FORMAL PROOFS AND REFUTATIONS

A DISSERTATION

SUBMITTED TO THE DEPARTMENT OF PHILOSOPHY

AND THE COMMITTEE ON GRADUATE STUDIES

OF STANFORD UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

Jesse Alama June, 2009 © 2009, Jesse Alama All rights reserved.

I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy.
(Grigori Mints) Principal Adviser
I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy.
(Solomon Feferman)
I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy.
(Johan van Benthem)
I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy.
(Jeremy Avigad)
Approved for the Stanford University Committee on Graduate Studies.

Abstract

Two questions drive the dissertation:

- What can one discover in a formal mathematical theory?
- What more do we know of a mathematical theorem when it has been formally proved than that it is provable?

These questions spring from the provocative philosophy of mathematics of Imre Lakatos. They are tackled in two ways: by evaluating the philosophical foundations of Lakatos's work, and by studying contemporary work in formal mathematics, specifically formal proof checking technology.

The dissertation has a technical part and a philosophical part. The first part considers some philosophical problems raised (or brought into focus) by formal mathematical proofs. The second, technical part attempts to answer mathematical questions raised in the first part. The bridge between the two is a formal proof of a famous mathematical result known as *Euler's polyhedron formula*, whose history Lakatos has reconstructed and which serves as the central example for his philosophy of mathematics. The aim of the dissertation is to explore some of the philosophical problems suggested by such formalization efforts.

The argument of the dissertation has three components. In the first component, I explain how Lakatos's philosophy of mathematics poses a challenge to formal proof checking technology. The second component is to respond to the challenge by formalizing Euler's polyhedron formula. Finally, the third component evaluates the technical, formal proof response.

The dissertation is timely because, owing to developments in logic and computing in the last half-century, the concept of a formal proof, which used to be at best a model of mathematical argumentation, has become more concrete and practical. It has now become possible to actually formalize significant mathematical proofs. These contemporary developments are a source of problems for a philosophy of mathematics that is sensitive to mathematical practice. This movement within the philosophy of mathematics is to no small degree inspired by Lakatos's work. The time is ripe for returning to some of the basic philosophical problems that Lakatos and other philosophers pointed to long ago, and to examine new problems that come from the development of what might be called *proof technology*, tools for helping mathematicians construct and evaluate proofs.

In chapter 1, I lay out some of the main questions and problems about formal proofs and explain how they are related to central issues within mainstream philosophy, particularly epistemology and philosophy of science. The development of formal proof technology is based on classical 19th and 20th century results in mathematical logic but depends crucially on computers. Chapter 1 also surveys the variety of uses of computers in mathematical practice and discusses the variety of philosophical problems they pose.

The next step in the discussion of formal proofs will be a critical evaluation of the philosophy of mathematics of Imre Lakatos. His *Proofs and Refutations* (1963) attacks formalist philosophies of mathematics. Since much proof technology is to some extent based on or requires a certain formalist view of mathematics, the question naturally arises how Lakatos's philosophy bears on these developments. Chapter 2 addresses these concerns. I focus also on some epistemological problems suggested by formal proofs, such as the question of defining *rigor* and the problem of whether and how one improves one's justification for a mathematical claim through formalization of a proof of it.

The cornerstone of Lakatos's *Proofs and Refutations* is a history of a particular mathematical theorem known as *Euler's polyhedron formula*, which is a certain geometrical-combinatorial claim with a rather colorful history. I have formalized a proof of this mathematical result; chapter 3 contains a discussion of the proof and its formalization.

Thanks to the work carried out in chapter 3, Euler's polyhedron formula (understood in a certain abstract or combinatorial way that is explained in chapter 3) is shown to be a first-order consequence a certain first-order theory of sets. Because of the peculiarities of the particular proof technology with which the formal proof was carried out, the theory of sets that is used is much stronger than what is intuitively required for Euler's theorem. A natural proof-theoretic question thereby arises: can one do better? Are the strong assumptions really necessary? In chapter 4, I identify a weaker theory in which to carry out a formal proof Euler's formula. Also discussed are some formal problems about expressibility problems for combinatorial polyhedra, and related issues.

In chapter 5, I return to some of the issues that Lakatos raised in connection with formal proofs in light of the formal work that is carried out in chapter 3. This work provides some resources for taking on the two questions that were initially asked. I show that Lakatos's philosophy, its strong reservations against 'formalism' notwithstanding, applies quite naturally to formal mathematics.

Acknowledgements

First of all, my advisor, Grisha Mints, has been supportive and caring throughout my graduate education. I am thankful for my relationship with him, and for the opportunities he gave me throughout my time at Stanford.

My dissertation committee has also been quite helpful. I thank Sol Feferman, Johan van Benthem, and Jeremy Avigad for their support in helping me to grow from a student to a scholar.

I would also like to thank those who contributed by giving advice, criticism, and support. My family has been especially important in providing a steady base for me. In addition, the following people have all played their roles, small and large (in no particular order): Tomohiro Hoshi, Tobey Scharding, Paolo Mancosu, Marc Pauly, Krista Lawlor, Ulrich Kohlenbach, Branko Grünbaum, Lauren Hartzell, Valeria de Paiva, Darko Sarenac, Quayshawn Spencer, Alan Woods, Herman Geuvers, Audrey Yap, Heidi Dolamore, Jip Veldman, Boris Moroz, Fernando Ferreira, Henk Barendregt, Alexei Angelides, Bas Spitters, Patrick Girard, Elizabeth Coppock, Freek Wiedijk, Maria Taylor, David Fernandez, Stephen Simpson, Marvin Greenberg, Lanier Anderson, Michael Friedman, Robert Solovay, Tyler Greene, Peter Koepke, Conor Mayo-Wilson, Michael Beeson, Henry Towsner, Alistair Isaac, Mark Crimmins, Eric Pacuit.

I am grateful for all of you.

Contents

	Abstract	V
	Acknowledgements	vii
1	Introduction	0
2	Formal Proofs in Mathematics	4
2.1	Introduction	4
2.2	Formal Proof Technology: Three Strands	4
2.3	Early Growth of Formal Proof Technology	6
2.4	Contemporary Developments in Formal Proof Technology	8
2.4.1	The QED Project	9
2.5	Digression: Computers in Mathematics	10
2.6	Formal Proof Technology: A Philosophical Error?	15
3	A Lakatosian Challenge	18
3.1	Introduction	18
3.1.1		19
3.2	Main Features of Lakatos's Philosophy of Mathematics	21
3.2.1	I .	22
3.2.2	1 /	24
3.2.3	· ·	27
3.3	Summary of Lakatos scholarship	28
3.4	Some Basic Philosophical Issues in Lakatos's Work	33
3.5	Lakatos and Mathematical Skepticism	35
3.5.1		40
3.6	A Lakatosian Challenge	41
4	A Formal Proof of Euler's Polyhedron Formula	44
4.1	Introduction	44
4.2	A Brief History of Euler's Polyhedron Formula	44
4.3	Poincaré's Proof of Euler's Polyhedron Formula	47
4.4	The Formalization	50
4.4.1		50
4.4.1		51
4.4.1	ı .	53
4.4.1		54
4.5	Discussion	55
4.5.1		55
4.5.1		56
4.5.1	1.2 Simple connectedness and homology spheres	60

4.5.2 A proof-theoretic question	
4.5.3 Streamlining the formalization	
4.6 Conclusion and Further Work	65
5 Metamathematical Problems about Polyhedra	68
5.1 Introduction	68
5.2 Expressibility Problems for Combinatorial Polyhedra	
5.2.1 Being a homology sphere	
5.2.2 Eulerianness	71
5.2.2.1 Extending the result: euler characteristic and general-dimensional polyhedra	73
5.2.2.2 Monadic second-order logic	
5.2.2.3 Expressibility using an equicardinality generalized quantifier	
5.2.2.4 Expressibility in dyadic existential second-order logic	
5.2.3 Convexity	
5.3 Formal Theories of Polyhedra	
5.3.1 Steinitz-Rademacher polyhedral complexes	
5.3.1.1 Digression: expressibility of eulerianness in the class of polyhedral complexes	
5.3.2 Extensional theory	
5.3.3 Simplicial polyhedral complexes	
5.3.4 Digression: infinite models	
5.3.5 Digression: logical complexity	
5.3.6 Grünbaum's polyhedron theory	
5.3.7 Lakatos polyhedra	
5.3.7.1 Digression: Lakatos polyhedra and polyhedral complexes	
5.3.7.2 Digression: the value of a formal proof of Euler's polyhedron	
formula for Lakatos polyhedra	95
5.3.7.3 Non-elementarity of the class of Lakatos polyhedra	
5.4 Proving Euler's Polyhedron Formula in Weaker Theories	
5.4.1 Introduction	
5.4.2 First refinement	99
5.4.3 Formalizing Poincaré's proof in ACA_0	. 103
5.4.3.1 Refined argument	. 105
5.4.4 Arithmetic	. 106
5.4.5 Geometry	. 108
5.4.6 Final refinement	. 108
5.5 Conclusion and Future Work	. 109
6 Responding to the Lakatosian Challenge	. 112
6.1 Introduction	
6.2 What Can One Discover in a Formalized Mathematical Theory?	
6.2.1 Lakatos's answer	116

6.2.2 Examples	119
6.2.2.1 Example 1: The image of a linear combination under a linear	
transformation	120
6.2.2.2 Example 2: A counterexample to a 'natural' linear algebraic lemma	123
6.2.2.3 Example 3: A condition on polyhedra	127
6.2.3 Two Discoveries	129
6.2.3.1 First discovery: analysis of informal notation	130
6.2.3.2 Second discovery: gaps	131
6.2.4 Comments	132
6.3 Further Worries	133
6.3.1 The problem of translation	133
6.3.1.1 Aside: Comparing Lakatos's problem of translation with Quine's	
problem of the indeterminacy of translation	141
6.4 Conclusion	142
7 Conclusion	144
A Endnotes	146
A.1 Chapter 2: Formal Proofs in Mathematics	146
A.2 Chapter 3: A Lakatosian Challenge	146
A.3 Chapter 4: A Formal Proof of Euler's Polyhedron Formula	147
A.4 Chapter 5: Metamathematical Problems about Polyhedra	148
A.5 Chapter 6: Responding to the Lakatosian Challenge	148
B A MIZAR Proof of Euler's Polyhedron Formula	150
B.1 The rank+nullity theorem	150
B.2 The vector space of subsets of a set based on symmetric difference	182
B.3 Euler's polyhedron formula	200
C References	248

1 Introduction

Mathematics can be distinguished from other intellectual disciplines by its argumentative practices: only the most rigorous arguments—proofs—are allowed. Indeed, one might characterize mathematics as the discipline whose claims to knowledge require proof; an argument is mathematical to the extent that it is a proof. Within the study of argumentation, one ought to be especially interested in proofs, since they are perhaps the most sophisticated and rigorous arguments that we can produce.

But a proof is not merely any convincing argument; examples of bad convincing arguments are only too easy to find. What distinguishes mathematical proofs from other kinds of arguments? What is a proof? The question is quite broad, and of course hardly new.

The central theme of this dissertation is the concept of a *formal proof*, an argument executed according to the rules of a precisely specified mechanism. Depending on one's views, this study will be either one of contrasts (emphasizing the ways in which formal proofs differ from non-formal proofs) or of similarities (one sees non-formal proofs as more or less straightforward approximations of formal proofs).

Yet the dissertation is not merely a comparison of formal and non-formal proofs. I hope to show how questions about formal proofs touch on some central issues in mainstream philosophy. In this respect, the philosophy of Imre Lakatos animates the whole dissertation. Lakatos's major work, *Proofs and Refutations* [1], arising from his own dissertation, is a refreshing critique of certain approaches to the philosophy of mathematics which emphasize formal over non-formal proofs. Lakatos is not an enemy of formal proofs as such, but in his work he critiques philosophies of mathematics that hold that formal proofs ought to be somehow privileged, either philosophically or methodologically, over non-formal proofs. Lakatos' work engages deftly with the history of mathematics, but it does not shy away from some of the enduring questions of philosophy.

Two questions spur on the work:

- What can one discover in a formal theory?
- What more do we know of a mathematical theorem when it has been formally proved than that it is provable?

The structure of the dissertation will be as follows. There are two parts: a philosophical part and a technical part. The bridge between the two parts will be the central example of Lakatos's *Proofs and Refutations*: Euler's polyhedron formula. The first part will consider some philosophical problems raised (or brought into focus) by formal proofs. The second part is technical and attempts to answer mathematical questions raised in the first half.

In chapter 1, we will discuss some of the main questions and problems about formal proofs and show how they are related to central issues within mainstream philosophy.

By definition, a formal proof is a construction that is carried out according to the rules of a rigorously specified language and proof system. We lay down rules for what counts as a deduction: the statements appearing in it must be formulas within some specific formal language, and the steps in the deduction must be justified by appealing to certain mechanical rules. In general, the rules of inference in a proof system capture, or correspond to, only the particularly simple kinds of inferences that one might carry out in non-formal contexts. Thus, when formalizing a non-formal argument, invariably one ends up with a rather more detailed and considerably longer result compared with what one started with. For this reason, and the fact that the rules of inference are generally mechanical rules that can be implemented on a computer, the questions arising from the study of formal proofs generally goes hand-in-hand with questions arising from the use of computers. We shall also discuss these issues in chapter 1.

The next step in our discussion of formal proofs will be toward the philosophy of Imre Lakatos, who was already mentioned. Lakatos is remembered in philosophy of science for his work on what he called the methodology of scientific research programs, but he got his career started in earnest as a philosopher of mathematics. His *Proofs and Refutations* was a literary tour de force, attacking what he called formalist or Euclidean philosophies of

INTRODUCTION

mathematics according to which mathematics is best understood as a structure consisting of axioms at the top and theorems at the bottom, with a "truth-value injection" making all the theorems indubitably true. Lakatos's work is multi-faceted, but the concept of proof is the central hub from which everything else radiates. In chapter 2, we discuss how Lakatos' "dialectical" philosophy of mathematics bears on the subject of formal proofs and what we can learn from it. We will see how Lakatos's thought poses a challenge for the formalists.

Chapter 3 takes off where the chapter 2 left off, which was a discussion of Euler's polyhedron formula, the mathematical theorem that forms the cornerstone of Lakatos's *Proofs and Refutations*. The questions that shall occupy us in chapter 3 have to do with the problem of giving a formal proof of Euler's polyhedron formula. Other mathematical examples would likely have illustrated the same points, but the study of Euler's polyhedron formula in particular is motivated by the desire to engage with Lakatos's text as much as possible on the formal, mathematical side. Chapter 3, then, will be a discussion of a formal proof of Euler's polyhedron formula. We will describe what it means to formalize the theorem and we will compare it in detail with the informal proof on which it is based. (The actual formal text can be found in Appendix 1.)

Thanks to the work described in chapter 3, we have that Euler's polyhedron formula (understood in a certain combinatorial sense) is a first-order consequence of Tarski-Grothendieck set theory (TG). This theory of sets is quite strong in comparison to more familiar systems such as Zermelo-Fraenkel set theory (ZF). It is even much stronger than ZF together with the axiom of choice (the system ZFC): TG is an extension of ZFC together with an axiom that asserts the existence of arbitrarily large strongly inaccessible cardinal numbers. But clearly Euler's polyhedron formula does not require a theory as strong as TG for its proof. If we formalize Euler's formula as a certain arithmetical-combinatorial statement, then it seems plausible that Euler's formula could be proved in a theory far weaker than TG. In chapter 4, we shall identify a weaker theory in which to carry out a proof Euler's formula. We shall also discuss a number of metamathematical problems brought about polyhedra, specifically concerning expressibility of various properties in certain formal languages.

Finally, in chapter 5, we will step back and reflect on what has been accomplished by formalizing so many proofs and how we can use them to respond to Lakatos's challenge, which is set forth in chapter 2. By studying formal proofs of non-trivial mathematical theorems, what more can we say about the difference between formal and non-formal proofs? The dissertation does not take any sides on the debate between formalists and non-formalists in the philosophy of mathematics, nor does it advocate any particular position for or against formal proofs. The dissertation is rather undertaken with a more neutral point of view in mind. Indeed, we hope that one of the main lessons of the dissertation is that whatever gulf does exist between those who favor and those who oppose formal proofs is not as wide as meets the eye.

2 Formal Proofs in Mathematics

2.1 Introduction

Our discussion begins with a survey of the development of what I call **formal proof tech-nology**: tools for the production, recording, and evaluation of mathematical proofs. Such technology, and its mathematical and philosophical significance, constitutes the central theme of the work. In this chapter we will learn about the growth and development of formal proof technology to set the stage for a more sustained critical discussion, based on the philosophy of mathematics of Imre Lakatos. Lakatos's philosophy will be the subject of later chapters; the purpose of this chapter is to set the stage for a philosophical engagement with Lakatos based on modern formal proof technology.

2.2 Formal Proof Technology: Three Strands

The history of what I am calling formal proof technology can be seen as a bundle of three strands in the history of logic.

The first strand concerns early technical developments in mathematical logic in the late 19th and early 20th centuries. A landmark result in the subject that is of interest here is the **completeness theorem** for first-order logic, which demonstrated to us that it is possible to lay down axioms and rules of inference in such a way that (first-order) logical consequence implies provability from these rules and axioms. Thus, at least in the case of first-order logic, one can give formal proofs to establish any logical consequence.

By inspection of the rules and axioms for the traditional proof formalisms—natural deduction, Hilbert-style systems, tableaus, and sequent calculi—it seems clear that they deliver a concept of a gap-free proof, that is, one all of whose logical details are explicitly stated. If one further identifies (if only as a first approximation) the concept of mathematical consequence with first-order logical consequence, then the completeness theorem tells us that any mathematical consequence can be given by a gap-free formal proof. In principle,

then, one can rely on formal proof (in first-order logic) to establish any (first-order) logical consequence.

The second strand in the history of logic that I wish to emphasize is the formalization of mathematical knowledge. The idea is to express mathematical propositions in precisely specified formal languages. Major actors in this direction are Peano, Frege, and Russell and Whitehead. Peano, for example, was interested in the symbolic aspects of mathematics and indeed catalogued some of the notations of mathematics that existed at his time, and even invented new notations $[2]^2$, such as \in (for set membership), \cap (for set intersection), and \cup (for set union). Frege designed a notation—a concept script, or Begriffsschrift—to lay out the content of mathematical propositions and proof. Although logicians did not adopt Frege's notation, his contributions to logic were independent of his notation and proved to be fundamental. Russell and Whitehead, in their monumental *Principia Mathematica*, aimed to formally represent a small but central part of mathematical knowledge.

Project such as Peano's, Frege's, and Russell and Whitehead's, although they did not advance far into the reaches of mathematical knowledge, made it plausible that everyday mathematics—its concepts, propositions, and proofs—could be given in a totally formal way.

The third thread in the history of mathematical logic that is important for our purposes is the use of computers, especially in formalized mathematics. Such use is possible because of the finitist nature of the languages and proof systems that have been developed. More precisely, the problem of deciding whether a sequence of symbols (in some specified alphabet or pool of possible symbols) constitutes a well-formed formula is supposed to be decidable. Likewise, the problem of whether a figure is a deduction should be decidable. Such a representation is quite natural for formalized mathematics: for this to be a real possibility for humans, it should be possible to determine, in a finite amount of time (which is all any of us have) to say whether a string of symbols is a statement of a deduction. (If this were not the case, results like the completeness theorem would lose their significance for 'human-level' formalization.)

FORMAL PROOFS IN MATHEMATICS

Indeed, the use of computers as tools for the recording, evaluating, and production of (formalized) mathematical proofs occurred quite early in the history of the computer.³ For example, H. Wang, already in the 1950's (before modern-day computers were even a decade old), worked on the problem of generating formalizations of proofs taken from *Principia Mathematica*. Early work on implementing decisions procedures for certain axiomatized theories such as Davis's implementation [3] of a decision procedure for Presburger arithmetic, and on propositional satisfiability, were implemented early in the history of the computer.

But experience with formal proofs shows that they can become quite large and unmanageable.⁴ A skeptical attitude toward formal proofs would then be quite justified; putting aside questions of what kind of knowledge one could gain from carrying out formal proofs, one can reasonably ask whether formal proofs are really accessible to us. Can one really give a surveyable, accessible proof of a non-trivial mathematical result?

Putting together these three strands in the history of mathematical logic we can see the ingredients for the development of modern formal proof technology. In the next section, we shall survey some of the results of the growth of this technology.

2.3 Early Growth of Formal Proof Technology

Concerning the problem of representing and evaluating mathematical proofs, J. McCarthy also figures into this early history, in his proposal (expressed, naturally, in LISP) for a program to check mathematical proofs [4]. One of the earliest sustained efforts in this direction is the AUTOMATH project [5] by N. G. de Bruijn, begun in the late 1960's. A major result of the AUTOMATH project was a formalization [6] of E. Landau's *Grundlagen der Analysis* in their framework. The MIZAR project, a proof representation and proof checking system, began in the early 1970's and remains active today; it is thus likely the oldest proof checking system that enjoys an active community of formalizers and developers. (MIZAR also enjoys one of the largest collections of formalized mathematical knowledge.)

The 1970's also witnessed the creation of the Boyer-Moore theorem prover [7] (which has since developed in the modern ACL2 system [8]).

The roots of formal mathematics can be clearly seen in the work of Leibniz, who imagined a calculus of reasoning (calculus ratiocinator) with which one could calculate whether any given argument is correct [9]. Formal mathematics also takes inspiration from Frege's idea of a qap-free proof, a mathematical argument whose every logical step is spelled out explicitly. In the 20th century David Hilbert, Kurt Gödel, Gerhard Gentzen, and others forged a new path, which gave rise to proof theory. Hilbert called for the formalization of mathematics as one component of the research tradition that now bears his name (Hilbert's program) [10]. Thanks to his completeness theorem, Gödel shows us that, if we restrict ourselves to first-order logic, then every valid argument can in principle be articulated as a gap-free proof. The exciting new subject of proof theory took on a new dimension with the advent of computers: these early results in logic assured us of the possibility of carrying out mathematics formally, but to realize the ideal—to move from 'theoretical' proof theory to what might be called concrete proof theory—required the assistance of computers. Formal mathematics builds on the fundamental contributions of mathematical logic, as well as insight gained into programming languages and system design, to construct computer systems that help us to carry out mathematical reasoning.

To formalize a piece of mathematical knowledge (e.g., a theorem, a definition, or a proof) is to capture it using a formal language. A formalization starts with a pre-existing mathematical text and reconstructs it within a formal language.

But formalization is not mere reconstruction. The product of a formalization is a reconstruction of the complete logical structure of a piece of mathematical knowledge. The word 'complete' is used to emphasize that all logical details are to be given; the argument is expressed so candidly and explicitly that its validity can be mechanically checked. One might view the computer as a highly skeptical participant in a mathematical conversation: it accepts only those steps of the argument that are logically given in detail; it requires us to be careful with out definitions and with the statements of results. And since it does not

FORMAL PROOFS IN MATHEMATICS

accept appeals to intuition, common sense reasoning, and other conversational moves on which we typically rely when presenting an argument to another human, the result of such a human-computer interaction is an argument whose logical structure is apparent and in whose validity we can have considerable confidence.

To craft a formal proof so that its validity can be mechanically checked, one must invest a considerable amount of energy to bring to light the logical and mathematical details of an informal proof that are often left implicit and unstated. Some of this uncovered knowledge is, to be sure, of a routine nature and is not necessarily notable. Yet often one uncovers interesting mathematical (or metamathematical) details that one might not have come across had one not formalized.

One does not need to view formal and informal mathematics as in competition with each other. Formal mathematics is to informal (or standard, normal) mathematics as implementations of algorithms are to algorithms. There is, of course, considerable value in algorithm design, and methods of solving problems. An informal argument is like pseudocode for a computer program, whereas a formal argument is like an implementation. One designs programming languages with which to express algorithms, and then of course on has to implement algorithms in particular programming languages for it to do anything.

The analogy between informal arguments and pseudocode also helps to explain the value of formal mathematics. One gains a different insight into an algorithm when one implements it; one understands the solution to a problem in one way in terms of pseudocode, and one sees other aspects when implementing it. Avigad, for example, has considered this issue [11–13] in detail. Implementation of algorithms is important because we want computers to carry out certain tasks for us; formalizing mathematics is important because we want to understand fully the justificatory structure of an (informal) mathematical proof.

2.4 Contemporary Developments in Formal Proof Technology

A number of major mathematical results have been given formal proofs in modern proof representation and proof checking systems. These include:

- Gödel's first incompleteness theorem [14],
- The Jordan curve theorem [15–16],
- The four color theorem [17],
- The prime number theorem [18].

This is but a sample of the 'named' theorems that have been proved formally.⁵ The body of unnamed theorems, lemmas, definitions and proofs that have been formalized is very large indeed. These results show that formalization is generally possible, and often tractable. Of course, if one were to try to carry out these formal proofs by hand, the possibility of error (not to mention the likelihood that such projects would even be justified or completed) would be very high. It is only with the help of computers that these projects are possible.

2.4.1 The QED Project

In the 1990's, interest in formal mathematics grew and led to an international attempt, called the QED Project, to unify efforts. The participants drafted a 'manifesto' [20] so as to take a common stand toward the problem of formalizing mathematical knowledge. The goals of the project are:

- 1. to help mathematicians cope with the explosion in mathematical knowledge,
- 2. to help development of highly complex IT systems by facilitating the use of formal techniques,
- 3. to help in mathematical education,
- 4. to provide a cultural monument to "the fundamental reality of truth",
- 5. to help preserve mathematics from corruption,
- 6. to help reduce the 'noise level' of published mathematics,
- 7. to help make mathematics more coherent,
- 8. to add to the body of explicitly formulated mathematics, and
- 9. to help improve the low level of self-consciousness in mathematics.

FORMAL PROOFS IN MATHEMATICS

The method to achieve these goals is through the design and implementation of large-scale systems for dealing with formal mathematics.

- J. Harrison, a major figure in the field that I am calling formal proof technology, places his hopes for the field in two points [21]:
- Supplementing, or even partly replacing, the process of peer review for mainstream mathematical papers with an objective and mechanizable criterion for the correctness of proofs.
- Extending rigorous proof from pure mathematics to the verification of computer systems (programs, hardware systems, protocols, etc.), a process that presently relies largely on testing.

Harrison's second goal clearly aligns with the second goal of the QED Manifesto, but Harrison's first goal represents an objective that does not appear in the QED Manifesto (although perhaps it can be seen spread across some of the items, such as 6 and 7). It seems plausible to extend the QED Manifesto to include Harrison's goal.⁶

The aims of the QED Project are significant and its success would be a major contribution. Interest in the project, however, seems to have crested in the mid-90's. Although it is not clear that widespread interest in the project (or any related project) remains, the goals of the QED Project seem to have survived in any number of systems, such as MIZAR [22], HOL LIGHT [23], COQ [24], etc.

2.5 Digression: Computers in Mathematics

Since formal proofs are generally rather large constructions that cannot easily be completely handled with traditional 'small scale' tools such as pencil and paper, when working with formal proofs one typically relies on a computer. The computer stores the data and allows the formalizer to organize and manipulate it in ways that are not practically possible otherwise. The computer also takes charge of evaluating formal arguments. Such tasks could in principle be carried out by the human formalizer; the computer is, after all,

applying computable functions. Because formalization does not, as a matter of definition, involve the use of computers or other new tools, we can disentangle from our discussion the question of the purpose or value of formalization and the role of computers in mathematical practice. This section is devoted to the latter question.

The main subject of the dissertation is computer-checked formal proofs. We are engaged in computer-checked formal proofs when we give to a computer a formal argument d, expressed in a formal language, and expect that the computer will check whether d is a proof. This is clearly but one of the many ways in which computers are used in mathematics. The inquiry begins with a survey of how computers are used in mathematics; the first step is to delimit the enterprise of computer-checked formal proofs from the other kinds of uses of computers in mathematics. The goal is to isolate the philosophical issues that pertain to computer-checked formal proofs from those which arise because of other uses. Of course, some issues are the same (does one trust a machine?); but some are bound to be different (e.g., some have claimed that computers are helping to change our concept of proof, but it seems clear that the enterprise of computer-checked formal proofs is based on adherence to a traditional view of proof).

Producing formal proofs is but one way in which computers are used by mathematicians to assist them with their proofs. Notable examples of computer-assisted proofs that are not computer-checked formal proofs include the Appel-Haken solution [25] of the four-color problem and the results of so-called experimental mathematics [26–27]. But since the aim of computer-checked formal proofs is to produce genuinely formal proofs, they can complement other uses of computers. Indeed, one way of justifying the enterprise of computer-checked formal proofs is to point out that they can be used to 'rein in' other kinds of computer-assisted mathematics by bringing them more in line with a classical formal conception of proof.

Let us discuss these examples (the Appel-Haken proof of the four-color theorem and experimental mathematics) in more detail.

FORMAL PROOFS IN MATHEMATICS

The four-color theorem asserts that one needs only four colors so that one can assign different colors to countries on a map in such a way that neighboring countries do not get the same color. The problem was posed in 1852. Finally, in 1976, Kenneth Appel and Wolfgang Haken announced a solution. A key part of their proof involved the use of a computer to check a very large number of cases into which they had decomposed the problem; the calculation took more than 1200 hours (50 days). According to the philosopher T. Tymoczko, the Appel-Haken work was a new kind of mathematical proof [28]. Tymoczko claimed that the Appel-Haken solution to the four-color problem was a new kind of proof because it was non-surveyable, and introduced fallible, empirical elements into mathematical knowledge, which one might regard as a priori and certain.

Putting aside the question of whether Tymoczko is right about the Appel-Haken solution to the four-color problem, it is not clear that his claims about non-surveyable and fallible aspects of mathematical knowledge apply to computer-checked formal proofs. For, these proofs are, by design, surveyable: a human formalizer crafts the proof; the computer's role is to check the formalizer's text for validity. Appel and Haken could not feasibly check all the details of the manifold cases into which they divided their problem; a human formalizer, however, did check all (or nearly all) the details in the proof that they constructed.

As for fallibility and the use of empirical methods, again it is not clear that these features, which (we can assume for the sake of discussion) make sense for the Appel-Haken proof, apply in the case of computer-checked formal proofs. These proofs are constructed according to the norms of formal logic; the results of these proofs are deductions in the strict sense of the term. The warrant that formal proofs provide for mathematical knowledge therefore seems to admit very little room for fallibility or 'empirical elements'. It seems clear that fallibility and empirical elements enter into formal proofs to no greater degree than they already do in ordinary mathematical practice.

Independently, it is worth pointing out that Tymoczko's claims about the use of computers in mathematics—that computers introduce hitherto unknown features of mathematical

justification and knowledge—is not universally agreed upon. Tymoczko's claim that computers present a kind of inscrutable source of justification may not be tenable [29], and the idea that computer provide a new kind of justification (as opposed to, say, providing just a faster way to carry out what we ourselves could do in principle) is also debatable [30].

So much for Tymoczko's well-known philosophy about the use of computers in mathematics. Another prominent source for arguments about how computers are changing mathematical practice centers on what is called *experimental mathematics*. There may not be any strong unifying theme for this subject, but as a first approach the idea behind experimental mathematics is that the computer is regarded as a kind of laboratory for carrying out mathematical experiments. A characteristic feature of some of the results of experimental mathematics is that one is able to obtain, after some computation, a result which, though possibly false, is true with extremely high margins of confidence. Or, in the laboratory, one finds patterns which suggest generalizations and further experimentation.

The characterization thus far is, of course, rather coarse, but it suffices for our discussion. The question in front of us is whether this kind of work justifies the claim that the nature of mathematical proof is changing.

Indeed, it seems clear that experimental mathematics is not fundamentally changing the face of mathematical proof. After discussing some examples in experimental mathematics which render various results true with extremely high probabilities, Borwein and Bailey, champions of the experimental approach to mathematics, concede that extensive computations do not amount to rigorous proofs. However, they write that 'in many cases computations constitute very strong evidence, evidence that it at least as compelling as some of the more complex formal proofs in the literature' [31]. They go on to write:

Independent checks and extremely high numerical confidence levels still do not constitute formal proofs of correctness. Even so, one can argue that many computational results are as reliable, if not more so, than a highly complicated piece of human mathematics. For example, perhaps only 50 or 100 people alive can, given enough time, digest *all* of Andrew Wiles'

FORMAL PROOFS IN MATHEMATICS

extraordinarily sophisticated proof of Fermat's Last Theorem. If there is even a one percent chance that each has overlooked the same subtle error (and they may be psychologically predisposed to do so, given the numerous earlier results that Wiles' result relies on), then we must conclude that computational results are in many cases actually *more* secure than the proof of Fermat's Last Theorem. [31]

They then align their work with Thomas Kuhn's *Structure of Scientific Revolutions* [32] and assert that, thanks to developments with the computer, a paradigm shift is taking place or about to take place.⁷ They assert that

We acknowledge that the experimental approach to mathematics that we propose will be difficult for some people in the field to swallow. Many may still insist that mathematics is all about formal proof, and from their viewpoint, computations have no place in mathematics. But in our view, mathematics is not ultimately about formal proof; it is instead about secure mathematical knowledge.

Both kinds of uses of computers (large computations which are in principle completely correct, and computations which in principle warrant at most high confidence in a result) suggest that what's being counted as a proof in contemporary mathematics does not seem to adhere to the traditional view. Sociologist Donald MacKenzie has drawn attention to the divisions among some mathematicians engendered by the computer. MacKenzie writes

For some, to put one's trust in the results of computer analysis is to violate the very essence of mathematics as an activity in which one's own human, personal understanding is central. To others, using a computer is no different in principle from using pencil and paper, which is of course universally accepted. ... Those who find the assistance of the computer natural, typically see it as *more* reliable than the human mathematician. [34]

Such a sociological divide is quite interesting, but again it should be emphasized that the different reactions that one can have to mathematical proofs in which computers have played some role are at the same time differences in conceptions of proof.

We mention now, finally, an on-going (at the time of writing) episode in the history of mathematics that involves computers and controversy about proof. The example is Hales's solution of the Kepler conjecture. This conjecture, roughly speaking, asserts that the densest packing of spheres in space is the hexagonal pattern that we see in markets and grocery stores.⁸ Like the four-color theorem, the Kepler conjecture was an open problem for many years before it was solved: Kepler posed the problem in 1611, but it wasn't solved until 1998. And like the Appel-Haken solution to the four-color theorem, Hales's 1998 proof involved a tremendous amount of computer resources: several gigabytes of data were required. However, unlike the Appel-Haken solution, Hales's use of the computer did not amount merely to a very large calculation. The computer was used, for example, to even get an initial decomposition of the problem [36]. Interestingly, after Hales submitted his work to the Annals of Mathematics, the editors wrote back, four years later, saying that they were 99% certain that his arguments were correct. The missing 1% came from the failure to certify the correctness of the computer programs that Hales had used in his argument. Hales's paper was eventually published, but the episode led the editors of the Annals of Mathematics to revise their policy [37] on computer-assisted proofs. Hales is now engaged in a project [38] to give a formal proof (expressed in a formal, artificial language) of his result. Thus, he has moved to computer-checked formal proofs from an originally 'unorthodox' position. Although it may take a long time to finish the project (Hales estimates it may take 20 man-years), at the end the result will likely be the largest amount of mathematics that has even been formalized.

2.6 Formal Proof Technology: A Philosophical Error?

We have surveyed some of the historical features of what I am calling formal proof technology (tools for the production, evaluation, and storage of mathematical proofs). Obviously, all of these results take for granted, or require, a certain formal approach to mathematical knowledge. To carry out proofs in these systems require, in addition to mathematical skill, a facility with formal logic.

FORMAL PROOFS IN MATHEMATICS

There seems to be a consensus that the limitations of proof checking are merely technical. Although at present proof representation and proof checking systems—formal proof technology—forms a rather small (and arguably insignificant) part of contemporary mathematical practice, the consensus among the developers of such systems, and among those outside it who are nonetheless interested in proof checking, is that the only gaps in the field are technical, the only problems one of engineering and not philosophy.

Limitations of engineering notwithstanding, is it not possible that these systems—which apparently require a kind of formal, modern view of mathematics—somehow not giving us what we want out of mathematical proof? Are they based on a philosophically erroneous view of mathematics? The gains in rigor that formal proof technology can deliver is undeniable, but at what philosophical cost does this progress come? In the next chapter we shall investigate a famous critique of such 'formalist' philosophies of mathematics, Imre Lakatos. We shall see that Lakatos presents a compelling challenge to the approach to mathematics that formal proof technology takes for granted.

3 A Lakatosian Challenge

3.1 Introduction

Mathematics provides a variety of knowledge that most plausibly qualifies for superlative epistemological qualities such as *certainty*, *indubitability*, a *priority*, *infallibility*, and so forth. One of the main questions in the philosophy of mathematics is to account for this: to explain how it is that mathematical knowledge has these properties (or, if they do not, to account for the appearance that they do). One way to explain the superlative features of mathematical knowledge is to point to the methodology by which mathematical truths are justified: the standard for claims to mathematical knowledge is *proof*. The epistemological features of mathematics can be explained by its standard for justification.

The Hungarian philosopher Imre Lakatos responded to claims like these in his famous *Proofs and Refutations* [1]. Written as a dialogue, *Proofs and Refutations* argues that

Informal, quasi-empirical, mathematics does not grow through a monotonous increase in the number of indubitably established theorems but through the incessant improvement of guesses by speculation and criticism, by the logic of proofs and refutations.

Formalism for Lakatos is "the school of mathematical philosophy which tends to identify mathematics with its formal axiomatic abstraction (and the philosophy of mathematics with metamathematics)". A serious problem, for Lakatos, is that formalism disconnects mathematical knowledge from its history. Moreover, Lakatos argues that mathematical knowledge does *not* have the superlative epistemological features that we commonly assume that it has. Invoking Kant, Lakatos writes:

The history of mathematics, lacking the guidance of philosophy, has become *blind*, while the philosophy of mathematics, turning its back on the most intriguing phenomena in the history of mathematics, has become *empty*.

For Lakatos, the formalist holds that mathematical theorems and proofs are more or less certain things from their birth. Mathematical statements are either unknown or irrefutably known with certainty. For Lakatos's formalist, *knowledge* and *certain knowledge* amount to the same thing (at least in the case of mathematics).

Proofs and Refutations is intended as the beginnings of a serious critique of formalism; Lakatos even believes that by looking at the history of mathematics we can show fairly conclusively that formalism is inadequate:

The history of mathematics and the logic of mathematical discovery cannot be developed with the criticism and ultimate rejection of formalism.

In other words, the history of mathematics shows that formalism is not a viable philosophy of mathematics.

This chapter presents Lakatos's philosophy of mathematics as a challenge for formal proof technology, as explained in chapter 1; the challenge is taken up in chapter 3, and in chapter 5 we shall evaluate the Lakatos's philosophy in greater detail.

Lakatos's philosophy involves more substance than what will be discussed here. I am focusing on his philosophy insofar as it applies to formal proof technology. Consequently, I neglect a discussion of, say, concept formation, ancient history of mathematics, pedagogical aspects of mathematics, and so forth, all of which are discussed in detail by Lakatos. Such aspects of Lakatos's philosophy are philosophically rich, but they do not bear directly on the project contained here.

3.1.1 Digression: the problem of interpreting Proofs and Refutations

Before getting into the details of Lakatos's philosophy, we should be clear on how to make sense of Proofs and Refutations. Because it is largely written as a dialogue, we have to be careful about claims like "Lakatos said X" or "Lakatos holds that p". The reason is that it is not clear which character (or characters) in the dialogue are taking Lakatos's position. The situation is similar to that of Plato's dialogues, but, in a way, with Proofs and Refutations we are in a worse position: whereas (the character) Socrates plays the lead role in most of the Platonic dialogues, no analogous character in Proofs and Refutations

A LAKATOSIAN CHALLENGE

can be found. The scene of the Lakatos's dialogue is a classroom of students and a teacher. One might be tempted to assert that TEACHER is Lakatos; but that's not obvious, and in any case the role of TEACHER is often just to summarize what has been said and to keep the discussion on track (as a real teacher does); TEACHER generally does not offer significant new points; that is done by the students.

Unlike the Platonic dialogues, *Proofs and Refutations* opens with an expository introduction in which Lakatos introduces his work. The many footnotes in the text take place outside the dialogue. And, unlike the Platonic dialogues, where at times a character holds forth, stating and arguing for a position in detail, such passages are rare in Lakatos's text. Thus it often seems that we are not really arguing with Lakatos directly, but rather with our own informed guesses about what he might be saying.

However, all is not hopeless. As in the Platonic dialogues, we can reasonably infer what Lakatos thinks by the questions and problems that are raised in the dialogue, and the responses and solutions that are given. We need to live with the fact that some questions are not answered definitively.

Thus, although there is room for debate about the precise statement of Lakatos's philosophy of mathematics, we can be fairly sure which issues Lakatos thinks are important, even if we can't discern a clear *position* that Lakatos takes on them. And even in those places where we are not certain what Lakatos himself thought, we can take *Proofs and Refutations* as an "authorless" source of ideas constituting the beginnings of a philosophy of mathematics.

Before proceeding, it is worthwhile to pause to comment on the style of Lakatos's philosophy. The quotes already given should make it clear that Lakatos takes a strong stand against 'formalists' and emphatically holds that they are getting something wrong about the history and philosophy of mathematics. One can criticize Lakatos for failing to seriously characterize the formalist position. That he takes issue with *some* position in the philosophy of mathematics is clear enough; what is less clear is precisely what he is attacking, or whether anyone robustly holds the 'formalist' view that he is eager to refute. Putting aside

for the moment the tension between history and philosophy, it seems clear that any serious philosophy of mathematics should be able to account to some extent for the growth and development of mathematics. Lakatos seems to be rather uncharitable here when he casts a wide net to capture all those 'formalists' who flagrantly ignore the history of mathematics.

Even though Lakatos takes rather strong and occasionally uncharitable positions toward his philosophical rivals, that should not lead us to dismiss him outright. Lakatos is as original as he is combative. His views do deserve to be taken seriously. In Lakatos one sees a challenge to modern formal proof technology. This chapter sets the stage for the challenge by, first, surveying Lakatos's philosophy of mathematics and, second, by posing the terms of the debate. In the next chapter, we will see in detail a formal proof of the mathematical theorem known as Euler's polyhedron formula (EPF), whose history Lakatos traces in *Proofs and Refutations*.

3.2 Main Features of Lakatos's Philosophy of Mathematics

The heart of Lakatos's philosophy of mathematics is that mathematical theorems are defeasible and subject to refutations not unlike claims in empirical sciences. The main idea is to extend Popper's critical philosophy of science to mathematics. For Popper, roughly speaking, universal scientific claims cannot be confirmed, but only refuted. Lakatos wants to extend this idea from natural science (where Popper's claim seems quite credible) to mathematics (to which Popper himself did not venture to apply his ideas). Mathematical theorems are not irrefutably true statements, but *conjectures*: one cannot know that a theorem will not be refuted.

To illustrate this thesis, Lakatos appealed to the history of Euler's polyhedron formula, which asserts that for a polyhedron p we have V - E + F = 2, where V, E, and F are, respectively, the number of vertices, edges, and faces of p. He showed how Euler's theorem and the concepts involved in it evolved through proofs, counterexamples and proofs modified in light of the counterexamples, thereby illustrating the fallibility of mathematics.

A LAKATOSIAN CHALLENGE

In addition to his view that mathematical knowledge is fallible, one of the Lakatos's central contributions to the discussion of proof in the philosophy of mathematics is his characterization of the concept of mathematical proof. As we shall see, his definition plays a crucial role in his discussion and helps us to understand a good deal of Lakatos's philosophy.

Lakatos's definition occurs near the beginning of the text:

TEACHER: I propose to retain the time-honoured technical term 'proof' for a thought-experiment—or 'quasi-experiment'—which suggests a decomposition of the original conjecture into subconjectures or lemmas, thus embedding it in a possibly quite distant body of knowledge.

Thus, for Lakatos, a proof is a kind of experiment that we can perform; to justify the conclusion of the experiment, we appeal to some previously accepted mathematical knowledge. Such a characterization of proof may be appealing. Notice, though, that it lacks (at least at this early stage of the text) of any relation between proof and truth, between the 'decomposition' and validity. Later in the dialogue, we find:

LAMBDA: The proof is only a stage of the mathematician's work which has to be followed by proofanalysis and refutations and concluded by the rigorous theorem.

Thus, proof is not the end (as we might normally think) but rather the beginning of a theorem.

With this definition of proof, Lakatos is able to say that a mathematical statement can be both proved and refuted. This sounds oxymoronic but it is crucial to Lakatos's fallibilist philosophy of mathematics, in which proofs do not guarantee the truth of the statement being proved but instead invite us to search for counterexamples.

