1 in ker T by A20,VECTSP_9:21;
2099 then T.u1 = 0.W by Th10;
2100 then
2101 A24: T.u = T.u2 by A23,RLVECT_1:10;
2102 consider l being Linear_Combination of B \ A’ such that
2103 A25: u2 = Sum l by A21,VECTSP_7:12;
2104 A26: T@l is Linear_Combination of T .: (Carrier l) by Th29;
2105 A27: Carrier l c= B \ A’ by VECTSP_6:def 7;
2106 reconsider C’ = C as Subset of W;
2107 reconsider m = T@l as Linear_Combination of C’ by A26,A27,RELAT_1:156
2108 ,VECTSP_6:25;
2109 ex m being Linear_Combination of C’ st v = Sum m
2110 proof
2111 take m;
2112 thus thesis by A1,A18,A24,A25,Th40;
2113 end;
2114 then v in Lin C’ by VECTSP_7:12;
2115 hence thesis by VECTSP_9:21;
2116 end;
2117 then
2118 A28: Lin C = im T by VECTSP_4:40;
2119 reconsider C as linearly-independent Subset of im T by A6,VECTSP_9:16;
2120 reconsider C as finite Basis of im T by A28,VECTSP_7:def 3;
2121 A29: nullity T = card A by VECTSP_9:def 2;
2122 A30: rank T = card C by VECTSP_9:def 2;
2123 dim V = card B by VECTSP_9:def 2
2124 .= rank T + nullity T by A2,A5,A29,A30,CARD_2:53,XBOOLE_1:79;
2125 hence thesis;
2126 end;
2128 theorem
2129 for V,W being finite-dimensional VectSp of F,
2130 T being linear-transformation of V,W st T is one-to-one holds dim V = rank T
2131 proof
2132 let V,W be finite-dimensional VectSp of F,
2133 T be linear-transformation of V,W such that
2134 A1: T is one-to-one;
2135 ker T = (0).V by A1,Th15;
2136 then
2137 A2: nullity(T) = 0 by Th16;
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2138 dim V = rank(T) + nullity(T) by Th44
2139 .= rank(T) by A2;
2140 hence thesis;
2141 end;

B.2 The vector space of subsets of a set based on symmetric difference

Note: there is a discrepency between the intended title of this section and the title of
the corresponding mizar article. As of April 15, 2009, the official title of this article in
the mizar Mathematical Library is ‘The vector space of subsets of a set based on disjoint
union’. The editors of the mizar Mathematical Library have accepted my request to change
‘disjoint union’ to ‘symmetric difference’, but the current edition of the library does not
yet reflect that change.

1 :: The Vector Space of Subsets of a Set Based on Disjoint Union
2 :: by Jesse Alama
3 ::
4 :: Received October 9, 2007
5 :: Copyright (c) 2007 Association of Mizar Users
7 environ
9 vocabularies FINSET_1, BSPACE, FUNCT_1, CARD_1, SUBSET_1, TARSKI, BOOLE,

10 RELAT_1, NAT_1, GROUP_1, FINSEQ_1, FINSEQ_2, QC_LANG1, BINOP_1, VECTSP_1,
11 RLVECT_1, RLVECT_3, RLVECT_2, SEQ_1, FINSEQ_4, FUNCT_4, ORDINAL2,
12 MATRLIN, VECTSP_9, INT_3, REALSET1, ARYTM;
13 notations TARSKI, XBOOLE_0, ZFMISC_1, SUBSET_1, RELAT_1, DOMAIN_1, RELSET_1,
14 FUNCT_1, NUMBERS, NAT_1, INT_1, PARTFUN1, FUNCT_2, BINOP_1, FUNCT_7,
15 XXREAL_0, CARD_1, FINSET_1, FINSEQ_1, FINSEQOP, CARD_2, REALSET1,
16 STRUCT_0, ALGSTR_0, GROUP_1, RLVECT_1, VECTSP_1, VECTSP_6, VECTSP_7,
17 MATRLIN, VECTSP_9, INT_3, RANKNULL;
18 constructors NAT_1, FINSEQOP, HAHNBAN, VECTSP_7, VECTSP_9, REALSET1, WELLORD2,
19 NAT_D, FUNCT_7, BINOP_1, CARD_2, RANKNULL, INT_3, GR_CY_1, XXREAL_0,
20 MATRLIN;
21 registrations RELAT_1, STRUCT_0, CARD_1, FINSET_1, FINSEQ_1, REALSET1,
22 SUBSET_1, XBOOLE_0, VECTSP_1, ORDINAL1, XREAL_0, INT_1, VECTSP_7;
23 requirements NUMERALS, BOOLE, ARITHM, SUBSET, REAL;
24 definitions TARSKI, FUNCT_1, FINSEQ_1, CARD_1, VECTSP_6, XBOOLE_0, VECTSP_1,
25 RLVECT_1, STRUCT_0, FINSEQ_2, BINOP_1, INT_3, ALGSTR_0;
26 theorems TARSKI, ZFMISC_1, FINSEQ_1, FUNCT_1, VECTSP_7, CARD_2, XBOOLE_1,
27 FUNCT_2, SUBSET_1, XBOOLE_0, VECTSP_1, RLVECT_1, VECTSP_4, VECTSP_6,
28 STRUCT_0, CARD_1, FUNCOP_1, FUNCT_7, FINSEQ_2, NAT_1, WELLORD2, RANKNULL,
29 MATRIX_3, INT_2, INT_3, GR_CY_1, NAT_D, REALSET1, ORDINAL1, PARTFUN1,
30 FINSEQ_3, MATRLIN;
31 schemes FINSEQ_1, FINSET_1, BINOP_1, FINSEQ_2, CLASSES1;
33 begin
35 definition
36 let S be 1-sorted;
37 func <*>S -> FinSequence of S equals
39 <*>([#]S);
40 coherence;
41 end;
43 :: exactly as in FINSEQ_2
45 reserve S for 1-sorted,
46 d for Element of S,
47 i for Element of NAT,
48 p for FinSequence,
49 b,X for set;
51 :: copied from FINSEQ_2:13


:: The Vector Space of Subsets of a Set Based on Disjoint Union
::  by Jesse Alama
::
:: Received October 9, 2007
:: Copyright (c) 2007 Association of Mizar Users

environ

 vocabularies FINSET_1, BSPACE, FUNCT_1, CARD_1, SUBSET_1, TARSKI, BOOLE,
      RELAT_1, NAT_1, GROUP_1, FINSEQ_1, FINSEQ_2, QC_LANG1, BINOP_1, VECTSP_1,
      RLVECT_1, RLVECT_3, RLVECT_2, SEQ_1, FINSEQ_4, FUNCT_4, ORDINAL2,
      MATRLIN, VECTSP_9, INT_3, REALSET1, ARYTM;
 notations TARSKI, XBOOLE_0, ZFMISC_1, SUBSET_1, RELAT_1, DOMAIN_1, RELSET_1,
      FUNCT_1, NUMBERS, NAT_1, INT_1, PARTFUN1, FUNCT_2, BINOP_1, FUNCT_7,
      XXREAL_0, CARD_1, FINSET_1, FINSEQ_1, FINSEQOP, CARD_2, REALSET1,
      STRUCT_0, ALGSTR_0, GROUP_1, RLVECT_1, VECTSP_1, VECTSP_6, VECTSP_7,
      MATRLIN, VECTSP_9, INT_3, RANKNULL;
 constructors NAT_1, FINSEQOP, HAHNBAN, VECTSP_7, VECTSP_9, REALSET1, WELLORD2,
      NAT_D, FUNCT_7, BINOP_1, CARD_2, RANKNULL, INT_3, GR_CY_1, XXREAL_0,
      MATRLIN;
 registrations RELAT_1, STRUCT_0, CARD_1, FINSET_1, FINSEQ_1, REALSET1,
      SUBSET_1, XBOOLE_0, VECTSP_1, ORDINAL1, XREAL_0, INT_1, VECTSP_7;
 requirements NUMERALS, BOOLE, ARITHM, SUBSET, REAL;
 definitions TARSKI, FUNCT_1, FINSEQ_1, CARD_1, VECTSP_6, XBOOLE_0, VECTSP_1,
      RLVECT_1, STRUCT_0, FINSEQ_2, BINOP_1, INT_3, ALGSTR_0;
 theorems TARSKI, ZFMISC_1, FINSEQ_1, FUNCT_1, VECTSP_7, CARD_2, XBOOLE_1,
      FUNCT_2, SUBSET_1, XBOOLE_0, VECTSP_1, RLVECT_1, VECTSP_4, VECTSP_6,
      STRUCT_0, CARD_1, FUNCOP_1, FUNCT_7, FINSEQ_2, NAT_1, WELLORD2, RANKNULL,
      MATRIX_3, INT_2, INT_3, GR_CY_1, NAT_D, REALSET1, ORDINAL1, PARTFUN1,
      FINSEQ_3, MATRLIN;
 schemes FINSEQ_1, FINSET_1, BINOP_1, FINSEQ_2, CLASSES1;

begin

definition
  let S be 1-sorted;
  func <*>S -> FinSequence of S equals

  <*>([#]S);
  coherence;
end;

:: exactly as in FINSEQ_2

reserve S for 1-sorted,
  d for Element of S,
  i for Element of NAT,
  p for FinSequence,
  b,X for set;

:: copied from FINSEQ_2:13

theorem
  for p being FinSequence of S st i in dom p holds p.i in S
proof
  let p be FinSequence of S;
  assume i in dom p;
  hence p.i in the carrier of S by FINSEQ_2:13;
end;

:: copied from FINSEQ_2:14

theorem
  (for i being Nat st i in dom p holds p.i in S) implies p is FinSequence of S
proof
  assume
A1: for i being Nat st i in dom p holds p.i in S;
  for i being Nat st i in dom p holds p.i in the carrier of S
  proof
    let i be Nat;
    assume i in dom p;
    then p.i in S by A1;
    hence thesis by STRUCT_0:def 5;
  end;
  hence thesis by FINSEQ_2:14;
end;

scheme IndSeqS{S() -> 1-sorted, P[set]}:
  for p being FinSequence of S() holds P[p]
provided
A1: P[<*> S()]
and
A2: for p being FinSequence of S() for x being Element of S()
st P[p] holds P[p^<*x*>]
proof
A3: P[<*>the carrier of S()] by A1;
  thus for p being FinSequence of the carrier of S() holds P[p]
  from FINSEQ_2:sch 2(A3,A2);
end;

begin :: The two-element field Z_2

definition
  func Z_2 -> Field equals

  INT.Ring(2);
  coherence by INT_2:44,INT_3:22;
end;

theorem
  [#]Z_2 = {0,1} by CARD_1:88;

theorem
  for a being Element of Z_2 holds a = 0 or a = 1 by CARD_1:88,TARSKI:def 2;

theorem Th5:
  0.Z_2 = 0 by FUNCT_7:def 1,GR_CY_1:12;

theorem Th6:
  1.Z_2 = 1 by INT_3:24;

theorem Th7:
  1.Z_2 + 1.Z_2 = 0.Z_2
proof
  1.Z_2 + 1.Z_2 = (1+1) mod 2 by Th6,GR_CY_1:def 5
    .= 0 by NAT_D:25;
  hence thesis by FUNCT_7:def 1;
end;

theorem
  for x being Element of Z_2 holds x = 0.Z_2 iff x <> 1.Z_2
  by Th5,Th6,CARD_1:88,TARSKI:def 2;

begin :: Set-theoretical Preliminaries

definition
  let X,x be set;
  func X@x -> Element of Z_2 equals
  :Def3:
  1.Z_2 if x in X otherwise 0.Z_2;
  coherence;
  consistency;
end;

theorem
  for X,x being set holds X@x = 1.Z_2 iff x in X by Def3;

theorem
  for X,x being set holds X@x = 0.Z_2 iff not x in X by Def3;

theorem
  for X,x being set holds X@x <> 0.Z_2 iff X@x = 1.Z_2
  by Th5,Th6,CARD_1:88,TARSKI:def 2;

theorem
  for X,x,y being set holds X@x = X@y iff (x in X iff y in X)
proof
  let X,x,y be set;
  thus X@x = X@y implies (x in X iff y in X)
  proof
    assume
A1: X@x = X@y;
    thus x in X implies y in X
    proof
      assume x in X;
      then X@x = 1.Z_2 by Def3;
      hence thesis by A1,Def3;
    end;
    assume y in X;
    then X@y = 1.Z_2 by Def3;
    hence thesis by A1,Def3;
  end;
  assume
A2: x in X iff y in X;
  per cases by Th5,Th6,CARD_1:88,TARSKI:def 2;
  suppose X@x = 0.Z_2;
    hence thesis by A2,Def3;
  end;
  suppose X@x = 1.Z_2;
    hence thesis by A2,Def3;
  end;
end;

theorem
  for X,Y,x being set holds X@x = Y@x iff (x in X iff x in Y)
proof
  let X,Y,x be set;
  thus X@x = Y@x implies (x in X iff x in Y)
  proof
    assume
A1: X@x = Y@x;
    thus x in X implies x in Y
    proof
      assume x in X;
      then X@x = 1.Z_2 by Def3;
      hence thesis by A1,Def3;
    end;
    assume x in Y;
    then Y@x = 1.Z_2 by Def3;
    hence thesis by A1,Def3;
  end;
  thus (x in X iff x in Y) implies X@x = Y@x
  proof
    assume
A2: x in X iff x in Y;
    per cases by Th5,Th6,CARD_1:88,TARSKI:def 2;
    suppose X@x = 0.Z_2;
      hence thesis by A2,Def3;
    end;
    suppose X@x = 1.Z_2;
      hence thesis by A2,Def3;
    end;
  end;
end;

theorem
  for x being set holds {}@x = 0.Z_2 by Def3;

theorem Th15:
  for X being set, u,v being Subset of X, x being Element of X
  holds (u \+\ v)@x = u@x + v@x
proof
  let X be set, u,v be Subset of X, x be Element of X;
  per cases;
  suppose
A1: x in u \+\ v;
    then
A2: (u \+\ v)@x = 1.Z_2 by Def3;
    per cases;
    suppose
A3:   x in u;
      then
A4:   not x in v by A1,XBOOLE_0:1;
A5:   u@x = 1.Z_2 by A3,Def3;
      v@x = 0.Z_2 by A4,Def3;
      hence thesis by A2,A5,RLVECT_1:10;
    end;
    suppose
A6:   not x in u;
      then
A7:   x in v by A1,XBOOLE_0:1;
A8:   u@x = 0.Z_2 by A6,Def3;
      v@x = 1.Z_2 by A7,Def3;
      hence thesis by A2,A8,RLVECT_1:10;
    end;
  end;
  suppose
A9: not x in u \+\ v;
    then
A10: (u \+\ v)@x = 0.Z_2 by Def3;
    per cases;
    suppose
A11:  x in u;
      then
A12:  x in v by A9,XBOOLE_0:1;
      u@x = 1.Z_2 by A11,Def3;
      hence thesis by A10,A12,Def3,Th7;
    end;
    suppose
A13:  not x in u;
      then
A14:  not x in v by A9,XBOOLE_0:1;
A15:  u@x = 0.Z_2 by A13,Def3;
      v@x = 0.Z_2 by A14,Def3;
      hence thesis by A10,A15,RLVECT_1:10;
    end;
  end;
end;

theorem
  for X,Y being set holds X = Y iff for x being set holds X@x = Y@x
proof
  let X,Y be set;
  thus X = Y implies for x being set holds X@x = Y@x;
  thus (for x being set holds X@x = Y@x) implies X = Y
  proof
    assume
A1: for x being set holds X@x = Y@x;
    thus X c= Y
    proof
      let y be set such that
A2:   y in X;
      X@y = 1.Z_2 by A2,Def3;
      then Y@y = 1.Z_2 by A1;
      hence thesis by Def3;
    end;
    let y be set such that
A3: y in Y;
    Y@y = 1.Z_2 by A3,Def3;
    then X@y = 1.Z_2 by A1;
    hence thesis by Def3;
  end;
end;

begin :: The Boolean Bector Space of Subsets of a Set

definition
  let X be set, a be Element of Z_2, c be Subset of X;
  func a \*\ c -> Subset of X equals
  :Def4:
  c if a = 1.Z_2, {}X if a = 0.Z_2;
  consistency;
  coherence;
end;

definition
  let X be set;
  func bspace-sum(X) -> BinOp of bool X means
  :Def5:
  for c,d being Subset of X
  holds it.(c,d) = c \+\ d;
  existence
  proof
    defpred P[set,set,set] means
    ex a,b being Subset of X st $1 = a & $2 = b & $3 = a \+\ b;
A1: for x,y being set st x in bool X & y in bool X ex z being set
    st z in bool X & P[x,y,z]
    proof
      let x,y be set such that
A2:   x in bool X and
A3:   y in bool X;
      reconsider x,y as Subset of X by A2,A3;
      set z = x \+\ y;
      take z;
      thus thesis;
    end;
    consider f being Function of [:bool X,bool X:],bool X such that
A4: for x,y being set st x in bool X & y in bool X
    holds P[x,y,f.(x,y)] from BINOP_1:sch 1(A1);
    reconsider f as BinOp of bool X;
A5: for c,d being Subset of X holds f.(c,d) = c \+\ d
    proof
      let c,d be Subset of X;
      consider a,b being Subset of X such that
A6:   c = a and
A7:   d = b and
A8:   f.(c,d) = a \+\ b by A4;
      thus thesis by A6,A7,A8;
    end;
    take f;
    thus thesis by A5;
  end;
  uniqueness
  proof
    let f,g be BinOp of bool X such that
A9: for c,d being Subset of X holds f.(c,d) = c \+\ d and
A10: for c,d being Subset of X holds g.(c,d) = c \+\ d;
    dom f = [:bool X,bool X:] by FUNCT_2:def 1;
    then
A11: dom f = dom g by FUNCT_2:def 1;
    for x being set st x in dom f holds f.x = g.x
    proof
      let x be set such that
A12:  x in dom f;
      consider y,z being set such that
A13:  y in bool X and
A14:  z in bool X and
A15:  x = [y,z] by A12,ZFMISC_1:def 2;
      reconsider y as Subset of X by A13;
      reconsider z as Subset of X by A14;
      f.(y,z) = y \+\ z & g.(y,z) = y \+\ z by A9,A10;
      hence thesis by A15;
    end;
    hence thesis by A11,FUNCT_1:9;
  end;
end;

theorem Th17:
  for a being Element of Z_2, c,d being Subset of X
  holds a \*\ (c \+\ d) = (a \*\ c) \+\ (a \*\ d)
proof
  let a be Element of Z_2, c,d be Subset of X;
  per cases by Th5,Th6,CARD_1:88,TARSKI:def 2;
  suppose a = 0.Z_2;
    then a \*\ (c \+\ d) = {}X & a \*\ c = {}X & a \*\ d = {}X by Def4;
    hence thesis;
  end;
  suppose a = 1.Z_2;
    then a \*\ (c \+\ d) = c \+\ d & a \*\ c = c & a \*\ d = d by Def4;
    hence thesis;
  end;
end;

theorem Th18:
  for a,b being Element of Z_2, c being Subset of X
  holds (a+b) \*\ c = (a \*\ c) \+\ (b \*\ c)
proof
  let a,b be Element of Z_2, c be Subset of X;
  per cases by Th5,Th6,CARD_1:88,TARSKI:def 2;
  suppose
A1: a = 0.Z_2;
    then a \*\ c = {}X by Def4;
    hence thesis by A1,RLVECT_1:10;
  end;
  suppose
A2: a = 1.Z_2;
    per cases by Th5,Th6,CARD_1:88,TARSKI:def 2;
    suppose
A3:   b = 0.Z_2;
      then b \*\ c = {}X by Def4;
      hence thesis by A3,RLVECT_1:10;
    end;
    suppose
A4:   b = 1.Z_2;
      then
A5:   b \*\ c = c by Def4;
      c \+\ c = {}X by XBOOLE_1:92;
      hence thesis by A2,A4,A5,Def4,Th7;
    end;
  end;
end;

theorem
  for c being Subset of X holds (1.Z_2) \*\ c = c by Def4;

theorem Th20:
  for a,b being Element of Z_2, c being Subset of X
  holds a \*\ (b \*\ c) = (a*b) \*\ c
proof
  let a,b be Element of Z_2, c be Subset of X;
  per cases by Th5,Th6,CARD_1:88,TARSKI:def 2;
  suppose
A1: a = 0.Z_2;
    then
A2: a*b = 0.Z_2 by VECTSP_1:39;
    a \*\ (b \*\ c) = {}X by A1,Def4;
    hence thesis by A2,Def4;
  end;
  suppose
A3: a = 1.Z_2;
    then a \*\ (b \*\ c) = b \*\ c by Def4;
    hence thesis by A3,VECTSP_1:def 16;
  end;
end;

definition
  let X be set;
  func
  bspace-scalar-mult(X) -> Function of [:the carrier of Z_2,bool X:],bool X
  means
  :Def6:
  for a being Element of Z_2, c being Subset of X
  holds it.(a,c) = a \*\ c;
  existence
  proof
    defpred P[set,set,set] means ex a being Element of Z_2,
    c being Subset of X st $1 = a & $2 = c & $3 = a \*\ c;
A1: for x,y being set st x in the carrier of Z_2 & y in bool X ex z being set
    st z in bool X & P[x,y,z]
    proof
      let x,y be set such that
A2:   x in the carrier of Z_2 and
A3:   y in bool X;
      reconsider x as Element of Z_2 by A2;
      reconsider y as Subset of X by A3;
      set z = x \*\ y;
      take z;
      thus thesis;
    end;
    consider f being Function of [:the carrier of Z_2,bool X:],bool X such that
A4: for x,y being set st x in the carrier of Z_2 & y in bool X
    holds P[x,y,f.(x,y)] from BINOP_1:sch 1(A1);
A5: for a being Element of Z_2, c being Subset of X holds f.(a,c) = a \*\ c
    proof
      let a be Element of Z_2, c be Subset of X;
      consider a' being Element of Z_2, c' being Subset of X such that
A6:   a = a' and
A7:   c = c' and
A8:   f.(a,c) = a' \*\ c' by A4;
      thus thesis by A6,A7,A8;
    end;
    take f;
    thus thesis by A5;
  end;
  uniqueness
  proof
    let f,g be Function of [:the carrier of Z_2,bool X:],bool X such that
A9: for a being Element of Z_2, c being Subset of X
    holds f.(a,c) = a \*\ c and
A10: for a being Element of Z_2, c being Subset of X holds g.(a,c) = a \*\ c;
    dom f = [:the carrier of Z_2,bool X:] by FUNCT_2:def 1;
    then
A11: dom f = dom g by FUNCT_2:def 1;
    for x being set st x in dom f holds f.x = g.x
    proof
      let x be set such that
A12:  x in dom f;
      consider y,z being set such that
A13:  y in the carrier of Z_2 and
A14:  z in bool X and
A15:  x = [y,z] by A12,ZFMISC_1:def 2;
      reconsider y as Element of Z_2 by A13;
      reconsider z as Subset of X by A14;
      f.(y,z) = y \*\ z & g.(y,z) = y \*\ z by A9,A10;
      hence thesis by A15;
    end;
    hence thesis by A11,FUNCT_1:9;
  end;
end;

definition
  let X be set;
  func bspace(X) -> non empty VectSpStr over Z_2 equals

  VectSpStr (# bool X,
    bspace-sum(X), {}X, bspace-scalar-mult(X) #);
  coherence;
end;

Lm1: for a,b,c being Element of bspace(X), A,B,C being Subset of X
st a = A & b = B & c = C holds a+(b+c) = A \+\ (B \+\ C)
& (a+b)+c = (A \+\ B) \+\ C
proof
  let a,b,c be Element of bspace(X);
  let A,B,C be Subset of X;
  assume
A1: a = A & b = B & c = C;
  thus a+(b+c) = A \+\ (B \+\ C)
  proof
    b+c = B \+\ C by A1,Def5;
    hence thesis by A1,Def5;
  end;
  thus (a+b)+c = (A \+\ B) \+\ C
  proof
    a+b = A \+\ B by A1,Def5;
    hence thesis by A1,Def5;
  end;
end;

Lm2: for a,b being Element of Z_2, x,y being Element of bspace(X),
c,d being Subset of X st x = c & y = d holds (a*x)+(b*y)
= (a \*\ c) \+\ (b \*\ d) & a*(x+y) = a \*\ (c \+\ d) &
(a+b)*x = (a+b) \*\ c & (a*b)*x = (a*b) \*\ c & a*(b*x) = a \*\ (b \*\ c)
proof
  let a,b be Element of Z_2, x,y be Element of bspace(X), c,d be Subset of X
  such that
A1: x = c and
A2: y = d;
  thus (a*x)+(b*y) = (a \*\ c) \+\ (b \*\ d)
  proof
A3: a*x = a \*\ c by A1,Def6;
    b*y = b \*\ d by A2,Def6;
    hence thesis by A3,Def5;
  end;
  thus a*(x+y) = a \*\ (c \+\ d)
  proof
A4: x+y = c \+\ d by A1,A2,Def5;
    thus thesis by A4,Def6;
  end;
  thus (a+b)*x = (a+b) \*\ c by A1,Def6;
  thus (a*b)*x = (a*b) \*\ c by A1,Def6;
  thus a*(b*x) = a \*\ (b \*\ c)
  proof
    b*x = b \*\ c by A1,Def6;
    hence thesis by Def6;
  end;
end;

theorem Th21:
  bspace(X) is Abelian
proof
  let x,y be Element of bspace(X);
  reconsider A = x, B = y as Subset of X;
  x+y = B \+\ A by Def5
    .= y+x by Def5;
  hence thesis;
end;

theorem Th22:
  bspace(X) is add-associative
proof
  let x,y,z be Element of bspace(X);
  reconsider A = x, B = y, C = z as Subset of X;
  x+(y+z) = A \+\ (B \+\ C) by Lm1
    .= (A \+\ B) \+\ C by XBOOLE_1:91
    .= (x+y)+z by Lm1;
  hence thesis;
end;

theorem Th23:
  bspace(X) is right_zeroed
proof
  let x be Element of bspace(X);
  reconsider A = x as Subset of X;
  reconsider Z = 0.bspace(X) as Subset of X;
  x+0.bspace(X) = A \+\ Z by Def5
    .= x;
  hence thesis;
end;

theorem Th24:
  bspace(X) is right_complementable
proof
  let x be Element of bspace(X);
  reconsider A = x as Subset of X;
A1: A \+\ A = {}X by XBOOLE_1:92;
  take x;
  thus thesis by A1,Def5;
end;

theorem Th25:
  for a being Element of Z_2, x,y being Element of bspace(X)
  holds a*(x+y) = (a*x)+(a*y)
proof
  let a be Element of Z_2, x,y be Element of bspace(X);
  reconsider c = x, d = y as Subset of X;
  a*(x+y) = a \*\ (c \+\ d) by Lm2
    .= (a \*\ c) \+\ (a \*\ d) by Th17
    .= (a*x)+(a*y) by Lm2;
  hence thesis;
end;

theorem Th26:
  for a,b being Element of Z_2, x being Element of bspace(X)
  holds (a+b)*x = (a*x)+(b*x)
proof
  let a,b be Element of Z_2, x be Element of bspace(X);
  reconsider c = x as Subset of X;
  (a+b)*x = (a+b) \*\ c by Lm2
    .= (a \*\ c) \+\ (b \*\ c) by Th18
    .= (a*x)+(b*x) by Lm2;
  hence thesis;
end;

theorem Th27:
  for a,b being Element of Z_2, x being Element of bspace(X)
  holds (a*b)*x = a*(b*x)
proof
  let a,b be Element of Z_2, x be Element of bspace(X);
  reconsider c = x as Subset of X;
  (a*b)*x = (a*b) \*\ c by Lm2
    .= a \*\ (b \*\ c) by Th20
    .= a*(b*x) by Lm2;
  hence thesis;
end;

theorem Th28:
  for x being Element of bspace(X) holds (1_Z_2)*x = x
proof
  let x be Element of bspace(X);
  reconsider c = x as Subset of X;
  (1_Z_2)*x = (1_Z_2) \*\ c by Def6
    .= c by Def4;
  hence thesis;
end;

theorem Th29:
  bspace(X) is VectSp-like
proof
  let a,b be Element of Z_2, x,y be Element of bspace(X);
  thus a*(x+y) = (a*x)+(a*y) by Th25;
  thus (a+b)*x = (a*x)+(b*x) by Th26;
  thus (a*b)*x = a*(b*x) by Th27;
  thus (1.Z_2)*x = x by Th28;
end;

registration
  let X be set;
  cluster bspace(X) -> VectSp-like Abelian right_complementable
    add-associative right_zeroed;
  coherence by Th21,Th22,Th23,Th24,Th29;
end;

begin :: The Linear Independence and Linear Span of Singleton Subsets

definition
  let X be set;
  attr X is Singleton means
  :Def8:
  X is non empty trivial;
end;

registration
  cluster Singleton -> non empty trivial set;
  coherence by Def8;
  cluster non empty trivial -> Singleton set;
  coherence by Def8;
end;

definition
  let X be set, f be Subset of X;
  redefine attr f is Singleton means
  :Def9:
  ex x being set st x in X & f = {x};
  compatibility
  proof
    thus f is Singleton implies ex x being set st x in X & f = {x}
    proof
      assume f is Singleton;
      then f is non empty trivial;
      then consider x being set such that
A1:   f = {x} by REALSET1:def 4;
      take x;
      x in f by A1,TARSKI:def 1;
      hence x in X;
      thus thesis by A1;
    end;
    thus thesis;
  end;
end;

definition
  let X be set;
  func singletons(X) equals

  { f where f is Subset of X : f is Singleton };
  coherence;
end;

definition
  let X be set;
  redefine func singletons(X) -> Subset of bspace(X);
  coherence
  proof
    set S = singletons(X);
    S c= bool(X)
    proof
      let f be set such that
A1:   f in S;
      consider g being Subset of X such that
A2:   f = g and g is Singleton by A1;
      reconsider f as Subset of X by A2;
      f is Element of bool(X);
      hence thesis;
    end;
    hence thesis;
  end;
end;

registration
  let X be non empty set;
  cluster singletons(X) -> non empty;
  coherence
  proof
    consider x being Element of X;
    {x} in singletons(X);
    hence thesis;
  end;
end;

theorem Th30:
  for X being non empty set, f being Subset of X
  st f is Element of singletons(X) holds f is Singleton
proof
  let X be non empty set, f be Subset of X such that
A1: f is Element of singletons(X);
  f in singletons(X) by A1;
  then consider g being Subset of X such that
A2: g = f and
A3: g is Singleton;
  thus thesis by A2,A3;
end;

definition
  let F be Field, V be VectSp of F, l be Linear_Combination of V,
  x be Element of V;
  redefine func l.x -> Element of F;
  coherence
  proof
    l.x in [#]F;
    hence thesis;
  end;
end;

definition
  let X be non empty set, s be FinSequence of bspace(X), x be Element of X;
  func s@x -> FinSequence of Z_2 means
  :Def11:
  len it = len s
  & for j being Nat st 1 <= j & j <= len s holds it.j = (s.j)@x;
  existence
  proof
    deffunc F(set) = (s.$1)@x;
    consider p being FinSequence such that
A1: len p = len s and
A2: for k being Nat st k in dom p holds p.k = F(k) from FINSEQ_1:sch 2;
A3: for j being Nat st 1 <= j & j <= len s holds p.j = (s.j)@x
    proof
      let j be Nat such that
A4:   1 <= j and
A5:   j <= len s;
      j in dom p by A4,A5,A1,FINSEQ_3:27;
      hence thesis by A2;
    end;
    rng p c= the carrier of Z_2
    proof
      let y be set such that
A6:   y in rng p;
      consider a being set such that
A7:   a in dom p and
A8:   p.a = y by A6,FUNCT_1:def 5;
      p.a = (s.a)@x by A2,A7;
      hence thesis by A8;
    end;
    then reconsider p as FinSequence of Z_2 by FINSEQ_1:def 4;
    take p;
    thus thesis by A1,A3;
  end;
  uniqueness
  proof
    let f,g be FinSequence of Z_2 such that
A9: len f = len s & for j being Nat st 1 <= j & j <= len s
    holds f.j = (s.j)@x and
A10: len g = len s & for j being Nat st 1 <= j & j <= len s
    holds g.j = (s.j)@x;
    for k being Nat st 1 <= k & k <= len f holds f.k = g.k
    proof
      let k be Nat such that
A11:  1 <= k and
A12:  k <= len f;
      f.k = (s.k)@x & g.k = (s.k)@x by A9,A10,A11,A12;
      hence thesis;
    end;
    hence thesis by A9,A10,FINSEQ_1:18;
  end;
end;

theorem Th31:
  for X being non empty set, x being Element of X
  holds (<*>(bspace(X)))@x = <*>Z_2
proof
  let X be non empty set, x be Element of X;
  set V = bspace(X);
  set L = (<*>V)@x;
  len L = len <*>V by Def11
    .= 0;
  hence thesis;
end;

theorem Th32:
  for X being set, u,v being Element of bspace(X), x being Element of X
  holds (u + v)@x = u@x + v@x
proof
  let X be set, u,v be Element of bspace(X), x be Element of X;
  reconsider u' = u, v' = v as Subset of X;
  (u + v)@x = (u' \+\ v')@x by Def5
    .= (u'@x) + (v'@x) by Th15;
  hence thesis;
end;

theorem Th33:
  for X being non empty set, s being FinSequence of bspace(X),
  f being Element of bspace(X), x being Element of X
  holds (s ^ <*f*>)@x = (s@x) ^ <*f@x*>
proof
  let X be non empty set, s be FinSequence of bspace(X),
  f be Element of bspace(X), x be Element of X;
  set L = (s ^ <*f*>)@x;
  set R = (s@x) ^ <*f@x*>;
A1: len L = len (s ^ <*f*>) by Def11
    .= (len s) + (len <*f*>) by FINSEQ_1:35
    .= (len s) + 1 by FINSEQ_1:56;
A2: len ((s@x) ^ <*f@x*>) = (len (s@x)) + (len <*f@x*>) by FINSEQ_1:35
    .= (len s) + (len <*f@x*>) by Def11
    .= (len s) + 1 by FINSEQ_1:56;
  for k being Nat st 1 <= k & k <= len L holds L.k = R.k
  proof
    let k be Nat such that
A3: 1 <= k and
A4: k <= len L;
A5: k in NAT by ORDINAL1:def 13;
    per cases by A1,A4,NAT_1:8;
    suppose
A6:   k <= len s;
      k <= len (s ^ <*f*>) by A4,Def11;
      then
A7:   L.k = ((s ^ <*f*>).k)@x by A3,Def11;
      dom (s@x) = Seg (len (s@x)) by FINSEQ_1:def 3
        .= Seg (len s) by Def11;
      then k in dom (s@x) by A3,A5,A6;
      then
A8:   R.k = (s@x).k by FINSEQ_1:def 7
        .= (s.k)@x by A3,A6,Def11;
      dom s = Seg (len s) by FINSEQ_1:def 3;
      then k in dom s by A3,A5,A6;
      hence thesis by A7,A8,FINSEQ_1:def 7;
    end;
    suppose
A9:   k = len L;
A10:  k <= len (s ^ <*f*>) by A4,Def11;
A11:  len (s@x) = len s by Def11;
      dom (<*f@x*>) = {1} by FINSEQ_1:4,def 8;
      then 1 in dom (<*f@x*>) by TARSKI:def 1;
      then
A12:  R.k = <*f@x*>.1 by A1,A9,A11,FINSEQ_1:def 7
        .= f@x by FINSEQ_1:def 8;
      dom (<*f*>) = {1} by FINSEQ_1:4,def 8;
      then 1 in dom (<*f*>) by TARSKI:def 1;
      then (s ^ <*f*>).k = <*f*>.1 by A1,A9,FINSEQ_1:def 7
        .= f by FINSEQ_1:def 8;
      hence thesis by A3,A10,A12,Def11;
    end;
  end;
  hence thesis by A1,A2,FINSEQ_1:18;
end;

theorem Th34:
  for X being non empty set, s being FinSequence of bspace(X),
  x being Element of X holds (Sum s)@x = Sum (s@x)
proof
  let X be non empty set, s be FinSequence of bspace(X), x be Element of X;
  set V = bspace(X);
  defpred Q[FinSequence of V] means (Sum ($1))@x = Sum (($1)@x);
A1: Q[<*>V]
  proof
    set e = <*>V;
    reconsider z = 0.V as Subset of X;
A2: Sum e = 0.V by RLVECT_1:60;
A3: e@x = <*>Z_2 by Th31;
    z@x = 0.Z_2 by Def3;
    hence thesis by A2,A3,RLVECT_1:60;
  end;
A4: for p being FinSequence of V, f being Element of V st Q[p]
  holds Q[p ^ <*f*>]
  proof
    let p be FinSequence of V, f be Element of V such that
A5: Q[p];
    (Sum (p ^ <*f*>))@x = ((Sum p) + (Sum <*f*>))@x by RLVECT_1:58
      .= ((Sum p) + f)@x by RLVECT_1:61
      .= (Sum p)@x + f@x by Th32
      .= Sum (p@x) + Sum (<*f@x*>) by A5,RLVECT_1:61
      .= Sum (p@x ^ <*f@x*>) by RLVECT_1:58
      .= Sum ((p ^ <*f*>)@x) by Th33;
    hence thesis;
  end;
  for p being FinSequence of V holds Q[p] from IndSeqS(A1,A4);
  hence thesis;
end;

theorem Th35:
  for X being non empty set, l being Linear_Combination of bspace(X),
  x being Element of bspace(X) st x in Carrier l holds l.x = 1_Z_2
proof
  let X be non empty set, l be Linear_Combination of bspace(X),
  x be Element of bspace(X) such that
A1: x in Carrier l;
  l.x <> 0.Z_2 by A1,VECTSP_6:20;
  hence thesis by Th5,Th6,CARD_1:88,TARSKI:def 2;
end;

theorem Th36:
  singletons {} = {}
proof
  set X = {};
  assume singletons(X) <> {};
  then consider f being set such that
A1: f in singletons(X) by XBOOLE_0:def 1;
  consider g being Subset of X such that g = f and
A2: g is Singleton by A1;
  consider x being set such that
A3: x in X and g = {x} by A2;
  thus thesis by A3;
end;

theorem Th37:
  singletons(X) is linearly-independent
proof
  per cases;
  suppose
A1: X is empty;
    thus thesis by A1,Th36;
  end;
  suppose X is non empty;
    then reconsider X as non empty set;
    set V = bspace(X);
    set S = singletons(X);
    for l being Linear_Combination of S st Sum l = 0.V holds Carrier l = {}
    proof
      let l be Linear_Combination of S such that
A2:   Sum l = 0.V;
      set C = Carrier l;
      reconsider s = Sum l as Subset of X;
      assume C <> {};
      then consider f being Element of V such that
A3:   f in C by SUBSET_1:10;
      reconsider f as Subset of X;
      C c= S by VECTSP_6:def 7;
      then f is Singleton by A3,Th30;
      then consider x being set such that
A4:   x in X and
A5:   f = {x} by Def9;
      x in f by A5,TARSKI:def 1;
      then
A6:   f@x = 1.Z_2 by Def3;
      reconsider x as Element of X by A4;
A7:   s@x = 0.Z_2 by A2,Def3;
A8:   for g being Subset of X st g <> f & g in C holds g@x = 0.Z_2
      proof
        let g be Subset of X such that
A9:     g <> f and
A10:    g in C;
        C c= S by VECTSP_6:def 7;
        then g is Singleton by A10,Th30;
        then consider y being set such that
A11:    y in X and
A12:    g = {y} by Def9;
        reconsider y as Element of X by A11;
        now
          assume g@x <> 0.Z_2;
          then x in {y} by A12,Def3;
          hence contradiction by A5,A9,A12,TARSKI:def 1;
        end;
        hence thesis;
      end;
      reconsider g = f as Element of V;
      reconsider m = l!(C \ {g}) as Linear_Combination of C \ {g};
      reconsider n = l!{g} as Linear_Combination of {g};
      reconsider t = Sum m, u = Sum n as Subset of X;
A13:  l!(Carrier l) = l by RANKNULL:24;
A14:  {g} c= Carrier l by A3,ZFMISC_1:37;
      reconsider l as Linear_Combination of C by A13;
      l = n + m by A14,RANKNULL:27;
      then Sum l = (Sum m) + (Sum n) by VECTSP_6:77;
      then s = t \+\ u by Def5;
      then
A15:  s@x = t@x + u@x by Th15;
A16:  t@x = 0
      proof
A17:    for F being FinSequence of V st F is one-to-one & rng F = Carrier m
        holds (m (#) F)@x = (len F) |-> 0.Z_2
        proof
          let F be FinSequence of V such that F is one-to-one and
A18:      rng F = Carrier m;
          set L = (m (#) F)@x;
          set R = (len F) |-> 0.Z_2;
A19:      len (m (#) F) = len F by VECTSP_6:def 8;
          then
A20:      len L = len F by Def11;
          dom R = Seg (len F) by FUNCOP_1:19;
          then
A21:      len L = len R by A20,FINSEQ_1:def 3;
          for k being Nat st 1 <= k & k <= len L holds L.k = R.k
          proof
            let k be Nat such that
A22:        1 <= k and
A23:        k <= len L;
            len (m (#) F) = len F by VECTSP_6:def 8;
            then
A24:        dom (m (#) F) = Seg (len F) by FINSEQ_1:def 3;
A25:        k in NAT by ORDINAL1:def 13;
            then k in dom (m (#) F) by A20,A22,A23,A24;
            then
A26:        (m (#) F).k = m.(F/.k)*(F/.k) by VECTSP_6:def 8;
            dom F = Seg (len F) by FINSEQ_1:def 3;
            then
A27:        k in dom F by A20,A22,A23,A25;
            then
A28:        F/.k = F.k by PARTFUN1:def 8;
            then
A29:        F/.k in Carrier m by A18,A27,FUNCT_1:12;
            reconsider Fk = F/.k as Subset of X;
            m.(F/.k) = 1_Z_2 by A18,A27,A28,Th35,FUNCT_1:12;
            then
A30:        (m (#) F).k = Fk by A26,VECTSP_1:def 26;
A31:        Carrier m = C \ {f}
            proof
              thus Carrier m c= C \ {f} by VECTSP_6:def 7;
              thus C \ {f} c= Carrier m
              proof
                let y be set such that
A32:            y in C \ {f};
A33:            y in C by A32,XBOOLE_0:def 5;
                reconsider y as Element of V by A32;
                now
                  assume
A34:              not y in Carrier m;
                  m.y = l.y by A32,RANKNULL:25;
                  then l.y = 0.Z_2 by A34;
                  hence contradiction by A33,VECTSP_6:20;
                end;
                hence thesis;
              end;
            end;
A35:        Fk <> f
            proof
              assume Fk = f;
              then not f in {f} by A29,A31,XBOOLE_0:def 5;
              hence contradiction by TARSKI:def 1;
            end;
A36:        Fk in C by A29,A31,XBOOLE_0:def 5;
A37:        L.k = ((m (#) F).k)@x by A19,A20,A22,A23,Def11
              .= 0.Z_2 by A8,A30,A35,A36;
            k in Seg (len F) by A20,A22,A23,A25;
            hence thesis by A37,FUNCOP_1:13;
          end;
          hence thesis by A21,FINSEQ_1:18;
        end;
        consider F being FinSequence of V such that
A38:    F is one-to-one and
A39:    rng F = Carrier m and
A40:    t = Sum (m (#) F) by VECTSP_6:def 9;
A41:    (Sum (m (#) F))@x = Sum ((m (#) F)@x) by Th34;
        (m (#) F)@x = (len F) |-> 0.Z_2 by A17,A38,A39;
        hence thesis by A40,A41,Th5,MATRIX_3:13;
      end;
      u = f
      proof
A42:    Sum n = (n.g)*g by VECTSP_6:43;
        g in {g} by TARSKI:def 1;
        then
A43:    n.g = l.g by RANKNULL:25;
        l.g <> 0.Z_2 by A3,VECTSP_6:20;
        then
A44:    l.g = 1_Z_2 by Th5,Th6,CARD_1:88,TARSKI:def 2;
        thus thesis by A42,A43,A44,VECTSP_1:def 26;
      end;
      hence thesis by A6,A7,A15,A16,Th5,RLVECT_1:10;
    end;
    hence thesis by VECTSP_7:def 1;
  end;
end;

theorem
  for f being Element of bspace(X) st (ex x being set st x in X & f = {x})
  holds f in singletons(X);