3.2.1 The method of proofs and refutations

To understand the heuristic development of informal proofs, Lakatos proposes four rules according to which one can improve mathematical knowledge. Before stating the rules, though, we must study two terms: *local counterexample* and *global counterexample*.

The context in which the local and global counterexamples occur is in the study of proofs. Suppose that we are studying a mathematical statement A whose logical form is $\forall x \varphi(x)$, and we find (somehow) a mathematical object a for which $\neg \varphi(a)$. Such an object shows that the statement A is refuted, and is called a global counterexample. Global counterexamples are what we normally think of as counterexamples: mathematical objects that show some universal statement to be false. For example, the number 2 is a global counterexample to the statement "every even natural number is the sum of two primes", because 2 is the smallest prime number.

To say whether a mathematical object is a global counterexample does not require any reference to the proof of that statement. A local counterexample, by contrast, is a property not of a statement but of a proof of the statement. To understand proof, though, we should turn to Lakatos, who understands the term proof as a method of decomposition. Suppose that we have decomposed the proof of a statement A into a number of statements A_1, A_2, \ldots, A_n . Suppose that the logical form of, say, A_k is universal: A_k is $\forall x \varphi(x)$ for some statement $\varphi(x)$. If we have a mathematical object a for which $\neg \varphi(a)$, Lakatos calls that a is a local counterexample to the original statement A that we are trying to prove. Thus the definition of a local counterexample refers both to a statement and to a proof of it, regarded as a sequence of other statements.

Now that we are familiar with the terms *local* and *global counterexample*, we are ready to study the official statement of the method of proofs and refutations:

LAMBDA: Let me state [the] main aspects [of the method of proofs and refutations] in three heuristic rules: Rule 1. If you have a conjecture, set out to prove it and to refute it. Inspect the proof carefully to prepare a list of non-trivial lemmas (proof-analysis); find counterexamples both to the conjecture (global counterexamples) and to the suspect lemmas (local counterexamples).

Rule 2. If you have a global counterexample discard the conjecture, add to your proof-analysis a suitable lemma that will be refuted by the counterexample, and replace the discarded conjecture by an

A LAKATOSIAN CHALLENGE

improved one that incorporates that lemma as a condition. Do not allow a refutation to be dismissed as a monster. Try to make all 'hidden lemmas' explicit.

Rule 3. If you have a local counterexample, check to see whether it is not also a global counterexample.

If it is, you can easily apply Rule 2.

Later in the dialogue, a fourth rule is added:

Rule 4. If you have a counterexample which is local but not global, try to improve your proof analysis by replacing the refuted lemma by an unfalsified one.

3.2.2 Lakatos on proof (continued)

Lakatos's characterization of the concept of mathematical proof does have some merits. For example, Lakatos's definition of proof allows us to understand statements such as

Wiles's proof of Fermat's Last Theorem was incorrect.

and questions like

What's wrong with Euler's proof of his polyhedron formula?

at face value. Although the statement and the question make sense, they might appear to be self-contradictory if by 'proof' we understand a deductively valid argument. Lakatos's definition allows us to make sense of these statements by dropping (at least initially) any connection between mathematical proof and error-free or valid argument. Wiles's proof and Euler's proof are thought experiments; they may admit counterexamples, but we can revise their proofs (though experiments) to deal with them. This sounds reasonable; Lakatos captures part of our everyday use of the term 'proof'.

How might a proof be incorrect? A proof could be incorrect if

- its conclusion is not true, or
- one of the steps in the proof is not valid (the assumptions in play at the step could be true while the conclusion of the step is false).

The idea, then, is that mathematical proofs are a certain kind of valid argument. To then say that a proof is 'incorrect' is to contradict oneself.

How can we make sense of the philosophical knots that we have gotten into? There are two approaches. We could insist that statements such as 'Euler's proof of his polyhedron formula is incorrect' make sense and drop the condition that a mathematical proof is a deductively valid argument. Another response is to retain the property that mathematical proofs are deductively valid arguments and say, in response to situations like those described above, that there was just some error:

Wiles's believed that his argument for Fermat's Last Theorem was a proof, but his judgment was incorrect.

These two avenues for response show that two different views of mathematical proof are available:

- One view emphasizes the ideal of proof as a deductively valid, (in principle) error-free argument; let us call this the 'deductivist' view.
- The other view demurs from the 'deductivist' view. An argument can be a proof and yet fail to be logically valid.

The second view merely dissents from the first view. Expanding on the second view, one might say that, for the non-deductivist, proof is just what mathematicians do. They are interested, of course, in getting arguments right. But what matters more than correctness or deductive validity is the invention of new mathematical concepts and methods, the fruitful application and combination of previously accepted mathematical knowledge. Another way of making sense of the second alternative is to say that proofs are, in some essential way, social entities. (This is the approach taken by, for example, de Millo, Lipton and Perlis [39].) These considerations thus favor a Lakatos-like understanding of 'proof'.

We thus appreciate Lakatos's stance toward proof. By admitting multiple conceptions of the concept, the problem arises to explain the relationship between them. We are not taking the position that mathematical proofs are *not* (ideally) deductively valid arguments.

Although Lakatos's definition of proof can help us to make sense of our everyday use of the term, there remains the burden of accounting for the argumentative structure of mathematical arguments and their relation to mathematical truth. The non-deductivist needs to explain why mathematical argumentation differs from other kinds of arguments in science and everyday life. Mathematical arguments certainly appear to be deductively valid, and the mathematician apparently strives for deductive validity in his proofs.

In fact, Lakatos recognizes this issue and does account for it. To see that, we need to investigate Lakatos's conception of mathematical rigor. Tracing the history of Euler's formula (which, we are to assume, is but one concrete example that Lakatos develops to illustrate a more general claim about mathematics), we see that the proofs evolve. The goal of the development is a rigorous theorem, which Lakatos calls the **principle of retransmission of falsity** holds, namely that all global counterexamples be local. That is, any counterexample to the theorem should be a counterexample to some step in the proof of the theorem (purported falsity 'transmits' from the theorem to some part of its proof):

LAMBDA: A proof-analysis is 'rigorous' or 'valid' and the corresponding mathematical theorem true if, and only if, there is no 'third-type' counterexample to it.

(The third-type counterexamples are those that are global—they refute the theorem at hand—but not local—they do not falsify any step of the proof.) To make sense of this, we need to explain Lakatos's distinction between *proof* and *proof analysis*. Lakatos's conception of proof has already been discussed. Roughly speaking, **proof analysis** is the production of what we might normally call the proof: the list of 'lemmas' into which the proof (thought experiment) was decomposed. We are doing proof analysis when we study the precise conditions under which the moves taken in the proof can be made, or are correct.²

3.2.3 Digression: Lakatos and Pólya

The mathematician G. Pólya, in a number of works [40–42], studies mathematical discovery and heuristic and thus touches on many of the same issues that Lakatos discusses. Indeed, it was Pólya himself who suggested to Lakatos to focus on the example of Euler's polyhedron formula. Lakatos places his own work in the context of Pólya's:

This paper (i.e., [43]) should be seen against the background of Pólya's revival of mathematical heuristic, and of Popper's critical philosophy.

Lakatos translated Pólya's classic How to Solve It [44] from English to Hungarian.

Lakatos explains his own work as being an extension of Pólya's:

The phase of *conjecturing* and *testing* in the case of V - E + F = 2 is discussed in Pólya. Pólya stopped here, and does not deal with the phase of *proving*—though of course he points out the need for a heuristic of 'problems to prove'. Our discussion starts where Pólya stops.

In Proofs and Refutations, Lakatos starts with a more or less completely specified proof of Euler's polyhedron formula, presented to the students by Teacher, and the ensuing critical discussion about the proof takes off from there. For Lakatos, the 'dialectical' nature of mathematics, its fallibility, and its relation to epistemology and philosophy of science are central, whereas Pólya does not discuss these issues.

At the same time, the spheres of interest of Lakatos and Pólya overlap. Concerning the practice of not stopping at a proof but rather searching further for counterexamples, Lakatos cites Pólya as giving an early description:

This standard pattern [of lemma incorporation] is essentially the one described in the classic of Pólya and Szegő: 'One should scrutinise each proof to see if one has in fact made use of all the assumptions; one should try to get the same consequence from fewer assumptions... and one should not be satisfied until counterexamples show that one has arrived at the boundary of the possibilities.'

Moreover, in discussing the different responses (monster barring, exception barring, monster adjustment) that one can take in the course of a proof and purported counterexamples to it, Lakatos again cites Pólya as:

Monsterbarring in defense of the theorem is an important pattern in informal mathematics: 'What is wrong with the examples in which Euler's formula fails? Which geometrical conditions, rendering more precise the meanings of F, V, and E, would ensure the validity of Euler's formula?' (Pólya [40], I, Exercise 29.) The cylinder is given in Exercise 24. The answer is: '...an edge...should terminate in corners'. Pólya formulates this generally: 'The situation, not infrequent in mathematical research is this: A theorem has already been formulated but we have to give a more precise meaning to the terms in which it is formulated in order to render it strictly correct'.

In the preface to the paperback version of *Proofs and Refutations* Lakatos also thanks Pólya (and van der Waerden) for helping him to improve the discussion of the so-called exception barring method.

We thus see that Lakatos and Pólya certainly agree on many points (and arguably Pólya is the source of some of Lakatos's ideas). Nonetheless, it is also clear that Lakatos intended his work to be a contribution to the philosophy of mathematics, specifically its epistemology, whereas Pólya was concerned more practically with the education and training of the mathematical mind.

3.3 Summary of Lakatos scholarship

Proofs and Refutations has its origins in Lakatos's Ph.D. dissertation [45]. It was written between 1956 and 1960. The dialogue portion of the dissertation was extracted, modified, and serialized in four parts in the British Journal for the Philosophy of Science [43]. Apart from Proofs and Refutations, the only other work on the philosophy of mathematics that Lakatos published in his lifetime was Infinite regress and the foundations of mathematics [46]. When he died in 1976, Lakatos left behind a number of unfinished essays on the

subject [47–49]. After *Proofs and Refutations*, Lakatos focused on the philosophy of science (he is famous for his debates with Kuhn and Feyerabend) rather than on the philosophy of mathematics.

After his death, Lakatos's students E. Zahar and J. Worrall prepared a new edition [1] of *Proofs and Refutations*, making it available in book form. The book also includes two other essays by Lakatos as appendices. Available as a book, *Proofs and Refutations* became more widely known; most scholarship on Lakatos thus begins then.

Zahar and Worrall added a handful of editor's footnotes to Lakatos's text. These editorial footnotes largely seek to temper some of Lakatos's claims against, for example, the 'rigorists' who have tried to make mathematical arguments ever more rigorous in the hope of achieving more certain knowledge. In addition to the editorial footnotes, Zahar and Worrall actually extend Lakatos's dialogue, adding at the end some discussion on proof checking.

Zahar and Worrall have been criticized for their editorial additions. The consensus seems to be that Zahar and Worrall miss Lakatos's point. Davis and Hersh [50], for example, are critical of the additions, saying that Zahar and Worral's claims about mechanical proof checking go against the grain of Lakatos's entire project. Bloor [51] says that Zahar and Worrall have "discharged their duty oddly" by qualifying Lakatos's remarks as they did. Larvor [52] also takes Zahar and Worrall to task for their editorial additions.

Lakatos's work has been reviewed by a number of famous philosophers. Quine [53], for example, reviewed it favorably (though briefly). Quine writes:

The geometry is fascinating, but the purpose is philosophical. Lakatos is opposing the formalists' conception of mathematical proofs, which represents them as effectively testable and, once tested, incontrovertible. He is opposing the notion, so central to logical positivism, that mathematics and natural science are methodologically unlike.

In conclusion, Quine says:

Lakatos does not in the end deny the feasibility of full formalistic rigour in mathematical proof, but he makes an eloquent and conclusive case for preferring the heuristic style of conjecture and refutation in mathematical treatises and textbooks.

(In *Proofs and Refutations* Lakatos takes aim at Quine, offering him up as an example of those who apparently have nothing to say about mathematical discovery. That Quine reviewed Lakatos's work positively might be odd, given that Lakatos seems to lump Quine in with the 'formalists' whom Lakatos is eager to attack.)

Not everyone has been so taken with Lakatos's work. Feferman [54], for example, while acknowledging the impressiveness of Proofs and Refutations, is nonetheless critical of it in several respects. He thinks that Lakatos's philosophy is too narrow and doesn't go far enough. Lakatos's philosophy focuses too much, for example, on claims of the form "All A's are B's" to the exclusion of claims having different logical forms, such as existential claims ('There is an odd perfect number') or singular propositions such as " $\sqrt{2}$ is irrational". Feferman points out that Lakatos's philosophy does not account for other ways in which mathematical knowledge grows, especially at higher conceptual levels instead of at the level of particular proofs. Examples of this kind of development that Feferman cites is the development of linear algebra, group theory, and topology. These theories arise through conceptual unification (he calls such developments "internal organizational, foundational moves"). Feferman also asks "What constitutes improvement in a proof?", "Is there no end to guessing?", and "What constitutes an initial proof? Where does it come from?" He argues that Lakatos either provides no answers or gives inadequate answers to these questions. Concerning the question of what counts as an improvement of a proof, Feferman's response that we do have informal criteria for this property is similar Sherry's view [55], who likewise argues that informal proofs can provide an answer to Feferman's question.

A number of scholars have been impressed by *Proofs and Refutations* to try to bring more prominence to the issues that Lakatos raises. But although Lakatos's *Proofs and Refutations* is an inspiring, rich, work, it is troubled. A Lakatos scholar, Brendan Larvor, writes:

The fate of *Proofs and Refutations* is [...] paradoxical. Widely praised, it has enjoyed very little serious scholarly attention. This is perhaps because, unlike [...] Kuhn's scientific revolutions, *Proofs and Refutations* does not offer a simple logical scheme for philosophers to apply more or less mechanically to the history of any given discipline. *Proofs and Refutations* is, perhaps, too complex and ambiguous to be the first of a genre. [52]

If *Proofs and Refutations* is so troubled, then, what are we to make of Lakatos's project? According to Larvor, the legacy of Lakatos should not be an obsession with counterexamples and fallibility but rather in the "inner life" of mathematics [56]. A Lakatosian program, for Larvor, should be based on a sensitivity to the history of mathematics, an appreciation for the dynamics of its concepts and standards, and its relation with other fields.

Recent writers have been returning to Lakatos not so much because they wish to criticize or extend his work, but to be inspired by it and treat it as the beginnings of a new 'practice'-oriented philosophy of mathematics. This is the sentiment of the famous introduction [57] to a volume [58] on the history and philosophy of mathematics, in which the authors single out what they call the 'Maverick Tradition' in the philosophy of mathematics, of which Lakatos is a central figure. More terms have been coined to try to self-identify a new approach to the philosophy of mathematics, such as 'phenomenological':

The phenomenological philosopher of mathematics starts by look at mathematics, and only then asks, and tries to answer, philosophical questions about the discipline. While the name 'phenomenological' has not always been used in describing this sort of philosophical approach to mathematics, papers advocating the phenomenological method so understood have been around at least since Lakatos's influential study, *Proofs and Refutations*. ([59], p. 3)

Others in the so-called phenomenological tradition include Rav [60–61], Corfield [62], Leng [59], and Hersh, who has written many papers [50, 63–69] on the 'practice'-based philosophy of mathematics.

What is new about the phenomenological/practice-oriented approach to the philosophy of mathematics? There is much less of an emphasis on ontological or metaphysical questions

in mathematics (such as "Are mathematical objects real?" and "What are numbers?"). The attitude toward foundational questions (such as "What set-theoretic axioms suffice to formally reconstruct mathematics?" and "What is computability?"), which tends to favor formalism, is hostile (e.g., Lakatos, Rav) or at least demurring (e.g., Leng, Corfield). New questions raised by the 'maverick' tradition include "How does (informal) mathematics grow?", "What are the main features of (informal) mathematical proof?", "How do mathematical concepts evolve?"; other questions are "How are computers changing mathematical practice?", "To what extent is mathematical knowledge founded on contingent social practices?"

The 'maverick' tradition does not necessary eschew traditional questions in the philosophy of mathematics; indeed, some of the older questions take on new aspects. For example, Kant's main transcendental question [70] is "How is pure mathematics possible?" For Kant, mathematical knowledge is synthetic and a priori; the central question for him is to say how such knowledge is possible. In light of the increased prominence of social aspects of knowledge, one can re-ask Kant's question: if our knowledge of mathematics depends, at least in part, on a community of mathematicians who maintain a body of knowledge, then how can such knowledge be a priori? It has been argued that formal mathematics seeks to undermine the strong social component of mathematical verification [39]. It seems, though, that rather than undermining or supplanting, the goal of formal mathematics is to enhance and support traditional mathematical work. This argument is made explicitly by Shankar [14], an early proponent of formal mathematics. (A recent expository article by Friedman [71] discusses in more detail the current situation in formal mathematics; Harrison [72] discusses some more of the background history of the subject.)

Another twist to the question arises in connection with computers in mathematics: can we have a priori mathematical knowledge on the basis of calculations/computations carried out by computer? Burge, for example, advocates [73–74] a theory of the a priori according

to which testimony (such as a computer's testimony) preserves a priority. That the 'maverick' tradition is asking important questions is evidenced by the fact that 'mainstream' philosophers (such as Burge) are taking their questions seriously. But we digress.

Although many have been impressed by Lakatos, not all agree on how to interpret his work; nor is there widespread agreement that Lakatos is right on many of his central claims. Lakatos takes pains to exhibit mathematics as fallible, in the same (or a related) sense in which natural science is fallible. This means that mathematical propositions are essentially defeasible; they are conjectures, and they are in principle revisable. That natural science is fallible is a basic assumption in the philosophy of science; it is far less clear, and perhaps implausible, to extend fallibility to mathematics. But this is just what Lakatos does. What are the so-called potential falsifiers? What are the objects or phenomena which can show mathematical claims to be false? For Lakatos, proofs are akin to tests; proofs can show claims to be false. But this analogy is likely mistaken, and needs to be reinterpreted to make sense in mathematics [75]. And not everyone is happy to regard mathematics as fallible. See section 3.5 for a more thorough discussion of Lakatos's skepticism.

So much for a review of the literature on Lakatos. In the remainder of the chapter I describe my own interpretation of Lakatos in connection with formal proofs.

3.4 Some Basic Philosophical Issues in Lakatos's Work

Although Lakatos is regarded as a source or inspiration for a new approach to the philosophy of mathematics (the 'maverick' or 'phenomenological' approach), Lakatos does not avoid issues and questions in classical philosophy of mathematics. Nor can Lakatos avoid some of the main questions which 'foundationalist' philosophers ask.³ There are at least three main philosophical worries that run through Lakatos's text:

- How can we claim to have knowledge a priori if our methods and concepts by which we come to have that knowledge are not fixed?
- What is fallible knowledge?
- How can we justify mathematical knowledge?

These are major questions in epistemology, and Lakatos deserves credit for bringing them up in the context of mathematics, where we might be a bit too quick (Lakatos would say dogmatic) to dismiss them, or diminish their importance.

Concerning the last question, Lakatos might reject it as ill-posed: he would say that to justify mathematical knowledge is to prove that it is true, which would establish it with certainty. But to say that a claim is justified is not to say that it is certainly true; it just means that we have adequate *reasons* to believe that it is true. Our reasons might not in fact be adequate; and even if they are, the claim that is justified might be false.

Lakatos is interested throughout *Proofs and Refutations* in justification, on what we might call the *justificatory structure* of mathematical arguments. Lakatos emphasizes that proofs in ordinary mathematics are *informal*, which are a source of interesting philosophical issues:

The subject matter of metamathematics is an abstraction of mathematics in which mathematical theories are replaced by formal systems, proofs by certain sequence of well-formed formulae, definitions by 'abbreviatory devices' which are 'theoretically dispensable' but 'typographically convenient'. This abstraction was devised by Hilbert to provide a powerful technique for approaching some of the problems of the methodology of mathematics. At the same time there are problems which fall outside the range of metamathematical abstractions. Among these are all problems relating to the informal (inhaltliche) mathematics and to its growth, and all problems relating to the situational logic of mathematical problem solving.

To accomplish his historically informed project, Lakatos traces the history of Euler's polyhedron formula (EPF) and shows that, although the theorem was proved, it was also refuted, and then reproved, and re-refuted.

Lakatos does more than simply point out that mathematical knowledge evolves, or that mathematicians make mistakes (which goes without saying). Lakatos makes the more specific claim that mathematical knowledge (or at least some of it) grows through what he calls the *method of proofs and refutations* (MPR), as we discussed earlier. We shall look at the precise statement of MPR later, but for now we can understand it as the claim that

mathematical claims may be both proved and refuted, and that proofs are improved by dealing with the refutations.⁴

We must also distinguish claims about the history of mathematics from claims about the nature of mathematics. Thus we must separate claims like the history of Euler's polyhedron formula illustrates the method of proofs and refutations from questions about what mathematical knowledge is like once we've reached the end of the method of proofs and refutations.

3.5 Lakatos and Mathematical Skepticism

Is Lakatos a skeptic about mathematics? If so, what kind of skeptic is he?

Certainly the tenor of Lakatos's work suggests that he is a skeptic about mathematics, in the sense that the central aim of his project is to limit our claims to mathematical knowledge, or to qualify the kind of knowledge produced by mathematical proofs. Let us approach the question by examining passages in *Proofs and Refutations* in which Lakatos explicitly advocates an apparently skeptical view:

TEACHER: I hope that now all of you see that proofs, even though they may not *prove*, certainly do help to *improve* our conjecture. [...]

Using the Pólya's distinction between problems to find (in which the aim is to discover a mathematical object, such as a number or a figure, that satisfies certain conditions) and problems to prove (in which the aim is to demonstrate that a claim is true or false), Lakatos again reiterates his apparently skeptical view:

ALPHA: It is wrong to assert that 'the aim of a "problem to prove" is to show conclusively that a certain clearly stated assertion is true, or else to show that it is false'. The *real* aim of a 'problem to prove' should be to *improve*—in fact, perfect—the original, 'naive' conjecture into a genuine 'theorem'.

Also, in a footnote, Lakatos writes:

About 1800 the rigour of proof (crystal-clear thought experiment or construction) was contrasted with muddled argument and inductive generalisation. This was what Euler meant by 'rigida demonstratio', and Kant's idea of infallible mathematics too was based on this concept. It was also thought that one proves what one has set out to prove. It did not occur to anybody that the verbal articulation of a thought-experiment involves any real difficulty. [...] The proof or thought-experiment carried full conviction without any deductive pattern or 'logical' structure.

The dialogue continues with Alpha expanding on his comments:

Alpha: Our naive conjecture was 'All polyhedra are Eulerian'.

The monsterbarring method defends the naive conjecture by reinterpreting its terms in such a way that at the end we have a *monsterbarring theorem*: 'All polyhedra are Eulerian'. But the identity of the linguistic expressions of the naive conjecture and the monsterbarring theorem hides, behind surreptitious changes in the meaning of terms, an essential improvement.

The exception-barring method introduced an element which is really extraneous to the argument: convexity. The *exception-barring theorem* was: 'All convex polyhedra are Eulerian'.

The lemma-incorporating method relies on the argument—i.e. on the proof—and on nothing else. It virtually *summed up the proof in the lemma-incorporating theorem*: 'All simple polyhedra with simply-connected faces are Eulerian'.

This shows that (now I am using the term 'proving' in the traditional sense) one does not prove what one sets out to prove. Therefore no proof should conclude with the words: 'Quod erat demonstrandum.'

Scholarship on Lakatos and contributions to the philosophy of mathematics that are inspired by Lakatos emphasize, to some extent, his focus on *mistakes* in mathematical argumentation. A recent contribution to Lakatos scholarship begins by saying that the 19th century was "a time of error for mathematics: not trivial oversights or amateurish confusions but fundamental mistakes in the understanding of mathematical concepts and the

formulation of mathematical proofs" [77]. P. Davis defines the 'authenticity' of a mathematical proof and asserts that this property is established 'by verifying that a sequence of transformations of atomic strings is legitimate' [78]. He goes on to argue, based on a discussion of long calculations, that 'the authenticity of a mathematical proof is not absolute, but only probabilistic'. A consequence:

Proofs cannot be too long, else their probabilities go down and they baffle the checking process. To put it another way: all really deep theorems are false (or at best unproved or unprovable). All true theorems are trivial.

(It is not clear how philosophically sustainable this position really is.) P. Ernest, in his review of [55] (which will be discussed soon), writes that

Fallibilism claims that mathematical knowledge (and truth) are relative, contingent, historical constructs. Absolute judgements with regard to truth/falsity and correctness/incorrectness cannot be made. The criteria and definitions involved vary with time, context, and never attain a final state. We can be pretty sure of some results, but the possibility of future revision or rejection cannot be eliminated. The source of this position is the early work of Lakatos.

R. Hersh also repeats Lakatos's emphasis on mistakes: enumerating some neglected aspects of mathematics, we find:

Mathematical knowledge is fallible. Like science, mathematics can advance by making mistakes and then correcting and recorrecting them. (This "fallibilism" is brilliantly argued in Lakatos's *Proofs and Refutations.*) [66]

To be sure, some who work on Lakatos do not entirely accept the Lakatos's apparent skepticism. D. Sherry, for example, takes issue with Lakatos's 'fallibilist' philosophy:

That mathematicians are fallible is hardly news. More newsworthy is the thesis that mathematics itself is fallible. Fallibilists believe that long standing communities of mathematicians

have been or can be in error about cherished results. They point to the historical record as evidence of the 'fallible, corrigible, tentative and evolving' nature of mathematics (Tymoczko, 1986, p. 21). Prima facie it is difficult to deny propositions like '7+5=12'. Even so, the fallibilist claims there are propositions thought to have been established only to have been overturned in the progress of mathematics. Frequently mentioned is Euler's conjecture that the vertices and faces of a polyhedron outnumber its edges by 2. Crowe (1988) is typical: 'Euler's claim was repeatedly falsified' (p. 264). But our epigraph warrants caution, and, in fact, standard historical cases fail to support the thesis that mathematics is fallible, corrigible or tentative; they serve only as evidence that mathematics is evolving. Errors implicating an entire community of mathematicians do not exist in any but a philosophically problematic sense.

Sherry argues [55] that case-studies such as Lakatos's history of Euler's polyhedron formula show at best that mathematics is evolving, not that it is fallible. T. Koetsier [79] argues similarly. M. Leng criticizes those who, taken with Lakatos's case-study, do not "[take] pains to provide further examples which show mathematics to be fallible in any philosophically interesting sense" [59].

Moreover, it is not at all clear that a sensitivity to the history of mathematics demands that one give up on the epistemological unique features of mathematical knowledge. Lakatos is eager to show that mathematical knowledge is 'fallible' and 'quasi-empirical', but the argument for that simply seems to be that in the history of mathematics one can perceive clear mistakes being committed by mathematicians. Such observations should give us pause and back away from simple-minded dogmatism about mathematical knowledge and concede at least some sense in which mathematical knowledge is fallible. That is, if the only evidence for fallibilism in mathematics is the sparse existence of 'mistakes' (even by great mathematicians), then the fallibilism we obtain is not yet philosophically substantial. Lakatos seems to want point to something deeper than just the existence of errors, but it is not yet clear precisely how that is to be accomplished. These epistemological issues will be discussed later in the chapter.

Despite the overall tenor of Lakatos's work, one should not be too quick to ascribe to Lakatos a simple kind of skepticism. The reason for his skepticism about mathematical knowledge is not that humans make mistakes. In the introduction to *Proofs and Refutations*, Lakatos places his work in the context of a long-standing discussion:

For more than two thousand years there has been an argument between dogmatists and sceptics. The dogmatists hold that—by the power of our human intellect and/or senses—we can attain truth and know that we have attained it. The sceptics on the other hand either hold that we cannot attain the truth at all (unless with the help of mystical experience), or that we cannot know if we can attain it or that we have attained it. In this great debate, in which arguments are time and again brought up to date, mathematics has been the proud fortress of dogmatism. [...] Most sceptics resigned themselves to the impregnability of this stronghold of dogmatist philosophy. A challenge is now overdue.

Lakatos does indeed challenge the *dogmatist* stronghold, and thus is apparently taking up the skeptical banner. There are two reasons, though, to refrain from putting Lakatos squarely in the skeptical camp.

First, by invoking a very old debate between two named parties, it would seem that Lakatos is trying to distance himself from both of the parties and thus position himself as trying to transcend the apparently intractable fight. This reminds us of Kant's attempt to try to go beyond the old fights between the rationalists and the empiricists. (At the same time, it is acknowledged that Lakatos does, at the end of the passage, seem to take the side of the skeptics.)

The second reason to hesitate to brand Lakatos a skeptic, or at least to qualify his skepticism, is to examine whether his philosophy is successful at establishing skepticism on his own terms. Thanks to *Proofs and Refutations*, can we conclude that

- we cannot attain mathematical truth, or
- we cannot know if we can attain mathematical truth, or
- we cannot know if we have attained mathematical truth?

It is not clear that any of these are clearly present in Lakatos's philosophy. To be sure, concerning, say, claim (1), this is apparently consistent with Lakatos's philosophy, especially in what Lakatos calls 'mature theories'.

TEACHER: The theorem does not always differ from the naive conjecture. We do not necessarily improve by proving. Proofs improve when the proof-idea discovers unexpected aspects of the naive conjecture which then appear in the theorem. But in mature theories this might not be the case. It is certainly the case in young, growing theories. This intertwining of discovery and justification, of improving and proving is primarily characteristic of the latter.

In mature mathematical theories, then, some kind of stability is achieved. Proofs carried out in such theories may not reveal any unexpected elements, so that proofs can come to an end. Of course, Lakatos does not say that *truth* is attained or that we *know* that truth is attained, but this is perhaps as close as Lakatos will come to allowing that.

3.5.1 Fallibilism in mathematics

I would submit that another troublesome problem for those who would champion a Lakatosian philosophy of mathematics is, first of all, to articulate a *fallibilist* epistemology that, second, acknowledges that there is something special about mathematical knowledge. Even if mathematical knowledge turns out to be fallible in some robust sense—which is *not* based merely on the (inevitable) presence of 'mistakes'—one would want a satisfying account of why mathematical knowledge is (or appears to be) so epistemically privileged.

One problem, in the first place, is to even say what fallible knowledge is. Some work has already been done in this direction. One of the first problems is to even say what fallibilist knowledge is. Following the traditional analysis of knowledge as justified true belief, to say that something is known fallibly involves us, at least initially, in a problem: if p is known fallibly, then, roughly speaking, p could have been false. But in the case of mathematical knowledge, which is supposed to be necessary, it could not be false. Thus, if p is a piece of mathematical knowledge, then it cannot be known fallibly, because it could not be false. Some early work by S. Haack, for example, articulates the problem.

When it comes to the question of whether we are fallible, not only with respect to our ordinary, empirical beliefs, but also with respect to our mathematical beliefs, Peirce's confident anti-dogmatism seems to falter. Peirce believes that the truths of mathematics are necessary. And he seems to suspect that the necessity of mathematical truths somehow precludes the possibility of our being mistaken in our mathematical beliefs; for when he claims that fallibilism does extend even to mathematics he is tempted to compromise his commitment to the necessity of mathematical truths, and to hint that mathematical inference is, after all, only probable, and when, elsewhere he stresses the necessary character of mathematical truths, he also hints that we are fallible only with respect to our factual beliefs.

In Haack's brief summary of Peirce's philosophy we can perhaps see an example of what Lakatos was referring to when he mentions how the skeptics 'resigned themselves to the impregnability of this stronghold of dogmatist epistemology' (that is, mathematics). She goes on to survey some senses of 'fallibilism' that might have given rise to Peirce's waffling, and she relates her discussion to Lakatos's fallibilist philosophy of mathematics. B. Reed also lays out the problem: although fallibilism seems to be a plausible feature of our knowledge, it is not incompatible with the existence of necessary truths (e.g., mathematical truths); the puzzle is to explain such fallible knowledge.

3.6 A Lakatosian Challenge

An interest or even a defense of formal proofs does not imply that there are not problems in the philosophy of mathematics that cannot be well understood as questions about formal proofs. If this is the kind of philosophy of mathematics against which Lakatos was reacting, then surely Lakatos is in the right.

But *Proofs* and *Refutations* cannot help but being a work about proofs, and therefore at least in part about the structure of justification in mathematics. One of the central questions of *Proofs* and *Refutations* is: what is the structure of justification in informal mathematics as contrasted with formal mathematics? As a response, Lakatos advances (or rather: describes) the method of proofs and refutations (MPR). If I have been successful,

I will have argued that MPR is characteristic of mathematical proof no matter whether formal or informal.

4 A Formal Proof of Euler's Polyhedron Formula

4.1 Introduction

In this chapter I discus a formalization of Euler's polyhedron formula, which asserts for a polyhedron p that

$$V - E + F = 2,$$

where V, E, and F are, respectively, the numbers of vertices, edges, and faces of p.

Section 4.2 is a brief survey of the history of Euler's formula, and justifies the choice of the particular informal proof, due to Poincaré, that was singled out for formalization. Section 4.3 sketches Poincaré's linear algebraic proof, as presented by Lakatos. Section 4.4 is devoted to the formalization itself. Finally, I reflect on some of problems related to the formalization in section 4.5 and close with some suggestions for further avenues of research in section 4.6.

4.2 A Brief History of Euler's Polyhedron Formula

Lakatos's history [1] of Euler's polyhedron formula is an entertaining discussion of some of the historical twists and philosophical problems surrounding the result. Indeed, a motivation for carrying out the formalization described here was to study Lakatos's philosophy of mathematics.

Euler first discussed his formula in a 1750 letter to Christian Goldbach:

Recently it occurred to me to determine the general properties of solids bounded by plane faces, because there is no doubt that general theorems should be found for them, just as for plane rectilinear figures, whose properties are: (1) that in every plane figure the number of sides is equal to the number of angles, and (2) that the sum of all the angles is equal to twice as many right angles as there are sides, less four. Whereas for plane figures only sides and angles need to be considered, for the case of solids more parts must be taken into account. [80]

Euler does not use the term *polyhedra* but rather 'solids bounded by plane faces'. He goes on to enumerate some interesting propositions about polyhedra such as:

6. In every solid enclosed by plane faces the aggregate of the number of faces and the number of solid angles exceeds by two the number of edges, or F + V = E + 2.

and

11. The sum of all plane angles is equal to four times as many right angles as there are solid angles, less eight, that is 4V - 8 right angles.³

Euler expresses surprise that he has not been able to find a precedent for these relations:

I find it surprising that these general results in solid geometry have not been previously noted by anyone, so far as I am aware;⁴ and furthermore, that the important ones, Theorems 6 and 11, are so difficult that I have not yet been able to prove them in a satisfactory way.

It was not long before Euler presented his results publicly [84]. Like the letter to Goldbach, Euler's paper was programmatic: he was trying to encourage the study of three-dimensional solids as an extension of planar geometry. The 'most difficult' propositions he mentioned to Goldbach were discussed in detail, though he acknowledges that his presentation does not constitute a proof. Indeed, in the preface to his paper Euler qualifies his work thus:

I for one have to admit that I have not yet been able to devise a strict proof of this theorem. As however the truth of it has been established in so many cases, there can be no doubt that it holds good for any solid. Thus the proposition seems to be satisfactorily demonstrated.

Euler was not satisfied with the unfinished state of his theorem and continued working with polyhedra. Eventually he did find a satisfactory proof [85].

Perhaps because of its simplicity and elegance, many other mathematicians studied the polyhedron formula and tried to give new proofs of Euler's polyhedron formula. Cauchy, for example, connected the study of polyhedra to planar graphs: project a polyhedron onto a plane, triangulate it, and take away one triangle at a time in a way that preserves χ until only a triangle remains; we obtain the desired result $\chi = 2$ by noting that the projection

with which we started 'removes' a face from the polyhedron (which effectively sends one of the polyhedron's faces onto an unbounded planar region). Unlike Euler, whose conception of polyhedra was that of solid (which one can slice, as with a knife), Cauchy apparently viewed polyhedra as wireframes.

Poincaré provided a new conception of polyhedra based on incidence matrices with which he gave his own proof [86–87] of Euler's formula. Poincaré's abstract, combinatorial conception of polyhedra makes no mention of points in \mathbb{R}^3 , nor does it come from projecting polyhedra onto a plane. Poincaré's approach even allows for polyhedra of arbitrary dimension; the general result⁶ states that

$$\sum_{k=0}^{d-1} (-1)^k N_k = 1 + (-1)^{d+1},$$

where the integer d is the dimension of p and N_k is the number of k-polytopes of p. The classical three-dimensional version stated by Euler is obtained by setting d := 3. The familiar property of a polygon that the number of vertices is equal to the number of edges is obtained by putting d := 2. (And a 1-dimensional polyhedron is just a line segment with its two endpoints, which also falls out of the general Euler relation by putting d := 1.)

So far no definition of polyhedron has been given, nor has any restriction been imposed on the domain of validity of Euler's relation. It is a commonplace that one has to be careful with how one defines one's terms, and the term 'polyhedron' is no exception. Grünbaum writes:

The 'Original Sin' in the theory of polyhedra goes back to Euclid, and through Kepler, Poinsot, Cauchy, and many others ... in that at each stage, the writers failed to define what are the 'polyhedra'. [88]

In addition to defining polyhedra, it is a further task to specify the domain of validity for Euler's relation to hold; it turns out that around the time of Cauchy's proof in the early 19th century, it started to become clear to mathematicians that Euler's polyhedron formula does not hold for all polyhedra. In 1811, for example, L'Hullier described 'exceptions' to

Euler's polyhedron formula, classifying them into three kinds. Research on polyhedra in the 19th century gradually revealed that for Euler's relation to hold one should focus on the property of being a homology sphere.

Poincaré's definition, on which the formalization to be described is based, is probably the simplest to describe. Following Poincaré, a polyhedron is characterized by a list of *incidence matrices*, which can be understood as functions f from a cartesian product $A \times B$ of sets A and B to $\{0,1\}$, where f(a,b)=1 is understood as 'a is incident with b' and f(a,b)=0 is understood as 'a is not incident with b'. Thus to specify a polyhedron of dimension d+1, one just gives d incidence matrices. Let us call such a structure an abstract or combinatorial polyhedron.

4.3 Poincaré's Proof of Euler's Polyhedron Formula

As part of his algebraic topological program, Poincaré gave a new proof of Euler's polyhedron formula. This section sketches Poincaré's proof; for a more detailed discussion, consult Lakatos [1] (chapter 2) or Coxeter [89] (chapter 9).

Later I discuss the relationship between the concepts of polyhedron and the crucial condition of being a homology sphere as they are defined by Lakatos and in alternative definitions. The advanced reader should note before proceeding that the definitions of polyhedron and being a homology sphere employed in Lakatos's proof and which are about to be disucssed are *not* the same as the concepts that come out of other (perhaps more familiar) approaches to polyhedra. The polyhedra that we shall consider here lack a good deal of geometric content; they are essentially combinatorial structures.

In Poincaré's framework (as presented by Lakatos), a (three-dimensional) polyhedron is determined by five pieces of data:

- A set of vertices (the 0-polytopes),
- A set of edges (the 1-polytopes),
- A set of faces (the 2-polytopes),

- An incidence matrix that says which vertices belong to which edges, and
- An incidence matrix that says which edges belong to which faces.

Conventionally there is also a 3-polytope, namely the whole polyhedron p, and there is a (derived) incidence matrix declaring that all faces are incident with p. Symmetrically, there is a single (-1)-polytope and we declare that is incident with each vertex.

More generally, a d-dimensional polyhedron is characterized by a pair $(\mathcal{F}, \mathcal{I})$ (\mathcal{F} for 'faces', \mathcal{I} for 'incidences') of finite sequences, where

- $d = \operatorname{len} \mathcal{F}$,
- $\operatorname{len} \mathcal{F} > 0$,
- $\operatorname{len} \mathcal{I} = \operatorname{len} \mathcal{F} 1$,
- For $0 \le n < \text{len } \mathcal{F}$, we have that \mathcal{F}_n is a non-empty finite set (the set of k-polytopes of p), and
- For $0 \le n < \text{len } \mathcal{I}$, we have that \mathcal{I}_n is an incidence matrix for \mathcal{F}_n and \mathcal{F}_{n+1} .

In the more general setting we again have the stipulation that there is one d-dimensional polytope, namely p, that is incident with all (d-1)-polytopes; also, there is the stipulation that there is a -1-dimensional polytope that is incident with all 0-polytopes.

Theorem 1 For every simply connected polyhedron p of dimension d > 0, we have

$$\sum_{k=0}^{d-1} N_k = 1 + (-1)^{d+1},$$

where d is the dimension of p and N_k is the number of polytopes of p of dimension k.

For a polyhedron p and an integer k, let the k-chains of p be the powerset of the set of k-polytopes of p. The k-chains of p naturally form a vector space over the two-element field F_2 , where vector addition is represented by symmetric difference; call this space C_k . The relation between C_k and polyhedra can be seen in the fact that the dimension of C_k is precisely N_k , the number of k-polytopes of p. (Reason: the singleton subsets of \mathcal{F}_k are a basis for C_k .) The boundary $\partial_k c$ of a k-chain c is the (k-1)-chain

 $\{x \in \mathcal{F}_{k-1}: x \text{ is incident with an odd number of } k\text{-polytopes of } c\}.$

In other words, a (k-1)-polytope x belongs to the boundary of a k-chain c iff

$$\sum_{y \in c} \mathcal{I}_{k-1}(x, y) = 1,$$

where the sum is taken modulo 2. The boundary operation ∂_k is a linear transformation from C_k to C_{k-1} . It turns out that the k-chains c whose boundary is empty (all (k-1)-polytopes are incident with c an even number of times) form a subspace, Z_k , of C_k . Such k-chains are called k-circuits (sometimes also called k-cycles). Another important subspace of the k-chain space C_k consists of those k-chains that are the boundary of a (k+1)-chain; for lack of a better name, let B_k (for 'bounding') denote this subspace.

The property of being a homology sphere is the property that $B_k = Z_k$, that the k-circuits are the bounding k-chains. The inclusion $B_k \subseteq Z_k$ says that $\partial_{k+1}\partial_k \equiv 0$. The reverse inclusion intuitively says that the only way something can be a cycle is if it 'traverses' a 'face'. This fails in cases where, for example, a face has a hole in it (one can go around the boundary of the inner hole, but there's no face that one is traversing).

We are now ready to prove Theorem 1.

Proof. If p is a homology sphere, then

$$Z_k = B_k$$
,

so that

$$\dim Z_k = \dim B_k$$
.

Since $N_k = \dim C_k$, we have by the rank+nullity theorem that

$$N_k = \dim C_k = \dim B_{k-1} + \dim Z_k = \dim B_{k-1} + \dim B_k.$$

Thus

$$\sum_{k=0}^{d-1} (-1)^k N_k = \sum_{k=0}^{d-1} (-1)^k (\dim B_{k-1} + \dim B_k) = \dim B_{-1} + (-1)^{d-1} \dim B_{d-1}.$$

The last equation follows because of the hypothesis the p is a homology sphere. Now $\dim B_{-1} = 1$, since B_{-1} is a two-element vector space (it contains the empty chain as well as the singleton chain containing the unique -1-polytope). And $\dim B_{d-1} = 1$ for the same reason: it contains the empty chain as well as the 'full' chain containing all the (d-1)-polytopes, so that it has at least two elements; if c is a (d-1)-chain different from the 'full' (d-1)-chain and the empty chain, then it is not in the range of ∂_d , since by stipulation all (d-1)-polytopes are incident to the unique d-polytope p. The proof is complete.

4.4 The Formalization

This section describes the formalization of Poincaré's proof of Euler's polyhedron formula that was carried out in the MIZAR system.

MIZAR is based on classical first-order logic with equality and Tarski-Grothendieck set theory, a strong theory of sets that is equivalent to the Zermelo-Fraenkel theory together with an axiom asserting the existence of arbitrarily large inaccessible cardinals.

Among the many candidate systems (e.g., ISABELLE, HOL LIGHT, COQ) with which the formalization could have been carried out, MIZAR was selected because of its familiar logical foundations (first-order set theory), its everyday knowledge representation language (dependent types, structures, flexible notation for functions and predicates), its standard proof language (a kind of natural deduction), and its large library of formalized mathematical knowledge on which one can build.⁸ But it must be admitted that the choice of MIZAR over the other candidates was somewhat arbitrary. Nonetheless, it seems plausible that, if one were to compare the formalization in MIZAR under discussion with a formalization of the same proof in some other system, one would find considerable overlap.⁹

4.4.1 Main formalizations

One often finds when formalizing that, in addition to the logical and mathematical details in a formal proof that must be supplied, one must also formalize various kinds of 'background' knowledge. And one often finds that the simplest mathematical facts are (apparently) missing from the library of formalized mathematics¹⁰. Like Euler writing to Goldbach, one might be surprised that 'these general results have not been previously noted by anyone'. The formalization of Poincaré's proof of Euler's polyhedron formula in MIZAR was no exception to this phenomenon. But this is understandable; just as libraries of implemented algorithms for various programming languages do not eliminate the need for programmers to adjust them to their specific problems, so too do general mathematical facts in a formal library require further specification before they can be applied.

The contribution naturally divided into three MIZAR 'articles' (collections of definitions, theorems). They were:

- RANKNULL: The rank+nullity theorem [91];
- BSPACE: The vector space of subsets of a set based on symmetric difference [92]; and
- POLYFORM: Euler's polyhedron formula [93].

I now briefly discuss some notable features of these formalizations.

4.4.1.1 The rank+nullity theorem

The rank+nullity theorem states that if T is a linear transformation from a finite-dimensional vector space V to a finite-dimensional space W, then

$$\dim V = \dim \operatorname{im} T + \dim \ker T.$$

I was able to straightforwardly formalize a standard proof [94] of the result, but some formal groundwork had to be laid for that to be possible.

Much basic linear algebra has already been formalized in MIZAR; there are a number of theorems and definitions concerning subspaces [95], linear combinations [96], dimensions of vector spaces [97] and linear spans of sets of vectors [98]. But some of the linear algebraic facts involved in a proof of the rank+nullity theorem were unavailable and had to be formalized. To carry out the formalization, I defined:

- 1. the image and kernel of a linear transformation, and the fact that these form subspaces of the domain and range of a linear transformation;
- 2. the restriction of a linear combination to a set of vectors; and
- 3. the image and inverse image of a linear combination under a linear transformation.

The first item is straightforward, but the second and third items may require some explanation. In MIZAR, a linear combination is represented as a function from a vector space to the field of scalars whose carrier (the set of vectors not mapped to zero) is finite. ¹² The restriction of a linear combination l on a vector space V to a subset X of V is thus naturally represented by the function

$$\lambda v \in V.$$

$$\begin{cases} l(v) & \text{if } v \in X \\ 0_V & \text{otherwise} \end{cases}.$$

Suppose that T is a linear transformation from a vector space V to a vector space W, both over a field F, and that l is a linear combination of vectors in V. Thus l represents the linear combination

$$a_1v_1 + \cdots + a_nv_n$$

where n is a natural number, $a_k \in F$ and $v_k \in V$ and $a_k \neq 0_F$ $(1 \leq k \leq n)$. Since T is a linear transformation, we ought to have

$$T(a_1v_1 + \dots + a_nv_n) = a_1T(v_1) + \dots + a_nT(v_n).$$

Thus, it is natural to define the image of l under T to be the MIZAR-linear combination

$$\lambda w \in W. \begin{cases} l(T^{-1}(\{w\})) & \text{if } w \in \text{im } T \\ 0_F & \text{otherwise} \end{cases}$$

The problem with this definition is that it works only if T is injective. We are supposed to define the image of any linear transformation T on any linear combination l, so we need to allow for the possibility that some of the $T(v_i)$'s are equal. A definition that gets around this problem is

$$T(l) := \lambda w \in W. \sum l(T^{-1}(w)).$$

This definition allows us to add together the coefficients, given by l, of those vectors in V that are identified by T. It is interesting to note how the formal definition of the image of a linear combination under a linear transformation differs from the informal (or semi-formal) notation above. This case provides an interesting example of a formal analysis of informal notation.

The inverse image operation also deserves to be mentioned. Suppose that X is a subset of a vector space V, that T is a linear transformation from V to W, and that l is a linear combination of T(X) (that is, that l is a function from W to F with finite support whose value is 0_F outside of T(X)). This is a precise way of saying that l looks like

$$b_1T(v_1) + \dots + b_nT(v_n),$$

for some natural number n and $v_k \in X$. We want to say that the inverse image of l is the linear combination

$$b_1v_1+\cdots+b_nv_n$$
.

This is correct, but only on the assumption that the vectors $T(v_1), \ldots, T(v_n)$ are distinct. One way to ensure this is by requiring that T|X is one-to-one, and that is in fact what I did when defining the inverse image operation in MIZAR and suited the formalization task at hand. As it stands, the inverse image operation in MIZAR is a partial operation. The restriction of injectivity of the restriction is, however, not entirely unnecessary and it would be valuable to extend the formalization to account for the general case.

4.4.1.2 The vector space of subsets of a set based on symmetric difference

Another result needed for a formalization of Poincaré's proof of Euler's polyhedron formula is the fact that the power set of a set forms a vector space over the two-element field F_2 . Vector addition is symmetric difference, and scalar multiplication is defined by

$$0 \cdot x := \emptyset, 1 \cdot x := x.$$

This fact is to be standard, but I was unable to find any conventional name for this space. For lack of a better notation, let B(X) (for 'Boole') be the vector space of subsets of X based on symmetric difference.

Approximately half of the article BSPACE is devoted to proving that B(X) is indeed a vector space. The other half is devoted to some facts about the linear algebraic features of the family of singleton subsets of X, namely that

- they are a linearly independent set of vectors, and
- if X is finite, then they span B(X). ¹³

4.4.1.3 Polyhedra

Perhaps surprisingly, the formalization of Poincaré's proof was rather straightforward. The highlight of the article is the generalized Euler polyhedron formula, as well as special cases for one-, two-, and three-dimensional polyhedra. The statement of the main theorem, in the MIZAR syntax, is

1 p is homology-sphere implies p is eulerian;

where of course p has type polyhedron. The term 'Eulerian' is a neologism that means that a polyhedron satisfies Euler's relation; it appears in Lakatos [1]. The definitions of the two properties are

```
p is homology-sphere
means
for k being Integer
holds k-circuits(p) = k-bounding-chains(p);

and

p is eulerian
means
Sum (alternating-proper-f-vector(p))
= 1 + (-1)|^(dim(p)+1);
```

(The f-vector of a polyhedron p is the sequence of natural numbers

$$s := N_{-1}, N_0, N_1, \dots, N_d,$$

where $d = \dim p$ and N_k is the number of polytopes of dimension k. (It could also be reasonably defined as a bi-infinite sequence indexed by the integers containing the terms displayed above with all other terms being 0.) The terminology is standard [99], but to ease the formalization two related neologisms were coined: proper f-vector and alternating proper f-vector. By definition deleting the first and last terms of s gives the proper f-vector of p; alternating the signs of the sequence yields the alternating proper f-vector of p.) I also proved a lemma on telescoping sums that apparently did not exist in the MIZAR library:

```
1
   for a,b,s being FinSequence of INT
2
    st len s > 0 &
       len a = len s & len b = len s &
3
4
        (for n being Nat st 1 <= n & n <= len s
5
          holds s.n = a.n + b.n) &
        (for k being Nat st 1 <= k & k < len s
6
7
         holds b.k = -(a.(k+1))
    holds Sum s = (a.1) + (b.(len s))
8
```

The lemma is a formalization of the claim that if s, a, and b are are sequences of integers, all of the same length n, and if s = a + b but $b_k = -a_{k+1}$, then $\sum s = a_1 + b_n$. In Poincaré's proof, thanks to the property of being a homology sphere, the sum on the left-hand side of the Euler relation turns out to be telescoping in this way.

4.5 Discussion

4.5.1 Definition of polyhedron and being a homology sphere

Lakatos's presentation of Poincaré's proof of Euler's polyheron formula differs from Poincaré's own presentation, and his definitions differ from the definition of polyhedron and the property of being a homology sphere that grew out of Poincaré's work.

The polyhedra that Lakatos considers have very little geometric content; they are essentially combinatorial structures. They are essentially structures for a three-sorted first-order language L with sorts for vertices, edges, and faces, together with two binary relations for

the incidence relations. (One could equally well consider a single binary relation, taken as the union of the two relations in Lakatos's definition.) Perhaps a better term for these structures would be something like 'pre-polyhedron'; a 'polyhedron' would then be a structure for L that satisfies the property that $\partial_k \partial_{k+1} \equiv 0$. A better label for what Lakatos is defscribing would be perhaps 'abstract polyhedra'. One could then object and say that Lakatos has not proved Euler's formula for polyhedra, but rather just for abstract polyhedra. Following this line of thought, one could object to the claim that Lakatos (in the guise of the character Epsilon) has given a proof of Euler's polyhedron formula; from this it follows that the formalization described above is not a formal proof of Euler's polyhedron—which flows from Poincaré's original work—will be described. From that perspective we will be able to better understand Lakatos's abstract/combinatorial definition.

4.5.1.1 Algebraic topological definition of polyhedron

The material in this section is based largely on a standard treatment (by L. S. Pontryagin) of algebraic topology [100]. We shall eventually define a geometrically contentful concept of polyhedron, then abstract polyhedron. The latter, though lacking some geometric content, has more structure than Lakatos's polyhedra.

Definition 1 A simplex of dimension d is the convex hull of an affinely independent set of d-1 points in a real linear space.

Intuitively, then, a simplex is a generalization of a tetrahedron; it is supposed to be the simplest kind of geometrical arrangement.

Definition 2 A complex is a finite set K of simplexes of a finite-dimensional real linear space such that

- 1. If A is in K, then every face of A is also in K, and
- 2. Every two simplexes in K are properly situated.

We then define:

Definition 3 A **polyhedron** is the union of the simplexes in a complex.

Polyhedra as thus defined clearly have considerable geometric content. Their points are contained in a (finite-dimensional) real linear space, whereas Lakatos's polyhedra are mere combinatorial objects. We can abstract away from the analytic character and position of the parts of a polyhedra as just defined to get the concept of an abstract complex.

Definition 4 An abstract complex is a subset K of the powerset $\mathcal{P}(X)$ of a finite set X such that

- 1. Every singleton subset of X is a member of K, and
- 2. If A is in K, then every non-empty subset of A is also in K.

As a simple example, we have that for any finite set X, the set $\mathcal{P}X - \{emptyset, X\}$ is an abstract complex.

We can also see in this example why it is natural to include both \emptyset and the set of all vertices of an abstract polyhedron as belonging to it. We obtain \emptyset by relaxing the second condition in 4 to say that if A is in \mathcal{K} , then every subset of A is also in \mathcal{K} (not just the non-empty subsets of A). And allowing the set of all vertices of \mathcal{K} to be a member of \mathcal{K} both conditions in the definition are maintained. The dimension of the new abstract simplex \emptyset is naturally -1, and the dimension of the set of vertices of \mathcal{K} is naturally dim $\mathcal{K} + 1$. Let us define this new concept.

Definition 5 A **extended abstract complex** with vertices X is a subset of $\mathcal{P}X$ such that

- 1. Every singleton subset of X is a member of K,
- 2. If A is in K, then every subset of A is also in K, and
- 3. X is in K.

Clearly, from an abstract complex \mathcal{K} with vertices X we produce an extended abstract complex \mathcal{K}' with vertices X: $\mathcal{K}' = \mathcal{K} \cup \{\emptyset, X\}$.

It is with the help of abstract complexes that we can understand Lakatos's definition of polyhedra. Pointryagin uses the term **abstract simplex** to mean a member of an abstract complex. If we use the term 'polytope' instead, we start using Lakatos's terminology. Given an abstract complex \mathcal{K} , we can define a binary relation R on \mathcal{K} by the rule

$$R(a,b)$$
 iff there exists a vertex x of \mathcal{K} such that $a \cup \{x\} = b$

R holds between abstract simplexes a and b of K just in case b is exactly one vertex larger than a.

Using this relation, we can convert an abstract complex K into a Lakatos polyhedron p in a natural way: the k-polytopes of p are precisely the abstract simplexes of K of cardinality k+1, and the incidence matrices of p are just the restrictions of the induced relation R to the k and the (k+1)-polytopes of p.

This transformation process also works for extended abstract complexes. Note that, when applied to extended abstract complexes, we get that \emptyset , the unique -1-dimensional abstract simplex, is incident with every 0-dimensional abstract simplex. We also get that the set X of vertices (assumed to be among the abstract simplexes of an extended abstract complex) is incident with every abstract simplex of the form $X - \{a\}$ ($a \in X$). This is precisely what Lakatos asks us to postulate.

Let us denote by $P(\mathcal{K})$ the Lakatos polyhedron that is obtained from an (extended) abstract complex \mathcal{K} in this way. To verify that $P(\mathcal{K})$ is really a Laktos polyhedron, we must check that $\partial_k \circ \partial \equiv 0$.

Theorem 2 For every extended abstract complex K with vertices X, we have that P(K) is a Lakatos polyhedron, i.e., P(K) satisfies the condition that $\partial_k \circ \partial_{k+1} \equiv 0$, for every $0 < k \le \dim K$.

Proof. First, we shall give a set-theoretic characterization of the boundary operator on the $P(\mathcal{K})$'s. Using that characterization we shall show that $\partial \partial \equiv \emptyset$.

The boundary $\partial_k(a)$ of a k-polytope a is simple to describe: it is $\{a - \{x\} : x \in a\}$. This just reflects condition (2) in the definition of extended abstract complexes.

The description of $\partial_k(C)$ for k-chains C is somewhat more complex. This reflects the fact that the k-polytopes in the k-chain C can share elements. We need to keep track of the parity of incidences.

Indeed, we have the following characterization: $A \in \partial_k(C)$ iff there exists a vertex x and an element c of C such that $A = c - \{x\}$ and $x \in \Delta(c)$. Here $\Delta(c)$ is understood as a generalized symmetric difference operator defined on collection of sets:

$$\Delta(Y) := \{ y \in \bigcup Y : |\{Z \in Y : y \in Z\}| \text{ is odd} \}.$$

Given this characterization, we have that $A \in \partial_k \partial_{k+1}(C)$ iff there exists a vertex x and an element d of $\partial_{k+1}(C)$ such that $A = c - \{x\}$ and $x \in \Delta(\partial_k(C))$. But the condition that $x \in \Delta(\partial_{k+1}(C))$, is impossible. For

$$x \in \Delta(\partial_{k+1}(C))$$

iff

$$|\{B \in \partial_k(C) : x \in B\}|$$
 is odd,

which holds, by definition of ∂ , iff

$$|\{B: \exists c \exists y (c \in C \land y \in X \land B = c - \{b\} \land y \in \Delta(c) \land y \in B\}| \text{ is odd.}$$

But note that the condition that B is supposed to satisfy is contradictory: $B = c - \{v\}$, so B excludes v, but the last condition asserts that y is in B. So the comprehended set is empty, so its cardinality is certainly not odd.

Thus the incidence structure $P(\mathcal{K})$ is indeed a Lakatos polyhedron.

The Lakatos polyhedra that we obtain in this way from (extended) abstract complexes are a special subclass of the class of all Lakatos polyhedra. The main feature of $P(\mathcal{K})$ is that

a(k+1)-polytope is incident only with k+1 k-polytopes. This property is not shared by all Lakatos polyhedra.

The reader may be familiar with another definition of 'polyhedron' in algebraic topology as the set of points of a complex. In such a setting one has chains and a boundary operator. The approach taken here is rather more general than the approach taken in algebraic topology in terms of complexes because the polyhedra of this approach are more abstract; they lack a good deal of geometrical content that's contained in the definition of complex (even abstract complex). The main difference is that, with complexes (even abstract complexes), one has that the boundary operator satisfies $\partial_k \partial_{k+1} \equiv 0$. However, in the approach taken here, the boundary operator is *not* nilpotent. (See § 6.2.2.3 for a simple counterexample.) One needs to build nilpotency in as an assumption on the class of 'polyhedra structures' considered here.

In the approach to polyhedra taken here, there are -1- and $(\dim p)$ -dimensional polytopes, even though those don't appear in the usual definition of the term 'polyhedra', and don't necessarily arise in the algebraic topological approach. These objects are conventions.

Another important difference between the approach to polyhedra in algebraic topology and the approach here is that here there is no apparent discussion of an *orientation* of the vertices of a polyhedron.¹⁴ This is related to the fact that the vector spaces that we are considering are over the two-element field F_2 . One can prove in the algebraic topological setting that, if one considers coefficients for chains as coming from F_2 , then orientation indeed plays no role (because positively and negatively oriented polytopes are the same thing, as +a = -a over F_2 .).

4.5.1.2 Simple connectedness and homology spheres

The definition of simple connectedness employed in Lakatos is somewhat at odds with current mathematical terminology. Recall that a Lakatos polyhedron p is called simply connected if it satisfies $B_k \subseteq Z_k$ for every set integer k.

Another approach is the following. Let X be a topological space. X is called **path connected** if for any two points p and q in X, there exists a continuous function f from the real interval [0,1] to X such that f(0)=p and f(1)=q. Let S^1 be the unit circle in \mathbb{R}^2 (i.e., all pairs (x,y) of real numbers satisfying $x^2+y^2=1$), and let D^2 be the unit disk (i.e., the set of all pairs (x,y) of real numbers such that $x^2+y^2\leq 1$).

Definition 6 A topological space X is simply connected if it is path connected and every continuous function f from S^1 to X can be extended to a continuous function from D^2 to X.

This definition clearly differs from Lakatos's. First of all, it applies to topological spaces, so it is not obvious that it can be modified in a straightforward way to Lakatos polyhedra. There is, however, a relation, given by the following fact:

Theorem 3 Every two-dimensional manifold M for which $H_1(M, F_2)$ is trivial is simply connected.

 $H_1(M, F_2)$ is the so-called first homology group of the manifold M, which is by definition $Z_1(M, F_2)/B_1(M, F_2)$, where

- $Z_1(M, F_2)$ is the group of 1-chains (over F_2) of M whose boundary is 0, and
- $B_1(M, F_2)$ is the group of 1-chains (over F_2) of M that are the boundary of some 2-chain.

The definition makes sense because, in this setting, we have that $\partial \partial \equiv 0$, i.e., $B_r \subseteq Z_r$, as a basic theorem. To say that $H_1(M, F_2)$ is trivial just means that $B_r = Z_r$. Lakatos thus takes the property 'the first homology group is trivial' as his definition of simple connectedness. From this it follows (by a result known as the universal coefficient theorem [101]) that $H_1(M, F_2)$ is the trivial group.

However, for every $n \geq 4$ there exist compact smooth manifolds of dimension n for which $H_1(M, \mathbb{Z}/)$ is trivial, but which are nonetheless not simply connected. Poincaré also found an example that works in dimension three.

A FORMAL PROOF OF EULER'S POLYHEDRON FORMULA

The examples show that 'simply connected' is a minsomer. The terminology is appropriate for polyhedra of dimension at most 2 (i.e., two-dimensional surface sitting in \mathbb{R}^3), but that is so only because of a classification theorem for 2-manifolds. A better word for what the property that Lakatos calls 'simply connected' would be 'homologous to a sphere', or 'homology sphere'. This is the terminology that I've adopted.

4.5.2 A proof-theoretic question

The result of the formalization is that Euler's polyhedron formula (understood à la Poincaré) is a first-order logical consequence of the axioms of Tarski-Grothendieck set theory (TG). But it should be clear that the full strength of TG set is not required for Poincaré's proof; it would be quite surprising if Poincaré's proof of Euler's polyhedron formula required the existence of arbitrarily large inaccessible cardinals. After all, following Poincaré, polyhedra are conceived as certain combinatorial structures that, presumably, could be completely captured in an arithmetical theory. And thanks to the level of detail in the formal proof of Euler's polyhedron formula, one has a clear basis with which to prove Euler's polyhedron formula in a weaker theory than TG.

The characteristic axiom of TG asserts: for every set N there exists a set M such that

- $N \in M$,
- M is closed under taking subsets,
- M is closed under the powerset operation, and
- if $X \subseteq M$ and $X \not\sim M$, then $X \in M$.

Such a set M might be called a universe containing N; accordingly, let us call this principle the *universe axiom*. Some important consequences of the universe axiom (none of which are axioms of TG) are:

- The existence of an infinite set,
- The axiom of choice, and
- Powerset.

When one inspects the deduction underlying the MIZAR proof of Euler's polyhedron formula, one can trace the argument through each of the three principles mentioned above. Since each of these three principles are consequences of the universe axiom (together, of course, with other axioms of TG), we see that the MIZAR proof of Euler's polyhedron formula uses the universe axiom. But in MIZAR this is to be expected. Indeed, the proof of every theorem in the MIZAR mathematical library that involves natural numbers uses the universe axiom by way of the existence of an infinite set (obtained by applying the universe axiom to \emptyset). It may be somewhat surprising that the axiom of choice appears in the proof of Euler's polyhedron formula. To be clear, what is claimed is not that Euler's polyhedron formula ineliminably depends on the axiom of choice in the way that, say, the well-ordering principle does. Instead, what is claimed is that there is a deduction of Euler's polyhedron formula that uses choice. The use occurs in the proof of the rank+nullity theorem theorem. The proof proceeds by starting with a linear transformation T from a finite-dimensional vector space V to a finite-dimensional vector space W. The first step is to choose a basis A for $\ker T$; one then extends A to a basis B for all of V and, finally, one shows that T(B-A)is a basis of im T. In the actual MIZAR proof of the rank+nullity theorem, the justification for the first step (choosing a basis for $\ker T$) appeals to the theorem [98] that every vector space has a basis. 15

But clearly the principle that every vector space has a basis (which, perhaps surprisingly, is equivalent over ZF [102] to the axiom of choice) is stronger than what is required for the purpose of proving the rank+nullity theorem, which after all deals with only finite-dimensional vector spaces. ¹⁶ And for finite-dimensional vector spaces, it is clear that we can produce a basis through an iterative search procedure whose formalization requires only arithmetical principles.

Some custom software (building on Josef Urban's work [104]) for computing dependency relations in MIZAR texts provides evidence that the *only* way that the universe axiom is used is by way of the three principles mentioned above (infinity, choice, powerset). This in turn is evidence that, from the provability judgment $TG \vdash \text{EPF}$ we have the improved

A FORMAL PROOF OF EULER'S POLYHEDRON FORMULA

judgment $ZFC \vdash \text{EPF}$, where 'EPF' is the Poincaré/combinatorial formalization of Euler's polyhedron formula.¹⁷

Applying 'Schoenfield's trick' to the Poincaré/combinatorial understanding of Euler's polyhedron formula, from the judgment $ZFC \vdash EPF$ we can drop choice and conclude that $ZF \vdash EPF$. We have thus moved from the heights of TG to the more modest realm of ZF by studying the MIZAR deduction of Euler's polyhedron formula; we have established a new provability judgment without actually producing a new deduction.

One can continue the process of trying to further weaken the theory with which proof is carried out. It seems plausible that one can get away without having a *set* of natural numbers. That is, it seems plausible that one can eschew the axiom of infinity and deal with the natural numbers not as a set but as a proper class. Accepting that for the moment, we see, using the equivalence of ZF – Infinity and Peano Arithmetic (PA), that Poincaré's proof of Euler's polyhedron formula can be carried out in PA.

Based on some initial studies, it appears that a formalization of Poincaré's proof can be carried out in the theory $I\Delta_0(\exp)$, a first-order arithmetical theory in a language with addition, multiplication, ordering, and exponentiation with an induction scheme for Δ_0 -formulas (which are permitted to contain exponentiation) [105]. It also appears that some kind of exponentiation is required. In the next chapter, we shall take up these issues in somewhat more detail.

4.5.3 Streamlining the formalization

At the time of writing, no mechanism for binders (apart from the quantifiers \forall and \exists) has been implemented in the MIZAR language. (Wiedijk has a proposal [106] for this as-yet-unimplemented feature.) For example, the definition of the so-called incidence sequence $I_{x,c}$ generated by a (k-1)-polytope x and a k-chain c. Using one common notation for sequences [107], $I_{x,c}$ can be defined as

$$\langle v@P_{k,n} \cdot [x \in P_{k,n}]: 1 \le n \le N_{p,k} \rangle,$$

The bracket notation ' $[x \in P_{k,n}]$ ', from Knuth [108], denotes 1 or 0 according as the relation does or does not hold. ¹⁸ The actual MIZAR definition is somewhat more complicated:

```
incidence-sequence(x,v) -> FinSequence of F2
1
2
    ((k-1)-polytopes(p) is empty implies it = <*>{}) &
3
    ((k-1)-polytopes(p) is non empty implies
     len it = num-polytopes(p,k) &
     for n being Nat
7
      st 1 <= n & n <= num-polytopes(p,k)
      holds
8
9
      it.n =
10
       (v@(n-th-polytope(p,k)))*incidence-value(x,n-th-polytope(p,k)));
```

A binder syntax would simplify this definition. It would also help to simplify the examples involving linear combinations that have already been discussed (in light of the fact that in MIZAR linear combinations are represented as functions). Even if these examples are unconvincing, it should be clear that, in general, notations for sequences, functions (λ -abstraction), relations, and other mathematical objects would help to streamline the MIZAR language and make it even more attractive as a formal language for mathematics than it already is.

4.6 Conclusion and Further Work

Poincaré's abstract, combinatorial conception of polyhedra facilitated formalization because the definition could be easily captured using MIZAR structures. Following Poincaré, the messy details are largely suppressed; one just formalizes the definition of being a homology sphere and carries out the linear algebraic proof. Whether one regards this as a problem or a feature of Poincaré's approach is left for the reader to decide. A further challenge for formal mathematics would be to treat Euler's proof of his relation, involving 'concrete' or 'real' polyhedra. One could start with the relatively easy case of convex polyhedra (with which Euler was arguably working [109], even though his definition apparently permits non-convex polyhedra). It would be especially interesting to take on Euler's argument because of the subtle flaws that it was found to contain. The main problem was that Euler did

A FORMAL PROOF OF EULER'S POLYHEDRON FORMULA

not specify just how to carry out the slicing procedure. One can see, by inspecting simple examples, that one must be careful about the vertex about which the slicing procedure is done, because for some polyhedra and some choices of the vertex, Euler's method can lead to strange results:

It is not at all obvious that this slicing procedure can always be carried out, and it may give rise to 'degenerate' polyhedra for which the meaning of the formula is ambiguous. [110]

Samelson [111] has repaired this gap in Euler's proof. Are there any others?

As mentioned earlier, for the purposes of the formalization is was not necessary to define in full generality the notion of the inverse $T^{-1}(l)$ of a linear combination l under a linear transformation T. It would be valuable for future formalizations in MIZAR of linear algebra to deal with the full generality of inverse images.

The property of a polyhedron satisfying $\partial \partial \equiv 0$ is part of the definition of being a homology sphere. This property is equivalent to the inclusion $B_k \subseteq Z_k$, which says that boundaries are circuits. One might regard this not as the *definition* of the property of being a homology sphere, but rather as part of the definition of polyhedron; one would then define the property of being a homology sphere as the converse inclusion $Z_k \subseteq B_k$ (circuits are boundaries). For future formalizations using combinatorial polyhedra in MIZAR, it may be valuable (if not necessary) to carry out this rearrangement.

A further step would be to give a formal proof of Steinitz's theorem relating convex 'analytic' polyhedra (whose points are in \mathbb{R}^3) to planar graphs [99, 112–113].

5 Metamathematical Problems about Polyhedra

5.1 Introduction

This chapter digresses from our main thread, which focuses on Lakatos's philosophy of mathematics; the next chapter takes up that thread again. Here we discuss some metamathematical problems that naturally arise when considering polyhedra as abstract structures. The topics treated are:

- expressibility problems concerning polyhedra (model theory, specifically finite model theory),
- formal theories of polyhedra, and
- a proof-theoretic question about Lakatos's proof of Euler's polyhedron formula (proof theory, more specifically bounded arithmetic).

Although this chapter digresses from the main philosophical thrust of the dissertation, the problems discussed here nonetheless relate to Lakatos's philosophy of mathematics insofar as they illustrate how, when certain mathematical problems are considered entirely formally, we can obtain interesting results that might not have occurred had we not treated them formally. Lakatos himself points out [48] the possibility that new informal metamathematical problems may arise through the formalization of informal mathematical theories. This chapter is a contribution in that spirit.

5.2 Expressibility Problems for Combinatorial Polyhedra

This section takes up the problem of formally expressing certain properties of combinatorial polyhedra, by which we understand polyhedra considered as incidence structures (as opposed to certain kind of spatial figures or regions).

To ensure a uniform treatment, let us define the following language:

Definition 7 The first-order signature π consists of three unary relation symbols V, E, and F, and one binary relation symbol I.

First-order structures for the signature π can be regarded as graphs whose nodes are colored in one of three 'colors' (V, E, or F).

What properties of polyhedra can be express using π ? Can one express, for example, that a polyhedron is eulerian, i.e., that a finite π -structure A satisfies the property that $|V^A| - |E^A| + |F^A| = 2$? What about the property of being a homology sphere? What about the property that $\partial \circ \partial \equiv \emptyset$? And can we express that an π -structure comes from a convex three-dimensional polyhedron?

The answer to most of these questions is 'no', especially in the case of first-order logic. Some of the aforementioned properties, however, can be captured using certain extensions of first-order logic, which we shall see.

Note that the aforementioned properties properties are straightforwardly computable: if one is given a finite π -structure A, one can compute in a finite amount of time whether A is eulerian, whether it satisfies the property that $\partial \circ \partial \equiv \emptyset$, whether it 'comes from' a convex polyhedron. (The latter is not immediately obvious; one needs to appeal to a basic result known as Steinitz's theorem for that. Steinitz's theorem will be discussed later.) Indeed, it seems clear that one can compute these properties in time polynomial in the cardinality |A| of the structure A, assuming that one can test in constant time whether an element satisfies the predicates V, E, or F. Thus, by Fagin's theorem [114], which says, roughly, that existential second-order logic captures the complexity class NP, all these properties of finite π -structures can be captured in existential second-order logic. Our investigation seeks to place these properties in rather weaker extensions of first-order logic than full existential second-order logic.

5.2.1 Being a homology sphere

The property of being a homology sphere, recall, is that every cycle is a boundary: the only way of being for a k-chain to 'go all the way around' is for it to go around something.

The most interesting case for us of the property of being a homology sphere is that, for every 1-cycle c, there exists a 2-chain d such that $\partial_2(d) = c$. For this property we have the following result.

Theorem 4 The property of being a homology sphere is not expressible by a first-order sentence in π .

Proof. The proof uses Hanf locality. Suppose to the contrary that there exists a sentence γ of π such that, for every finite π -structure A, we have

$$A \vDash \gamma$$
 iff A is a homology sphere

Let d be the Hanf locality degree of γ . Consider now the two families of structures A_k and B_k , defined as follows:

- Both A and B are loop-free undirected graphs, so that R is interpreted as an irreflexive symmetric relation;
- A is a single ring;
- B is a double ring (annulus) consisting of an outer ring and an inner ring;
- A bounds a single face; it is the only face of A;
- B, considered as an annulus, has one face in the region between the two rings; that is the only face of B;
- $\bullet \quad |V^A| = |V^B| = 4k;$
- the inner ring and the outer ring of A have 2d vertices;

The structure B is such that the boundary of the inner ring is empty, but it does not bound any face (i.e., the inner ring is not the boundary of the unique face of B). Let f be a bijection from A to B that sends the face of A to the face of B, the edges of A to the edges of B, and the vertices of A to the vertices of B. We have set up the structures in such a way that the d-neighborhoods of any element a in A and the corresponding element f(a) in B are essentially the same:

- if a is the unique face of A, then f(a) is the unique face of B; a is incident with 4k edges and 4k vertices, and so is f(a), so their d < 4k neighborhoods are essentially the same;
- if a is an edge of A and x is in the d-neighborhood of a, then x is either the face of A (in which case f(x) is the unique face of B); if x is an edge of A, the it is one of the d < 2k edges around a, but there are precisely the same number of edges around f(a) in B; and likewise in the case where x is a vertex of A;
- if a is a vertex of A, then by reasoning as in the previous item we can argue that the d-neighborhood of a is essentially the same as the d-neighborhood of f(a).

5.2.2 Eulerianness

Definition 8 A π -structure A is called **eulerian** if it satisfies the equation

$$|V^A| - |E^A| + |F^A| = 2.$$

Question: is this property expressible in π ? If not, in what extensions of first-order logic can it be expressed? These questions shall occupy us in this section.

Restricting attention first of all to first-order logic, the answer to our question is 'no'.

Theorem 5 There is no first-order sentence ϕ of the signature π such that for all finite π -structures A, we have

$$A \vDash \phi$$
 iff A is eulerian

.

Proof. By the (negative) corollary to the Ehrenfeucht-Fraïssé theorem, it suffices to produce a sequence (A_n, B_n) of pairs of finite π -structures such that, for all $k \geq 0$,

- A_k is eulerian,
- B_k is not eulerian, but
- $\bullet \quad A_k \equiv_k B_k.$

Our structures will be defined as follows:

- 1. The domains of A_k and B_k will both be the disjoint unions of the interpretations of the relation symbols V, E, and F;
- 2. $V^{A_k} = V^{B_k}$ is a set of k elements;
- 3. $E^{A_k} = E^{B_k}$ is a set of 2k elements;
- 4. F^{A_k} is a set of k+2 elements;
- 5. F^{B_k} is a set of k+3 elements;
- 6. $I^{A_k} = I^{B_k} = \emptyset$.

By 1–4, A_k is eulerian (k-2k+(k+2)=2); and by 1–3 and 5, B_k is not eulerian (k-2k+(k+3)=3).

It remains to show that $A_k \equiv_k B_k$. To define a winning strategy for duplicator in the length k Ehrenfeucht-Fraïssé game based on A_k and B_k , note that we can set up a simple one-to-one correspondence between V^{A_k} and V^{B_k} and E^{A_k} and E^{B_k} . The only potential trouble for duplicator occurs in the F parts of the two structures, where there in fact is some difference that could be detected.

We need not specify a correspondence between the F's in A_k and B_k ; it should be clear that whatever element spoiler chooses, if it is an E element, then there are enough E elements in the other structure for duplicator to respond. In other words, a winning strategy for duplicator is simply to respond to spoiler's chosen element by choosing any element in the other structure of the same kind (i.e., if spoiler chooses a V, the duplicator responds with an arbitrarily chosen V, etc.).

5.2.2.1 Extending the result: euler characteristic and general-dimensional polyhedra

We can extend the result further by introducing the notion of an euler characteristic—which will show that there is nothing special about the constant 2 in the key equation V - E + F = 2—and by permitting polyhedra of arbitrary (finite) dimensions, thereby showing that there is nothing special about dimension 3 polyhedra.

Definition 9 The euler characteristic $\chi(A)$ for a finite π -structure A is the integer $\chi(A) := |V^A| - |E^A| + |F^A|.$

The main theorem shows that the property of having euler characteristic 2 is not expressible by a first-order sentence (of the signature π).

Theorem 6 For every integer k, the property of finite π -structures of having euler characteristic k is not expressible by a first-order sentence of π .

Proof. Given an integer k, 'normalize' the equation V - E + F = k by adding E to both sides and adding k to both sides if k is negative. We are thus dealing with the property V + F = E + k, or V + F + (-k) = E, if k is negative.

Define a sequence (A_n, B_n) of finite π -structures such that, for all $n \geq 0$,

- A_n has euler characteristic k,
- B_n does not have euler characteristic k, but
- $\bullet \quad A_n \equiv_n B_n.$

The description of the game (and the winning strategy) uses the 'normalized' equation. Thus, if we wanted to show that the property of having euler characteristic equal to -9, note that we are dealing with the equation V + F + 9 = E. Now consider the sequence structures $(A_{k,-9}, B_{k,-9})$ $(k \ge 0)$ defined as

- 1. The domains of $A_{k,-9}$ and $B_{k,-9}$ will both be the disjoint unions of the interpretations of the relation symbols V, E, and F;
- 2. $V^{A_{k,-9}} = V^{B_{k,-9}}$ is a set of k elements;
- 3. $E^{A_{k,-9}}$ is a set of 2k+9 elements;
- 4. $E^{B_{k,-9}}$ is a set of 2k+10 elements;
- 5. $F^{A_{k,-9}} = F^{B_{k,-9}}$ is a set of *k* elements;
- 6. $I^{A_{k,-9}} = I^{B_{k,-9}} = \emptyset$.

It is clear that duplicator has a winning strategy in the length k Ehrenfeucht-Fraïssé game based on $A_{k,-9}$ and $B_{k,-9}$; the description of the winning strategy follows the same outline as we have in the case where we considered π -structures whose euler characteristics were 2.

Thus, as one might have expected, there is nothing special about the constant 2. Moreover, there is nothing special about the dimension 3.

Definition 10 For a positive natural number d, let π_d be a signature with d unary relation symbols $P_0, P_1, \ldots, P_{d-1}$.

Intuitively, π_d gives us a language for talking about d-dimensional combinatorial polyhedra. (The letter 'P' in the names of the unary predicates stands for 'polytope'. P_k is intended to denote the set of k-dimensional polytopes.) The 'polyhedral' signature π that we have been using is the special case d=3. There is a natural extension of the notion of euler characteristic from three-dimensional polyhedra to polyhedra of any positive dimension.

Definition 11 The euler characteristic for a finite π_d -structure A is the alternating sum

$$\sum_{k=0}^{d-1} (-1)^k |P_k^A|.$$

(This coheres with the case of d=3, where the euler characteristic was defined as the alternating sum V-E+F.)

The definition comes from Schläfli's generalization of Euler's polyhedron formula to polyhedra of arbitrary dimension¹. The alternating sum can be motivated by observing that

- a polyhedron of dimension 1 is a line segment, and thus has two vertices, whence V=2;
- a polyhedron of dimension 2 is a polygon, and thus has an equal number of vertices and edges, whence V = E, i.e., V E = 0;
- a polyhedron of dimension 3 satisfies Euler's relation, whence V E + F = 2.

As the dimension of the polyhedra increases, the right-hand side of the equation oscillates between 2 and 0. Also, the left-hand side starts with a positive term counting the number of polytopes of lowest dimension (0, or vertices) and alternates in sign as polytopes of increasing dimension are considered.

Theorem 7 For every natural number $d \geq 2$, and every integer k, the property of finite π_d -structures of having euler characteristic k is not expressible by a first-order sentence (of the signature π_d).

Before getting into the proof, let us pause to explain why the condition that d be at least 2 is necessary. We cannot claim that the result holds for d = 1, because we do have expressibility results in that case, at least for non-negative euler characteristics. For example, in the case of d = 1, we can express that the euler characteristic of a π_1 -structure is 2:

$$\exists x \exists y (P_0(x) \land P_0(y) \land x \neq y).$$

Clearly for every natural number n we can write a first-order formula in the signature π_1 saying that there are exactly n vertices, which, in this trivial low-dimensional case, is the property of the euler characteristic being equal to n. Of course, we cannot write a first-order formula saying that there negatively many vertices.

Proof. An easy generalization of the case d=3. For example, if d=4 and k=42, consider the structures (A_n, B_n) $(n \ge 0)$ defined as:

- 1. the domains of $A_{n,4,42}$ and $B_{n,4,42}$ will both be the disjoint unions of the interpretations of the relation symbols P_0 , P_1 , P_2 , and P_3 ;
- 2. $P_0^{A_{n,4,42}} = P_0^{B_{n,4,42}}$ is a set of k elements;
- 3. $P_1^{A_{n,4,42}} = P_1^{B_{n,4,42}}$ is a set of k elements;
- 4. $P_2^{A_{n,4,42}}$ is a set of k + 42 elements;
- 5. $P_2^{B_{n,4,42}}$ is a set of k + 43 elements;
- 6. $P_3^{A_{n,4,42}} = P_4^{B_{n,4,42}}$ is a set of k elements;
- 7. $I^{A_{n,4,42}} = I^{B_{n,4,42}} = \emptyset$.

By design, the euler characteristic of $A_{n,4,42}$ is 42, but that of $B_{n,4,42}$ is 43. The only potentially detectable difference between the two structures is in the P_2 part; but there are enough such elements to ensure that $A_{n,4,42} \equiv_n B_{n,4,42}$ by simply responding arbitrarily to whatever move spoiler makes (provided, of course, the duplicator responds to a P_0 move by choosing a P_0 element, etc.).

The general-dimensional approach has among its consequences a familiar result from finite model theory:

Corollary 1 There does not exist a first-order sentence ϕ , in a signature using two unary predicate symbols R and S (together with equality), which is such that

$$A \vDash \phi \quad \textit{iff} \quad |R^A| = |S^A| \cdot$$

Proof. In the previous theorem, put d=2 and k=0.

In the proofs of the preceding theorems on eulerianness and euler characteristics, we have used Ehrenfeucht-Fraïssé games. One would reasonably wonder whether more sophisticated tools, such as Hanf locality, might have led to these results more efficiently. The answer is that such tools might very well apply in these cases, but one initial obstacle to applying them is that the properties here are 'cardinal' properties, that is, they are defined as relations holding among the cardinalities of the various parts of the structures involved. We described structures in which duplicator can win, but the structures had different

cardinalities: one structure was always bigger than the other by one. However, when applying Hanf locality, one must take care that the structures involved have the *same* cardinality. This consideration is presented not as a decisive obstacle to using Hanf locality for establishing non-expressibility of cardinality properties such as eulerianness (or any other euler characteristic). If that is right, then the cardinal properties here seem to be 'basic' in some sense.

5.2.2.2 Monadic second-order logic

We have seen that eulerianness cannot be captured in first-order logic by a sentence in our 'polyhedron language' π ; what about for extensions of first-order logic? In this section we consider monadic second-order logic, which extends first-order logic by permitting set quantifiers. Can eulerianness be expressed with monadic second-order logic?

The answer is, once again, 'no'.

Theorem 8 Eulerianness is not expressible as a sentence of π in monadic second-order logic.

The proof uses the modification of Ehrenfeucht-Fraïssé games that are suitable for monadic second-order logic.² For these games for monadic second-order logic, we have an expressibility result analogous to what we had for first-order logic. We shall use the notation $A \equiv_k^{\text{MSO}} B$ to indicate that duplicator has a winning strategy in the length k monadic second-order logic Ehrenfeucht-Fraïssé game based on the structures A and B.

Theorem 9 A property P of finite structures (over a relational signature π) is expressible in monadic second-order logic iff there exists a natural number n such that for every two π -structures A and B, if A has property P and $A \equiv_k^{MSO} B$, then B has property P.

For a proof, see Libkin [114].

As before, we are interested in applying this result to prove non-expressibility.

Proof. A sequence (C_k, D_k) of pairs structures that work for the monadic second-order case is closely related to the sequence of pairs of structures that worked for the proof in the first-order case. Interestingly, thanks to the increased expressive power of monadic second-order logic, duplicator needs more 'room' to carry out his 'deception' of spoiler. Define $C_k := A_{2k}$ and $D_k := B_{2k+1}$. Note that for C_k we have

$$V^{C_k} - E^{C_k} + F^{C_k} = (2k+1) - 4k + (2k+1) = 2,$$

whereas for D_k we have

$$V^{D_k} - E^{D_k} + F^{D_k} = (2k+1) - 4k + (2k+2) = 3$$

Thus C_k is eulerian but D_k is not. We need to argue that $C_k \equiv_k^{\text{MSO}} D_k$.

To define a winning strategy for duplicator, proceed as follows. If duplicator make a point move (i.e., selects an element of one of the structures), then duplicator is to respond in the same way as was done in the previously described first-order Ehrenfeucht-Fraïssé game. If spoiler makes a set move (i.e., chooses a subset of one of the structures), then duplicator is to respond in the following way:

- If spoiler chose \emptyset in either structure, respond with \emptyset ;
- If spoiler chose a singleton subset $\{x\}$ of either structure, respond with the singleton subset $\{y\}$, where y corresponds to x in the first-order Ehrenfeucht-Fraïssé game described above;
- If spoiler makes a set move that contains elements satisfying V or E, then respond with a set move containing the corresponding elements in the other structure satisfying V or E. The idea is that since the V and E parts of the two structures C_k and D_k are 'identical', duplicator can easily respond to any move that takes place in those 'parts' of the structures;
- If spoiler makes a set move X in D_k (where $|F^{D_k}|$ is exactly one larger than $|F^{C_k}|$, then respond with a set Y in C_k in the following way:
 - $\quad \text{If } |X \cap F^{D_k}| \leq k \text{, then for } Y \text{ choose a subset of } C_k \text{ such that } |Y \cap F^{C_k}| = |X \cap F^{D_k}|;$

- If $|X \cap F^{D_k}| > k$, then for Y choose a subset of C_k such that $|Y \cap F^{C_k}| + 1 = |X \cap F^{D_k}|$.
- If spoiler makes a set move X in C_k , then respond with a set Y in D_k in the following way (exactly analogous to the previous case):
 - If $|X \cap F^{C_k}| \leq k$, then for Y choose a subset of D_k such that $|Y \cap F^{D_k}| = |X \cap F^{C_k}|$;
 - If $|X \cap F^{C_k}| > k$, then for Y choose a subset of D_k such that $|Y \cap F^{D_k}| = |X \cap F^{C_k}| + 1$.