theorem Th39:
  for X being finite set, A being Subset of X
  ex l being Linear_Combination of singletons(X) st Sum l = A
proof
  let X be finite set, A be Subset of X;
  set V = bspace(X);
  set S = singletons(X);
  defpred P[set] means $1 is Subset of X
  implies ex l being Linear_Combination of S st Sum l = $1;
A1: A is finite;
A2: P[{}]
  proof
    assume {} is Subset of X;
    reconsider l = ZeroLC(V) as Linear_Combination of S by VECTSP_6:26;
A3: Sum l = 0.V by VECTSP_6:41;
    take l;
    thus thesis by A3;
  end;
A4: for x,B being set st x in A & B c= A & P[B] holds P[B \/ {x}]
  proof
    let x,B be set such that x in A and B c= A and
A5: P[B];
    assume
A6: B \/ {x} is Subset of X;
    then reconsider B as Subset of X by XBOOLE_1:11;
    consider l being Linear_Combination of S such that
A7: Sum l = B by A5;
    per cases;
    suppose
A8:   x in B;
      take l;
      thus thesis by A7,A8,ZFMISC_1:46;
    end;
    suppose
A9:   not x in B;
      reconsider f = {x} as Element of V by A6,XBOOLE_1:11;
      reconsider g = f as Subset of X;
      reconsider z = ZeroLC(V) as Linear_Combination of {}V by VECTSP_6:26;
      set m = z +* (f,1_Z_2);
      m is Linear_Combination of {}V \/ {f} by RANKNULL:23;
      then reconsider m = z +* (f,1_Z_2) as Linear_Combination of {f};
      dom z = [#]V by FUNCT_2:169;
      then
A10:  m.f = 1_Z_2 by FUNCT_7:33;
A11:  B misses {x} by A9,ZFMISC_1:56;
      f in S;
      then {f} c= S by ZFMISC_1:37;
      then m is Linear_Combination of S by VECTSP_6:25;
      then reconsider n = l + m as Linear_Combination of S by VECTSP_6:52;
A12:  Sum n = (Sum l) + (Sum m) by VECTSP_6:77
        .= (Sum l) + (m.f)*f by VECTSP_6:43
        .= (Sum l) + f by A10,VECTSP_1:def 26
        .= B \+\ g by A7,Def5
        .= (B \/ {x}) \ (B /\ {x}) by XBOOLE_1:101
        .= (B \/ {x}) \ {} by A11,XBOOLE_0:def 7
        .= B \/ {x};
      take n;
      thus thesis by A12;
    end;
  end;
  P[A] from FINSET_1:sch 2(A1,A2,A4);
  hence thesis;
end;

theorem Th40:
  for X being finite set holds Lin(singletons(X)) = bspace(X)
proof
  let X be finite set;
  set V = bspace(X);
  set S = singletons(X);
  for v being Element of V holds v in Lin(S)
  proof
    let v be Element of V;
    reconsider f = v as Subset of X;
    consider A being set such that
A1: A c= X and
A2: f = A;
    reconsider A as Subset of X by A1;
    consider l being Linear_Combination of S such that
A3: Sum l = A by Th39;
    thus thesis by A2,A3,VECTSP_7:12;
  end;
  hence thesis by VECTSP_4:40;
end;

theorem Th41:
  for X being finite set holds singletons(X) is Basis of bspace(X)
proof
  let X be finite set;
A1: singletons(X) is linearly-independent by Th37;
  Lin(singletons(X)) = bspace(X) by Th40;
  hence thesis by A1,VECTSP_7:def 3;
end;

registration
  let X be finite set;
  cluster singletons(X) -> finite;
  coherence;
end;

registration
  let X be finite set;
  cluster bspace(X) -> finite-dimensional;
  coherence
  proof
    set S = singletons(X);
A1: S is Basis of bspace(X) by Th41;
    thus thesis by A1,MATRLIN:def 3;
  end;
end;

theorem
  card (singletons X) = card X
proof
  defpred P[set,set] means $1 in X & $2 = {$1};
A2: for x being set st x in X holds ex y being set st P[x,y];
  consider f being Function such that
A3: dom f = X and
A4: for x being set st x in X holds P[x,f.x] from CLASSES1:sch 1(A2);
A5: f is one-to-one
  proof
    let x1,x2 be set such that
A6: x1 in dom f and
A7: x2 in dom f and
A8: f.x1 = f.x2;
A9: P[x1,f.x1] by A3,A4,A6;
    P[x2,f.x2] by A3,A4,A7;
    hence thesis by A8,A9,ZFMISC_1:6;
  end;
  rng f = singletons(X)
  proof
    thus rng f c= singletons(X)
    proof
      let y be set such that
A10:  y in rng f;
      consider x being set such that
A11:  x in dom f and
A12:  y = f.x by A10,FUNCT_1:def 5;
A13:  f.x = {x} by A3,A4,A11;
      then reconsider fx = f.x as Subset of X by A3,A11,ZFMISC_1:37;
      fx is Singleton by A13;
      hence thesis by A12;
    end;
    let y be set such that
A14: y in singletons(X);
    consider z being Subset of X such that
A15: y = z and
A16: z is Singleton by A14;
    reconsider y as Subset of X by A15;
    consider x being set such that
A17: x in X and
A18: y = {x} by A15,A16,Def9;
    reconsider x as Element of X by A17;
    y = f.x by A4,A17,A18;
    hence thesis by A3,A17,FUNCT_1:12;
  end;
  then X,singletons(X) are_equipotent by A3,A5,WELLORD2:def 4;
  hence thesis by CARD_1:21;
end;

theorem
  card [#](bspace X) = exp(2,card(X)) by CARD_2:44;

theorem
  dim bspace {} = 0
proof
  card [#]bspace {} = 1 by CARD_2:60,ZFMISC_1:1;
  hence thesis by RANKNULL:5;
end;
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53 theorem
54 for p being FinSequence of S st i in dom p holds p.i in S
55 proof
56 let p be FinSequence of S;
57 assume i in dom p;
58 hence p.i in the carrier of S by FINSEQ_2:13;
59 end;
61 :: copied from FINSEQ_2:14
63 theorem
64 (for i being Nat st i in dom p holds p.i in S) implies p is FinSequence of S
65 proof
66 assume
67 A1: for i being Nat st i in dom p holds p.i in S;
68 for i being Nat st i in dom p holds p.i in the carrier of S
69 proof
70 let i be Nat;
71 assume i in dom p;
72 then p.i in S by A1;
73 hence thesis by STRUCT_0:def 5;
74 end;
75 hence thesis by FINSEQ_2:14;
76 end;
78 scheme IndSeqS{S() -> 1-sorted, P[set]}:
79 for p being FinSequence of S() holds P[p]
80 provided
81 A1: P[<*> S()]
82 and
83 A2: for p being FinSequence of S() for x being Element of S()
84 st P[p] holds P[p^<*x*>]
85 proof
86 A3: P[<*>the carrier of S()] by A1;
87 thus for p being FinSequence of the carrier of S() holds P[p]
88 from FINSEQ_2:sch 2(A3,A2);
89 end;
91 begin :: The two-element field Z_2
93 definition
94 func Z_2 -> Field equals
96 INT.Ring(2);
97 coherence by INT_2:44,INT_3:22;
98 end;

100 theorem
101 [#]Z_2 = {0,1} by CARD_1:88;
103 theorem
104 for a being Element of Z_2 holds a = 0 or a = 1 by CARD_1:88,TARSKI:def 2;
106 theorem Th5:
107 0.Z_2 = 0 by FUNCT_7:def 1,GR_CY_1:12;
109 theorem Th6:
110 1.Z_2 = 1 by INT_3:24;
112 theorem Th7:
113 1.Z_2 + 1.Z_2 = 0.Z_2
114 proof
115 1.Z_2 + 1.Z_2 = (1+1) mod 2 by Th6,GR_CY_1:def 5
116 .= 0 by NAT_D:25;
117 hence thesis by FUNCT_7:def 1;
118 end;
120 theorem
121 for x being Element of Z_2 holds x = 0.Z_2 iff x <> 1.Z_2
122 by Th5,Th6,CARD_1:88,TARSKI:def 2;
124 begin :: Set-theoretical Preliminaries
126 definition
127 let X,x be set;
128 func X@x -> Element of Z_2 equals
129 :Def3:
130 1.Z_2 if x in X otherwise 0.Z_2;
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131 coherence;
132 consistency;
133 end;
135 theorem
136 for X,x being set holds X@x = 1.Z_2 iff x in X by Def3;
138 theorem
139 for X,x being set holds X@x = 0.Z_2 iff not x in X by Def3;
141 theorem
142 for X,x being set holds X@x <> 0.Z_2 iff X@x = 1.Z_2
143 by Th5,Th6,CARD_1:88,TARSKI:def 2;
145 theorem
146 for X,x,y being set holds X@x = X@y iff (x in X iff y in X)
147 proof
148 let X,x,y be set;
149 thus X@x = X@y implies (x in X iff y in X)
150 proof
151 assume
152 A1: X@x = X@y;
153 thus x in X implies y in X
154 proof
155 assume x in X;
156 then X@x = 1.Z_2 by Def3;
157 hence thesis by A1,Def3;
158 end;
159 assume y in X;
160 then X@y = 1.Z_2 by Def3;
161 hence thesis by A1,Def3;
162 end;
163 assume
164 A2: x in X iff y in X;
165 per cases by Th5,Th6,CARD_1:88,TARSKI:def 2;
166 suppose X@x = 0.Z_2;
167 hence thesis by A2,Def3;
168 end;
169 suppose X@x = 1.Z_2;
170 hence thesis by A2,Def3;
171 end;
172 end;
174 theorem
175 for X,Y,x being set holds X@x = Y@x iff (x in X iff x in Y)
176 proof
177 let X,Y,x be set;
178 thus X@x = Y@x implies (x in X iff x in Y)
179 proof
180 assume
181 A1: X@x = Y@x;
182 thus x in X implies x in Y
183 proof
184 assume x in X;
185 then X@x = 1.Z_2 by Def3;
186 hence thesis by A1,Def3;
187 end;
188 assume x in Y;
189 then Y@x = 1.Z_2 by Def3;
190 hence thesis by A1,Def3;
191 end;
192 thus (x in X iff x in Y) implies X@x = Y@x
193 proof
194 assume
195 A2: x in X iff x in Y;
196 per cases by Th5,Th6,CARD_1:88,TARSKI:def 2;
197 suppose X@x = 0.Z_2;
198 hence thesis by A2,Def3;
199 end;
200 suppose X@x = 1.Z_2;
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201 hence thesis by A2,Def3;
202 end;
203 end;
204 end;
206 theorem
207 for x being set holds {}@x = 0.Z_2 by Def3;
209 theorem Th15:
210 for X being set, u,v being Subset of X, x being Element of X
211 holds (u \+\ v)@x = u@x + v@x
212 proof
213 let X be set, u,v be Subset of X, x be Element of X;
214 per cases;
215 suppose
216 A1: x in u \+\ v;
217 then
218 A2: (u \+\ v)@x = 1.Z_2 by Def3;
219 per cases;
220 suppose
221 A3: x in u;
222 then
223 A4: not x in v by A1,XBOOLE_0:1;
224 A5: u@x = 1.Z_2 by A3,Def3;
225 v@x = 0.Z_2 by A4,Def3;
226 hence thesis by A2,A5,RLVECT_1:10;
227 end;
228 suppose
229 A6: not x in u;
230 then
231 A7: x in v by A1,XBOOLE_0:1;
232 A8: u@x = 0.Z_2 by A6,Def3;
233 v@x = 1.Z_2 by A7,Def3;
234 hence thesis by A2,A8,RLVECT_1:10;
235 end;
236 end;
237 suppose
238 A9: not x in u \+\ v;
239 then
240 A10: (u \+\ v)@x = 0.Z_2 by Def3;
241 per cases;
242 suppose
243 A11: x in u;
244 then
245 A12: x in v by A9,XBOOLE_0:1;
246 u@x = 1.Z_2 by A11,Def3;
247 hence thesis by A10,A12,Def3,Th7;
248 end;
249 suppose
250 A13: not x in u;
251 then
252 A14: not x in v by A9,XBOOLE_0:1;
253 A15: u@x = 0.Z_2 by A13,Def3;
254 v@x = 0.Z_2 by A14,Def3;
255 hence thesis by A10,A15,RLVECT_1:10;
256 end;
257 end;
258 end;
260 theorem
261 for X,Y being set holds X = Y iff for x being set holds X@x = Y@x
262 proof
263 let X,Y be set;
264 thus X = Y implies for x being set holds X@x = Y@x;
265 thus (for x being set holds X@x = Y@x) implies X = Y
266 proof
267 assume
268 A1: for x being set holds X@x = Y@x;
269 thus X c= Y
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270 proof
271 let y be set such that
272 A2: y in X;
273 X@y = 1.Z_2 by A2,Def3;
274 then Y@y = 1.Z_2 by A1;
275 hence thesis by Def3;
276 end;
277 let y be set such that
278 A3: y in Y;
279 Y@y = 1.Z_2 by A3,Def3;
280 then X@y = 1.Z_2 by A1;
281 hence thesis by Def3;
282 end;
283 end;
285 begin :: The Boolean Bector Space of Subsets of a Set
287 definition
288 let X be set, a be Element of Z_2, c be Subset of X;
289 func a \*\ c -> Subset of X equals
290 :Def4:
291 c if a = 1.Z_2, {}X if a = 0.Z_2;
292 consistency;
293 coherence;
294 end;
296 definition
297 let X be set;
298 func bspace-sum(X) -> BinOp of bool X means
299 :Def5:
300 for c,d being Subset of X
301 holds it.(c,d) = c \+\ d;
302 existence
303 proof
304 defpred P[set,set,set] means
305 ex a,b being Subset of X st $1 = a & $2 = b & $3 = a \+\ b;
306 A1: for x,y being set st x in bool X & y in bool X ex z being set
307 st z in bool X & P[x,y,z]
308 proof
309 let x,y be set such that
310 A2: x in bool X and
311 A3: y in bool X;
312 reconsider x,y as Subset of X by A2,A3;
313 set z = x \+\ y;
314 take z;
315 thus thesis;
316 end;
317 consider f being Function of [:bool X,bool X:],bool X such that
318 A4: for x,y being set st x in bool X & y in bool X
319 holds P[x,y,f.(x,y)] from BINOP_1:sch 1(A1);
320 reconsider f as BinOp of bool X;
321 A5: for c,d being Subset of X holds f.(c,d) = c \+\ d
322 proof
323 let c,d be Subset of X;
324 consider a,b being Subset of X such that
325 A6: c = a and
326 A7: d = b and
327 A8: f.(c,d) = a \+\ b by A4;
328 thus thesis by A6,A7,A8;
329 end;
330 take f;
331 thus thesis by A5;
332 end;
333 uniqueness
334 proof
335 let f,g be BinOp of bool X such that
336 A9: for c,d being Subset of X holds f.(c,d) = c \+\ d and
337 A10: for c,d being Subset of X holds g.(c,d) = c \+\ d;
338 dom f = [:bool X,bool X:] by FUNCT_2:def 1;
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339 then
340 A11: dom f = dom g by FUNCT_2:def 1;
341 for x being set st x in dom f holds f.x = g.x
342 proof
343 let x be set such that
344 A12: x in dom f;
345 consider y,z being set such that
346 A13: y in bool X and
347 A14: z in bool X and
348 A15: x = [y,z] by A12,ZFMISC_1:def 2;
349 reconsider y as Subset of X by A13;
350 reconsider z as Subset of X by A14;
351 f.(y,z) = y \+\ z & g.(y,z) = y \+\ z by A9,A10;
352 hence thesis by A15;
353 end;
354 hence thesis by A11,FUNCT_1:9;
355 end;
356 end;
358 theorem Th17:
359 for a being Element of Z_2, c,d being Subset of X
360 holds a \*\ (c \+\ d) = (a \*\ c) \+\ (a \*\ d)
361 proof
362 let a be Element of Z_2, c,d be Subset of X;
363 per cases by Th5,Th6,CARD_1:88,TARSKI:def 2;
364 suppose a = 0.Z_2;
365 then a \*\ (c \+\ d) = {}X & a \*\ c = {}X & a \*\ d = {}X by Def4;
366 hence thesis;
367 end;
368 suppose a = 1.Z_2;
369 then a \*\ (c \+\ d) = c \+\ d & a \*\ c = c & a \*\ d = d by Def4;
370 hence thesis;
371 end;
372 end;
374 theorem Th18:
375 for a,b being Element of Z_2, c being Subset of X
376 holds (a+b) \*\ c = (a \*\ c) \+\ (b \*\ c)
377 proof
378 let a,b be Element of Z_2, c be Subset of X;
379 per cases by Th5,Th6,CARD_1:88,TARSKI:def 2;
380 suppose
381 A1: a = 0.Z_2;
382 then a \*\ c = {}X by Def4;
383 hence thesis by A1,RLVECT_1:10;
384 end;
385 suppose
386 A2: a = 1.Z_2;
387 per cases by Th5,Th6,CARD_1:88,TARSKI:def 2;
388 suppose
389 A3: b = 0.Z_2;
390 then b \*\ c = {}X by Def4;
391 hence thesis by A3,RLVECT_1:10;
392 end;
393 suppose
394 A4: b = 1.Z_2;
395 then
396 A5: b \*\ c = c by Def4;
397 c \+\ c = {}X by XBOOLE_1:92;
398 hence thesis by A2,A4,A5,Def4,Th7;
399 end;
400 end;
401 end;
403 theorem
404 for c being Subset of X holds (1.Z_2) \*\ c = c by Def4;
406 theorem Th20:
407 for a,b being Element of Z_2, c being Subset of X
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408 holds a \*\ (b \*\ c) = (a*b) \*\ c
409 proof
410 let a,b be Element of Z_2, c be Subset of X;
411 per cases by Th5,Th6,CARD_1:88,TARSKI:def 2;
412 suppose
413 A1: a = 0.Z_2;
414 then
415 A2: a*b = 0.Z_2 by VECTSP_1:39;
416 a \*\ (b \*\ c) = {}X by A1,Def4;
417 hence thesis by A2,Def4;
418 end;
419 suppose
420 A3: a = 1.Z_2;
421 then a \*\ (b \*\ c) = b \*\ c by Def4;
422 hence thesis by A3,VECTSP_1:def 16;
423 end;
424 end;
426 definition
427 let X be set;
428 func
429 bspace-scalar-mult(X) -> Function of [:the carrier of Z_2,bool X:],bool X
430 means
431 :Def6:
432 for a being Element of Z_2, c being Subset of X
433 holds it.(a,c) = a \*\ c;
434 existence
435 proof
436 defpred P[set,set,set] means ex a being Element of Z_2,
437 c being Subset of X st $1 = a & $2 = c & $3 = a \*\ c;
438 A1: for x,y being set st x in the carrier of Z_2 & y in bool X ex z being set
439 st z in bool X & P[x,y,z]
440 proof
441 let x,y be set such that
442 A2: x in the carrier of Z_2 and
443 A3: y in bool X;
444 reconsider x as Element of Z_2 by A2;
445 reconsider y as Subset of X by A3;
446 set z = x \*\ y;
447 take z;
448 thus thesis;
449 end;
450 consider f being Function of [:the carrier of Z_2,bool X:],bool X such that
451 A4: for x,y being set st x in the carrier of Z_2 & y in bool X
452 holds P[x,y,f.(x,y)] from BINOP_1:sch 1(A1);
453 A5: for a being Element of Z_2, c being Subset of X holds f.(a,c) = a \*\ c
454 proof
455 let a be Element of Z_2, c be Subset of X;
456 consider a’ being Element of Z_2, c’ being Subset of X such that
457 A6: a = a’ and
458 A7: c = c’ and
459 A8: f.(a,c) = a’ \*\ c’ by A4;
460 thus thesis by A6,A7,A8;
461 end;
462 take f;
463 thus thesis by A5;
464 end;
465 uniqueness
466 proof
467 let f,g be Function of [:the carrier of Z_2,bool X:],bool X such that
468 A9: for a being Element of Z_2, c being Subset of X
469 holds f.(a,c) = a \*\ c and
470 A10: for a being Element of Z_2, c being Subset of X holds g.(a,c) = a \*\ c;
471 dom f = [:the carrier of Z_2,bool X:] by FUNCT_2:def 1;
472 then
473 A11: dom f = dom g by FUNCT_2:def 1;
474 for x being set st x in dom f holds f.x = g.x
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475 proof
476 let x be set such that
477 A12: x in dom f;
478 consider y,z being set such that
479 A13: y in the carrier of Z_2 and
480 A14: z in bool X and
481 A15: x = [y,z] by A12,ZFMISC_1:def 2;
482 reconsider y as Element of Z_2 by A13;
483 reconsider z as Subset of X by A14;
484 f.(y,z) = y \*\ z & g.(y,z) = y \*\ z by A9,A10;
485 hence thesis by A15;
486 end;
487 hence thesis by A11,FUNCT_1:9;
488 end;
489 end;
491 definition
492 let X be set;
493 func bspace(X) -> non empty VectSpStr over Z_2 equals
495 VectSpStr (# bool X,
496 bspace-sum(X), {}X, bspace-scalar-mult(X) #);
497 coherence;
498 end;
500 Lm1: for a,b,c being Element of bspace(X), A,B,C being Subset of X
501 st a = A & b = B & c = C holds a+(b+c) = A \+\ (B \+\ C)
502 & (a+b)+c = (A \+\ B) \+\ C
503 proof
504 let a,b,c be Element of bspace(X);
505 let A,B,C be Subset of X;
506 assume
507 A1: a = A & b = B & c = C;
508 thus a+(b+c) = A \+\ (B \+\ C)
509 proof
510 b+c = B \+\ C by A1,Def5;
511 hence thesis by A1,Def5;
512 end;
513 thus (a+b)+c = (A \+\ B) \+\ C
514 proof
515 a+b = A \+\ B by A1,Def5;
516 hence thesis by A1,Def5;
517 end;
518 end;
520 Lm2: for a,b being Element of Z_2, x,y being Element of bspace(X),
521 c,d being Subset of X st x = c & y = d holds (a*x)+(b*y)
522 = (a \*\ c) \+\ (b \*\ d) & a*(x+y) = a \*\ (c \+\ d) &
523 (a+b)*x = (a+b) \*\ c & (a*b)*x = (a*b) \*\ c & a*(b*x) = a \*\ (b \*\ c)
524 proof
525 let a,b be Element of Z_2, x,y be Element of bspace(X), c,d be Subset of X
526 such that
527 A1: x = c and
528 A2: y = d;
529 thus (a*x)+(b*y) = (a \*\ c) \+\ (b \*\ d)
530 proof
531 A3: a*x = a \*\ c by A1,Def6;
532 b*y = b \*\ d by A2,Def6;
533 hence thesis by A3,Def5;
534 end;
535 thus a*(x+y) = a \*\ (c \+\ d)
536 proof
537 A4: x+y = c \+\ d by A1,A2,Def5;
538 thus thesis by A4,Def6;
539 end;
540 thus (a+b)*x = (a+b) \*\ c by A1,Def6;
541 thus (a*b)*x = (a*b) \*\ c by A1,Def6;
542 thus a*(b*x) = a \*\ (b \*\ c)
543 proof
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544 b*x = b \*\ c by A1,Def6;
545 hence thesis by Def6;
546 end;
547 end;
549 theorem Th21:
550 bspace(X) is Abelian
551 proof
552 let x,y be Element of bspace(X);
553 reconsider A = x, B = y as Subset of X;
554 x+y = B \+\ A by Def5
555 .= y+x by Def5;
556 hence thesis;
557 end;
559 theorem Th22:
560 bspace(X) is add-associative
561 proof
562 let x,y,z be Element of bspace(X);
563 reconsider A = x, B = y, C = z as Subset of X;
564 x+(y+z) = A \+\ (B \+\ C) by Lm1
565 .= (A \+\ B) \+\ C by XBOOLE_1:91
566 .= (x+y)+z by Lm1;
567 hence thesis;
568 end;
570 theorem Th23:
571 bspace(X) is right_zeroed
572 proof
573 let x be Element of bspace(X);
574 reconsider A = x as Subset of X;
575 reconsider Z = 0.bspace(X) as Subset of X;
576 x+0.bspace(X) = A \+\ Z by Def5
577 .= x;
578 hence thesis;
579 end;
581 theorem Th24:
582 bspace(X) is right_complementable
583 proof
584 let x be Element of bspace(X);
585 reconsider A = x as Subset of X;
586 A1: A \+\ A = {}X by XBOOLE_1:92;
587 take x;
588 thus thesis by A1,Def5;
589 end;
591 theorem Th25:
592 for a being Element of Z_2, x,y being Element of bspace(X)
593 holds a*(x+y) = (a*x)+(a*y)
594 proof
595 let a be Element of Z_2, x,y be Element of bspace(X);
596 reconsider c = x, d = y as Subset of X;
597 a*(x+y) = a \*\ (c \+\ d) by Lm2
598 .= (a \*\ c) \+\ (a \*\ d) by Th17
599 .= (a*x)+(a*y) by Lm2;
600 hence thesis;
601 end;
603 theorem Th26:
604 for a,b being Element of Z_2, x being Element of bspace(X)
605 holds (a+b)*x = (a*x)+(b*x)
606 proof
607 let a,b be Element of Z_2, x be Element of bspace(X);
608 reconsider c = x as Subset of X;
609 (a+b)*x = (a+b) \*\ c by Lm2
610 .= (a \*\ c) \+\ (b \*\ c) by Th18
611 .= (a*x)+(b*x) by Lm2;
612 hence thesis;
613 end;



The vector space of subsets of a set based on symmetric difference

191

615 theorem Th27:
616 for a,b being Element of Z_2, x being Element of bspace(X)
617 holds (a*b)*x = a*(b*x)
618 proof
619 let a,b be Element of Z_2, x be Element of bspace(X);
620 reconsider c = x as Subset of X;
621 (a*b)*x = (a*b) \*\ c by Lm2
622 .= a \*\ (b \*\ c) by Th20
623 .= a*(b*x) by Lm2;
624 hence thesis;
625 end;
627 theorem Th28:
628 for x being Element of bspace(X) holds (1_Z_2)*x = x
629 proof
630 let x be Element of bspace(X);
631 reconsider c = x as Subset of X;
632 (1_Z_2)*x = (1_Z_2) \*\ c by Def6
633 .= c by Def4;
634 hence thesis;
635 end;
637 theorem Th29:
638 bspace(X) is VectSp-like
639 proof
640 let a,b be Element of Z_2, x,y be Element of bspace(X);
641 thus a*(x+y) = (a*x)+(a*y) by Th25;
642 thus (a+b)*x = (a*x)+(b*x) by Th26;
643 thus (a*b)*x = a*(b*x) by Th27;
644 thus (1.Z_2)*x = x by Th28;
645 end;
647 registration
648 let X be set;
649 cluster bspace(X) -> VectSp-like Abelian right_complementable
650 add-associative right_zeroed;
651 coherence by Th21,Th22,Th23,Th24,Th29;
652 end;
654 begin :: The Linear Independence and Linear Span of Singleton Subsets
656 definition
657 let X be set;
658 attr X is Singleton means
659 :Def8:
660 X is non empty trivial;
661 end;
663 registration
664 cluster Singleton -> non empty trivial set;
665 coherence by Def8;
666 cluster non empty trivial -> Singleton set;
667 coherence by Def8;
668 end;
670 definition
671 let X be set, f be Subset of X;
672 redefine attr f is Singleton means
673 :Def9:
674 ex x being set st x in X & f = {x};
675 compatibility
676 proof
677 thus f is Singleton implies ex x being set st x in X & f = {x}
678 proof
679 assume f is Singleton;
680 then f is non empty trivial;
681 then consider x being set such that
682 A1: f = {x} by REALSET1:def 4;
683 take x;
684 x in f by A1,TARSKI:def 1;
685 hence x in X;
686 thus thesis by A1;
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687 end;
688 thus thesis;
689 end;
690 end;
692 definition
693 let X be set;
694 func singletons(X) equals
696 { f where f is Subset of X : f is Singleton };
697 coherence;
698 end;
700 definition
701 let X be set;
702 redefine func singletons(X) -> Subset of bspace(X);
703 coherence
704 proof
705 set S = singletons(X);
706 S c= bool(X)
707 proof
708 let f be set such that
709 A1: f in S;
710 consider g being Subset of X such that
711 A2: f = g and g is Singleton by A1;
712 reconsider f as Subset of X by A2;
713 f is Element of bool(X);
714 hence thesis;
715 end;
716 hence thesis;
717 end;
718 end;
720 registration
721 let X be non empty set;
722 cluster singletons(X) -> non empty;
723 coherence
724 proof
725 consider x being Element of X;
726 {x} in singletons(X);
727 hence thesis;
728 end;
729 end;
731 theorem Th30:
732 for X being non empty set, f being Subset of X
733 st f is Element of singletons(X) holds f is Singleton
734 proof
735 let X be non empty set, f be Subset of X such that
736 A1: f is Element of singletons(X);
737 f in singletons(X) by A1;
738 then consider g being Subset of X such that
739 A2: g = f and
740 A3: g is Singleton;
741 thus thesis by A2,A3;
742 end;
744 definition
745 let F be Field, V be VectSp of F, l be Linear_Combination of V,
746 x be Element of V;
747 redefine func l.x -> Element of F;
748 coherence
749 proof
750 l.x in [#]F;
751 hence thesis;
752 end;
753 end;
755 definition
756 let X be non empty set, s be FinSequence of bspace(X), x be Element of X;
757 func s@x -> FinSequence of Z_2 means
758 :Def11:
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759 len it = len s
760 & for j being Nat st 1 <= j & j <= len s holds it.j = (s.j)@x;
761 existence
762 proof
763 deffunc F(set) = (s.$1)@x;
764 consider p being FinSequence such that
765 A1: len p = len s and
766 A2: for k being Nat st k in dom p holds p.k = F(k) from FINSEQ_1:sch 2;
767 A3: for j being Nat st 1 <= j & j <= len s holds p.j = (s.j)@x
768 proof
769 let j be Nat such that
770 A4: 1 <= j and
771 A5: j <= len s;
772 j in dom p by A4,A5,A1,FINSEQ_3:27;
773 hence thesis by A2;
774 end;
775 rng p c= the carrier of Z_2
776 proof
777 let y be set such that
778 A6: y in rng p;
779 consider a being set such that
780 A7: a in dom p and
781 A8: p.a = y by A6,FUNCT_1:def 5;
782 p.a = (s.a)@x by A2,A7;
783 hence thesis by A8;
784 end;
785 then reconsider p as FinSequence of Z_2 by FINSEQ_1:def 4;
786 take p;
787 thus thesis by A1,A3;
788 end;
789 uniqueness
790 proof
791 let f,g be FinSequence of Z_2 such that
792 A9: len f = len s & for j being Nat st 1 <= j & j <= len s
793 holds f.j = (s.j)@x and
794 A10: len g = len s & for j being Nat st 1 <= j & j <= len s
795 holds g.j = (s.j)@x;
796 for k being Nat st 1 <= k & k <= len f holds f.k = g.k
797 proof
798 let k be Nat such that
799 A11: 1 <= k and
800 A12: k <= len f;
801 f.k = (s.k)@x & g.k = (s.k)@x by A9,A10,A11,A12;
802 hence thesis;
803 end;
804 hence thesis by A9,A10,FINSEQ_1:18;
805 end;
806 end;
808 theorem Th31:
809 for X being non empty set, x being Element of X
810 holds (<*>(bspace(X)))@x = <*>Z_2
811 proof
812 let X be non empty set, x be Element of X;
813 set V = bspace(X);
814 set L = (<*>V)@x;
815 len L = len <*>V by Def11
816 .= 0;
817 hence thesis;
818 end;
820 theorem Th32:
821 for X being set, u,v being Element of bspace(X), x being Element of X
822 holds (u + v)@x = u@x + v@x
823 proof
824 let X be set, u,v be Element of bspace(X), x be Element of X;
825 reconsider u’ = u, v’ = v as Subset of X;
826 (u + v)@x = (u’ \+\ v’)@x by Def5
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827 .= (u’@x) + (v’@x) by Th15;
828 hence thesis;
829 end;
831 theorem Th33:
832 for X being non empty set, s being FinSequence of bspace(X),
833 f being Element of bspace(X), x being Element of X
834 holds (s ^ <*f*>)@x = (s@x) ^ <*f@x*>
835 proof
836 let X be non empty set, s be FinSequence of bspace(X),
837 f be Element of bspace(X), x be Element of X;
838 set L = (s ^ <*f*>)@x;
839 set R = (s@x) ^ <*f@x*>;
840 A1: len L = len (s ^ <*f*>) by Def11
841 .= (len s) + (len <*f*>) by FINSEQ_1:35
842 .= (len s) + 1 by FINSEQ_1:56;
843 A2: len ((s@x) ^ <*f@x*>) = (len (s@x)) + (len <*f@x*>) by FINSEQ_1:35
844 .= (len s) + (len <*f@x*>) by Def11
845 .= (len s) + 1 by FINSEQ_1:56;
846 for k being Nat st 1 <= k & k <= len L holds L.k = R.k
847 proof
848 let k be Nat such that
849 A3: 1 <= k and
850 A4: k <= len L;
851 A5: k in NAT by ORDINAL1:def 13;
852 per cases by A1,A4,NAT_1:8;
853 suppose
854 A6: k <= len s;
855 k <= len (s ^ <*f*>) by A4,Def11;
856 then
857 A7: L.k = ((s ^ <*f*>).k)@x by A3,Def11;
858 dom (s@x) = Seg (len (s@x)) by FINSEQ_1:def 3
859 .= Seg (len s) by Def11;
860 then k in dom (s@x) by A3,A5,A6;
861 then
862 A8: R.k = (s@x).k by FINSEQ_1:def 7
863 .= (s.k)@x by A3,A6,Def11;
864 dom s = Seg (len s) by FINSEQ_1:def 3;
865 then k in dom s by A3,A5,A6;
866 hence thesis by A7,A8,FINSEQ_1:def 7;
867 end;
868 suppose
869 A9: k = len L;
870 A10: k <= len (s ^ <*f*>) by A4,Def11;
871 A11: len (s@x) = len s by Def11;
872 dom (<*f@x*>) = {1} by FINSEQ_1:4,def 8;
873 then 1 in dom (<*f@x*>) by TARSKI:def 1;
874 then
875 A12: R.k = <*f@x*>.1 by A1,A9,A11,FINSEQ_1:def 7
876 .= f@x by FINSEQ_1:def 8;
877 dom (<*f*>) = {1} by FINSEQ_1:4,def 8;
878 then 1 in dom (<*f*>) by TARSKI:def 1;
879 then (s ^ <*f*>).k = <*f*>.1 by A1,A9,FINSEQ_1:def 7
880 .= f by FINSEQ_1:def 8;
881 hence thesis by A3,A10,A12,Def11;
882 end;
883 end;
884 hence thesis by A1,A2,FINSEQ_1:18;
885 end;
887 theorem Th34:
888 for X being non empty set, s being FinSequence of bspace(X),
889 x being Element of X holds (Sum s)@x = Sum (s@x)
890 proof
891 let X be non empty set, s be FinSequence of bspace(X), x be Element of X;
892 set V = bspace(X);
893 defpred Q[FinSequence of V] means (Sum ($1))@x = Sum (($1)@x);
894 A1: Q[<*>V]
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895 proof
896 set e = <*>V;
897 reconsider z = 0.V as Subset of X;
898 A2: Sum e = 0.V by RLVECT_1:60;
899 A3: e@x = <*>Z_2 by Th31;
900 z@x = 0.Z_2 by Def3;
901 hence thesis by A2,A3,RLVECT_1:60;
902 end;
903 A4: for p being FinSequence of V, f being Element of V st Q[p]
904 holds Q[p ^ <*f*>]
905 proof
906 let p be FinSequence of V, f be Element of V such that
907 A5: Q[p];
908 (Sum (p ^ <*f*>))@x = ((Sum p) + (Sum <*f*>))@x by RLVECT_1:58
909 .= ((Sum p) + f)@x by RLVECT_1:61
910 .= (Sum p)@x + f@x by Th32
911 .= Sum (p@x) + Sum (<*f@x*>) by A5,RLVECT_1:61
912 .= Sum (p@x ^ <*f@x*>) by RLVECT_1:58
913 .= Sum ((p ^ <*f*>)@x) by Th33;
914 hence thesis;
915 end;
916 for p being FinSequence of V holds Q[p] from IndSeqS(A1,A4);
917 hence thesis;
918 end;
920 theorem Th35:
921 for X being non empty set, l being Linear_Combination of bspace(X),
922 x being Element of bspace(X) st x in Carrier l holds l.x = 1_Z_2
923 proof
924 let X be non empty set, l be Linear_Combination of bspace(X),
925 x be Element of bspace(X) such that
926 A1: x in Carrier l;
927 l.x <> 0.Z_2 by A1,VECTSP_6:20;
928 hence thesis by Th5,Th6,CARD_1:88,TARSKI:def 2;
929 end;
931 theorem Th36:
932 singletons {} = {}
933 proof
934 set X = {};
935 assume singletons(X) <> {};
936 then consider f being set such that
937 A1: f in singletons(X) by XBOOLE_0:def 1;
938 consider g being Subset of X such that g = f and
939 A2: g is Singleton by A1;
940 consider x being set such that
941 A3: x in X and g = {x} by A2;
942 thus thesis by A3;
943 end;
945 theorem Th37:
946 singletons(X) is linearly-independent
947 proof
948 per cases;
949 suppose
950 A1: X is empty;
951 thus thesis by A1,Th36;
952 end;
953 suppose X is non empty;
954 then reconsider X as non empty set;
955 set V = bspace(X);
956 set S = singletons(X);
957 for l being Linear_Combination of S st Sum l = 0.V holds Carrier l = {}
958 proof
959 let l be Linear_Combination of S such that
960 A2: Sum l = 0.V;
961 set C = Carrier l;
962 reconsider s = Sum l as Subset of X;
963 assume C <> {};
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964 then consider f being Element of V such that
965 A3: f in C by SUBSET_1:10;
966 reconsider f as Subset of X;
967 C c= S by VECTSP_6:def 7;
968 then f is Singleton by A3,Th30;
969 then consider x being set such that
970 A4: x in X and
971 A5: f = {x} by Def9;
972 x in f by A5,TARSKI:def 1;
973 then
974 A6: f@x = 1.Z_2 by Def3;
975 reconsider x as Element of X by A4;
976 A7: s@x = 0.Z_2 by A2,Def3;
977 A8: for g being Subset of X st g <> f & g in C holds g@x = 0.Z_2
978 proof
979 let g be Subset of X such that
980 A9: g <> f and
981 A10: g in C;
982 C c= S by VECTSP_6:def 7;
983 then g is Singleton by A10,Th30;
984 then consider y being set such that
985 A11: y in X and
986 A12: g = {y} by Def9;
987 reconsider y as Element of X by A11;
988 now
989 assume g@x <> 0.Z_2;
990 then x in {y} by A12,Def3;
991 hence contradiction by A5,A9,A12,TARSKI:def 1;
992 end;
993 hence thesis;
994 end;
995 reconsider g = f as Element of V;
996 reconsider m = l!(C \ {g}) as Linear_Combination of C \ {g};
997 reconsider n = l!{g} as Linear_Combination of {g};
998 reconsider t = Sum m, u = Sum n as Subset of X;
999 A13: l!(Carrier l) = l by RANKNULL:24;