To get a sense of how this strategy works, let us consider some possible set moves that spoiler could make that might lead to a loss for duplicator, and how duplicator can respond to them. If spoiler chooses, say, all the F's in C_k , the duplicator needs to respond by choosing all the F's in D_k , and vice versa. For if duplicator responds by choosing a proper subset X of the F's, then spoiler can choose an F in the complement of X, and duplicator loses. From below, we can consider what happens if spoiler chooses a small subset of the F's in one of the structures, say an unordered pair. Duplicator needs to respond (assuming that we are dealing with the trivial cases where k is 0, 1, or 2) by choosing an unordered pair in the other structure; otherwise, spoiler can discover a difference in the cardinalities of these two sets in three moves. Thus, from below, duplicator needs to respond by choosing sets with the same cardinality as spoilers sets. From above, we know that, since the cardinality of the F's in the two structures is not the same, there must come a point when duplicator cannot always respond by choosing a set with exactly the same cardinality. In the last two moves above, we choose cardinality k as the transition point: for sets of cardinality at most k, duplicator responds by choosing sets with precisely the same cardinality as spoiler's sets; after k, duplicator responds to spoiler's 'large' set moves by responding with another 'large' set whose size differs by exactly one. By playing this way only for 'large' sets (cardinality greater than k), spoiler cannot tell—in k moves—that there is a difference between the two structures.

As we had in the case of first-order logic, the result extends to arbitrary euler characteristics and arbitrary dimensions (at least two).

Theorem 10 For each integer k, the property of finite π -structure of having euler characteristic k is not expressible by a monadic second-order sentence of the signature π .

Proof. Uses the same (sequence of) structures that worked when we were concerned with first-order logic in the case of arbitrary euler characteristics, but 'doubled' as we just saw in the previous proof. (Such doubling—increasing the size of the structures involved to give duplicator more 'room'—appears to be necessary.)

5.2.2.3 Expressibility using an equicardinality generalized quantifier

The investigation of expressibility of eulerianness has so far been negative; neither firstorder logic nor monadic second-order logic were able to capture this property in a single sentence. The discussion now turns in a more positive direction.

This section concerns an extension of first-order logic obtained by adding a new quantifier for equicardinality. Syntactically, the quantifier binds one variable and two formulas $\alpha(x)$ and $\beta(x)$. Formally, it is characterized as follows:

Definition 12 Let A be a first-order structure, x a variable, α and β two formulas, and let s be a variable assignment for A. Define

$$A \vDash \operatorname{EQ-CARD} x(\alpha,\beta) \quad \text{iff} \quad |\{a \in A : A \vDash \alpha[s(x|a)]\}| = |\{a \in A : A \vDash \beta[s(x|a)]\}|$$

.

Using such a quantifier, it turns our that we can express eulerianness. But we first place a condition on our structures:

Definition 13 A π -structure A is called **partitioned** if its domain is the disjoint union of the interpretations in A of the unary predicates V, E, and F.

The condition of being partitioned ensures that every element is one of the three kinds (intuitively, every element is either a vertex, an edge, or a face), and that no element is

of two (or more) kinds. Note that the class of partitioned structures is elementary: it is axiomatized by the π -sentence

$$\forall x [V(x) \lor E(x) \lor F(x)] \land \begin{bmatrix} V(x) \to \neg E(x) \land \neg F(x) \\ & \land \\ E(x) \to \neg V(x) \land \neg F(x) \\ & \land \\ F(x) \to \neg V(x) \land \neg E(x) \end{bmatrix}.$$

Theorem 11 For each integer k, the property of finite partitioned π -structures having euler characteristic k is expressible by a sentence of first-order logic with a generalized quantifier for equicardinality.

Proof. The proof goes by example. To warm up, consider the case k = 0. Claim: the formula

$$\phi_0 := \text{EQ-CARD}_x(E(x), V(x) \vee F(x)).$$

works. A finite partitioned first-order structure A whose domain is the satisfies ϕ_0 iff the $|V^A| + |F^A| = |E^A|$, i.e., $|V|^A - |E|^A + |F|^A = 0$. This is essentially read off from the satisfaction conditions for the equicardinality quantifier and the definition of being partitioned.

Now consider the case k=1. To say that a finite π -structure has euler characteristic 1 means that V-E+F=1, i.e., V+F=E+1, so that there is (exactly) one more vertex-or-face element than there are edges. We can express this using the equicardinality quantifier as

$$\phi_1 := \exists x ([V(x) \vee F(x)] \wedge \text{EQ-CARD}_y(E(y), [V(y) \vee F(y)] \wedge y \neq x)).$$

A finite partitioned first-order structure A satisfies ϕ_1 iff the euler characteristic of A is 1. If k = -1, we have to express the property V - E + F = -1, or V + F + 1 = E. A formula ϕ_{-1} that works for k = -1 looks like ϕ_1 .

The condition of the structures as being partitioned is essential: if we drop this condition and allow elements satisfy none of these predicates V, E, and F, or more than one of them, then our expressibility results fail. For a counterexample, consider a structure A with one point, satisfying both V and F. The euler characteristic of A is 2, but the formula ϕ_0 above, using the equal cardinality quantifier, is false in this structure (the cardinality of the set of elements that satisfy $V(x) \vee F(x)$ is 1, but the cardinality of the set of elements that satisfy E(x) is 0).

It is not clear that there exists a formula using the equicardinality quantifier that will work in the class of *all* structures, as opposed to the class of partitioned structures. One approach toward expressing this class of structures would be to use the principle of inclusion-exclusion³, well known from elementary combinatorics. We leave this as an open question.

5.2.2.4 Expressibility in dyadic existential second-order logic

Theorem 12 For each integer k, the property of finite partitioned π -structures of having euler characteristic k is expressible by a sentence of (dyadic) existential second-order logic.

Proof. By example. Consider k = 0, and look at the sentence

$$\exists R([R \text{ is a one-to-one functional}] \land [\text{dom } R = V \cup F] \land [\text{ran } R = E]).$$

The formula expresses that there exists a bijective relation whose domain is the union of the vertices and faces (assumed to be disjoint) and whose range is the set of edges. The conditions written in text (that R is one-to-one, that R is functional, etc) can all be expressed as first-order sentences using R as a parameter. This clearly works.

For other k's, we can use the same idea as we used when using the equicardinality quantifier. For example, for k = 3, we can capture the class of partitioned π -structures whose euler characteristic is 3 with the help of the sentence:

$$\exists R\exists x\exists y\exists z \begin{pmatrix} x\neq y \land y\neq z \land z\neq x\\ \land\\ [R \text{ is a one-to-one functional relation}]\\ \land\\ [\operatorname{dom} R=(V\cup F)-\{x,y,z\}]\\ \land\\ [\operatorname{ran} R=E] \end{pmatrix}.$$

In other words, V - E + F = 3 holds iff V + F = E + 3, which, for finite partitioned π -structures, means that there are exactly 3 vertex-or-face elements more than there are edge elements. The relation R enforces this.

5.2.3 Convexity

We now investigate the problem of expressing convexity: can we write down a sentence γ of π such that a finite π -structure A satisfies γ iff A is isomorphic to the incidence structure of a convex three-dimensional polyhedron? The answer seems to be 'no', in light of Steinitz's theorem [115]:

Theorem 13 A graph g is isomorphic to the 1-skeleton of a three-dimensional convex polyhedron p iff g is planar and 3-connected.

The 1-skeleton of a three-dimensional polyhedron is obtained by looking at only the vertices and edges (the 'skeleton'), ignoring the faces. A graph is said to be 3-connected if there is no pair of vertices whose removal disconnects the graph.

We now formulate a conjecture:

Conjecture 1 The property of being isomorphic to the incidence structure of a convex three-dimensional polyhedron is not expressible by a first-order sentence in π .

The properties of planarity and 3-connectedness are each known to be not expressible in a first-order language for graphs with just an incidence relation, and likewise for both a representation of graphs with both vertices and edges as objects. It would thus appear, in light of Steinitz's result and its connection with properties that are known to be not expressible in a language for graphs, that convexity (that is, being isomorphic to the incidence structure of a convex three-dimensional polytope) is likewise not expressible in our language.

The reason for hesitation in concluding that Steinitz's theorem gives us a new undefinability result, and for calling this a conjecture rather than a theorem, is that our language, π , is richer than just a pure language for graphs. We have a unary predicate for faces, but the previous undefinability results dealt with languages in which, at most, there were predicates for vertices and edges. It seems plausible, but not obvious, that convexity is not expressible in π . Private correspondence with B. Grünbaum, an expert in polyhedra, graph theory, and Steinitz's theorem, has made it clear that Steinitz's result immediately applies to our richer language.

5.3 Formal Theories of Polyhedra

In this section we catalog a handful of various theories of polyhedra. None of these theories are due to me. Nonetheless, it is valuable to list them because they provide an interesting testbed for a formal investigation of polyhedra.

5.3.1 Steinitz-Rademacher polyhedral complexes

The first theory that we shall discuss is due to Steinitz and Rademacher [116].

Definition 14 A polyhedral complex is a π -structure that satisfies the following conditions:

- I is symmetric,
- No two elements from the sets V, E, and F are incident (i.e., $\forall x \forall y (\neg I(x, y))$, and the same goes for the sets E and F), and
- If v, e and f are such that $v \in V$, $e \in E$, $f \in F$, I(v,e) and I(e,f), then I(v,f).
- Every edge is incident with two vertices,
- Every edge is incident with two faces,
- For every vertex v and every face f such that v is incident with f, there are exactly two edges incident with both v and f, and
- Every vertex and every face is incident to at least one other element.

It is clear that the axioms for structural and polyhedral complexes can be straightforwardly formalized using a first-order language with three unary relation symbols V, E, and F and one binary relation symbol I.

The smallest polyhedral complex has cardinality six: there are two vertices, two edges, and two faces. To visualize this structure, imagine a circle cut in half by a diameter; the endpoints of the diameter are the two vertices; the two arcs of the circle cut by the diameter are the two edges; and the space between the diameter and the two arcs are the two faces. One can verify this claim using a first-order model generation program (such as MACE 4) and verifying that there are no polyhedral complexes of size 1, 2, 3, 4, or 5; and that one of the models of size 6 corresponds to the description just given. (One can even verify that this structure is, up to isomorphism, the *only* polyhedral complex of size 6.)

5.3.1.1 Digression: expressibility of eulerianness in the class of polyhedral complexes

Earlier we saw that the property of being an eulerian polyhedron is not expressible in firstorder logic, in a signature π with unary predicate symbols V, E, and F, and one binary predicate symbol I for incidence. We used Ehrenfeucht-Fraïssé games to establish that result, by defining a sequence (A_k, B_k) of pairs of structures such that

- A_k is eulerian,
- B_k is not eulerian, but
- $\bullet \quad A_k \equiv_k B_k.$

The incidence relation in the structures A_k and B_k was defined to be empty. The geometric content of the non-expressibility result, then, is perhaps questionable. Although the theorem shows that eulerianness is not expressible in the class of all π -structures, one might wish to re-ask the question, this time restricting attention to π -structures that have some geometric content. Polyhedral complexes form such a class. Our question is: is eulerianness expressible by a first-order π -sentence in the class of polyhedral complexes? That is, does there exist a π -sentence ϕ such that, for all polyhedral complexes A, we have

$$A \vDash \phi$$
 iff A is eulerian?

The answer is 'no'. We can use Ehrenfeucht-Fraïssé games once again to establish this result. The argument in this case, however, is more difficult; we can no longer use the structures A_k and B_k , because they had no geometric content. To establish the negative result, it suffices to find a sequence (C_k, D_k) of pairs of polyhedral complexes such that, for all $k \geq 0$,

- C_k is eulerian,
- D_k is not eulerian, but
- $\bullet \quad C_k \equiv_k D_k.$

It turns out that the following structures work: C_k is a tower of 2^k consisting of copies of $(2^k + 2)$ -gons; D_k is a disjoint union of two copies of C_k . (The '+2' is to ensure that the number of vertices in the polygons is at least 3, even when k = 0.) To see that these structures are such that, for all k, we have $C_k \equiv D_k$, see the argument in section 4.3.6 for the proof that the class of Grünbaum polyhedra is not elementary. The argument shows at the same time that the class of Grünbaum polyhedra is not elementary, as well as showing that eulerianness is not first-order expressible in the class of polyhedral complexes, because the

structures C_k are both Grünbaum polyhedra and polyhedral complexes, and the structures D_k are neither Grünbaum polyhedra nor eulerian.

5.3.2 Extensional theory

The theory of polyhedral complexes permits different edges to share the same endpoints. That is, polyhedral complexes permit so-called **multi-edges**. We may wish to investigate polyhedral complexes in which this is not the case, that is, polyhedral complexes that satisfy the laws

$$\forall e_1 \forall e_2 (\forall v (R(v, e_1) \leftrightarrow R(v, e_2)) \rightarrow e_1 = e_2).$$

and

$$\forall f_1 \forall f_2 (\forall e (R(e, f_1) \leftrightarrow R(e, f_2)) \rightarrow f_1 = f_2).$$

This reminds us of the axiom of extensionality for sets, so we may call the polyhedral complexes that satisfy this additional principle **extensional polyhedral complexes**.

The polyhedral complex of cardinality 6 is not an extensional polyhedral complex (its two edges are both incident with its two vertices). Its smallest model seems to be the tetrahedron, of cardinality 14 (four vertices, six edges, four faces). As before, one can verify this claim using a first-order model generation program such as MACE 4.

5.3.3 Simplicial polyhedral complexes

One can obtain a further refinement of Steinitz-Rademacher polyhedral complexes by focusing on *simplicial* polyhedral complexes, which, roughly speaking, are the polyhedral complexes that are maximally triangulated.

Definition 15 A simplicial polyhedral complex is a polyhedral complex that satisfies the property:

• Every face is a triangle (i.e., for every face f there exists exactly three edges that are incident with it).

One might ask whether the non-expressibility results that we had before, especially concerning eulerianness, still hold even in the case of simplicial polyhedral complexes. The answer appears to be 'no', but this remains an open problem. (The reason for suspecting that the answer is 'no' is that it seems that one can triangulate the polygons that were used in the non-expressibility of eulerianness relative to the class of all polyhedral complexes.)

5.3.4 Digression: infinite models

The existence of infinite models of the first-order theories treated previously follows by the compactness theorem for first-order logic, since there exist models of arbitrary finite cardinality. What is an 'infinite' model of these theories? As it stands, from the application of compactness alone all we can infer is that there exists a polyhedron structure at least one of whose sorts is infinite.

In fact, one can see that there exist infinite polyhedron structures that have:

- infinitely many vertices, but finitely many edges and finitely many faces ('refinement' of, say, a tetrahedron obtained by inserting in new vertices on the edges);
- infinitely many vertices, infinitely many edges, and infinitely many faces (tessellations)

However, if a polyhedron structure has infinitely many edges, then it must have infinitely many vertices as well; and if it has infinitely many edges, then it has infinitely many faces, too.

An interesting problem associated with such polyhedra would be to classify them. One basic question that one might ask: are the two kinds of infinite polyhedra ('refinements' and tessellations) the only kinds of infinite models?

5.3.5 Digression: logical complexity

The theories considered above, with the exception of Grünbaum's, can be expressed in a straightforward way using the first-order language π . (Proofs that some of Grünbaum's

axioms cannot be expressed in π will appear in the next section.) Thus, for each of the theories, we are dealing with an axiomatizable class of structures. In fact, they are all elementary classes. One basic question that can be asked about these classes of structures are the complexities of the formulas required to express them. Besides being of intrinsic interest, such complexity problems are important as preparatory questions for investigations using automated deduction tools. As stated, the theories involve a number of existential quantifiers; when these theories are thus put into clausal form, numerous Skolem functions arise, which complicates the search process.

For example: can the Steinitz-Rademacher theory of polyhedral complexes be axiomatized by a π_1 formula, that is, one whose prenex normal form has a prefix of only universal quantifiers?

We can see that the answer to this question is 'no'. If the class C of polyhedral complexes were axiomatized by a π_1 formula ϕ , then, by downward preservation of π_1 formulas, C would be closed under taking substructures. But evidently it is not. For the smallest polyhedral complex has two vertices, two edges, and two faces. This polyhedral complex has many proper substructures, but none of them can also be polyhedral complexes, by minimality.

Indeed, a naive inspection of the axioms suggests that the class of polyhedral complexes is a π_3 class, i.e., axiomatized by a formula whose prenex normal form has the quantifier prefix $\forall \exists \forall$. The second block of universal quantifiers ensures uniqueness of some of the objects introduced by the existential quantifiers. Indeed, this seems to be the sharpest result that can be given, but no proof is given here. We leave it here as an open problem that the class of polyhedral complexes is not axiomatized by a π_1 sentence.

5.3.6 Grünbaum's polyhedron theory

B. Grünbaum has proposed a theory of polyhedra as well [115]. His axioms are:

- 1. Every edge is incident with precisely two vertices and two faces;
- 2. If a vertex and a face are incident there are exactly two distinct edges that are incident with both;
- 3. For each face (vertex) the vertices (faces) and edges incident with it form a simple circuit of length at least 3;
- 4. If two edges are incident with the same two vertices (faces), then the four faces (vertices) incident with the two edges are distinct;
- 5. Each pair of faces (vertices) is connected through a finite chain of incident edges and vertices.

It is clear that axioms 1, 2, and 4 of Grünbaum's theory can be captured in a first-order language. Axiom 3, on the other hand, asserts that the vertices and edges that are incident with a face have the structure of a cycle. (And, dually, the axiom asserts that the faces and edges incident with a vertex likewise form a cycle.) We shall see later that this property is not first-order expressible. Axiom 5 asserts that the set of faces and the set of vertices are connected: any vertex can be reached from any other vertex, and likewise for faces. This property also turns out to be not expressible in first-order logic, as we will see later.

Returning to Grünbaum's theory, we have already remarked (but not yet proved) that the class of Grünbaum polyhedra is not elementary (with respect to the signature π). The heart of the matter is to consider the two axioms of Grünbaum's theory that are not first-order expressible, namely

- For each face, the vertices and edges incident with it form a simple circuit whose length is at least 3, and likewise for vertices; and
- Any two vertices are connected, as are any two faces.

Let us state the main result about Grünbaum polyhedra.

Theorem 14 There is no first-order sentence ϕ of π such that, for every finite π -structure A, we have that

$A \models X$ iff A is a Grünbaum polyhedron

Proof. We use Ehrenfeucht-Fraïssé games. Consider the sequences of π -structures (A_k, B_k) , for $k \geq 0$, defined as follows:

- A_k is a convex polyhedron that has $2^k + 2$ vertices (to ensure that we have a polygon even when k = 0) arranged as a regular polygon about the origin (of \mathbf{R}^3) in the xy-plane, with 2^k regular 2^k -gons stacked on top, each shrinking in diameter but still centered about the origin, capped off with a single vertex at the top. This construction is repeated below the polygon in the xy-plane as well.
- B_k is the disjoint union of two copies of A_k .

The interpretation of vertex, edge, and face for these two structures is clear. Of course, B_k is not a Grünbaum polyhedron because it fails to satisfy the requirement of connectivity. Nonetheless, we shall show that $A_k \equiv_k B_k$, that is, duplicator has a winning strategy in the k-round Ehrenfeucht-Fraïssé game based on A_k and B_k . The idea is that, although B_k consists of two disjoint convex polyhedra, it it has enough structure to 'simulate' the single convex polyhedron A_k .

5.3.7 Lakatos polyhedra

In chapter 2 of Proofs and Refutations Lakatos offers a theory of polyhedra, too. He attributes the conception/definition to Poincaré. For Lakatos a polyhedron is a structure of vertices, edges, and faces arranged in such a way that $\partial_k \circ \partial_{k+1} \equiv \emptyset$ for all integers k, where ∂_k is the boundary operator on the set of k-chains (the values of ∂_k are (k-1)-chains). The definition of Lakatos polyhedra requires several preliminary definitions (the definition of k-chain, the extremal chain cases, the k-boundary operator). Lakatos's definition of polyhedra is the broadest of all the conceptions we have seen so far because it admits a great variety of mathematical objects as polyhedra that might not normally be considered as polyhedra. For example, a single edge with two vertices—no faces—is a Lakatos polyhedron, but is

neither a Grünbaum polyhedron nor is it a polyhedral complex in the Steinitz-Rademacher sense. Moreover, because of the arithmetic involved in the definition it seems unlikely that one could even define Lakatos polyhedra in a first-order way. We shall see in the next section that that is so.

5.3.7.1 Digression: Lakatos polyhedra and polyhedral complexes

How do polyhedral complexes relate to Lakatos polyhedra? Both can be understood as first-order structures of a certain kind. Is it true that all Lakatos polyhedra are polyhedral complexes? Are all polyhedral complexes Lakatos polyhedra?

First of all, it is not true that every Lakatos polyhedron is a polyhedral complex. The condition that $\partial \partial \equiv \emptyset$ is very weak; structures can satisfy that condition without satisfying the axioms for polyhedral complexes. For example, consider the Lakatos 'polyhedron' consisting of exactly one vertex, one edge, and one face, but with an empty incidence relation. It is, trivially, a Lakatos polyhedron. Such a Lakatos polyhedron, considered as a first-order structure, is not a polyhedral complex: there is only one vertex (there should be at least two), there is only one face (there should be at least two), and there is only one edge (there should be at least two).

The more interesting question is whether every polyhedral complex is a Lakatos polyhedron. Indeed, this is the case.

Theorem 15 Every polyhedral complex is a Lakatos polyhedron.

Proof. There are only a few cases to consider: we have to check

- 1. $\partial_0 \partial_1$,
- $2. \partial_1 \partial_2$
- 3. $\partial_2\partial_3$.

For other values of k (namely k < 0 and k > 3), the desired equation holds trivially. The most interesting case to consider is 2. We shall treat this case first, and turn to 1 and 3 later.

Proof that $\partial_1 \circ \partial_2 \equiv \emptyset$. We have to show that for every 2-chain c, we have $\partial_1(\partial_2(C)) = \emptyset$. Thus, let $C = \{f_1, f_2, \dots, f_n\}$ for some $n \geq 0$. The set $\partial_2(C)$ is a 1-chain that contains those edges that are incident with an odd number of faces of C. But, by ?, an edge e can be incident with either 0, 1, or 2 faces; it cannot be incident with three or more faces. Thus, if an edge belongs to $\partial_2(C)$, it is incident with exactly one face of C.

Now suppose, toward a contradiction, that a vertex v belongs to $\partial_1(\partial_2(C))$. Thus v is incident with an odd number of elements of $\partial_2(C)$. We shall show that this is impossible.

The argument proceeds by considering a slight reformulation of the problem. Taking the neighborhood N(v) of a vertex v (i.e., the set of edges and faces with which v is incident), we can imagine a finite 'wheel' of which v is the central hub; the edges with which v is incident are the 'spokes' of the wheel. The gaps between two spokes correspond to the faces to which v is incident. Now, the 2-chain C gives rise to a coloring of the circular sectors between spokes: a face be either in C or not, so it can be regarded as colored or not. Call an edge balanced if it is adjacent to one colored and one uncolored face.

In fact, the neighborhood of a vertex of a polyhedral complex is a union of disjoint cycles; thus, there may be more than one 'wheel' for which v is the 'hub'. We shall now show that, within such a cycle, there are an even number of balanced edges. This shows that there cannot be an odd number of balanced edges, i.e., that v cannot be incident with an odd number of members of $\partial_2(C)$.

To see that every wheel must have an even number of balanced spokes, proceed by cases. Either there are no balanced spokes (so that the claim s true), or there does exist at least one balanced spoke. In the latter case, choose a balanced spoke s_1 and move clockwise among the spokes. We need to specify the 'partner' s'_1 for s_1 . For s'_1 , let it be the next balanced spoke of the wheel in the enumeration of all spokes following s_1 in clockwise order.

We cannot have that $s'_1 = s_1$ by the definition of what it means to be a balanced spoke (the colors of the faces adjacent to s_1 are opposite). Either there are no more balanced spokes in the clockwise enumeration or there are such spokes; in the latter case let s_2 be the next spoke after s'_1 , and proceed as before to find the 'partner' s'_2 for s_2 . As before, $s'_2 \neq s_2$.

We can see that, by induction, there must be an even number of finite spokes for any wheel for which v is a 'hub'. This shows that the condition $v \in \partial_1(\partial_2(C))$, i.e., that v is incident with an odd number of elements of $\partial_2(C)$, is impossible for any 2-chain C.

Turning now to case 1, we have to show that it is not the case, for a 1-chain C, that ε , the unique -1-polytope, belongs to $\partial_0(\partial_1(C))$. Since, by convention, ε is incident with every 0-polytope, we just have to show that $\partial_1(C)$ cannot have odd cardinality.

The argument in this case is somewhat more complex. Divide the vertices in $\partial_1(C)$ into equivalence classes using the reachability relation R(u, v), defined as

$$R(u,v) \leftrightarrow u = v \lor \text{there exists a path from } u \text{ to } v.$$

We shall show that each equivalence class has even cardinality. This will imply that $\partial_1(C)$ itself has even cardinality (since it is the union of finite many sets of even cardinality).

To show that each equivalence class of vertices under the reachability relation has even cardinality, note first of all that no equivalence class can have cardinality 1. So each equivalence class has cardinality at least 2.

Within an equivalence class there may be cycles. Indeed, the whole equivalence class may be a cycle. But we can safely ignore the cycles: each vertex in a cycle is incident with two edges, so it need not concern us. If we disregard cycles, then, we can prove that the equivalence class has an even number of vertices as follows. Since we are ignoring cycles, there must be two 'extreme' vertices u and v in the sense that u is 'leftmost' and v is 'rightmost'. Pair u with v and continue. We are left with either zero vertices, or at least 2 (there cannot be exactly one). In the former case we are done; in the latter case we can repeat the 'trimming' construction to decrease the number of vertices by 2. We have

thus produced a construction that shows that each equivalence class has an even number of elements in it.

Turning finally to the last case, 3, note that if C is the empty 3-chain, then $\partial_2(\partial_3(C)) = \emptyset$, so we need only consider the case where $C = \{p\}$, where p is the 'whole' polyhedron, which is by convention incident with every 2-polytope. Thus $\partial_3(\{p\})$ is the set of all 2-polytopes, and the hypothesis that an edge e is in $\partial_2(\partial_3(\{p\}))$ amounts to saying that e is incident with an odd number of faces. But that's impossible: edges are incident with two faces.

5.3.7.2 Digression: the value of a formal proof of Euler's polyhedron formula for Lakatos polyhedra

Because they lack so much geometric content, one could argue that the formalization of Euler's polyhedron formula for Lakatos polyhedra is not as interesting as it would be for, say, polyhedral or simplicial complexes. There is a grain of truth to this; we want to learn something about polyhedra, in the intuitive sense of the term; instead, we have a proof that is about an apparently purely combinatorial structure. The only geometric content that Lakatos polyhedra can claim to have is that they are assumed to satisfy the condition ' $\partial \partial = 0$ '. This condition rules out some 'polyhedra', to be sure, but at the same time the sole condition does allow for structures that clearly have nothing to do with polyhedra in the intuitive sense of the term.

Their lack of geometric content notwithstanding, the fact that we have a proof of Euler's polyhedron formula for Lakatos polyhedra shows that the conditions

- $B_k \subseteq Z_k$,
- $Z_k \subseteq B_k$

are sufficient for Euler's polyhedron formula. The fact that there are Lakatos polyhedra that satisfy these conditions but which do not have any clear geometric meaning is, to some extent, a strength of the abstract approach rather than a weakness. If we were to focus on

only geometric polyhedra, we might have missed the fact that these above conditions are the ones 'responsible' for Euler's polyhedron formula.

5.3.7.3 Non-elementarity of the class of Lakatos polyhedra

The property of a polyhedron structure A that $\partial_k(\partial_{k+1}(c)) \equiv 0$ for every (k+1)-chain c and every integer k, is not expressible in our polyhedron language π .

Before embarking on the argument, recall that, as we saw before, every polyhedral complex satisfies the property that $\partial_k \circ \partial_{k+1} \equiv \emptyset$, so in the class of polyhedral complexes any logically true formula (e.g., $\forall x(V(x) \lor \neg V(x))$) suffices for us. And since the class of polyhedral complexes is elementary (take the conjunction of its finitely many axioms), our problem seems to be solved.

But this is clearly not what we are after. We want to find a sentence ϕ in the polyhedron language π such that for all finite π -structures A, we have

$$A \vDash \phi$$
 iff for all integers k and all $(k+1)$ -chains c of A, we have $\partial_k(\partial_{k+1}(c)) = \emptyset$

The conjunction of the axioms for polyhedral complexes solves only half of the problem: it gives us the left-to-right implication, but not the right-to-left direction. That this is so can be seen by considering π -structures for which the ' $\partial \circ \partial \equiv \emptyset$ ' property holds but which are not polyhedral complexes. Indeed, any π -structure A for which the incidence relation I^A is empty trivially satisfies the desired property because all boundaries are empty. But no polyhedral complex can have an empty incidence relation.⁴ Thus we cannot take the conjunction of the axioms for polyhedral complexes as a solution to our problem.

Since our language π does not have predicate or function symbols for sets, and since the property in question quantifies over sets, it seems unlikely that our desired query is expressible in π . To make the problem more tractable, then, we refine the query to a special case: can we define the property that $\partial_1(\partial_2(\{f\})) = \emptyset$ for every face f (i.e., for every object that satisfies the predicate F)? That is, can we define the property that the boundary of the boundary of a face is empty?

Since $\partial_2(\{f\})$ is just the set of edges incident with the face f, we are to check whether $\exists v \exists f (|\{e: V(v) \land E(e) \land F(f) \land I(v, e) \land I(e, f)\}| \text{ is odd})$

holds in a polyhedron structure. This property expresses the existence of a counterexample to the universal claim that for every face f we have $\partial_1(\partial_2(\{f\})) = \emptyset$.

Because it involves parity, this property resembles others for which inexpressibility results are known, such as testing (using only equality) whether a finite first-order structure has even or odd cardinality, or testing whether the extension of a unary predicate symbol in first-order structure has even or odd cardinality [114]. Our problem fits a more general pattern: can we test whether a certain definable set of elements in a structure has even cardinality?

Theorem 16 There does not exist a first-order sentence in the signature π such that, for all finite π -structures A, we have

$$A \vDash \phi$$
 iff for every face f of A, we have $\partial_1(\partial_2(\{f\})) = \emptyset$

Proof. We shall use Hanf locality. Suppose that, to the contrary, the property in question were expressible as a π -sentence ϕ , and suppose that the Hanf locality rank of ϕ is d. Let A and B be the π -structures defined as follows:

- Both A and B have exactly one face;
- A has 2d + 1 vertices, all incident with the unique face of A,
- B has 2d + 2 vertices, all incident with the unique face of B,
- All edges of A are incident with the unique face of A,
- All edges of B are incident with the unique face of B,
- The edges and vertices of A form K_{2d+1} , the complete graph on 2d+1 vertices,
- The edges and vertices of A form K_{2d+2} , the complete graph on 2d+2 vertices.

In both A and B, we have that $\partial_2(\{f\})$ is the set of all edges of A and B, respectively, where f is understood as the unique face of the structures. The d-neighborhoods of any element of A and B are the same (enough vertices and edges were chosen to ensure that

METAMATHEMATICAL PROBLEMS ABOUT POLYHEDRA

A and B are similar enough in this respect). But every vertex of A is incident with an even number of edges, and every vertex of B is incident with an odd number of edges. Thus, in A, we have a face f such that $\partial_1(\partial_2(f)) \neq \emptyset$, but in B for every face f we have $\partial_1(\partial_2(f)) = \emptyset$.

5.4 Proving Euler's Polyhedron Formula in Weaker Theories

5.4.1 Introduction

This section of the chapter is devoted to the problem of formalizing Poincaré's proof of Euler's polyhedron formula in 'weaker theories'. Here, weaker means: weaker than Tarski-Grothendieck set theory. Thanks to the formalization described in the previous chapter, we know that there exists a first-order deduction from the axioms of Tarski-Grothendieck set theory whose conclusion is a (formalization of) Euler's polyhedron formula.

But this formalization result should sit uncomfortably with us. Tarski-Grothendieck set theory (TG) is a very strong extension of Zermelo-Fraenkel set theory (ZF): the characteristic axiom of TG implies the existence of arbitrarily large inaccessible cardinals; the existence of even one such cardinal is unprovable in ZF.⁵ On the other hand, the concept of polyhedron employed in Poincaré's proof is entirely combinatorial, based as it is on finite sets and finite relations on these sets. Moreover, the vector spaces that arise in the course of the proof are *finite* (and hence finite-dimensional). It thus should be quite plausible that the full strength of TG is not required to formalize Poincaré's proof. Our question in this section is: Our question is:

Question 1 What is the weakest mathematical theory in which we can carry out Poincaré's proof of Euler's polyhedron formula?

We shall see that there are a number of natural candidates theories in which Poincaré's proof, each weaker than the next. The main result is:

Theorem 17 Poincaré's proof of Euler's polyhedron formula can be formally proved in $I\Delta_0(\exp)$,

which is a certain weak theory of arithmetic that will be defined later.

To be able to even state Euler's theorem, we need to ensure that we can adequately represent the concept of a polyhedron, an incidence matrix, and enough of the linear algebra that goes into the proof of the rank-nullity theorem. However, the project is largely a study of how much of the linear algebra on which Poincaré's proof is based goes through in formal systems weaker than TG.

5.4.2 First refinement

We wish to prove that we can carry out Poincaré's proof of EPF in a theory weaker than TG.

One place to focus is on the places in the argument where the methods do not strike us being obviously formalizable in a theory weaker than TG. The first such step in the argument is the application of the rank+nullity theorem.

Theorem 18 For every linear transformation T from a finite-dimensional vector space V to a finite-dimensional vector space W, we have

$$\dim V = \dim \operatorname{im} T + \dim \ker T.$$

The proof is not difficult, and we will not give it in full detail here. It suffices to point out the parts of the argument that are most noteworthy from the perspective of a formalization in weak theories occur at the very beginning. Following a standard proof, the argument proceeds as follows:

Proof. Let A be a basis for ker T, and let B be a basis for V that extends B. Now show that T(B-A) is a basis for im T.

The problem is the first and the second step. The most natural explanation for these two steps is that we have used the fact that

METAMATHEMATICAL PROBLEMS ABOUT POLYHEDRA

Every vector space has a basis

and the fact that

Every linearly independent set can be extended to a basis.

Note:

• These two theorems are equivalent to each other. To see that the second implies the first, note that \emptyset is a linearly independent set. To prove the second from the first, let X be a linearly independent set of vectors; we have to show that there exists a basis A such that $X \subseteq A$. Consider L(V - L(X)), the linear span of the "complement" of X in V. This is a subspace of V, and so has a basis by the first theorem; call it B. Claim: $X \cup B$ is a basis of all of V. Proof: that it spans the space is obvious; we just need to prove independence. Suppose that we have

$$a_1v_1 + \dots + a_nv_n = 0,$$

where all the v_j 's are in $X \cup B$. If all are actually in X or all are in B, then we obtain the desired result, since X and B are linearly independent. So suppose that some of the v_j 's are in X, and some are in B. Separate them by writing

$$b_{i_1}v_{i_1} + \dots + b_{i_m}v_{i_m} = c_{j_1}v_{j_1} + \dots + c_{j_n}v_{j_{n-m}},$$

where the *i*'s and *j*'s exhaust [1, n] and the b_i 's and c_j 's exhaust $[a_1, \ldots, a_n]$, and all v_i 's are in X and all v_j 's are in B. Since $L(V - L(X)) \cap L(X) = \{0\}$, we obtain the desired result.

• The first theorem is known to be equivalent (over ZF) to AC [102]. Thus, by the preceding result, we have two equivalents of AC.

These observations suggest that the rank+nullity theorem in full generality is actually quite a strong statement. Of course, we do not have a proof that the rank+nullity theorem is in fact equivalent to such strong set theoretical results. When we stepped back from the proof of the rank+nullity theorem and isolated the statements that did not seem to be formalizable in a weak theory, we found statements that were equivalent to the axiom of

choice. If we want to see whether our result can go through in, say, ZF – Infinity—where choice does not (in general) hold—we must try to give a more careful analysis. Can we do better?

Indeed, we can. We isolated the statements "every vector space has a basis" and "every linearly independent set can be extended to a basis". But these statements are stronger than what we need for the purposes of formalizing Poincaré's proof of Euler's polyhedron formula because for that proof we need only that they hold for every *finite-dimensional* vector space. (The only vector spaces that arise in the proof are finite, and hence finite-dimensional.) In other words, what we need are

- 1. Every finite-dimensional vector space has a basis, and
- 2. Every linearly independent set of vectors from a *finite-dimensional vector space* can be extended to a basis.

Statement (1) now is trivially true, since to say that a vector space is finite-dimensional is to say that there exists a basis for it that is finite. Statement (2) is more interesting. It seems likely that statement (2) can be proved in ZF – Infinity.

Even more refinement is possible. We applied the rank+nullity theorem for only *finite* vector spaces, namely, the k-chain spaces C_k and the k-circuit and k-bounding chain subspaces Z_k and B_k . Thus, all we need are the principles:

- Every *finite* vector space has a basis.
- Every linearly independent set of vectors from a finite vector space can be extended to a basis.

From the perspective of strong set theories such as ZFC and TG, this process of refinement is redundant, since much more general linear algebraic facts hold in those broad settings. However, the process of refinement now makes it clear that we might be able to get just what we need in theories much weaker than ZFC and TG.

METAMATHEMATICAL PROBLEMS ABOUT POLYHEDRA

But *even more* refinement is possible, if all we are looking for is a weak theory in which to carry out *only* Poincaré's proof, without necessarily setting for ourselves the goal of proving a good deal of linear algebra to also be proved in that weak theory. Thus, all we need is

• For every integer k, there exists a basis for $\ker \partial_k$ that can be extended to a basis for C_k .

Although it is sufficient to show that this claim can be proved in ZF – Infinity, doing so would be somewhat unsatisfactory. Presumable, more linear algebra can be carried out in ZF – Infinitythan just this specific fact. It would be more satisfying if we could show that one of the broader claims can be formalized in ZF – Infinity. Since the most general claim implies all more specific claims (and presumably, this implication holds in ZF – Infinity), we will first attempt to prove the following claim:

Claim 1 In ZF — Infinity, we have that for every finite-dimensional vector space V and every linearly independent subset X of V, there exists a basis A of V such that $X \subseteq A$.

A standard argument for this claim goes as follows.

Proof. Let V be a finite-dimensional vector space, and let X be a linearly independent subset of V. Define $X_0 := X$. If $L(X_0) = V$, then X_0 is a basis for V and we are done. Otherwise, there exists a vector v_1 in V such that $v_1 \notin L(X_0)$. Put $X_1 := X_0 \cup \{v_1\}$. Then $X_0 \subset X_1$ and X_1 is linearly independent. If $L(X_1) = V$, then X_1 is a basis and we are done. Otherwise, there exists a vector v_2 in V such that $v_2 \notin L(X_1)$. Put $X_2 := X_1 \cup \{v_2\}$. Then $X_1 \subset X_2$, and X_2 is linearly independent. We repeat the process until we reach a basis, i.e., a linearly independent set X_n for which $L(X_n) = V$.

Our task is to show that the preceding argument can indeed by formalized in ZF – Infinity. Let us begin with the following (slightly) more formal version of the preceding proof.

Proof. Let V be a finite-dimensional vector space, and let X be a linearly independent subset of V. Let B be a basis for V (given by the condition that V is finite-dimensional). Consider the predicate P[k] defined as

For all linearly independent subsets Y of V, if |B| - |Y| = k, then there exists a basis A of V such that $X \subseteq A$.

The desired claim we are after is implied by $\forall nP[n]$, so it makes sense to prove this by induction.

Base Case. If |B| - |Y| = 0, then Y is a basis for V, and we are done.

Inductive Step. Assume P[k], and that |B| - |Y| = k + 1. Since Y is a linearly independent subset of V, we have $|Y| \leq |B|$. Thus, there exists a vector b in B such that $b \notin L(Y)$; otherwise Y would be spanning, and we would have |B| - |Y| = 0, since all bases have the same cardinality. Then $Y \cup \{b\}$ is a linearly independent, and $|B| - |Y \cup \{b\}| = k$. Now apply the inductive hypothesis.

We shall use this result throughout the rest of this section.

5.4.3 Formalizing Poincaré's proof in ACA_0

It is known [103] that the claim "every countable vector space over a countable field has a basis" is equivalent over \mathbf{RCA}_0 to \mathbf{ACA}_0 . Assuming then that the only step in Poincaré's proof of EPF that does obviously go through in \mathbf{ACA}_0 , we have the following theorem:

Theorem 19 Poincaré's proof of EPF can be formalized in ACA₀.

We would like to continue to weaken the system in which we are carrying out the proofs even more. Can we get Poincaré's proof to go through even in \mathbf{RCA}_0 ? It seems that it is possible; we do not need the full generality of "every countable vector space over a countable field has a basis". Rather, we can get by with a much weaker result: all we need

METAMATHEMATICAL PROBLEMS ABOUT POLYHEDRA

is that any *finite* field over F_2 has a basis. The restriction to F_2 is probably not important, so we formulate the following problem:

Problem 1 Show that RCA_0 proves that every finite vector space over a finite field has a basis.

To see whether this is possible, let's try to see whether the argument in [103] goes through in \mathbf{RCA}_0 .

To begin with, we need to concept of a field. Of course, we shall just mimic in our arithmetical theory the usual definition.

$$\operatorname{Seq}(x) \wedge \operatorname{lh}(x) = 5$$

$$\wedge$$

$$(x)_1 \in (x)_0 \wedge (x)_2 \in (x)_1$$

$$\wedge$$

$$\operatorname{binary-operation-on}((x)_3, (x)_0) \wedge \operatorname{binary-operation-on}((x)_4, (x)_0)$$

$$\wedge$$

$$\langle (x)_3 \text{ is associative and commutative, with } (x)_1 \text{ as its left zero} \rangle$$

$$\wedge$$

$$\langle (x)_4 \text{ is associative and commutative, with } (x)_2 \text{ as its left zero} \rangle$$

$$\wedge$$

$$\begin{pmatrix} (x)_4 \text{ is associative and commutative, with } (x)_2 \text{ as its left zero} \rangle$$

$$\wedge$$

$$\begin{pmatrix} (x)_4 \text{ is associative and commutative, with } (x)_2 \text{ as its left zero} \rangle$$

$$\wedge$$

$$\begin{pmatrix} (x)_4 \text{ is associative and commutative, with } (x)_2 \text{ as its left zero} \rangle$$

$$\wedge$$

$$\begin{pmatrix} (x)_4 \text{ is associative and commutative, with } (x)_2 \text{ as its left zero} \rangle$$

$$\wedge$$

$$\begin{pmatrix} (x)_4 \text{ is associative and commutative, with } (x)_2 \text{ as its left zero} \rangle$$

$$\wedge$$

$$\begin{pmatrix} (x)_4 \text{ is associative and commutative, with } (x)_2 \text{ as its left zero} \rangle$$

$$\wedge$$

$$\begin{pmatrix} (x)_4 \text{ is associative and commutative, with } (x)_2 \text{ as its left zero} \rangle$$

$$\wedge$$

$$\begin{pmatrix} (x)_4 \text{ is associative and commutative, with } (x)_2 \text{ as its left zero} \rangle$$

$$\wedge$$

$$\begin{pmatrix} (x)_4 \text{ is associative and commutative, with } (x)_2 \text{ as its left zero} \rangle$$

$$\wedge$$

$$\begin{pmatrix} (x)_4 \text{ is associative and commutative, with } (x)_2 \text{ as its left zero} \rangle$$

$$\wedge$$

$$\begin{pmatrix} (x)_4 \text{ is associative and commutative, with } (x)_2 \text{ as its left zero} \rangle$$

$$\wedge$$

$$\begin{pmatrix} (x)_4 \text{ is associative and commutative, with } (x)_2 \text{ as its left zero} \rangle$$

$$\wedge$$

$$\begin{pmatrix} (x)_4 \text{ is associative and commutative, with } (x)_2 \text{ as its left zero} \rangle$$

$$\wedge$$

$$\begin{pmatrix} (x)_4 \text{ is associative and commutative, with } (x)_2 \text{ as its left zero} \rangle$$

$$\wedge$$

$$\begin{pmatrix} (x)_4 \text{ is associative and commutative, with } (x)_4 \text{ is associative, with } (x)_4$$

Here app-bin-op(f, a, b) is the value of the binary operation f on arguments a and b (in that order), which of course are assumed to belong to the domain of f. We've omitted saying explicitly what formula we mean when we write " $(x)_3$ is associative" (for example); using app-bin-op it is clear what is intended.

The definition of vector spaces follows a similar pattern.

Given a vector space V, we define a function f as follows:

$$f(-1)$$
 := \emptyset

$$f(n+1)$$
 := $\begin{cases} f(n) \cup \{n+1\} & \text{if } n+1 \in L_V(f(n)) \\ f(n) & \text{otherwise} \end{cases}$

Claim 2 $f(n) \subset f(n+1)$ for all n.

This is obvious from the definition of f.

Claim 3 f(|V|+1) spans V.

Proof. The more specific claim is true: for all n, if $n \in V$, then $n \in L_V(f(n))$. This is clear from the definition of f.

Claim 4 f(|V|+1) is linearly independent.

Proof. If f(|V|+1) were linearly dependent, then there would be a vector v of f(|V|+1) such that $v \in L(|V|)$; this follows by 2. But that is impossible, again by inspecting the definition of f.

The result of these claims is that f(|V|+1) is a basis of V. We've thus proved that every finite vector space has a basis.

It seems that the proof does not require any induction, apart from that necessary to introduce the concept of ordered pair, finite sequence, the cardinality operator on finite sets, and the property of belonging to the linear span of a set of vectors, and to prove the handful of properties that we need in the proof. However, the existence of the function f does require induction; this can be done in $I\Sigma_1$, as proved in [105].

5.4.3.1 Refined argument

The idea behind the function f above seems simple enough, but let's look at the details to convince ourselves that the function really will do the trick. Let us look into the parts of the definition of f that need to be accounted for:

METAMATHEMATICAL PROBLEMS ABOUT POLYHEDRA

- Taking singletons;
- Taking unions;
- Projecting onto the 0-th component of V;
- Testing membership; and
- Calculating the linear span of V.

Let us take these in turn.

Following Hájek and Pudlák, as well as Rose [118], let's make sure that the function f really is primitive recursive.

We shall use the relation

 $x \in y$ iff the x'th bit in the binary representation of y is 1.

In terms of this representation of sets, it is clear that the definition of f above is primitive recursive: we need only recall that the component operations in its definition—successor, membership, and union—are primitive recursive. For details, see Rose [118]

5.4.4 Arithmetic

Euler's formula involves integers and not just natural numbers. To do that, we introduce, in a standard way, a new unary predicate symbol N(x), to be interpreted as "x is a natural number", in the usual way using equivalence classes of differences m-n. We then define addition, multiplication, and subtraction. The result is then that the natural numbers have been extended to the ring of integers.

Poincaré's proof makes uses of a basic theorem on telescoping sequences: for all finite sequences a and b of integers of length n+1, we have

$$\sum_{k=0}^{n} (-1)^k (a_k + a_{k+1}) = a_0 + (-1)^n a_n.$$

This can be proved by induction on n using the above equation as the inductive formula.

1. The singleton $\{x\}$ of x is represented by 2^x . This is clearly a primitive recursive function of x.

- **2.** The union of x and y turns out to be their sum x + y.
- **3.** The function $(s)_k$, projecting onto the k-th component of the sequence s, is clearly primitive recursive.
- **4.** Testing membership. This is dealt with by noting the function M(x, y), the characteristic function of the relation $x \in y$, is primitive recursive.
- 5. Calculating the linear span of a set of elements. This item requires more care.

Following the development [96] of the theory of linear combinations in MIZAR, let us say that linear combination on a vector space is a function L from (carrier of) V to the (carrier of) field of V. For our purposes, we modify the definition slightly and declare that a linear combination is is a function from a subset of (the carrier of) V to (the carrier of) the field of V. In [96] they naturally require that the *carrier* of L—the set of elements v of V such that $L(v) \neq 0_V$ —is finite. In our case, though, since all sets are finite, we do not need to add this additional condition.

Formally, for a vector space V, we define the relation LC(V, L, X) to be the property:

$$X \subseteq (V)_0 \land \operatorname{FunctionOf}(L, X, (V)_3) \land \forall x (x \in (V)_0 \land x \notin X \to L(x) = 0_{\operatorname{field}(V)}),$$

where, recall, $(V)_0$ is the carrier of V and $(V)_3$ is the carrier of the field of V.

We now define the sum of a linear combination L over a vector space V. $\operatorname{Sum}_V(L) := \begin{cases} 0_V & \text{if } L = \emptyset \\ (L(h(L,V)) \cdot_V h(L,V)) +_V \operatorname{Sum}_V(L - \{\langle h(L,V) \rangle \} \end{cases}$

where h(L, V) is the auxiliary function

$$h(L, V) := \mu k (k \in \text{dom}(L)).$$

We can now define the property of a vector v in a V being a linear combination of some subset X of V:

$$L_V(X, v) := \exists X \exists L(LC(V, L, X) \land Sum_V(L) = v)$$

The problem is how to bound L and X. A natural bound for X, since it is a subset of V, is just V itself; but for L, we need to consider all linear combinations, so the bound is $|V|^{|X|}$.

5.4.5 Geometry

It remains to formally define, in arithmetic, the concepts involved in the statement of Euler's polyhedron formula. We begin with the notion of an incidence matrix.

$$\mathbf{Seq}(I)$$

$$\land \\ \forall x(x \in X \to \forall y(y \in Y \to \exists! k(k < \mathrm{lh}(I) \land \exists e(e < 2 \land \langle\langle x, y \rangle e \rangle \in I)))) \end{bmatrix}$$

Then, following [93], we say that a polyhedron is a certain kind of pair, consisting of polytope sets and incidence matrices:

$$\operatorname{Seq}(x) \wedge \operatorname{lh}(x) = 2$$

$$\wedge$$

$$\operatorname{Seq}((x)_0) \wedge \operatorname{Seq}((x)_1)$$

$$\wedge$$

$$\operatorname{lh}((x)_1 + 1 = \operatorname{lh}((x)_0)$$

$$\wedge$$

$$\forall n(n < \operatorname{lh}((x)_1) \rightarrow \operatorname{incidence-matrix}((x)_1)_k, ((x)_0)_k, ((x)_0)_{k+1})$$

5.4.6 Final refinement

Now we would like to explore an even more refined result by replacing "PRA" in Theorem 2 with a weaker theory.

Theorem 20 Poincaré's proof of EPF can be formalized in $I\Delta_0(\exp)$.

This should now seems plausible; the length of the computation required for computing the basis of a vector space are all bounded by a polynomial (the size the underlying space). As the Δ_0 -definable functions of $I\Delta_0(\exp)$ are those that are bounded by finite iterations of the exponential function [119], it should be clear that the proof can be carried out in $I\Delta_0(\exp)$.

5.5 Conclusion and Future Work

In this section we have explored a number of problems that arise naturally when polyhedra are considered from a formal perspective. The main problems to be attacked are 'axiomatizing' polyhedra in the sense of giving formal theories whose models are polyhedra and polyhedra-like objects, posing definability problems, and investigating the proof-theoretic strength of principles such as Euler's polyhedron formula. Many of the approaches discussed here are preliminary; we have not yet identified deep problems, results, or methods. Nonetheless, it seems clear that there are a number of paths to be explored further.

We have thus seen a number of expressibility and non-expressibility results for various logics, always focused on the property of eulerianness. This project could be continued in a number of ways. In a later section we shall see how they can be extended to certain elementary classes of structures that have some geometric content. At present, though, we leave a number of open problems:

• Ordered structures. In finite model theory, one often restricts attention to structures that are *linearly ordered*. The idea is that one has at hand a binary relation < that can be assumed to be a linear order (although one does not assume anything about how the elements of a structure are ordered, in particular). Above, we did not consider ordered structures; our structures were unordered. We formulate two conjectures about the possibility of extending our results to the ordered setting:

Conjecture 2 Over ordered structures, eulerianness is not expressible by a first-order sentence of the three-dimensional signature π_3 ; moreover, generalized eulerianness is not expressible by a first-order sentence of the general-dimensional signatures π_d .

On the other hand, we do have a positive conjecture.

Conjecture 3 Over ordered structures, eulerianness is expressible by a monadic second-order sentence in the signature π_3 .

METAMATHEMATICAL PROBLEMS ABOUT POLYHEDRA

The suspicion is that the problem of expressing eulerianness over ordered structures is similar to the problem of expressing even cardinality, which is known to be not expressible in monadic second-order logic over unordered structures, but which *is* expressible in monadic second-order logic over ordered structures. Some initial explorations of this problem lead us to suspect that eulerianness and the property of having even cardinality are sufficiently closely related that the positive result for evenness might also hold for eulerianness.

- Another way to add geometric content to the results would be to require connectedness to the incidence relation. As we shall see later, we are able to establish non-expressibility results for certain axiomatized classes of structures using Ehrenfeucht-Fraïssé games and sequences of pairs (A_n, B_n) of structures such that, for every n, A_n satisfies the property in question B_n does not, but $A_n \equiv_n B_n$. It is not entirely satisfying that the incidence relation in the structures B_n is not connected (in fact, B_n is a disjoint union of two copies of A_n). It would be valuable to investigating expressibility in the context of connected structures (i.e., structures in which the incidence relation is connected). It is conceivable that properties that are not expressible become expressible when restricting one can assume that the structures one is working with are connected.
- We have focused attention on only a handful of possible extensions of first-order logic: monadic second-order logic, dyadic second order logic, and first-order logic with an equicardinality quantifier. Further exploration with logics for counting [114] would be valuable.

6 Responding to the Lakatosian Challenge

6.1 Introduction

In this chapter we come to the task of evaluating the formal work, described in chapter 3, of a formal proof of Euler's polyhedron formula as a response to Lakatos's challenge, as laid out in chapter 2.

The main difficulty, as I see it, is that Lakatos emphasizes the development of informal proofs without recognizing or stating that his interests are not entirely disjoint from those of the 'formalists' he's attacking. The formalization described in chapter 3 provides a good test case to evaluate Lakatos's claims about the growth of mathematical knowledge. I shall argue that Lakatos has cast his net rather too wide, that when he criticizes formalists he ends up undermining his own claims about the growth of mathematical knowledge.

In this chapter three responses to Lakatos are carried out. In section 2, I argue that

What I would like to advance here is the view that Lakatos's views actually are strengthened and reinforced thanks to the development of formal proofs. Although he apparently sets his sights squarely on formal proofs, hoping to show how very different they are from everyday informal proofs, I submit that Lakatos would be engaging in "friendly fire", that is, harming his own case. I argue here that the central idea of *Proofs and Refutations*, the method of proofs and refutations, applies to the development of formal proofs as well as it does to informal proofs.

Let us recall the statement of the method of proofs and refutations:

Rule 1. If you have a conjecture, set out to prove it and to refute it. Inspect the proof carefully to prepare a list of non-trivial lemmas (proof-analysis); find counterexamples both to the conjecture and to the suspect lemmas.

Rule 2. If you have a global counterexample discard your conjecture, add to your proof-analysis a suitable lemma that will be refuted by the counterexample, and replace the discarded conjecture by an improved one that incorporates that lemmas as a condition. Do not allow a refutation to be dismissed as a monster. Try to make all 'hidden lemmas' explicit.

Rule 3. If you have a local counterexample, check to see whether it is not also a global counterexample. If it is, you can easily apply Rule 2.

Lakatos allows that by following the method of proofs and refutations, we can improve proofs to the point where a kind of stability is reached. The stability characterizes mature mathematical theories; the "intertwining of discovery and justification, of improving and proving is primarily characteristic of [young, growing theories]." By allowing that theorems in mature mathematical theories enjoy a certain stability, his view that all theorems are conjectures becomes less plausible. If, at least in some cases, we can refine a proof into a valid argument, then why hold that all theorems are *conjectures*? With formal proofs, one can see the idea of proof analysis—making explicit the background assumptions and knowledge that are invoked in a proof—taken, in a sense, to its limit. The very method that Lakatos describes is the force that drives a proof toward a valid argument.

'Conjecture', then, is perhaps the wrong word. To say of a proposition that it is a conjecture is to imply that we could in principle resolve the question of whether the proposition is true. But for Lakatos, the claim that mathematical propositions are, as it were, *permanently conjectural* seems to suggest that, no matter how good our justification is for the truth or falsity of the proposition in question, it will remain a conjecture. Nothing we can do can transform the epistemic status of a proposition from conjecture to non-conjecture.

6.2 What Can One Discover in a Formalized Mathematical Theory?

The problem of discovery is to explain how knowledge comes to be known. This chapter concerns a special case: What can one discover in a formalized mathematical theory? The question was taken up by Lakatos in his famous Proofs and Refutations [1]. One of Lakatos's central tasks in this book is to develop a logic of discovery, rules for characterizing the growth of mathematical knowledge. He carries out his task impressively for informal mathematics, but Lakatos gives a pessimistic answer to the analogous question for formal mathematics. In this chapter I argue for for a rather more optimistic outlook.

The problem of discovery in mathematics can be distinguished, at least at first blush, from the more general problem of discovery in science. The difference is methodological: mathematics differs from other sciences insofar as it is wholly deductive; the only acceptable justifications in mathematics are *proofs*. We can sharpen the discussion by appealing to the special character of mathematical proofs. Developments in logic in the 19th and 20th centuries has given us the concept of a *formal proof*, a representation of a mathematical proof laid down in accordance with strict rules of inference and linguistic rigidity. The ideal of formal proof is powerful; one might even go so far as to characterize mathematical proof as in-principle-formalizable arguments [120]. Logician have studied formal proofs in various settings and have given us *deductive systems*, such as Hilbert- or Frege-style systems, natural deduction systems, sequent calculi. Thanks to soundness and completeness results for these various deductive systems, in principle any valid argument can be formally represented in them.

But would a formal gap-free proof have any value? Our study begins when, in *Proofs and Refutations*, Lakatos takes aim at those who, in his view, overemphasize the formal nature of mathematics. The question that shall concern us in this paper can be seen in one of *Proofs and Refutations*'s trenchant passages:

According to formalists, mathematics is identical with formalized mathematics. But what can one discover in a formalized theory? Two sorts of things. First, one can discover the solution to problems which a suitably programmed Turing machine could solve in a finite time (such as: is a certain alleged proof a proof or not?). No mathematician is interested in following out the dreary mechanical 'method' prescribed by such decision procedures. Secondly, one can discover the solutions to problems (such as: is a certain formula in a non-decidable theory a theorem or not?), where one can be guided by only by the 'method' of 'unregimented insight and good fortune'.

Lakatos's response is, in part, polemical. He uses the concept of discovery as a foil against the 'formalists' who would identify mathematics with formalized mathematics. Evidently, then, for Lakatos the prospects for discovery in formal mathematics are rather bleak. The first possible discovery available in a formalized mathematical theory (that a certain combinatorial figure is a deduction) is impractical ('no mathematician is interested in following out the dreary mechanical 'method' prescribed by such decision procedures'. The second kind of discovery (that a formula is provable), in the words of Quine¹, arises apparently at random; the search for a proof is apparently random and is in any case driven by factors (insight, luck) that cannot be explained in terms the formal theory at hand.

Having satisfactorily exposed the comedy of formal mathematics, Lakatos goes on to motivate his work thus:

Now this bleak alternative between the rationalism of a machine and the irrationalism of blind guessing does not hold for live mathematics: an investigation of *informal* mathematics will yield a rich situational logic for working mathematicians, a situational logic which is neither mechanical nor irrational, but which cannot be recognized and still less, stimulated, by the formalist philosophy.

Polemics aside, the thesis of this paper is that Lakatos's view on the kinds of discoveries that can be had in formalized mathematical theories is too narrow. Modern formalization enterprises, in which one constructs formal proofs of mathematical theorems, give us, I submit, a wider view of discovery in formalized mathematical theories. It is not that Lakatos is wrong to draw attention to the development of informal mathematics. This is a genuinely interesting subject that poses many worthy problems to the philosophy and history of mathematics. Instead, this paper makes the case that the prospects for discovery in formal mathematics are wider than Lakatos imagined.

Although I shall argue that discovery does occur in formal mathematics, to avoid potential misunderstanding we should be clear on how I am using the term 'discovery'. The discoveries that I will describe are, to be sure, quite modest. They are not on a par with the discovery that the Earth revolves around the sun, Einstein's discovery of relativity theory, or Mendeleev's discovery of the table of the elements. Even restricting attention to

mathematics, the discoveries that we will see are more humble than the discovery of irrational numbers, of the consistency of non-Euclidean geometry, or Gödel's incompleteness theorem. Nonetheless, the term 'discovery' is apt because, thanks to formalization, we can improve our knowledge. Something was unknown before the formalization that was known afterward.

This paper is but one piece in a project to re-assess Lakatos's philosophical project. Nonetheless, Lakatos offers fresh insights into the philosophy of mathematics and his thought deserves to be taken seriously.

Although this paper disagrees with Lakatos's claim about the kinds of discoveries that can arise in formal mathematics, I believe that the results of formal mathematics, rather than contradicting Lakatos, actually support his conclusions. Indeed, one could argue that developments in formal mathematics *illustrate* Lakatos's philosophy. But Lakatos's broader philosophy is the subject for another discussion; this paper is not an overall assessment of Lakatos's project in *Proofs and Refutations*, but rather a concentrated study of his views on discovery in formal mathematics.

The heart of my argument rests on three case studies taken from my own work [91–93] in formal mathematics. The next couple of sections discuss Lakatos's answers in detail and some of the technical and technological background for my response to Lakatos. Section **6.2.2** contains the three case studies in formal mathematics. Using those case studies, section **4.5** argues that in both of them discoveries can be found.

6.2.1 Lakatos's answer

Before moving on the specific case studies, it may be worthwhile to reflect on Lakatos's answer to his question about what can be discovered in a formal mathematical theory. To reiterate, the thesis of this paper is not that Lakatos's answer is incorrect, but rather that it is too narrow.

Lakatos's interest in *Proofs and Refutations* is on the development of mathematics. His 'speedy philosophising' notwithstanding [76], his philosophy is refreshing because it offers up a number of issues that do not normally arise in traditional philosophy of mathematics. One of the main challenges in evaluating *Proofs and Refutations* is: what is Lakatos's point? Worrall, an editor of Lakatos's works, offers two views on this matter:

Lakatos sometimes described himself as extending Popper's fallibilist-falsificationist view of science into the field of mathematics, and there are even hints of Lakatos's Hegelian past in some of the claims about the autonomous development of mathematics. An alternative view, however, is that the main significance of his work is to cast light simply, though importantly, on the development of mathematics—on how mathematical truth is arrived at—and that it has nothing distinctive to say about the epistemological status of mathematical truths once they have been arrived at. But even if this alternative view is correct, there is a good of undoubtedly epistemological significance in some of the particular issues raised (for example, what he calls the problem of translation highlighting issues about how the formal systems, within which effectively infallible proof can be achieved, relate to the informal mathematics said to be captured by those formal systems). [122]

There have been a number of discussions [123–126] concerning the extent to which Lakatos was trying to extend to mathematics Popper's philosophy of science, and whether he was (or could be) successful. What concerns us here is the second alternative to which Worrall points. Even adopting the view that Lakatos is just trying to get us to pay attention to the development of mathematics, we still need to decide whether Lakatos's apparent antipathy toward 'formalism' is justified. Is it really true that the possibilities for discovery in formal mathematics are as poor as Lakatos makes them out to be?

To some extent, Lakatos's pessimistic assessment of the opportunities for discovery in formal mathematical theories is justified. It certainly would be just a dreary exercise to check, for example, whether a sequence of first-order formulas that looks like

```
\forall x \forall y (xy = yx), \forall x \forall y \forall z (x(y+z) = xy + xz), \langle many \ omitted \ axioms \rangle, \dots,
..., \langle many \ omitted \ proof \ steps \rangle, \forall n (\exists k (2k = n) \rightarrow (\exists k \exists y [y = n+1 \land y+1 = 2k]))
```

is a deduction in Peano Arithmetic of the familiar result that if n is an even natural number then n+1 is odd. (The consequent in the matrix of the final term of the sequence can be understood as: odd(n+1), where odd(x) is understood as: $\exists k(2 \cdot k = x+1).^2$ Doing so would require pattern matching: one would have to check, of each term in the sequence, whether (i) it is an axiom (pattern-matching against the axioms and the axiom scheme of induction), or (ii) it is an application of the inference rule modus ponens. Surely the effort to carry out this exercise greatly exceeds whatever payoff might be attained.

No one wants to go through the task of verifying whether a sequence of formulas is a deduction. But no one has to: early results of proof theory, especially the completeness theorem for first-order logic, show that we can give a complete proof system for first-order logic that is also decidable: we can just compute whether a sequence of formulas is a deduction. Such dreariness can safely be left to a computer. Lakatos points out that checking an informal proof, in contrast to that of a formal proof, can involve quite a lot of mathematical ingenuity. The triviality of checking proofs (in, say, first-order logic), when compared to the complexity of checking an informal proof, shows that the two are clearly quite different. The comparison is supposed to be a blow for 'formalism'. But what 'formalist' would deny the difference between formal and informal proofs?

I mentioned earlier that the problem of checking formal proofs can be safely left to computers. This should be contrasted with the result that the validity problem for first-order logic is undecidable; there is no computable function that, given a formula in an arbitrary first-order language, can decide whether the formula is provable. Thus, if a mathematician wants to construct a formal proof of some theorem, in general he has to do some work; he has to discover the formal proof.

This leads us to discuss Lakatos's second kind of discovery. Imagine we are dealing with an undecidable theory: given a formula in the language of the theory, we cannot simply execute a computer program to decide whether it is a theorem. We can fumble around, trying to discover a deduction of the formula from the axioms of theory. Logic alone doesn't specify how we should organize our search for a deduction.³ Perhaps we will get lucky and stumble upon a deduction of the formula; we would thereby discover (but only by chance) that it is a theorem.

Moreover, it can be significant if, after investing much energy into designing a formal proof, one discovers that, contrary to expectations, it is invalid. The fact that a certain step in a purported proof is invalid can come as a surprise; it spurs one to discover the reasons for the invalidity, which may lead to new mathematical insight.⁴ This kind of discovery will be illustrated in the examples.

In the next section I discuss the two case studies that are used to give my own answer to Lakatos's question.

6.2.2 Examples

This section is devoted to two case studies of discovery in formal mathematics. The next section is devoted to the problem of understanding the kinds of discoveries that are discussed in this section. These examples came from my efforts to construct a formal proof of a theorem that Lakatos himself studies, namely Euler's polyhedron formula, discussed in detail in chapter 3.

Before getting into the details, it is worth mentioning that these examples are rather typical in formal mathematics. Although the case studies to be described arose in the course of a formalization of a specific mathematical proof, the issues these examples raise can be found throughout formal mathematics.

6.2.2.1 Example 1: The image of a linear combination under a linear transformation

The example that I wish to discuss concerns the problem of specifying the image of a so-called linear combination under a linear transformation. Roughly speaking, a *linear combination* is a sum of vectors:

$$a_1 \cdot v_1 + a_2 \cdot v_2 + \dots + a_n \cdot v_n \tag{6.1}$$

It is said that a formula like **6.1** is a linear combination of v_1, v_2, \ldots, v_n . The simplest non-trivial example of a linear combination is the sum u + v of two vectors u and v; another is the sum $2 \cdot u + v$; another is $\frac{1}{2} \cdot u + \frac{2}{3}v$. A more clever example of a linear combination of u and v is just u (the coefficient of v is 0); an even more clever example is just 0 (the coefficient of both vectors is 0). (This example shows that the zero vector of A is a linear combination of any set of vectors.) There is nothing special about adding together two vectors; u + v + w is a linear combination of u, v and v (each of whose coefficients is 1); so is $\frac{1}{2} \cdot u + \frac{2}{3} \cdot v + \frac{3}{4} \cdot w$. Being clever again, we see that u + v is also a linear combination of u, v, and v. (More generally, every linear combination of v and v is a linear combination of v, v, and v.)

If we apply a linear transformation T to a linear combination $a_1 \cdot v_1 + a_2 \cdot v_2 + \cdots + a_n \cdot v_n$, we should get

$$T(a_1 \cdot v_1 + a_2 \cdot v_2 + \dots + a_n \cdot v_n) = a_1 \cdot T(v_1) + a_2 \cdot T(v_2) + \dots + a_n \cdot T(v_n)$$

(To rigorously prove this one uses mathematical induction together with the associativity of vector addition.) Thus the image of a linear combination of v_1, v_2, \ldots, v_n is a linear combination of $T(v_1), T(v_2), \ldots, T(v_n)$.

All this seems to be correct, but we still haven't said precisely what a linear combination is; no definition has been given except 'a sum of scalar multiples of some vectors'. A linear combination is not a *kind* of vector (note that every vector is automatically a linear combination of itself), nor is it a property of sets or sequences of vectors. What is it, exactly?

Two approaches to defining linear combinations suggest themselves. One could say that a linear combination is not really an *object* of linear algebra but a *form*. To make the idea of form precise, imagine that we are dealing with a many-sorted language for linear algebra. There are two sorts: one for vectors, another for scalars. In this language, we could define linear combinations as *terms*; any term is a linear combination. If we add a new unary function symbol T to the language, we could then prove, by induction on n, that $T(a_1 \cdot v_1 + a_2 \cdot v_2 + \cdots + a_n \cdot v_n) = a_1 \cdot T(v_1) + a_2 \cdot T(v_2) + \cdots + a_n \cdot T(v_n)$. The problem would then be solved, though it would have the possibly unwanted feature of requiring a mix of language and metalanguage.

Another approach is to define linear combinations as first-order objects rather than as linguistic forms. One could say that a linear combination of vectors v_1, v_2, \ldots, v_n is a certain kind of function l from A to k. The idea is that an equation l(v) = a is to be interpreted as: the coefficient of v is a. Thus the sum u+v of u and v would be represented as the function from A to k that sends u and v to 1 and every other vector in A to 0.

Linear combinations are supposed to represent *finite* sums of vectors: infinite sums such as

$$a_1 \cdot v_1 + a_2 \cdot v_2 \cdot + \cdots$$

are not generally regarded as linear combinations, at least not without further assumptions on the vector space (one would want some notation of *limit* or *order* with which one could distinguish those infinite sums that converge to a vector and and those that diverge and do not represent any vector). As it stands, though, our definition of linear combination does not rule out infinite sums. We need to add a technical condition to our definition.

Definition 16 A linear combination is a function from A to k with finite support, that is, a function l from A to k such that the set

$$\{v \in V: l(v) \neq 0\}$$

is finite.⁵

In other words, a linear combination is a function that can take on only finitely many non-zero values.

We still have not defined the notion of the application of a linear transformation to a linear combination. A linear transformation is a certain kind of function from one vector space to another. Note that under **Definition 6.1** is not a vector. Strictly speaking it is meaningless to apply a linear transformation to a linear combination: a linear combination is a function from A to k, and linear transformation is a function from A to B, so they cannot be composed in the usual set-theoretic sense. How to combine these to get a linear combination on B, i.e., a function from B to k?

To help make our way to an appropriate definition, let us invent the notation '@' and let 'T@l' denote the application of a linear transformation T to a linear combination l. Intuitively, T@l is a linear combination of vectors in B (the image space of T), so it should be a certain kind of function from B to k. What function? How does the function depend on the data T and l?

To calculate T@l for a vector w in B, first find $T^{-1}(\{w\})$, the set of those vectors v in A that are mapped to w. There may be zero, one, or many such vectors. Add together the l(v)'s that one obtains with v's in $T^{-1}(\{w\})$. The result is the vector we want. We can concisely capture this algorithm with λ -notation:

$$T@l := \lambda w \in W. \sum l(T^{-1}(\{w\}))$$

Note that the definition neatly deals with the special case where the set $T^{-1}(\{w\})$ is empty, because the sum of an empty set of elements of k is 0. This agrees with what we had before, but we now do not need to single out this special case in our definition.

There is one potential problem with our definition: what if $T^{-1}(\{w\})$ is infinite? The sum of a finite set of members of k makes sense because of the assumption on associativity and commutativity of +; the sum of an infinite subset of a field does not, in general, make sense. The problem is overcome by recalling that, by definition, a linear combination has finitely many non-zero values. Thus, $l(T^{-1}(\{w\}))$ is finite even if $T^{-1}(\{w\})$ is infinite. There can

be only finitely many non-zero values of T (i.e., non-0 values); if $T^{-1}(\{w\})$ is infinite, then 'almost all' values of T on elements of this set must be 0_f .

The potential difficulty with our definition of T@l has been explained. The revised definition is in fact how the notion of the image of a linear combination under a linear transformation is defined in the MIZAR proof-checking system [91].⁶

6.2.2.2 Example 2: A counterexample to a 'natural' linear algebraic lemma

The second example is also linear algebraic. All technical terms are defined in the appendix. It involves a basic theorem of linear algebra known as the rank+nullity theorem.

Theorem 21 If T is a linear transformation from a finite-dimensional vector space A to a vector space B, then $\dim V = \dim \operatorname{im} T + \dim \ker T$.

(The numbers dim im T and dim ker T are often called the rank and the nullity of T, respectively, whence the name of the theorem.) A proof of the theorem is simple enough:

Proof. ① Let k be a field, let A and B be vector spaces over k, and let T be a linear transformation from A to B. ① Let A be a basis for k for k that extends A. ② Put C := T(B - A), and put D := L(C). ③ We have |C| = |B - A|. ④ We have that D = im T. ⑤ The inclusion $D \subset \text{im } T$ is obvious. ⑥ To prove the reverse inclusion, let v = T(u) be an element of im T. ⑦ Since $u \notin L(A)$, we have $u \in L(B - A)$. ⑧ Thus, C spans B, and the proof is complete.

It is not necessary to understand this argument in detail. The informal proof discussed above seems to be perfectly correct; indeed, one can formalize statements 1–8 and mechanically verify that the argument is valid; one then needs to give justifications for each of the steps. However, it turns out that statement 7 simply cannot be proved; it is not a logical consequence of the assumptions in play at that stage. A counterexample: let $A := \mathbb{R}^2$ (the real plane), $X := \{(0,1)\}$, $Y := A \cup \{(1,0)\}$, x := (7,5) shows that statement cannot be proved.

The problem was solved by realizing that the proof had to proceed along slightly different lines than those sketched above. Eventually, a correct proof was formalized. What is important about this example is that the error was discovered through formalization. Only by decomposing the proof of the above theorem into sufficiently fine-grained steps did the error become apparent.

The first example concerns linear algebra. I wanted to formally state and prove the statement: "if $A \subseteq B$, where A and B are subsets of a vector space V over a field F, and if $x \in L(B)$ but $x \notin L(A)$, then $x \in L(B-A)$ ". This one of the lemmas into which I decomposed one of the main theorems leading up to EPF. Using my proof checking system, I had checked the my list of lemmas into which I had decomposed the main theorem did indeed logically imply the main theorem. So all I had to do was give a proof of that theorem. The expression of the formula in the particular proof formalism that I was using looks like this:

```
for F being Field,
1
2
        V being VectSp of F,
3
        A,B being Subset of V,
4
        {\tt x} being Element of {\tt V}
5
      st A c= B &
6
         not x is Element of Lin A &
7
         x is Element of Lin B
8
      holds
9
        x is Element of Lin (B \ A)
```

The main theorem that I was trying to prove was an important theorem in linear algebra known as the rank+nullity theorem. The formal expression of that theorem looks like this:

```
for F being Field,
V,W being finite-dimensional VectSp of F,
T being linear-transformation of V,W
holds
dim V = rank(T) + nullity(T)
```

(You can see clearly why this might be called the rank+nullity theorem.)

The outline of the proof of the the rank+nullity theorem that I had in mind, which I intended to formalize, goes as follows:

① Let F be a field, let V and W be vector spaces over F, and let T be a linear transformation from V to W. ① Let A be a basis for $\ker T$, and let B be a basis for V that extends A. ① Put C := T(B - A), and put D := L(C). ② We have |C| = |B - A|. ③ We have that $D = \operatorname{im} T$. ② The inclusion $D \subset \operatorname{im} T$ is obvious. ③ To prove the reverse inclusion, let v = T(u) be an element of $\operatorname{im} T$. ③ Since $u \notin L(A)$, we have $u \in L(B - A)$. ① Thus, C spans W, and the proof is complete.

It is not necessary to understand linear algebra to see that I had decomposed the proof fairly finely, and that sentence 7 corresponds to the statement given just above.

The problem is that statement 7 is simply not true. After trying to get the proof to go through (i.e., to have the proof certified as valid by the proof checking system), I realized to my chagrin that it is false. The example where $V := R^2$ (the plane), $A := \{(0,1)\}$, $B := A \cup \{(1,0)\}$, x := (7,5) (for example) shows that my statements is false.

But this counterexample was local, not global. So I had to apply Rule 4: I had to modify my decomposition of the rank+nullity theorem to get around the problem ("replace the refuted lemma by an unfalsified one"). I therefore had to try out a different proof of the rank+nullity theorem.

This was an example where I had a local but not global counterexample. Global counterexamples can also arise when working with formal proofs. The following example came up in my formalization of EPF.

```
for F being Field,
1
2
        V being VectSp of F,
        A being Subset of V,
3
 4
        l being Linear_Combination of A,
5
        x being Element of V,
 6
        p being FinSequence of V,
        a being Element of F
7
8
      st rng p = Carrier 1 &
         p is one-to-one &
9
10
         a <> 0.F
      holds Sum ((1 +* (x,a)) (#) p)
11
12
             = Sum (1 (#) p) - (1.x)*x + a*x
```

What all that means is not important. What's important is that I believed that the statement was true and that I could give a proof of it. In fact, as in the preceding example, I had provided a proof that was almost correct (i.e., there were very few errors reported by the proof checking program).

It's also important to note that my statement was false, and that became clear where I was trying to fix the errors reported by the proof checker. It turned out that there was an assumption that I neglected to include; the correct statement of the problem is

```
1
    theorem
2
    for F being Field,
3
        V being VectSp of F,
        A being Subset of V,
5
        1 being Linear_Combination of A,
6
        x being Element of V,
7
        p being FinSequence of V,
8
        a being Element of F
9
      st rng p = Carrier 1 &
10
         p is one-to-one &
         a <> 0.F &
11
12
         x in Carrier 1
13
      holds Sum ((1 +* (x,a)) (#) p)
14
            = Sum (1 (#) p) - (1.x)*x + a*x
```

The additional assumption posed no problem, because the theorem of which the current theorem was a lemma actually did have that assumption. So passing the assumption along from the main theorem's hypothesis to the local lemma's hypotheses was unproblematic. What's the difference between what I did and "If you have a global counterexample discard the conjecture, add to your proof-analysis a suitable lemma that will be refuted by the counterexample, and replace the discarded conjecture by an improved one that incorporates that lemma as a condition. Do not allow a refutation to be dismissed as a monster. Try to make all 'hidden lemmas' explicit." But that's just Rule 2 of the method of proofs and refutations!

These two examples⁷ are offered to illustrate how the development of formal proofs can follow the method of proofs and refutations (MPR). Insofar as Lakatos intends MPR to be a characteristic feature of informal mathematics, he seems to be narrowing his philosophy

What Can One Discover in a Formalized Mathematical Theory?

too much. It seems to me that what Lakatos is doing is focusing on the development of

informal mathematics as a response to claims about the status of formal mathematics. But

if he had looked at the *development* of formal mathematics, he might have found an "ally

among the enemies" in the guise of modern formal mathematics.

6.2.2.3 Example 3: A condition on polyhedra

My formalization [93] of a proof of Euler's polyhedron formula is based on Lakatos's presen-

tation of Poincaré's proof; it is contained in chapter 2 of Proofs and Refutations. Lakatos's

purpose is to allow one of the characters of his dialogue to give a 'final' proof of Euler's

formula. My formalization follows that discussion. I gave a definition of polyhedron and

described the condition (what Lakatos calls simple connectedness, but which is better re-

ferred to as being a homology sphere) that is sufficient for a polyhedron to satisfy Euler's

relation (V - E + F = 2). The formal proof was nearly complete until a gap was uncovered:

and essential condition was missed!

It turned out that there was a rather crucial part of the argument that was overlooked. In

his discussion of Poincaré's proof, we find this exchange:

GAMMA: I think that the boundary of a decent k-chain should be closed. For instance I could not

possibly accept as a polyhedron a cube with the top missing; and I could not possibly accept as a

polygon a square with an edge missing. Can you prove, that the boundary of any k-chain is closed?

Epsilon: Can I prove that the boundary of the boundary of any k-chain is zero?

GAMMA: That is it.

EPSILON: No, I cannot. This is indubitably true. It is an axiom. There is no need to prove it.

Lakatos is right that this principle must be an 'axiom' in some form. The significance of

this passage was revealed to me thanks to the formalization.

To appreciate the significance of the missing condition, we need to lay down terminology

for polyhedra. A polyhedron, for the purposes of the proof that I formalized, is given by

127

three sets (of vertices, edges, and faces), and two so-called incidence matrices: one that says which vertices are incident with which edges, and another that says which edges are incident with which faces. To make the terminology uniform, for an integer k we say that a k-chain is a subset of the set of k-polytopes, where a k-polytope is supposed to be one of the basic elements of dimension k. (Thus a 0-polytope is a vertex, a 1-polytope is an edge, and a 2-polytope is a face.) For each integer k one can define a boundary operation, denoted ∂_k , whose domain is the set of k-chains and whose range is included in the set of (k-1)-chains. (Thus the boundary of an edge, a 1-chain, is a set of vertices, i.e., a 0-chain; the boundary of a face, a 2-chain, is a set of edges, i.e., a 1-chain.) Among the k-chains we can distinguish those that go all the way around, such as the edges of a polygon. Such k-chains are, appropriately enough, called k-circuits (also known as k-cycles). And some k-chains can be obtained by applying the boundary operation on a (k+1)-chain; such k-chains are called bounding.

Using this terminology, Lakatos lays down a condition on polyhedra that is standardly referred to as $simple\ connectedness$: a polyhedron p is simply connected if every k-circuit is bounding. (Again, this is Lakatos's terminology; a better term, and one that is actually used in the formal proof, is being a homology sphere.) In other words, the only way one can 'go around' is if one goes around something. Such is the case with polygons, for example: the reason why the set of edges of a polygon forms a circuit is that the edges 'traverse' a face. A failure of simple connectedness arises when one permits faces of polyhedra to have holes in them. Imagine a cube with hole in the top face: one can going around the perimeter of the hole, but one is not going around a face.

At one step in the proof it seemed that what was necessary is the converse to simple connectedness: every k-circuit is a boundary. Indeed, this feeling that something was missing, first suggested by the proof checker, turns out to be well founded: a counterexample to Euler's formula can be found if one does not assume this extra condition. Take the example of a circle (only one face in this polyhedron), whose perimeter is the only edge, which contains precisely one vertex.

More formally, the incidence matrices that characterize this polyhedron are: $\{(v,e)\}$ to represent the incidences between the vertices and the edges and $\{(e,f)\}$ to represent the incidences between the edges and the faces. Yet in this case, the boundary of the 2-polytope f is the 1-chain $\{e\}$, whose boundary is $\{v\}$. Euler's formula is false, because V - E + F for this polyhedron is 1. Yet it is simply connected! (The condition that every circuit is a boundary is satisfied because there are no non-trivial circuits at all.)

6.2.3 Two Discoveries

The case studies of the two examples above illustrate that there are (at least) two kinds of discoveries to be had in formal mathematical theories. In the first example, we saw how, by formalizing the mathematical concept of a linear transformation as we did, we faced the problem of defining the notion of the application of a linear transformation to a linear combination. The second example we considered had to do with logical gaps that were exposed thanks to the requirement of strict formality. We discuss these two examples in more detail in the following two subsections.

6.2.3.1 First discovery: analysis of informal notation

The lesson that I take away from the formal work involved in defining the notion of the application of a linear transformation to a linear combination is an appreciation for how flexible our (informal or semi-formal) mathematical notation can be. In some cases, it is straightforward to formalize a mathematical concept, notation, theorem, or definition. In other cases, as this example shows, the problem of coming up with an adequate formalization itself requires some mathematical insight. Furthermore, once a decision is made concerning how to formally represent an informal mathematical notion, certain derived obligations arise, such as the obligation to prove that the $l(T^{-1}(\{w\}))$ is a finite subset of k. Arguably, the formalization has taught us something about our notation. When we write that

$$T(a_1 \cdot v_1 + a_2 \cdot v_2 + \dots + a_n \cdot v_n) = a_1 \cdot T(v_1) + a_2 \cdot T(v_2) + \dots + a_n \cdot T(v_n),$$

there does seem to be an implicit assumption that the $T(v_k)$'s are different. But the informal notation gets it right. If, say, n = 3 and $T(v_1) = T(v_2)$, then

$$a_1 \cdot T(v_1) + a_2 \cdot T(v_2) + a_3 \cdot T(v_3) = (a_1 + a_2) \cdot T(v_1) + a_3 \cdot T(v_3),$$

which falls out of our formal definition. The definition of T@l also shows us that there is more to our informal notation than meets the eye. Who would have guessed that to formalize the apparently simple property of linear transformations would, formally, involve inverses and sums of subsets of k, and that we would further have to justify our notation by proving that no infinite sums arise?

This example challenges Lakatos's answer to his question ('What can one discover in a formal mathematical theory?'). By working in a formal mathematical theory, we 'force the issue' of the definitions of our terms. In the formal development of linear algebra, we would be forced eventually to say what linear combinations are, and to say what it means to apply a linear transformation to a linear combination. To meet this formal challenge, we had to engage in mathematical work that led to an unexpected result. Our discovery of the definition of the application of a linear transformation to a linear combination surely

wins no awards for mathematical ingenuity, nor does it break new mathematical ground. Nonetheless, the unexpected features of the definition (unbounded sums, inverses) suggest that there is a bit more to the notion of linear combination than meets the eye. And we found that out through formalization.

6.2.3.2 Second discovery: gaps

In the second and third examples above, we saw that, thanks to the requirement of strict formality, we were able to spot a gap in a proof that might have been overlooked. What is claimed is not that formalization is the only way that the problem could have been discovered. If that were the case, then it would be necessary to describe the precise formalism that was used in considerably more detail. But (thankfully) that is unnecessary; the result is not ineliminably tied to the particular formalism that was used. What I claim is something rather more modest: thanks to formalization, an error that might have gone undetected was brought clearly to light.

The examples involving logical gaps leads into the broader epistemological question of how formal proofs can in any sense be epistemically 'superior' to non-formal proofs. Is there any philosophical justification for the enterprise of computer-checked formal proofs? One could take a skeptical view toward mathematical proof and hold that *only* completely formal proofs deserve to be called (genuine) proofs. Yet in the history of formal mathematics, one has to acknowledge the paucity of genuinely *interesting* logical gaps that have been exposed. The skeptical justification, which doubt the validity of virtually every proof in mathematics and regards all proofs are informal and (potentially) rife with logical gaps, is untenable. The failure to uncover *interesting* gaps—oversights, ambiguities, or errors that, once exposed, would alter the views of the working mathematician—is not to be taken lightly [55, 59, 130]. One might say that a formalized proof of a theorem gives us better grounds to believe the theorem than were available before the proof was formalized, but at present it seems to be an open philosophical challenge to say why this should be so, while acknowledging the rarity of interesting gaps [13].

6.2.4 Comments

We thus see the potential for formal mathematics to be a source for mathematical discoveries, rather than as an obstacle.

These thoughts are echoed by G. Gonthier, who designed a formal proof of the famous four-color theorem, which was discussed previously. He clearly lays out his motivation for his work:

While we tackled this project mainly to explore the capabilities of a modern formal proof system—at first, to benchmark speed—we were pleasantly surprised to uncover new and rather elegant nuggets of mathematics in the process. In hindsight this might have been expected: to produce a formal proof one must make explicit every single logical step of a proof; this both provides new insight in the structure of the proof, and forces one to use this insight to discover every possible symmetry, simplification, and generalization, if only to cope with the sheer amount of imposed detail. . . . Perhaps this is the most promising aspect of formal proof: it is not merely a method to make absolutely sure we have not made a mistake in a proof, but also a tool that shows us and compels us to understand why a proof works. [131]

Gonthier thus sees the formalizer's burden—arguments be specified in more or less complete logical detail—not as an obstacle but as a potential source of innovation. The formalizer is spurred to try to discover refinements to the argument under consideration so as to make the formalization more tractable. Thus formalization provides, to some extent, a means of discovery.

Gonthier identifies at least two sources for potential innovation that come from formalization. In a formal proof:

- one must seek symmetries, simplifications, and generalizations to help make the formalization more tractable; and
- one cannot appeal to visual reasoning, nor to unformalized results.

Although Gonthier is a passionate and convincing advocate for the value of formalization, we should note that his conclusions are not necessarily the case for all formalizations. Although interesting discoveries are potentially at hand in any non-trivial formalization effort, innovation might not occur for two reasons.

First, the argument that Gonthier formalized was a rather substantial one (and has a complex history, too). It is not clear—and practice with proof-checking systems suggests—that we cannot expect interesting discoveries to routinely arise from the formalization of smaller or more straightforward proofs.

Second, Gonthier himself is a talented mathematician whose skills at programming and logic are clearly quite advanced. Had a mathematician with lesser skills taken on the same problem (to give a formal proof of the four color theorem), the discoveries that Gonthier made might not have arisen. The potential for discovery does not lie solely in the tools (the proof checker), nor in the proof to be formalized, but in the way that the formalizer uses his tools in his formalization.