1000 A14: {g} c= Carrier l by A3,ZFMISC_1:37;
1001 reconsider l as Linear_Combination of C by A13;
1002 l = n + m by A14,RANKNULL:27;
1003 then Sum l = (Sum m) + (Sum n) by VECTSP_6:77;
1004 then s = t \+\ u by Def5;
1005 then
1006 A15: s@x = t@x + u@x by Th15;
1007 A16: t@x = 0
1008 proof
1009 A17: for F being FinSequence of V st F is one-to-one & rng F = Carrier m
1010 holds (m (#) F)@x = (len F) |-> 0.Z_2
1011 proof
1012 let F be FinSequence of V such that F is one-to-one and
1013 A18: rng F = Carrier m;
1014 set L = (m (#) F)@x;
1015 set R = (len F) |-> 0.Z_2;
1016 A19: len (m (#) F) = len F by VECTSP_6:def 8;
1017 then
1018 A20: len L = len F by Def11;
1019 dom R = Seg (len F) by FUNCOP_1:19;
1020 then
1021 A21: len L = len R by A20,FINSEQ_1:def 3;
1022 for k being Nat st 1 <= k & k <= len L holds L.k = R.k
1023 proof
1024 let k be Nat such that
1025 A22: 1 <= k and
1026 A23: k <= len L;
1027 len (m (#) F) = len F by VECTSP_6:def 8;
1028 then
1029 A24: dom (m (#) F) = Seg (len F) by FINSEQ_1:def 3;
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1030 A25: k in NAT by ORDINAL1:def 13;
1031 then k in dom (m (#) F) by A20,A22,A23,A24;
1032 then
1033 A26: (m (#) F).k = m.(F/.k)*(F/.k) by VECTSP_6:def 8;
1034 dom F = Seg (len F) by FINSEQ_1:def 3;
1035 then
1036 A27: k in dom F by A20,A22,A23,A25;
1037 then
1038 A28: F/.k = F.k by PARTFUN1:def 8;
1039 then
1040 A29: F/.k in Carrier m by A18,A27,FUNCT_1:12;
1041 reconsider Fk = F/.k as Subset of X;
1042 m.(F/.k) = 1_Z_2 by A18,A27,A28,Th35,FUNCT_1:12;
1043 then
1044 A30: (m (#) F).k = Fk by A26,VECTSP_1:def 26;
1045 A31: Carrier m = C \ {f}
1046 proof
1047 thus Carrier m c= C \ {f} by VECTSP_6:def 7;
1048 thus C \ {f} c= Carrier m
1049 proof
1050 let y be set such that
1051 A32: y in C \ {f};
1052 A33: y in C by A32,XBOOLE_0:def 5;
1053 reconsider y as Element of V by A32;
1054 now
1055 assume
1056 A34: not y in Carrier m;
1057 m.y = l.y by A32,RANKNULL:25;
1058 then l.y = 0.Z_2 by A34;
1059 hence contradiction by A33,VECTSP_6:20;
1060 end;
1061 hence thesis;
1062 end;
1063 end;
1064 A35: Fk <> f
1065 proof
1066 assume Fk = f;
1067 then not f in {f} by A29,A31,XBOOLE_0:def 5;
1068 hence contradiction by TARSKI:def 1;
1069 end;
1070 A36: Fk in C by A29,A31,XBOOLE_0:def 5;
1071 A37: L.k = ((m (#) F).k)@x by A19,A20,A22,A23,Def11
1072 .= 0.Z_2 by A8,A30,A35,A36;
1073 k in Seg (len F) by A20,A22,A23,A25;
1074 hence thesis by A37,FUNCOP_1:13;
1075 end;
1076 hence thesis by A21,FINSEQ_1:18;
1077 end;
1078 consider F being FinSequence of V such that
1079 A38: F is one-to-one and
1080 A39: rng F = Carrier m and
1081 A40: t = Sum (m (#) F) by VECTSP_6:def 9;
1082 A41: (Sum (m (#) F))@x = Sum ((m (#) F)@x) by Th34;
1083 (m (#) F)@x = (len F) |-> 0.Z_2 by A17,A38,A39;
1084 hence thesis by A40,A41,Th5,MATRIX_3:13;
1085 end;
1086 u = f
1087 proof
1088 A42: Sum n = (n.g)*g by VECTSP_6:43;
1089 g in {g} by TARSKI:def 1;
1090 then
1091 A43: n.g = l.g by RANKNULL:25;
1092 l.g <> 0.Z_2 by A3,VECTSP_6:20;
1093 then
1094 A44: l.g = 1_Z_2 by Th5,Th6,CARD_1:88,TARSKI:def 2;
1095 thus thesis by A42,A43,A44,VECTSP_1:def 26;
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1096 end;
1097 hence thesis by A6,A7,A15,A16,Th5,RLVECT_1:10;
1098 end;
1099 hence thesis by VECTSP_7:def 1;
1100 end;
1101 end;
1103 theorem
1104 for f being Element of bspace(X) st (ex x being set st x in X & f = {x})
1105 holds f in singletons(X);
1107 theorem Th39:
1108 for X being finite set, A being Subset of X
1109 ex l being Linear_Combination of singletons(X) st Sum l = A
1110 proof
1111 let X be finite set, A be Subset of X;
1112 set V = bspace(X);
1113 set S = singletons(X);
1114 defpred P[set] means $1 is Subset of X
1115 implies ex l being Linear_Combination of S st Sum l = $1;
1116 A1: A is finite;
1117 A2: P[{}]
1118 proof
1119 assume {} is Subset of X;
1120 reconsider l = ZeroLC(V) as Linear_Combination of S by VECTSP_6:26;
1121 A3: Sum l = 0.V by VECTSP_6:41;
1122 take l;
1123 thus thesis by A3;
1124 end;
1125 A4: for x,B being set st x in A & B c= A & P[B] holds P[B \/ {x}]
1126 proof
1127 let x,B be set such that x in A and B c= A and
1128 A5: P[B];
1129 assume
1130 A6: B \/ {x} is Subset of X;
1131 then reconsider B as Subset of X by XBOOLE_1:11;
1132 consider l being Linear_Combination of S such that
1133 A7: Sum l = B by A5;
1134 per cases;
1135 suppose
1136 A8: x in B;
1137 take l;
1138 thus thesis by A7,A8,ZFMISC_1:46;
1139 end;
1140 suppose
1141 A9: not x in B;
1142 reconsider f = {x} as Element of V by A6,XBOOLE_1:11;
1143 reconsider g = f as Subset of X;
1144 reconsider z = ZeroLC(V) as Linear_Combination of {}V by VECTSP_6:26;
1145 set m = z +* (f,1_Z_2);
1146 m is Linear_Combination of {}V \/ {f} by RANKNULL:23;
1147 then reconsider m = z +* (f,1_Z_2) as Linear_Combination of {f};
1148 dom z = [#]V by FUNCT_2:169;
1149 then
1150 A10: m.f = 1_Z_2 by FUNCT_7:33;
1151 A11: B misses {x} by A9,ZFMISC_1:56;
1152 f in S;
1153 then {f} c= S by ZFMISC_1:37;
1154 then m is Linear_Combination of S by VECTSP_6:25;
1155 then reconsider n = l + m as Linear_Combination of S by VECTSP_6:52;
1156 A12: Sum n = (Sum l) + (Sum m) by VECTSP_6:77
1157 .= (Sum l) + (m.f)*f by VECTSP_6:43
1158 .= (Sum l) + f by A10,VECTSP_1:def 26
1159 .= B \+\ g by A7,Def5
1160 .= (B \/ {x}) \ (B /\ {x}) by XBOOLE_1:101
1161 .= (B \/ {x}) \ {} by A11,XBOOLE_0:def 7
1162 .= B \/ {x};
1163 take n;
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1164 thus thesis by A12;
1165 end;
1166 end;
1167 P[A] from FINSET_1:sch 2(A1,A2,A4);
1168 hence thesis;
1169 end;
1171 theorem Th40:
1172 for X being finite set holds Lin(singletons(X)) = bspace(X)
1173 proof
1174 let X be finite set;
1175 set V = bspace(X);
1176 set S = singletons(X);
1177 for v being Element of V holds v in Lin(S)
1178 proof
1179 let v be Element of V;
1180 reconsider f = v as Subset of X;
1181 consider A being set such that
1182 A1: A c= X and
1183 A2: f = A;
1184 reconsider A as Subset of X by A1;
1185 consider l being Linear_Combination of S such that
1186 A3: Sum l = A by Th39;
1187 thus thesis by A2,A3,VECTSP_7:12;
1188 end;
1189 hence thesis by VECTSP_4:40;
1190 end;
1192 theorem Th41:
1193 for X being finite set holds singletons(X) is Basis of bspace(X)
1194 proof
1195 let X be finite set;
1196 A1: singletons(X) is linearly-independent by Th37;
1197 Lin(singletons(X)) = bspace(X) by Th40;
1198 hence thesis by A1,VECTSP_7:def 3;
1199 end;
1201 registration
1202 let X be finite set;
1203 cluster singletons(X) -> finite;
1204 coherence;
1205 end;
1207 registration
1208 let X be finite set;
1209 cluster bspace(X) -> finite-dimensional;
1210 coherence
1211 proof
1212 set S = singletons(X);
1213 A1: S is Basis of bspace(X) by Th41;
1214 thus thesis by A1,MATRLIN:def 3;
1215 end;
1216 end;
1218 theorem
1219 card (singletons X) = card X
1220 proof
1221 defpred P[set,set] means $1 in X & $2 = {$1};
1222 A2: for x being set st x in X holds ex y being set st P[x,y];
1223 consider f being Function such that
1224 A3: dom f = X and
1225 A4: for x being set st x in X holds P[x,f.x] from CLASSES1:sch 1(A2);
1226 A5: f is one-to-one
1227 proof
1228 let x1,x2 be set such that
1229 A6: x1 in dom f and
1230 A7: x2 in dom f and
1231 A8: f.x1 = f.x2;
1232 A9: P[x1,f.x1] by A3,A4,A6;
1233 P[x2,f.x2] by A3,A4,A7;
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1234 hence thesis by A8,A9,ZFMISC_1:6;
1235 end;
1236 rng f = singletons(X)
1237 proof
1238 thus rng f c= singletons(X)
1239 proof
1240 let y be set such that
1241 A10: y in rng f;
1242 consider x being set such that
1243 A11: x in dom f and
1244 A12: y = f.x by A10,FUNCT_1:def 5;
1245 A13: f.x = {x} by A3,A4,A11;
1246 then reconsider fx = f.x as Subset of X by A3,A11,ZFMISC_1:37;
1247 fx is Singleton by A13;
1248 hence thesis by A12;
1249 end;
1250 let y be set such that
1251 A14: y in singletons(X);
1252 consider z being Subset of X such that
1253 A15: y = z and
1254 A16: z is Singleton by A14;
1255 reconsider y as Subset of X by A15;
1256 consider x being set such that
1257 A17: x in X and
1258 A18: y = {x} by A15,A16,Def9;
1259 reconsider x as Element of X by A17;
1260 y = f.x by A4,A17,A18;
1261 hence thesis by A3,A17,FUNCT_1:12;
1262 end;
1263 then X,singletons(X) are_equipotent by A3,A5,WELLORD2:def 4;
1264 hence thesis by CARD_1:21;
1265 end;
1267 theorem
1268 card [#](bspace X) = exp(2,card(X)) by CARD_2:44;
1270 theorem
1271 dim bspace {} = 0
1272 proof
1273 card [#]bspace {} = 1 by CARD_2:60,ZFMISC_1:1;
1274 hence thesis by RANKNULL:5;
1275 end;

B.3 Euler’s polyhedron formula

Note: there is a discrepency between the formal text to be presented and the discussion
in the body of the dissertation, especially chapter 3. There, I distinguished the concept
of ‘simple connectedness’ from the neologism ‘being a homology sphere’ (suggested to me
by R. Solovay). The editors of the mizar Mathematical Library have approved my change
from simply-connected to homology-sphere, but this change is not yet reflected in the
edition of the library as it stands on April 15, 2009.
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environ

 vocabularies FINSET_1, FUNCT_1, FUNCT_2, CARD_1, SUBSET_1, TARSKI, BOOLE,
      RELAT_1, ORDINAL2, VECTSP_1, VECTSP_9, INT_1, RLVECT_1, GROUP_1, ARYTM_1,
      FINSEQ_1, FINSEQ_2, QC_LANG1, RLSUB_1, BSPACE, RANKNULL, RLVECT_3,
      MATRLIN, FINSEQ_4, POLYFORM, VECTSP10, PRALG_1, MATRIX_2, POWER,
      FUNCOP_1, ARYTM, VALUED_0;
 notations TARSKI, XBOOLE_0, ENUMSET1, ZFMISC_1, SUBSET_1, RELAT_1, FUNCT_1,
      RELSET_1, PARTFUN1, FUNCT_2, BINOP_1, CARD_1, NUMBERS, FUNCOP_1,
      FINSET_1, XCMPLX_0, XXREAL_0, NAT_1, INT_1, CARD_2,
      VALUED_0, FINSEQ_1,
      FINSEQ_2, POWER, RVSUM_1, NEWTON, ABIAN, STRUCT_0, RLVECT_1, GROUP_1,
      VECTSP_1, VECTSP_4, VECTSP_5, VECTSP_7, FVSUM_1, GR_CY_1, MATRLIN,
      VECTSP_9, RANKNULL, BSPACE;
 constructors NAT_1, VECTSP_9, BINOP_1, REALSET1, FINSOP_1, XXREAL_0, FVSUM_1,
      WELLORD2, BSPACE, REAL_1, BINOP_2, RANKNULL, VECTSP_7, VECTSP_5, NEWTON,
      GR_CY_1, ABIAN, POWER, CARD_2, CARD_3;
 registrations FRAENKEL, FINSET_1, XBOOLE_0, FUNCT_1, FUNCT_2, RELAT_1,
      SUBSET_1, NAT_1, INT_1, VECTSP_1, STRUCT_0, FINSEQ_1, FINSEQ_2, CARD_1,
      MATRLIN, BSPACE, ORDINAL1, NEWTON, RVSUM_1, FUNCOP_1, POLYNOM1, ABIAN,
      XREAL_0, NUMBERS, JORDAN23, GOBRD13, XCMPLX_0, XXREAL_0, VALUED_0,
      PARTFUN1;
 requirements NUMERALS, BOOLE, ARITHM, SUBSET, REAL;
 definitions XBOOLE_0, BINOP_1, STRUCT_0, TARSKI, FVSUM_1, FINSEQ_1, BSPACE,
      RANKNULL, ALGSTR_0;
 theorems XBOOLE_0, FUNCT_1, RELAT_1, XBOOLE_1, TARSKI, ZFMISC_1, FUNCT_2,
      GROUP_1, RLVECT_1, VECTSP_1, FVSUM_1, FINSEQ_2, CARD_1, FINSEQ_1, NAT_1,
      FINSOP_1, VECTSP_4, BSPACE, RANKNULL, VECTSP_9, ORDINAL1, NEWTON,
      RVSUM_1, GR_CY_1, FUNCOP_1, XREAL_1, XXREAL_0, INT_1, JORDAN16, POWER,
      FIB_NUM2, NUMBERS, CARD_2, PRE_CIRC, FINSEQ_3, SUBSET_1, MOD_2, MATRIX_3,
      CALCUL_1, PARTFUN1, VALUED_0, RELSET_1;
 schemes FUNCT_2, FINSEQ_1, FINSEQ_2;

begin

theorem Th1:
  for X,c,d being set st (ex a,b being set st a <> b & X = {a,b}) & c in X &
  d in X & c <> d holds X = {c,d}
proof
  let X,c,d be set such that
A1: ex a,b being set st a <> b & X = {a,b} and
A2: c in X and
A3: d in X and
A4: c <> d;
  consider a,b being set such that a <> b and
A5: X = {a,b} by A1;
A6: {c,d} c= X by A2,A3,ZFMISC_1:38;
  X c= {c,d}
  proof
A7: c = a or c = b by A2,A5,TARSKI:def 2;
A8: d = a or d = b by A3,A5,TARSKI:def 2;
    let x be set such that
A9: x in X;
    per cases by A5,A9,TARSKI:def 2;
    suppose x = a;
      hence thesis by A4,A7,A8,TARSKI:def 2;
    end;
    suppose x = b;
      hence thesis by A4,A7,A8,TARSKI:def 2;
    end;
  end;
  hence thesis by A6,XBOOLE_0:def 10;
end;

theorem Th2:
  for f being Function st f is one-to-one holds card (dom f) = card (rng f)
proof
  let f be Function such that
A1: f is one-to-one;
A2: dom f, f .: (dom f) are_equipotent by A1,CARD_1:60;
  f .: (dom f) = rng f by RELAT_1:146;
  hence thesis by A2,CARD_1:21;
end;

begin :: Arithmetical Preliminaries

reserve n for Nat,
  k for Integer;

theorem Th3:
  1 <= k implies k is Nat
proof
  assume 1 <= k;
  then reconsider k as Element of NAT by INT_1:16;
  k is Nat;
  hence thesis;
end;

definition
  let a be Integer, b be Nat;
  redefine func a*b -> Element of INT;
  coherence by INT_1:def 2;
end;

theorem Th4:
  1 is odd
proof
  1 = (2*(0 qua Nat) qua Nat)+ 1;
  hence thesis;
end;

theorem Th5:
  2 is even
proof
  2 = 2*1;
  hence thesis;
end;

theorem Th6:
  3 is odd
proof
  3 = 2*1 + 1;
  hence thesis;
end;

theorem Th7:
  4 is even
proof
  4 = 2*2;
  hence thesis;
end;

theorem Th8:
  n is even implies (-1)|^n = 1
proof
  assume
A1: n is even;
  reconsider n as Element of NAT by ORDINAL1:def 13;
  (-1)|^n = (-1) to_power n by POWER:46;
  hence thesis by A1,FIB_NUM2:5;
end;

theorem Th9:
  n is odd implies (-1)|^n = -1
proof
  assume
A1: n is odd;
  reconsider n as Element of NAT by ORDINAL1:def 13;
  (-1)|^n = (-1) to_power n by POWER:46;
  hence thesis by A1,FIB_NUM2:3;
end;

theorem Th10:
  (-1) |^ n is Integer
proof
  per cases;
  suppose n is even;
    hence thesis by Th8;
  end;
  suppose n is odd;
    hence thesis by Th9;
  end;
end;

definition
  let a be Integer, n be Nat;
  redefine func a |^ n -> Element of INT;
  coherence
  proof
    consider b being Element of NAT such that
A1: a = b or a = -b by INT_1:8;
    per cases by A1;
    suppose a = b;
      then reconsider a as Element of NAT;
      reconsider s = a |^ n as Element of NAT by ORDINAL1:def 13;
      s in NAT;
      hence thesis by NUMBERS:17;
    end;
    suppose
A2:   a = -b;
A3:   -b = (-1)*b;
      reconsider bn = b |^ n as Element of NAT by ORDINAL1:def 13;
      (-1) |^n is Integer by Th10;
      then reconsider l = (-1) |^ n as Element of INT by INT_1:def 2;
      a |^ n = l*bn by A2,A3,NEWTON:12;
      hence thesis;
    end;
  end;
end;

Lm1: for x being Element of NAT st 0 < x holds 0 qua Nat+1 <= x by NAT_1:13;

theorem Th11:
  for p,q,r being FinSequence holds len (p ^ q) <= len (p ^ (q ^ r))
proof
  let p,q,r be FinSequence;
  len ((p ^ q) ^ r) = len (p ^ (q ^ r)) by FINSEQ_1:45;
  hence thesis by CALCUL_1:6;
end;

theorem Th12:
  1 < n + 2
proof
  0 < n + 1 implies 1 < n + 2
  proof
    assume 0 < n + 1;
    0 qua Nat + 1 = 1;
    hence thesis by XREAL_1:10;
  end;
  hence thesis;
end;

theorem Th13:
  (-1)|^2 = 1
proof
  (-1)|^2 = (-1)|^(1+1)
    .= ((-1)|^1)*((-1)|^1) by NEWTON:13
    .= ((-1)|^1)*(-1) by NEWTON:10
    .= (-1)*(-1) by NEWTON:10;
  hence thesis;
end;

theorem Th14:
  for n being Nat holds (-1)|^n = (-1)|^(n+2)
proof
  let n be Nat;
  (-1)|^(n+2) = ((-1)|^n)*((-1)|^2) by NEWTON:13
    .= (-1)|^n by Th13;
  hence thesis;
end;

begin :: Preliminaries on Finite Sequences

registration
  let f be FinSequence of INT, k be Nat;
  cluster f.k -> integer;
  coherence
  proof
    per cases;
    suppose k in dom f;
      then f.k = f/.k by PARTFUN1:def 8;
      hence thesis;
    end;
    suppose not k in dom f;
      hence thesis by FUNCT_1:def 4;
    end;
  end;
end;

:: A theorem on telescoping sequences of integers.

theorem Th15:
  for a,b,s being FinSequence of INT st len s > 0 & len a = len s &
  len b = len s & (for n being Nat st 1 <= n & n <= len s
  holds s.n = a.n + b.n) & (for k being Nat st 1 <= k & k < len s
  holds b.k = -(a.(k+1))) holds Sum s = (a.1) + (b.(len s))
proof
  let a,b,s be FinSequence of INT such that
A1: len s > 0 and
A2: len a = len s and
A3: len b = len s and
A4: for n being Nat st 1 <= n & n <= len s holds s.n = a.n + b.n and
A5: for k being Nat st 1 <= k & k < len s holds b.k = -(a.(k+1));
  defpred P[FinSequence of INT] means len $1 > 0 implies
  for a,b being FinSequence of INT st len a = len $1 & len b = len $1 &
  (for n being Nat st 1 <= n & n <= len $1 holds $1.n = a.n + b.n) &
  (for k being Nat st 1 <= k & k < len $1 holds b.k = -(a.(k+1)))
  holds Sum $1 = a.1 + b.(len $1);
A6: P[<*>INT];
A7: for p being FinSequence of INT, x being Element of INT st P[p]
  holds P[p^<*x*>]
  proof
    let p be FinSequence of INT, x be Element of INT such that
A8: P[p];
    set t = p ^ <*x*>;
    assume len t > 0; :: this is outright provable, of course
    let a,b be FinSequence of INT such that
A9: len a = len t and
A10: len b = len t and
A11: for n being Nat st 1 <= n & n <= len t holds t.n = a.n + b.n and
A12: for k being Nat st 1 <= k & k < len t holds b.k = -(a.(k+1));
A13: Sum t = (Sum p) + x by GR_CY_1:20;
    per cases;
    suppose
A14:  len p = 0;
      then p = {};
      then
A15:  Sum p = 0 by GR_CY_1:22;
A16:  t = <*x*>
      proof
        p = {} by A14;
        hence thesis by FINSEQ_1:47;
      end;
      then
A17:  len t = 1 by FINSEQ_1:56;
      reconsider egy = 1 as Nat;
      egy <= len t by A16,FINSEQ_1:56;
      then t.egy = a.egy + b.egy by A11;
      hence thesis by A13,A15,A16,A17,FINSEQ_1:57;
    end;
    suppose
A18:  len p > 0;
      set m = len p;
      set a' = a|m;
      set b' = b|m;
A19:  m <= len a & m <= len b by A9,A10,CALCUL_1:6;
      then
A20:  len a' = len p by FINSEQ_1:80;
A21:  len b' = len p by A19,FINSEQ_1:80;
A22:  for n being Nat st 1 <= n & n <= len p holds p.n = a'.n + b'.n
      proof
        let n be Nat such that
A23:    1 <= n and
A24:    n <= len p;
        len p <= len t by CALCUL_1:6;
        then
A25:    n <= len t by A24,XXREAL_0:2;
        dom p = Seg len p by FINSEQ_1:def 3;
        then
A26:    n in dom p by A23,A24,FINSEQ_1:3;
        reconsider n as Element of NAT by ORDINAL1:def 13;
        p.n = t.n by A26,FINSEQ_1:def 7
          .= a.n + b.n by A11,A23,A25
          .= a'.n + b.n by A24,FINSEQ_3:121
          .= a'.n + b'.n by A24,FINSEQ_3:121;
        hence thesis;
      end;
      for n being Nat st 1 <= n & n < len p holds b'.n = -(a'.(n+1))
      proof
        let n be Nat such that
A27:    1 <= n and
A28:    n < len p;
        reconsider n as Element of NAT by ORDINAL1:def 13;
A29:    b'.n = b.n by A28,FINSEQ_3:121;
A30:    n + 1 <= len p by A28,INT_1:20;
        len p <= len t by CALCUL_1:6;
        then
A31:    n < len t by A28,XXREAL_0:2;
        a'.(n+1) = a.(n+1) by A30,FINSEQ_3:121;
        hence thesis by A12,A27,A29,A31;
      end;
      then
A32:  Sum p = a'.1 + b'.(len p) by A8,A18,A20,A21,A22;
A33:  a'.1 = a.1
      proof
        reconsider egy = 1 as Element of NAT;
        0 qua Nat + 1 = 1;
        then egy <= len p by A18,INT_1:20;
        hence thesis by FINSEQ_3:121;
      end;
      x = -(b'.(len p)) + b.(len t)
      proof
A34:    len t = (len p) + 1
        proof
          len <*x*> = 1 by FINSEQ_1:56;
          hence thesis by FINSEQ_1:35;
        end;
A35:    1 <= len t
        proof
          0 qua Nat + 1 = 1;
          hence thesis by A34,XREAL_1:8;
        end;
A36:    a.(len t) = -(b'.(len p))
        proof
A37:      len p < len t
          proof
            0 qua Nat + len p = len p;
            hence thesis by A34,XREAL_1:8;
          end;
          1 <= len p by A18,Lm1;
          then
A38:      b.(len p) = -(a.(len p + 1)) by A12,A37;
          b.(len p) = b'.(len p) by FINSEQ_3:121;
          hence thesis by A34,A38;
        end;
        x = t.(len p + 1) by FINSEQ_1:59
          .= -(b'.(len p)) + b.(len t) by A11,A34,A35,A36;
        hence thesis;
      end;
      hence thesis by A13,A32,A33;
    end;
  end;
  for p being FinSequence of INT holds P[p] from FINSEQ_2:sch 2(A6,A7);
  hence thesis by A1,A2,A3,A4,A5;
end;

theorem Th16:
  for p,q,r being FinSequence holds
  len (p ^ q ^ r) = (len p) + (len q) + (len r)
proof
  let p,q,r be FinSequence;
  len (p ^ q ^ r) = (len (p ^ q)) + (len r) by FINSEQ_1:35
    .= ((len p) + (len q)) + (len r) by FINSEQ_1:35;
  hence thesis;
end;

theorem Th17:
  for x being set, p,q being FinSequence holds (<*x*> ^ p ^ q).1 = x
proof
  let x be set, p,q be FinSequence;
  <*x*> ^ p ^ q = <*x*> ^ (p ^ q) by FINSEQ_1:45;
  hence thesis by FINSEQ_1:58;
end;

theorem Th18:
  for x being set, p,q being FinSequence
  holds (p ^ q ^ <*x*>).((len p) + (len q) + 1) = x
proof
  let x be set, p,q be FinSequence;
  set s = p ^ q;
  (s ^ <*x*>).((len s) + 1) = x by FINSEQ_1:59;
  hence thesis by FINSEQ_1:35;
end;

theorem Th19:
  for p,q,r being FinSequence, k being Nat st len p < k & k <= len (p ^ q)
  holds (p ^ q ^ r).k = q.(k - (len p))
proof
  let p,q,r be FinSequence, k be Nat such that
A1: len p < k and
A2: k <= len (p ^ q);
  len (p ^ q) <= len (p ^ (q ^ r)) by Th11;
  then k <= len (p ^ (q ^ r)) by A2,XXREAL_0:2;
  then
A3: (p ^ (q ^ r)).k = (q ^ r).(k - (len p)) by A1,FINSEQ_1:37;
  set n = k - (len p);
  (len p) - (len p) = 0;
  then
A4: 0 < n by A1,XREAL_1:11;
  0 qua Nat + 1 = 1;
  then
A5: 1 <= n by A4,INT_1:20;
  then reconsider n as Nat by Th3;
A6: k <= (len p) + (len q) by A2,FINSEQ_1:35;
  n <= len q
  proof
    ((len p) + (len q)) - (len p) = len q;
    hence thesis by A6,XREAL_1:11;
  end;
  then n in Seg (len q) by A5,FINSEQ_1:3;
  then
A7: n in dom q by FINSEQ_1:def 3;
  reconsider n as Element of NAT by ORDINAL1:def 13;
  (q ^ r).n = q.n by A7,FINSEQ_1:def 7;
  hence thesis by A3,FINSEQ_1:45;
end;

definition
  let a be Integer;
  redefine func <*a*> -> FinSequence of INT;
  coherence
  proof
    set s = <*a*>;
A1: rng s = {a} by FINSEQ_1:55;
    a in INT by INT_1:def 2;
    then {a} c= INT by ZFMISC_1:37;
    hence thesis by A1,FINSEQ_1:def 4;
  end;
end;

definition
  let a,b be Integer;
  redefine func <*a,b*> -> FinSequence of INT;
  coherence
  proof
    set s = <*a,b*>;
A1: rng s = {a,b} by FINSEQ_2:147;
    {a,b} c= INT
    proof
      a in INT & b in INT by INT_1:def 2;
      hence thesis by ZFMISC_1:38;
    end;
    hence thesis by A1,FINSEQ_1:def 4;
  end;
end;

definition
  let a,b,c be Integer;
  redefine func <*a,b,c*> -> FinSequence of INT;
  coherence
  proof
    set s = <*a,b,c*>;
A1: rng s = {a,b,c} by FINSEQ_2:148;
    {a,b,c} c= INT
    proof
A2:   a in INT by INT_1:def 2;
A3:   b in INT by INT_1:def 2;
      c in INT by INT_1:def 2;
      hence thesis by A2,A3,JORDAN16:2;
    end;
    hence thesis by A1,FINSEQ_1:def 4;
  end;
end;

definition
  let p,q be FinSequence of INT;
  redefine func p ^ q -> FinSequence of INT;
  coherence by FINSEQ_1:96;
end;

theorem Th20:
  for p,q being FinSequence of INT holds Sum (p ^ q) = (Sum p) + (Sum q)
proof
  let p,q be FinSequence of INT;
A1: rng p c= REAL by NUMBERS:15,XBOOLE_1:1;
  rng q c= REAL by NUMBERS:15,XBOOLE_1:1;
  then reconsider p,q as real-valued FinSequence by A1,VALUED_0:def 3;
  Sum (p ^ q) = (Sum p) + (Sum q) by RVSUM_1:105;
  hence thesis;
end;

theorem Th21:
  for k being Integer, p being FinSequence of INT
  holds Sum (<*k*> ^ p) = k + (Sum p)
proof
  let k be Integer, p be FinSequence of INT;
  reconsider k as Element of INT by INT_1:def 2;
  Sum (<*k*> ^ p) = (Sum p) + (Sum <*k*>) by Th20
    .= Sum (p ^ <*k*>) by Th20
    .= k + (Sum p) by GR_CY_1:20;
  hence thesis;
end;

theorem Th22:
  for p,q,r being FinSequence of INT
  holds Sum (p ^ q ^ r) = (Sum p) + (Sum q) + (Sum r)
proof
  let p,q,r be FinSequence of INT;
  Sum (p ^ q ^ r) = (Sum (p ^ q)) + (Sum r) by Th20
    .= ((Sum p) + (Sum q)) + Sum r by Th20;
  hence thesis;
end;

theorem
  for a being Element of Z_2 holds Sum <*a*> = a by FINSOP_1:12;

begin :: Polyhedra and Incidence Matrices

:: An incidence matrix is a function that says of any two objects
:: (contained in some set) whether they are incidence to each other.

definition
  let X,Y be set;
  mode incidence-matrix of X,Y is Element of Funcs([:X,Y:],{0.Z_2,1.Z_2});
end;

theorem Th24:
  for X,Y being set holds [:X,Y:] --> 1.Z_2 is incidence-matrix of X,Y
proof
  let X,Y be set;
  set f = [:X,Y:] --> 1.Z_2;
A1: dom f = [:X,Y:] by FUNCOP_1:19;
A2: rng f c= {1.Z_2} by FUNCOP_1:19;
  {1.Z_2} c= {0.Z_2,1.Z_2} by ZFMISC_1:12;
  then rng f c= {0.Z_2,1.Z_2} by A2,XBOOLE_1:1;
  hence thesis by A1,FUNCT_2:def 2;
end;

:: A polyhedron (one might call it an abstract polyhedron) consists of
:: two pieces of data: a sequence of ordered sets, representing the
:: polytope sets (they are ordered for convenience's sake) and a
:: sequence of incidence matrices, which lays out the incidence
:: relation between the (k-1)-polytopes and the k-polytopes.

definition
  struct PolyhedronStr(# PolytopsF ->FinSequence-yielding FinSequence,
    IncidenceF ->Function-yielding FinSequence #);
end;

:: The following properties, `polyhedron_1', `polyhedron_2', and
:: `polyhedron_3' are admittedly a bit contrived.  However, they ensure
:: that a PolyhedronStr is a polyhedron: that there is one more polytope set
:: than incidence matrix, that the incidience matrices are incidence matrices
:: of the right sets, and that each term of the polytope sequence is an
:: enumeration of the respective polytope set.

definition
  let p be PolyhedronStr;
  attr p is polyhedron_1 means
  :Def1:
  len the IncidenceF of p = len(the PolytopsF of p) - 1;
  attr p is polyhedron_2 means
  :Def2:
  for n being Nat
  st 1 <= n & n < len the PolytopsF of p holds (the IncidenceF of p).n
  is incidence-matrix of rng ((the PolytopsF of p).n),
  rng ((the PolytopsF of p).(n+1));
  attr p is polyhedron_3 means
  :Def3:
  for n being Nat
  st 1 <= n & n <= len the PolytopsF of p
  holds (the PolytopsF of p).n is non empty &
  (the PolytopsF of p).n is one-to-one;
end;

registration
  cluster polyhedron_1 polyhedron_2 polyhedron_3 PolyhedronStr;
  existence
  proof
    reconsider F = <*<*{}*>*> as FinSequence-yielding FinSequence;
    reconsider I = <*>{} as Function-yielding FinSequence;
    take p = PolyhedronStr(#F,I#);
A1: len F = 1 by FINSEQ_1:56;
    len I = 1-1;
    hence p is polyhedron_1 by A1,Def1;
    for n being Nat st 1 <= n & n < 1
    holds I.n is incidence-matrix of rng (F.n),rng (F.(n+1));
    hence p is polyhedron_2 by A1,Def2;
    let n be Nat such that
A2: 1 <= n and
A3: n <= len the PolytopsF of p;
    n = 1 by A1,A2,A3,XXREAL_0:1;
    hence thesis by FINSEQ_1:def 8;
  end;
end;

definition
  mode polyhedron is polyhedron_1 polyhedron_2 polyhedron_3 PolyhedronStr;
end;

reserve p for polyhedron,
  k for Integer,
  n for Nat;

:: The dimension dim(p) of a polyhedron p is just the number of
:: polytope sets that it has.

definition
  let p be polyhedron;
  func dim(p) -> Element of NAT equals

  len the PolytopsF of p;
  coherence;
end;

:: For integers k such that 0 <= k <= dim(p), the set of k-polytopes
:: is data already given by the polyhedron.  For k = dim(p), the set
:: is the singleton {p}, which seems clear enough.  For k = -1, it is
:: convenient to define the set of k-polytopes to be {{}}.  Doing this
:: ensures that, if p is simply connected, then any two vertices are
:: connected by a system of edges.
::
:: For k < -1 and k > dim(p), the set of k-polytopes of p is empty.

definition
  let p be polyhedron, k be Integer;
  func k-polytopes(p) -> finite set means
  :Def5:
  (k < -1 implies it = {}) &
  (k = -1 implies it = {{}}) & (-1 < k & k < dim(p) implies
  it = rng ((the PolytopsF of p).(k+1))) & (k = dim(p) implies it = {p}) &
  (k > dim(p) implies it = {});
  existence
  proof
    set F = the PolytopsF of p;
    per cases by XXREAL_0:1;
    suppose
A1:   k < -1;
      take {};
      thus thesis by A1;
    end;
    suppose
A2:   k = -1;
      take {{}};
      thus thesis by A2;
    end;
    suppose
A3:   -1 < k & k < dim(p);
      -1 + 1 = 0;
      then 0 <= k by A3,INT_1:20;
      then reconsider k as Element of NAT by INT_1:16;
      set n = k + 1;
      reconsider Fn = F.n as FinSequence;
      take rng Fn;
      thus thesis by A3;
    end;
    suppose
A4:   k = dim(p);
      take {p};
      thus thesis by A4;
    end;
    suppose
A5:   k > dim(p);
      take {};
      thus thesis by A5;
    end;
  end;
  uniqueness
  proof
    set F = the PolytopsF of p;
    let X,Y be finite set such that
A6: k < -1 implies X = {} and
A7: k = -1 implies X = {{}} and
A8: (-1 < k & k < dim(p)) implies X = rng (F.(k+1)) and
A9: k = dim(p) implies X = {p} and
A10: k > dim(p) implies X = {} and
A11: k < -1 implies Y = {} and
A12: k = -1 implies Y = {{}} and
A13: (-1 < k & k < dim(p)) implies Y = rng (F.(k+1)) and
A14: k = dim(p) implies Y = {p} and
A15: k > dim(p) implies Y = {};
    per cases by XXREAL_0:1;
    suppose k < -1;
      hence thesis by A6,A11;
    end;
    suppose k = -1;
      hence thesis by A7,A12;
    end;
    suppose -1 < k & k < dim(p);
      hence thesis by A8,A13;
    end;
    suppose k = dim(p);
      hence thesis by A9,A14;
    end;
    suppose k > dim(p);
      hence thesis by A10,A15;
    end;
  end;
end;

theorem Th25:
  -1 < k & k < dim(p) implies k + 1 is Nat & 1 <= k + 1 & k + 1 <= dim(p)
proof
  assume
A1: -1 < k;
  assume
A2: k < dim(p);
  -1 + 1 = 0;
  then
A3: 0 < k + 1 by A1,XREAL_1:8;
  then reconsider n = k + 1 as Element of NAT by INT_1:16;
A4: n is Nat;
  0 qua Nat + 1 = 1;
  hence thesis by A2,A3,A4,INT_1:20;
end;

theorem Th26:
  k-polytopes(p) is non empty iff (-1 <= k & k <= dim(p))
proof
  set X = k-polytopes(p);
  thus X is non empty implies -1 <= k & k <= dim(p) by Def5;
  thus -1 <= k & k <= dim(p) implies k-polytopes(p) is non empty
  proof
    assume
A1: -1 <= k;
    assume
A2: k <= dim(p);
    per cases by A1,A2,XXREAL_0:1;
    suppose k = -1;
      hence thesis by Def5;
    end;
    suppose
A3:   -1 < k & k < dim(p);
      set F = the PolytopsF of p;
A4:   k-polytopes(p) = rng (F.(k+1)) by A3,Def5;
      set n = k + 1;
A5:   1 <= n by A3,Th25;
A6:   n <= dim(p) by A3,Th25;
      reconsider n as Element of NAT by A5,INT_1:16;
      reconsider n as Nat;
      F.n is non empty & F.n is one-to-one by A5,A6,Def3;
      hence thesis by A4;
    end;
    suppose k = dim(p);
      then k-polytopes(p) = {p} by Def5;
      hence thesis;
    end;
  end;
end;

theorem Th27:
  k < dim(p) implies k - 1 < dim(p) by XREAL_1:148,XXREAL_0:2;

:: As we defined the set of k-polytopes for all integers k, we define
:: the an incidence matrix, eta(p,k), for any integer k.  Naturally,
:: for almost all k, this is the empty matrix (empty function).  The
:: two cases in which we extend the data already given by the
:: polyhedron itself is for k = 0 and k = dim(p).  For the latter, we
:: declare that the empty set (the unique -1-dimensional polytope) is
:: incident to all 0-polytopes. For the latter, we declare that every
:: (dim(p)-1)-polytope is incidence to p, the unique dim(p)-polytope
:: of p.

definition
  let p be polyhedron, k be Integer;
  func eta(p,k) -> incidence-matrix of (k-1)-polytopes(p),k-polytopes(p) means
  :Def6:
  (k < 0 implies it = {}) &
  (k = 0 implies it = [:{{}},0-polytopes(p):] --> 1.Z_2) &
  (0 < k & k < dim(p) implies it = (the IncidenceF of p).k) &
  (k = dim(p) implies it = [:(dim(p) - 1)-polytopes(p),{p}:] --> 1.Z_2) &
  (k > dim(p) implies it = {});
  existence
  proof
    per cases by XXREAL_0:1;
    suppose
A1:   k < 0;
      (k-1)-polytopes(p) = {}
      proof
        k - 1 < 0 qua Nat - 1 by A1,XREAL_1:11;
        hence thesis by Th26;
      end;
      then
A2:   [:(k-1)-polytopes(p),k-polytopes(p):] = {} by ZFMISC_1:113;
      set f = {};
      reconsider f as Function;
      reconsider f as
      Function of [:(k-1)-polytopes(p),k-polytopes(p):],{0.Z_2,1.Z_2}
      by A2,RELSET_1:25;
      reconsider f as
      Element of Funcs([:(k-1)-polytopes(p),k-polytopes(p):],{0.Z_2,1.Z_2})
      by FUNCT_2:11;
      take f;
      thus thesis by A1;
    end;
    suppose
A3:   k > dim(p);
      then k-polytopes(p) = {} by Th26;
      then
A4:   [:(k-1)-polytopes(p),k-polytopes(p):] = {} by ZFMISC_1:113;
      set f = {};
      reconsider f as Function;
      reconsider f as
      Function of [:(k-1)-polytopes(p),k-polytopes(p):],{0.Z_2,1.Z_2}
      by A4,RELSET_1:25;
      reconsider f as
      Element of Funcs([:(k-1)-polytopes(p),k-polytopes(p):],{0.Z_2,1.Z_2})
      by FUNCT_2:11;
      take f;
      thus thesis by A3;
    end;
    suppose
A5:   0 < k & k < dim(p);
      set F = the PolytopsF of p, I = the IncidenceF of p;
      0 qua Nat + 1 = 1;
      then
A6:   1 <= k by A5,INT_1:20;
      1 - 1 = 0;
      then -1 < k - 1 & k - 1 < dim(p) by A5,A6,Th27,XREAL_1:11;
      then
A7:   (k-1)-polytopes(p) = rng (F.((k-1)+1)) by Def5;
A8:   k-polytopes(p) = rng (F.(k+1)) by A5,Def5;
      reconsider k' = k as Nat by A6,Th3;
      reconsider Ik = I.k' as incidence-matrix of (k-1)-polytopes(p),
      k-polytopes(p) by A5,A6,A7,A8,Def2;
      take Ik;
      thus thesis by A5;
    end;
    suppose
A9:   k = 0;
      per cases;
      suppose
A10:    k = dim(p);
A11:    (k-1)-polytopes(p) = {{}} by A9,Def5;
        set f = [:{{}},{p}:] --> 1.Z_2;
        reconsider f as incidence-matrix of {{}},{p} by Th24;
        reconsider f as incidence-matrix of (k-1)-polytopes(p),
        k-polytopes(p) by A10,A11,Def5;
        take f;
        thus thesis by A9,A10,Def5;
      end;
      suppose
A12:    k <> dim(p);
        set f = [:{{}},0-polytopes(p):] --> 1.Z_2;
        reconsider f as incidence-matrix of {{}},0-polytopes(p) by Th24;
        reconsider f as incidence-matrix of (k-1)-polytopes(p),
        k-polytopes(p) by A9,Def5;
        take f;
        thus thesis by A9,A12;
      end;
    end;
    suppose
A13:  k = dim(p);
      per cases;
      suppose
A14:    k = 0;
        then
A15:    (k-1)-polytopes(p) = {{}} by Def5;
        set f = [:{{}},{p}:] --> 1.Z_2;
        reconsider f as incidence-matrix of {{}},{p} by Th24;
        reconsider f as incidence-matrix of (k-1)-polytopes(p),
        k-polytopes(p) by A13,A15,Def5;
        take f;
        thus thesis by A13,A14,Def5;
      end;
      suppose
A16:    k <> 0;
        set f = [:(dim(p) - 1)-polytopes(p),{p}:] --> 1.Z_2;
        reconsider f as incidence-matrix of (dim(p) - 1)-polytopes(p),{p}
        by Th24;
        reconsider f as incidence-matrix of (k-1)-polytopes(p),
        k-polytopes(p) by A13,Def5;
        take f;
        thus thesis by A13,A16;
      end;
    end;
  end;
  uniqueness
  proof
    set I = the IncidenceF of p;
    let s,t be incidence-matrix of (k-1)-polytopes(p),k-polytopes(p) such that
A17: (k < 0 implies s = {}) and
A18: (k = 0 implies s = [:{{}},0-polytopes(p):] --> 1.Z_2) and
A19: (0 < k & k < dim(p) implies s = I.k) and
A20: (k = dim(p) implies s = [:(dim(p) - 1)-polytopes(p),{p}:] --> 1.Z_2) and
A21: (k > dim(p) implies s = {}) and
A22: (k < 0 implies t = {}) and
A23: (k = 0 implies t = [:{{}},0-polytopes(p):] --> 1.Z_2) and
A24: (0 < k & k < dim(p) implies t = I.k) and
A25: (k = dim(p) implies t = [:(dim(p) - 1)-polytopes(p),{p}:] --> 1.Z_2) and
A26: (k > dim(p) implies t = {});
    per cases by XXREAL_0:1;
    suppose k < 0;
      hence thesis by A17,A22;
    end;
    suppose k = 0;
      hence thesis by A18,A23;
    end;
    suppose 0 < k & k < dim(p);
      hence thesis by A19,A24;
    end;
    suppose k = dim(p);
      hence thesis by A20,A25;
    end;
    suppose k > dim(p);
      hence thesis by A21,A26;
    end;
  end;
end;

definition
  let p be polyhedron, k be Integer;
  func k-polytope-seq(p) -> FinSequence means
  :Def7:
  (k < -1 implies it = <*>{}) & (k = -1 implies it = <*{}*>) &
  (-1 < k & k < dim(p) implies it = (the PolytopsF of p).(k+1)) &
  (k = dim(p) implies it = <*p*>) & (k > dim(p) implies it = <*>{});
  existence
  proof
    per cases by XXREAL_0:1;
    suppose
A1:   k < -1;
      take <*>{};
      thus thesis by A1;
    end;
    suppose
A2:   k = -1;
      take <*{}*>;
      thus thesis by A2;
    end;
    suppose
A3:   -1 < k & k < dim(p);
      set F = the PolytopsF of p;
      take F.(k+1);
      thus thesis by A3;
    end;
    suppose
A4:   k = dim(p);
      take <*p*>;
      thus thesis by A4;
    end;
    suppose
A5:   k > dim(p);
      take <*>{};
      thus thesis by A5;
    end;
  end;
  uniqueness
  proof
    set F = the PolytopsF of p;
    let s,t be FinSequence such that
A6: (k < -1 implies s = <*>{}) and
A7: (k = -1 implies s = <*{}*>) and
A8: (-1 < k & k < dim(p) implies s = F.(k+1)) and
A9: (k = dim(p) implies s = <*p*>) and
A10: (k > dim(p) implies s = <*>{}) and
A11: (k < -1 implies t = <*>{}) and
A12: (k = -1 implies t = <*{}*>) and
A13: (-1 < k & k < dim(p) implies t = F.(k+1)) and
A14: (k = dim(p) implies t = <*p*>) and
A15: (k > dim(p) implies t = <*>{});
    per cases by XXREAL_0:1;
    suppose k < -1;
      hence thesis by A6,A11;
    end;
    suppose k = -1;
      hence thesis by A7,A12;
    end;
    suppose -1 < k & k < dim(p);
      hence thesis by A8,A13;
    end;
    suppose k = dim(p);
      hence thesis by A9,A14;
    end;
    suppose k > dim(p);
      hence thesis by A10,A15;
    end;
  end;
end;

definition
  let p be polyhedron, k be Integer;
  func num-polytopes(p,k) -> Element of NAT equals

  card(k-polytopes(p));
  coherence;
end;

:: It will be convenient to use these in the cases of Euler's
:: polyhedron formula that interest us.