6.3 Further Worries

6.3.1 The problem of translation

One question that often arises in response to formal proofs of mathematical theorems is: are we sure that the definitions of the concepts involved in the proof are accurately represented in the formalization? The worry is that if we have not accurately formalized our concepts, then the value of the formal proof is diminished, if it is meaningful at all.

Lakatos raises the problem of translation in connection with Poincaré's proof of EPF. The problem is, roughly: how do we know that the terms in Poincaré's proof have the same meaning as the terms outside of Poincaré's proof? We are interested in polyhedra, in some more-or-less intuitive sense; does Poincaré's proof show us that polyhedra, in our more-or-less intuitive sense, satisfy Euler's formula?

The problem of translation comes up just after Epsilon has finished giving his (Poincaré's) proof of EPF:

ALPHA: Before you do let me raise a second question about your proof, or rather about the finality and certainty that you claim for it. Is the polyhedron in fact a model of your vector-algebraic structure? Are you sure that your translation of 'polyhedron' into vector theory was a *true* translation?

EPSILON: I have already said that it is true. If something startles you that is no reason for doubting it. 'I am following the great school of mathematicians who, in virtue of a series of startling definitions, have saved mathematics from the sceptics, and provided a rigid demonstration of its propositions.'

TEACHER: I indeed think that this method of translation is the heart of the matter of the certainty and finality of Epsilon's proof. I think we should call it *translation-procedure*.

Epsilon/Poincaré modeled polyhedra with the help of incidence matrices, from which various vector spaces were defined. Alpha asks whether what Epsilon has done is a true "translation" of the intuitive concept of polyhedron into a linear algebraic framework. Later in the dialogue, Alpha again states the problem:

ALPHA: But you [Epsilon] lose something which is much more important. You have to restrict your Euclidean programme to theories with perfectly known concepts, and when you want to pull theories with vague concepts into the scope of this programme, you cannot do this by your translational technique: as you said, you do not translate, rather you create new meaning. But even if you tried to translate the old meaning, some essential aspects of the original vague concept may get lost in this translation. The new clear concept may not serve for the solution of the problem for which the old concept was meant to serve. If you regard your translations as infallible, or, if you consciously scrap the old meaning, both these extremes will yield the same result: you may push out the original problem into the limbo of the history of thought—which in fact you do not want to do. So if you calm down, you have to admit that definition must have a touch of modified essentialism: it must preserve some relevant aspects of the old meaning, it must transfer relevant elements of meaning from left to right.

The worry is that some essential aspects of the intuitive concept of polyhedron may get lost. I take it that an 'essential' loss here means such a modification of the intuitive concept that can no longer confidently state that the mathematical theorem is about what we intended it to be about.

Does the problem of translation apply to formal proofs? At first glance it would appear that the problem applies to a greater degree to formal proofs as it does to informal proofs (such as Poincaré's): formal proofs are written in a non-natural language, with which we are less familiar, so we lack standards for what counts as an adequate expression in the non-natural language of our intuitive concepts.

One way of putting the problem of translation is that there can be different translations of one and the same informal statement into a more formal language; the translations are different because they imply different statements.

But does that really arise in the case of formal proofs? I would urge that they do not; it seems to me that there are often unproblematic translations from informal to formal language. For example: translate "a polyhedron is determined by three sets V, E, and F consisting of its vertices, edges, and faces" as

```
1 definition
2  mode polyhedron
3  means
4  ex V begin set, E begin set, F being set st it = [V,E,F];
```

Here "ex" means "exists" and "st" means "such that"; the notation "[V,E,F]" refers to the ordered triple of the three sets V, E, and F. (That V, E and F are translated as sets is given by the being set construction.) The it is an indexical; we are defining the type polyhedron by a formula with one free variable, called it.

This snippet of MIZAR code is an unproblematic translation of the expression "a polyhedron is determined by three sets V, E, and F". Somewhat more formally, this statement is understood as: "to say that something is a polyhedron is to say that there exist three sets

V, E, and F that determine the polyhedron". If one doubts that ordered triples adequately determine their data, one should be swayed by the following facts in the MML:

It is perhaps not always so simple for formal proofs. But I submit that the problem of translation, insofar as it applies between informal and formal proofs, is largely unproblematic. Experience shows that formal proofs and informal proofs are already fairly close to one another; whatever essential content that has been lost has been lost at an earlier stage in the development of the theorem and proof.

As for the problem of translation for informal proofs, we may respond by pointing out that, at least in the case of Euler's formula, the objection that Poincaré's polyhedra are simply too abstract to count as genuine polyhedra, is not unique to Lakatos. Indeed, mathematicians themselves—even those who are quite sympathetic to formal proofs—are sensitive to the issue.

One response to the problem of Poincaré's polyhedra is given by Steinitz's theorem which shows how to relate abstract polyhedra to analytic ones, i.e., ones with which we are more familiar. Steinitz's theorem is discussed in chapter 4; here is a brief restatement of the result. Let G(P) be the graph determined by the vertices and edges of a convex polytope P. It is not difficult to show that G(P) is planar and 3-connected (i.e., no removal of two vertices disconnects the graph) for every 3-polytope P. Steinitz's theorem is escentially the converse:

Theorem 22 A graph C is isomorphic to the graph G(P) of a 3-polytope P iff C is planar and 3-connected.

For a proof, see Barnette and Grünbaum [132]. The theorem relates combinatorial structures arising from polyhedra to the polyhedra themselves.

Thus, the mathematical community themselves wondered what the connection was between abstract polyhedra and our intuitive geometric concept of polyhedra. The problem of translation may be a problem, but it is not an obstacle that we cannot address.

In the latter part of *Proofs and Refutations*, after EPSILON/ presents Poincaré's proof of Euler's polyhedron formula, some other characters ask whether we can be confident that we have now proved Euler's formula.

ALPHA: Is the polyhedron in fact a model of your vector-algebraic structure? Are you sure that your translation of 'polyhedron' into vector theory was a *true* translation?

EPSILON: I have already said that it is true. If something startles you that is no reason for doubting it. 'I am following the great school of mathematicians who, in virtue of a series of startling definitions, have saved mathematics from the sceptics, and provided a rigid demonstration of its propositions.'

TEACHER: I indeed think that this method of translation is the heart of the matter of the certainty and finality of Epsilon's proof. I think we should call it *translation-procedure*.

The problem here is that Poincaré's/Epsilon's proof of Euler's formula involved a particular definition of the concept of polyhedron as a certain kind of combinatorial structure. Earlier in the discussion of Poincaré's/Epsilon's proof there was a question of whether the definition is appropriate:

GAMMA: I am a bit puzzled by your definition of polyhedra. In the first place, as you bother to define the notion of a polyhedron at all, I conclude that you do not consider it to be perfectly well known. But then where do you take your definition from? You defined the obscure concept of polyhedron in terms of the 'perfectly known' concepts of faces, edges, and vertices. But your definition—namely that the polyhedron is a set of vertices, plus a set of edges, plus a set of faces,

plus an incidence matrix, obviously fails to capture the intuitive notion of a polyhedron. It implies, for instance, that any polygon is a polyhedron, as is, say, a polygon with a free edge standing out of it.

Gamma is right that Poincaré's/Epsilon's definition of polyhedron that is advanced at this stage of the proof is clearly too broad; any set of vertices, edges, and faces, arranged in any way, falls under Epsilon's combinatorial definition. One could take Gamma's worry farther and note that, at this stage, Euler's polyhedron formula is surely invalid. Consider, for example, a 'polyhedron' with no vertices, no edges, and no faces. Such a degenerate structure falls under the combinatorial definition so far, but it falsifies the formula (0-0+0), not 2).

Some kind of condition needs to be imposed on combinatorial polyhedra. And indeed, a condition is eventually added: the combinatorial polyhedron must be simply connected. A good deal of discussion in chapter 2 of *Proofs and Refutations* is devoted to understanding this condition on polyhedra. Epsilon does lay down a definition, but to appreciate its geometrical significance, a number of examples are considered.

In Lakatos's words, the question is whether combinatorial polyhedra are a good model of polyhedra. The problem seems to be that there are two realms of mathematical objects, or two concepts: combinatorial polyhedra and polyhedra. The former concept is clearly defined in the language of set theory; the latter is not so well defined, but there are any number of uncontroversial examples. For combinatorial polyhedra we can lay down a rigorously defined condition, simple connectedness, and rigorously prove that all simply-connected combinatorial polyhedra are Eulerian. For (pre-theoretical) polyhedra we apparently lack a proof. The problem of translation can be stated as: can we transfer the knowledge that we get from the Epsilon's proof for combinatorial polyhedra to non-combinatorial polyhedra? Or: even if we grant the most secure knowledge of one realm of objects, can we conclude that we have the same kind of knowledge for another realm of objects?

It would seem that, initially, the intention behind asking the question is to be skeptical about claims to mathematical knowledge. At least for some mathematical domains—such as the study of polyhedra, where the objects are apparently richly structured than we might initially take them to be—the best the mathematician can do is to lay down certain definitions of his concepts and rigorously prove properties of whatever objects satisfy those definitions. His proof may even be specified to the highest level of logical detail, as is the case with computer-checked formal proofs. But at the end of the day, when he has finished his proof, the mathematician has only his proof. He cannot move from the claim

I know with certainty that this argument is valid

to

I know with certainty the proposition proved is true

because he does not know that the definitions employed in his proof are correct.

This reminds us of the usual distinction between validity and soundness of arguments. The validity of an argument can be determined by the data given in the argument itself. The soundness of the argument, on the other hand, cannot in general be determined from the data of the argument. Some external knowledge seems to be required.

Lakatos may ultimately be right; it may be that, philosophically, there are limits on what we can know about mathematical concepts. Yet although this may seem to be correct in the case of polyhedra, for other mathematical structures knowledge suffers less from the problem of translation. Let us consider two examples.

First, let us consider the natural numbers. Like polyhedra, these are mathematical objects about which we have much intuition. We can give a formal proof in, say, Peano Arithmetic that 4 is an even number, a formal proof of the statement $\exists k((1+1) \cdot k = 1 + (1+(1+1)))$. Does this show that 4 is an even number? If we agree that the number 4 is accurately expressed in the language of Peano Arithmetic by the term '1 + (1 + (1 + 1))', and if we agree that the concept of evenness of an number a is accurately expressed in the language of

Peano Arithmetic by the existential formula ' $\exists k \ 2 \ k = \ a$ ', if the number 2 is accurately captured by '1+1', and if we agree that the axioms of Peano Arithmetic express valid laws of arithmetic, then we can be confidently claim that d gives us justification that 4 is an even number.

We can see that the validity of our deduction d can be established by looking only at the deduction itself. No knowledge of arithmetic needed to see that the figure d is in fact a deduction. However, we have to admit that to infer from the deduction that 4 is an even number requires more than the deduction itself. Our knowledge that 4 is an even number is grounded not merely by the deduction d. We have to set up coordination principles between our non-formal concepts and certain formal expressions. And those coordination principles (such as: 'the number 4 is accurately expressed by the term 1 + (1 + (1+1))') can be true or false, and the truth or falsity is not given by d. Although we can have certain knowledge that d is a deduction, our knowledge that the proposition we intended to prove is in fact proved is mediated by the coordination principles. That is: the certainty of the 'deductionhood' of d does not imply that we know with certainty that 4 is an even number.

To be clear, this example was chosen not to mock Lakatos's philosophy. The example was not chosen to show that, in fact, we can have certain knowledge that our coordination principles are correct—and thus Lakatos is wrong. In the case of natural numbers, it seems fairly clear that we can have irrefragable confidence (or something near enough) in the correctness of our coordination principles: the term 1 + (1 + (1 + 1)) is an adequate formalization of the number 4; the formula $\exists k((1+1)\cdot k = \lceil a\rceil)$ is an adequate formalization of the property of the number a being even. This is not dogmatic table-thumping. It is consistent with Lakatos's philosophy that we can have certain or near-certain knowledge of the correctness of our coordination principles. Lakatos is not a skeptic who wishes to deny that we can have mathematical knowledge of the highest epistemological nature. Rather, the more modest lesson to take away from this example is that the quality of our formally proved mathematical knowledge is limited by the quality of our coordination principles.

The second example that I wish to consider is algebraic. A group is a mathematical structure equipped with a binary function that is associative, has a left and right identity, and left and right inverses. These properties can be straightforwardly formalized using the language of first-order logic. One simple theorem about groups is Lagrange's theorem: for a finite groups, the order of a subgroup of a group G always divides the cardinality of G. One can give a formal proof of this fact (as has been done in, for example, the MIZAR system [133]). In the case of groups and other similarly-defined algebraic structures, the possibility of uncertainty is considerably reduced. The coordination principle that allows to infer from a formal proof of Lagrange's theorem that the property it expresses lies almost exclusively in the convention that the concept of a group just is any structure that satisfies the group axioms. Other coordination principles are at play as well: since the proof involves some arithmetic, a formal proof of Lagrange's theorem needs to have formalizations for the relevant arithmetical concepts and theorems.

The purpose of these two examples is to contrast the example of Euler's polyhedron formula from other mathematical results. For polyhedra, the status of our coordination principles is more contentious than they are in the case of arithmetic and algebraic structures such as groups, which admit a definition by convention. Again, the lesson to take away from these examples is not that Lakatos is wrong. Lakatos is not intended to be a skeptic who insists that through formal proof we cannot have any mathematical knowledge. Rather, these examples are chosen to help us to understand Lakatos's point that the soundness of our formal proofs depends not only on the proofs themselves but also on coordination principles that relate the formal expressions to informal concepts. In some cases, these coordination principles can be very good, apparently irrefragable. In other cases, such as polyhedra, they can be more controversial.

6.3.1.1 Aside: Comparing Lakatos's problem of translation with Quine's problem of the indeterminacy of translation

In Word and Object [134] and later works [135–136], Quine posed a problem that is apparently related to the problem that Lakatos raises. Quine called it the **indeterminacy**

of translation. The words suggest that Quine and Lakatos are dealing with a similar problem. But the two problems are quite different.

Quine's problem involves a thought experiment of 'radical translation', where a 'field linguist' in the jungle is trying to communicate with natives whose language he does not understand. Radical translation is an interpersonal situation, and the resulting indeterminacy is a critique of meaning. The problem problem is intersubjective and linguistic; it has to do with the problem of communication between people whose native languages differ. Lakatos's problem of translation is not inherently linguistic, nor is it a problem of intersubjectivity.

We can further distinguish indeterminacy of translation from the problem, well known the philosophy of science, of underdetermination of theory by date: Contrasting these two problems, Quine writes:

If translators disagree on the translation of a Jungle sentence but no behavior on the part of the Jungle people could bear on the disagreement, then there is simply no fact of the matter. In the case of natural science, on the other hand, there is a fact of the matter, even if all possible observations are insufficient to reveal it uniquely. [136]

Contrasted with Quine's problem of the indeterminacy of translation, Lakatos's problem of translation is (apparently) not interpersonal, nor is it (inherently) linguistic. Rather, it seems to be a problem about mathematical *concepts*.

Lakatos's point seems to be that to express our mathematical arguments (and hence, to formalize them), we must take an stand toward the salient mathematical concepts. We thus are not proving anything about a mathematical *concept* (or concepts), but rather about some *articulation/conception* of them.

6.4 Conclusion

By 'forcing the issues' of (1) exactly how mathematical concepts are formally represented, and of (2) the precise structure of a mathematical proof, it would seem that the formal

viewpoint behind modern proof-checking enterprises, far from standing in opposition to Lakatos, actually *support* his philosophy of mathematics. Lakatos is interested in the development of mathematical concepts and proofs.

7 Conclusion

The project described here was an engagement with the philosophy of mathematics of Imre Lakatos. The main task was to present Lakatos as offering a challenge to those who work with (what I have called) modern formal proof technology. There, formal proofs are, of course, the central object of study to the extent that they are actually constructed. Lakatos, on the other hand, is generally quite negative about such proofs and their value for philosophy of mathematics, arguing specifically that they have little to say about the growth of mathematics, and mathematical discovery.

If I have responded well to Lakatos's challenge, then I have successfully argued that, first of all, that Lakatos's central insight into the methodology of mathematics—what he calls the method of proofs and refutations—applies as well to formal mathematics as it does to informal mathematics. Moreover, I hope to have mitigated Lakatos's skepticism about the methodology of mathematics by arguing that the view of mathematical knowledge as conjectural is not well supported.

If, as Worrall suggests [122], the aim of *Proofs and Refutations* is to call attention to merely call attention to the growth and history of mathematics without offering any distinctive new view about the epistemology of mathematics, then the strength of the argument is considerably mitigated. Surely no one can object to an expansion of the scope of the philosophy of mathematics to include such case studies as Lakatos's. Relatedly, if all Lakatos is arguing is that it is a mistake to *identify* the philosophy of mathematics with metamathematics, then again there is little room for disagreement. Feferman put it well when he concedes that 'logic as it stands fails to give a direct account either of the historical growth of mathematics or the day-to-day experience of its practitioners' [54]. If that is Lakatos's main point, then again there seems to be little room for disagreement. And if Lakatos is just trying to get us to all be a little more modest about our proofs and to prefer the heuristic presentation of mathematics in the classroom, then this seems to be a laudable goal and I think we can all support it.

Assuming, then, that Lakatos is in fact trying to develop some new epistemological features of mathematical knowledge, then more room is available in which to carry out the discussion. My hope is to have contributed to Lakatos scholarship by bringing him 'up to date' with developments in modern formal proof technology that Lakatos could only imagine. I aimed to take up the tenor Lakatos's new insights into the philosophy of mathematics while, at the same time, taking issue with some of the places where he overreaches. The work is written in the hope that it would take Lakatos on in his own terms; I hope to have avoided the charge of belonging to the camp of 'dogmatists' that Lakatos describes in the introduction to *Proofs and Refutations*, as those who simply simply take mathematical knowledge to be uncriticizable, infallible, deserving of our immediate assent, or any other heavy-handed epistemological feature.

At the same time, Lakatos might charge me with taking up the 'dogmatist' line of thought because I question the extent to which his skeptical view applies. It is not clear, for example, that Lakatos has given an argument that mathematical knowledge is not a priori or that mathematical proofs do not provide a priori justifications. It is consistent with Lakatos's view that mathematical knowledge differs from 'everyday' knowledge of the world, and that even if mathematical knowledge is fallible, the character of its fallibility differs from that of other kind of knowledge, and, relatedly, mathematical proofs are justify knowledge in rather special way.

I have also discussed a handful of problems as they arise from the combinatorial treatment of polyhedra. The problems there are (meta)mathematical. A number of problems remain in this direction.

The project contained here suggests a number of fruitful directions for further research. They are, mainly, philosophical approaches; they focus, moreover, primarily on the epistemology of mathematics. Lakatos has inspired research in the philosophy of mathematics on several fronts that promise to shed new light and help us to better appreciate one of the oldest and arguable epistemically most interesting aspects of human intellectual life.

A Endnotes

A.1 Chapter 2: Formal Proofs in Mathematics

- ¹ Historically, it was Hilbert and Bernays who gave completeness as an open problem in their *Grundzüge der theoretischen Loqik*. By adapting a result of Skolem, Gödel was able to solve the problem.
- ² Peano remained active in the project of formalization for years. As a side note, Peano was clearly quite interested in language more generally: he designed his own language—Latino sine Flexione (Latin without inflections)—in which his book was written. (The citation [2] is to to the French translation.)
- ³ What follows is a discussion of notable events in the 20th century. But arguably this presents far too modern of a point of view; already, in the imaginings of thinkers from long ago, such as Leibniz, we see the idea of computers being used in connection with proofs as they are used today.
- ⁴ Work by (for example) Orevkov gives a sense in which formal proofs (in some proof formalisms) can be so large as to be practically impossible to completely survey. What we have in mind here is something more mundane that Orevkov-style results: that the problem of producing formal proofs can result in deductions that are much larger than the informal proofs from which they come.
- ⁵ A list of 100 interesting mathematical theorems, and their status as formalized or unformalized (and, if formalized, in which of the many contemporary proof checking systems) is maintained [19] by F. Wiedijk.
- ⁶ Harrison is not the only one to articulate this goal for an ideal proof system: one can hear this goal in informal conversation among those who are active in the subject.
- Another work connecting Kuhn and Lakatos, not motivated by experimental mathematics, is [33].
- ⁸ In more mathematical terms, the Kepler conjecture states that the density of a packing of congruent spheres in R^3 is not greater than $\pi/\sqrt{18}$.
- Another famous long-standing problem in mathematics, Fermat's Last Theorem, was stated around 1637 [35], and solved by Andrew Wiles in 1995 (after Wiles's 1993 proof was found to be flawed). The difference between the time when the problem was solved and when it was posed for Fermat's last theorem and the Kepler conjecture are, respectively, 358 and 387 years.

A.2 Chapter 3: A Lakatosian Challenge

- ¹ Feferman has criticized Lakatos for focusing on mathematical statements that have only a universal form $\forall x \varphi(x)$, but many mathematical statements do not have such a form, such as " $\sqrt{2}$ is irrational" and "there are exactly two integers that divide all other integers". The logical form of a great many of the statements of mathematics is, however, universal.
- ² At one point Lakatos simply says that the proof analysis of a proof just is the list of 'lemmas' coming from the proof: the character KAPPA criticizes the way that TEACHER is responding to the critique that the students are giving of TEACHER's initial proof of Euler's polyhedron formula:

KAPPA: You improved the proof-analysis, i.e. the list of lemmas; but the thought-experiment which you called 'the proof' has disappeared.

Nonetheless, Lakatos places more weight on the idea of proof analysis as an activity of investigating the conditions under which the moves carried out in the proof can be made, or are correct. This can lead to a refinement of the list of lemmas.

³ It seems to me that one issue that classical philosophy of mathematics addresses and which Lakatos does not are metaphysical and ontological questions about mathematical objects. But one reviewer has noted [76] an interesting metaphysical corollary of Lakatos's case study of Euler's formula: "In the beginning Euler's theorem was false; in the end it is true because we have come to formulate a concept of polyhedron that makes it true. The theorem has been 'analytified'. Yet making it true by convention was not matter of fiat but the product of refined analysis. This doctrine of analytification has unsettling consequences. The Platonist cannot welcome a view which makes the truth of the proposition in the end something embedded in

the canons of mathematical language, where the ideas are stripped of their dignity. They are no longer what makes mathematics true, nor the subject matter of mathematics. Yet the nominalist is equally disconcerted, for even if we end up with truth by convention, the convention seems to be organising a 'reality' that has nothing to do with words."

Again, we shall see later what MPR amounts to, but for now, to ward off any misunderstanding, Lakatos is not saying that strict deductions of a universal claim $\forall x \varphi(x)$ and crystal-clear counterexample $\neg \varphi(a)$, in which there is no equivocation of the terms in the two claims, are simultaneously allowed. That, of course, would be irrational. As one might expect Lakatos is using the words "proof" and "refutation" in a special sense related to but different from our usual use of the words. We can see that "proof" doesn't mean something like "deduction in FITCH" and counterexample means something like "configuration in TARSKI'S WORLD/ showing a universal statement to be false". FITCH and TARSKI'S WORLD/ are dealing with a concept of proof as formal deduction, and counterexample as object in a structure for which a negation holds, following Tarski's definition of truth. For these concepts we have the soundness and completeness theorem, which imply that logical validity coincides with provability. Thus, if a statement is proved in this sense, then, by the soundness theorem, if is impossible to give a counterexample.

A.3 Chapter 4: A Formal Proof of Euler's Polyhedron Formula

- Many results could be called 'Euler's formula'; Euler was a prolific mathematician who made fundamental contributions to any number of areas of mathematics. A result arguably more famous than the polyhedron formula that could be the referent of 'Euler's formula' is the famous relation $e^{ix} = \cos x + i \sin x$, one of whose special cases is the remarkable $e^{i\pi} + 1 = 0$. In this paper, 'Euler's formula' is short for 'Euler's polyhedron formula'.
- ² Euler's text has been modified to bring it into line with the notation used in this paper: he did not use the conventional English abbreviations 'V', 'E', and 'F'.
- ³ Euler proved that proposition 6 is equivalent to proposition 11. This is an interesting equivalence because one statement has a combinatorial flavor, while the other has an analytic flavor. Proposition 11 can be seen in the famous Gauss-Bonnet formula [81].
- ⁴ Unknown to Euler, Descartes had actually given a proof of Proposition 11 [82]. This result of Descartes's, seems to have been missing at Euler's time; it was rediscovered in the 19th century, long after Euler's death [83].
- ⁵ Poincaré was interested more broadly in the new subject of topology, of which he was one of the earliest explorers; his new proof of Euler's polyhedron formula was but one element in his wider topological program.
- 6 Poincaré was not the first to generalize Euler's polyhedron formula to higher dimensions; that was done by L'Hullier.
- ⁷ In fact, Poincaré used a single incidence matrix to represent a polyhedron. The matrix is a block matrix, two of whose blocks are just the zero matrix, expressing the fact that vertices are not (strictly speaking) incident with faces but only with edges.
- ⁸ At the time the formalization began, no formal proof of Euler's formula was known. But independently, another formal proof has been carried out in the COQ system [90].
- ⁹ It would be interesting to discover cases where one *learns* something different about a proof (and not about the different systems or the different logics on which they are built) when formalizing it in one system as compared with what one learns from another formalization of the same proof.
- There are two kinds of missing knowledge: well-known (perhaps named) mathematical results can be contrasted with details that, in an less formal context, are left tacit.
- And, conversely, often one discovers that mathematical knowledge that was previously thought to be unformalized does in fact exist in the library. At one point I thought that he had a *proof* that the MIZAR library did not contain a formalization of the fact that $\{0,1\}$ can be regarded as a two-element field. This turned out to be mistaken.
- ¹² This is a case where a representation of a mathematical object contains more information than meets the eye. When represented this way, linear combinations tacitly build in the commutativity of vector addition.

- u + v is represented by a function f that sends u and v to 1 and every other vector to 0. The same function f also represents v + u.
- The condition of finiteness is necessary because linear combinations must be finite; if X is infinite no finite set of singletons can span X.
- ¹⁴ In fact, if one inspects the formal proof one sees that polytope sets are assumed to be ordered. However, it is still the case that orientation plays no role in this development: the ordering is assumed to make certain definitions simpler; an unordered approach would have worked just as well.
- In the MML version 4.110.1033, released September 9, 2008, the exact MIZAR item is VECTSP_7:def 3. Every type in MIZAR must be provably non-empty. Interestingly, the theorem that every vector space has a basis appears not as a MIZAR theorem per se, but rather as the justification for the non-emptiness of the type Basis of V, where V itself has the dependent type VectSp of F, where, finally, F has type Field. The proof of the non-emptiness of the Basis type appeals to the theorem that every linearly independent subset of a vector space can be extended to a linearly independent spanning set, i.e., a basis.
- 16 Simpson has shown that the principle 'Every vector space has a basis' is equivalent, over the second-order arithmetical theory RCA₀ (for 'recursive comprehension axiom'), to the principle of arithmetical comprehension [103].
- The custom code is not yet complete; certain features of the MIZAR system are not yet accounted for, such as so-called registrations and the implicit uses of Hilbert's ε -operator. Thus it is possible that some important dependency relations are not being taken into account with the present version of the software.
- 18 Perhaps even this notation could be implemented in MIZAR, but its logical properties are peculiar and would be a challenge to formally specify.

A.4 Chapter 5: Metamathematical Problems about Polyhedra

- ¹ For more information about Schläfli's work, see Coxeter [89].
- ² The games proceed as before, but with a new kind of move: not only can the players choose elements of structures, but also subsets. Spoiler chooses one of the structures and either a subset or an element of it; duplicator chooses from the other structure either a subset or an element of it, corresponding to the kind of move that spoiler made. Duplicator wins the game after k turns if the structures, with the chosen elements and chosen subsets, are partially isomorphic. See Libkin [114], chapter 7.
- ³ This is the principle which, in its simplest form, states that $|A \cup B| = |A| + |B| |A \cap B|$. This involves only two terms; for more terms, the principle becomes more complicated.
- ⁴ The argument is simple: since every element of a polyhedral complex satisfies exactly one of V, E, or F, there must be at least one vertex, at least one edge, or at least one face. In the first and the third case, axiom? ensures that there is some other element to which the element is incident. And if there is an edge, then, by?, there are vertices with which the edge is incident.
- ⁵ That can be seen because one can prove that if there is an inaccessible cardinal κ (and if ZF is consistent), then V_{κ} is a model of ZF. If ZF were to prove the existence of an inaccessible cardinal, then it would prove its own consistency. See Kunen [117] for more details.

A.5 Chapter 6: Responding to the Lakatosian Challenge

- ¹ "This reflects the characteristic mathematical situation: the mathematician hits upon his proof by unregimented insight and good fortune, but afterwards other mathematicians can check his proof." [121] Lakatos upbraids Quine for this statement, accusing him of equivocating on the meaning of 'mathematics' by using the word in both its formal and informal ('ordinary') senses. Lakatos points out that "often the checking of an *ordinary* proof is a very delicate enterprise, and to hit on a 'mistake' requires as much insight and luck as to hit on a proof".
- ² Oddness could have been formalized differently. We could have said: n is odd iff there exists a natural number k such that $2 \cdot k + 1 = n$. With this definition of oddness, the proof that if n is even then n + 1 is

odd does not require any number-theoretic axioms: by definition, there exists a natural number k such that $2 \cdot k = n$; adding one to both sides gives $2 \cdot k + 1 = n + 1$ (which follows by an axiom for equality), so that n+1 is odd. Summary: the k that witnesses the evenness of n also witnesses the oddness of k+1. In other words, the evenness of n (first-order) logically implies the oddness of n+1. The exercise becomes more involved if one uses the definition of oddness given in the text, for then the evenness of n does not logically imply the oddness of n+1; to prove that n+1 is odd one must appeal to some non-logical number-theoretic axioms.

- ³ The statement that logic alone doesn't specify how we should organize a search for a deduction is correct enough as it stands, but there is considerable interest within the automated reasoning community on developing heuristics for how this search can be carried out. [127]. The community has been somewhat successful; they can claim to have discovered a formal proof of a theorem (the solution to the so-called Robbins conjecture) that no human had found. [128–129]
- ⁴ It is somewhat peculiar that Lakatos didn't highlight this potential value of formal proofs. After all, one reason for the failure of a sequence of formulas to be a deduction is that the theorem to be proved suffers from a so-called *global counterexample*, or perhaps the problem is rather more isolated (*local counterexample*). This echoes a point made by Feferman. [54]
- The function l that represents the simple linear combination u + v also represents v + u. More generally, if l represents $a_1 \cdot v_1 + a_2 \cdot v_2 + \cdots + a_n \cdot v_n$, then l also represents any permutation of the terms. Thus, our choice of representation for linear combinations tacitly builds in the commutativity of vector addition.
- ⁶ And in fact, to justify the definition in the MIZAR system, one has to prove that the definition does make sense by showing that the application of l to $T^{-1}(\{w\})$ is finite.
- ⁷ These examples follow the pattern of Feferman's "logical analysis" scheme [54].
- ⁸ There are a variety of possible axiomatizations of group theory. One can formulate the axioms using a constant symbol for the identity, or not; one can require that the identity be both left and right, or just right (in which case one has to assume that one can cancel on the left).

B A MIZAR Proof of Euler's Polyhedron Formula

This appendix contains the formal text, expressed in the MIZAR language, of a proof of Euler's polyhedron formula. The formal work is laid out in three stages:

- 1. First, a formal proof the rank+nullity theorem (which is the main linear algebraic result in Poincaré's proof);
- 2. Second, a formal development of the construction of a vector space based on the powerset of a set;
- 3. Finally, a formal development of Poincaré's proof.

The three stages build on each other. Moreover, the work does not take place *ex nihilo*; the proof makes extensive use of much mathematical knowledge that has already been formalized in the MIZAR Mathematical Library.

The software with which one can verify these proofs can be downloaded from the MIZAR homepage [22].