definition
  let p be polyhedron;
  func num-vertices(p) -> Element of NAT equals

  num-polytopes(p,0);
  correctness;
  func num-edges(p) -> Element of NAT equals

  num-polytopes(p,1);
  correctness;
  func num-faces(p) -> Element of NAT equals

  num-polytopes(p,2);
  correctness;
end;

theorem Th28:
  dom (k-polytope-seq(p)) = Seg (num-polytopes(p,k))
proof
  set F = the PolytopsF of p;
  per cases;
  suppose
A1: k < -1;
    then
A2: k-polytope-seq(p) = <*>{} by Def7;
    k-polytopes(p) = {} by A1,Def5;
    hence thesis by A2,FINSEQ_1:def 3;
  end;
  suppose
A3: -1 <= k & k <= dim(p);
    per cases by A3,XXREAL_0:1;
    suppose
A4:   k = -1;
      then
A5:   k-polytopes(p) = {{}} by Def5;
A6:   k-polytope-seq(p) = <*{}*> by A4,Def7;
A7:   num-polytopes(p,k) = 1 by A5,CARD_2:60;
      len (k-polytope-seq(p)) = 1 by A6,FINSEQ_1:56;
      hence thesis by A7,FINSEQ_1:def 3;
    end;
    suppose
A8:   -1 < k & k < dim(p);
      then
A9:   k-polytope-seq(p) = F.(k+1) by Def7;
A10:  k-polytopes(p) = rng (F.(k+1)) by A8,Def5;
      set n = k + 1;
      reconsider n as Nat by A8,Th25;
      reconsider Fn = F.n as FinSequence;
      1 <= n & n <= dim(p) by A8,Th25;
      then Fn is one-to-one by Def3;
      then num-polytopes(p,k) = card (dom Fn) by A10,Th2;
      then len Fn = num-polytopes(p,k) by PRE_CIRC:21;
      hence thesis by A9,FINSEQ_1:def 3;
    end;
    suppose
A11:  k = dim(p);
      then
A12:  k-polytopes(p) = {p} by Def5;
A13:  k-polytope-seq(p) = <*p*> by A11,Def7;
A14:  num-polytopes(p,k) = 1 by A12,CARD_2:60;
      len (k-polytope-seq(p)) = 1 by A13,FINSEQ_1:56;
      hence thesis by A14,FINSEQ_1:def 3;
    end;
  end;
  suppose
A15: k > dim(p);
    then
A16: k-polytope-seq(p) = <*>{} by Def7;
    k-polytopes(p) = {} by A15,Def5;
    hence thesis by A16,FINSEQ_1:def 3;
  end;
end;

theorem Th29:
  len (k-polytope-seq(p)) = num-polytopes(p,k)
proof
  dom (k-polytope-seq(p)) = Seg (num-polytopes(p,k)) by Th28;
  hence thesis by FINSEQ_1:def 3;
end;

theorem Th30:
  rng (k-polytope-seq(p)) = k-polytopes(p)
proof
  set F = the PolytopsF of p;
  per cases;
  suppose
A1: k < -1;
    then k-polytopes(p) = {} by Def5;
    hence thesis by A1,Def7,RELAT_1:60;
  end;
  suppose
A2: -1 <= k & k <= dim(p);
    per cases by A2,XXREAL_0:1;
    suppose
A3:   k = -1;
      then
A4:   k-polytopes(p) = {{}} by Def5;
      k-polytope-seq(p) = <*{}*> by A3,Def7;
      hence thesis by A4,FINSEQ_1:55;
    end;
    suppose
A5:   -1 < k & k < dim(p);
      then k-polytopes(p) = rng (F.(k+1)) by Def5;
      hence thesis by A5,Def7;
    end;
    suppose
A6:   k = dim(p);
      then
A7:   k-polytopes(p) = {p} by Def5;
      k-polytope-seq(p) = <*p*> by A6,Def7;
      hence thesis by A7,FINSEQ_1:55;
    end;
  end;
  suppose
A8: k > dim(p);
    then k-polytopes(p) = {} by Def5;
    hence thesis by A8,Def7,RELAT_1:60;
  end;
end;

theorem Th31:
  num-polytopes(p,-1) = 1
proof
  reconsider minusone = -1 as Integer;
  minusone-polytopes(p) = {{}} by Def5;
  hence thesis by CARD_1:50;
end;

theorem Th32:
  num-polytopes(p,dim(p)) = 1
proof
  dim(p)-polytopes(p) = {p} by Def5;
  hence thesis by CARD_1:50;
end;

:: The k-polytope sets aren't really sets: they're ordered sets
:: (finite sequences).
::
:: Since the k-polytope sets are empty for k < -1 and k > dim(p), we
:: have to put a condition on n and k for the definition to make
:: sense.

definition
  let p be polyhedron, k be Integer, n be Nat;
  assume
A1: 1 <= n & n <= num-polytopes(p,k) & -1 <= k & k <= dim(p);
  func n-th-polytope(p,k) -> Element of k-polytopes(p) equals
  :Def12:
  (k-polytope-seq(p)).n;
  coherence
  proof
    n in Seg num-polytopes(p,k) by A1,FINSEQ_1:3;
    then n in dom (k-polytope-seq(p)) by Th28;
    then (k-polytope-seq(p)).n in rng (k-polytope-seq(p)) by FUNCT_1:12;
    hence thesis by Th30;
  end;
end;

theorem Th33:
  -1 <= k & k <= dim(p) implies for x being Element of k-polytopes(p)
  ex n being Nat st x = n-th-polytope(p,k) & 1 <= n & n <= num-polytopes(p,k)
proof
  assume
A1: -1 <= k & k <= dim(p);
  let x be Element of k-polytopes(p);
  per cases by A1,XXREAL_0:1;
  suppose
A2: k = -1;
    then
A3: k-polytopes(p) = {{}} by Def5;
    then
A4: x = {} by TARSKI:def 1;
    reconsider n = 1 as Nat;
    k-polytope-seq(p) = <*{}*> by A2,Def7;
    then
A5: (k-polytope-seq(p)).n = {} by FINSEQ_1:def 8;
A6: n <= num-polytopes(p,k) by A3,CARD_1:50;
    take n;
    thus thesis by A1,A4,A5,A6,Def12;
  end;
  suppose
A7: k = dim(p);
    then
A8: k-polytopes(p) = {p} by Def5;
    then
A9: x = p by TARSKI:def 1;
    reconsider n = 1 as Nat;
A10: num-polytopes(p,k) = 1 by A8,CARD_1:50;
    k-polytope-seq(p) = <*p*> by A7,Def7;
    then
A11: (k-polytope-seq(p)).n = p by FINSEQ_1:def 8;
    take n;
    thus thesis by A1,A9,A10,A11,Def12;
  end;
  suppose
A12: -1 < k & k < dim(p);
    set F = the PolytopsF of p;
A13: k-polytopes(p) = rng (F.(k+1)) by A12,Def5;
A14: k-polytope-seq(p) = F.(k+1) by A12,Def7;
    then
A15: num-polytopes(p,k) = len (F.(k+1)) by Th29;
A16: -1 + 1 < k + 1 by A12,XREAL_1:8;
A17: k + 1 <= dim(p) by A12,INT_1:20;
A18: 0 qua Nat + 1 <= k + 1 by A16,INT_1:20;
    reconsider k' = k + 1 as Element of NAT by A16,INT_1:16;
    F.k' is non empty by A17,A18,Def3;
    then rng (F.k') is non empty;
    then consider m being set such that
A19: m in dom (F.k') and
A20: (F.k').m = x by A13,FUNCT_1:def 5;
    reconsider Fk' = F.k' as FinSequence;
A21: dom Fk' = Seg (len Fk') by FINSEQ_1:def 3;
    reconsider m as Element of NAT by A19;
A22: 1 <= m & m <= len Fk' by A19,A21,FINSEQ_1:3;
    take m;
    thus thesis by A12,A14,A15,A20,A22,Def12;
  end;
end;

theorem Th34:
  k-polytope-seq(p) is one-to-one
proof
  set s = k-polytope-seq(p);
  per cases by XXREAL_0:1;
  suppose k < -1;
    hence thesis by Def7;
  end;
  suppose k = -1;
    hence thesis by Def7;
  end;
  suppose
A1: -1 < k & k < dim(p);
    set F = the PolytopsF of p;
A2: s = F.(k+1) by A1,Def7;
A3: -1 + 1 < k + 1 by A1,XREAL_1:8;
    then reconsider m = k + 1 as Element of NAT by INT_1:16;
A4: 0 qua Nat + 1 <= m by A3,INT_1:20;
    m <= dim(p) by A1,INT_1:20;
    hence thesis by A2,A4,Def3;
  end;
  suppose k = dim(p);
    then s = <*p*> by Def7;
    hence thesis;
  end;
  suppose k > dim(p);
    hence thesis by Def7;
  end;
end;

theorem Th35:
  -1 <= k & k <= dim(p) implies for m,n being Nat
  st 1 <= n & n <= num-polytopes(p,k) & 1 <= m & m <= num-polytopes(p,k)
  & n-th-polytope(p,k) = m-th-polytope(p,k) holds m = n
proof
  assume
A1: -1 <= k & k <= dim(p);
  let m,n be Nat such that
A2: 1 <= n and
A3: n <= num-polytopes(p,k) and
A4: 1 <= m and
A5: m <= num-polytopes(p,k) and
A6: n-th-polytope(p,k) = m-th-polytope(p,k);
  set s = k-polytope-seq(p);
A7: n-th-polytope(p,k) = s.n by A1,A2,A3,Def12;
A8: m-th-polytope(p,k) = s.m by A1,A4,A5,Def12;
  n in Seg (num-polytopes(p,k)) by A2,A3,FINSEQ_1:3;
  then
A9: n in dom s by Th28;
  m in Seg (num-polytopes(p,k)) by A4,A5,FINSEQ_1:3;
  then
A10: m in dom s by Th28;
  s is one-to-one by Th34;
  hence thesis by A6,A7,A8,A9,A10,FUNCT_1:def 8;
end;

definition
  let p be polyhedron, k be Integer, x be Element of (k-1)-polytopes(p),
  y be Element of k-polytopes(p);
  assume
A1: 0 <= k & k <= dim(p);
  func incidence-value(x,y) -> Element of Z_2 equals
  :Def13:
  eta(p,k).(x,y);
  coherence
  proof
    set n = eta(p,k);
A2: dom n = [:(k-1)-polytopes(p),k-polytopes(p):] by FUNCT_2:169;
A3: (k-1)-polytopes(p) <> {}
    proof
      set m = k - 1;
      0 qua Nat - 1 = -1;
      then
A4:   -1 <= m by A1,XREAL_1:11;
      m <= dim(p) - (0 qua Nat) by A1,XREAL_1:15;
      hence thesis by A4,Th26;
    end;
    k-polytopes(p) <> {} by A1,Th26;
    then
A5: [x,y] in dom n by A2,A3,ZFMISC_1:106;
A6: rng n c= {0.Z_2,1.Z_2} by FUNCT_2:169;
    n.[x,y] in rng n by A5,FUNCT_1:12;
    hence thesis by A6,BSPACE:3,5,6;
  end;
end;

begin :: The Chain Spaces and their Subspaces.  Boundary of a k-chain.

::  The set of subsets of the k-polytopes naturally forms a vector
::  space over the field Z_2.  Addition is disjoint union, and scalar
::  multiplication is defined by the equations 1*x = x, 0*x = 0.

definition
  let p be polyhedron, k be Integer;
  func k-chain-space(p) -> finite-dimensional VectSp of Z_2 equals
  bspace(k-polytopes(p));
  coherence;
end;

theorem
  for x being Element of k-polytopes(p)
  holds (0.(k-chain-space(p)))@x = 0.Z_2 by BSPACE:14;

theorem Th37:
  num-polytopes(p,k) = dim (k-chain-space(p))
proof
A1: singletons(k-polytopes(p)) is Basis of k-chain-space(p) by BSPACE:41;
  set n = dim (k-chain-space(p));
  n = card (singletons(k-polytopes(p))) by A1,VECTSP_9:def 2;
  hence thesis by BSPACE:42;
end;

:: A k-chain is a set of k-polytopes.

definition
  let p be polyhedron, k be Integer;
  func k-chains(p) -> non empty finite set equals

  bool (k-polytopes(p));
  coherence;
end;

definition
  let p be polyhedron, k be Integer, x be Element of (k-1)-polytopes(p),
  v be Element of k-chain-space(p);
  func incidence-sequence(x,v) -> FinSequence of Z_2 means
  :Def16:
  ((k-1)-polytopes(p) is empty implies it = <*>{}) &
  ((k-1)-polytopes(p) is non empty implies len it = num-polytopes(p,k)
  & for n being Nat st 1 <= n & n <= num-polytopes(p,k) holds it.n =
  (v@(n-th-polytope(p,k)))*incidence-value(x,n-th-polytope(p,k)));
  existence
  proof
    per cases;
    suppose
A1:   (k-1)-polytopes(p) is empty;
      set s = <*>{};
      rng s c= the carrier of Z_2 by XBOOLE_1:2;
      then reconsider s as FinSequence of Z_2 by FINSEQ_1:def 4;
      take s;
      thus thesis by A1;
    end;
    suppose
A2:   (k-1)-polytopes(p) is non empty;
      deffunc F(Nat) =
      (v@($1-th-polytope(p,k)))*incidence-value(x,$1-th-polytope(p,k));
      consider s being FinSequence of Z_2 such that
A3:   len s = num-polytopes(p,k) and
A4:   for n being Nat st n in dom s
      holds s.n = F(n) from FINSEQ_2:sch 1;
A5: dom s = Seg num-polytopes(p,k) by A3,FINSEQ_1:def 3;
A6:   for n being Nat st 1 <= n & n <= num-polytopes(p,k) holds s.n =
      (v@(n-th-polytope(p,k)))*incidence-value(x,n-th-polytope(p,k))
      proof
        let n be Nat such that
A7:     1 <= n and
A8:     n <= num-polytopes(p,k);
A9:     n in Seg num-polytopes(p,k) by A7,A8,FINSEQ_1:3;
        thus thesis by A4,A9,A5;
      end;
      take s;
      thus thesis by A2,A3,A6;
    end;
  end;
  uniqueness
  proof
    let s,t be FinSequence of Z_2 such that
A10: (k-1)-polytopes(p) is empty implies s = <*>{} and
A11: (k-1)-polytopes(p) is non empty implies len(s) = num-polytopes(p,k) &
    (for n being Nat st 1 <= n & n <= num-polytopes(p,k) holds s.n =
    (v@(n-th-polytope(p,k)))*incidence-value(x,n-th-polytope(p,k))) and
A12: (k-1)-polytopes(p) is empty implies t = <*>{} and
A13: (k-1)-polytopes(p) is non empty implies len(t) = num-polytopes(p,k) &
    for n being Nat st 1 <= n & n <= num-polytopes(p,k) holds t.n =
    (v@(n-th-polytope(p,k)))*incidence-value(x,n-th-polytope(p,k));
    per cases;
    suppose (k-1)-polytopes(p) is empty;
      hence thesis by A10,A12;
    end;
    suppose
A14:  (k-1)-polytopes(p) is non empty;
      for n being Nat st 1 <= n & n <= len s holds s.n = t.n
      proof
        let n be Nat such that
A15:    1 <= n and
A16:    n <= len s;
        reconsider n as Nat;
        s.n = (v@(n-th-polytope(p,k)))*incidence-value(x,n-th-polytope(p,k))
        by A11,A14,A15,A16;
        hence thesis by A11,A13,A14,A15,A16;
      end;
      hence thesis by A11,A13,A14,FINSEQ_1:18;
    end;
  end;
end;

theorem Th38:
  for c,d being Element of k-chain-space(p), x being Element of k-polytopes(p)
  holds (c+d)@x = (c@x) + (d@x)
proof
  let c,d be Element of k-chain-space(p), x be Element of k-polytopes(p);
  c+d = c \+\ d by BSPACE:def 5;
  hence thesis by BSPACE:15;
end;

theorem Th39:
  for c,d being Element of k-chain-space(p),
  x being Element of (k-1)-polytopes(p) holds incidence-sequence(x,c+d)
  = incidence-sequence(x,c) + incidence-sequence(x,d)
proof
  let c,d be Element of k-chain-space(p), x be Element of (k-1)-polytopes(p);
  set n = num-polytopes(p,k);
  set l = incidence-sequence(x,c+d);
  set isc = incidence-sequence(x,c);
  set isd = incidence-sequence(x,d);
  set r = isc + isd;
  per cases;
  suppose
A1: (k-1)-polytopes(p) is empty;
    then
A2: isc = <*>(the carrier of Z_2) by Def16;
A3: isd = <*>(the carrier of Z_2) by A1,Def16;
    reconsider isc as Element of 0-tuples_on the carrier of Z_2
    by A2,FINSEQ_2:114;
    reconsider isd as Element of 0-tuples_on the carrier of Z_2
    by A3,FINSEQ_2:114;
    isc + isd is Element of 0-tuples_on the carrier of Z_2;
    then r = <*>(the carrier of Z_2) by FINSEQ_2:113;
    hence thesis by A1,Def16;
  end;
  suppose
A4: (k-1)-polytopes(p) is non empty;
A5: len(l) = n & len(r) = n
    proof
A6:   len isc = n by A4,Def16;
A7:   len isd = n by A4,Def16;
      reconsider isc as Element of n-tuples_on the carrier of Z_2
      by A6,FINSEQ_2:110;
      reconsider isd as Element of n-tuples_on the carrier of Z_2
      by A7,FINSEQ_2:110;
      reconsider s = isc + isd as Element of n-tuples_on the carrier of Z_2;
      len s = n by FINSEQ_2:109;
      hence thesis by A4,Def16;
    end;
    for n being Nat st 1 <= n & n <= len l holds l.n = r.n
    proof
      let m be Nat such that
A8:   1 <= m and
A9:   m <= len l;
      set a = m-th-polytope(p,k);
      set iva = incidence-value(x,a);
A10:  len l = n by A4,Def16;
      then
A11:  l.m = ((c+d)@a)*iva by A4,A8,A9,Def16;
A12:  isc.m = (c@a)*iva by A4,A8,A9,A10,Def16;
A13:  isd.m = (d@a)*iva by A4,A8,A9,A10,Def16;
A14:  dom r = Seg n by A5,FINSEQ_1:def 3;
A15:  len l = n by A4,Def16;
      m in NAT by ORDINAL1:def 13;
      then m in dom r by A8,A9,A14,A15;
      then r.m = (c@a)*iva + (d@a)*iva by A12,A13,FVSUM_1:21
        .= (c@a + d@a)*iva by VECTSP_1:def 12
        .= l.m by A11,Th38;
      hence thesis;
    end;
    hence thesis by A5,FINSEQ_1:18;
  end;
end;

theorem Th40:
  for c,d being Element of k-chain-space(p),
  x being Element of (k-1)-polytopes(p)
  holds Sum (incidence-sequence(x,c) + incidence-sequence(x,d))
  = (Sum incidence-sequence(x,c)) + (Sum incidence-sequence(x,d))
proof
  let c,d be Element of k-chain-space(p), x be Element of (k-1)-polytopes(p);
  set isc = incidence-sequence(x,c);
  set isd = incidence-sequence(x,d);
  per cases;
  suppose
A1: (k-1)-polytopes(p) is empty;
    then
A2: isc = <*>(the carrier of Z_2) by Def16;
A3: isd = <*>(the carrier of Z_2) by A1,Def16;
    reconsider isc as Element of 0-tuples_on the carrier of Z_2
    by A2,FINSEQ_2:114;
    reconsider isd as Element of 0-tuples_on the carrier of Z_2
    by A3,FINSEQ_2:114;
A4: Sum isc = 0.Z_2 by FVSUM_1:93;
A5: Sum isd = 0.Z_2 by FVSUM_1:93;
    reconsider s = isc + isd as Element of 0-tuples_on the carrier of Z_2;
    Sum s = 0.Z_2 by FVSUM_1:93;
    hence thesis by A4,A5,RLVECT_1:def 7;
  end;
  suppose
A6: (k-1)-polytopes(p) is non empty;
    reconsider n = num-polytopes(p,k) as Element of NAT;
A7: len isc = n by A6,Def16;
A8: len isd = n by A6,Def16;
    reconsider isc' = isc
    as Element of n-tuples_on the carrier of Z_2 by A7,FINSEQ_2:110;
    reconsider isd' = isd
    as Element of n-tuples_on the carrier of Z_2 by A8,FINSEQ_2:110;
    Sum (isc + isd) = Sum (isc' + isd')
      .= Sum (isc) + Sum (isd) by FVSUM_1:95;
    hence thesis;
  end;
end;

theorem Th41:
  for c,d being Element of k-chain-space(p),
  x being Element of (k-1)-polytopes(p) holds Sum incidence-sequence(x,c+d)
  = (Sum incidence-sequence(x,c)) + (Sum incidence-sequence(x,d))
proof
  let c,d be Element of k-chain-space(p), x be Element of (k-1)-polytopes(p);
  Sum incidence-sequence(x,c+d)
  = Sum (incidence-sequence(x,c) + incidence-sequence(x,d)) by Th39
    .= (Sum incidence-sequence(x,c)) + (Sum incidence-sequence(x,d)) by Th40;
  hence thesis;
end;

theorem Th42:
  for c being Element of k-chain-space(p), a being Element of Z_2,
  x being Element of k-polytopes(p) holds (a*c)@x = a*(c@x)
proof
  let c be Element of k-chain-space(p), a be Element of Z_2,
  x be Element of k-polytopes(p);
  per cases by BSPACE:8;
  suppose
A1: a = 0.Z_2;
    then
A2: a*(c@x) = 0.Z_2 by VECTSP_1:39;
    a*c = 0.(k-chain-space(p)) by A1,VECTSP_1:59;
    hence thesis by A2,BSPACE:14;
  end;
  suppose
A3: a = 1.Z_2;
    then a*(c@x) = c@x by VECTSP_1:def 16;
    hence thesis by A3,VECTSP_1:def 26;
  end;
end;

theorem Th43:
  for c being Element of k-chain-space(p), a being Element of Z_2,
  x being Element of (k-1)-polytopes(p)
  holds incidence-sequence(x,a*c) = a*incidence-sequence(x,c)
proof
  let c be Element of k-chain-space(p), a be Element of Z_2,
  x be Element of (k-1)-polytopes(p);
  set l = incidence-sequence(x,a*c);
  set isc = incidence-sequence(x,c);
  set r = a*isc;
  per cases;
  suppose
A1: (k-1)-polytopes(p) is empty;
    then isc = <*>(the carrier of Z_2) by Def16;
    then reconsider isc as Element of 0-tuples_on the carrier of Z_2
    by FINSEQ_2:114;
    a*isc is Element of 0-tuples_on the carrier of Z_2;
    then reconsider r as Element of 0-tuples_on the carrier of Z_2;
    r = <*>(the carrier of Z_2) by FINSEQ_2:113;
    hence thesis by A1,Def16;
  end;
  suppose
A2: (k-1)-polytopes(p) is non empty;
    set n = num-polytopes(p,k);
A3: len l = n & len r = n
    proof
      len isc = n by A2,Def16;
      then reconsider isc as Element of n-tuples_on the carrier of Z_2
      by FINSEQ_2:110;
      set r = a*isc;
      reconsider r as Element of n-tuples_on the carrier of Z_2;
      len r = n by FINSEQ_2:109;
      hence thesis by A2,Def16;
    end;
    for m being Nat st 1 <= m & m <= len l holds l.m = r.m
    proof
      let m be Nat such that
A4:   1 <= m and
A5:   m <= len l;
      set s = m-th-polytope(p,k);
      set ivs = incidence-value(x,s);
A6:   len l = n by A2,Def16;
      then
A7:   l.m = ((a*c)@s)*ivs by A2,A4,A5,Def16;
A8:   isc.m = (c@s)*ivs by A2,A4,A5,A6,Def16;
A9:   dom r = Seg n by A3,FINSEQ_1:def 3;
A10:  len l = n by A2,Def16;
      m in NAT by ORDINAL1:def 13;
      then m in Seg n by A4,A5,A10;
      then r.m = a*((c@s)*ivs) by A8,A9,FVSUM_1:62
        .= (a*(c@s))*ivs by GROUP_1:def 4
        .= l.m by A7,Th42;
      hence thesis;
    end;
    hence thesis by A3,FINSEQ_1:18;
  end;
end;

theorem Th44:
  for c,d being Element of k-chain-space(p)
  holds c = d iff for x being Element of k-polytopes(p) holds c@x = d@x
proof
  let c,d be Element of k-chain-space(p);
  thus c = d implies for x being Element of k-polytopes(p) holds c@x = d@x;
  thus (for x being Element of k-polytopes(p) holds c@x = d@x) implies c = d
  proof
    assume
A1: for x being Element of k-polytopes(p) holds c@x = d@x;
    thus c c= d
    proof
      let x be set such that
A2:   x in c;
      reconsider c as Subset of k-polytopes(p);
      reconsider x as Element of k-polytopes(p) by A2;
      c@x = 1.Z_2 by A2,BSPACE:def 3;
      then d@x = 1.Z_2 by A1;
      hence thesis by BSPACE:9;
    end;
    thus d c= c
    proof
      let x be set such that
A3:   x in d;
      reconsider d as Subset of k-polytopes(p);
      reconsider x as Element of k-polytopes(p) by A3;
      d@x = 1.Z_2 by A3,BSPACE:def 3;
      then c@x = 1.Z_2 by A1;
      hence thesis by BSPACE:9;
    end;
  end;
end;

theorem Th45:
  for c,d being Element of k-chain-space(p) holds c = d iff
  for x being Element of k-polytopes(p) holds x in c iff x in d
proof
  let c,d be Element of k-chain-space(p);
  thus c = d
  implies for x being Element of k-polytopes(p) holds x in c iff x in d;
  thus (for x being Element of k-polytopes(p) holds x in c iff x in d)
  implies c = d
  proof
    assume
A1: for x being Element of k-polytopes(p) holds x in c iff x in d;
    assume c <> d;
    then consider x being Element of k-polytopes(p) such that
A2: c@x <> d@x by Th44;
    not (x in c iff x in d) by A2,BSPACE:13;
    hence thesis by A1;
  end;
end;

scheme
  ChainEx { p() -> polyhedron, k() -> Integer,
  P[Element of k()-polytopes(p())] } : ex c being Subset of k()-polytopes(p())
  st for x being Element of k()-polytopes(p())
  holds x in c iff (P[x] & x in k()-polytopes(p()))
proof
  set c = { x where x is Element of k()-polytopes(p()) :
  P[x] & x in k()-polytopes(p()) };
  c c= k()-polytopes(p())
  proof
    let x be set such that
A1: x in c;
    consider y being Element of k()-polytopes(p()) such that
A2: x = y and P[y] and
A3: y in k()-polytopes(p()) by A1;
    thus thesis by A2,A3;
  end;
  then reconsider c as Subset of k()-polytopes(p());
A4: for x being Element of k()-polytopes(p()) holds
  x in c iff (P[x] & x in k()-polytopes(p()))
  proof
    let x be Element of k()-polytopes(p());
    thus x in c implies (P[x] & x in k()-polytopes(p()))
    proof
      assume x in c;
      then consider y being Element of k()-polytopes(p()) such that
A5:   y = x and
A6:   P[y] and
A7:   y in k()-polytopes(p());
      thus thesis by A5,A6,A7;
    end;
    thus (P[x] & x in k()-polytopes(p())) implies x in c;
  end;
  take c;
  thus thesis by A4;
end;

:: The boundary of a k-chain v is the (k-1)-chain consisting of the
:: (k-1)-polytopes that are on the "perimeter" of v.  Being on the
:: perimeter amounts the sum of the incidence sequence being non-zero,
:: i.e., being equal to 1.

definition
  let p be polyhedron, k be Integer, v be Element of k-chain-space(p);
  func Boundary(v) -> Element of (k-1)-chain-space(p) means
  :Def17:
  ((k-1)-polytopes(p) is empty implies it = 0.((k-1)-chain-space(p))) &
  ((k-1)-polytopes(p) is non empty implies
  for x being Element of (k-1)-polytopes(p)
  holds x in it iff Sum incidence-sequence(x,v) = 1.Z_2);
  existence
  proof
    per cases;
    suppose
A1:   (k-1)-polytopes(p) is empty;
      take 0.((k-1)-chain-space(p));
      thus thesis by A1;
    end;
    suppose
   (k-1)-polytopes(p) is non empty;
      defpred Q[Element of (k-1)-polytopes(p)] means
      Sum incidence-sequence($1,v) = 1.Z_2;
      consider c being Subset of (k-1)-polytopes(p) such that
A3:   for x being Element of (k-1)-polytopes(p)
      holds x in c iff (Q[x] & x in (k-1)-polytopes(p)) from ChainEx;
      reconsider c as Element of (k-1)-chain-space(p);
      take c;
      thus thesis by A3;
    end;
  end;
  uniqueness
  proof
    let c,d be Element of (k-1)-chain-space(p) such that
A4: (k-1)-polytopes(p) is empty implies c = 0.((k-1)-chain-space(p)) and
A5: (k-1)-polytopes(p) is non empty implies
    for x being Element of (k-1)-polytopes(p)
    holds x in c iff Sum incidence-sequence(x,v) = 1.Z_2 and
 (k-1)-polytopes(p) is empty implies d = 0.((k-1)-chain-space(p)) and
A7: (k-1)-polytopes(p) is non empty implies
    for x being Element of (k-1)-polytopes(p)
    holds x in d iff Sum incidence-sequence(x,v) = 1.Z_2;
    per cases;
    suppose (k-1)-polytopes(p) is empty;
      hence thesis by A4;
    end;
    suppose
A8:   (k-1)-polytopes(p) is non empty;
      for x being Element of (k-1)-polytopes(p) holds x in c iff x in d
      proof
        let x be Element of (k-1)-polytopes(p);
        thus x in c implies x in d
        proof
          assume x in c;
          then Sum incidence-sequence(x,v) = 1.Z_2 by A5;
          hence thesis by A7,A8;
        end;
        thus x in d implies x in c
        proof
          assume x in d;
          then Sum incidence-sequence(x,v) = 1.Z_2 by A7;
          hence thesis by A5,A8;
        end;
      end;
      hence thesis by Th45;
    end;
  end;
end;

theorem Th46:
  for c being Element of k-chain-space(p),
  x being Element of (k-1)-polytopes(p)
  holds (Boundary(c))@x = Sum incidence-sequence(x,c)
proof
  let c be Element of k-chain-space(p), x be Element of (k-1)-polytopes(p);
  set b = Boundary(c);
  per cases;
  suppose
A1: (k-1)-polytopes(p) is empty;
    then
A2: Boundary(c) = 0.((k-1)-chain-space(p));
    set iscx = incidence-sequence(x,c);
    iscx = <*>(the carrier of Z_2) by A1,Def16;
    then Sum iscx = 0.Z_2 by RLVECT_1:60;
    hence thesis by A2,BSPACE:14;
  end;
  suppose
A3: (k-1)-polytopes(p) is non empty;
    then
A4: x in b iff Sum incidence-sequence(x,c) = 1.Z_2 by Def17;
    per cases;
    suppose x in b;
      hence thesis by A4,BSPACE:def 3;
    end;
    suppose
A5:   not x in b;
      then Sum incidence-sequence(x,c) <> 1.Z_2 by A3,Def17;
      then Sum incidence-sequence(x,c) = 0.Z_2 by BSPACE:8;
      hence thesis by A5,BSPACE:def 3;
    end;
  end;
end;

:: Every dimension k has its own boundary operation.

definition
  let p be polyhedron, k be Integer;
  func k-boundary(p) -> Function of k-chain-space(p),(k-1)-chain-space(p)
  means
  :Def18:
  for c being Element of k-chain-space(p) holds it.c = Boundary(c);
  existence
  proof
    defpred Q[set,set] means
    ex c being Element of k-chain-space(p) st $1 = c & $2 = Boundary(c);
A1: for x being set st x in k-chains(p) holds
    ex y being set st y in (k-1)-chains(p) & Q[x,y]
    proof
      let x be set such that
A2:   x in k-chains(p);
      reconsider x as Element of k-chain-space(p) by A2;
      set b = Boundary(x);
      take b;
      thus thesis;
    end;
    consider f being Function of k-chains(p), (k-1)-chains(p) such that
A3: for x being set st x in k-chains(p) holds Q[x,f.x] from FUNCT_2:sch 1(A1);
    reconsider f as Function of k-chain-space(p),(k-1)-chain-space(p);
A4: for c being Element of k-chain-space(p) holds f.c = Boundary(c)
    proof
      let c be Element of k-chain-space(p);
      Q[c,f.c] by A3;
      hence thesis;
    end;
    take f;
    thus thesis by A4;
  end;
  uniqueness
  proof
    let f,g be Function of k-chain-space(p),(k-1)-chain-space(p) such that
A5: for c being Element of k-chain-space(p) holds f.c = Boundary(c) and
A6: for c being Element of k-chain-space(p) holds g.c = Boundary(c);
    dom f = [#](k-chain-space(p)) by FUNCT_2:def 1;
    then
A7: dom f = dom g by FUNCT_2:def 1;
    for x being set st x in dom f holds f.x = g.x
    proof
      let x be set such that
A8:   x in dom f;
      reconsider x as Element of k-chain-space(p) by A8;
      f.x = Boundary(x) by A5;
      hence thesis by A6;
    end;
    hence thesis by A7,FUNCT_1:9;
  end;
end;

theorem Th47:
  for c,d being Element of k-chain-space(p)
  holds Boundary(c+d) = Boundary(c) + Boundary(d)
proof
  let c,d be Element of k-chain-space(p);
  set bc = Boundary(c);
  set bd = Boundary(d);
  set s = c+d;
  set l = Boundary(s);
  set r = bc+bd;
  for x being Element of (k-1)-polytopes(p) holds l@x = r@x
  proof
    let x be Element of (k-1)-polytopes(p);
A1: l@x = Sum incidence-sequence(x,s) by Th46;
    set a = bc@x;
    set b = bd@x;
A2: r@x = a+b by Th38;
A3: a = Sum incidence-sequence(x,c) by Th46;
    b = Sum incidence-sequence(x,d) by Th46;
    hence thesis by A1,A2,A3,Th41;
  end;
  hence thesis by Th44;
end;

theorem Th48:
  for a being Element of Z_2, c being Element of k-chain-space(p)
  holds Boundary(a*c) = a*(Boundary(c))
proof
  let a be Element of Z_2, c be Element of k-chain-space(p);
  set lsm = a*c;
  set l = Boundary(lsm);
  set rb = Boundary(c);
  set r = a*rb;
  for x being Element of (k-1)-polytopes(p) holds l@x = r@x
  proof
    let x be Element of (k-1)-polytopes(p);
A1: l@x = Sum incidence-sequence(x,lsm) by Th46;
A2: rb@x = Sum incidence-sequence(x,c) by Th46;
    set b = rb@x;
A3: r@x = a*b by Th42;
    incidence-sequence(x,lsm) = a*incidence-sequence(x,c) by Th43;
    hence thesis by A1,A2,A3,FVSUM_1:92;
  end;
  hence thesis by Th44;
end;

:: As defined, the k-boundary operator gives rise to a linear
:: transformation.

theorem Th49:
  k-boundary(p) is
  linear-transformation of k-chain-space(p),(k-1)-chain-space(p)
proof
  set V = k-chain-space(p);
  set b = k-boundary(p);
A1: for x,y being Element of V holds b.(x+y) = (b.x) + (b.y)
  proof
    let x,y be Element of V;
    b.(x+y) = Boundary(x+y) by Def18
      .= Boundary(x) + Boundary(y) by Th47
      .= (b.x) + Boundary(y) by Def18
      .= (b.x) + (b.y) by Def18;
    hence thesis;
  end;
  for a being Element of Z_2, x being Element of V holds b.(a*x) = a*(b.x)
  proof
    let a be Element of Z_2, x be Element of V;
    b.(a*x) = Boundary(a*x) by Def18
      .= a*(Boundary(x)) by Th48
      .= a*(b.x) by Def18;
    hence thesis;
  end;
  hence thesis by A1,MOD_2:def 5;
end;

definition
  let p be polyhedron, k be Integer;
  redefine func k-boundary(p) -> linear-transformation of k-chain-space(p),
  (k-1)-chain-space(p);
  coherence by Th49;
end;

:: The term "circuit" is used in Lakatos.  (A more customary term is
:: "cycle".)

definition
  let p be polyhedron, k be Integer;
  func k-circuit-space(p) -> Subspace of k-chain-space(p) equals
  ker (k-boundary(p));
  coherence;
end;

definition
  let p be polyhedron, k be Integer;
  func k-circuits(p) -> non empty Subset of k-chains(p) equals
  [#](k-circuit-space(p));
  coherence by VECTSP_4:def 2;
end;

definition
  let p be polyhedron, k be Integer;
  func k-bounding-chain-space(p) -> Subspace of k-chain-space(p) equals
  im ((k+1)-boundary(p));
  coherence;
end;

definition
  let p be polyhedron, k be Integer;
  func k-bounding-chains(p) -> non empty Subset of k-chains(p) equals
  [#](k-bounding-chain-space(p));
  coherence by VECTSP_4:def 2;
end;

definition
  let p be polyhedron, k be Integer;
  func k-bounding-circuit-space(p) -> Subspace of k-chain-space(p) equals
  (k-bounding-chain-space(p)) /\ (k-circuit-space(p));
  coherence;
end;

definition
  let p be polyhedron, k be Integer;
  func k-bounding-circuits(p) -> non empty Subset of k-chains(p) equals
  [#](k-bounding-circuit-space(p));
  coherence by VECTSP_4:def 2;
end;

theorem
  dim (k-chain-space(p))
  = rank (k-boundary(p)) + nullity (k-boundary(p)) by RANKNULL:44;

begin :: Simply Connected and Eulerian Polyhedra

:: The property of being simply connected is that circuits are
:: bounding, and vice versa (any bounding chain is a circuit).

definition
  let p be polyhedron;
  attr p is simply-connected means
  :Def25:
  for k being Integer holds k-circuits(p) = k-bounding-chains(p);
end;

theorem Th51:
  p is simply-connected iff for n being Integer holds n-circuit-space(p)
  = n-bounding-chain-space(p)
proof
  defpred Q[polyhedron] means for n being Integer holds n-circuit-space($1)
  = n-bounding-chain-space($1);
  thus p is simply-connected implies Q[p]
  proof
    assume
A1: p is simply-connected;
    let n be Integer;
    n-circuits(p) = n-bounding-chains(p) by A1,Def25;
    hence thesis by VECTSP_4:37;
  end;
  thus Q[p] implies p is simply-connected
  proof
    assume
A2: Q[p];
    let n be Integer;
    thus thesis by A2;
  end;
end;

definition
  let p be polyhedron;
  func alternating-f-vector(p) -> FinSequence of INT means
  :Def26:
  len(it) = dim(p) + 2 & (for k being Nat st 1 <= k & k <= dim(p) + 2
  holds it.k = ((-1)|^k)*num-polytopes(p,k-2));
  existence
  proof
    deffunc F(Nat) = ((-1)|^$1)*num-polytopes(p,$1-2);
    consider s being FinSequence of INT such that
A1: len s = dim(p) + 2 and
A2: for j being Nat st j in dom s
    holds s.j = F(j) from FINSEQ_2:sch 1;
A3: dom s = Seg(dim(p) + 2)  by A1,FINSEQ_1:def 3;
A4: for j being Nat st 1 <= j & j <= dim(p) + 2
    holds s.j = ((-1)|^j)*num-polytopes(p,j-2)
    proof
      let j be Nat such that
A5:   1 <= j and
A6:   j <= dim(p) + 2;
A7:   j in Seg (dim(p) + 2) by A5,A6,FINSEQ_1:3;
      thus thesis by A2,A7,A3;
    end;
    take s;
    thus thesis by A1,A4;
  end;
  uniqueness
  proof
    let s,t be FinSequence of INT such that
A8: len(s) = dim(p) + 2 and
A9: for k being Nat st 1 <= k & k <= dim(p) + 2
    holds s.k = ((-1)|^k)*num-polytopes(p,k-2) and
A10: len(t) = dim(p) + 2 and
A11: for k being Nat st 1 <= k & k <= dim(p) + 2
    holds t.k = ((-1)|^k)*num-polytopes(p,k-2);
    for k being Nat st 1 <= k & k <= len s holds s.k = t.k
    proof
      let k be Nat such that
A12:  1 <= k and
A13:  k <= len s;
      reconsider k as Nat;
      s.k = ((-1)|^k)*num-polytopes(p,k-2) by A8,A9,A12,A13;
      hence thesis by A8,A11,A12,A13;
    end;
    hence thesis by A8,A10,FINSEQ_1:18;
  end;
end;

definition
  let p be polyhedron;
  func alternating-proper-f-vector(p) -> FinSequence of INT means
  :Def27:
  len(it) = dim(p) & (for k being Nat st 1 <= k & k <= dim(p)
  holds it.k = ((-1)|^(k+1))*num-polytopes(p,k-1));
  existence
  proof
    deffunc F(Nat) = ((-1)|^($1+1))*num-polytopes(p,$1-1);
    consider s being FinSequence of INT such that
A1: len s = dim(p) and
A2: for j being Nat st j in dom s holds s.j = F(j) from FINSEQ_2:sch 1;
A3: dom s = Seg dim p by A1,FINSEQ_1:def 3;
A4: for j being Nat st 1 <= j & j <= dim(p)
    holds s.j = ((-1)|^(j+1))*num-polytopes(p,j-1)
    proof
      let j be Nat such that
A5:   1 <= j and
A6:   j <= dim(p);
A7:   j in Seg dim(p) by A5,A6,FINSEQ_1:3;
      thus thesis by A2,A7,A3;
    end;
    take s;
    thus thesis by A1,A4;
  end;
  uniqueness
  proof
    let s,t be FinSequence of INT such that
A8: len(s) = dim(p) and
A9: for k being Nat st 1 <= k & k <= dim(p)
    holds s.k = ((-1)|^(k+1))*num-polytopes(p,k-1) and
A10: len(t) = dim(p) and
A11: for k being Nat st 1 <= k & k <= dim(p)
    holds t.k = ((-1)|^(k+1))*num-polytopes(p,k-1);
    for k being Nat st 1 <= k & k <= len s holds s.k = t.k
    proof
      let k be Nat such that
A12:  1 <= k and
A13:  k <= len s;
      reconsider k as Nat;
      s.k = ((-1)|^(k+1))*num-polytopes(p,k-1) by A8,A9,A12,A13;
      hence thesis by A8,A11,A12,A13;
    end;
    hence thesis by A8,A10,FINSEQ_1:18;
  end;
end;

definition
  let p be polyhedron;
  func alternating-semi-proper-f-vector(p) -> FinSequence of INT means
  :Def28:
  len(it) = dim(p) + 1 & (for k being Nat st 1 <= k & k <= dim(p) + 1
  holds it.k = ((-1)|^(k+1))*num-polytopes(p,k-1));
  existence
  proof
    deffunc F(Nat) = ((-1)|^($1+1))*num-polytopes(p,$1-1);
    consider s being FinSequence of INT such that
A1: len s = dim(p) + 1 and
A2: for j being Nat st j in dom s
    holds s.j = F(j) from FINSEQ_2:sch 1;
A3: dom s = Seg(dim(p) + 1)  by A1,FINSEQ_1:def 3;
A4: for j being Nat st 1 <= j & j <= dim(p) + 1
    holds s.j = ((-1)|^(j+1))*num-polytopes(p,j-1)
    proof
      let j be Nat such that
A5:   1 <= j and
A6:   j <= dim(p) + 1;
A7:   j in Seg (dim(p) + 1) by A5,A6,FINSEQ_1:3;
      thus thesis by A2,A7,A3;
    end;
    take s;
    thus thesis by A1,A4;
  end;
  uniqueness
  proof
    let s,t be FinSequence of INT such that
A8: len(s) = dim(p) + 1 and
A9: for k being Nat st 1 <= k & k <= dim(p) + 1
    holds s.k = ((-1)|^(k+1))*num-polytopes(p,k-1) and
A10: len(t) = dim(p) + 1 and
A11: for k being Nat st 1 <= k & k <= dim(p) + 1
    holds t.k = ((-1)|^(k+1))*num-polytopes(p,k-1);
    for k being Nat st 1 <= k & k <= len s holds s.k = t.k
    proof
      let k be Nat such that
A12:  1 <= k and
A13:  k <= len s;
      reconsider k as Nat;
      s.k = ((-1)|^(k+1))*num-polytopes(p,k-1) by A8,A9,A12,A13;
      hence thesis by A8,A11,A12,A13;
    end;
    hence thesis by A8,A10,FINSEQ_1:18;
  end;
end;

theorem Th52:
  1 <= n & n <= len (alternating-proper-f-vector(p))
  implies (alternating-proper-f-vector(p)).n
  = ((-1)|^(n+1))*(dim ((n-2)-bounding-chain-space(p)))
  + ((-1)|^(n+1))*(dim ((n-1)-circuit-space(p)))
proof
  set apcs = alternating-proper-f-vector(p);
  assume
A1: 1 <= n;
  assume n <= len apcs;
  then
A2: n <= dim(p) by Def27;
  set a = (-1)|^(n+1);
  apcs.n = a*num-polytopes(p,n-1) by A1,A2,Def27
    .= a*(dim ((n-1)-chain-space(p))) by Th37
    .= a*(rank ((n-1)-boundary p) + nullity ((n-1)-boundary p)) by RANKNULL:44
    .= (a*dim ((n-2)-bounding-chain-space(p)))
  + (a*dim ((n-1)-circuit-space(p)));
  hence thesis;
end;

:: The term "eulerian" comes from Lakatos.