B.1 The rank+nullity theorem

```
:: The Rank+Nullity Theorem
2
    :: by Jesse Alama
    :: Received July 31, 2007
    :: Copyright (c) 2007 Association of Mizar Users
5
9
     vocabularies RANKNULL, VECTSP_1, MATRLIN, VECTSP10, VECTSP_9, RLVECT_3,
           RLSUB_1, FUNCT_1, FINSET_1, SUBSET_1, BOOLE, CARD_1, RELAT_1, RLVECT_1,
10
11
           RLVECT_2, INCSP_1, RLSUB_2, FINSEQ_1, QC_LANG1, FUNCT_2, TARSKI, ARYTM_1,
           FUNCOP_1, LOPBAN_1, SEQ_1, FINSEQ_4, FUNCT_4, CAT_1, COMPLEX1, TDGROUP,
12
13
           ARYTM, GROUP 1;
14
      notations TARSKI, XBOOLE_0, SUBSET_1, DOMAIN_1, RELAT_1, RELSET_1, FUNCT_1,
           NAT_1, NUMBERS, FUNCOP_1, PARTFUN1, FUNCT_2, FUNCT_4, XCMPLX_0, XXREAL_0,
           CARD_1, FINSET_1, FINSEQ_1, FINSEQOP, STRUCT_0, RLVECT_1, RLVECT_2,
16
           VECTSP_1, FUNCT_7, VECTSP_4, VECTSP_5, VECTSP_6, VECTSP_7, MOD_2,
17
18
           MATRLIN, VECTSP_9, LOPBAN_1;
19
      constructors NAT_1, FINSEQOP, HAHNBAN, VECTSP_6, VECTSP_7, MOD_2, VECTSP_9,
20
           REALSET1, RLVECT_2, WELLORD2, LOPBAN_1, VECTSP_5, FUNCT_7, FUNCT_4,
      registrations RELAT_1, FUNCT_1, FUNCT_2, STRUCT_0, CARD_1, FINSET_1, FRAENKEL,
           VECTSP_9, XBOOLE_0, VECTSP_7, MATRLIN, FUNCOP_1, ORDINAL1, XREAL_0,
23
           SUBSET 1, VECTSP 1;
```

```
requirements BOOLE, SUBSET, NUMERALS, ARITHM;
26
      definitions TARSKI, RELAT_1, FUNCT_1, FINSEQ_1, VECTSP_4, VECTSP_6, XBOOLE_0,
           RLVECT_1, STRUCT_0, MOD_2, MATRLIN, FUNCOP_1, LOPBAN_1, FUNCT_2;
27
      theorems TARSKI, ZFMISC_1, RELAT_1, FINSET_1, FINSEQ_1, FUNCT_1, VECTSP_7,
28
29
           VECTSP_9, CARD_2, XBOOLE_1, FUNCT_2, SUBSET_1, XBOOLE_0, VECTSP_1,
30
           RLVECT_1, VECTSP_4, VECTSP_6, STRUCT_0, RLVECT_2, MOD_2, MATRLIN, CARD_1,
           FUNCOP_1, VECTSP_5, FUNCT_7, FINSEQ_2, FUNCT_4, ENUMSET1, ORDINAL1,
31
32
           PARTFUN1:
     schemes CLASSES1;
33
35
    begin
37
    theorem Th1:
38
      for f,g being Function
       st g is one-to-one & f|(rng g) is one-to-one & rng g c= dom f
39
40
     holds f*g is one-to-one
41
      let f,g be Function such that
     A1: g is one-to-one and
43
     A2: f|(rng g) is one-to-one and
44
     A3: rng g c= dom f;
45
46
      set h = f*g;
47
     A4: dom h = dom g
48
      proof
        thus dom h c= dom g
49
50
         proof
51
          let x be set such that
52
     A5: x in dom h;
53
          thus thesis by A5, FUNCT_1:21;
54
         end:
55
         thus dom g c= dom h
56
         proof
    let x be set such that A6: x in dom g;
57
58
           g.x in rng g by A6,FUNCT_1:12;
59
          hence thesis by A3, A6, FUNCT_1:21;
60
61
         end;
62
       for x1,x2 being set st x1 in dom h & x2 in dom h & h.x1 = h.x2 holds x1 = x2
63
      proof
64
65
        let x1,x2 be set such that
    A7: x1 in dom h and
66
67
     A8: x2 in dom h and
68
    A9: h.x1 = h.x2;
     A10: h.x1 = f.(g.x1) by A7, FUNCT_1:22;
     A11: h.x2 = f.(g.x2) by A8, FUNCT_1:22;
71
     A12: g.x2 in rng g by A4,A8,FUNCT_1:12;
     A13: f.(g.x1) = (f|(rng g)).(g.x1) by A4,A7,FUNCT_1:12,72;
72
73
     A14: f.(g.x2) = (f|(rng g)).(g.x2) by A4,A8,FUNCT_1:12,72;
74
         dom (f|(rng g)) = rng g by A3,RELAT_1:91;
75
76
     A15: g.x1 in dom (f|(rng g)) by A4,A7,FUNCT_1:12;
77
         g.x2 in dom (f|(rng g)) by A3,A12,RELAT_1:91;
78
         then g.x1 = g.x2 by A2,A9,A10,A11,A13,A14,A15,FUNCT_1:def 8;
79
         hence thesis by A1,A4,A7,A8,FUNCT_1:def 8;
80
       end;
      hence thesis by FUNCT_1:def 8;
81
82
     end:
84
     :: If a function is one-to-one on a set X, then it is one-to-one on
85
     :: anv subset of X.
87
    theorem Th2:
88
      for f being Function, X,Y being set st X c= Y & f|Y is one-to-one
89
      holds f|X is one-to-one
    proof
90
91
      let f be Function, X,Y be set such that
    A1: X c= Y and
    A2: f|Y is one-to-one;
```

```
f|X = (f|Y)|X by A1, RELAT_1:103;
       hence thesis by A2, FUNCT_1:84;
 95
 96
     end;
 98
      theorem Th3:
       for V being 1-sorted, X,Y being Subset of V
99
       holds X meets Y iff ex v being Element of V st v in X & v in Y
100
101
102
      let V be 1-sorted, X,Y be Subset of V;
103
        X meets Y implies ex v being Element of V st v in X & v in Y
       proof
104
105
          assume X meets Y:
106
          then consider z being set such that
107
     A1: z in X and
108
     A2: z in Y by XBOOLE_0:3;
109
         reconsider v = z as Element of V by A1;
110
          take v:
111
         thus thesis by A1,A2;
112
        end;
113
       hence thesis by XBOOLE_0:3;
114
116
     reserve F for Field,
117
       V,W for VectSp of F;
119
     registration
      let F be Field, V be finite-dimensional VectSp of F;
120
        cluster finite Basis of V;
121
        existence
122
123
       proof
124
         consider A being finite Subset of V such that
125
      A1: A is Basis of V by MATRLIN:def 3;
126
         reconsider A as Basis of V by A1;
127
          take A:
128
          thus thesis:
129
        end;
130
     end;
132
     registration
133
        let F be Field, V,W be VectSp of F;
       cluster linear Function of V,W;
134
135
        existence
136
        proof
          set f = FuncZero ([#]V,W);
137
138
          reconsider f as Function of V,W;
139
     A1: f is linear
140
         proof
            thus for x,y being Vector of V holds f.(x+y) = (f.x)+(f.y)
141
142
            proof
143
             let x,y be Vector of V;
144
     A2:
             f.(x+y) = 0.W by FUNCOP_1:13;
145
             f.x = 0.W by FUNCOP_1:13;
             f.y = 0.W by FUNCOP_1:13;
146
             hence thesis by A2,A3,RLVECT_1:def 7;
147
148
            end:
149
            thus for a being Element of F, \boldsymbol{x} being Element of V
150
            holds f.(a*x) = a*(f.x)
151
            proof
152
              let a be Element of F, x be Element of V;
             f.(a*x) = 0.W by FUNCOP_1:13;
153
     A4:
             f.x = 0.W by FUNCOP_1:13;
154
155
             hence thesis by A4, VECTSP_1:59;
156
            end;
157
          end:
          take f:
158
159
          thus thesis by A1;
160
        end;
161
     end;
```

```
163
      theorem Th4:
       [#]V is finite implies V is finite-dimensional
164
165
      proof
166
       assume
167
      A1: [#]V is finite;
168
       consider B being Basis of V;
       reconsider B as finite Subset of V by A1;
169
170
        take B:
       thus thesis;
171
172
      end;
174
      theorem
       for V being finite-dimensional VectSp of F st card ([#]V) = 1
175
176
       holds dim V = 0
177
178
       let V be finite-dimensional VectSp of F such that
      A1: card ([#]V) = 1;
179
       [#]V = \{0.V\}
180
       proof
181
182
          consider y being set such that
183
     A2: [#]V = {y} by A1, CARD_2:60;
184
         thus thesis by A2, TARSKI: def 1;
185
        end:
        then (Omega).V = (0).V by VECTSP_4:def 3;
186
187
       hence thesis by VECTSP_9:33;
188
190
     theorem
       card ([#]V) = 2 implies dim V = 1
191
192
193
       assume
      A1: card ([#]V) = 2;
194
195
      A3: [#]V is finite by A1;
       reconsider C = [#]V as finite set by A1;
196
      A4: card ([#]V) = card (C);
197
198
       reconsider V as finite-dimensional VectSp of F by A3,Th4;
       ex v being Vector of V st v \Leftrightarrow 0.V & (Omega).V = Lin ({v})
199
200
      proof
         consider x,y being set such that
201
202
     A5: x \leftrightarrow y and
      A6: [#]V = \{x,y\} by A1,A4,CARD_2:79;
203
        per cases by A6, TARSKI: def 2;
205
          suppose
     A7: x = 0.V;
206
207
            reconsider y as Element of V by A6, TARSKI:def 2;
208
            reconsider x as Element of V by A7;
            set L = Lin (\{y\});
      A8: for v being Element of V holds v in (Omega).V iff v in L
210
211
            proof
              let v be Element of V;
212
213
              v in (Omega).V implies v in L
              proof
214
215
                assume v in (Omega).V;
216
      A9:
                y in {y} by TARSKI:def 1;
      A10:
                O.L in L by STRUCT_O:def 5;
217
218
                per cases by A6, TARSKI: def 2;
219
                suppose v = x;
220
                  hence thesis by A7,A10,VECTSP_4:def 2;
221
                end;
                suppose v = y;
222
                  hence thesis by A9, VECTSP_7:13;
223
224
                end:
225
               end;
226
              hence thesis by STRUCT_0:def 5;
227
            end:
228
            take v:
            thus thesis by A5, A7, A8, VECTSP_4:38;
229
230
```

```
231
          suppose
232
     A11: y = 0.V;
233
            then reconsider y as Element of {\tt V};
            reconsider x as Element of V by A6, TARSKI: def 2;
234
235
            set L = Lin (\{x\});
236
      A12: for v being Element of V holds v in (Omega).V iff v in L
            proof
238
              let v be Element of V:
239
              {\tt v} in (Omega).{\tt V} implies {\tt v} in {\tt L}
             proof
240
241
               assume v in (Omega).V;
                x in {x} by TARSKI:def 1;
242
      A13:
243
      A14:
               O.L in L by STRUCT_0:def 5;
                per cases by A6, TARSKI: def 2;
244
245
                suppose v = y;
                  hence thesis by A11,A14,VECTSP_4:def 2;
246
247
                end;
248
                suppose v = x;
                 hence thesis by A13, VECTSP_7:13;
249
250
                end:
251
              end:
252
              hence thesis by STRUCT_0:def 5;
253
            end;
254
            take x:
255
            thus thesis by A5, A11, A12, VECTSP_4:38;
256
          end:
257
258
        hence thesis by VECTSP_9:34;
259
     end:
261
     begin :: Basic facts of linear transformations
263
     definition
264
        let F be Field, V,W be VectSp of F;
        mode linear-transformation of V,W is linear Function of V,W;
265
266
      end;
268
      reserve T for linear-transformation of V,W;
270
      theorem Th7:
271
       for V, W being non empty 1-sorted, T being Function of V,W holds
272
        dom T = [#]V & rng T c= [#]W
273
     proof
274
        let V, W be non empty 1-sorted, T be Function of V,W;
        T is Element of Funcs([#]V,[#]W) by FUNCT_2:11;
275
276
       hence thesis by FUNCT_2:169;
277
279
      theorem Th8:
280
       for x,y being Element of V holds T.x - T.y = T.(x - y)
281
282
       let x,y be Element of V;
     A1: T.(x - y) = T.x + T.(-y) by MOD_2:def 5;
283
      A2: -y = (-1.F)*y by VECTSP_1:59;
284
      T.((-1.F)*y) = (-1.F)*(T.y) by MOD_2:def 5;
285
286
       hence thesis by A1, A2, VECTSP_1:59;
287
289
      theorem Th9:
290
       T.(0.V) = 0.W
291
      proof
       0.V = (0.F)*(0.V) by VECTSP_1:59;
292
293
        then T.(0.V) = (0.F)*T.(0.V) by MOD_2:def 5
294
          .= 0.W by VECTSP_1:59;
295
        hence thesis;
296
      end;
298
      definition
299
        let F be Field, V,W be VectSp of F, T be linear-transformation of V,W;
300
        func ker T -> strict Subspace of V means
301
        :Def1:
        [#]it = { u where u is Element of V : T.u = 0.W };
302
```

```
303
        existence
        proof
304
          set K = { u where u is Element of V : T.u = 0.W };
305
306
          K c= [#]V
307
          proof
308
            let x be set such that
309
      A1: x in K;
310
            consider {\tt u} being Element of {\tt V} such that
      A2: u = x and T.u = 0.W by A1;
311
312
            thus thesis by A2;
313
           end;
          then reconsider K as Subset of V;
314
315
      A3: for v being Element of V st v in K holds T.v = 0.W
316
          proof
            let v be Element of V such that
317
     A4: v in K;
318
319
            consider u being Element of V such that
320
      A5:
            u = v \text{ and}
      A6: T.u = 0.W by A4;
321
            thus thesis by A5,A6;
322
323
           end;
324
          K <> {} & K is linearly-closed
325
          proof
            T.(0.V) = 0.W by Th9;
326
             then O.V in K;
327
328
            hence K \iff \{\};
329
             thus K is linearly-closed
330
            proof
331
      A7:
              now
                let u,v be Element of V such that
332
333
      A8:
                 {\tt u} in K and
334
      A9:
                 v in K;
335
      A10:
                 T.u = 0.W by A3,A8;
336
                T.v = 0.W by A3,A9;
337
                then T.(u+v) = 0.W + 0.W by A10, MOD_2:def 5
                   .= 0.W by RLVECT_1:def 7;
338
339
                hence u+v in K;
340
               end;
              now
                let u be Element of V, a be Element of F such that
342
343
     A11:
                u in K;
344
                T.u = 0.W by A3,A11;
345
                 then T.(a*u) = a*(0.W) by MOD_2:def 5
                  .= 0.W by VECTSP_1:59;
347
                hence a*u in K;
348
               end:
               then for a being Element of F, \boldsymbol{u} being Element of V st \boldsymbol{u} in K
349
350
              holds a*u in K;
351
              hence thesis by A7, VECTSP_4:def 1;
352
353
           end;
           then consider {\tt W} being strict Subspace of {\tt V} such that
354
355
      A12: K = the carrier of W by VECTSP_4:42;
356
          take W;
357
          thus thesis by A12;
358
        end;
359
        uniqueness by VECTSP_4:37;
360
362
      theorem Th10:
363
        for x being Element of V holds x in ker T iff T.x = 0.W
364
      proof
365
        let x be Element of V;
366
        thus x in ker T implies T.x = 0.W
367
        proof
368
          assume x in ker T;
369
          then
```

```
370
     A1: x in [#]ker T by STRUCT_0:def 5;
         [#]ker T = { u where u is Element of V : T.u = 0.W } by Def1;
371
372
          then consider \boldsymbol{u} being Element of \boldsymbol{V} such that
373
     A2: u = x and
374
     A3: T.u = 0.W by A1;
375
         thus thesis by A2,A3;
376
        end;
377
        assume T.x = 0.W;
        then x in { u where u is Element of V : T.u = 0.W };
378
379
        then x in [#]ker T by Def1;
380
        hence thesis by STRUCT_0:def 5;
381
     end;
383
     definition
384
        let V,W be non empty 1-sorted, T be Function of V,W, X be Subset of V;
       redefine func T .: X -> Subset of W;
386
       coherence
387
        proof
388
     A1: rng T c= [#]W by Th7;
          T .: X c= rng T by RELAT_1:144;
389
390
          hence thesis by A1, XBOOLE_1:1;
391
        end;
392
     end:
394
      definition
395
        let F be Field, V,W be VectSp of F, T be linear-transformation of V,W;
396
        func im T -> strict Subspace of W means
397
        :Def2:
        [#]it = T .: [#]V;
398
399
        existence
400
401
         reconsider U = T .: [#]V as Subset of W;
     A1: for u being Element of W holds
402
          u in U iff ex v being Element of V st T.v = u
403
          proof
404
405
            let u be Element of W;
            thus u in U implies ex v being Element of V st T.v = u
407
            proof
408
              assume u in U;
409
              then consider \boldsymbol{x} being set such that \boldsymbol{x} in dom \boldsymbol{T} and
410
     A2:
              x in [#]V and
411
      A3:
             u = T.x by FUNCT_1:def 12;
              reconsider x as Element of V by A2;
412
              take x;
413
414
              thus thesis by A3;
415
            end;
416
            thus (ex v being Element of V st T.v = u) implies u in U
417
            proof
              given v being Element of V such that
418
     A4:
419
              T.v = u;
420
              v in [#]V;
421
             then v in dom T by Th7;
422
              hence thesis by A4,FUNCT_1:def 12;
423
            end;
424
          end;
          U <> {} & U is linearly-closed
425
          proof
426
427
            thus U <> {}
428
            proof
429
              T.(0.V) = 0.W \text{ by Th9};
430
             hence thesis by A1;
431
            end:
432
            thus U is linearly-closed
433
            proof
434
     A5:
             now
               let u,v be Element of W such that
435
     A6:
436
              u in U and
437
     A7:
                v in U;
```

```
438
                consider x being Element of V such that
439
      A8:
                T.x = u by A1,A6;
440
                consider y being Element of {\tt V} such that
441
      A9:
                T.y = v by A1,A7;
442
                u+v = T.(x+y) by A8,A9,MOD_2:def 5;
443
                hence u+v in U by A1;
444
              end;
445
              now
               let a be Element of F, w be Element of W such that
446
447
     A10:
               w in U;
448
                consider v being Element of V such that
449
     A11:
                T.v = w by A1,A10;
450
                T.(a*v) = a*w by A11,MOD_2:def 5;
451
               hence a*w in U by A1;
452
              end;
453
              hence thesis by A5, VECTSP_4:def 1;
454
            end;
455
          end;
          then consider A being strict Subspace of W such that
456
      A12: U = the carrier of A by VECTSP_4:42;
457
458
          take A:
          thus thesis by A12;
460
        end;
461
       uniqueness by VECTSP_4:37;
462
      end:
464
      theorem
      0.V in ker T
465
466
      proof
       T.(0.V) = 0.W
467
       proof
468
469
         0.V = (0.F)*(0.V) by VECTSP_1:59;
         then T.(0.V) = (0.F)*T.(0.V) by MOD_2:def 5
470
           .= 0.W by VECTSP_1:59;
471
472
         hence thesis;
473
        end;
474
        hence thesis by Th10;
475
     end;
477
      theorem Th12:
478
       for X being Subset of V holds T .: X is Subset of im T
      proof
480
       let X be Subset of V;
       [#](im T) = T .: [#]V by Def2;
481
482
      hence thesis by RELAT_1:156;
483
485
      theorem Th13:
486
      for y being Element of W
487
        holds y in im T iff ex x being Element of V st y = T.x
488
489
       let y be Element of W;
      A1: y in im T implies ex x being Element of V st y = T.x
490
491
       proof
492
          assume y in im T;
493
          then reconsider y as Element of im T by STRUCT_0:def 5;
494
          [#](im T) = T .: [#]V by Def2;
495
          then consider \boldsymbol{x} being set such that \boldsymbol{x} in dom \boldsymbol{T} and
      A2: x in [#]V and
496
      A3: y = T.x by FUNCT_1:def 12;
497
498
         reconsider x as Element of V by A2;
499
          take x;
500
          thus thesis by A3;
501
        end;
        (ex x being Element of V st y = T.x) implies y in im T
502
503
        proof
504
          assume ex x being Element of V st y = T.x;
          then consider x being Element of V such that
506
     A4: y = T.x;
```

```
507
          dom T = [#]V by Th7;
         then y in T .: [#]V by A4,FUNCT_1:def 12;
508
          then y in [#](im T) by Def2;
509
510
         hence thesis by STRUCT_0:def 5;
511
        end;
512
        hence thesis by A1;
513
     end;
515
516
      for x being Element of ker T holds T.x = 0.W
517
     proof
      let x be Element of ker T;
518
519
        reconsider y = x as Element of V by VECTSP_4:18;
520
       y in ker T by STRUCT_0:def 5;
521
       hence thesis by Th10;
522 end;
     theorem Th15:
525
       T is one-to-one implies ker T = (0).V
526
     proof
527
       assume
528
     A1: T is one-to-one;
      reconsider Z = (0).V as Subspace of ker T by VECTSP_4:50;
530
       for v being Element of ker T holds v in Z
531
       proof
         let v be Element of ker T;
532
533
         assume
534
     A2: not v in Z;
     A3: T.(0.V) = 0.W by Th9;
535
     A4: not v = 0.V by A2, VECTSP_4:46;
536
     A5: v in ker T by STRUCT_0:def 5;
537
         reconsider v as Element of V by VECTSP_4:18;
538
539
     A6: T.v = 0.W by A5, Th10;
540
         dom T = [#]V by Th7;
         hence thesis by A1, A3, A4, A6, FUNCT_1:def 8;
541
542
        end:
543
       hence thesis by VECTSP_4:40;
544
     end;
546
     theorem Th16:
       for V being finite-dimensional VectSp of F holds dim ((0).V) = 0
547
548
549
       let V be finite-dimensional VectSp of F;
550
       (Omega).((0).V) = (0).((0).V) by VECTSP_4:47;
551
       hence thesis by VECTSP_9:33;
552
     end:
554
     theorem Th17:
       for x,y being Element of V st T.x = T.y holds x - y in ker T
555
556
557
       let x,y be Element of V such that
     A1: T.x = T.y;

T.(x - y) = T.x - T.y by Th8
558
559
          .= 0.W by A1, VECTSP_1:66;
560
561
       hence thesis by Th10;
562
564
     theorem Th18:
565
        for A being Subset of V, x,y being Element of V st x - y in Lin A
       holds x in Lin (A \/ {y})
567
     proof
      let A be Subset of V, x,y be Element of V such that
568
569
     A1: x - y in Lin A;
570
       y in {y} by TARSKI:def 1;
571
     A2: y in Lin ({y}) by VECTSP_7:13;
572
     A3: (x - y) + y = x - (y - y) by RLVECT_1:43
573
        .= x - 0.V by VECTSP_1:66
574
575
          .= x by RLVECT_1:26;
576
        Lin (A \setminus \{y\}) = (Lin A) + (Lin \{y\}) by VECTSP_7:20;
```

```
577
        hence thesis by A1,A2,A3,VECTSP_5:5;
578
     end;
      begin :: Some basic facts about linearly independent subsets and linear
580
581
            :: combinations
583
      theorem Th19:
584
      for X being Subset of V st V is Subspace of W holds X is Subset of W
585
      proof
       let X be Subset of V;
586
587
        assume V is Subspace of W;
588
     A1: [#] V c= [#] W by VECTSP_4:def 2;
       X c= [#]W
590
591
        proof
592
          let x be set such that
593
      A2: x in X;
        x in [#]V by A2;
594
595
         hence thesis by A1;
596
        end:
597
       hence thesis;
598
      end;
600
      :: A linearly independent set is a basis of its linear span.
      theorem Th20:
602
        for A being Subset of V st A is linearly-independent
603
604
        holds A is Basis of Lin A
605
        let A be Subset of V such that
606
607
      A1: A is linearly-independent;
       A c= [#](Lin A)
608
609
       proof
610
          let x be set such that
611
      A2: x in A;
612
         reconsider x as Element of V by A2;
          x in Lin A by A2, VECTSP_7:13;
613
614
          hence thesis by STRUCT_0:def 5;
615
616
        then reconsider B = A as Subset of Lin A;
      A3: B is linearly-independent by A1, VECTSP_9:16;
617
        Lin B = Lin A by VECTSP_9:21;
618
        hence thesis by A3, VECTSP_7:def 3;
619
620
      end;
622
      :: \ensuremath{\mbox{Adjoining}} an element x to \ensuremath{\mbox{A}} that is already in its linear span
623
      :: results in a linearly dependent set.
625
      theorem Th21:
        for A being Subset of V, x being Element of V st x in Lin A & not x in A
626
627
        holds A \/\ is linearly-dependent
628
       let A be Subset of V, x be Element of V such that
629
630
      A1: x in Lin A and
631
      A2: not x in A;
632
        per cases;
633
        suppose A is linearly-independent;
634
          then reconsider A' = A as Basis of Lin A by Th20;
          x in [#](Lin A) by A1,STRUCT_0:def 5;
635
636
          then reconsider X = \{x\} as Subset of Lin A by SUBSET_1:63;
637
     A3: X misses A'
638
         proof
639
            assume X meets A';
640
            then consider y being set such that
           y in X and
641
      A4:
            y in A' by XBOOLE_0:3;
642
      A5:
            thus contradiction by A2, A4, A5, TARSKI: def 1;
643
644
          reconsider B = A' \/ X as Subset of Lin A;
645
      A6: B is linearly-dependent by A3, VECTSP_9:19;
646
647
          thus thesis by A6, VECTSP_9:16;
```

```
648
        end;
649
        suppose
650
      A7: A is linearly-dependent;
651
          thus thesis by A7, VECTSP_7:2, XBOOLE_1:7;
652
653
655
      theorem Th22:
656
       for A being Subset of V, B being Basis of V st A is Basis of ker T & A c= B
657
       holds T|(B \ A) is one-to-one
     proof
658
659
       let A be Subset of V, B be Basis of V such that
660
     A1: A is Basis of ker T and
661
     A2: A c= B;
662
       set f = T | (B \setminus A);
663
       let x1,x2 be set such that
664
     A3: x1 in dom f and
665
     A4: x2 in dom f and
666
     A5: f.x1 = f.x2 and
667
      A6: x1 <> x2;
668
     A7: dom T = [#]V by Th7;
669
       reconsider x1 as Element of V by A3;
      reconsider x2 as Element of V by A4;
670
       reconsider A' = A as Subset of V;
671
672
     A8: x1 in B \ A by A3,A7,RELAT_1:91;
     A9: x2 in B \ A by A4,A7,RELAT_1:91;
     A10: f.x1 = T.x1 by A8, FUNCT_1:72;
674
       f.x2 = T.x2 by A9, FUNCT_1:72;
675
676
       then
677
     A11: x1 - x2 in ker T by A5, A10, Th17;
678
       reconsider A as Basis of ker T by A1;
679
        ker T = Lin A by VECTSP_7:def 3;
        then x1 - x2 in Lin A' by A11, VECTSP_9:21;
680
681
        then
      A12: x1 in Lin (A' \/ {x2}) by Th18;
682
683
     A13: (A' \setminus \{x2\}) \setminus \{x1\} = A' \setminus \{x1,x2\}
684
       proof
685
          \{x2\} \setminus \{x1\} = \{x1,x2\} by ENUMSET1:41;
686
          hence thesis by XBOOLE_1:4;
687
        end;
688
     A14: not x1 in (A' \/ {x2})
689
      proof
690
          assume
      A15: x1 in A' \/ {x2};
691
692
          per cases by A15,XBOOLE_0:def 3;
          suppose x1 in A';
693
694
            hence contradiction by A8, XBOOLE_0:def 5;
695
          end;
696
          suppose x1 in {x2};
697
           hence contradiction by A6, TARSKI: def 1;
698
          end;
699
        end;
      A16: A' \/ {x1,x2} c= B
700
701
        proof
          \{x1, x2\}\ c=\ B
702
          proof
703
704
            let z be set such that
705
      A17: z in \{x1,x2\};
706
            per cases by A17, TARSKI: def 2;
707
            suppose z = x1;
             hence thesis by A8,XBOOLE_0:def 5;
708
709
            end;
            suppose z = x2;
710
711
              hence thesis by A9, XBOOLE_0:def 5;
712
            end;
713
          end;
          hence thesis by A2,XBOOLE_1:8;
714
```

```
715
        end;
        B is linearly-independent by VECTSP_7:def 3;
716
       hence thesis by A12,A13,A14,A16,Th21,VECTSP_7:2;
717
718
      end;
720
     theorem
        for A being Subset of V, 1 being Linear_Combination of A,
721
722
        x being Element of V, a being Element of F
723
       holds 1 +* (x,a) is Linear_Combination of A \/ \{x\}
      proof
724
725
       let A be Subset of V, 1 be Linear_Combination of A, x be Element of V,
726
        a be Element of F:
727
        set m = 1 +* (x,a);
728
        m is Element of Funcs ([#]V,[#]F)
729
        proof
730
     A1: dom m = [#]V
731
         proof
      A2: dom 1 = [#]V by FUNCT_2:169;
732
733
734
      A3: m = 1 +* (x .--> a) by FUNCT_7:def 3;
735
      A4: dom (x .--> a) = \{x\} by FUNCOP_1:19;
            dom m = (dom 1) \/ (dom (x .--> a)) by A3,FUNCT_4:def 1;
736
            hence thesis by A2, A4, XBOOLE_1:12;
737
738
          end;
739
          rng m c= [#]F
          proof
741
            let y be set such that
742
     A5: y in rng m;
743
            consider x' being set such that
744
      A6: x' in dom m and
745
      A7: m.x' = y by A5, FUNCT_1:def 5;
746
      A8: x' in dom 1 by A1, A6, FUNCT_2:169;
747
            per cases;
            suppose x' = x;
748
              then m.x' = a by A8,FUNCT_7:33;
749
750
              hence thesis by A7;
751
            end;
            suppose x' <> x;
752
753
              then
              m.x' = 1.x' by FUNCT_7:34;
754
     A9:
755
      A10:
             1.x' in rng 1 by A8,FUNCT_1:12;
              rng 1 c= [#]F by FUNCT_2:169;
756
757
              hence thesis by A7,A9,A10;
758
            end:
759
          end:
          hence thesis by A1,FUNCT_2:def 2;
760
761
762
        then reconsider m as Element of Funcs ([#]V,[#]F);
        set T = Carrier 1 \setminus \{x\};
763
764
        for v being Element of V st not v in T holds m.v = 0.F
       proof
765
766
          let v be Element of V such that
     A11: not v in T;
768
      A12: not v in Carrier 1 by A11, XBOOLE_0:def 3;
769
          not v in {x} by A11,XBOOLE_0:def 3;
770
          then v <> x by TARSKI:def 1;
771
          then m.v = 1.v by FUNCT_7:34;
772
          hence thesis by A12;
773
        end;
       then reconsider m as Linear_Combination of V by VECTSP_6:def 4;
774
775
     A13: Carrier m c= T
776
      proof
777
         let y be set such that
      A14: y in Carrier m;
779
        consider z being Element of V such that
     A15: y = z and
780
781
     A16: m.z <> 0.F by A14;
```

```
782
         per cases;
783
         suppose
     A17: z = x;
784
     A18: x in {x} by TARSKI:def 1;
785
786
           {x} c= T by XBOOLE_1:7;
787
           hence thesis by A15, A17, A18;
788
          end;
789
          suppose z <> x;
           then m.z = 1.z by FUNCT_7:34;
790
791
            then
792
      A19: z in Carrier 1 by A16;
            Carrier 1 c= T by XBOOLE_1:7;
793
794
           hence thesis by A15, A19;
795
         end:
796
        end;
797
        798
        proof
799
          Carrier 1 c= A by VECTSP_6:def 7;
800
         hence thesis by XBOOLE_1:9;
801
        end:
802
        then Carrier m c= A \/ {x} by A13,XBOOLE_1:1;
803
        hence thesis by VECTSP_6:def 7;
804
      end;
806
     definition
807
      let V be 1-sorted, X be Subset of V;
       func V \ X -> Subset of V equals
808
810
       [#]V \ X;
811
       coherence;
812
     end;
814
     definition
815
      let F be Field, V be VectSp of F, 1 be Linear_Combination of V,
816
        X be Subset of V;
       redefine func 1 .: X -> Subset of F;
817
818
       coherence
819
       proof
820
        1 .: X c= [#]F;
821
         hence thesis;
822
        end;
823
     end:
825
     reserve 1 for Linear_Combination of V;
827
      registration
828
      let F be Field, V be VectSp of F;
829
       cluster linearly-dependent Subset of V;
830
        existence
831
       proof
         reconsider S = {0.V} as Subset of V;
832
833
     A1: 0.V in S by TARSKI:def 1;
834
         take S;
         thus thesis by A1, VECTSP_7:3;
835
836
       end;
837
     end:
839
     :: Restricting a linear combination to a given set
     definition
841
       let F be Field, V be VectSp of F, 1 be Linear_Combination of V,
842
        A be Subset of V;
843
       func 1!A -> Linear_Combination of A equals
844
846
        (1|A) +* ((V \setminus A) --> 0.F);
847
        coherence
848
       proof
849
         set f = (1|A) +* ((V \setminus A) --> 0.F);
850
     A1: dom f = dom (1|A) \ dom ((V \ A) --> 0.F) by FUNCT_4:def 1;
851
          dom 1 = [#]V by FUNCT_2:169;
852
         then
853
     A2: dom (1|A) = A by RELAT_1:91;
     A3: dom ((V \setminus A) --> 0.F) = V \setminus A by FUNCOP_1:19;
854
```

```
A4: A \/ ([#]V \ A) = [#]V by XB00LE_1:45;
      A5: dom f = [#]V by A1,A2,A3,XB00LE_1:45;
857
          rng f c= [#]F
858
          proof
859
            let y be set such that
860
      A6: y in rng f;
861
            consider x being set such that
862
      A7:
            x in dom f and
      A8: y = f.x by A6,FUNCT_1:def 5;
863
864
            reconsider x as Element of V by A1,A2,A3,A7,XB00LE_1:45;
865
             per cases by A4,XBOOLE_0:def 3;
866
             suppose
867
      A9:
               x in A;
               then not x in dom ((V \ A) --> 0.F) by XBOOLE_0:def 5;
868
869
               then
870
      A10:
               f.x = (1|A).x by FUNCT_4:12;
871
               (1|A).x = 1.x by A9,FUNCT_1:72;
872
               hence thesis by A8,A10;
873
             end;
874
             suppose
875
      A11:
              x in V \setminus A;
               then x in dom ((V \ A) --> 0.F) by FUNCOP_1:19;
877
               then f.x = ((V \setminus A) \longrightarrow 0.F).x by FUNCT_4:14
                .= 0.F by A11,FUNCOP_1:13;
878
879
              hence thesis by A8;
880
             end:
881
           end;
882
           then reconsider f as Element of Funcs([#]V,[#]F) by A5,FUNCT_2:def 2;
           ex T being finite Subset of V st
883
884
          for v being Element of V st not v in T holds f.v = 0.F
885
          proof
886
            set C = Carrier 1;
887
             set D = { v where v is Element of V : f.v \Leftrightarrow 0.F };
888
            D is Subset of V
889
            proof
890
               D c= [#]V
891
               {\tt proof}
892
                let x be set such that
      A12:
                x in D;
894
                consider v being Element of V such that
                x = v and f.v \Leftrightarrow 0.F by A12;
895
      A13:
896
                thus thesis by A13;
897
               end;
               hence thesis;
899
             end;
900
             then reconsider D as Subset of V;
901
            D c= C
            proof
902
903
              let x be set such that
      A14:
904
              x in D;
               consider {\tt v} being Element of {\tt V} such that
905
      A15:
906
               x = v and
907
      A16:
               f.v <> 0.F by A14;
908
      A17:
               dom ((V \setminus A) --> 0.F) = V \setminus A by FUNCOP_1:19;
909
      A18:
               now
910
                assume
                 v in V \setminus A;
      A19:
911
                 then f.v = ((V \setminus A) \longrightarrow 0.F).v by A1,A5,A17,FUNCT_4:def 1
912
913
                   .= 0.F by A19,FUNCOP_1:13;
914
                 hence contradiction by A16;
915
               end;
               then not v in dom ((V \setminus A) --> 0.F);
916
917
               then
               f.v = (1|A).v by FUNCT_4:12;
918
      A20:
919
               v in A by A18,XBOOLE_0:def 5;
               then (1|A).v = 1.v by FUNCT_1:72;
```

```
921
              hence thesis by A15, A16, A20;
922
            end;
923
            then reconsider D as finite Subset of {\tt V};
924
            take D;
925
            thus thesis;
926
          end;
927
          then reconsider f as Linear_Combination of V by VECTSP_6:def 4;
928
          Carrier f c= A
929
          proof
930
            let x be set such that
931
      A21: x in Carrier f;
            reconsider x as Element of V by A21;
932
933
      A22: f.x <> 0.F by A21, VECTSP_6:20;
934
            now
935
              assume not x in A;
936
              then
937
      A23:
            x in V \ A by XBOOLE_0:def 5;
              then x in dom (1|A) \backslash (dom ((V \ A) --> 0.F)) by A3,XB00LE_0:def 3; then f.x = ((V \ A) --> 0.F).x by A3,A23,FUNCT_4:def 1;
938
939
940
             hence contradiction by A22, A23, FUNCOP_1:13;
941
            end:
942
            hence thesis;
943
          end;
          hence thesis by VECTSP_6:def 7;
944
945
        end:
946
      end;
948
      theorem Th24:
949
        1 = 1!Carrier 1
      proof
950
951
       set f = 1|(Carrier 1);
       set g = (V \ Carrier 1) --> 0.F;
952
        set m = f + *g;
953
     A1: dom 1 = [#]V by FUNCT_2:169;
954
955
       then
956
     A2: dom f = Carrier 1 by RELAT_1:91;
957
      A3: dom g = V \ (Carrier 1) by FUNCOP_1:19;
958
       then
959
     A4: (dom f) \/ (dom g) = [#]V by A2,XBOOLE_1:45;
960
       then
961
     A5: dom 1 = dom m by A1, FUNCT_4: def 1;
962
        for x being set st x in dom 1 holds 1.x = m.x
963
       proof
964
          let x be set such that
965
     A6: x in dom 1;
         reconsider x as Element of V by A6;
966
967
          per cases;
968
          suppose
     A7: x in Carrier 1;
969
            then not x in dom g by XBOOLE_0:def 5;
970
971
            then m.x = f.x by A4,FUNCT_4:def 1;
972
            hence thesis by A7, FUNCT_1:72;
973
          end;
974
          suppose
975
     A8: not x in Carrier 1;
976
            then
977
      A9: x in V \ (Carrier 1) by XBOOLE_0:def 5;
978
            then
      A10: m.x = g.x by A3,A4,FUNCT_4:def 1;
979
            g.x = 0.F by A9, FUNCOP_1:13;
980
981
            hence thesis by A8,A10;
982
          end;
983
        end;
984
        hence thesis by A5, FUNCT_1:def 17;
985
     end:
```

```
987
       Lm1: for X being Subset of V holds 1 .: X is finite
      proof
988
 989
        let X be Subset of V;
       A1: 1 = 1! (Carrier 1) by Th24;
 990
 991
       A2: rng (1|Carrier 1) is finite
 992
 993
          rng (1|Carrier 1) = 1 .: Carrier 1 by RELAT_1:148;
 994
           hence thesis;
995
996
         rng ((V \ (Carrier 1)) --> 0.F) c= {0.F}
 997
           set f = ((V \ (Carrier 1)) --> 0.F);
 998
999
           per cases;
suppose V \ (Carrier 1) = {};
1000
1001
             then f = \{\};
1002
             hence thesis by RELAT_1:60,XBOOLE_1:2;
1003
1004
           suppose V \ (Carrier 1) <> {};
1005
            hence thesis by FUNCOP_1:14;
1006
           end;
1007
         end:
         then rng ((V \setminus (Carrier 1)) --> 0.F) is finite;
1008
1009
         then (rng (1|Carrier 1)) \ rng ((V \ (Carrier 1)) --> 0.F) is finite
1010
         then rng l is finite by A1,FINSET_1:13,FUNCT_4:18;
1011
1012
         hence thesis by FINSET_1:13, RELAT_1:144;
1013
1015
       theorem Th25:
        for A being Subset of V, v being Element of V st v in A holds (1!A).v = 1.v
1016
1017
         let A be Subset of V, v be Element of V such that
1018
1019
       A1: v in A;
1020
         not v in V \ A by A1,XBOOLE_0:def 5;
1021
         then
1022
       A2: not v in dom ((V \setminus A) --> 0.F);
1023
         dom (1!A) = [#]V by FUNCT_2:169;
1024
         then (dom (1|A)) \ / (dom ((V \setminus A) --> 0.F)) = [#]V by FUNCT_4:def 1;
1025
         then (1!A).v = (1|A).v by A2, FUNCT_4: def 1
           .= 1.v by A1,FUNCT_1:72;
1026
1027
         hence thesis;
1028
1030
       theorem Th26:
1031
         for A being Subset of V, v being Element of V st not v in A
1032
         holds (1!A).v = 0.F
1034
        let A be Subset of V, v be Element of V such that
       A1: not v in A;
1035
       A2: dom ((V \ A) --> 0.F) = V \ A by FUNCOP_1:19;
1036
       1037
       A4: dom (1!A) = [#]V by FUNCT_2:169;
1039
       A5: v in V \ A by A1, XBOOLE_0:def 5;
        then (1!A).v = ((V \setminus A) \longrightarrow 0.F).v by A2,A3,A4,FUNCT_4:def 1
1040
           .= 0.F by A5,FUNCOP_1:13;
1041
1042
        hence thesis;
1043
1045
       theorem Th27:
         for A,B being Subset of V, 1 being Linear_Combination of B st A c= B
1046
1047
        holds 1 = (1!A) + (1!(B\A))
1048
1049
        let A,B be Subset of V, 1 be Linear_Combination of B such that
       A1: A c= B;
1050
        set r = (1!A) + (1!(B\A)):
1051
1052
        let v be Element of V;
1053
       A2: (v in B) implies (v in A or v in B \setminus A)
1054
        proof
1055
           assume
```

```
1056
      A3: v in B;
        B = A \setminus / (B \setminus A) by A1, XBOOLE_1:45;
1057
1058
          hence thesis by A3, XBOOLE_0:def 3;
1059
         end:
1060
         per cases by A2;
1061
         suppose
1062
       A4: v in A;
1063
           then not v in B \ A by XBOOLE_0:def 5;
1064
           then
1065
       A5: (1!(B\A)).v = 0.F by Th26;
1066
           (1!A).v = 1.v by A4, Th25;
           then r.v = 1.v + 0.F by A5, VECTSP_6:def 11
1067
1068
             .= 1.v by RLVECT_1:10;
1069
           hence l.v = r.v;
1070
         end:
1071
         suppose
1072
       A6: v in B\A;
1073
           then not v in A by XBOOLE_0:def 5;
1074
           then
       A7: (1!A).v = 0.F by Th26;
1075
           (1!(B\A)).v = 1.v by A6,Th25;
1076
1077
           then r.v = 0.F + 1.v by A7, VECTSP_6:def 11
1078
            .= 1.v by RLVECT_1:10;
1079
          hence l.v = r.v:
1080
         end:
1081
         suppose
1082
       A8: not v in B;
1083
           then
1084
       A9: not v in B\A by XBOOLE_0:def 5;
1085
           not v in A by A1,A8;
1086
           then
1087
      A10: (1!A).v = 0.F by Th26;
1088
      A11: (1!(B\A)).v = 0.F by A9, Th26;
1089
           Carrier 1 c= B by VECTSP_6:def 7;
1090
           then
1091
      A12: not v in Carrier 1 by A8;
          r.v = 0.F + 0.F by A10,A11,VECTSP_6:def 11
1092
1093
             .= 0.F by RLVECT_1:10;
1094
           hence l.v = r.v by A12;
1095
         end;
1096
       end:
1098
       registration
1099
         let F be Field, V be VectSp of F, 1 be Linear_Combination of V,
         X be Subset of V;
1100
1101
         cluster 1 .: X -> finite;
1102
         coherence by Lm1;
1103
      end;
1105
       definition
         let V,W be non empty 1-sorted, T be Function of V,W, X be Subset of W;
1106
1107
         redefine func T"X -> Subset of V;
1108
         coherence
1109
         proof
           dom T = [#]V by Th7;
1110
1111
           hence thesis by RELAT_1:167;
1112
         end;
1113
       end;
       theorem Th28:
1115
         for X being Subset of V st X misses Carrier 1 holds 1 .: X c= \{0.F\}
1116
1117
1118
        let X be Subset of V such that
      A1: X misses Carrier 1;
1119
        set M = 1 .: X;
1120
1121
        let y be set such that
1122
      A2: y in M;
       consider x being set such that
1123
1124 A3: x in dom 1 and
```

```
1125
       A4: x in X and
1126
       A5: y = 1.x by A2, FUNCT_1: def 12;
1127
         reconsider x as Element of V by A3;
1128
         now
1129
           assume l.x \Leftrightarrow 0.F;
1130
           then x in Carrier 1;
           then x in (Carrier 1) /\ X by A4,XBOOLE_0:def 4;
1131
1132
           hence contradiction by A1,XBOOLE_0:def 7;
1133
         end:
1134
         hence thesis by A5, TARSKI: def 1;
1135
1137
       :: The image of a linear combination under a linear transformation:
1138
1139
            T(a1*v1 + a2*v2 + ... + an*vn)
1140
              = a1*T(v1) + a2*T(v2) + ... + an*T(vn).
       ::
1141
       ::
1142
       :: Linear combinations are represented as functions from the space to
1143
       :: the underlying field having finite support, so to define a new
1144
       :: linear combination it is enough to say what its values are for the
1145
       :: elements of W and to prove that its support is finite.
1146
1147
       :: The only difficulty is that some values T(vi) and T(vj) may be
1148
       :: equal. In this case, the new linear combination should be the sum
1149
       :: of the coefficients ai and aj, i.e., l(vi) and l(vj).
1151
       definition
         let F be Field, V,W be VectSp of F, 1 be Linear_Combination of V,
1152
1153
         T be linear-transformation of V,W;
1154
         func T@l -> Linear_Combination of W means
1155
         for w being Element of W holds it.w = Sum (1 .: (T"{w}));
1156
1157
         existence
1158
         proof
1159
           defpred P[set,set] means
1160
           ex w being Element of W st 1 = w & 2 = Sum (1 .: (T"{w}));
1161
       A2: for x being set st x in [#]W holds ex y being set st P[x,y]
1162
          proof
1163
            let x be set such that
1164
       A3: x in [#]W;
1165
             reconsider x as Element of W by A3;
1166
             take Sum (1 .: (T"{x}));
1167
             thus thesis;
1168
           end:
1169
           consider f being Function such that
1170
       A4: dom f = [#]W and
1171
       A5: for x being set st x in [#]W holds P[x,f.x] from CLASSES1:sch 1(A2);
       A6: for w being Element of W holds f.w = Sum (1 .: (T"{w}))
1172
1173
           proof
             let w be Element of W;
1174
1175
             consider w' being Element of W such that
1176
            w = w' and
1177
       A8: f.w = Sum (1 .: (T"{w'})) by A5;
1178
             thus thesis by A7,A8;
1179
           end:
1180
           rng f c= [#]F
1181
           proof
1182
             let y be set such that
             y in rng f;
1183
      A9:
1184
             consider x being set such that
1185
       A10: x in dom f and
1186
       A11: f.x = y by A9,FUNCT_1:def 5;
1187
             consider w being Element of W such that x = w and
1188
       A12: f.x = Sum (1 .: (T"{w})) by A4, A5, A10;
1189
            thus thesis by A11,A12;
1190
           end:
           then reconsider f as Element of Funcs([#]W,[#]F) by A4,FUNCT_2:def 2;
1191
1192
           ex T being finite Subset of \ensuremath{\mathtt{W}}
```

```
1193
            st for w being Element of W st not w in T holds f.w = 0.F
1194
           proof
1195
              set C = Carrier 1;
              reconsider TC = T ... C as Subset of W;
1196
1197
              set X = \{ w \text{ where } w \text{ is Element of } W : f.w <> 0.F \};
1198
              {\tt X} is Subset of {\tt W}
1199
              proof
1200
               X c= [#]W
1201
               proof
1202
                 let x be set such that
1203
       A13:
                  x in X;
1204
                 consider w being Element of W such that
                  x = w and f.w \Leftrightarrow 0.F by A13;
1205
       A14:
1206
                 thus thesis by A14;
1207
                end;
1208
               hence thesis;
1209
              end;
1210
              then reconsider X as Subset of W;
              X c= TC
1211
1212
              proof
1213
               let x be set such that
1214
       A15:
              x in X;
1215
                consider w being Element of W such that
1216
       A16:
               x = w and
1217
                f.w <> 0.F by A15;
       A17:
               T"{w} meets Carrier 1
1218
1219
                proof
                  assume
1220
1221
                  T"{w} misses Carrier 1;
       A18:
1222
                  then
                  1 .: T"\{w\} c= \{0.F\} by Th28;
1223
       A19:
1224
                  Sum (1 : T"{w}) = 0.F
                  proof
1225
1226
                   per cases;
                    suppose 1 .: T"\{w\} = \{\}F;
1227
1228
                     hence thesis by RLVECT_2:14;
1229
                    end;
1230
                    suppose
                    1 .: T"{w} <> {}F;
1232
                      1 : T''\{w\} = \{0.F\}
1233
                      proof
1234
                        thus 1 .: T"\{w\} c= \{0.F\} by A18, Th28;
1235
                        thus \{0.F\}\ c= 1 ... T"\{w\}
                       proof
1236
1237
                          let y be set such that
1238
       A21:
                          y in {0.F};
1239
                          y = 0.F by A21, TARSKI:def 1;
       A22:
1240
                          consider \boldsymbol{z} being set such that
1241
       A23:
                          z in 1 .: T"{w} by A20,XB00LE_0:def 1;
1242
                          thus thesis by A19, A22, A23, TARSKI: def 1;
1243
                        end;
1244
                      end:
                      hence thesis by RLVECT_2:15;
1245
1246
                    end;
1247
                  end;
1248
                 hence contradiction by A6,A17;
1249
                end:
1250
                then consider y being set such that
1251
       A24:
                y in T"{w} and
1252
                y in Carrier 1 by XBOOLE_0:3;
       A25:
1253
                reconsider y as Element of V by A25;
1254
                dom T = [#]V by Th7;
       A26:
                T.y in \{w\} by A24, FUNCT_1:def 13;
1255
1256
                then T.y = w by TARSKI:def 1;
1257
                hence thesis by A16,A25,A26,FUNCT_1:def 12;
1258
```

```
1259
              then reconsider X as finite Subset of W;
1260
             take X;
1261
             thus thesis;
1262
            end;
1263
           then reconsider f as Linear_Combination of W by VECTSP_6:def 4;
1264
       A27: for w being Element of W holds f.w = Sum (1 .: (T"{w}))
1265
           proof
1266
             let w be Element of W;
              consider \ensuremath{\mathbf{w}}\xspace^{} being Element of \ensuremath{\mathbf{W}}\xspace such that
1267
1268
       A28: w = w, and
1269
       A29: f.w = Sum (1 .: (T"{w'})) by A5;
1270
             thus thesis by A28,A29;
1271
           end;
1272
           take f:
1273
           thus thesis by A27;
1274
         end;
1275
         uniqueness
1276
         proof
           let f,g be Linear_Combination of W such that
1277
       A30: for w being Element of W holds f.w = Sum (1 .: (T"{w})) and
1278
1279
       A31: for w being Element of W holds g.w = Sum (1 .: (T"\{w\}));
       A32: dom f = [#]W by FUNCT_2:169;
1281
       A33: dom g = [#]W by FUNCT_2:169;
           for x being set st x in dom f holds f.x = g.x
1282
1283
           proof
1284
             let x be set such that
1285
       A34: x in dom f;
1286
              reconsider x as Element of W by A34;
             f.x = Sum (1 .: (T"{x})) by A30;
1287
1288
             hence thesis by A31;
1289
            end;
1290
           hence thesis by A32, A33, FUNCT_1:def 17;
1291
         end;
1292
       end;
1294
       theorem Th29:
1295
        T@l is Linear_Combination of T .: (Carrier 1)
1296
       proof
         Carrier (T@1) c= T .: (Carrier 1)
1297
1298
         proof
1299
           let w be set such that
1300
       A1: w in Carrier (T@1);
1301
          reconsider w as Element of W by A1;
       A2: (T@1).w <> 0.F by A1, VECTSP_6:20;
1302
1303
           now
1304
             assume
1305
       A3:
             T"{w} misses Carrier 1;
1306
              then
       A4: 1 .: T"{w} c= {0.F} by Th28;
1307
             Sum (1 : T''\{w\}) = 0.F
1308
             proof
1309
1310
                suppose 1 .: T"{w} = {}F;
1311
1312
                 hence thesis by RLVECT_2:14;
1313
                end;
1314
                suppose
                  1 .: T"{w} <> {}F;
1315
       A5:
1316
                  1 : T''\{w\} = \{0.F\}
1317
                 proof
                    thus 1 .: T"\{w\} c= {0.F} by A3, Th28;
1318
1319
                    thus \{0.F\} c= 1 .: T"\{w\}
1320
                    proof
1321
                      let y be set such that
1322
       A6:
                      y in {0.F};
                      y = 0.F by A6, TARSKI:def 1;
1323
       A7:
1324
                      consider z being set such that
1325
       A8:
                      z in 1 .: T"{w} by A5,XBOOLE_0:def 1;
```

```
1326
                     thus thesis by A4,A7,A8,TARSKI:def 1;
1327
                   end:
1328
                 end:
1329
                 hence thesis by RLVECT_2:15;
1330
               end;
1331
             end;
1332
             hence contradiction by A2, Def5;
1333
           end:
1334
           then consider {\bf x} being set such that
1335
      A9: x in T"\{w\} and
1336
      A10: x in Carrier 1 by XBOOLE_0:3;
      A11: x in dom T by A9, FUNCT_1:def 13;
1337
1338
       A12: T.x in {w} by A9, FUNCT_1:def 13;
1339
           reconsider x as Element of V by A9;
           T.x = w by A12,TARSKI:def 1;
1340
1341
           hence thesis by A10,A11,FUNCT_1:def 12;
1342
1343
         hence thesis by VECTSP_6:def 7;
1344
       end;
1346
       theorem Th30:
1347
        Carrier (T@1) c= T .: (Carrier 1)
1348
       proof
1349
         T@l is Linear_Combination of T .: (Carrier 1) by Th29;
1350
         hence thesis by VECTSP_6:def 7;
1351
1353
       theorem Th31:
1354
         for 1,m being Linear_Combination of V st (Carrier 1) misses (Carrier m)
1355
         holds Carrier (1 + m) = (Carrier 1) \/\ (Carrier m)
1356
1357
        let 1,m be Linear_Combination of V such that
      A1: (Carrier 1) misses (Carrier m);
1358
        thus Carrier (1+m) c= (Carrier 1) \/ (Carrier m) by VECTSP_6:51;
1359
         thus (Carrier 1) \/ (Carrier m) c= Carrier (1+m)
1360
1361
        proof
1362
          let v be set such that
1363
      A2: v in (Carrier 1) \/ (Carrier m);
1364
           per cases by A2,XBOOLE_0:def 3;
1365
           suppose
1366
      A3: v in Carrier 1;
             then reconsider v as Element of V;
             (1+m).v = (1.v) + (m.v) by VECTSP_6:def 11;
1368
      A4:
      A5: 1.v <> 0.F by A3, VECTSP_6:20;
1369
1370
             not v in Carrier m by A1,A2,A3,XBOOLE_0:5;
1371
             then m.v = 0.F;
1372
             then (1+m).v = 1.v by A4, RLVECT_1:10;
1373
             hence thesis by A5;
1374
           end:
1375
           suppose
1376
      A6: v in Carrier m;
1377
             then reconsider v as Element of V;
             (1+m).v = (1.v) + (m.v) by VECTSP_6:def 11;
1378
1379
      A8:
             m.v <> 0.F by A6, VECTSP_6:20;
1380
             not v in Carrier 1 by A1,A2,A6,XBOOLE_0:5;
1381
             then 1.v = 0.F;
1382
             then (1+m).v = m.v by A7, RLVECT_1:10;
1383
             hence thesis by A8;
1384
           end;
1385
         end;
1386
      end:
1388
      theorem Th32:
         for l,m being Linear_Combination of V st (Carrier 1) misses (Carrier m)
1389
1390
         holds Carrier (1 - m) = (Carrier 1) \/ (Carrier m)
1391
1392
         let 1,m be Linear_Combination of V such that
      A1: (Carrier 1) misses (Carrier m);
1394
         Carrier (-m) = Carrier m by VECTSP_6:69;
```

```
1395
         hence thesis by A1, Th31;
1396
       end:
1398
       theorem Th33:
1399
         for A,B being Subset of V st A c= B & B is Basis of V
         holds V is_the_direct_sum_of Lin A, Lin (B \setminus A)
1400
1401
       proof
1402
         let A,B be Subset of V such that
       A1: A c= B and
1403
1404
       A2: B is Basis of V;
       A3: (Omega).V = (Lin A) + (Lin (B \setminus A))
1405
1406
         proof
1407
           set U = (Lin A) + (Lin (B \setminus A));
1408
            [#]U = [#]V
1409
           proof
             thus [#]U c= [#]V by VECTSP_4:def 2;
1410
             thus [#]V c= [#]U
1411
1412
             proof
1413
               let v be set such that
1414
       A4:
               v in [#]V;
1415
               reconsider v as Element of V by A4;
               v in Lin B by A2, VECTSP_9:14;
1416
               then consider 1 being Linear_Combination of B such that
1417
1418
      A5:
               v = Sum 1 by VECTSP_7:12;
1419
               set m = 1!A;
               set n = 1!(B\backslash A);
1420
1421
      A6:
               1 = m + n by A1, Th27;
1422
               ex v1,v2 being Element of {\tt V}
1423
               st v1 in Lin A & v2 in Lin (B \setminus A) & v = v1 + v2
1424
               proof
1425
                 take Sum m, Sum n;
1426
                 thus thesis by A5, A6, VECTSP_6:77, VECTSP_7:12;
1427
                end:
               then v in (Lin A) + (Lin (B \setminus A)) by VECTSP_5:5;
1428
1429
               hence thesis by STRUCT_0:def 5;
1430
1431
           end;
           hence thesis by VECTSP_4:37;
1432
1433
         end:
1434
         (Lin A) / (Lin (B \setminus A)) = (0).V
1435
1436
           set U = (Lin A) / (Lin (B \setminus A));
1437
           reconsider W = (0).V as strict Subspace of U by VECTSP_4:50;
1438
           for v being Element of U holds v in W
1439
           proof
             let v be Element of U;
1440
       A7:
             v in U by STRUCT_0:def 5;
1441
1442
             then
             v in Lin A by VECTSP_5:7;
1443
       A8:
             v in Lin (B \setminus A) by A7, VECTSP_5:7;
1444
1445
             consider 1 being Linear_Combination of A such that
1446
       A10: v = Sum 1 by A8, VECTSP_7:12;
             consider m being Linear_Combination of B \ A such that
1447
       A11: v = Sum m by A9, VECTSP_7:12;
A12: 0.V = (Sum 1) - (Sum m) by A10, A11, VECTSP_1:66
1448
1449
1450
                .= Sum (1 - m) by VECTSP_6:80;
       A13: Carrier (1 - m) c= (Carrier 1) \/\ (Carrier m) by VECTSP_6:74;
1451
       A14: Carrier 1 c= A by VECTSP_6:def 7;
1453
       A15: Carrier m c= B \ A by VECTSP_6:def 7;
       A16: A \backslash (B \backslash A) = B by A1, XBOOLE_1:45;
1454
1455
             1456
              then Carrier (1 - m) c= B by A13,A16,XBOOLE_1:1;
1457
              then reconsider n = 1 - m as Linear_Combination of B by VECTSP_6:def 7;
1458
             B is linearly-independent by A2, VECTSP_7:def 3;
1459
             then
       A17: Carrier n = {} by A12, VECTSP_7:def 1;
1460
             A misses (B \setminus A) by XBOOLE_1:79;
1461
```

```
1462
             then Carrier n = (Carrier 1) \/\ (Carrier m) by A14,A15,Th32,XB00LE_1:64;
             then Carrier 1 = {} by A17;
1463
1464
             then 1 = ZeroLC(V) by VECTSP_6:def 6;
1465
             then Sum 1 = 0.V by VECTSP_6:41;
1466
             hence thesis by A10, VECTSP_4:46;
1467
           end:
1468
           hence thesis by VECTSP_4:40;
1469
         end:
         hence thesis by A3, VECTSP_5:def 4;
1470
1471
       end:
1473
       theorem Th34:
         for A being Subset of V, 1 being Linear_Combination of A,
1474
1475
         v being Element of V st T|A is one-to-one & v in A
1476
         holds ex X being Subset of V st X misses A & T"{T.v} = {v} \/ X
1477
1478
         let A be Subset of V, 1 be Linear_Combination of A,
1479
         v be Element of V such that
1480
      A1: T|A is one-to-one and
1481
      A2: v in A;
1482
        set X = T"\{T.v\} \setminus \{v\};
1483
      A3: {v} c= T"{T.v}
1484
        proof
1485
           let x be set such that
1486
      A4: x in {v};
1487
      A5: x = v by A4, TARSKI: def 1;
1488
      A6: dom T = [#]V by Th7;
          T.v in {T.v} by TARSKI:def 1;
1489
           hence thesis by A5,A6,FUNCT_1:def 13;
1490
1491
        end:
1492
      A7: X misses A
1493
       proof
1494
          assume X meets A;
1495
           then consider \boldsymbol{x} being set such that
1496
      A8: x in X and
1497
      A9: x in A by XBOOLE_0:3;
1498
      A10: x in T"{T.v} by A8, XBOOLE_0:def 5;
1499
           not x in {v} by A8,XBOOLE_0:def 5;
1500
           then
      A11: x <> v by TARSKI:def 1;
1501
1502
           T.x in \{T.v\} by A10, FUNCT_1: def 13;
1503
           then
       A12: T.x = T.v by TARSKI:def 1;
1504
1505
           T.x = (T|A).x by A9, FUNCT_1:72;
1506
           then
      A13: (T|A).v = (T|A).x by A2,A12,FUNCT_1:72;
1507
1508
           dom T = [#]V by Th7;
1509
           then dom (T|A) = A by RELAT_1:91;
1510
           hence thesis by A1,A2,A9,A11,A13,FUNCT_1:def 8;
1511
         end:
1512
         take X;
1513
         thus thesis by A3,A7,XBOOLE_1:45;
1514
       end;
1516
      theorem Th35:
        for X being Subset of V st X misses Carrier 1 & X \Leftrightarrow {} holds 1 .: X = {0.F}
1517
1518
1519
         let X be Subset of V such that
1520
       A1: X misses Carrier 1 and
1521
       A2: X \leftrightarrow \{\};
      A3: 1 .: X c= {0.F} by A1, Th28;
1522
         dom 1 = [#]V by FUNCT_2:169;
1523
1524
         then 1 .: X <> {} by A2,RELAT_1:152;
1525
         hence thesis by A3, ZFMISC_1:39;
1526
       end:
1528
       for w being Element of W st w in Carrier (T@1) holds T"{w} meets Carrier 1
1530
```

```
1531
        let w be Element of W such that
1532
      A1: w in Carrier (T@1);
      A2: (T@1).w <> 0.F by A1, VECTSP_6:20;
1533
1534
        assume
1535
      A3: T"{w} misses Carrier 1;
1536
        per cases;
         suppose T"{w} = {};
1537
1538
          then Sum (1 .: T"{w}) = Sum ({}F) by RELAT_1:149
             .= 0.F by RLVECT_2:14;
1539
1540
           hence thesis by A2,Def5;
1541
         suppose T"{w} <> {};
1542
1543
           then 1 .: T"\{w\} = \{0.F\} by A3, Th35;
           then Sum (1 .: T"{w}) = 0.F by RLVECT_2:15;
1544
1545
           hence thesis by A2,Def5;
1546
         end;
1547
       end;
1549
       theorem Th37:
1550
         for v being Element of V st T \mid (Carrier 1) is one-to-one & v in Carrier 1
1551
        holds (T@1).(T.v) = 1.v
1552
      proof
        let v be Element of V such that
1553
1554
       A1: T|(Carrier 1) is one-to-one and
1555
       A2: v in Carrier 1;
        consider X being Subset of V such that
1557
      A3: X misses Carrier 1 and
      A4: T"{T.v} = {v} \ \ X \ by A1,A2,Th34;
1558
1559
       per cases;
1560
         suppose
1561
      A5: X = \{\};
1562
       A6: dom 1 = [#]V by FUNCT_2:169;
          1 .: {v} = Im (1,v)
1563
1564
             .= {1.v} by A6,FUNCT_1:117;
1565
           then Sum (1 .: T"{T.v}) = 1.v by A4,A5,RLVECT_2:15;
1566
           hence thesis by Def5;
1567
         end;
1568
         suppose
       A7: X <> {};
1569
      A8: 1 .: T"{T.v} = (1 .: {v}) \ (1 .: X) by A4, RELAT_1:153;
1570
1571
       A9: dom 1 = [#]V by FUNCT_2:169;
       A10: 1 .: \{v\} = Im (1,v)
1572
            .= {1.v} by A9,FUNCT_1:117;
1573
       A11: 1 .: X = \{0.F\}
1574
1575
          proof
      A12: {0.F} c= 1 .: X
1576
1577
             proof
1578
              let x be set such that
      A13:
               x in {0.F};
1579
               x = 0.F by A13, TARSKI: def 1;
1580
      A14:
1581
               consider y being set such that
1582
       A15:
               y in X by A7,XBOOLE_0:def 1;
1583
       A16:
               now
1584
                 assume y in Carrier 1;
                 then y in (Carrier 1) /\ X by A15,XBOOLE_0:def 4;
1585
1586
                 hence contradiction by A3, XBOOLE_0:def 7;
1587
               end;
1588
               reconsider y as Element of V by A15;
1589
               1.y = x by A14, A16;
               hence thesis by A9,A15,FUNCT_1:def 12;
1590
1591
             end;
1592
             1 .: X c= {0.F}
             proof
1593
1594
              let y be set such that
1595
      A17:
             y in 1 .: X;
1596
               consider x being set such that
1597
       A18:
               x in dom 1 and
```

```
1598
               {\tt x} in {\tt X} and
1599
       A20:
               y = 1.x by A17,FUNCT_1:def 12;
1600
       A21:
               now
1601
                 assume x in Carrier 1;
1602
                 then x in (Carrier 1) /\ X by A19,XBOOLE_0:def 4;
1603
                 hence contradiction by A3, XBOOLE_0:def 7;
1604
                end;
1605
               reconsider x as Element of V by A18;
1606
               1.x = 0.F by A21;
1607
               hence thesis by A20, TARSKI: def 1;
1608
              end;
1609
             hence thesis by A12, XBOOLE_0:def 10;
1610
           end;
1611
           1 .: X misses 1 .: {v}
           proof
1612
       A22: dom 1 = [#]V by FUNCT_2:169;
1613
1614
       A23: 1 .: \{v\} = Im (1,v)
1615
               .= {1.v} by A22,FUNCT_1:117;
1616
             assume 1 .: X meets 1 .: {v};
1617
             then consider \boldsymbol{x} being set such that
1618
       A24: x in 1 .: X and
       A25: x in 1 .: {v} by XBOOLE_0:3;
1620
       A26: x = 0.F by A11, A24, TARSKI: def 1;
             x = 1.v by A23,A25,TARSKI:def 1;
1621
1622
             hence thesis by A2, A26, VECTSP_6:20;
1623
            end:
1624
            then Sum (1 .: T"\{T.v\}) = (Sum (1 .: \{v\})) + (Sum (1 .: X)) by A8,
1625
       RLVECT_2:18
             .= 1.v + (Sum ({0.F})) by A10,A11,RLVECT_2:15
1626
              .= 1.v + 0.F by RLVECT_2:15
1627
1628
              .= 1.v by RLVECT_1:10;
1629
           hence thesis by Def5;
1630
1631
       end:
1633
       theorem Th38:
1634
         for G being FinSequence of V
         st rng G = Carrier 1 & T|(Carrier 1) is one-to-one
1635
         holds T*(1 (#) G) = (T@1) (#) (T*G)
1636
1637
       proof
1638
         let G be FinSequence of V such that
1639
       A1: rng G = Carrier 1 and
1640
       A2: T|(Carrier 1) is one-to-one;
         reconsider L = T*(1 (#) G) as FinSequence of W;
reconsider R = (T@1) (#) (T*G) as FinSequence of W;
1641
1642
       A3: len L = len (1 (#) G) by FINSEQ_2:37
1643
1644
            .= len G by VECTSP_6:def 8;
       A4: len R = len (T*G) by VECTSP_6:def 8
1645
1646
           .= len G by FINSEQ_2:37;
1647
         for k being Nat st 1 <= k & k <= len L holds L.k = R.k
        proof
1648
1649
           let k be Nat such that
       A5: 1 \le k and
1650
1651
       A6: k <= len L;
           len (1 (#) G) = len G by VECTSP_6:def 8;
1652
1653
           then
1654
       A7: dom (1 (#) G) = Seg len G by FINSEQ_1:def 3;
1655
           k in NAT by ORDINAL1:def 13;
1656
           then
       A8: k in dom (1 (#) G) by A3, A5, A6, A7;
1657
1658
           then
1659
       A9: k in dom G by A7,FINSEQ_1:def 3;
1660
1661
       A10: G.k in rng G by FUNCT_1:12;
         reconsider gk = G/.k as Element of V;
1662
       A11: (1 (#) G).k = (1.gk)*gk by A8,VECTSP_6:def 8;
1663
1664
       A12: G.k = G/.k by A9,PARTFUN1:def 8;
```

```
1665
           then reconsider Gk = G.k as Element of V;
1666
           (T*G).k = T.Gk by A9,FUNCT_1:23;
           then reconsider TGk = (T*G).k as Element of W;
1667
1668
       A13: L.k = T.((1.gk)*gk) by A8,A11,FUNCT_1:23
1669
             .= (1.gk)*(T.gk) by MOD_2:def 5
1670
              .= (1.Gk)*TGk by A9,A12,FUNCT_1:23;
       A14: dom R = Seg len G by A4,FINSEQ_1:def 3;
1671
           dom T = [#]\tilde{V} by Th7;
1672
           then dom (T*G) = dom G by A1, RELAT_1:46;
1673
1674
           then
1675
       A15: (T*G)/.k = (T*G).k by A9,PARTFUN1:def 8;
1676
           (T@1).((T*G).k) = 1.(G.k)
1677
           proof
             (T*G).k = T.(G.k) by A9, FUNCT_1:23;
1678
1679
             hence thesis by A1, A2, A10, Th37;
1680
1681
           hence thesis by A7,A8,A13,A14,A15,VECTSP_6:def 8;
1682
1683
         hence thesis by A3, A4, FINSEQ_1:18;
1684
       end;
1686
       theorem Th39:
        T|(Carrier 1) is one-to-one implies T .: (Carrier 1) = Carrier (T@1)
1687
1688
       proof
1689
         assume
       A1: T|(Carrier 1) is one-to-one;
       A2: Carrier (T@1) c= T .: (Carrier 1) by Th30;
1691
        T .: (Carrier 1) c= Carrier (T@1)
1692
1693
         proof
1694
           let w be set such that
1695
       A3: w in T .: (Carrier 1);
1696
          consider v being set such that
1697
       A4: v in dom T and
1698
       A5: v in Carrier 1 and
1699
       A6: T.v = w by A3, FUNCT_1: def 12;
1700
           reconsider v as Element of V by A4;
1701
       A7: (T@1).(T.v) = 1.v by A1, A5, Th37;
1702
           1.v <> 0.F by A5, VECTSP_6:20;
1703
           hence thesis by A6,A7;
1704
         end;
1705
         hence thesis by A2, XBOOLE_0:def 10;
1706
1708
       theorem Th40:
1709
         for A being Subset of {\tt V}, B being Basis of {\tt V},
1710
         1 being Linear_Combination of B \setminus A st A is Basis of ker T & A c= B
1711
         holds T.(Sum 1) = Sum (T@1)
1712
       proof
         let A be Subset of V, B be Basis of V,
1713
1714
         1 be Linear_Combination of B \ A such that
1715
       A1: A is Basis of ker T and
1716
       A2: A c= B;
1717
        consider G being FinSequence of V such that
1718
       A3: G is one-to-one and
       A4: rng G = Carrier 1 and
1719
       A5: Sum 1 = Sum (1 (#) G) by VECTSP_6:def 9;
1720
1721
         set H = T*G;
1722
         reconsider H as FinSequence of W;
1723
       A6: T|(B \ A) is one-to-one by A1,A2,Th22;
         Carrier 1 c= B \ A by VECTSP_6:def 7;
1724
1725
         then
1726
       A7: (T|(B \setminus A))|(Carrier 1) = T|(Carrier 1) by RELAT_1:103;
1727
1728
       A8: T|(Carrier 1) is one-to-one by A6,FUNCT_1:84;
         dom T = [#]V by Th7;
1729
1730
         then
       A9: H is one-to-one by A3, A4, A6, A7, Th1, FUNCT_1:84;
1731
1732
       A10: rng H = T .: (Carrier 1) by A4, RELAT_1:160
```

```
1733
            .= Carrier (T@1) by A8, Th39;
       A11: T*(1 (#) G) = (T@1) (#) H by A4,A8,Th38;
1734
1735
         Sum (T@1) = Sum ((T@1) (#) H) by A9,A10,VECTSP_6:def 9;
1736
         hence thesis by A5, A11, MATRLIN: 20;
1737
1739
       theorem Th41:
         for {\tt X} being Subset of {\tt V} st {\tt X} is linearly-dependent
1740
1741
         holds ex 1 being Linear_Combination of X st Carrier 1 \Leftrightarrow {} & Sum 1 = 0.V
1742
1743
         let X be Subset of V such that
1744
       A1: X is linearly-dependent;
1745
         not (for 1 being Linear_Combination of X st Sum 1 = 0.V
1746
         holds Carrier 1 = {}) by A1, VECTSP_7:def 1;
1747
         hence thesis;
1748
1750
       :: "Pulling back" a linear combination from the image space of a
1751
        :: linear transformation to the base space.
1753
       definition
         let F be Field, V,W be VectSp of F, X be Subset of V,
1754
1755
         T be linear-transformation of V,W, 1 be Linear_Combination of T .: X;
1756
         assume
1757
       A1: T|X is one-to-one;
        func T#1 -> Linear_Combination of X equals
1758
1759
         :Def6:
          (1*T) +* ((V \ X) --> 0.F);
1760
1761
         coherence
1762
         proof
1763
           set f = (1*T) +* ((V \setminus X) --> 0.F);
            dom l = [#]W by FUNCT_2:169;
1764
1765
            then rng T c= dom 1 by Th7;
1766
            then
1767
       A2: dom (1*T) = dom T by RELAT_1:46;
       A3: dom ((V \setminus X) \longrightarrow 0.F) = [\#]V \setminus X by FUNCOP_1:19;
1768
       A4: dom T = [#]V by Th7;
1769
            [#]V \ \ ([#]V \ \ X) = [#]V by XBOOLE_1:12;
1770
1771
            then
1772
       A5: dom f = [#]V by A2,A3,A4,FUNCT_4:def 1;
       A6: rng f c= rng (1*T) \/ rng ((V \ X) --> 0.F) by FUNCT_4:18;
1773
1774
       A7: rng (1*T) c= rng 1 by RELAT_1:45;
            rng ((V \setminus X) --> 0.F) c= {0.F} by FUNCOP_1:19;
1775
1776
            then
1777
       A8: rng ((V \setminus X) --> 0.F) c= [#]F by XBOOLE_1:1;
1778
            rng 1 c= [#]F by FUNCT_2:169;
            then rng (1*T) c= [#]F by A7, XBOOLE_1:1;
1779
            then rng (1*T) \/ rng ((V \ X) --> 0.F) c= [#]F by A8,XB00LE_1:8;
1780
1781
            then rng f c= [#]F by A6,XBOOLE_1:1;
1782
            then reconsider f as Element of Funcs ([#]V,[#]F) by A5,FUNCT_2:def 2;
1783
            ex T being finite Subset of V st
1784
            for v being Element of V st not v in T holds f.v = 0.F
1785
            proof
1786
             set C = { v where v is Element of V : f.v <> 0.F };
1787
             C c= [#]V
             proof
1788
1789
               let x be set such that
1790
       A9:
               x in C;
1791
               consider v being Element of V such that
               v = x and f.v \Leftrightarrow 0.F by A9;
1792
       A10:
1793
               thus thesis by A10;
1794
1795
             then reconsider C as Subset of V;
1796
             C is finite
1797
             proof
1798
                card C c= card Carrier 1
1799
                proof
1800
                 ex g being Function
1801
                  st g is one-to-one & dom g = C & rng g c= Carrier 1
```

```
1802
                  proof
                    set S = (T"(Carrier 1)) /\ X;
1803
1804
                    set g = T|S;
1805
       A11:
                    S = C
1806
                    proof
1807
       A12:
                      S c= C
                      proof
1808
1809
                        let x be set such that
       A13:
1810
                        x in S;
1811
       A14:
                         x in X by A13, XBOOLE_0: def 4;
1812
       A15:
                         x in T"(Carrier 1) by A13, XBOOLE_0:def 4;
1813
                         then
                        x in dom T by FUNCT_1:def 13;
1814
       A16:
                        T.x in Carrier 1 by A15, FUNCT_1:def 13;
1815
       A17:
1816
                         reconsider {\tt x} as Element of {\tt V} by A13;
1817
                         not x in dom ((V \ X) \longrightarrow 0.F) by A14,XB00LE_0:def 5;
1818
                         then
1819
       A18:
                         f.x = (1*T).x by FUNCT_4:12;
                         (1*T).x = 1.(T.x) by A16, FUNCT_1:23;
1820
       A19:
                        1.(T.x) \Leftrightarrow 0.F by A17, VECTSP_6:20;
1821
1822
                        hence thesis by A18,A19;
1823
                      end;
1824
                      C c= S
                      proof
1825
1826
                        let x be set such that
1827
       A20:
                         x in C;
1828
                         consider v being Element of V such that
1829
       A21:
                         v = x and
                        f.v <> 0.F by A20;
1830
       A22:
1831
                         reconsider x as Element of V by A21;
1832
       A23:
                         now
1833
                           assume not x in X;
1834
1835
       A24:
                           x in V \ X by XBOOLE_0:def 5;
1836
                           then x in dom ((V \ X) \longrightarrow 0.F) by FUNCOP_1:19;
                           then f.x = ((V \setminus X) --> 0.F).x by FUNCT_4:14;
1837
1838
                           hence contradiction by A21,A22,A24,FUNCOP_1:13;
1839
                         end;
                         x in T"(Carrier 1)
1840
1841
                        proof
                           dom T = [#]V by Th7;
1842
       A25:
1843
                           T.x in Carrier 1
1844
1845
                             not x in V \ X by A23, XBOOLE_0:def 5;
1846
                             then
                             f.x = (1*T).x by A3,FUNCT_4:12;
1847
       A26:
                             (1*T).x = 1.(T.x) by A25, FUNCT_1:23;
1848
1849
                             hence thesis by A21,A22,A26;
1850
                           end;
1851
                           hence thesis by A25,FUNCT_1:def 13;
1852
                         end;
1853
                        hence thesis by A23,XBOOLE_0:def 4;
1854
                       end;
1855
                      hence thesis by A12, XBOOLE_0:def 10;
1856
                    end;
1857
       A27:
                    dom g = S
                    proof
1858
                      dom T = [#]V by Th7;
1859
1860
                      hence thesis by RELAT_1:91;
1861
1862
       A28:
                    rng g c= Carrier l
1863
                    proof
                      let y be set such that
1864
1865
       A29:
                      y in rng g;
1866
                      consider x being set such that
       A30:
                      x in dom g and
1867
```

```
1868
                     y = g.x by A29,FUNCT_1:def 5;
1869
                     x in T"(Carrier 1) by A27, A30, XBOOLE_0:def 4;
                     then T.x in Carrier 1 by FUNCT_1:def 13;
1870
1871
                     hence thesis by A27, A30, A31, FUNCT_1:72;
1872
                   end;
1873
                   thus thesis by A1,A11,A27,A28,Th2,XB00LE_1:17;
1874
1875
                 end:
1876
                 hence thesis by CARD_1:26;
1877
               end:
1878
               hence thesis;
1879
             end;
1880
             then reconsider C as finite Subset of V;
1881
             take C:
1882
             thus thesis:
1883
           end;
1884
           then reconsider f as Linear_Combination of V by VECTSP_6:def 4;
1885
           Carrier f c= X
1886
           proof
1887
             let x be set such that
1888
       A32: x in Carrier f:
1889
             reconsider x as Element of V by A32;
1890
             now
1891
               assume not x in X;
1892
               then
              x in V \ X by XBOOLE_0:def 5;
1893
      A33:
1894
               then f.x = ((V \setminus X) \longrightarrow 0.F).x by A3,FUNCT_4:14
1895
                 .= 0.F by A33,FUNCOP_1:13;
1896
               hence contradiction by A32, VECTSP_6:20;
1897
             end:
1898
             hence thesis;
1899
           end;
1900
           hence thesis by VECTSP_6:def 7;
1901
         end:
1902
       end:
1904
1905
        for X being Subset of V, 1 being Linear_Combination of T .: X,
1906
         v being Element of V st v in X & T|X is one-to-one holds (T#1).v = 1.(T.v)
1907
       proof
1908
       let X be Subset of V, 1 be Linear_Combination of T .: X,
1909
         v be Element of V such that
      A1: v in X and
1910
1911
       A2: T|X is one-to-one;
      A3: not v in dom ((V \ X) --> 0.F) by A1,XBOOLE_0:def 5;
1912
         T#1 = (1*T) +* ((V \setminus X) --> 0.F) by A2, Def6;
1913
1914
         then
1915
      A4: (T#1).v = (1*T).v by A3, FUNCT_4:12;
1916
         dom T = [#]V by Th7;
1917
        hence thesis by A4, FUNCT_1:23;
1918
      end;
1920
       :: # is a right inverse of @
1922
       theorem Th43:
1923
        for X being Subset of V, 1 being Linear_Combination of T .: X
1924
         st T|X is one-to-one holds T@(T#1) = 1
1925
      proof
1926
        let X be Subset of V, 1 be Linear_Combination of T .: X such that
1927
       A1: T|X is one-to-one;
1928
        set m = T@(T#1);
1929
         let w be Element of W;
1930
        per cases;
1931
         suppose
1932
      A2: w in Carrier 1;
1933
           then
1934
       A3: 1.w <> 0.F by VECTSP_6:20;
           Carrier 1 c= T .: X by VECTSP_6:def 7;
1936
           then consider v being set such that
```

```
A4: v in dom T and
1938
      A5: v in X and
1939
       A6: w = T.v by A2, FUNCT_1:def 12;
1940
           reconsider v as Element of V by A4;
1941
           consider B being Subset of {\tt V} such that
1942
       A7: B misses X and
      A8: T"\{T.v\} = \{v\} \setminus B \text{ by A1,A5,Th34};
1944
       A9: dom (T#1) = [#]V by FUNCT_2:169;
       A10: (T#1).v = 1.(T.v) by A1,A5,Th42;
1945
       A11: (T#1) .: \{v\} = Im (T#1,v)
1946
1947
             .= {(T#1).v} by A9,FUNCT_1:117;
       A12: m.w = Sum ((T#1) .: T"{T.v}) by A6,Def5
1948
1949
             .= Sum ({1.(T.v)} \/ ((T#1) .: B)) by A8,A10,A11,RELAT_1:153;
1950
           per cases;
1951
           suppose B = {};
             then m.w = Sum (\{1.(T.v)\} \ / \{\}F) by A12, RELAT_1:149
1952
1953
               .= 1.w by A6,RLVECT_2:15;
1954
            hence thesis;
1955
           end;
1956
           suppose
1957
       A13: B <> {};
1958
             Carrier (T#1) c= X by VECTSP_6:def 7;
1959
             then B misses Carrier (T#1) by A7, XBOOLE_1:63;
             1960
               .= Sum ({1.(T.v)}) + Sum ({0.F}) by A3,A6,RLVECT_2:18,ZFMISC_1:17
1961
1962
               .= 1.(T.v) + Sum ({0.F}) by RLVECT_2:15
1963
               .= 1.(T.v) + 0.F by RLVECT_2:15
1964
               .= 1.w by A6, RLVECT_1:10;
1965
             hence thesis;
1966
           end:
1967
         end;
1968
         suppose
1969
       A14: not w in Carrier 1;
1970
          then
1971
       A15: 1.w = 0.F;
1972
          now
1973
             assume
1974
       A16: m.w <> 0.F;
1975
             then w in Carrier m;
1976
             then T"{w} meets Carrier (T#1) by Th36;
             then consider {\tt v} being Element of {\tt V} such that
1977
1978
      A17: v in T"\{w\} and
1979
       A18: v in Carrier (T#1) by Th3;
             T.v in {w} by A17, FUNCT_1: def 13;
1981
             then
       A19: T.v = w by TARSKI:def 1;
1982
       A20: Carrier (T#1) c= X by VECTSP_6:def 7;
1983
1984
             then T|(Carrier (T#1)) is one-to-one by A1,Th2;
1985
             then m.w = (T#1).v by A18,A19,Th37
1986
               .= 0.F by A1, A15, A18, A19, A20, Th42;
1987
             hence contradiction by A16;
1988
           end;
1989
           hence thesis by A14;
1990
         end;
1991
       end;
1993
       begin :: The rank+nullity theorem
       {\tt definition}
1995
1996
         let F be Field, V,W be finite-dimensional VectSp of F,
1997
         T be linear-transformation of V,W;
1998
         func rank(T) -> Nat equals
2000
         dim (im T);
2001
         coherence;
         func nullity(T) -> Nat equals
2002
```

```
2004
         dim (ker T);
2005
         coherence;
2006
       end:
2008
       theorem Th44:
         for V,W being finite-dimensional VectSp of F.
2009
         T being linear-transformation of V,W holds dim V = rank(T) + nullity(T)
2010
2011
       proof
2012
        let V,W be finite-dimensional VectSp of F,
2013
         T be linear-transformation of V,W;
         consider A being finite Basis of ker T;
2014
         reconsider A' = A as Subset of V by Th19;
2015
2016
         consider B being Basis of V such that
2017
      A1: A c= B by VECTSP_9:17;
2018
        reconsider B as finite Subset of V by VECTSP_9:24;
2019
        reconsider X = B \ A' as finite Subset of B by XBOOLE_1:36;
2020
        reconsider X as finite Subset of V:
2021
      A2: B = A \setminus / X \text{ by A1,XB00LE}_1:45;
2022
       reconsider C = T .: X as finite Subset of W;
2023
         reconsider A as finite Basis of ker T;
2024
         reconsider B as finite Basis of V;
2025
      A3: T|X is one-to-one by A1, Th22;
2026
      A4: X c = dom(T|X)
        proof
2027
2028
           dom T = [#]V by Th7;
2029
           hence thesis by RELAT_1:91;
2030
         end:
      A5: card C = card X
2031
2032
         proof
2033
           X,(T|X) .: X are_equipotent by A3,A4,CARD_1:60;
2034
           then X,C are_equipotent by RELAT_1:162;
2035
           hence thesis by CARD_1:21;
2036
         end:
2037
       A6: C is linearly-independent
2038
        proof
2039
           assume C is linearly-dependent;
2040
           then consider 1 being Linear_Combination of C such that
2041
      A7: Carrier 1 <> {} and
       A8: Sum 1 = 0.W by Th41;
2042
2043
           ex m being Linear_Combination of X st 1 = T@m
           proof
2044
2045
             reconsider 1' = 1 as Linear_Combination of T .: X;
2046
             set m = T#(1');
2047
             take m:
2048
             thus thesis by A3, Th43;
2049
           end:
2050
           then consider m being Linear_Combination of B \setminus A' such that
2051
       A9: 1 = T@m;
           T.(Sum\ m) = 0.W\ by\ A1,A8,A9,Th40;
2052
2053
           then Sum m in ker T by Th10;
2054
           then Sum m in Lin A by VECTSP_7:def 3;
2055
           then Sum m in Lin A' by VECTSP_9:21;
2056
           then consider n being Linear_Combination of A' such that
2057
       A10: Sum m = Sum n by VECTSP_7:12;
           (Sum m) - (Sum n) = 0.V by A10, VECTSP_1:66;
2058
2059
           then
2060
       A11: Sum (m - n) = 0.V by VECTSP_6:80;
2061
       A12: Carrier (m - n) c= (Carrier m) \/ (Carrier n) by VECTSP_6:74;
       A13: Carrier m c= B \ A' by VECTSP_6:def 7;
2062
2063
       A14: Carrier n c= A by VECTSP_6:def 7;
2064
       A15: (B \ A') \ A' = B by A1,XBOOLE_1:45;
2065
           (Carrier m) \/ (Carrier n) c= (B \ A') \/ A by A13,A14,XB00LE_1:13;
2066
           then Carrier (m - n) c= B by A12,A15,XB00LE_1:1;
2067
           then reconsider o = m - n as Linear_Combination of B by VECTSP_6:def 7;
2068
           B is linearly-independent by VECTSP_7:def 3;
2069
           then
      A16: Carrier o = {} by A11, VECTSP_7:def 1;
2070
```

```
2071
           A' misses B \ A' by XBOOLE_1:79;
2072
           then Carrier (m - n) = (Carrier m) \setminus (Carrier n) by A13,A14,Th32,
2073
       XBOOLE 1:64:
2074
           then Carrier m = {} by A16;
2075
           then T .: (Carrier m) = \{\} by RELAT_1:149;
2076
           hence thesis by A7,A9,Th30,XB00LE_1:3;
2077
2078
         reconsider C as finite Subset of im T by Th12;
2079
         reconsider L = Lin C as strict Subspace of im T;
2080
         for {\tt v} being Element of im T holds {\tt v} in L
2081
         proof
2082
           let v be Element of im T;
2083
       A17: v in im T by STRUCT_0:def 5;
           reconsider v' = v as Element of W by VECTSP_4:18;
2084
2085
           consider \boldsymbol{u} being Element of \boldsymbol{V} such that
2086
       A18: T.u = v' by A17, Th13;
2087
           reconsider A' = A as Subset of V by Th19;
2088
           V is_the_direct_sum_of Lin A', Lin (B \setminus A') by A1,Th33;
2089
           then
       A19: (Omega).V = (Lin A') + (Lin (B \setminus A')) by VECTSP_5:def 4;
2090
2091
           u in (Omega).V by STRUCT_0:def 5;
           then consider u1, u2 being Element of V such that
2092
2093
       A20: u1 in Lin A' and
       A21: u2 in Lin (B \ A') and
2094
       A22: u = u1 + u2 by A19, VECTSP_5:5;
2095
2096
       A23: T.u = T.u1 + T.u2 by A22, MOD_2:def 5;
2097
           Lin A = ker T by VECTSP_7:def 3;
2098
           then u1 in ker T by A20, VECTSP_9:21;
2099
           then T.u1 = 0.W by Th10;
2100
           then
2101
       A24: T.u = T.u2 by A23, RLVECT_1:10;
2102
           consider 1 being Linear_Combination of B \setminus A' such that
2103
       A25: u2 = Sum 1 by A21, VECTSP_7:12;
2104
       A26: T@l is Linear_Combination of T .: (Carrier 1) by Th29;
2105
       A27: Carrier 1 c= B \ A' by VECTSP_6:def 7;
           reconsider C' = C as Subset of W;
2106
2107
            reconsider m = T@l as Linear_Combination of C' by A26,A27,RELAT_1:156
2108
       , VECTSP_6:25;
2109
           ex m being Linear_Combination of C' st v = Sum m
           proof
2110
2111
             take m;
2112
             thus thesis by A1,A18,A24,A25,Th40;
2113
           then v in Lin C' by VECTSP_7:12;
2114
           hence thesis by VECTSP_9:21;
2115
2116
         end:
2117
         then
2118
       A28: Lin C = im T by VECTSP_4:40;
         reconsider C as linearly-independent Subset of im T by A6, VECTSP_9:16;
2119
         reconsider C as finite Basis of im T by A28, VECTSP_7:def 3;
2120
       A29: nullity T = card A by VECTSP 9:def 2;
2121
2122
       A30: rank T = card C by VECTSP_9:def 2;
2123
         dim V = card B by VECTSP_9:def 2
2124
           .= rank T + nullity T by A2,A5,A29,A30,CARD_2:53,XB00LE_1:79;
2125
         hence thesis;
2126
       end;
2128
2129
         for V,W being finite-dimensional VectSp of F,
         T being linear-transformation of V,W st T is one-to-one holds dim V = rank T
2130
2131
2132
         let V,W be finite-dimensional VectSp of F,
2133
         T be linear-transformation of V,W such that
2134
       A1: T is one-to-one;
2135
        ker T = (0).V by A1, Th15;
2136
         then
       A2: nullity(T) = 0 by Th16;
2137
```