definition
  let p be polyhedron;
  attr p is eulerian means
  :Def29:
  Sum (alternating-proper-f-vector(p)) = 1 + (-1)|^(dim(p)+1);
end;

theorem Th53:
  alternating-semi-proper-f-vector(p)
  = alternating-proper-f-vector(p) ^ <*(-1)|^(dim(p))*>
proof
  set d = dim(p);
  set aspcs = alternating-semi-proper-f-vector(p);
  set apcs = alternating-proper-f-vector(p);
  set r = apcs ^ <*(-1)|^(dim(p))*>;
A1: len aspcs = d + 1 by Def28;
  len r = (len apcs) + (len <*(-1)|^(dim(p))*>) by FINSEQ_1:35
    .= d + (len <*(-1)|^(dim(p))*>) by Def27
    .= d + 1 by FINSEQ_1:57;
  then
A2: len aspcs = len r by Def28;
  for n being Nat st 1 <= n & n <= len aspcs holds aspcs.n = r.n
  proof
    let n be Nat such that
A3: 1 <= n and
A4: n <= len aspcs;
    per cases by A1,A4,NAT_1:8;
    suppose
A5:   n <= d;
A6:   len apcs = d by Def27;
A7:   dom apcs = Seg (len apcs) by FINSEQ_1:def 3;
      n in NAT by ORDINAL1:def 13;
      then n in dom apcs by A3,A5,A6,A7;
      then r.n = apcs.n by FINSEQ_1:def 7
        .= ((-1)|^(n+1))*num-polytopes(p,n-1) by A3,A5,Def27;
      hence thesis by A1,A3,A4,Def28;
    end;
    suppose
A8:   n = d + 1;
      then
A9:   aspcs.n = ((-1)|^(n+1))*num-polytopes(p,n-1) by A3,Def28
        .= ((-1)|^(n+1))*1 by A8,Th32
        .= (-1)|^(n+1);
      n = (len apcs) + 1 by A8,Def27;
      then r.n = (-1)|^d by FINSEQ_1:59
        .= (-1)|^(d+2) by Th14;
      hence thesis by A8,A9;
    end;
  end;
  hence thesis by A2,FINSEQ_1:18;
end;

:: Another characterization of Eulerian polyhedra

definition
  let p be polyhedron;
  redefine attr p is eulerian means
  :Def30:
  Sum (alternating-semi-proper-f-vector(p)) = 1;
  compatibility
  proof
    set apcs = alternating-proper-f-vector(p);
    set aspcs = alternating-semi-proper-f-vector(p);
    aspcs = apcs ^ <*(-1)|^(dim(p))*> by Th53;
    then
A1: Sum aspcs = (Sum apcs) + (-1)|^(dim(p)) by GR_CY_1:20;
A2: p is eulerian implies Sum aspcs = 1
    proof
      assume p is eulerian;
      then Sum aspcs = 1 + (-1)|^(dim(p)+1) + (-1)|^(dim(p)) by A1,Def29
        .= 1 + (-1)*((-1)|^(dim(p))) + (-1)|^(dim(p)) by NEWTON:11
        .= 1;
      hence thesis;
    end;
    Sum aspcs = 1 implies p is eulerian
    proof
      assume Sum aspcs = 1;
      then Sum apcs = 1 + (-1)*((-1)|^(dim(p))) by A1
        .= 1 + (-1)|^(dim(p)+1) by NEWTON:11;
      hence thesis by Def29;
    end;
    hence thesis by A2;
  end;
end;

theorem Th54:
  alternating-f-vector(p) = <*-1*> ^ alternating-semi-proper-f-vector(p)
proof
  set acs = alternating-f-vector(p);
  set aspcs = alternating-semi-proper-f-vector(p);
  set d = dim(p);
  set r = <*-1*> ^ aspcs;
A1: len r = (len <*-1*>) + (len aspcs) by FINSEQ_1:35
    .= (len <*-1*>) + (d + 1) by Def28
    .= 1 + (d + 1) by FINSEQ_1:57
    .= d + 2;
  then
A2: len acs = len r by Def26;
  for n being Nat st 1 <= n & n <= len acs holds acs.n = r.n
  proof
    let n be Nat such that
A3: 1 <= n and
A4: n <= len acs;
A5: n <= d + 2 by A4,Def26;
    per cases by A3,XXREAL_0:1;
    suppose
A6:   n = 1;
      then acs.n = ((-1)|^1)*num-polytopes(p,1-2) by A5,Def26
        .= (-1)*num-polytopes(p,-1) by NEWTON:10
        .= (-1)*1 by Th31
        .= -1;
      hence thesis by A6,FINSEQ_1:58;
    end;
    suppose
A7:   n > 1;
      then
A8:   1 - 1 < n - 1 by XREAL_1:11;
      then reconsider m = n - 1 as Element of NAT by INT_1:16;
      0 < 0 qua Nat + m by A8;
      then
A9:   1 <= m by NAT_1:19;
      n - 1 <= (d + 2) - 1 by A5,XREAL_1:11;
      then
A10:  m <= d + 1;
A11:  r.n = aspcs.(n-1)
      proof
        len <*-1*> = 1 by FINSEQ_1:56;
        hence thesis by A1,A5,A7,FINSEQ_1:37;
      end;
      aspcs.m = ((-1)|^(m+1))*num-polytopes(p,m-1) by A9,A10,Def28
        .= ((-1)|^n)*(num-polytopes(p,n-2));
      hence thesis by A3,A5,A11,Def26;
    end;
  end;
  hence thesis by A2,FINSEQ_1:18;
end;

:: Yet another characterization of eulerian polyhedra

definition
  let p be polyhedron;
  redefine attr p is eulerian means
  :Def31:
  Sum (alternating-f-vector(p)) = 0;
  compatibility
  proof
    set acs = alternating-f-vector(p);
    set aspcs = alternating-semi-proper-f-vector(p);
    acs = <*-1*> ^ aspcs by Th54;
    then
A1: Sum acs = -1 + (Sum aspcs) by Th21;
    p is eulerian implies Sum acs = 0
    proof
      assume p is eulerian;
      then Sum acs = -1 + 1 by A1,Def30
        .= 0;
      hence thesis;
    end;
    hence thesis by A1,Def30;
  end;
end;

begin :: The Extremal Chain Spaces

theorem Th55:
  0-polytopes(p) is non empty
proof
  set d = dim(p);
  per cases;
  suppose d = 0;
    then 0-polytopes(p) = {p} by Def5;
    hence thesis;
  end;
  suppose d > 0;
    hence thesis by Th26;
  end;
end;

theorem Th56:
  card [#]((-1)-chain-space(p)) = 2
proof
  (-1)-polytopes(p) = {{}} by Def5;
  then card ((-1)-polytopes(p)) = 1 by CARD_1:50;
  then card [#]((-1)-chain-space(p)) = exp(2,1) by BSPACE:43
    .= 2 by CARD_2:40;
  hence thesis;
end;

theorem Th57:
  [#]((-1)-chain-space(p)) = { {}, {{}} }
proof
  (-1)-polytopes(p) = {{}} by Def5;
  hence thesis by ZFMISC_1:30;
end;

theorem Th58:
  for x being Element of k-polytopes(p), e being Element of (k-1)-polytopes(p)
  st k = 0 & e = {} holds incidence-value(e,x) = 1.Z_2
proof
  let x be Element of k-polytopes(p),
  e be Element of (k-1)-polytopes(p) such that
A1: k = 0 and
A2: e = {};
A3: 0 <= k & k <= dim(p) by A1;
A4: eta(p,k) = [:{{}},0-polytopes(p):] --> 1.Z_2 by A1,Def6;
A5: {} in {{}} by TARSKI:def 1;
  0-polytopes(p) is non empty by A3,Th26;
  then
A6: [{},x] in [:{{}},0-polytopes(p):] by A1,A5,ZFMISC_1:106;
  incidence-value(e,x) = eta(p,k).(e,x) by A3,Def13
    .= 1.Z_2 by A2,A4,A6,FUNCOP_1:13;
  hence thesis;
end;

theorem Th59:
  for k being Integer, x being Element of k-polytopes(p),
  v being Element of k-chain-space(p), e being Element of (k-1)-polytopes(p),
  n being Nat st k = 0 & v = {x} & e = {} & x = n-th-polytope(p,k)
  & 1 <= n & n <= num-polytopes(p,k) holds incidence-sequence(e,v).n = 1.Z_2
proof
  let k be Integer, x be Element of k-polytopes(p),
  v be Element of k-chain-space(p), e be Element of (k-1)-polytopes(p),
  n be Nat such that
A1: k = 0 and
A2: v = {x} and
A3: e = {} and
A4: x = n-th-polytope(p,k) and
A5: 1 <= n and
A6: n <= num-polytopes(p,k);
  set iseq = incidence-sequence(e,v);
A7: (k-1)-polytopes(p) is non empty by A1,Def5;
A8: x in v by A2,TARSKI:def 1;
  iseq.n = (v@x)*incidence-value(e,x) by A4,A5,A6,A7,Def16
    .= (1.Z_2)*incidence-value(e,x) by A8,BSPACE:def 3
    .= (1.Z_2)*(1.Z_2) by A1,A3,Th58
    .= 1.Z_2 by VECTSP_1:def 16;
  hence thesis;
end;

theorem Th60:
  for k being Integer, x being Element of k-polytopes(p),
  e being Element of (k-1)-polytopes(p), v being Element of k-chain-space(p),
  m,n being Nat st k = 0 & v = {x} & x = n-th-polytope(p,k) & 1 <= m &
  m <= num-polytopes(p,k) & 1 <= n & n <= num-polytopes(p,k) & m <> n
  holds incidence-sequence(e,v).m = 0.Z_2
proof
  let k be Integer, x be Element of k-polytopes(p),
  e be Element of (k-1)-polytopes(p), v be Element of k-chain-space(p),
  m,n be Nat such that
A1: k = 0 and
A2: v = {x} and
A3: x = n-th-polytope(p,k) and
A4: 1 <= m and
A5: m <= num-polytopes(p,k) and
A6: 1 <= n and
A7: n <= num-polytopes(p,k) and
A8: m <> n;
  set iseq = incidence-sequence(e,v);
  -1 <= k & k <= dim(p) by A1;
  then
A9: m-th-polytope(p,k) <> x by A3,A4,A5,A6,A7,A8,Th35;
  now
    assume v@(m-th-polytope(p,k)) = 1.Z_2;
    then m-th-polytope(p,k) in {x} by A2,BSPACE:9;
    hence contradiction by A9,TARSKI:def 1;
  end;
  then
A10: v@(m-th-polytope(p,k)) = 0.Z_2 by BSPACE:11;
  (k-1)-polytopes(p) is non empty by A1,Def5;
  then iseq.m = (0.Z_2)*(incidence-value(e,m-th-polytope(p,k)))
  by A4,A5,A10,Def16
    .= 0.Z_2 by VECTSP_1:39;
  hence thesis;
end;

theorem Th61:
  for k being Integer, x being Element of k-polytopes(p),
  v being Element of k-chain-space(p), e being Element of (k-1)-polytopes(p)
  st k = 0 & v = {x} & e = {} holds Sum incidence-sequence(e,v) = 1.Z_2
proof
  let k be Integer, x be Element of k-polytopes(p),
  v be Element of k-chain-space(p),
  e be Element of (k-1)-polytopes(p) such that
A1: k = 0 and
A2: v = {x} and
A3: e = {};
  set iseq = incidence-sequence(e,v);
  -1 <= k & k <= dim(p) by A1;
  then consider n being Nat such that
A4: x = n-th-polytope(p,k) and
A5: 1 <= n and
A6: n <= num-polytopes(p,k) by Th33;
  (k-1)-polytopes(p) is non empty by A1,Def5;
  then
A7: len iseq = num-polytopes(p,k) by Def16;
  dom iseq = Seg (len iseq) by FINSEQ_1:def 3;
  then
A8: n in dom iseq by A5,A6,A7,FINSEQ_1:3;
A9: iseq.n = 1.Z_2 by A1,A2,A3,A4,A5,A6,Th59;
  for m being Nat st m in dom iseq & m <> n holds iseq.m = 0.Z_2
  proof
    let m be Nat such that
A10: m in dom iseq and
A11: m <> n;
    m in Seg (len iseq) by A10,FINSEQ_1:def 3;
    then 1 <= m & m <= len iseq by FINSEQ_1:3;
    hence thesis by A1,A2,A4,A5,A6,A7,A11,Th60;
  end;
  hence thesis by A8,A9,MATRIX_3:14;
end;

theorem Th62:
  for x being Element of 0-polytopes(p) holds (0-boundary(p)).({x}) = {{}}
proof
  let x be Element of 0-polytopes(p);
  set T = 0-boundary(p);
  reconsider minusone = 0 qua Nat - 1 as Integer;
  0-polytopes(p) is non empty by Th55;
  then reconsider v = {x} as Subset of 0-polytopes(p) by ZFMISC_1:37;
  reconsider v as Element of 0-chain-space(p);
A1: T.v = Boundary(v) by Def18;
  reconsider bv = Boundary(v) as Element of minusone-chain-space(p);
A2: minusone-polytopes(p) is non empty by Def5;
  (0 qua Nat-1)-polytopes(p) = {{}} by Def5;
  then reconsider null = {} as
  Element of (0 qua Nat-1)-polytopes(p) by TARSKI:def 1;
  null in bv iff Sum incidence-sequence(null,v) = 1.Z_2 by A2,Def17;
  then
A3: {null} c= bv by Th61,ZFMISC_1:37;
  bv c= {null}
  proof
    let y be set such that
A4: y in bv;
A5: [#](minusone-chain-space(p)) = { {}, {{}} } by Th57;
    per cases by A5,TARSKI:def 2;
    suppose bv = {};
      hence thesis by A4;
    end;
    suppose bv = {{}};
      hence thesis by A4;
    end;
  end;
  hence thesis by A1,A3,XBOOLE_0:def 10;
end;

theorem Th63:
  k = -1 implies dim(k-bounding-chain-space(p)) = 1
proof
  assume
A1: k = -1;
  set T = 0-boundary(p);
  set V = k-bounding-chain-space(p);
  card [#]V = 2
  proof
A2: T.(0.(0-chain-space(p))) = 0.(k-chain-space(p)) by A1,RANKNULL:9
      .= {};
    0-polytopes(p) <> {} by Th55;
    then consider x being set such that
A3: x in 0-polytopes(p) by XBOOLE_0:def 1;
    reconsider x as Element of 0-polytopes(p) by A3;
    set v = {x};
A4: T.v = {{}} by Th62;
A5: dom T = [#](0-chain-space(p)) by RANKNULL:7;
    reconsider v as Subset of 0-polytopes(p) by A3,ZFMISC_1:37;
    reconsider v as Element of 0-chain-space(p);
A6: v in dom T by A5;
A7: {} in rng T by A2,A5,FUNCT_1:12;
    {{}} in rng T by A4,A6,FUNCT_1:12;
    then
A8: {{},{{}}} c= rng T by A7,ZFMISC_1:38;
    card {{},{{}}} = 2 by CARD_2:76;
    then
A9: 2 c= card rng T by A8,CARD_1:27;
A10: card rng T = card (T .: [#](0-chain-space(p))) by FUNCT_2:45
      .= card [#]V by A1,RANKNULL:def 2;
    [#]V c= [#](k-chain-space(p)) by VECTSP_4:def 2;
    then card [#]V c= card [#](k-chain-space(p)) by CARD_1:27;
    then card [#]V c= 2 by A1,Th56;
    hence thesis by A9,A10,XBOOLE_0:def 10;
  end;
  hence thesis by RANKNULL:6;
end;

theorem Th64:
  card [#](dim(p)-chain-space(p)) = 2
proof
  dim(p)-polytopes(p) = {p} by Def5;
  then card (dim(p)-polytopes(p)) = 1 by CARD_1:50;
  then card [#]((dim(p))-chain-space(p)) = exp(2,1) by BSPACE:43
    .= 2 by CARD_2:40;
  hence thesis;
end;

theorem Th65:
  {p} is Element of dim(p)-chain-space(p)
proof
  dim(p)-polytopes(p) = {p} by Def5;
  hence thesis by ZFMISC_1:def 1;
end;

theorem Th66:
  {p} in [#](dim(p)-chain-space(p))
proof
  {p} is Element of dim(p)-chain-space(p) by Th65;
  hence thesis;
end;

theorem Th67:
  (dim(p) - 1)-polytopes(p) is non empty
proof
  set n = dim(p) - 1;
A1: -1 <= n
  proof
    0 qua Nat - 1 = -1;
    hence thesis by XREAL_1:11;
  end;
  n <= dim(p) by XREAL_1:148;
  hence thesis by A1,Th26;
end;

registration
  let p be polyhedron;
  cluster (dim(p)-1)-polytopes(p) -> non empty;
  coherence by Th67;
end;

theorem Th68:
  [#](dim(p)-chain-space(p)) = { 0.(dim(p)-chain-space(p)), {p} }
proof
  set V = dim(p)-chain-space(p);
  set C = [#]V;
A1: card C = 2 by Th64;
  reconsider C as finite set;
  consider a,b being set such that
A2: a <> b and
A3: C = {a,b} by A1,CARD_2:79;
  {p} in C by Th66;
  hence thesis by A2,A3,Th1;
end;

theorem Th69:
  for x being Element of dim(p)-chain-space(p)
  holds x = 0.(dim(p)-chain-space(p)) or x = {p}
proof
  set V = dim(p)-chain-space(p);
  let x be Element of V;
  x in [#]V;
  then x in { 0.V, {p} } by Th68;
  hence thesis by TARSKI:def 2;
end;

theorem Th70:
  for x,y being Element of dim(p)-chain-space(p) st x <> y
  holds x = 0.(dim(p)-chain-space(p)) or y = 0.(dim(p)-chain-space(p))
proof
  set V = dim(p)-chain-space(p);
  let x,y be Element of V such that
A1: x <> y;
  assume
A2: x <> 0.V;
  assume
A3: y <> 0.V;
  x = {p} by A2,Th69;
  hence contradiction by A1,A3,Th69;
end;

theorem
  dim(p)-polytope-seq(p) = <*p*> by Def7;

theorem Th72:
  1-th-polytope(p,dim(p)) = p
proof
  reconsider egy = 1 as Nat;
A1: egy <= num-polytopes(p,dim(p)) by Th32;
  set s = dim(p)-polytope-seq(p);
A2: s = <*p*> by Def7;
  egy-th-polytope(p,dim(p)) = s.egy by A1,Def12
    .= p by A2,FINSEQ_1:57;
  hence thesis;
end;

theorem Th73:
  for c being Element of dim(p)-chain-space(p),
  x being Element of dim(p)-polytopes(p) st c = {p} holds c@x = 1.Z_2
proof
  let c be Element of dim(p)-chain-space(p),
  x be Element of dim(p)-polytopes(p) such that
A1: c = {p};
  dim(p)-polytopes(p) = {p} by Def5;
  hence thesis by A1,BSPACE:def 3;
end;

theorem Th74:
  for x being Element of (dim(p)-1)-polytopes(p),
  c being Element of dim(p)-polytopes(p) st c = p
  holds incidence-value(x,c) = 1.Z_2
proof
  let x be Element of (dim(p)-1)-polytopes(p),
  c be Element of dim(p)-polytopes(p) such that
A1: c = p;
  set f = [:(dim(p)-1)-polytopes(p),{p}:] --> 1.Z_2;
A2: eta(p,dim(p)) = f by Def6;
A3: dom f = [:(dim(p)-1)-polytopes(p),{p}:] by FUNCOP_1:19;
  c in {p} by A1,TARSKI:def 1;
  then [x,c] in dom f by A3,ZFMISC_1:106;
  then f.(x,c) in rng f by FUNCT_1:12;
  then f.(x,c) in {1.Z_2} by FUNCOP_1:14;
  then f.(x,c) = 1.Z_2 by TARSKI:def 1;
  hence thesis by A2,Def13;
end;

theorem Th75:
  for x being Element of (dim(p)-1)-polytopes(p),
  c being Element of dim(p)-chain-space(p) st c = {p}
  holds incidence-sequence(x,c) = <*1.Z_2*>
proof
  let x be Element of (dim(p)-1)-polytopes(p),
  c be Element of dim(p)-chain-space(p) such that
A1: c = {p};
  set iseq = incidence-sequence(x,c);
  num-polytopes(p,dim(p))= 1 by Th32;
  then
A2: len iseq = 1 by Def16;
  iseq.1 = 1.Z_2
  proof
    reconsider egy = 1 as Nat;
A3: egy <= num-polytopes(p,dim(p)) by Th32;
    set z = egy-th-polytope(p,dim(p));
A4: iseq.egy = (c@z)*(incidence-value(x,z)) by A3,Def16;
A5: c@z = 1.Z_2 by A1,Th73;
    incidence-value(x,z) = 1.Z_2 by Th72,Th74; :: !!!
    hence thesis by A4,A5,VECTSP_1:def 16;
  end;
  hence thesis by A2,FINSEQ_1:57;
end;

theorem Th76:
  for x being Element of (dim(p)-1)-polytopes(p),
  c being Element of dim(p)-chain-space(p) st c = {p}
  holds Sum incidence-sequence(x,c) = 1.Z_2
proof
  let x be Element of (dim(p)-1)-polytopes(p),
  c be Element of dim(p)-chain-space(p) such that
A1: c = {p};
  incidence-sequence(x,c) = <*1.Z_2*> by A1,Th75;
  hence thesis by FINSOP_1:12;
end;

:: The boundary operation applied to the unique non-zero vector of the
:: dim(p)-chain space gives the "top" vector of the (dim(p)-1)-chain
:: space.  In other words, every (dim(p)-1)-polytope is incidence to
:: the whole polyhedron.

theorem Th77:
  (dim(p)-boundary(p)).{p} = (dim(p)-1)-polytopes(p)
proof
  set T = dim(p)-boundary(p);
  set X = (dim(p)-1)-polytopes(p);
  reconsider c = {p} as Element of dim(p)-chain-space(p) by Th65;
  reconsider d = X as Element of (dim(p)-1)-chain-space(p) by ZFMISC_1:def 1;
  reconsider Tc = T.c as Element of (dim(p)-1)-chain-space(p);
  for x being Element of X holds x in Tc iff x in d
  proof
    let x be Element of X;
    thus x in Tc implies x in d;
    thus x in d implies x in Tc
    proof
      assume x in d;
      Sum incidence-sequence(x,c) = 1.Z_2 by Th76;
      then x in Boundary(c) by Def17;
      hence thesis by Def18;
    end;
  end;
  hence thesis by SUBSET_1:8;
end;

theorem Th78:
  dim(p)-boundary(p) is one-to-one
proof
  set T = dim(p)-boundary(p);
  set U = (dim(p) - 1)-chain-space(p);
  set V = dim(p)-chain-space(p);
  set B = {p};
  assume not T is one-to-one;
  then consider x1,x2 being set such that
A1: x1 in dom T and
A2: x2 in dom T and
A3: T.x1 = T.x2 and
A4: x1 <> x2 by FUNCT_1:def 8;
  reconsider x1 as Element of V by A1;
  reconsider x2 as Element of V by A2;
  per cases by A4,Th70;
  suppose
A5: x1 = 0.V;
    then
A6: x2 = B by A4,Th69;
    T.x1 = 0.U by A5,RANKNULL:9;
    hence thesis by A3,A6,Th77;
  end;
  suppose
A7: x2 = 0.V;
    then
A8: x1 = B by A4,Th69;
    T.x2 = 0.U by A7,RANKNULL:9;
    hence thesis by A3,A8,Th77;
  end;
end;

theorem Th79:
  dim ((dim(p)-1)-bounding-chain-space(p)) = 1
proof
  set d = dim(p);
  set T = d-boundary(p);
  set U = d-chain-space(p);
  set V = (d-1)-bounding-chain-space(p);
A1: T is one-to-one by Th78;
A2: card [#]V = card (T .: [#]U) by RANKNULL:def 2
    .= card (rng T) by FUNCT_2:45;
  card (dom T) = card [#]U by RANKNULL:7
    .= 2 by Th64;
  then card [#]V = 2 by A1,A2,Th2;
  hence thesis by RANKNULL:6;
end;

theorem Th80:
  p is simply-connected implies dim ((dim(p)-1)-circuit-space(p)) = 1
proof
  assume
A1: p is simply-connected;
  set d = dim(p);
  set U = (d-1)-bounding-chain-space(p);
  set V = (d-1)-circuit-space(p);
  U = V by A1,Th51;
  hence thesis by Th79;
end;

theorem Th81:
  1 < n & n < dim(p) + 2 implies (alternating-f-vector(p)).n
  = (alternating-proper-f-vector(p)).(n-1)
proof
  assume
A1: 1 < n;
  assume
A2: n < dim(p) + 2;
  set acs = alternating-f-vector(p);
  set apcs = alternating-proper-f-vector(p);
A3: acs.n = ((-1)|^n)*num-polytopes(p,n-2) by A1,A2,Def26;
  0 <= n - 1
  proof
    1 - 1 = 0;
    hence thesis by A1,XREAL_1:15;
  end;
  then reconsider m = n - 1 as Element of NAT by INT_1:16;
  reconsider m as Nat;
A4: 1 <= m
  proof
A5: 2 <= n
    proof
      1 + 1 = 2;
      hence thesis by A1,INT_1:20;
    end;
    2 - 1 = 1;
    hence thesis by A5,XREAL_1:15;
  end;
  m <= dim(p)
  proof
    n < (dim(p) + 1) + 1 by A2;
    then n <= dim(p) + 1 by NAT_1:13;
    then n - 1 <= (dim(p) + 1) - 1 by XREAL_1:11;
    hence thesis;
  end;
  then apcs.m = ((-1)|^(m+1))*num-polytopes(p,m-1) by A4,Def27;
  hence thesis by A3;
end;

theorem Th82:
  alternating-f-vector(p)
  = <*-1*> ^ alternating-proper-f-vector(p) ^ <*(-1)|^(dim(p))*>
proof
  set acs = alternating-f-vector(p);
  set apcs = alternating-proper-f-vector(p);
  set r = <*-1*> ^ apcs ^ <*(-1)|^(dim(p))*>;
  set n = dim(p);
A1: len acs = n + 2 by Def26;
A2: len apcs = n by Def27;
A3: len r = (len <*-1*>) + (len apcs) + (len <*(-1)|^(dim(p))*>) by Th16;
A4: len <*-1*> = 1 by FINSEQ_1:56;
A5: len <*(-1)|^(dim(p))*> = 1 by FINSEQ_1:56;
  for k being Nat st 1 <= k & k <= len acs holds acs.k = r.k
  proof
    let k be Nat such that
A6: 1 <= k and
A7: k <= len acs;
    per cases by A1,A6,A7,XXREAL_0:1;
    suppose
A8:   k = 1;
A9:   1 <= n + 2 by Th12;
      reconsider o = 1 as Nat;
      o - 2 = -1;
      then
A10:  acs.o = ((-1)|^o)*num-polytopes(p,-1) by A9,Def26;
A11:  (-1)|^1 = -1 by Th4,Th9;
      num-polytopes(p,-1) = 1 by Th31;
      hence thesis by A8,A10,A11,Th17;
    end;
    suppose
A12:  k = n + 2;
      then 1 <= k by Th12;
      then
A13:  acs.k = ((-1)|^k)*num-polytopes(p,k-2) by A12,Def26;
A14:  r.k = (-1)|^k
      proof
        k = (len <*-1*> + len (apcs) + 1)
        proof
          len <*-1*> = 1 by FINSEQ_1:56;
          hence thesis by A2,A12;
        end;
        then r.k = (-1)|^(dim(p)) by Th18
          .= (-1)|^k by A12,Th14;
        hence thesis;
      end;
      num-polytopes(p,k-2) = 1 by A12,Th32;
      hence thesis by A13,A14;
    end;
    suppose
A15:  1 < k & k < n + 2;
      set m = k - 1;
A16:  len <*-1*> = 1 by FINSEQ_1:56;
      k <= len (<*-1*> ^ apcs)
      proof
A17:    len (<*-1*> ^ apcs) = (len <*-1*> + len apcs) by FINSEQ_1:35
          .= n + 1 by A2,FINSEQ_1:56;
A18:    k + 1 <= n + 2 by A15,INT_1:20;
A19:    (k + 1) - 1 = k;
        (n + 2) - 1 = n + 1;
        hence thesis by A17,A18,A19,XREAL_1:11;
      end;
      then r.k = apcs.m by A15,A16,Th19;
      hence thesis by A15,Th81;
    end;
  end;
  hence thesis by A1,A2,A3,A4,A5,FINSEQ_1:18;
end;

begin :: A Generalized Euler Relation and its 1-, 2-, and 3-dimensional Special Cases

theorem Th83:
  dim(p) is odd implies Sum (alternating-f-vector(p))
  = Sum (alternating-proper-f-vector(p)) - 2
proof
  assume
A1: dim(p) is odd;
  set acs = alternating-f-vector(p);
  set apcs = alternating-proper-f-vector(p);
A2: acs = <*-1*> ^ apcs ^ <*(-1)|^(dim(p))*> by Th82;
A3: (-1)|^(dim(p)) = -1 by A1,Th9;
  reconsider minusone = -1 as Integer;
  reconsider lastterm = (-1)|^(dim(p)) as Integer;
  Sum acs = (Sum <*minusone*>) + (Sum apcs) + (Sum <*lastterm*>) by A2,Th22
    .= (Sum <*minusone*>) + (Sum apcs) + (-1) by A3,RVSUM_1:103
    .= (-1) + (Sum apcs) + (-1) by RVSUM_1:103
    .= (Sum apcs) - 2;
  hence thesis;
end;

theorem Th84:
  dim(p) is even implies Sum (alternating-f-vector(p))
  = Sum (alternating-proper-f-vector(p))
proof
  assume
A1: dim(p) is even;
  set acs = alternating-f-vector(p);
  set apcs = alternating-proper-f-vector(p);
A2: acs = <*-1*> ^ apcs ^ <*(-1)|^(dim(p))*> by Th82;
A3: (-1)|^(dim(p)) = 1 by A1,Th8;
  reconsider minusone = -1 as Integer;
  reconsider lastterm = (-1)|^(dim(p)) as Integer;
  Sum acs = (Sum <*minusone*>) + (Sum apcs) + (Sum <*lastterm*>) by A2,Th22
    .= (Sum <*minusone*>) + (Sum apcs) + 1 by A3,RVSUM_1:103
    .= (-1) + (Sum apcs) + 1 by RVSUM_1:103
    .= Sum apcs;
  hence thesis;
end;

theorem Th85:
  dim(p) = 1 implies Sum alternating-proper-f-vector(p) = num-polytopes(p,0)
proof
  assume
A1: dim(p) = 1;
  set apcs = alternating-proper-f-vector(p);
A2: len apcs = 1 by A1,Def27;
  reconsider egy = 1 as Nat;
A3: apcs.egy = (-1)|^(egy+1)*num-polytopes(p,egy-1) by A1,Def27;
  (-1)|^(egy+1) = 1 by Th5,Th8;
  then apcs = <*num-polytopes(p,0)*> by A2,A3,FINSEQ_1:57;
  hence thesis by RVSUM_1:103;
end;

theorem Th86:
  dim(p) = 2 implies Sum alternating-proper-f-vector(p)
  = num-polytopes(p,0) - num-polytopes(p,1)
proof
  assume
A1: dim(p) = 2;
  set apcs = alternating-proper-f-vector(p);
A2: len apcs = 2 by A1,Def27;
  reconsider o = 1 as Nat;
  reconsider t = 2 as Nat;
A3: apcs.o = ((-1)|^(o+1))*num-polytopes(p,o-1) by A1,Def27;
A4: apcs.t = ((-1)|^(t+1))*num-polytopes(p,t-1) by A1,Def27;
A5: (-1)|^(o+1) = 1 by Th5,Th8;
A6: (-1)|^(t+1) = -1 by Th6,Th9;
  reconsider apcso = apcs.o as Integer;
  reconsider apcst = apcs.t as Integer;
A7: apcs = <*apcso,apcst*> by A2,FINSEQ_1:61;
  Sum apcs = apcso + apcst by A7,RVSUM_1:107
    .= num-polytopes(p,0) - num-polytopes(p,1) by A3,A4,A5,A6;
  hence thesis;
end;

theorem Th87:
  dim(p) = 3 implies Sum alternating-proper-f-vector(p)
  = num-polytopes(p,0) - num-polytopes(p,1) + num-polytopes(p,2)
proof
  assume
A1: dim(p) = 3;
  set apcs = alternating-proper-f-vector(p);
A2: len apcs = 3 by A1,Def27;
  reconsider o = 1 as Nat;
  reconsider tw = 2 as Nat;
  reconsider th = 3 as Nat;
  reconsider mo = -1 as Integer;
A3: (-1)|^(o+1) = 1 by Th5,Th8;
A4: (-1)|^(tw+1) = -1 by Th6,Th9;
A5: (-1)|^(th+1) = 1 by Th7,Th8;
A6: apcs.o = o*num-polytopes(p,o-1) by A1,A3,Def27;
A7: apcs.tw = mo*num-polytopes(p,tw-1) by A1,A4,Def27;
A8: apcs.th = o*num-polytopes(p,th-1) by A1,A5,Def27;
  reconsider apcson = apcs.o as Integer;
  reconsider apcstw = apcs.tw as Integer;
  reconsider apcsth = apcs.th as Integer;
A9: apcs = <*apcson,apcstw,apcsth*> by A2,FINSEQ_1:62;
  Sum apcs = apcson + apcstw + apcsth by A9,RVSUM_1:108
    .= num-polytopes(p,0)
  - num-polytopes(p,1) + num-polytopes(p,2) by A6,A7,A8;
  hence thesis;
end;

:: A trivial special case

theorem Th88:
  dim(p) = 0 implies p is eulerian
proof
  set d = dim(p);
  assume
A1: d = 0;
  set apcs = alternating-proper-f-vector(p);
  (-1)|^(d+1) = -1 by A1,NEWTON:10;
  then
A2: 1 + (-1)|^(d+1) = 0;
  len apcs = 0 by A1,Def27;
  then apcs = <*>INT;
  hence thesis by A2,Def29,GR_CY_1:22;
end;

theorem Th89:
  p is simply-connected implies p is eulerian
proof
  assume
A1: p is simply-connected;
  set apcs = alternating-proper-f-vector(p);
  per cases;
  suppose dim(p) = 0;
    hence thesis by Th88;
  end;
  suppose dim(p) > 0;
    then
A2: len apcs > 0 by Def27;

:: Split the alternating characteristic sequence into a sum of two
:: sequences, a and b
    deffunc A(Nat) = ((-1)|^($1+1))*(dim (($1-2)-bounding-chain-space(p)));
    deffunc B(Nat) = ((-1)|^($1+1))*(dim (($1-1)-circuit-space(p)));
    consider a being FinSequence such that
A3: len a = len apcs and
A4: for n being Nat st n in dom a holds a.n = A(n) from FINSEQ_1:sch 2;
    consider b being FinSequence such that
A5: len b = len apcs and
A6: for n being Nat st n in dom b holds b.n = B(n) from FINSEQ_1:sch 2;
    rng a c= INT & rng b c= INT
    proof
      thus rng a c= INT
      proof
        let y be set such that
A7:     y in rng a;
        consider x being set such that
A8:     x in dom a and
A9:     y = a.x by A7,FUNCT_1:def 5;
        reconsider x as Element of NAT by A8;
        a.x = ((-1)|^(x+1))*(dim ((x-2)-bounding-chain-space(p))) by A4,A8;
        hence thesis by A9;
      end;
      thus rng b c= INT
      proof
        let y be set such that
A10:    y in rng b;
        consider x being set such that
A11:    x in dom b and
A12:    y = b.x by A10,FUNCT_1:def 5;
        reconsider x as Element of NAT by A11;
        b.x = ((-1)|^(x+1))*(dim ((x-1)-circuit-space(p))) by A6,A11;
        hence thesis by A12;
      end;
    end;
    then reconsider a,b as FinSequence of INT by FINSEQ_1:def 4;
A13: for n being Nat st 1 <= n & n <= len apcs holds apcs.n = a.n + b.n
    proof
      let n be Nat such that
A14:  1 <= n and
A15:  n <= len apcs;
A16:  apcs.n = ((-1)|^(n+1))*(dim ((n-2)-bounding-chain-space(p)))
      + ((-1)|^(n+1))*(dim ((n-1)-circuit-space(p))) by A14,A15,Th52;
      reconsider n' = n as Element of NAT by ORDINAL1:def 13;
A17:  n' in dom b by A14,A15,FINSEQ_3:27,A5;
      n' in dom a by A14,A15,FINSEQ_3:27,A3;
      then a.n' = ((-1)|^(n'+1))*(dim ((n'-2)-bounding-chain-space(p))) by A4;
      hence thesis by A6,A16,A17;
    end;

:: Now we want to how that the alternating characterstic sequence is
:: a telescoping sum of the sequences a and b.  First, we establish
:: the necessary relation among the sequences a and b.
    for n being Nat st 1 <= n & n < len apcs holds b.n = -(a.(n+1))
    proof
      let n be Nat such that
A18:  1 <= n and
A19:  n < len apcs;
A20:  n in dom b by A18,A19,FINSEQ_3:27,A5;
      reconsider n as Element of NAT by ORDINAL1:def 13;
A21:  b.n = ((-1)|^(n+1))*(dim ((n-1)-circuit-space(p))) by A6,A20;
A22:  n + 1 <= len apcs by A19,INT_1:20;
      1 <= n + 1 by NAT_1:11;
      then n + 1 in dom a by A22,FINSEQ_3:27,A3;
      then a.(n+1) = A(n+1) by A4
        .= (((-1)|^(n+1))*((-1)|^1))*(dim ((n-1)-bounding-chain-space(p)))
      by NEWTON:13
        .= ((-1)|^(n+1))*(-1)*(dim ((n-1)-bounding-chain-space(p)))
      by NEWTON:10
        .= -((-1)|^(n+1))*(dim ((n-1)-bounding-chain-space(p)))
        .= -(b.n) by A1,A21,Th51;
      hence thesis;
    end;
    then
A23: Sum apcs = (a.1) + (b.(len apcs)) by A2,A3,A5,A13,Th15;
A24: a.1 = 1
    proof
      reconsider egy = 1 as Element of NAT;
      1 <= 0 qua Nat + 1;
      then egy <= len apcs by A2,NAT_1:13;
      then egy in dom a by FINSEQ_3:27,A3;
      then a.egy = ((-1)|^(1+1))*(dim ((egy-2)-bounding-chain-space(p))) by A4
        .= 1*(dim ((egy-2)-bounding-chain-space(p))) by Th5,Th8
        .= 1 by Th63;
      hence thesis;
    end;
    b.(len apcs) = (-1)|^(dim(p)+1)
    proof
      reconsider n = len apcs as Element of NAT;
A25:  n = dim(p) by Def27;
      0 qua Nat + 1 = 1;
      then 1 <= len apcs by A2,NAT_1:13;
      then n in dom b by FINSEQ_3:27,A5;
      then b.n = B(n) by A6
        .= ((-1)|^(n+1))*1 by A1,A25,Th80
        .= (-1)|^(n+1);
      hence thesis by Def27;
    end;
    hence thesis by A23,A24,Def29;
  end;
end;

:: Euler's Polyhedron Formula in One Dimension: simply-connected
:: 1-dimensional polyhedra are just line segments.

theorem
  p is simply-connected & dim(p) = 1 implies num-vertices(p) = 2
proof
  assume
A1: p is simply-connected;
  assume
A2: dim(p) = 1;
  set acs = alternating-f-vector(p);
  set apcs = alternating-proper-f-vector(p);
  p is eulerian by A1,Th89;
  then 0 = Sum acs by Def31
    .= Sum apcs - 2 by A2,Th4,Th83
    .= num-polytopes(p,0) - 2 by A2,Th85;
  hence thesis;
end;

:: Euler's Polyhedron Formula in Two Dimensions: polygons have exactly
:: as many vertices as edges.

theorem
  p is simply-connected & dim(p) = 2 implies num-vertices(p) = num-edges(p)
proof
  assume
A1: p is simply-connected;
  assume
A2: dim(p) = 2;
A3: p is eulerian by A1,Th89;
  set s = num-polytopes(p,0) - num-polytopes(p,1);
A4: s = Sum(alternating-proper-f-vector(p)) by A2,Th86;
  set c = alternating-f-vector(p);
  0 = Sum c by A3,Def31
    .= s by A2,A4,Th5,Th84;
  hence thesis;
end;

:: Euler's Polyhedron Formula in Three Dimensions: V - E + F = 2.

theorem
  p is simply-connected & dim(p) = 3
  implies num-vertices(p) - num-edges(p) + num-faces(p) = 2
proof
  assume
A1: p is simply-connected;
  assume
A2: dim(p) = 3;
A3: p is eulerian by A1,Th89;
  set s = num-polytopes(p,0) - num-polytopes(p,1) + num-polytopes(p,2);
A4: s = Sum(alternating-proper-f-vector(p)) by A2,Th87;
  set c = alternating-f-vector(p);
  0 = Sum c by A3,Def31
    .= s - 2 by A2,A4,Th6,Th83;
  hence thesis;
end;
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9 vocabularies FINSET_1, FUNCT_1, FUNCT_2, CARD_1, SUBSET_1, TARSKI, BOOLE,
10 RELAT_1, ORDINAL2, VECTSP_1, VECTSP_9, INT_1, RLVECT_1, GROUP_1, ARYTM_1,
11 FINSEQ_1, FINSEQ_2, QC_LANG1, RLSUB_1, BSPACE, RANKNULL, RLVECT_3,
12 MATRLIN, FINSEQ_4, POLYFORM, VECTSP10, PRALG_1, MATRIX_2, POWER,
13 FUNCOP_1, ARYTM, VALUED_0;
14 notations TARSKI, XBOOLE_0, ENUMSET1, ZFMISC_1, SUBSET_1, RELAT_1, FUNCT_1,
15 RELSET_1, PARTFUN1, FUNCT_2, BINOP_1, CARD_1, NUMBERS, FUNCOP_1,
16 FINSET_1, XCMPLX_0, XXREAL_0, NAT_1, INT_1, CARD_2,
17 VALUED_0, FINSEQ_1,
18 FINSEQ_2, POWER, RVSUM_1, NEWTON, ABIAN, STRUCT_0, RLVECT_1, GROUP_1,
19 VECTSP_1, VECTSP_4, VECTSP_5, VECTSP_7, FVSUM_1, GR_CY_1, MATRLIN,
20 VECTSP_9, RANKNULL, BSPACE;
21 constructors NAT_1, VECTSP_9, BINOP_1, REALSET1, FINSOP_1, XXREAL_0, FVSUM_1,
22 WELLORD2, BSPACE, REAL_1, BINOP_2, RANKNULL, VECTSP_7, VECTSP_5, NEWTON,
23 GR_CY_1, ABIAN, POWER, CARD_2, CARD_3;
24 registrations FRAENKEL, FINSET_1, XBOOLE_0, FUNCT_1, FUNCT_2, RELAT_1,
25 SUBSET_1, NAT_1, INT_1, VECTSP_1, STRUCT_0, FINSEQ_1, FINSEQ_2, CARD_1,
26 MATRLIN, BSPACE, ORDINAL1, NEWTON, RVSUM_1, FUNCOP_1, POLYNOM1, ABIAN,
27 XREAL_0, NUMBERS, JORDAN23, GOBRD13, XCMPLX_0, XXREAL_0, VALUED_0,
28 PARTFUN1;
29 requirements NUMERALS, BOOLE, ARITHM, SUBSET, REAL;
30 definitions XBOOLE_0, BINOP_1, STRUCT_0, TARSKI, FVSUM_1, FINSEQ_1, BSPACE,
31 RANKNULL, ALGSTR_0;
32 theorems XBOOLE_0, FUNCT_1, RELAT_1, XBOOLE_1, TARSKI, ZFMISC_1, FUNCT_2,
33 GROUP_1, RLVECT_1, VECTSP_1, FVSUM_1, FINSEQ_2, CARD_1, FINSEQ_1, NAT_1,
34 FINSOP_1, VECTSP_4, BSPACE, RANKNULL, VECTSP_9, ORDINAL1, NEWTON,
35 RVSUM_1, GR_CY_1, FUNCOP_1, XREAL_1, XXREAL_0, INT_1, JORDAN16, POWER,
36 FIB_NUM2, NUMBERS, CARD_2, PRE_CIRC, FINSEQ_3, SUBSET_1, MOD_2, MATRIX_3,
37 CALCUL_1, PARTFUN1, VALUED_0, RELSET_1;
38 schemes FUNCT_2, FINSEQ_1, FINSEQ_2;
40 begin
42 theorem Th1:
43 for X,c,d being set st (ex a,b being set st a <> b & X = {a,b}) & c in X &
44 d in X & c <> d holds X = {c,d}
45 proof
46 let X,c,d be set such that
47 A1: ex a,b being set st a <> b & X = {a,b} and
48 A2: c in X and
49 A3: d in X and
50 A4: c <> d;
51 consider a,b being set such that a <> b and
52 A5: X = {a,b} by A1;
53 A6: {c,d} c= X by A2,A3,ZFMISC_1:38;
54 X c= {c,d}
55 proof
56 A7: c = a or c = b by A2,A5,TARSKI:def 2;
57 A8: d = a or d = b by A3,A5,TARSKI:def 2;
58 let x be set such that
59 A9: x in X;
60 per cases by A5,A9,TARSKI:def 2;
61 suppose x = a;
62 hence thesis by A4,A7,A8,TARSKI:def 2;
63 end;
64 suppose x = b;
65 hence thesis by A4,A7,A8,TARSKI:def 2;
66 end;
67 end;
68 hence thesis by A6,XBOOLE_0:def 10;
69 end;
71 theorem Th2:
72 for f being Function st f is one-to-one holds card (dom f) = card (rng f)
73 proof
74 let f be Function such that
75 A1: f is one-to-one;
76 A2: dom f, f .: (dom f) are_equipotent by A1,CARD_1:60;
77 f .: (dom f) = rng f by RELAT_1:146;
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78 hence thesis by A2,CARD_1:21;
79 end;
81 begin :: Arithmetical Preliminaries
83 reserve n for Nat,
84 k for Integer;
86 theorem Th3:
87 1 <= k implies k is Nat
88 proof
89 assume 1 <= k;
90 then reconsider k as Element of NAT by INT_1:16;
91 k is Nat;
92 hence thesis;
93 end;
95 definition
96 let a be Integer, b be Nat;
97 redefine func a*b -> Element of INT;
98 coherence by INT_1:def 2;
99 end;

101 theorem Th4:
102 1 is odd
103 proof
104 1 = (2*(0 qua Nat) qua Nat)+ 1;
105 hence thesis;
106 end;
108 theorem Th5:
109 2 is even
110 proof
111 2 = 2*1;
112 hence thesis;
113 end;
115 theorem Th6:
116 3 is odd
117 proof
118 3 = 2*1 + 1;
119 hence thesis;
120 end;
122 theorem Th7:
123 4 is even
124 proof
125 4 = 2*2;
126 hence thesis;
127 end;
129 theorem Th8:
130 n is even implies (-1)|^n = 1
131 proof
132 assume
133 A1: n is even;
134 reconsider n as Element of NAT by ORDINAL1:def 13;
135 (-1)|^n = (-1) to_power n by POWER:46;
136 hence thesis by A1,FIB_NUM2:5;
137 end;
139 theorem Th9:
140 n is odd implies (-1)|^n = -1
141 proof
142 assume
143 A1: n is odd;
144 reconsider n as Element of NAT by ORDINAL1:def 13;
145 (-1)|^n = (-1) to_power n by POWER:46;
146 hence thesis by A1,FIB_NUM2:3;
147 end;
149 theorem Th10:
150 (-1) |^ n is Integer
151 proof
152 per cases;
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153 suppose n is even;
154 hence thesis by Th8;
155 end;
156 suppose n is odd;
157 hence thesis by Th9;
158 end;
159 end;
161 definition
162 let a be Integer, n be Nat;
163 redefine func a |^ n -> Element of INT;
164 coherence
165 proof
166 consider b being Element of NAT such that
167 A1: a = b or a = -b by INT_1:8;
168 per cases by A1;
169 suppose a = b;
170 then reconsider a as Element of NAT;
171 reconsider s = a |^ n as Element of NAT by ORDINAL1:def 13;
172 s in NAT;
173 hence thesis by NUMBERS:17;
174 end;
175 suppose
176 A2: a = -b;
177 A3: -b = (-1)*b;
178 reconsider bn = b |^ n as Element of NAT by ORDINAL1:def 13;
179 (-1) |^n is Integer by Th10;
180 then reconsider l = (-1) |^ n as Element of INT by INT_1:def 2;
181 a |^ n = l*bn by A2,A3,NEWTON:12;
182 hence thesis;
183 end;
184 end;
185 end;
187 Lm1: for x being Element of NAT st 0 < x holds 0 qua Nat+1 <= x by NAT_1:13;
189 theorem Th11:
190 for p,q,r being FinSequence holds len (p ^ q) <= len (p ^ (q ^ r))
191 proof
192 let p,q,r be FinSequence;
193 len ((p ^ q) ^ r) = len (p ^ (q ^ r)) by FINSEQ_1:45;
194 hence thesis by CALCUL_1:6;
195 end;
197 theorem Th12:
198 1 < n + 2
199 proof
200 0 < n + 1 implies 1 < n + 2
201 proof
202 assume 0 < n + 1;
203 0 qua Nat + 1 = 1;
204 hence thesis by XREAL_1:10;
205 end;
206 hence thesis;
207 end;
209 theorem Th13:
210 (-1)|^2 = 1
211 proof
212 (-1)|^2 = (-1)|^(1+1)
213 .= ((-1)|^1)*((-1)|^1) by NEWTON:13
214 .= ((-1)|^1)*(-1) by NEWTON:10
215 .= (-1)*(-1) by NEWTON:10;
216 hence thesis;
217 end;
219 theorem Th14:
220 for n being Nat holds (-1)|^n = (-1)|^(n+2)
221 proof
222 let n be Nat;
223 (-1)|^(n+2) = ((-1)|^n)*((-1)|^2) by NEWTON:13
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224 .= (-1)|^n by Th13;
225 hence thesis;
226 end;
228 begin :: Preliminaries on Finite Sequences
230 registration
231 let f be FinSequence of INT, k be Nat;
232 cluster f.k -> integer;
233 coherence
234 proof
235 per cases;
236 suppose k in dom f;
237 then f.k = f/.k by PARTFUN1:def 8;
238 hence thesis;
239 end;
240 suppose not k in dom f;
241 hence thesis by FUNCT_1:def 4;
242 end;
243 end;
244 end;
246 :: A theorem on telescoping sequences of integers.
248 theorem Th15:
249 for a,b,s being FinSequence of INT st len s > 0 & len a = len s &
250 len b = len s & (for n being Nat st 1 <= n & n <= len s
251 holds s.n = a.n + b.n) & (for k being Nat st 1 <= k & k < len s
252 holds b.k = -(a.(k+1))) holds Sum s = (a.1) + (b.(len s))
253 proof
254 let a,b,s be FinSequence of INT such that
255 A1: len s > 0 and
256 A2: len a = len s and
257 A3: len b = len s and
258 A4: for n being Nat st 1 <= n & n <= len s holds s.n = a.n + b.n and
259 A5: for k being Nat st 1 <= k & k < len s holds b.k = -(a.(k+1));
260 defpred P[FinSequence of INT] means len $1 > 0 implies
261 for a,b being FinSequence of INT st len a = len $1 & len b = len $1 &
262 (for n being Nat st 1 <= n & n <= len $1 holds $1.n = a.n + b.n) &
263 (for k being Nat st 1 <= k & k < len $1 holds b.k = -(a.(k+1)))
264 holds Sum $1 = a.1 + b.(len $1);
265 A6: P[<*>INT];
266 A7: for p being FinSequence of INT, x being Element of INT st P[p]
267 holds P[p^<*x*>]
268 proof
269 let p be FinSequence of INT, x be Element of INT such that
270 A8: P[p];
271 set t = p ^ <*x*>;
272 assume len t > 0; :: this is outright provable, of course
273 let a,b be FinSequence of INT such that
274 A9: len a = len t and
275 A10: len b = len t and
276 A11: for n being Nat st 1 <= n & n <= len t holds t.n = a.n + b.n and
277 A12: for k being Nat st 1 <= k & k < len t holds b.k = -(a.(k+1));
278 A13: Sum t = (Sum p) + x by GR_CY_1:20;
279 per cases;
280 suppose
281 A14: len p = 0;
282 then p = {};
283 then
284 A15: Sum p = 0 by GR_CY_1:22;
285 A16: t = <*x*>
286 proof
287 p = {} by A14;
288 hence thesis by FINSEQ_1:47;
289 end;
290 then
291 A17: len t = 1 by FINSEQ_1:56;
292 reconsider egy = 1 as Nat;
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293 egy <= len t by A16,FINSEQ_1:56;
294 then t.egy = a.egy + b.egy by A11;
295 hence thesis by A13,A15,A16,A17,FINSEQ_1:57;
296 end;
297 suppose
298 A18: len p > 0;
299 set m = len p;
300 set a’ = a|m;
301 set b’ = b|m;
302 A19: m <= len a & m <= len b by A9,A10,CALCUL_1:6;
303 then
304 A20: len a’ = len p by FINSEQ_1:80;
305 A21: len b’ = len p by A19,FINSEQ_1:80;
306 A22: for n being Nat st 1 <= n & n <= len p holds p.n = a’.n + b’.n
307 proof
308 let n be Nat such that
309 A23: 1 <= n and
310 A24: n <= len p;
311 len p <= len t by CALCUL_1:6;
312 then
313 A25: n <= len t by A24,XXREAL_0:2;
314 dom p = Seg len p by FINSEQ_1:def 3;
315 then
316 A26: n in dom p by A23,A24,FINSEQ_1:3;
317 reconsider n as Element of NAT by ORDINAL1:def 13;
318 p.n = t.n by A26,FINSEQ_1:def 7
319 .= a.n + b.n by A11,A23,A25
320 .= a’.n + b.n by A24,FINSEQ_3:121
321 .= a’.n + b’.n by A24,FINSEQ_3:121;
322 hence thesis;
323 end;
324 for n being Nat st 1 <= n & n < len p holds b’.n = -(a’.(n+1))
325 proof
326 let n be Nat such that
327 A27: 1 <= n and
328 A28: n < len p;
329 reconsider n as Element of NAT by ORDINAL1:def 13;
330 A29: b’.n = b.n by A28,FINSEQ_3:121;
331 A30: n + 1 <= len p by A28,INT_1:20;
332 len p <= len t by CALCUL_1:6;
333 then
334 A31: n < len t by A28,XXREAL_0:2;
335 a’.(n+1) = a.(n+1) by A30,FINSEQ_3:121;
336 hence thesis by A12,A27,A29,A31;
337 end;
338 then
339 A32: Sum p = a’.1 + b’.(len p) by A8,A18,A20,A21,A22;
340 A33: a’.1 = a.1
341 proof
342 reconsider egy = 1 as Element of NAT;
343 0 qua Nat + 1 = 1;
344 then egy <= len p by A18,INT_1:20;
345 hence thesis by FINSEQ_3:121;
346 end;
347 x = -(b’.(len p)) + b.(len t)
348 proof
349 A34: len t = (len p) + 1
350 proof
351 len <*x*> = 1 by FINSEQ_1:56;
352 hence thesis by FINSEQ_1:35;
353 end;
354 A35: 1 <= len t
355 proof
356 0 qua Nat + 1 = 1;
357 hence thesis by A34,XREAL_1:8;
358 end;
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359 A36: a.(len t) = -(b’.(len p))
360 proof
361 A37: len p < len t
362 proof
363 0 qua Nat + len p = len p;
364 hence thesis by A34,XREAL_1:8;
365 end;
366 1 <= len p by A18,Lm1;
367 then
368 A38: b.(len p) = -(a.(len p + 1)) by A12,A37;
369 b.(len p) = b’.(len p) by FINSEQ_3:121;
370 hence thesis by A34,A38;
371 end;
372 x = t.(len p + 1) by FINSEQ_1:59
373 .= -(b’.(len p)) + b.(len t) by A11,A34,A35,A36;
374 hence thesis;
375 end;
376 hence thesis by A13,A32,A33;
377 end;
378 end;
379 for p being FinSequence of INT holds P[p] from FINSEQ_2:sch 2(A6,A7);
380 hence thesis by A1,A2,A3,A4,A5;
381 end;
383 theorem Th16:
384 for p,q,r being FinSequence holds
385 len (p ^ q ^ r) = (len p) + (len q) + (len r)
386 proof
387 let p,q,r be FinSequence;
388 len (p ^ q ^ r) = (len (p ^ q)) + (len r) by FINSEQ_1:35
389 .= ((len p) + (len q)) + (len r) by FINSEQ_1:35;
390 hence thesis;
391 end;
393 theorem Th17:
394 for x being set, p,q being FinSequence holds (<*x*> ^ p ^ q).1 = x
395 proof
396 let x be set, p,q be FinSequence;
397 <*x*> ^ p ^ q = <*x*> ^ (p ^ q) by FINSEQ_1:45;
398 hence thesis by FINSEQ_1:58;
399 end;
401 theorem Th18:
402 for x being set, p,q being FinSequence
403 holds (p ^ q ^ <*x*>).((len p) + (len q) + 1) = x
404 proof
405 let x be set, p,q be FinSequence;
406 set s = p ^ q;
407 (s ^ <*x*>).((len s) + 1) = x by FINSEQ_1:59;
408 hence thesis by FINSEQ_1:35;
409 end;
411 theorem Th19:
412 for p,q,r being FinSequence, k being Nat st len p < k & k <= len (p ^ q)
413 holds (p ^ q ^ r).k = q.(k - (len p))
414 proof
415 let p,q,r be FinSequence, k be Nat such that
416 A1: len p < k and
417 A2: k <= len (p ^ q);
418 len (p ^ q) <= len (p ^ (q ^ r)) by Th11;
419 then k <= len (p ^ (q ^ r)) by A2,XXREAL_0:2;
420 then
421 A3: (p ^ (q ^ r)).k = (q ^ r).(k - (len p)) by A1,FINSEQ_1:37;
422 set n = k - (len p);
423 (len p) - (len p) = 0;
424 then
425 A4: 0 < n by A1,XREAL_1:11;
426 0 qua Nat + 1 = 1;
427 then
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428 A5: 1 <= n by A4,INT_1:20;
429 then reconsider n as Nat by Th3;
430 A6: k <= (len p) + (len q) by A2,FINSEQ_1:35;
431 n <= len q
432 proof
433 ((len p) + (len q)) - (len p) = len q;
434 hence thesis by A6,XREAL_1:11;
435 end;
436 then n in Seg (len q) by A5,FINSEQ_1:3;
437 then
438 A7: n in dom q by FINSEQ_1:def 3;
439 reconsider n as Element of NAT by ORDINAL1:def 13;
440 (q ^ r).n = q.n by A7,FINSEQ_1:def 7;
441 hence thesis by A3,FINSEQ_1:45;
442 end;
444 definition
445 let a be Integer;
446 redefine func <*a*> -> FinSequence of INT;
447 coherence
448 proof
449 set s = <*a*>;
450 A1: rng s = {a} by FINSEQ_1:55;
451 a in INT by INT_1:def 2;
452 then {a} c= INT by ZFMISC_1:37;
453 hence thesis by A1,FINSEQ_1:def 4;
454 end;
455 end;
457 definition
458 let a,b be Integer;
459 redefine func <*a,b*> -> FinSequence of INT;
460 coherence
461 proof
462 set s = <*a,b*>;
463 A1: rng s = {a,b} by FINSEQ_2:147;
464 {a,b} c= INT
465 proof
466 a in INT & b in INT by INT_1:def 2;
467 hence thesis by ZFMISC_1:38;
468 end;
469 hence thesis by A1,FINSEQ_1:def 4;
470 end;
471 end;
473 definition
474 let a,b,c be Integer;
475 redefine func <*a,b,c*> -> FinSequence of INT;
476 coherence
477 proof
478 set s = <*a,b,c*>;
479 A1: rng s = {a,b,c} by FINSEQ_2:148;
480 {a,b,c} c= INT
481 proof
482 A2: a in INT by INT_1:def 2;
483 A3: b in INT by INT_1:def 2;
484 c in INT by INT_1:def 2;
485 hence thesis by A2,A3,JORDAN16:2;
486 end;
487 hence thesis by A1,FINSEQ_1:def 4;
488 end;
489 end;
491 definition
492 let p,q be FinSequence of INT;
493 redefine func p ^ q -> FinSequence of INT;
494 coherence by FINSEQ_1:96;
495 end;
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497 theorem Th20:
498 for p,q being FinSequence of INT holds Sum (p ^ q) = (Sum p) + (Sum q)
499 proof
500 let p,q be FinSequence of INT;
501 A1: rng p c= REAL by NUMBERS:15,XBOOLE_1:1;
502 rng q c= REAL by NUMBERS:15,XBOOLE_1:1;
503 then reconsider p,q as real-valued FinSequence by A1,VALUED_0:def 3;
504 Sum (p ^ q) = (Sum p) + (Sum q) by RVSUM_1:105;
505 hence thesis;
506 end;
508 theorem Th21:
509 for k being Integer, p being FinSequence of INT
510 holds Sum (<*k*> ^ p) = k + (Sum p)
511 proof
512 let k be Integer, p be FinSequence of INT;
513 reconsider k as Element of INT by INT_1:def 2;
514 Sum (<*k*> ^ p) = (Sum p) + (Sum <*k*>) by Th20
515 .= Sum (p ^ <*k*>) by Th20
516 .= k + (Sum p) by GR_CY_1:20;
517 hence thesis;
518 end;
520 theorem Th22:
521 for p,q,r being FinSequence of INT
522 holds Sum (p ^ q ^ r) = (Sum p) + (Sum q) + (Sum r)
523 proof
524 let p,q,r be FinSequence of INT;
525 Sum (p ^ q ^ r) = (Sum (p ^ q)) + (Sum r) by Th20
526 .= ((Sum p) + (Sum q)) + Sum r by Th20;
527 hence thesis;
528 end;
530 theorem
531 for a being Element of Z_2 holds Sum <*a*> = a by FINSOP_1:12;
533 begin :: Polyhedra and Incidence Matrices
535 :: An incidence matrix is a function that says of any two objects
536 :: (contained in some set) whether they are incidence to each other.
538 definition
539 let X,Y be set;
540 mode incidence-matrix of X,Y is Element of Funcs([:X,Y:],{0.Z_2,1.Z_2});
541 end;
543 theorem Th24:
544 for X,Y being set holds [:X,Y:] --> 1.Z_2 is incidence-matrix of X,Y
545 proof
546 let X,Y be set;
547 set f = [:X,Y:] --> 1.Z_2;
548 A1: dom f = [:X,Y:] by FUNCOP_1:19;
549 A2: rng f c= {1.Z_2} by FUNCOP_1:19;
550 {1.Z_2} c= {0.Z_2,1.Z_2} by ZFMISC_1:12;
551 then rng f c= {0.Z_2,1.Z_2} by A2,XBOOLE_1:1;
552 hence thesis by A1,FUNCT_2:def 2;
553 end;
555 :: A polyhedron (one might call it an abstract polyhedron) consists of
556 :: two pieces of data: a sequence of ordered sets, representing the
557 :: polytope sets (they are ordered for convenience’s sake) and a
558 :: sequence of incidence matrices, which lays out the incidence
559 :: relation between the (k-1)-polytopes and the k-polytopes.
561 definition
562 struct PolyhedronStr(# PolytopsF ->FinSequence-yielding FinSequence,
563 IncidenceF ->Function-yielding FinSequence #);
564 end;
566 :: The following properties, ‘polyhedron_1’, ‘polyhedron_2’, and
567 :: ‘polyhedron_3’ are admittedly a bit contrived. However, they ensure
568 :: that a PolyhedronStr is a polyhedron: that there is one more polytope set
569 :: than incidence matrix, that the incidience matrices are incidence matrices
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570 :: of the right sets, and that each term of the polytope sequence is an
571 :: enumeration of the respective polytope set.
573 definition
574 let p be PolyhedronStr;
575 attr p is polyhedron_1 means
576 :Def1:
577 len the IncidenceF of p = len(the PolytopsF of p) - 1;
578 attr p is polyhedron_2 means
579 :Def2:
580 for n being Nat
581 st 1 <= n & n < len the PolytopsF of p holds (the IncidenceF of p).n
582 is incidence-matrix of rng ((the PolytopsF of p).n),
583 rng ((the PolytopsF of p).(n+1));
584 attr p is polyhedron_3 means
585 :Def3:
586 for n being Nat
587 st 1 <= n & n <= len the PolytopsF of p
588 holds (the PolytopsF of p).n is non empty &
589 (the PolytopsF of p).n is one-to-one;
590 end;
592 registration
593 cluster polyhedron_1 polyhedron_2 polyhedron_3 PolyhedronStr;
594 existence
595 proof
596 reconsider F = <*<*{}*>*> as FinSequence-yielding FinSequence;
597 reconsider I = <*>{} as Function-yielding FinSequence;
598 take p = PolyhedronStr(#F,I#);
599 A1: len F = 1 by FINSEQ_1:56;
600 len I = 1-1;
601 hence p is polyhedron_1 by A1,Def1;
602 for n being Nat st 1 <= n & n < 1
603 holds I.n is incidence-matrix of rng (F.n),rng (F.(n+1));
604 hence p is polyhedron_2 by A1,Def2;
605 let n be Nat such that
606 A2: 1 <= n and
607 A3: n <= len the PolytopsF of p;
608 n = 1 by A1,A2,A3,XXREAL_0:1;
609 hence thesis by FINSEQ_1:def 8;
610 end;
611 end;
613 definition
614 mode polyhedron is polyhedron_1 polyhedron_2 polyhedron_3 PolyhedronStr;
615 end;
617 reserve p for polyhedron,
618 k for Integer,
619 n for Nat;
621 :: The dimension dim(p) of a polyhedron p is just the number of
622 :: polytope sets that it has.
624 definition
625 let p be polyhedron;
626 func dim(p) -> Element of NAT equals
628 len the PolytopsF of p;
629 coherence;
630 end;
632 :: For integers k such that 0 <= k <= dim(p), the set of k-polytopes
633 :: is data already given by the polyhedron. For k = dim(p), the set
634 :: is the singleton {p}, which seems clear enough. For k = -1, it is
635 :: convenient to define the set of k-polytopes to be {{}}. Doing this
636 :: ensures that, if p is simply connected, then any two vertices are
637 :: connected by a system of edges.
638 ::
639 :: For k < -1 and k > dim(p), the set of k-polytopes of p is empty.
641 definition
642 let p be polyhedron, k be Integer;
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643 func k-polytopes(p) -> finite set means
644 :Def5:
645 (k < -1 implies it = {}) &
646 (k = -1 implies it = {{}}) & (-1 < k & k < dim(p) implies
647 it = rng ((the PolytopsF of p).(k+1))) & (k = dim(p) implies it = {p}) &
648 (k > dim(p) implies it = {});
649 existence
650 proof
651 set F = the PolytopsF of p;
652 per cases by XXREAL_0:1;
653 suppose
654 A1: k < -1;
655 take {};
656 thus thesis by A1;
657 end;
658 suppose
659 A2: k = -1;
660 take {{}};
661 thus thesis by A2;
662 end;
663 suppose
664 A3: -1 < k & k < dim(p);
665 -1 + 1 = 0;
666 then 0 <= k by A3,INT_1:20;
667 then reconsider k as Element of NAT by INT_1:16;
668 set n = k + 1;
669 reconsider Fn = F.n as FinSequence;
670 take rng Fn;
671 thus thesis by A3;
672 end;
673 suppose
674 A4: k = dim(p);
675 take {p};
676 thus thesis by A4;
677 end;
678 suppose
679 A5: k > dim(p);
680 take {};
681 thus thesis by A5;
682 end;
683 end;
684 uniqueness
685 proof
686 set F = the PolytopsF of p;
687 let X,Y be finite set such that
688 A6: k < -1 implies X = {} and
689 A7: k = -1 implies X = {{}} and
690 A8: (-1 < k & k < dim(p)) implies X = rng (F.(k+1)) and
691 A9: k = dim(p) implies X = {p} and
692 A10: k > dim(p) implies X = {} and
693 A11: k < -1 implies Y = {} and
694 A12: k = -1 implies Y = {{}} and
695 A13: (-1 < k & k < dim(p)) implies Y = rng (F.(k+1)) and
696 A14: k = dim(p) implies Y = {p} and
697 A15: k > dim(p) implies Y = {};
698 per cases by XXREAL_0:1;
699 suppose k < -1;
700 hence thesis by A6,A11;
701 end;
702 suppose k = -1;
703 hence thesis by A7,A12;
704 end;
705 suppose -1 < k & k < dim(p);
706 hence thesis by A8,A13;
707 end;
708 suppose k = dim(p);
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709 hence thesis by A9,A14;
710 end;
711 suppose k > dim(p);
712 hence thesis by A10,A15;
713 end;
714 end;
715 end;
717 theorem Th25:
718 -1 < k & k < dim(p) implies k + 1 is Nat & 1 <= k + 1 & k + 1 <= dim(p)
719 proof
720 assume
721 A1: -1 < k;
722 assume
723 A2: k < dim(p);
724 -1 + 1 = 0;
725 then
726 A3: 0 < k + 1 by A1,XREAL_1:8;
727 then reconsider n = k + 1 as Element of NAT by INT_1:16;
728 A4: n is Nat;
729 0 qua Nat + 1 = 1;
730 hence thesis by A2,A3,A4,INT_1:20;
731 end;
733 theorem Th26:
734 k-polytopes(p) is non empty iff (-1 <= k & k <= dim(p))
735 proof
736 set X = k-polytopes(p);
737 thus X is non empty implies -1 <= k & k <= dim(p) by Def5;
738 thus -1 <= k & k <= dim(p) implies k-polytopes(p) is non empty
739 proof
740 assume
741 A1: -1 <= k;
742 assume
743 A2: k <= dim(p);
744 per cases by A1,A2,XXREAL_0:1;
745 suppose k = -1;
746 hence thesis by Def5;
747 end;
748 suppose
749 A3: -1 < k & k < dim(p);
750 set F = the PolytopsF of p;
751 A4: k-polytopes(p) = rng (F.(k+1)) by A3,Def5;
752 set n = k + 1;
753 A5: 1 <= n by A3,Th25;
754 A6: n <= dim(p) by A3,Th25;
755 reconsider n as Element of NAT by A5,INT_1:16;
756 reconsider n as Nat;
757 F.n is non empty & F.n is one-to-one by A5,A6,Def3;
758 hence thesis by A4;
759 end;
760 suppose k = dim(p);
761 then k-polytopes(p) = {p} by Def5;
762 hence thesis;
763 end;
764 end;
765 end;
767 theorem Th27:
768 k < dim(p) implies k - 1 < dim(p) by XREAL_1:148,XXREAL_0:2;
770 :: As we defined the set of k-polytopes for all integers k, we define
771 :: the an incidence matrix, eta(p,k), for any integer k. Naturally,
772 :: for almost all k, this is the empty matrix (empty function). The
773 :: two cases in which we extend the data already given by the
774 :: polyhedron itself is for k = 0 and k = dim(p). For the latter, we
775 :: declare that the empty set (the unique -1-dimensional polytope) is
776 :: incident to all 0-polytopes. For the latter, we declare that every
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777 :: (dim(p)-1)-polytope is incidence to p, the unique dim(p)-polytope
778 :: of p.
780 definition
781 let p be polyhedron, k be Integer;
782 func eta(p,k) -> incidence-matrix of (k-1)-polytopes(p),k-polytopes(p) means
783 :Def6:
784 (k < 0 implies it = {}) &
785 (k = 0 implies it = [:{{}},0-polytopes(p):] --> 1.Z_2) &
786 (0 < k & k < dim(p) implies it = (the IncidenceF of p).k) &
787 (k = dim(p) implies it = [:(dim(p) - 1)-polytopes(p),{p}:] --> 1.Z_2) &
788 (k > dim(p) implies it = {});
789 existence
790 proof
791 per cases by XXREAL_0:1;
792 suppose
793 A1: k < 0;
794 (k-1)-polytopes(p) = {}
795 proof
796 k - 1 < 0 qua Nat - 1 by A1,XREAL_1:11;
797 hence thesis by Th26;
798 end;
799 then
800 A2: [:(k-1)-polytopes(p),k-polytopes(p):] = {} by ZFMISC_1:113;
801 set f = {};
802 reconsider f as Function;
803 reconsider f as
804 Function of [:(k-1)-polytopes(p),k-polytopes(p):],{0.Z_2,1.Z_2}
805 by A2,RELSET_1:25;
806 reconsider f as
807 Element of Funcs([:(k-1)-polytopes(p),k-polytopes(p):],{0.Z_2,1.Z_2})
808 by FUNCT_2:11;
809 take f;
810 thus thesis by A1;
811 end;
812 suppose
813 A3: k > dim(p);
814 then k-polytopes(p) = {} by Th26;
815 then
816 A4: [:(k-1)-polytopes(p),k-polytopes(p):] = {} by ZFMISC_1:113;
817 set f = {};
818 reconsider f as Function;
819 reconsider f as
820 Function of [:(k-1)-polytopes(p),k-polytopes(p):],{0.Z_2,1.Z_2}
821 by A4,RELSET_1:25;
822 reconsider f as
823 Element of Funcs([:(k-1)-polytopes(p),k-polytopes(p):],{0.Z_2,1.Z_2})
824 by FUNCT_2:11;
825 take f;
826 thus thesis by A3;
827 end;
828 suppose
829 A5: 0 < k & k < dim(p);
830 set F = the PolytopsF of p, I = the IncidenceF of p;
831 0 qua Nat + 1 = 1;
832 then
833 A6: 1 <= k by A5,INT_1:20;
834 1 - 1 = 0;
835 then -1 < k - 1 & k - 1 < dim(p) by A5,A6,Th27,XREAL_1:11;
836 then
837 A7: (k-1)-polytopes(p) = rng (F.((k-1)+1)) by Def5;
838 A8: k-polytopes(p) = rng (F.(k+1)) by A5,Def5;
839 reconsider k’ = k as Nat by A6,Th3;
840 reconsider Ik = I.k’ as incidence-matrix of (k-1)-polytopes(p),
841 k-polytopes(p) by A5,A6,A7,A8,Def2;
842 take Ik;
843 thus thesis by A5;
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844 end;
845 suppose
846 A9: k = 0;
847 per cases;
848 suppose
849 A10: k = dim(p);
850 A11: (k-1)-polytopes(p) = {{}} by A9,Def5;
851 set f = [:{{}},{p}:] --> 1.Z_2;
852 reconsider f as incidence-matrix of {{}},{p} by Th24;
853 reconsider f as incidence-matrix of (k-1)-polytopes(p),
854 k-polytopes(p) by A10,A11,Def5;
855 take f;
856 thus thesis by A9,A10,Def5;
857 end;
858 suppose
859 A12: k <> dim(p);
860 set f = [:{{}},0-polytopes(p):] --> 1.Z_2;
861 reconsider f as incidence-matrix of {{}},0-polytopes(p) by Th24;
862 reconsider f as incidence-matrix of (k-1)-polytopes(p),
863 k-polytopes(p) by A9,Def5;
864 take f;
865 thus thesis by A9,A12;
866 end;
867 end;
868 suppose
869 A13: k = dim(p);
870 per cases;
871 suppose
872 A14: k = 0;
873 then
874 A15: (k-1)-polytopes(p) = {{}} by Def5;
875 set f = [:{{}},{p}:] --> 1.Z_2;
876 reconsider f as incidence-matrix of {{}},{p} by Th24;
877 reconsider f as incidence-matrix of (k-1)-polytopes(p),
878 k-polytopes(p) by A13,A15,Def5;
879 take f;
880 thus thesis by A13,A14,Def5;
881 end;
882 suppose
883 A16: k <> 0;
884 set f = [:(dim(p) - 1)-polytopes(p),{p}:] --> 1.Z_2;
885 reconsider f as incidence-matrix of (dim(p) - 1)-polytopes(p),{p}
886 by Th24;
887 reconsider f as incidence-matrix of (k-1)-polytopes(p),
888 k-polytopes(p) by A13,Def5;
889 take f;
890 thus thesis by A13,A16;
891 end;
892 end;
893 end;
894 uniqueness
895 proof
896 set I = the IncidenceF of p;
897 let s,t be incidence-matrix of (k-1)-polytopes(p),k-polytopes(p) such that
898 A17: (k < 0 implies s = {}) and
899 A18: (k = 0 implies s = [:{{}},0-polytopes(p):] --> 1.Z_2) and
900 A19: (0 < k & k < dim(p) implies s = I.k) and
901 A20: (k = dim(p) implies s = [:(dim(p) - 1)-polytopes(p),{p}:] --> 1.Z_2) and
902 A21: (k > dim(p) implies s = {}) and
903 A22: (k < 0 implies t = {}) and
904 A23: (k = 0 implies t = [:{{}},0-polytopes(p):] --> 1.Z_2) and
905 A24: (0 < k & k < dim(p) implies t = I.k) and
906 A25: (k = dim(p) implies t = [:(dim(p) - 1)-polytopes(p),{p}:] --> 1.Z_2) and
907 A26: (k > dim(p) implies t = {});
908 per cases by XXREAL_0:1;
909 suppose k < 0;
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910 hence thesis by A17,A22;
911 end;
912 suppose k = 0;
913 hence thesis by A18,A23;
914 end;
915 suppose 0 < k & k < dim(p);
916 hence thesis by A19,A24;
917 end;
918 suppose k = dim(p);
919 hence thesis by A20,A25;
920 end;
921 suppose k > dim(p);
922 hence thesis by A21,A26;
923 end;
924 end;
925 end;
927 definition
928 let p be polyhedron, k be Integer;
929 func k-polytope-seq(p) -> FinSequence means
930 :Def7:
931 (k < -1 implies it = <*>{}) & (k = -1 implies it = <*{}*>) &
932 (-1 < k & k < dim(p) implies it = (the PolytopsF of p).(k+1)) &
933 (k = dim(p) implies it = <*p*>) & (k > dim(p) implies it = <*>{});
934 existence
935 proof
936 per cases by XXREAL_0:1;
937 suppose
938 A1: k < -1;
939 take <*>{};
940 thus thesis by A1;
941 end;
942 suppose
943 A2: k = -1;
944 take <*{}*>;
945 thus thesis by A2;
946 end;
947 suppose
948 A3: -1 < k & k < dim(p);
949 set F = the PolytopsF of p;
950 take F.(k+1);
951 thus thesis by A3;
952 end;
953 suppose
954 A4: k = dim(p);
955 take <*p*>;
956 thus thesis by A4;
957 end;
958 suppose
959 A5: k > dim(p);
960 take <*>{};
961 thus thesis by A5;
962 end;
963 end;
964 uniqueness
965 proof
966 set F = the PolytopsF of p;
967 let s,t be FinSequence such that
968 A6: (k < -1 implies s = <*>{}) and
969 A7: (k = -1 implies s = <*{}*>) and
970 A8: (-1 < k & k < dim(p) implies s = F.(k+1)) and
971 A9: (k = dim(p) implies s = <*p*>) and
972 A10: (k > dim(p) implies s = <*>{}) and
973 A11: (k < -1 implies t = <*>{}) and
974 A12: (k = -1 implies t = <*{}*>) and
975 A13: (-1 < k & k < dim(p) implies t = F.(k+1)) and
976 A14: (k = dim(p) implies t = <*p*>) and
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977 A15: (k > dim(p) implies t = <*>{});
978 per cases by XXREAL_0:1;
979 suppose k < -1;
980 hence thesis by A6,A11;
981 end;
982 suppose k = -1;
983 hence thesis by A7,A12;
984 end;
985 suppose -1 < k & k < dim(p);
986 hence thesis by A8,A13;
987 end;
988 suppose k = dim(p);
989 hence thesis by A9,A14;
990 end;
991 suppose k > dim(p);
992 hence thesis by A10,A15;
993 end;
994 end;
995 end;
997 definition
998 let p be polyhedron, k be Integer;
999 func num-polytopes(p,k) -> Element of NAT equals

1001 card(k-polytopes(p));
1002 coherence;
1003 end;
1005 :: It will be convenient to use these in the cases of Euler’s
1006 :: polyhedron formula that interest us.
1008 definition
1009 let p be polyhedron;
1010 func num-vertices(p) -> Element of NAT equals
1012 num-polytopes(p,0);
1013 correctness;
1014 func num-edges(p) -> Element of NAT equals
1016 num-polytopes(p,1);
1017 correctness;
1018 func num-faces(p) -> Element of NAT equals
1020 num-polytopes(p,2);
1021 correctness;
1022 end;
1024 theorem Th28:
1025 dom (k-polytope-seq(p)) = Seg (num-polytopes(p,k))
1026 proof
1027 set F = the PolytopsF of p;
1028 per cases;
1029 suppose
1030 A1: k < -1;
1031 then
1032 A2: k-polytope-seq(p) = <*>{} by Def7;
1033 k-polytopes(p) = {} by A1,Def5;
1034 hence thesis by A2,FINSEQ_1:def 3;
1035 end;
1036 suppose
1037 A3: -1 <= k & k <= dim(p);
1038 per cases by A3,XXREAL_0:1;
1039 suppose
1040 A4: k = -1;
1041 then
1042 A5: k-polytopes(p) = {{}} by Def5;
1043 A6: k-polytope-seq(p) = <*{}*> by A4,Def7;
1044 A7: num-polytopes(p,k) = 1 by A5,CARD_2:60;
1045 len (k-polytope-seq(p)) = 1 by A6,FINSEQ_1:56;
1046 hence thesis by A7,FINSEQ_1:def 3;
1047 end;
1048 suppose
1049 A8: -1 < k & k < dim(p);
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1050 then
1051 A9: k-polytope-seq(p) = F.(k+1) by Def7;
1052 A10: k-polytopes(p) = rng (F.(k+1)) by A8,Def5;
1053 set n = k + 1;
1054 reconsider n as Nat by A8,Th25;
1055 reconsider Fn = F.n as FinSequence;
1056 1 <= n & n <= dim(p) by A8,Th25;
1057 then Fn is one-to-one by Def3;
1058 then num-polytopes(p,k) = card (dom Fn) by A10,Th2;
1059 then len Fn = num-polytopes(p,k) by PRE_CIRC:21;
1060 hence thesis by A9,FINSEQ_1:def 3;
1061 end;
1062 suppose
1063 A11: k = dim(p);
1064 then
1065 A12: k-polytopes(p) = {p} by Def5;
1066 A13: k-polytope-seq(p) = <*p*> by A11,Def7;
1067 A14: num-polytopes(p,k) = 1 by A12,CARD_2:60;
1068 len (k-polytope-seq(p)) = 1 by A13,FINSEQ_1:56;
1069 hence thesis by A14,FINSEQ_1:def 3;
1070 end;
1071 end;
1072 suppose
1073 A15: k > dim(p);
1074 then
1075 A16: k-polytope-seq(p) = <*>{} by Def7;
1076 k-polytopes(p) = {} by A15,Def5;
1077 hence thesis by A16,FINSEQ_1:def 3;
1078 end;
1079 end;
1081 theorem Th29:
1082 len (k-polytope-seq(p)) = num-polytopes(p,k)
1083 proof
1084 dom (k-polytope-seq(p)) = Seg (num-polytopes(p,k)) by Th28;
1085 hence thesis by FINSEQ_1:def 3;
1086 end;
1088 theorem Th30:
1089 rng (k-polytope-seq(p)) = k-polytopes(p)
1090 proof
1091 set F = the PolytopsF of p;
1092 per cases;
1093 suppose
1094 A1: k < -1;
1095 then k-polytopes(p) = {} by Def5;
1096 hence thesis by A1,Def7,RELAT_1:60;
1097 end;
1098 suppose
1099 A2: -1 <= k & k <= dim(p);
1100 per cases by A2,XXREAL_0:1;
1101 suppose
1102 A3: k = -1;
1103 then
1104 A4: k-polytopes(p) = {{}} by Def5;
1105 k-polytope-seq(p) = <*{}*> by A3,Def7;
1106 hence thesis by A4,FINSEQ_1:55;
1107 end;
1108 suppose
1109 A5: -1 < k & k < dim(p);
1110 then k-polytopes(p) = rng (F.(k+1)) by Def5;
1111 hence thesis by A5,Def7;
1112 end;
1113 suppose
1114 A6: k = dim(p);
1115 then
1116 A7: k-polytopes(p) = {p} by Def5;
1117 k-polytope-seq(p) = <*p*> by A6,Def7;
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1118 hence thesis by A7,FINSEQ_1:55;
1119 end;
1120 end;
1121 suppose
1122 A8: k > dim(p);
1123 then k-polytopes(p) = {} by Def5;
1124 hence thesis by A8,Def7,RELAT_1:60;
1125 end;
1126 end;
1128 theorem Th31:
1129 num-polytopes(p,-1) = 1
1130 proof
1131 reconsider minusone = -1 as Integer;
1132 minusone-polytopes(p) = {{}} by Def5;
1133 hence thesis by CARD_1:50;
1134 end;
1136 theorem Th32:
1137 num-polytopes(p,dim(p)) = 1
1138 proof
1139 dim(p)-polytopes(p) = {p} by Def5;
1140 hence thesis by CARD_1:50;
1141 end;
1143 :: The k-polytope sets aren’t really sets: they’re ordered sets
1144 :: (finite sequences).
1145 ::
1146 :: Since the k-polytope sets are empty for k < -1 and k > dim(p), we
1147 :: have to put a condition on n and k for the definition to make
1148 :: sense.
1150 definition
1151 let p be polyhedron, k be Integer, n be Nat;
1152 assume
1153 A1: 1 <= n & n <= num-polytopes(p,k) & -1 <= k & k <= dim(p);
1154 func n-th-polytope(p,k) -> Element of k-polytopes(p) equals
1155 :Def12:
1156 (k-polytope-seq(p)).n;
1157 coherence
1158 proof
1159 n in Seg num-polytopes(p,k) by A1,FINSEQ_1:3;
1160 then n in dom (k-polytope-seq(p)) by Th28;
1161 then (k-polytope-seq(p)).n in rng (k-polytope-seq(p)) by FUNCT_1:12;
1162 hence thesis by Th30;
1163 end;
1164 end;
1166 theorem Th33:
1167 -1 <= k & k <= dim(p) implies for x being Element of k-polytopes(p)
1168 ex n being Nat st x = n-th-polytope(p,k) & 1 <= n & n <= num-polytopes(p,k)
1169 proof
1170 assume
1171 A1: -1 <= k & k <= dim(p);
1172 let x be Element of k-polytopes(p);
1173 per cases by A1,XXREAL_0:1;
1174 suppose
1175 A2: k = -1;
1176 then
1177 A3: k-polytopes(p) = {{}} by Def5;
1178 then
1179 A4: x = {} by TARSKI:def 1;
1180 reconsider n = 1 as Nat;
1181 k-polytope-seq(p) = <*{}*> by A2,Def7;
1182 then
1183 A5: (k-polytope-seq(p)).n = {} by FINSEQ_1:def 8;
1184 A6: n <= num-polytopes(p,k) by A3,CARD_1:50;
1185 take n;
1186 thus thesis by A1,A4,A5,A6,Def12;
1187 end;
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1188 suppose
1189 A7: k = dim(p);
1190 then
1191 A8: k-polytopes(p) = {p} by Def5;
1192 then
1193 A9: x = p by TARSKI:def 1;
1194 reconsider n = 1 as Nat;
1195 A10: num-polytopes(p,k) = 1 by A8,CARD_1:50;
1196 k-polytope-seq(p) = <*p*> by A7,Def7;
1197 then
1198 A11: (k-polytope-seq(p)).n = p by FINSEQ_1:def 8;
1199 take n;
1200 thus thesis by A1,A9,A10,A11,Def12;
1201 end;
1202 suppose
1203 A12: -1 < k & k < dim(p);
1204 set F = the PolytopsF of p;
1205 A13: k-polytopes(p) = rng (F.(k+1)) by A12,Def5;
1206 A14: k-polytope-seq(p) = F.(k+1) by A12,Def7;
1207 then
1208 A15: num-polytopes(p,k) = len (F.(k+1)) by Th29;
1209 A16: -1 + 1 < k + 1 by A12,XREAL_1:8;
1210 A17: k + 1 <= dim(p) by A12,INT_1:20;
1211 A18: 0 qua Nat + 1 <= k + 1 by A16,INT_1:20;
1212 reconsider k’ = k + 1 as Element of NAT by A16,INT_1:16;
1213 F.k’ is non empty by A17,A18,Def3;
1214 then rng (F.k’) is non empty;
1215 then consider m being set such that
1216 A19: m in dom (F.k’) and
1217 A20: (F.k’).m = x by A13,FUNCT_1:def 5;
1218 reconsider Fk’ = F.k’ as FinSequence;
1219 A21: dom Fk’ = Seg (len Fk’) by FINSEQ_1:def 3;
1220 reconsider m as Element of NAT by A19;
1221 A22: 1 <= m & m <= len Fk’ by A19,A21,FINSEQ_1:3;
1222 take m;
1223 thus thesis by A12,A14,A15,A20,A22,Def12;
1224 end;
1225 end;
1227 theorem Th34:
1228 k-polytope-seq(p) is one-to-one
1229 proof
1230 set s = k-polytope-seq(p);
1231 per cases by XXREAL_0:1;
1232 suppose k < -1;
1233 hence thesis by Def7;
1234 end;
1235 suppose k = -1;
1236 hence thesis by Def7;
1237 end;
1238 suppose
1239 A1: -1 < k & k < dim(p);
1240 set F = the PolytopsF of p;
1241 A2: s = F.(k+1) by A1,Def7;
1242 A3: -1 + 1 < k + 1 by A1,XREAL_1:8;
1243 then reconsider m = k + 1 as Element of NAT by INT_1:16;
1244 A4: 0 qua Nat + 1 <= m by A3,INT_1:20;
1245 m <= dim(p) by A1,INT_1:20;
1246 hence thesis by A2,A4,Def3;
1247 end;
1248 suppose k = dim(p);
1249 then s = <*p*> by Def7;
1250 hence thesis;
1251 end;
1252 suppose k > dim(p);
1253 hence thesis by Def7;
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1254 end;
1255 end;
1257 theorem Th35:
1258 -1 <= k & k <= dim(p) implies for m,n being Nat
1259 st 1 <= n & n <= num-polytopes(p,k) & 1 <= m & m <= num-polytopes(p,k)
1260 & n-th-polytope(p,k) = m-th-polytope(p,k) holds m = n
1261 proof
1262 assume
1263 A1: -1 <= k & k <= dim(p);
1264 let m,n be Nat such that
1265 A2: 1 <= n and
1266 A3: n <= num-polytopes(p,k) and
1267 A4: 1 <= m and
1268 A5: m <= num-polytopes(p,k) and
1269 A6: n-th-polytope(p,k) = m-th-polytope(p,k);
1270 set s = k-polytope-seq(p);
1271 A7: n-th-polytope(p,k) = s.n by A1,A2,A3,Def12;
1272 A8: m-th-polytope(p,k) = s.m by A1,A4,A5,Def12;
1273 n in Seg (num-polytopes(p,k)) by A2,A3,FINSEQ_1:3;
1274 then
1275 A9: n in dom s by Th28;
1276 m in Seg (num-polytopes(p,k)) by A4,A5,FINSEQ_1:3;
1277 then
1278 A10: m in dom s by Th28;
1279 s is one-to-one by Th34;
1280 hence thesis by A6,A7,A8,A9,A10,FUNCT_1:def 8;
1281 end;
1283 definition
1284 let p be polyhedron, k be Integer, x be Element of (k-1)-polytopes(p),
1285 y be Element of k-polytopes(p);
1286 assume
1287 A1: 0 <= k & k <= dim(p);
1288 func incidence-value(x,y) -> Element of Z_2 equals
1289 :Def13:
1290 eta(p,k).(x,y);
1291 coherence
1292 proof
1293 set n = eta(p,k);
1294 A2: dom n = [:(k-1)-polytopes(p),k-polytopes(p):] by FUNCT_2:169;
1295 A3: (k-1)-polytopes(p) <> {}
1296 proof
1297 set m = k - 1;
1298 0 qua Nat - 1 = -1;
1299 then
1300 A4: -1 <= m by A1,XREAL_1:11;
1301 m <= dim(p) - (0 qua Nat) by A1,XREAL_1:15;
1302 hence thesis by A4,Th26;
1303 end;
1304 k-polytopes(p) <> {} by A1,Th26;
1305 then
1306 A5: [x,y] in dom n by A2,A3,ZFMISC_1:106;
1307 A6: rng n c= {0.Z_2,1.Z_2} by FUNCT_2:169;
1308 n.[x,y] in rng n by A5,FUNCT_1:12;
1309 hence thesis by A6,BSPACE:3,5,6;
1310 end;
1311 end;
1313 begin :: The Chain Spaces and their Subspaces. Boundary of a k-chain.
1315 :: The set of subsets of the k-polytopes naturally forms a vector
1316 :: space over the field Z_2. Addition is disjoint union, and scalar
1317 :: multiplication is defined by the equations 1*x = x, 0*x = 0.
1319 definition
1320 let p be polyhedron, k be Integer;
1321 func k-chain-space(p) -> finite-dimensional VectSp of Z_2 equals
1322 bspace(k-polytopes(p));
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1323 coherence;
1324 end;
1326 theorem
1327 for x being Element of k-polytopes(p)
1328 holds (0.(k-chain-space(p)))@x = 0.Z_2 by BSPACE:14;
1330 theorem Th37:
1331 num-polytopes(p,k) = dim (k-chain-space(p))
1332 proof
1333 A1: singletons(k-polytopes(p)) is Basis of k-chain-space(p) by BSPACE:41;
1334 set n = dim (k-chain-space(p));
1335 n = card (singletons(k-polytopes(p))) by A1,VECTSP_9:def 2;
1336 hence thesis by BSPACE:42;
1337 end;
1339 :: A k-chain is a set of k-polytopes.
1341 definition
1342 let p be polyhedron, k be Integer;
1343 func k-chains(p) -> non empty finite set equals
1345 bool (k-polytopes(p));
1346 coherence;
1347 end;
1349 definition
1350 let p be polyhedron, k be Integer, x be Element of (k-1)-polytopes(p),
1351 v be Element of k-chain-space(p);
1352 func incidence-sequence(x,v) -> FinSequence of Z_2 means
1353 :Def16:
1354 ((k-1)-polytopes(p) is empty implies it = <*>{}) &
1355 ((k-1)-polytopes(p) is non empty implies len it = num-polytopes(p,k)
1356 & for n being Nat st 1 <= n & n <= num-polytopes(p,k) holds it.n =
1357 (v@(n-th-polytope(p,k)))*incidence-value(x,n-th-polytope(p,k)));
1358 existence
1359 proof
1360 per cases;
1361 suppose
1362 A1: (k-1)-polytopes(p) is empty;
1363 set s = <*>{};
1364 rng s c= the carrier of Z_2 by XBOOLE_1:2;
1365 then reconsider s as FinSequence of Z_2 by FINSEQ_1:def 4;
1366 take s;
1367 thus thesis by A1;
1368 end;
1369 suppose
1370 A2: (k-1)-polytopes(p) is non empty;
1371 deffunc F(Nat) =
1372 (v@($1-th-polytope(p,k)))*incidence-value(x,$1-th-polytope(p,k));
1373 consider s being FinSequence of Z_2 such that
1374 A3: len s = num-polytopes(p,k) and
1375 A4: for n being Nat st n in dom s
1376 holds s.n = F(n) from FINSEQ_2:sch 1;
1377 A5: dom s = Seg num-polytopes(p,k) by A3,FINSEQ_1:def 3;
1378 A6: for n being Nat st 1 <= n & n <= num-polytopes(p,k) holds s.n =
1379 (v@(n-th-polytope(p,k)))*incidence-value(x,n-th-polytope(p,k))
1380 proof
1381 let n be Nat such that
1382 A7: 1 <= n and
1383 A8: n <= num-polytopes(p,k);
1384 A9: n in Seg num-polytopes(p,k) by A7,A8,FINSEQ_1:3;
1385 thus thesis by A4,A9,A5;
1386 end;
1387 take s;
1388 thus thesis by A2,A3,A6;
1389 end;
1390 end;
1391 uniqueness
1392 proof
1393 let s,t be FinSequence of Z_2 such that
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1394 A10: (k-1)-polytopes(p) is empty implies s = <*>{} and
1395 A11: (k-1)-polytopes(p) is non empty implies len(s) = num-polytopes(p,k) &
1396 (for n being Nat st 1 <= n & n <= num-polytopes(p,k) holds s.n =
1397 (v@(n-th-polytope(p,k)))*incidence-value(x,n-th-polytope(p,k))) and
1398 A12: (k-1)-polytopes(p) is empty implies t = <*>{} and
1399 A13: (k-1)-polytopes(p) is non empty implies len(t) = num-polytopes(p,k) &
1400 for n being Nat st 1 <= n & n <= num-polytopes(p,k) holds t.n =
1401 (v@(n-th-polytope(p,k)))*incidence-value(x,n-th-polytope(p,k));
1402 per cases;
1403 suppose (k-1)-polytopes(p) is empty;
1404 hence thesis by A10,A12;
1405 end;
1406 suppose
1407 A14: (k-1)-polytopes(p) is non empty;
1408 for n being Nat st 1 <= n & n <= len s holds s.n = t.n
1409 proof
1410 let n be Nat such that
1411 A15: 1 <= n and
1412 A16: n <= len s;
1413 reconsider n as Nat;
1414 s.n = (v@(n-th-polytope(p,k)))*incidence-value(x,n-th-polytope(p,k))
1415 by A11,A14,A15,A16;
1416 hence thesis by A11,A13,A14,A15,A16;
1417 end;
1418 hence thesis by A11,A13,A14,FINSEQ_1:18;
1419 end;
1420 end;
1421 end;
1423 theorem Th38:
1424 for c,d being Element of k-chain-space(p), x being Element of k-polytopes(p)
1425 holds (c+d)@x = (c@x) + (d@x)
1426 proof
1427 let c,d be Element of k-chain-space(p), x be Element of k-polytopes(p);
1428 c+d = c \+\ d by BSPACE:def 5;
1429 hence thesis by BSPACE:15;
1430 end;
1432 theorem Th39:
1433 for c,d being Element of k-chain-space(p),
1434 x being Element of (k-1)-polytopes(p) holds incidence-sequence(x,c+d)
1435 = incidence-sequence(x,c) + incidence-sequence(x,d)
1436 proof
1437 let c,d be Element of k-chain-space(p), x be Element of (k-1)-polytopes(p);
1438 set n = num-polytopes(p,k);
1439 set l = incidence-sequence(x,c+d);
1440 set isc = incidence-sequence(x,c);
1441 set isd = incidence-sequence(x,d);
1442 set r = isc + isd;
1443 per cases;
1444 suppose
1445 A1: (k-1)-polytopes(p) is empty;
1446 then
1447 A2: isc = <*>(the carrier of Z_2) by Def16;
1448 A3: isd = <*>(the carrier of Z_2) by A1,Def16;
1449 reconsider isc as Element of 0-tuples_on the carrier of Z_2
1450 by A2,FINSEQ_2:114;
1451 reconsider isd as Element of 0-tuples_on the carrier of Z_2
1452 by A3,FINSEQ_2:114;
1453 isc + isd is Element of 0-tuples_on the carrier of Z_2;
1454 then r = <*>(the carrier of Z_2) by FINSEQ_2:113;
1455 hence thesis by A1,Def16;
1456 end;
1457 suppose
1458 A4: (k-1)-polytopes(p) is non empty;
1459 A5: len(l) = n & len(r) = n
1460 proof
1461 A6: len isc = n by A4,Def16;
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1462 A7: len isd = n by A4,Def16;
1463 reconsider isc as Element of n-tuples_on the carrier of Z_2
1464 by A6,FINSEQ_2:110;
1465 reconsider isd as Element of n-tuples_on the carrier of Z_2
1466 by A7,FINSEQ_2:110;
1467 reconsider s = isc + isd as Element of n-tuples_on the carrier of Z_2;
1468 len s = n by FINSEQ_2:109;
1469 hence thesis by A4,Def16;
1470 end;
1471 for n being Nat st 1 <= n & n <= len l holds l.n = r.n
1472 proof
1473 let m be Nat such that
1474 A8: 1 <= m and
1475 A9: m <= len l;
1476 set a = m-th-polytope(p,k);
1477 set iva = incidence-value(x,a);
1478 A10: len l = n by A4,Def16;
1479 then
1480 A11: l.m = ((c+d)@a)*iva by A4,A8,A9,Def16;
1481 A12: isc.m = (c@a)*iva by A4,A8,A9,A10,Def16;
1482 A13: isd.m = (d@a)*iva by A4,A8,A9,A10,Def16;
1483 A14: dom r = Seg n by A5,FINSEQ_1:def 3;
1484 A15: len l = n by A4,Def16;
1485 m in NAT by ORDINAL1:def 13;
1486 then m in dom r by A8,A9,A14,A15;
1487 then r.m = (c@a)*iva + (d@a)*iva by A12,A13,FVSUM_1:21
1488 .= (c@a + d@a)*iva by VECTSP_1:def 12
1489 .= l.m by A11,Th38;
1490 hence thesis;
1491 end;
1492 hence thesis by A5,FINSEQ_1:18;
1493 end;
1494 end;
1496 theorem Th40:
1497 for c,d being Element of k-chain-space(p),
1498 x being Element of (k-1)-polytopes(p)
1499 holds Sum (incidence-sequence(x,c) + incidence-sequence(x,d))
1500 = (Sum incidence-sequence(x,c)) + (Sum incidence-sequence(x,d))
1501 proof
1502 let c,d be Element of k-chain-space(p), x be Element of (k-1)-polytopes(p);
1503 set isc = incidence-sequence(x,c);
1504 set isd = incidence-sequence(x,d);
1505 per cases;
1506 suppose
1507 A1: (k-1)-polytopes(p) is empty;
1508 then
1509 A2: isc = <*>(the carrier of Z_2) by Def16;
1510 A3: isd = <*>(the carrier of Z_2) by A1,Def16;
1511 reconsider isc as Element of 0-tuples_on the carrier of Z_2
1512 by A2,FINSEQ_2:114;
1513 reconsider isd as Element of 0-tuples_on the carrier of Z_2
1514 by A3,FINSEQ_2:114;
1515 A4: Sum isc = 0.Z_2 by FVSUM_1:93;
1516 A5: Sum isd = 0.Z_2 by FVSUM_1:93;
1517 reconsider s = isc + isd as Element of 0-tuples_on the carrier of Z_2;
1518 Sum s = 0.Z_2 by FVSUM_1:93;
1519 hence thesis by A4,A5,RLVECT_1:def 7;
1520 end;
1521 suppose
1522 A6: (k-1)-polytopes(p) is non empty;
1523 reconsider n = num-polytopes(p,k) as Element of NAT;
1524 A7: len isc = n by A6,Def16;
1525 A8: len isd = n by A6,Def16;
1526 reconsider isc’ = isc
1527 as Element of n-tuples_on the carrier of Z_2 by A7,FINSEQ_2:110;
1528 reconsider isd’ = isd
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1529 as Element of n-tuples_on the carrier of Z_2 by A8,FINSEQ_2:110;
1530 Sum (isc + isd) = Sum (isc’ + isd’)
1531 .= Sum (isc) + Sum (isd) by FVSUM_1:95;
1532 hence thesis;
1533 end;
1534 end;
1536 theorem Th41:
1537 for c,d being Element of k-chain-space(p),
1538 x being Element of (k-1)-polytopes(p) holds Sum incidence-sequence(x,c+d)
1539 = (Sum incidence-sequence(x,c)) + (Sum incidence-sequence(x,d))
1540 proof
1541 let c,d be Element of k-chain-space(p), x be Element of (k-1)-polytopes(p);
1542 Sum incidence-sequence(x,c+d)
1543 = Sum (incidence-sequence(x,c) + incidence-sequence(x,d)) by Th39
1544 .= (Sum incidence-sequence(x,c)) + (Sum incidence-sequence(x,d)) by Th40;
1545 hence thesis;
1546 end;
1548 theorem Th42:
1549 for c being Element of k-chain-space(p), a being Element of Z_2,
1550 x being Element of k-polytopes(p) holds (a*c)@x = a*(c@x)
1551 proof
1552 let c be Element of k-chain-space(p), a be Element of Z_2,
1553 x be Element of k-polytopes(p);
1554 per cases by BSPACE:8;
1555 suppose
1556 A1: a = 0.Z_2;
1557 then
1558 A2: a*(c@x) = 0.Z_2 by VECTSP_1:39;
1559 a*c = 0.(k-chain-space(p)) by A1,VECTSP_1:59;
1560 hence thesis by A2,BSPACE:14;
1561 end;
1562 suppose
1563 A3: a = 1.Z_2;
1564 then a*(c@x) = c@x by VECTSP_1:def 16;
1565 hence thesis by A3,VECTSP_1:def 26;
1566 end;
1567 end;
1569 theorem Th43:
1570 for c being Element of k-chain-space(p), a being Element of Z_2,
1571 x being Element of (k-1)-polytopes(p)
1572 holds incidence-sequence(x,a*c) = a*incidence-sequence(x,c)
1573 proof
1574 let c be Element of k-chain-space(p), a be Element of Z_2,
1575 x be Element of (k-1)-polytopes(p);
1576 set l = incidence-sequence(x,a*c);
1577 set isc = incidence-sequence(x,c);
1578 set r = a*isc;
1579 per cases;
1580 suppose
1581 A1: (k-1)-polytopes(p) is empty;
1582 then isc = <*>(the carrier of Z_2) by Def16;
1583 then reconsider isc as Element of 0-tuples_on the carrier of Z_2
1584 by FINSEQ_2:114;
1585 a*isc is Element of 0-tuples_on the carrier of Z_2;
1586 then reconsider r as Element of 0-tuples_on the carrier of Z_2;
1587 r = <*>(the carrier of Z_2) by FINSEQ_2:113;
1588 hence thesis by A1,Def16;
1589 end;
1590 suppose
1591 A2: (k-1)-polytopes(p) is non empty;
1592 set n = num-polytopes(p,k);
1593 A3: len l = n & len r = n
1594 proof
1595 len isc = n by A2,Def16;
1596 then reconsider isc as Element of n-tuples_on the carrier of Z_2
1597 by FINSEQ_2:110;
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1598 set r = a*isc;
1599 reconsider r as Element of n-tuples_on the carrier of Z_2;
1600 len r = n by FINSEQ_2:109;
1601 hence thesis by A2,Def16;
1602 end;
1603 for m being Nat st 1 <= m & m <= len l holds l.m = r.m
1604 proof
1605 let m be Nat such that
1606 A4: 1 <= m and
1607 A5: m <= len l;
1608 set s = m-th-polytope(p,k);
1609 set ivs = incidence-value(x,s);
1610 A6: len l = n by A2,Def16;
1611 then
1612 A7: l.m = ((a*c)@s)*ivs by A2,A4,A5,Def16;
1613 A8: isc.m = (c@s)*ivs by A2,A4,A5,A6,Def16;
1614 A9: dom r = Seg n by A3,FINSEQ_1:def 3;
1615 A10: len l = n by A2,Def16;
1616 m in NAT by ORDINAL1:def 13;
1617 then m in Seg n by A4,A5,A10;
1618 then r.m = a*((c@s)*ivs) by A8,A9,FVSUM_1:62
1619 .= (a*(c@s))*ivs by GROUP_1:def 4
1620 .= l.m by A7,Th42;
1621 hence thesis;
1622 end;
1623 hence thesis by A3,FINSEQ_1:18;
1624 end;
1625 end;
1627 theorem Th44:
1628 for c,d being Element of k-chain-space(p)
1629 holds c = d iff for x being Element of k-polytopes(p) holds c@x = d@x
1630 proof
1631 let c,d be Element of k-chain-space(p);
1632 thus c = d implies for x being Element of k-polytopes(p) holds c@x = d@x;
1633 thus (for x being Element of k-polytopes(p) holds c@x = d@x) implies c = d
1634 proof
1635 assume
1636 A1: for x being Element of k-polytopes(p) holds c@x = d@x;
1637 thus c c= d
1638 proof
1639 let x be set such that
1640 A2: x in c;
1641 reconsider c as Subset of k-polytopes(p);
1642 reconsider x as Element of k-polytopes(p) by A2;
1643 c@x = 1.Z_2 by A2,BSPACE:def 3;
1644 then d@x = 1.Z_2 by A1;
1645 hence thesis by BSPACE:9;
1646 end;
1647 thus d c= c
1648 proof
1649 let x be set such that
1650 A3: x in d;
1651 reconsider d as Subset of k-polytopes(p);
1652 reconsider x as Element of k-polytopes(p) by A3;
1653 d@x = 1.Z_2 by A3,BSPACE:def 3;
1654 then c@x = 1.Z_2 by A1;
1655 hence thesis by BSPACE:9;
1656 end;
1657 end;
1658 end;
1660 theorem Th45:
1661 for c,d being Element of k-chain-space(p) holds c = d iff
1662 for x being Element of k-polytopes(p) holds x in c iff x in d
1663 proof
1664 let c,d be Element of k-chain-space(p);
1665 thus c = d
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1666 implies for x being Element of k-polytopes(p) holds x in c iff x in d;
1667 thus (for x being Element of k-polytopes(p) holds x in c iff x in d)
1668 implies c = d
1669 proof
1670 assume
1671 A1: for x being Element of k-polytopes(p) holds x in c iff x in d;
1672 assume c <> d;
1673 then consider x being Element of k-polytopes(p) such that
1674 A2: c@x <> d@x by Th44;
1675 not (x in c iff x in d) by A2,BSPACE:13;
1676 hence thesis by A1;
1677 end;
1678 end;
1680 scheme
1681 ChainEx { p() -> polyhedron, k() -> Integer,
1682 P[Element of k()-polytopes(p())] } : ex c being Subset of k()-polytopes(p())
1683 st for x being Element of k()-polytopes(p())
1684 holds x in c iff (P[x] & x in k()-polytopes(p()))
1685 proof
1686 set c = { x where x is Element of k()-polytopes(p()) :
1687 P[x] & x in k()-polytopes(p()) };
1688 c c= k()-polytopes(p())
1689 proof
1690 let x be set such that
1691 A1: x in c;
1692 consider y being Element of k()-polytopes(p()) such that
1693 A2: x = y and P[y] and
1694 A3: y in k()-polytopes(p()) by A1;
1695 thus thesis by A2,A3;
1696 end;
1697 then reconsider c as Subset of k()-polytopes(p());
1698 A4: for x being Element of k()-polytopes(p()) holds
1699 x in c iff (P[x] & x in k()-polytopes(p()))
1700 proof
1701 let x be Element of k()-polytopes(p());
1702 thus x in c implies (P[x] & x in k()-polytopes(p()))
1703 proof
1704 assume x in c;
1705 then consider y being Element of k()-polytopes(p()) such that
1706 A5: y = x and
1707 A6: P[y] and
1708 A7: y in k()-polytopes(p());
1709 thus thesis by A5,A6,A7;
1710 end;
1711 thus (P[x] & x in k()-polytopes(p())) implies x in c;
1712 end;
1713 take c;
1714 thus thesis by A4;
1715 end;
1717 :: The boundary of a k-chain v is the (k-1)-chain consisting of the
1718 :: (k-1)-polytopes that are on the "perimeter" of v. Being on the
1719 :: perimeter amounts the sum of the incidence sequence being non-zero,
1720 :: i.e., being equal to 1.
1722 definition
1723 let p be polyhedron, k be Integer, v be Element of k-chain-space(p);
1724 func Boundary(v) -> Element of (k-1)-chain-space(p) means
1725 :Def17:
1726 ((k-1)-polytopes(p) is empty implies it = 0.((k-1)-chain-space(p))) &
1727 ((k-1)-polytopes(p) is non empty implies
1728 for x being Element of (k-1)-polytopes(p)
1729 holds x in it iff Sum incidence-sequence(x,v) = 1.Z_2);
1730 existence
1731 proof
1732 per cases;
1733 suppose
1734 A1: (k-1)-polytopes(p) is empty;
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1735 take 0.((k-1)-chain-space(p));
1736 thus thesis by A1;
1737 end;
1738 suppose
1739 (k-1)-polytopes(p) is non empty;
1740 defpred Q[Element of (k-1)-polytopes(p)] means
1741 Sum incidence-sequence($1,v) = 1.Z_2;
1742 consider c being Subset of (k-1)-polytopes(p) such that
1743 A3: for x being Element of (k-1)-polytopes(p)
1744 holds x in c iff (Q[x] & x in (k-1)-polytopes(p)) from ChainEx;
1745 reconsider c as Element of (k-1)-chain-space(p);
1746 take c;
1747 thus thesis by A3;
1748 end;
1749 end;
1750 uniqueness
1751 proof
1752 let c,d be Element of (k-1)-chain-space(p) such that
1753 A4: (k-1)-polytopes(p) is empty implies c = 0.((k-1)-chain-space(p)) and
1754 A5: (k-1)-polytopes(p) is non empty implies
1755 for x being Element of (k-1)-polytopes(p)
1756 holds x in c iff Sum incidence-sequence(x,v) = 1.Z_2 and
1757 (k-1)-polytopes(p) is empty implies d = 0.((k-1)-chain-space(p)) and
1758 A7: (k-1)-polytopes(p) is non empty implies
1759 for x being Element of (k-1)-polytopes(p)
1760 holds x in d iff Sum incidence-sequence(x,v) = 1.Z_2;
1761 per cases;
1762 suppose (k-1)-polytopes(p) is empty;
1763 hence thesis by A4;
1764 end;
1765 suppose
1766 A8: (k-1)-polytopes(p) is non empty;
1767 for x being Element of (k-1)-polytopes(p) holds x in c iff x in d
1768 proof
1769 let x be Element of (k-1)-polytopes(p);
1770 thus x in c implies x in d
1771 proof
1772 assume x in c;
1773 then Sum incidence-sequence(x,v) = 1.Z_2 by A5;
1774 hence thesis by A7,A8;
1775 end;
1776 thus x in d implies x in c
1777 proof
1778 assume x in d;
1779 then Sum incidence-sequence(x,v) = 1.Z_2 by A7;
1780 hence thesis by A5,A8;
1781 end;
1782 end;
1783 hence thesis by Th45;
1784 end;
1785 end;
1786 end;
1788 theorem Th46:
1789 for c being Element of k-chain-space(p),
1790 x being Element of (k-1)-polytopes(p)
1791 holds (Boundary(c))@x = Sum incidence-sequence(x,c)
1792 proof
1793 let c be Element of k-chain-space(p), x be Element of (k-1)-polytopes(p);
1794 set b = Boundary(c);
1795 per cases;
1796 suppose
1797 A1: (k-1)-polytopes(p) is empty;
1798 then
1799 A2: Boundary(c) = 0.((k-1)-chain-space(p));
1800 set iscx = incidence-sequence(x,c);
1801 iscx = <*>(the carrier of Z_2) by A1,Def16;
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1802 then Sum iscx = 0.Z_2 by RLVECT_1:60;
1803 hence thesis by A2,BSPACE:14;
1804 end;
1805 suppose
1806 A3: (k-1)-polytopes(p) is non empty;
1807 then
1808 A4: x in b iff Sum incidence-sequence(x,c) = 1.Z_2 by Def17;
1809 per cases;
1810 suppose x in b;
1811 hence thesis by A4,BSPACE:def 3;
1812 end;
1813 suppose
1814 A5: not x in b;
1815 then Sum incidence-sequence(x,c) <> 1.Z_2 by A3,Def17;
1816 then Sum incidence-sequence(x,c) = 0.Z_2 by BSPACE:8;
1817 hence thesis by A5,BSPACE:def 3;
1818 end;
1819 end;
1820 end;
1822 :: Every dimension k has its own boundary operation.
1824 definition
1825 let p be polyhedron, k be Integer;
1826 func k-boundary(p) -> Function of k-chain-space(p),(k-1)-chain-space(p)
1827 means
1828 :Def18:
1829 for c being Element of k-chain-space(p) holds it.c = Boundary(c);
1830 existence
1831 proof
1832 defpred Q[set,set] means
1833 ex c being Element of k-chain-space(p) st $1 = c & $2 = Boundary(c);
1834 A1: for x being set st x in k-chains(p) holds
1835 ex y being set st y in (k-1)-chains(p) & Q[x,y]
1836 proof
1837 let x be set such that
1838 A2: x in k-chains(p);
1839 reconsider x as Element of k-chain-space(p) by A2;
1840 set b = Boundary(x);
1841 take b;
1842 thus thesis;
1843 end;
1844 consider f being Function of k-chains(p), (k-1)-chains(p) such that
1845 A3: for x being set st x in k-chains(p) holds Q[x,f.x] from FUNCT_2:sch 1(A1);
1846 reconsider f as Function of k-chain-space(p),(k-1)-chain-space(p);
1847 A4: for c being Element of k-chain-space(p) holds f.c = Boundary(c)
1848 proof
1849 let c be Element of k-chain-space(p);
1850 Q[c,f.c] by A3;
1851 hence thesis;
1852 end;
1853 take f;
1854 thus thesis by A4;
1855 end;
1856 uniqueness
1857 proof
1858 let f,g be Function of k-chain-space(p),(k-1)-chain-space(p) such that
1859 A5: for c being Element of k-chain-space(p) holds f.c = Boundary(c) and
1860 A6: for c being Element of k-chain-space(p) holds g.c = Boundary(c);
1861 dom f = [#](k-chain-space(p)) by FUNCT_2:def 1;
1862 then
1863 A7: dom f = dom g by FUNCT_2:def 1;
1864 for x being set st x in dom f holds f.x = g.x
1865 proof
1866 let x be set such that
1867 A8: x in dom f;
1868 reconsider x as Element of k-chain-space(p) by A8;
1869 f.x = Boundary(x) by A5;
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1870 hence thesis by A6;
1871 end;
1872 hence thesis by A7,FUNCT_1:9;
1873 end;
1874 end;
1876 theorem Th47:
1877 for c,d being Element of k-chain-space(p)
1878 holds Boundary(c+d) = Boundary(c) + Boundary(d)
1879 proof
1880 let c,d be Element of k-chain-space(p);
1881 set bc = Boundary(c);
1882 set bd = Boundary(d);
1883 set s = c+d;
1884 set l = Boundary(s);
1885 set r = bc+bd;
1886 for x being Element of (k-1)-polytopes(p) holds l@x = r@x
1887 proof
1888 let x be Element of (k-1)-polytopes(p);
1889 A1: l@x = Sum incidence-sequence(x,s) by Th46;
1890 set a = bc@x;
1891 set b = bd@x;
1892 A2: r@x = a+b by Th38;
1893 A3: a = Sum incidence-sequence(x,c) by Th46;
1894 b = Sum incidence-sequence(x,d) by Th46;
1895 hence thesis by A1,A2,A3,Th41;
1896 end;
1897 hence thesis by Th44;
1898 end;
1900 theorem Th48:
1901 for a being Element of Z_2, c being Element of k-chain-space(p)
1902 holds Boundary(a*c) = a*(Boundary(c))
1903 proof
1904 let a be Element of Z_2, c be Element of k-chain-space(p);
1905 set lsm = a*c;
1906 set l = Boundary(lsm);
1907 set rb = Boundary(c);
1908 set r = a*rb;
1909 for x being Element of (k-1)-polytopes(p) holds l@x = r@x
1910 proof
1911 let x be Element of (k-1)-polytopes(p);
1912 A1: l@x = Sum incidence-sequence(x,lsm) by Th46;
1913 A2: rb@x = Sum incidence-sequence(x,c) by Th46;
1914 set b = rb@x;
1915 A3: r@x = a*b by Th42;
1916 incidence-sequence(x,lsm) = a*incidence-sequence(x,c) by Th43;
1917 hence thesis by A1,A2,A3,FVSUM_1:92;
1918 end;
1919 hence thesis by Th44;
1920 end;
1922 :: As defined, the k-boundary operator gives rise to a linear
1923 :: transformation.
1925 theorem Th49:
1926 k-boundary(p) is
1927 linear-transformation of k-chain-space(p),(k-1)-chain-space(p)
1928 proof
1929 set V = k-chain-space(p);
1930 set b = k-boundary(p);
1931 A1: for x,y being Element of V holds b.(x+y) = (b.x) + (b.y)
1932 proof
1933 let x,y be Element of V;
1934 b.(x+y) = Boundary(x+y) by Def18
1935 .= Boundary(x) + Boundary(y) by Th47
1936 .= (b.x) + Boundary(y) by Def18
1937 .= (b.x) + (b.y) by Def18;
1938 hence thesis;
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1939 end;
1940 for a being Element of Z_2, x being Element of V holds b.(a*x) = a*(b.x)
1941 proof
1942 let a be Element of Z_2, x be Element of V;
1943 b.(a*x) = Boundary(a*x) by Def18
1944 .= a*(Boundary(x)) by Th48
1945 .= a*(b.x) by Def18;
1946 hence thesis;
1947 end;
1948 hence thesis by A1,MOD_2:def 5;
1949 end;
1951 definition
1952 let p be polyhedron, k be Integer;
1953 redefine func k-boundary(p) -> linear-transformation of k-chain-space(p),
1954 (k-1)-chain-space(p);
1955 coherence by Th49;
1956 end;
1958 :: The term "circuit" is used in Lakatos. (A more customary term is
1959 :: "cycle".)
1961 definition
1962 let p be polyhedron, k be Integer;
1963 func k-circuit-space(p) -> Subspace of k-chain-space(p) equals
1964 ker (k-boundary(p));
1965 coherence;
1966 end;
1968 definition
1969 let p be polyhedron, k be Integer;
1970 func k-circuits(p) -> non empty Subset of k-chains(p) equals
1971 [#](k-circuit-space(p));
1972 coherence by VECTSP_4:def 2;
1973 end;
1975 definition
1976 let p be polyhedron, k be Integer;
1977 func k-bounding-chain-space(p) -> Subspace of k-chain-space(p) equals
1978 im ((k+1)-boundary(p));
1979 coherence;
1980 end;
1982 definition
1983 let p be polyhedron, k be Integer;
1984 func k-bounding-chains(p) -> non empty Subset of k-chains(p) equals
1985 [#](k-bounding-chain-space(p));
1986 coherence by VECTSP_4:def 2;
1987 end;
1989 definition
1990 let p be polyhedron, k be Integer;
1991 func k-bounding-circuit-space(p) -> Subspace of k-chain-space(p) equals
1992 (k-bounding-chain-space(p)) /\ (k-circuit-space(p));
1993 coherence;
1994 end;
1996 definition
1997 let p be polyhedron, k be Integer;
1998 func k-bounding-circuits(p) -> non empty Subset of k-chains(p) equals
1999 [#](k-bounding-circuit-space(p));
2000 coherence by VECTSP_4:def 2;
2001 end;
2003 theorem
2004 dim (k-chain-space(p))
2005 = rank (k-boundary(p)) + nullity (k-boundary(p)) by RANKNULL:44;
2007 begin :: Simply Connected and Eulerian Polyhedra
2009 :: The property of being simply connected is that circuits are
2010 :: bounding, and vice versa (any bounding chain is a circuit).
2012 definition
2013 let p be polyhedron;
2014 attr p is simply-connected means
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2015 :Def25:
2016 for k being Integer holds k-circuits(p) = k-bounding-chains(p);
2017 end;
2019 theorem Th51:
2020 p is simply-connected iff for n being Integer holds n-circuit-space(p)
2021 = n-bounding-chain-space(p)
2022 proof
2023 defpred Q[polyhedron] means for n being Integer holds n-circuit-space($1)
2024 = n-bounding-chain-space($1);
2025 thus p is simply-connected implies Q[p]
2026 proof
2027 assume
2028 A1: p is simply-connected;
2029 let n be Integer;
2030 n-circuits(p) = n-bounding-chains(p) by A1,Def25;
2031 hence thesis by VECTSP_4:37;
2032 end;
2033 thus Q[p] implies p is simply-connected
2034 proof
2035 assume
2036 A2: Q[p];
2037 let n be Integer;
2038 thus thesis by A2;
2039 end;
2040 end;
2042 definition
2043 let p be polyhedron;
2044 func alternating-f-vector(p) -> FinSequence of INT means
2045 :Def26:
2046 len(it) = dim(p) + 2 & (for k being Nat st 1 <= k & k <= dim(p) + 2
2047 holds it.k = ((-1)|^k)*num-polytopes(p,k-2));
2048 existence
2049 proof
2050 deffunc F(Nat) = ((-1)|^$1)*num-polytopes(p,$1-2);
2051 consider s being FinSequence of INT such that
2052 A1: len s = dim(p) + 2 and
2053 A2: for j being Nat st j in dom s
2054 holds s.j = F(j) from FINSEQ_2:sch 1;
2055 A3: dom s = Seg(dim(p) + 2) by A1,FINSEQ_1:def 3;
2056 A4: for j being Nat st 1 <= j & j <= dim(p) + 2
2057 holds s.j = ((-1)|^j)*num-polytopes(p,j-2)
2058 proof
2059 let j be Nat such that
2060 A5: 1 <= j and
2061 A6: j <= dim(p) + 2;
2062 A7: j in Seg (dim(p) + 2) by A5,A6,FINSEQ_1:3;
2063 thus thesis by A2,A7,A3;
2064 end;
2065 take s;
2066 thus thesis by A1,A4;
2067 end;
2068 uniqueness
2069 proof
2070 let s,t be FinSequence of INT such that
2071 A8: len(s) = dim(p) + 2 and
2072 A9: for k being Nat st 1 <= k & k <= dim(p) + 2
2073 holds s.k = ((-1)|^k)*num-polytopes(p,k-2) and
2074 A10: len(t) = dim(p) + 2 and
2075 A11: for k being Nat st 1 <= k & k <= dim(p) + 2
2076 holds t.k = ((-1)|^k)*num-polytopes(p,k-2);
2077 for k being Nat st 1 <= k & k <= len s holds s.k = t.k
2078 proof
2079 let k be Nat such that
2080 A12: 1 <= k and
2081 A13: k <= len s;
2082 reconsider k as Nat;
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2083 s.k = ((-1)|^k)*num-polytopes(p,k-2) by A8,A9,A12,A13;
2084 hence thesis by A8,A11,A12,A13;
2085 end;
2086 hence thesis by A8,A10,FINSEQ_1:18;
2087 end;
2088 end;
2090 definition
2091 let p be polyhedron;
2092 func alternating-proper-f-vector(p) -> FinSequence of INT means
2093 :Def27:
2094 len(it) = dim(p) & (for k being Nat st 1 <= k & k <= dim(p)
2095 holds it.k = ((-1)|^(k+1))*num-polytopes(p,k-1));
2096 existence
2097 proof
2098 deffunc F(Nat) = ((-1)|^($1+1))*num-polytopes(p,$1-1);
2099 consider s being FinSequence of INT such that
2100 A1: len s = dim(p) and
2101 A2: for j being Nat st j in dom s holds s.j = F(j) from FINSEQ_2:sch 1;
2102 A3: dom s = Seg dim p by A1,FINSEQ_1:def 3;
2103 A4: for j being Nat st 1 <= j & j <= dim(p)
2104 holds s.j = ((-1)|^(j+1))*num-polytopes(p,j-1)
2105 proof
2106 let j be Nat such that
2107 A5: 1 <= j and
2108 A6: j <= dim(p);
2109 A7: j in Seg dim(p) by A5,A6,FINSEQ_1:3;
2110 thus thesis by A2,A7,A3;
2111 end;
2112 take s;
2113 thus thesis by A1,A4;
2114 end;
2115 uniqueness
2116 proof
2117 let s,t be FinSequence of INT such that
2118 A8: len(s) = dim(p) and
2119 A9: for k being Nat st 1 <= k & k <= dim(p)
2120 holds s.k = ((-1)|^(k+1))*num-polytopes(p,k-1) and
2121 A10: len(t) = dim(p) and
2122 A11: for k being Nat st 1 <= k & k <= dim(p)
2123 holds t.k = ((-1)|^(k+1))*num-polytopes(p,k-1);
2124 for k being Nat st 1 <= k & k <= len s holds s.k = t.k
2125 proof
2126 let k be Nat such that
2127 A12: 1 <= k and
2128 A13: k <= len s;
2129 reconsider k as Nat;
2130 s.k = ((-1)|^(k+1))*num-polytopes(p,k-1) by A8,A9,A12,A13;
2131 hence thesis by A8,A11,A12,A13;
2132 end;
2133 hence thesis by A8,A10,FINSEQ_1:18;
2134 end;
2135 end;
2137 definition
2138 let p be polyhedron;
2139 func alternating-semi-proper-f-vector(p) -> FinSequence of INT means
2140 :Def28:
2141 len(it) = dim(p) + 1 & (for k being Nat st 1 <= k & k <= dim(p) + 1
2142 holds it.k = ((-1)|^(k+1))*num-polytopes(p,k-1));
2143 existence
2144 proof
2145 deffunc F(Nat) = ((-1)|^($1+1))*num-polytopes(p,$1-1);
2146 consider s being FinSequence of INT such that
2147 A1: len s = dim(p) + 1 and
2148 A2: for j being Nat st j in dom s
2149 holds s.j = F(j) from FINSEQ_2:sch 1;
2150 A3: dom s = Seg(dim(p) + 1) by A1,FINSEQ_1:def 3;
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2151 A4: for j being Nat st 1 <= j & j <= dim(p) + 1
2152 holds s.j = ((-1)|^(j+1))*num-polytopes(p,j-1)
2153 proof
2154 let j be Nat such that
2155 A5: 1 <= j and
2156 A6: j <= dim(p) + 1;
2157 A7: j in Seg (dim(p) + 1) by A5,A6,FINSEQ_1:3;
2158 thus thesis by A2,A7,A3;
2159 end;
2160 take s;
2161 thus thesis by A1,A4;
2162 end;
2163 uniqueness
2164 proof
2165 let s,t be FinSequence of INT such that
2166 A8: len(s) = dim(p) + 1 and
2167 A9: for k being Nat st 1 <= k & k <= dim(p) + 1
2168 holds s.k = ((-1)|^(k+1))*num-polytopes(p,k-1) and
2169 A10: len(t) = dim(p) + 1 and
2170 A11: for k being Nat st 1 <= k & k <= dim(p) + 1
2171 holds t.k = ((-1)|^(k+1))*num-polytopes(p,k-1);
2172 for k being Nat st 1 <= k & k <= len s holds s.k = t.k
2173 proof
2174 let k be Nat such that
2175 A12: 1 <= k and
2176 A13: k <= len s;
2177 reconsider k as Nat;
2178 s.k = ((-1)|^(k+1))*num-polytopes(p,k-1) by A8,A9,A12,A13;
2179 hence thesis by A8,A11,A12,A13;
2180 end;
2181 hence thesis by A8,A10,FINSEQ_1:18;
2182 end;
2183 end;
2185 theorem Th52:
2186 1 <= n & n <= len (alternating-proper-f-vector(p))
2187 implies (alternating-proper-f-vector(p)).n
2188 = ((-1)|^(n+1))*(dim ((n-2)-bounding-chain-space(p)))
2189 + ((-1)|^(n+1))*(dim ((n-1)-circuit-space(p)))
2190 proof
2191 set apcs = alternating-proper-f-vector(p);
2192 assume
2193 A1: 1 <= n;
2194 assume n <= len apcs;
2195 then
2196 A2: n <= dim(p) by Def27;
2197 set a = (-1)|^(n+1);
2198 apcs.n = a*num-polytopes(p,n-1) by A1,A2,Def27
2199 .= a*(dim ((n-1)-chain-space(p))) by Th37
2200 .= a*(rank ((n-1)-boundary p) + nullity ((n-1)-boundary p)) by RANKNULL:44
2201 .= (a*dim ((n-2)-bounding-chain-space(p)))
2202 + (a*dim ((n-1)-circuit-space(p)));
2203 hence thesis;
2204 end;
2206 :: The term "eulerian" comes from Lakatos.
2208 definition
2209 let p be polyhedron;
2210 attr p is eulerian means
2211 :Def29:
2212 Sum (alternating-proper-f-vector(p)) = 1 + (-1)|^(dim(p)+1);
2213 end;
2215 theorem Th53:
2216 alternating-semi-proper-f-vector(p)
2217 = alternating-proper-f-vector(p) ^ <*(-1)|^(dim(p))*>
2218 proof
2219 set d = dim(p);
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2220 set aspcs = alternating-semi-proper-f-vector(p);
2221 set apcs = alternating-proper-f-vector(p);
2222 set r = apcs ^ <*(-1)|^(dim(p))*>;
2223 A1: len aspcs = d + 1 by Def28;
2224 len r = (len apcs) + (len <*(-1)|^(dim(p))*>) by FINSEQ_1:35
2225 .= d + (len <*(-1)|^(dim(p))*>) by Def27
2226 .= d + 1 by FINSEQ_1:57;
2227 then
2228 A2: len aspcs = len r by Def28;
2229 for n being Nat st 1 <= n & n <= len aspcs holds aspcs.n = r.n
2230 proof
2231 let n be Nat such that
2232 A3: 1 <= n and
2233 A4: n <= len aspcs;
2234 per cases by A1,A4,NAT_1:8;
2235 suppose
2236 A5: n <= d;
2237 A6: len apcs = d by Def27;
2238 A7: dom apcs = Seg (len apcs) by FINSEQ_1:def 3;
2239 n in NAT by ORDINAL1:def 13;
2240 then n in dom apcs by A3,A5,A6,A7;
2241 then r.n = apcs.n by FINSEQ_1:def 7
2242 .= ((-1)|^(n+1))*num-polytopes(p,n-1) by A3,A5,Def27;
2243 hence thesis by A1,A3,A4,Def28;
2244 end;
2245 suppose
2246 A8: n = d + 1;
2247 then
2248 A9: aspcs.n = ((-1)|^(n+1))*num-polytopes(p,n-1) by A3,Def28
2249 .= ((-1)|^(n+1))*1 by A8,Th32
2250 .= (-1)|^(n+1);
2251 n = (len apcs) + 1 by A8,Def27;
2252 then r.n = (-1)|^d by FINSEQ_1:59
2253 .= (-1)|^(d+2) by Th14;
2254 hence thesis by A8,A9;
2255 end;
2256 end;
2257 hence thesis by A2,FINSEQ_1:18;
2258 end;
2260 :: Another characterization of Eulerian polyhedra
2262 definition
2263 let p be polyhedron;
2264 redefine attr p is eulerian means
2265 :Def30:
2266 Sum (alternating-semi-proper-f-vector(p)) = 1;
2267 compatibility
2268 proof
2269 set apcs = alternating-proper-f-vector(p);
2270 set aspcs = alternating-semi-proper-f-vector(p);
2271 aspcs = apcs ^ <*(-1)|^(dim(p))*> by Th53;
2272 then
2273 A1: Sum aspcs = (Sum apcs) + (-1)|^(dim(p)) by GR_CY_1:20;
2274 A2: p is eulerian implies Sum aspcs = 1
2275 proof
2276 assume p is eulerian;
2277 then Sum aspcs = 1 + (-1)|^(dim(p)+1) + (-1)|^(dim(p)) by A1,Def29
2278 .= 1 + (-1)*((-1)|^(dim(p))) + (-1)|^(dim(p)) by NEWTON:11
2279 .= 1;
2280 hence thesis;
2281 end;
2282 Sum aspcs = 1 implies p is eulerian
2283 proof
2284 assume Sum aspcs = 1;
2285 then Sum apcs = 1 + (-1)*((-1)|^(dim(p))) by A1
2286 .= 1 + (-1)|^(dim(p)+1) by NEWTON:11;
2287 hence thesis by Def29;
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2288 end;
2289 hence thesis by A2;
2290 end;
2291 end;
2293 theorem Th54:
2294 alternating-f-vector(p) = <*-1*> ^ alternating-semi-proper-f-vector(p)
2295 proof
2296 set acs = alternating-f-vector(p);
2297 set aspcs = alternating-semi-proper-f-vector(p);
2298 set d = dim(p);
2299 set r = <*-1*> ^ aspcs;
2300 A1: len r = (len <*-1*>) + (len aspcs) by FINSEQ_1:35
2301 .= (len <*-1*>) + (d + 1) by Def28
2302 .= 1 + (d + 1) by FINSEQ_1:57
2303 .= d + 2;
2304 then
2305 A2: len acs = len r by Def26;
2306 for n being Nat st 1 <= n & n <= len acs holds acs.n = r.n
2307 proof
2308 let n be Nat such that
2309 A3: 1 <= n and
2310 A4: n <= len acs;
2311 A5: n <= d + 2 by A4,Def26;
2312 per cases by A3,XXREAL_0:1;
2313 suppose
2314 A6: n = 1;
2315 then acs.n = ((-1)|^1)*num-polytopes(p,1-2) by A5,Def26
2316 .= (-1)*num-polytopes(p,-1) by NEWTON:10
2317 .= (-1)*1 by Th31
2318 .= -1;
2319 hence thesis by A6,FINSEQ_1:58;
2320 end;
2321 suppose
2322 A7: n > 1;
2323 then
2324 A8: 1 - 1 < n - 1 by XREAL_1:11;
2325 then reconsider m = n - 1 as Element of NAT by INT_1:16;
2326 0 < 0 qua Nat + m by A8;
2327 then
2328 A9: 1 <= m by NAT_1:19;
2329 n - 1 <= (d + 2) - 1 by A5,XREAL_1:11;
2330 then
2331 A10: m <= d + 1;
2332 A11: r.n = aspcs.(n-1)
2333 proof
2334 len <*-1*> = 1 by FINSEQ_1:56;
2335 hence thesis by A1,A5,A7,FINSEQ_1:37;
2336 end;
2337 aspcs.m = ((-1)|^(m+1))*num-polytopes(p,m-1) by A9,A10,Def28
2338 .= ((-1)|^n)*(num-polytopes(p,n-2));
2339 hence thesis by A3,A5,A11,Def26;
2340 end;
2341 end;
2342 hence thesis by A2,FINSEQ_1:18;
2343 end;
2345 :: Yet another characterization of eulerian polyhedra
2347 definition
2348 let p be polyhedron;
2349 redefine attr p is eulerian means
2350 :Def31:
2351 Sum (alternating-f-vector(p)) = 0;
2352 compatibility
2353 proof
2354 set acs = alternating-f-vector(p);
2355 set aspcs = alternating-semi-proper-f-vector(p);
2356 acs = <*-1*> ^ aspcs by Th54;
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2357 then
2358 A1: Sum acs = -1 + (Sum aspcs) by Th21;
2359 p is eulerian implies Sum acs = 0
2360 proof
2361 assume p is eulerian;
2362 then Sum acs = -1 + 1 by A1,Def30
2363 .= 0;
2364 hence thesis;
2365 end;
2366 hence thesis by A1,Def30;
2367 end;
2368 end;
2370 begin :: The Extremal Chain Spaces
2372 theorem Th55:
2373 0-polytopes(p) is non empty
2374 proof
2375 set d = dim(p);
2376 per cases;
2377 suppose d = 0;
2378 then 0-polytopes(p) = {p} by Def5;
2379 hence thesis;
2380 end;
2381 suppose d > 0;
2382 hence thesis by Th26;
2383 end;
2384 end;
2386 theorem Th56:
2387 card [#]((-1)-chain-space(p)) = 2
2388 proof
2389 (-1)-polytopes(p) = {{}} by Def5;
2390 then card ((-1)-polytopes(p)) = 1 by CARD_1:50;
2391 then card [#]((-1)-chain-space(p)) = exp(2,1) by BSPACE:43
2392 .= 2 by CARD_2:40;
2393 hence thesis;
2394 end;
2396 theorem Th57:
2397 [#]((-1)-chain-space(p)) = { {}, {{}} }
2398 proof
2399 (-1)-polytopes(p) = {{}} by Def5;
2400 hence thesis by ZFMISC_1:30;
2401 end;
2403 theorem Th58:
2404 for x being Element of k-polytopes(p), e being Element of (k-1)-polytopes(p)
2405 st k = 0 & e = {} holds incidence-value(e,x) = 1.Z_2
2406 proof
2407 let x be Element of k-polytopes(p),
2408 e be Element of (k-1)-polytopes(p) such that
2409 A1: k = 0 and
2410 A2: e = {};
2411 A3: 0 <= k & k <= dim(p) by A1;
2412 A4: eta(p,k) = [:{{}},0-polytopes(p):] --> 1.Z_2 by A1,Def6;
2413 A5: {} in {{}} by TARSKI:def 1;
2414 0-polytopes(p) is non empty by A3,Th26;
2415 then
2416 A6: [{},x] in [:{{}},0-polytopes(p):] by A1,A5,ZFMISC_1:106;
2417 incidence-value(e,x) = eta(p,k).(e,x) by A3,Def13
2418 .= 1.Z_2 by A2,A4,A6,FUNCOP_1:13;
2419 hence thesis;
2420 end;
2422 theorem Th59:
2423 for k being Integer, x being Element of k-polytopes(p),
2424 v being Element of k-chain-space(p), e being Element of (k-1)-polytopes(p),
2425 n being Nat st k = 0 & v = {x} & e = {} & x = n-th-polytope(p,k)
2426 & 1 <= n & n <= num-polytopes(p,k) holds incidence-sequence(e,v).n = 1.Z_2
2427 proof
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2428 let k be Integer, x be Element of k-polytopes(p),
2429 v be Element of k-chain-space(p), e be Element of (k-1)-polytopes(p),
2430 n be Nat such that
2431 A1: k = 0 and
2432 A2: v = {x} and
2433 A3: e = {} and
2434 A4: x = n-th-polytope(p,k) and
2435 A5: 1 <= n and
2436 A6: n <= num-polytopes(p,k);
2437 set iseq = incidence-sequence(e,v);
2438 A7: (k-1)-polytopes(p) is non empty by A1,Def5;
2439 A8: x in v by A2,TARSKI:def 1;
2440 iseq.n = (v@x)*incidence-value(e,x) by A4,A5,A6,A7,Def16
2441 .= (1.Z_2)*incidence-value(e,x) by A8,BSPACE:def 3
2442 .= (1.Z_2)*(1.Z_2) by A1,A3,Th58
2443 .= 1.Z_2 by VECTSP_1:def 16;
2444 hence thesis;
2445 end;
2447 theorem Th60:
2448 for k being Integer, x being Element of k-polytopes(p),
2449 e being Element of (k-1)-polytopes(p), v being Element of k-chain-space(p),
2450 m,n being Nat st k = 0 & v = {x} & x = n-th-polytope(p,k) & 1 <= m &
2451 m <= num-polytopes(p,k) & 1 <= n & n <= num-polytopes(p,k) & m <> n
2452 holds incidence-sequence(e,v).m = 0.Z_2
2453 proof
2454 let k be Integer, x be Element of k-polytopes(p),
2455 e be Element of (k-1)-polytopes(p), v be Element of k-chain-space(p),
2456 m,n be Nat such that
2457 A1: k = 0 and
2458 A2: v = {x} and
2459 A3: x = n-th-polytope(p,k) and
2460 A4: 1 <= m and
2461 A5: m <= num-polytopes(p,k) and
2462 A6: 1 <= n and
2463 A7: n <= num-polytopes(p,k) and
2464 A8: m <> n;
2465 set iseq = incidence-sequence(e,v);
2466 -1 <= k & k <= dim(p) by A1;
2467 then
2468 A9: m-th-polytope(p,k) <> x by A3,A4,A5,A6,A7,A8,Th35;
2469 now
2470 assume v@(m-th-polytope(p,k)) = 1.Z_2;
2471 then m-th-polytope(p,k) in {x} by A2,BSPACE:9;
2472 hence contradiction by A9,TARSKI:def 1;
2473 end;
2474 then
2475 A10: v@(m-th-polytope(p,k)) = 0.Z_2 by BSPACE:11;
2476 (k-1)-polytopes(p) is non empty by A1,Def5;
2477 then iseq.m = (0.Z_2)*(incidence-value(e,m-th-polytope(p,k)))
2478 by A4,A5,A10,Def16
2479 .= 0.Z_2 by VECTSP_1:39;
2480 hence thesis;
2481 end;
2483 theorem Th61:
2484 for k being Integer, x being Element of k-polytopes(p),
2485 v being Element of k-chain-space(p), e being Element of (k-1)-polytopes(p)
2486 st k = 0 & v = {x} & e = {} holds Sum incidence-sequence(e,v) = 1.Z_2
2487 proof
2488 let k be Integer, x be Element of k-polytopes(p),
2489 v be Element of k-chain-space(p),
2490 e be Element of (k-1)-polytopes(p) such that
2491 A1: k = 0 and
2492 A2: v = {x} and
2493 A3: e = {};
2494 set iseq = incidence-sequence(e,v);
2495 -1 <= k & k <= dim(p) by A1;
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2496 then consider n being Nat such that
2497 A4: x = n-th-polytope(p,k) and
2498 A5: 1 <= n and
2499 A6: n <= num-polytopes(p,k) by Th33;
2500 (k-1)-polytopes(p) is non empty by A1,Def5;
2501 then
2502 A7: len iseq = num-polytopes(p,k) by Def16;
2503 dom iseq = Seg (len iseq) by FINSEQ_1:def 3;
2504 then
2505 A8: n in dom iseq by A5,A6,A7,FINSEQ_1:3;
2506 A9: iseq.n = 1.Z_2 by A1,A2,A3,A4,A5,A6,Th59;
2507 for m being Nat st m in dom iseq & m <> n holds iseq.m = 0.Z_2
2508 proof
2509 let m be Nat such that
2510 A10: m in dom iseq and
2511 A11: m <> n;
2512 m in Seg (len iseq) by A10,FINSEQ_1:def 3;
2513 then 1 <= m & m <= len iseq by FINSEQ_1:3;
2514 hence thesis by A1,A2,A4,A5,A6,A7,A11,Th60;
2515 end;
2516 hence thesis by A8,A9,MATRIX_3:14;
2517 end;
2519 theorem Th62:
2520 for x being Element of 0-polytopes(p) holds (0-boundary(p)).({x}) = {{}}
2521 proof
2522 let x be Element of 0-polytopes(p);
2523 set T = 0-boundary(p);
2524 reconsider minusone = 0 qua Nat - 1 as Integer;
2525 0-polytopes(p) is non empty by Th55;
2526 then reconsider v = {x} as Subset of 0-polytopes(p) by ZFMISC_1:37;
2527 reconsider v as Element of 0-chain-space(p);
2528 A1: T.v = Boundary(v) by Def18;
2529 reconsider bv = Boundary(v) as Element of minusone-chain-space(p);
2530 A2: minusone-polytopes(p) is non empty by Def5;
2531 (0 qua Nat-1)-polytopes(p) = {{}} by Def5;
2532 then reconsider null = {} as
2533 Element of (0 qua Nat-1)-polytopes(p) by TARSKI:def 1;
2534 null in bv iff Sum incidence-sequence(null,v) = 1.Z_2 by A2,Def17;
2535 then
2536 A3: {null} c= bv by Th61,ZFMISC_1:37;
2537 bv c= {null}
2538 proof
2539 let y be set such that
2540 A4: y in bv;
2541 A5: [#](minusone-chain-space(p)) = { {}, {{}} } by Th57;
2542 per cases by A5,TARSKI:def 2;
2543 suppose bv = {};
2544 hence thesis by A4;
2545 end;
2546 suppose bv = {{}};
2547 hence thesis by A4;
2548 end;
2549 end;
2550 hence thesis by A1,A3,XBOOLE_0:def 10;
2551 end;
2553 theorem Th63:
2554 k = -1 implies dim(k-bounding-chain-space(p)) = 1
2555 proof
2556 assume
2557 A1: k = -1;
2558 set T = 0-boundary(p);
2559 set V = k-bounding-chain-space(p);
2560 card [#]V = 2
2561 proof
2562 A2: T.(0.(0-chain-space(p))) = 0.(k-chain-space(p)) by A1,RANKNULL:9
2563 .= {};
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2564 0-polytopes(p) <> {} by Th55;
2565 then consider x being set such that
2566 A3: x in 0-polytopes(p) by XBOOLE_0:def 1;
2567 reconsider x as Element of 0-polytopes(p) by A3;
2568 set v = {x};
2569 A4: T.v = {{}} by Th62;
2570 A5: dom T = [#](0-chain-space(p)) by RANKNULL:7;
2571 reconsider v as Subset of 0-polytopes(p) by A3,ZFMISC_1:37;
2572 reconsider v as Element of 0-chain-space(p);
2573 A6: v in dom T by A5;
2574 A7: {} in rng T by A2,A5,FUNCT_1:12;
2575 {{}} in rng T by A4,A6,FUNCT_1:12;
2576 then
2577 A8: {{},{{}}} c= rng T by A7,ZFMISC_1:38;
2578 card {{},{{}}} = 2 by CARD_2:76;
2579 then
2580 A9: 2 c= card rng T by A8,CARD_1:27;
2581 A10: card rng T = card (T .: [#](0-chain-space(p))) by FUNCT_2:45
2582 .= card [#]V by A1,RANKNULL:def 2;
2583 [#]V c= [#](k-chain-space(p)) by VECTSP_4:def 2;
2584 then card [#]V c= card [#](k-chain-space(p)) by CARD_1:27;
2585 then card [#]V c= 2 by A1,Th56;
2586 hence thesis by A9,A10,XBOOLE_0:def 10;
2587 end;
2588 hence thesis by RANKNULL:6;
2589 end;
2591 theorem Th64:
2592 card [#](dim(p)-chain-space(p)) = 2
2593 proof
2594 dim(p)-polytopes(p) = {p} by Def5;
2595 then card (dim(p)-polytopes(p)) = 1 by CARD_1:50;
2596 then card [#]((dim(p))-chain-space(p)) = exp(2,1) by BSPACE:43
2597 .= 2 by CARD_2:40;
2598 hence thesis;
2599 end;
2601 theorem Th65:
2602 {p} is Element of dim(p)-chain-space(p)
2603 proof
2604 dim(p)-polytopes(p) = {p} by Def5;
2605 hence thesis by ZFMISC_1:def 1;
2606 end;
2608 theorem Th66:
2609 {p} in [#](dim(p)-chain-space(p))
2610 proof
2611 {p} is Element of dim(p)-chain-space(p) by Th65;
2612 hence thesis;
2613 end;
2615 theorem Th67:
2616 (dim(p) - 1)-polytopes(p) is non empty
2617 proof
2618 set n = dim(p) - 1;
2619 A1: -1 <= n
2620 proof
2621 0 qua Nat - 1 = -1;
2622 hence thesis by XREAL_1:11;
2623 end;
2624 n <= dim(p) by XREAL_1:148;
2625 hence thesis by A1,Th26;
2626 end;
2628 registration
2629 let p be polyhedron;
2630 cluster (dim(p)-1)-polytopes(p) -> non empty;
2631 coherence by Th67;
2632 end;
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2634 theorem Th68:
2635 [#](dim(p)-chain-space(p)) = { 0.(dim(p)-chain-space(p)), {p} }
2636 proof
2637 set V = dim(p)-chain-space(p);
2638 set C = [#]V;
2639 A1: card C = 2 by Th64;
2640 reconsider C as finite set;
2641 consider a,b being set such that
2642 A2: a <> b and
2643 A3: C = {a,b} by A1,CARD_2:79;
2644 {p} in C by Th66;
2645 hence thesis by A2,A3,Th1;
2646 end;
2648 theorem Th69:
2649 for x being Element of dim(p)-chain-space(p)
2650 holds x = 0.(dim(p)-chain-space(p)) or x = {p}
2651 proof
2652 set V = dim(p)-chain-space(p);
2653 let x be Element of V;
2654 x in [#]V;
2655 then x in { 0.V, {p} } by Th68;
2656 hence thesis by TARSKI:def 2;
2657 end;
2659 theorem Th70:
2660 for x,y being Element of dim(p)-chain-space(p) st x <> y
2661 holds x = 0.(dim(p)-chain-space(p)) or y = 0.(dim(p)-chain-space(p))
2662 proof
2663 set V = dim(p)-chain-space(p);
2664 let x,y be Element of V such that
2665 A1: x <> y;
2666 assume
2667 A2: x <> 0.V;
2668 assume
2669 A3: y <> 0.V;
2670 x = {p} by A2,Th69;
2671 hence contradiction by A1,A3,Th69;
2672 end;
2674 theorem
2675 dim(p)-polytope-seq(p) = <*p*> by Def7;
2677 theorem Th72:
2678 1-th-polytope(p,dim(p)) = p
2679 proof
2680 reconsider egy = 1 as Nat;
2681 A1: egy <= num-polytopes(p,dim(p)) by Th32;
2682 set s = dim(p)-polytope-seq(p);
2683 A2: s = <*p*> by Def7;
2684 egy-th-polytope(p,dim(p)) = s.egy by A1,Def12
2685 .= p by A2,FINSEQ_1:57;
2686 hence thesis;
2687 end;
2689 theorem Th73:
2690 for c being Element of dim(p)-chain-space(p),
2691 x being Element of dim(p)-polytopes(p) st c = {p} holds c@x = 1.Z_2
2692 proof
2693 let c be Element of dim(p)-chain-space(p),
2694 x be Element of dim(p)-polytopes(p) such that
2695 A1: c = {p};
2696 dim(p)-polytopes(p) = {p} by Def5;
2697 hence thesis by A1,BSPACE:def 3;
2698 end;
2700 theorem Th74:
2701 for x being Element of (dim(p)-1)-polytopes(p),
2702 c being Element of dim(p)-polytopes(p) st c = p
2703 holds incidence-value(x,c) = 1.Z_2
2704 proof
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2705 let x be Element of (dim(p)-1)-polytopes(p),
2706 c be Element of dim(p)-polytopes(p) such that
2707 A1: c = p;
2708 set f = [:(dim(p)-1)-polytopes(p),{p}:] --> 1.Z_2;
2709 A2: eta(p,dim(p)) = f by Def6;
2710 A3: dom f = [:(dim(p)-1)-polytopes(p),{p}:] by FUNCOP_1:19;
2711 c in {p} by A1,TARSKI:def 1;
2712 then [x,c] in dom f by A3,ZFMISC_1:106;
2713 then f.(x,c) in rng f by FUNCT_1:12;
2714 then f.(x,c) in {1.Z_2} by FUNCOP_1:14;
2715 then f.(x,c) = 1.Z_2 by TARSKI:def 1;
2716 hence thesis by A2,Def13;
2717 end;
2719 theorem Th75:
2720 for x being Element of (dim(p)-1)-polytopes(p),
2721 c being Element of dim(p)-chain-space(p) st c = {p}
2722 holds incidence-sequence(x,c) = <*1.Z_2*>
2723 proof
2724 let x be Element of (dim(p)-1)-polytopes(p),
2725 c be Element of dim(p)-chain-space(p) such that
2726 A1: c = {p};
2727 set iseq = incidence-sequence(x,c);
2728 num-polytopes(p,dim(p))= 1 by Th32;
2729 then
2730 A2: len iseq = 1 by Def16;
2731 iseq.1 = 1.Z_2
2732 proof
2733 reconsider egy = 1 as Nat;
2734 A3: egy <= num-polytopes(p,dim(p)) by Th32;
2735 set z = egy-th-polytope(p,dim(p));
2736 A4: iseq.egy = (c@z)*(incidence-value(x,z)) by A3,Def16;
2737 A5: c@z = 1.Z_2 by A1,Th73;
2738 incidence-value(x,z) = 1.Z_2 by Th72,Th74; :: !!!
2739 hence thesis by A4,A5,VECTSP_1:def 16;
2740 end;
2741 hence thesis by A2,FINSEQ_1:57;
2742 end;
2744 theorem Th76:
2745 for x being Element of (dim(p)-1)-polytopes(p),
2746 c being Element of dim(p)-chain-space(p) st c = {p}
2747 holds Sum incidence-sequence(x,c) = 1.Z_2
2748 proof
2749 let x be Element of (dim(p)-1)-polytopes(p),
2750 c be Element of dim(p)-chain-space(p) such that
2751 A1: c = {p};
2752 incidence-sequence(x,c) = <*1.Z_2*> by A1,Th75;
2753 hence thesis by FINSOP_1:12;
2754 end;
2756 :: The boundary operation applied to the unique non-zero vector of the
2757 :: dim(p)-chain space gives the "top" vector of the (dim(p)-1)-chain
2758 :: space. In other words, every (dim(p)-1)-polytope is incidence to
2759 :: the whole polyhedron.
2761 theorem Th77:
2762 (dim(p)-boundary(p)).{p} = (dim(p)-1)-polytopes(p)
2763 proof
2764 set T = dim(p)-boundary(p);
2765 set X = (dim(p)-1)-polytopes(p);
2766 reconsider c = {p} as Element of dim(p)-chain-space(p) by Th65;
2767 reconsider d = X as Element of (dim(p)-1)-chain-space(p) by ZFMISC_1:def 1;
2768 reconsider Tc = T.c as Element of (dim(p)-1)-chain-space(p);
2769 for x being Element of X holds x in Tc iff x in d
2770 proof
2771 let x be Element of X;
2772 thus x in Tc implies x in d;
2773 thus x in d implies x in Tc
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2774 proof
2775 assume x in d;
2776 Sum incidence-sequence(x,c) = 1.Z_2 by Th76;
2777 then x in Boundary(c) by Def17;
2778 hence thesis by Def18;
2779 end;
2780 end;
2781 hence thesis by SUBSET_1:8;
2782 end;
2784 theorem Th78:
2785 dim(p)-boundary(p) is one-to-one
2786 proof
2787 set T = dim(p)-boundary(p);
2788 set U = (dim(p) - 1)-chain-space(p);
2789 set V = dim(p)-chain-space(p);
2790 set B = {p};
2791 assume not T is one-to-one;
2792 then consider x1,x2 being set such that
2793 A1: x1 in dom T and
2794 A2: x2 in dom T and
2795 A3: T.x1 = T.x2 and
2796 A4: x1 <> x2 by FUNCT_1:def 8;
2797 reconsider x1 as Element of V by A1;
2798 reconsider x2 as Element of V by A2;
2799 per cases by A4,Th70;
2800 suppose
2801 A5: x1 = 0.V;
2802 then
2803 A6: x2 = B by A4,Th69;
2804 T.x1 = 0.U by A5,RANKNULL:9;
2805 hence thesis by A3,A6,Th77;
2806 end;
2807 suppose
2808 A7: x2 = 0.V;
2809 then
2810 A8: x1 = B by A4,Th69;
2811 T.x2 = 0.U by A7,RANKNULL:9;
2812 hence thesis by A3,A8,Th77;
2813 end;
2814 end;
2816 theorem Th79:
2817 dim ((dim(p)-1)-bounding-chain-space(p)) = 1
2818 proof
2819 set d = dim(p);
2820 set T = d-boundary(p);
2821 set U = d-chain-space(p);
2822 set V = (d-1)-bounding-chain-space(p);
2823 A1: T is one-to-one by Th78;
2824 A2: card [#]V = card (T .: [#]U) by RANKNULL:def 2
2825 .= card (rng T) by FUNCT_2:45;
2826 card (dom T) = card [#]U by RANKNULL:7
2827 .= 2 by Th64;
2828 then card [#]V = 2 by A1,A2,Th2;
2829 hence thesis by RANKNULL:6;
2830 end;
2832 theorem Th80:
2833 p is simply-connected implies dim ((dim(p)-1)-circuit-space(p)) = 1
2834 proof
2835 assume
2836 A1: p is simply-connected;
2837 set d = dim(p);
2838 set U = (d-1)-bounding-chain-space(p);
2839 set V = (d-1)-circuit-space(p);
2840 U = V by A1,Th51;
2841 hence thesis by Th79;
2842 end;
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2844 theorem Th81:
2845 1 < n & n < dim(p) + 2 implies (alternating-f-vector(p)).n
2846 = (alternating-proper-f-vector(p)).(n-1)
2847 proof
2848 assume
2849 A1: 1 < n;
2850 assume
2851 A2: n < dim(p) + 2;
2852 set acs = alternating-f-vector(p);
2853 set apcs = alternating-proper-f-vector(p);
2854 A3: acs.n = ((-1)|^n)*num-polytopes(p,n-2) by A1,A2,Def26;
2855 0 <= n - 1
2856 proof
2857 1 - 1 = 0;
2858 hence thesis by A1,XREAL_1:15;
2859 end;
2860 then reconsider m = n - 1 as Element of NAT by INT_1:16;
2861 reconsider m as Nat;
2862 A4: 1 <= m
2863 proof
2864 A5: 2 <= n
2865 proof
2866 1 + 1 = 2;
2867 hence thesis by A1,INT_1:20;
2868 end;
2869 2 - 1 = 1;
2870 hence thesis by A5,XREAL_1:15;
2871 end;
2872 m <= dim(p)
2873 proof
2874 n < (dim(p) + 1) + 1 by A2;
2875 then n <= dim(p) + 1 by NAT_1:13;
2876 then n - 1 <= (dim(p) + 1) - 1 by XREAL_1:11;
2877 hence thesis;
2878 end;
2879 then apcs.m = ((-1)|^(m+1))*num-polytopes(p,m-1) by A4,Def27;
2880 hence thesis by A3;
2881 end;
2883 theorem Th82:
2884 alternating-f-vector(p)
2885 = <*-1*> ^ alternating-proper-f-vector(p) ^ <*(-1)|^(dim(p))*>
2886 proof
2887 set acs = alternating-f-vector(p);
2888 set apcs = alternating-proper-f-vector(p);
2889 set r = <*-1*> ^ apcs ^ <*(-1)|^(dim(p))*>;
2890 set n = dim(p);
2891 A1: len acs = n + 2 by Def26;
2892 A2: len apcs = n by Def27;
2893 A3: len r = (len <*-1*>) + (len apcs) + (len <*(-1)|^(dim(p))*>) by Th16;
2894 A4: len <*-1*> = 1 by FINSEQ_1:56;
2895 A5: len <*(-1)|^(dim(p))*> = 1 by FINSEQ_1:56;
2896 for k being Nat st 1 <= k & k <= len acs holds acs.k = r.k
2897 proof
2898 let k be Nat such that
2899 A6: 1 <= k and
2900 A7: k <= len acs;
2901 per cases by A1,A6,A7,XXREAL_0:1;
2902 suppose
2903 A8: k = 1;
2904 A9: 1 <= n + 2 by Th12;
2905 reconsider o = 1 as Nat;
2906 o - 2 = -1;
2907 then
2908 A10: acs.o = ((-1)|^o)*num-polytopes(p,-1) by A9,Def26;
2909 A11: (-1)|^1 = -1 by Th4,Th9;
2910 num-polytopes(p,-1) = 1 by Th31;
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2911 hence thesis by A8,A10,A11,Th17;
2912 end;
2913 suppose
2914 A12: k = n + 2;
2915 then 1 <= k by Th12;
2916 then
2917 A13: acs.k = ((-1)|^k)*num-polytopes(p,k-2) by A12,Def26;
2918 A14: r.k = (-1)|^k
2919 proof
2920 k = (len <*-1*> + len (apcs) + 1)
2921 proof
2922 len <*-1*> = 1 by FINSEQ_1:56;
2923 hence thesis by A2,A12;
2924 end;
2925 then r.k = (-1)|^(dim(p)) by Th18
2926 .= (-1)|^k by A12,Th14;
2927 hence thesis;
2928 end;
2929 num-polytopes(p,k-2) = 1 by A12,Th32;
2930 hence thesis by A13,A14;
2931 end;
2932 suppose
2933 A15: 1 < k & k < n + 2;
2934 set m = k - 1;
2935 A16: len <*-1*> = 1 by FINSEQ_1:56;
2936 k <= len (<*-1*> ^ apcs)
2937 proof
2938 A17: len (<*-1*> ^ apcs) = (len <*-1*> + len apcs) by FINSEQ_1:35
2939 .= n + 1 by A2,FINSEQ_1:56;
2940 A18: k + 1 <= n + 2 by A15,INT_1:20;
2941 A19: (k + 1) - 1 = k;
2942 (n + 2) - 1 = n + 1;
2943 hence thesis by A17,A18,A19,XREAL_1:11;
2944 end;
2945 then r.k = apcs.m by A15,A16,Th19;
2946 hence thesis by A15,Th81;
2947 end;
2948 end;
2949 hence thesis by A1,A2,A3,A4,A5,FINSEQ_1:18;
2950 end;
2952 begin :: A Generalized Euler Relation and its 1-, 2-, and 3-dimensional Special Cases
2954 theorem Th83:
2955 dim(p) is odd implies Sum (alternating-f-vector(p))
2956 = Sum (alternating-proper-f-vector(p)) - 2
2957 proof
2958 assume
2959 A1: dim(p) is odd;
2960 set acs = alternating-f-vector(p);
2961 set apcs = alternating-proper-f-vector(p);
2962 A2: acs = <*-1*> ^ apcs ^ <*(-1)|^(dim(p))*> by Th82;
2963 A3: (-1)|^(dim(p)) = -1 by A1,Th9;
2964 reconsider minusone = -1 as Integer;
2965 reconsider lastterm = (-1)|^(dim(p)) as Integer;
2966 Sum acs = (Sum <*minusone*>) + (Sum apcs) + (Sum <*lastterm*>) by A2,Th22
2967 .= (Sum <*minusone*>) + (Sum apcs) + (-1) by A3,RVSUM_1:103
2968 .= (-1) + (Sum apcs) + (-1) by RVSUM_1:103
2969 .= (Sum apcs) - 2;
2970 hence thesis;
2971 end;
2973 theorem Th84:
2974 dim(p) is even implies Sum (alternating-f-vector(p))
2975 = Sum (alternating-proper-f-vector(p))
2976 proof
2977 assume
2978 A1: dim(p) is even;
2979 set acs = alternating-f-vector(p);
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2980 set apcs = alternating-proper-f-vector(p);
2981 A2: acs = <*-1*> ^ apcs ^ <*(-1)|^(dim(p))*> by Th82;
2982 A3: (-1)|^(dim(p)) = 1 by A1,Th8;
2983 reconsider minusone = -1 as Integer;
2984 reconsider lastterm = (-1)|^(dim(p)) as Integer;
2985 Sum acs = (Sum <*minusone*>) + (Sum apcs) + (Sum <*lastterm*>) by A2,Th22
2986 .= (Sum <*minusone*>) + (Sum apcs) + 1 by A3,RVSUM_1:103
2987 .= (-1) + (Sum apcs) + 1 by RVSUM_1:103
2988 .= Sum apcs;
2989 hence thesis;
2990 end;
2992 theorem Th85:
2993 dim(p) = 1 implies Sum alternating-proper-f-vector(p) = num-polytopes(p,0)
2994 proof
2995 assume
2996 A1: dim(p) = 1;
2997 set apcs = alternating-proper-f-vector(p);
2998 A2: len apcs = 1 by A1,Def27;
2999 reconsider egy = 1 as Nat;
3000 A3: apcs.egy = (-1)|^(egy+1)*num-polytopes(p,egy-1) by A1,Def27;
3001 (-1)|^(egy+1) = 1 by Th5,Th8;
3002 then apcs = <*num-polytopes(p,0)*> by A2,A3,FINSEQ_1:57;
3003 hence thesis by RVSUM_1:103;
3004 end;
3006 theorem Th86:
3007 dim(p) = 2 implies Sum alternating-proper-f-vector(p)
3008 = num-polytopes(p,0) - num-polytopes(p,1)
3009 proof
3010 assume
3011 A1: dim(p) = 2;
3012 set apcs = alternating-proper-f-vector(p);
3013 A2: len apcs = 2 by A1,Def27;
3014 reconsider o = 1 as Nat;
3015 reconsider t = 2 as Nat;
3016 A3: apcs.o = ((-1)|^(o+1))*num-polytopes(p,o-1) by A1,Def27;
3017 A4: apcs.t = ((-1)|^(t+1))*num-polytopes(p,t-1) by A1,Def27;
3018 A5: (-1)|^(o+1) = 1 by Th5,Th8;
3019 A6: (-1)|^(t+1) = -1 by Th6,Th9;
3020 reconsider apcso = apcs.o as Integer;
3021 reconsider apcst = apcs.t as Integer;
3022 A7: apcs = <*apcso,apcst*> by A2,FINSEQ_1:61;
3023 Sum apcs = apcso + apcst by A7,RVSUM_1:107
3024 .= num-polytopes(p,0) - num-polytopes(p,1) by A3,A4,A5,A6;
3025 hence thesis;
3026 end;
3028 theorem Th87:
3029 dim(p) = 3 implies Sum alternating-proper-f-vector(p)
3030 = num-polytopes(p,0) - num-polytopes(p,1) + num-polytopes(p,2)
3031 proof
3032 assume
3033 A1: dim(p) = 3;
3034 set apcs = alternating-proper-f-vector(p);
3035 A2: len apcs = 3 by A1,Def27;
3036 reconsider o = 1 as Nat;
3037 reconsider tw = 2 as Nat;
3038 reconsider th = 3 as Nat;
3039 reconsider mo = -1 as Integer;
3040 A3: (-1)|^(o+1) = 1 by Th5,Th8;
3041 A4: (-1)|^(tw+1) = -1 by Th6,Th9;
3042 A5: (-1)|^(th+1) = 1 by Th7,Th8;
3043 A6: apcs.o = o*num-polytopes(p,o-1) by A1,A3,Def27;
3044 A7: apcs.tw = mo*num-polytopes(p,tw-1) by A1,A4,Def27;
3045 A8: apcs.th = o*num-polytopes(p,th-1) by A1,A5,Def27;
3046 reconsider apcson = apcs.o as Integer;
3047 reconsider apcstw = apcs.tw as Integer;
3048 reconsider apcsth = apcs.th as Integer;
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3049 A9: apcs = <*apcson,apcstw,apcsth*> by A2,FINSEQ_1:62;
3050 Sum apcs = apcson + apcstw + apcsth by A9,RVSUM_1:108
3051 .= num-polytopes(p,0)
3052 - num-polytopes(p,1) + num-polytopes(p,2) by A6,A7,A8;
3053 hence thesis;
3054 end;
3056 :: A trivial special case
3058 theorem Th88:
3059 dim(p) = 0 implies p is eulerian
3060 proof
3061 set d = dim(p);
3062 assume
3063 A1: d = 0;
3064 set apcs = alternating-proper-f-vector(p);
3065 (-1)|^(d+1) = -1 by A1,NEWTON:10;
3066 then
3067 A2: 1 + (-1)|^(d+1) = 0;
3068 len apcs = 0 by A1,Def27;
3069 then apcs = <*>INT;
3070 hence thesis by A2,Def29,GR_CY_1:22;
3071 end;
3073 theorem Th89:
3074 p is simply-connected implies p is eulerian
3075 proof
3076 assume
3077 A1: p is simply-connected;
3078 set apcs = alternating-proper-f-vector(p);
3079 per cases;
3080 suppose dim(p) = 0;
3081 hence thesis by Th88;
3082 end;
3083 suppose dim(p) > 0;
3084 then
3085 A2: len apcs > 0 by Def27;
3087 :: Split the alternating characteristic sequence into a sum of two
3088 :: sequences, a and b
3089 deffunc A(Nat) = ((-1)|^($1+1))*(dim (($1-2)-bounding-chain-space(p)));
3090 deffunc B(Nat) = ((-1)|^($1+1))*(dim (($1-1)-circuit-space(p)));
3091 consider a being FinSequence such that
3092 A3: len a = len apcs and
3093 A4: for n being Nat st n in dom a holds a.n = A(n) from FINSEQ_1:sch 2;
3094 consider b being FinSequence such that
3095 A5: len b = len apcs and
3096 A6: for n being Nat st n in dom b holds b.n = B(n) from FINSEQ_1:sch 2;
3097 rng a c= INT & rng b c= INT
3098 proof
3099 thus rng a c= INT
3100 proof
3101 let y be set such that
3102 A7: y in rng a;
3103 consider x being set such that
3104 A8: x in dom a and
3105 A9: y = a.x by A7,FUNCT_1:def 5;
3106 reconsider x as Element of NAT by A8;
3107 a.x = ((-1)|^(x+1))*(dim ((x-2)-bounding-chain-space(p))) by A4,A8;
3108 hence thesis by A9;
3109 end;
3110 thus rng b c= INT
3111 proof
3112 let y be set such that
3113 A10: y in rng b;
3114 consider x being set such that
3115 A11: x in dom b and
3116 A12: y = b.x by A10,FUNCT_1:def 5;
3117 reconsider x as Element of NAT by A11;
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3118 b.x = ((-1)|^(x+1))*(dim ((x-1)-circuit-space(p))) by A6,A11;
3119 hence thesis by A12;
3120 end;
3121 end;
3122 then reconsider a,b as FinSequence of INT by FINSEQ_1:def 4;
3123 A13: for n being Nat st 1 <= n & n <= len apcs holds apcs.n = a.n + b.n
3124 proof
3125 let n be Nat such that
3126 A14: 1 <= n and
3127 A15: n <= len apcs;
3128 A16: apcs.n = ((-1)|^(n+1))*(dim ((n-2)-bounding-chain-space(p)))
3129 + ((-1)|^(n+1))*(dim ((n-1)-circuit-space(p))) by A14,A15,Th52;
3130 reconsider n’ = n as Element of NAT by ORDINAL1:def 13;
3131 A17: n’ in dom b by A14,A15,FINSEQ_3:27,A5;
3132 n’ in dom a by A14,A15,FINSEQ_3:27,A3;
3133 then a.n’ = ((-1)|^(n’+1))*(dim ((n’-2)-bounding-chain-space(p))) by A4;
3134 hence thesis by A6,A16,A17;
3135 end;
3137 :: Now we want to how that the alternating characterstic sequence is
3138 :: a telescoping sum of the sequences a and b. First, we establish
3139 :: the necessary relation among the sequences a and b.
3140 for n being Nat st 1 <= n & n < len apcs holds b.n = -(a.(n+1))
3141 proof
3142 let n be Nat such that
3143 A18: 1 <= n and
3144 A19: n < len apcs;
3145 A20: n in dom b by A18,A19,FINSEQ_3:27,A5;
3146 reconsider n as Element of NAT by ORDINAL1:def 13;
3147 A21: b.n = ((-1)|^(n+1))*(dim ((n-1)-circuit-space(p))) by A6,A20;
3148 A22: n + 1 <= len apcs by A19,INT_1:20;
3149 1 <= n + 1 by NAT_1:11;
3150 then n + 1 in dom a by A22,FINSEQ_3:27,A3;
3151 then a.(n+1) = A(n+1) by A4
3152 .= (((-1)|^(n+1))*((-1)|^1))*(dim ((n-1)-bounding-chain-space(p)))
3153 by NEWTON:13
3154 .= ((-1)|^(n+1))*(-1)*(dim ((n-1)-bounding-chain-space(p)))
3155 by NEWTON:10
3156 .= -((-1)|^(n+1))*(dim ((n-1)-bounding-chain-space(p)))
3157 .= -(b.n) by A1,A21,Th51;
3158 hence thesis;
3159 end;
3160 then
3161 A23: Sum apcs = (a.1) + (b.(len apcs)) by A2,A3,A5,A13,Th15;
3162 A24: a.1 = 1
3163 proof
3164 reconsider egy = 1 as Element of NAT;
3165 1 <= 0 qua Nat + 1;
3166 then egy <= len apcs by A2,NAT_1:13;
3167 then egy in dom a by FINSEQ_3:27,A3;
3168 then a.egy = ((-1)|^(1+1))*(dim ((egy-2)-bounding-chain-space(p))) by A4
3169 .= 1*(dim ((egy-2)-bounding-chain-space(p))) by Th5,Th8
3170 .= 1 by Th63;
3171 hence thesis;
3172 end;
3173 b.(len apcs) = (-1)|^(dim(p)+1)
3174 proof
3175 reconsider n = len apcs as Element of NAT;
3176 A25: n = dim(p) by Def27;
3177 0 qua Nat + 1 = 1;
3178 then 1 <= len apcs by A2,NAT_1:13;
3179 then n in dom b by FINSEQ_3:27,A5;
3180 then b.n = B(n) by A6
3181 .= ((-1)|^(n+1))*1 by A1,A25,Th80
3182 .= (-1)|^(n+1);
3183 hence thesis by Def27;
3184 end;
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3185 hence thesis by A23,A24,Def29;
3186 end;
3187 end;
3189 :: Euler’s Polyhedron Formula in One Dimension: simply-connected
3190 :: 1-dimensional polyhedra are just line segments.
3192 theorem
3193 p is simply-connected & dim(p) = 1 implies num-vertices(p) = 2
3194 proof
3195 assume
3196 A1: p is simply-connected;
3197 assume
3198 A2: dim(p) = 1;
3199 set acs = alternating-f-vector(p);
3200 set apcs = alternating-proper-f-vector(p);
3201 p is eulerian by A1,Th89;
3202 then 0 = Sum acs by Def31
3203 .= Sum apcs - 2 by A2,Th4,Th83
3204 .= num-polytopes(p,0) - 2 by A2,Th85;
3205 hence thesis;
3206 end;
3208 :: Euler’s Polyhedron Formula in Two Dimensions: polygons have exactly
3209 :: as many vertices as edges.
3211 theorem
3212 p is simply-connected & dim(p) = 2 implies num-vertices(p) = num-edges(p)
3213 proof
3214 assume
3215 A1: p is simply-connected;
3216 assume
3217 A2: dim(p) = 2;
3218 A3: p is eulerian by A1,Th89;
3219 set s = num-polytopes(p,0) - num-polytopes(p,1);
3220 A4: s = Sum(alternating-proper-f-vector(p)) by A2,Th86;
3221 set c = alternating-f-vector(p);
3222 0 = Sum c by A3,Def31
3223 .= s by A2,A4,Th5,Th84;
3224 hence thesis;
3225 end;
3227 :: Euler’s Polyhedron Formula in Three Dimensions: V - E + F = 2.
3229 theorem
3230 p is simply-connected & dim(p) = 3
3231 implies num-vertices(p) - num-edges(p) + num-faces(p) = 2
3232 proof
3233 assume
3234 A1: p is simply-connected;
3235 assume
3236 A2: dim(p) = 3;
3237 A3: p is eulerian by A1,Th89;
3238 set s = num-polytopes(p,0) - num-polytopes(p,1) + num-polytopes(p,2);
3239 A4: s = Sum(alternating-proper-f-vector(p)) by A2,Th87;
3240 set c = alternating-f-vector(p);
3241 0 = Sum c by A3,Def31
3242 .= s - 2 by A2,A4,Th6,Th83;
3243 hence thesis;
3244 end;
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