B.2 The vector space of subsets of a set based on symmetric difference

Note: there is a discrepency between the intended title of this section and the title of the corresponding MIZAR article. As of April 15, 2009, the official title of this article in the MIZAR Mathematical Library is 'The vector space of subsets of a set based on disjoint union'. The editors of the MIZAR Mathematical Library have accepted my request to change 'disjoint union' to 'symmetric difference', but the current edition of the library does not yet reflect that change.

```
:: The Vector Space of Subsets of a Set Based on Disjoint Union
2
     :: by Jesse Alama
3
    ::
    :: Received October 9, 2007
 5
     :: Copyright (c) 2007 Association of Mizar Users
7
      vocabularies FINSET_1, BSPACE, FUNCT_1, CARD_1, SUBSET_1, TARSKI, BOOLE,
9
           RELAT_1, NAT_1, GROUP_1, FINSEQ_1, FINSEQ_2, QC_LANG1, BINOP_1, VECTSP_1,
10
11
           RLVECT_1, RLVECT_3, RLVECT_2, SEQ_1, FINSEQ_4, FUNCT_4, ORDINAL2,
           MATRLIN, VECTSP_9, INT_3, REALSET1, ARYTM;
12
      notations TARSKI, XBOOLE_0, ZFMISC_1, SUBSET_1, RELAT_1, DOMAIN_1, RELSET_1,
13
           FUNCT_1, NUMBERS, NAT_1, INT_1, PARTFUN1, FUNCT_2, BINOP_1, FUNCT_7,
14
           XXREAL_0, CARD_1, FINSET_1, FINSEQ_1, FINSEQOP, CARD_2, REALSET1,
15
16
           STRUCT_0, ALGSTR_0, GROUP_1, RLVECT_1, VECTSP_1, VECTSP_6, VECTSP_7,
17
           MATRLIN, VECTSP_9, INT_3, RANKNULL;
18
      constructors NAT_1, FINSEQOP, HAHNBAN, VECTSP_7, VECTSP_9, REALSET1, WELLORD2,
           NAT_D, FUNCT_7, BINOP_1, CARD_2, RANKNULL, INT_3, GR_CY_1, XXREAL_0,
19
20
           MATRI.IN:
      registrations RELAT_1, STRUCT_0, CARD_1, FINSET_1, FINSEQ_1, REALSET1,
21
22
           SUBSET_1, XBOOLE_0, VECTSP_1, ORDINAL1, XREAL_0, INT_1, VECTSP_7;
23
      requirements NUMERALS, BOOLE, ARITHM, SUBSET, REAL;
24
      definitions TARSKI, FUNCT_1, FINSEQ_1, CARD_1, VECTSP_6, XBOOLE_0, VECTSP_1,
           RLVECT_1, STRUCT_0, FINSEQ_2, BINOP_1, INT_3, ALGSTR_0;
25
      theorems TARSKI, ZFMISC_1, FINSEQ_1, FUNCT_1, VECTSP_7, CARD_2, XBOOLE_1,
26
27
           FUNCT_2, SUBSET_1, XBOOLE_0, VECTSP_1, RLVECT_1, VECTSP_4, VECTSP_6,
28
           STRUCT_0, CARD_1, FUNCOP_1, FUNCT_7, FINSEQ_2, NAT_1, WELLORD2, RANKNULL,
           MATRIX_3, INT_2, INT_3, GR_CY_1, NAT_D, REALSET1, ORDINAL1, PARTFUN1,
30
           FINSEQ 3, MATRLIN;
      schemes FINSEQ_1, FINSET_1, BINOP_1, FINSEQ_2, CLASSES1;
31
33
    begin
35
36
       let S be 1-sorted;
       func <*>S -> FinSequence of S equals
37
       <*>([#]S);
40
       coherence:
41
    end;
    :: exactly as in FINSEQ_2
43
45
    reserve S for 1-sorted,
46
       d for Element of S,
47
      i for Element of NAT.
48
       p for FinSequence,
49
       b,X for set;
   :: copied from FINSEQ_2:13
```

```
53
      theorem
      for p being FinSequence of S st i in dom p holds p.i in S
 54
 55
      proof
 56
       let p be FinSequence of S;
 57
       assume i in dom p;
 58
       hence p.i in the carrier of S by FINSEQ_2:13;
 59
     end;
 61
     :: copied from FINSEQ_2:14
 63
     theorem
 64
        (for i being Nat st i in dom p holds p.i in S) implies p is FinSequence of S
 66
 67
      A1: for i being Nat st i in dom p holds p.i in S;
       for i being Nat st i in dom p holds p.i in the carrier of S
 68
 69
       proof
 70
        let i be Nat;
 71
          assume i in dom p;
 72
         then p.i in S by A1;
 73
         hence thesis by STRUCT_0:def 5;
 74
        end:
 75
       hence thesis by FINSEQ_2:14;
 76
      end;
 78
     scheme IndSeqS{S() -> 1-sorted, P[set]}:
 79
       for p being FinSequence of S() holds P[p]
 80
      provided
 81
     A1: P[<*> S()]
 82
      and
     A2: for p being FinSequence of S() for x being Element of S() \,
 83
 84
      st P[p] holds P[p^<*x*>]
 85
      A3: P[<*>the carrier of S()] by A1;
 87
       thus for p being FinSequence of the carrier of S() holds P[p]
       from FINSEQ_2:sch 2(A3,A2);
 88
 89
      end;
 91
     begin :: The two-element field Z_2
 93
      definition
      func Z_2 -> Field equals
 94
 96
      INT.Ring(2);
 97
       coherence by INT_2:44, INT_3:22;
 98
     end;
100
     theorem
       [#]Z_2 = \{0,1\} by CARD_1:88;
101
103
      theorem
      for a being Element of Z_2 holds a = 0 or a = 1 by CARD_1:88,TARSKI:def 2;
106
     theorem Th5:
107
       0.Z_2 = 0 by FUNCT_7:def 1,GR_CY_1:12;
     theorem Th6:
109
110
       1.Z_2 = 1 by INT_3:24;
112
     theorem Th7:
113
       1.Z_2 + 1.Z_2 = 0.Z_2
114
     proof
      1.Z_2 + 1.Z_2 = (1+1) \mod 2 by Th6,GR_CY_1:def 5
115
         .= 0 by NAT_D:25;
116
       hence thesis by FUNCT_7:def 1;
117
118
     end;
120
     theorem
       for x being Element of Z_2 holds x = 0.Z_2 iff x <> 1.Z_2
121
       by Th5,Th6,CARD_1:88,TARSKI:def 2;
122
124
     begin :: Set-theoretical Preliminaries
126
     definition
127
       let X,x be set;
128
      func X@x -> Element of Z_2 equals
       :Def3:
129
130
       1.Z_2 if x in X otherwise 0.Z_2;
```

```
131
        coherence;
132
       consistency:
133
     end;
135
      theorem
       for X,x being set holds X@x = 1.Z_2 iff x in X by Def3;
136
138
       for X,x being set holds X@x = 0.Z_2 iff not x in X by Def3;
139
141
     theorem
       for X,x being set holds X@x <> 0.Z_2 iff X@x = 1.Z_2
142
       by Th5, Th6, CARD_1:88, TARSKI:def 2;
143
145
     theorem
       for X,x,y being set holds X@x = X@y iff (x in X iff y in X)
146
147
     proof
148
       let X,x,y be set;
149
       thus X@x = X@y implies (x in X iff y in X)
150
       proof
151
         assume
152
     A1: X@x = X@y;
153
         thus x in X implies y in X
154
         proof
155
           assume x in X;
            then X@x = 1.Z_2 by Def3;
156
157
           hence thesis by A1,Def3;
158
         end;
159
         assume y in X;
160
          then X@y = 1.Z_2 by Def3;
161
         hence thesis by A1,Def3;
162
        end:
163
        assume
164
     A2: x in X iff y in X;
165
       per cases by Th5, Th6, CARD_1:88, TARSKI:def 2;
        suppose X@x = 0.Z_2;
166
167
         hence thesis by A2,Def3;
168
        end;
169
        suppose X@x = 1.Z_2;
170
         hence thesis by A2,Def3;
171
        end;
172
      end;
174
      theorem
175
       for X,Y,x being set holds X@x = Y@x iff (x in X iff x in Y)
176
     proof
       let X,Y,x be set;
177
178
       thus X@x = Y@x implies (x in X iff x in Y)
179
       proof
180
         assume
181
     A1: X@x = Y@x;
         thus x in X implies x in Y
182
         proof
183
184
           assume x in X;
185
            then X@x = 1.Z_2 by Def3;
186
           hence thesis by A1, Def3;
187
          end:
188
          assume x in Y;
189
          then Y@x = 1.Z_2 by Def3;
190
         hence thesis by A1,Def3;
191
        end;
        thus (x in X iff x in Y) implies X@x = Y@x
192
193
        proof
194
         assume
195
      A2: x in X iff x in Y;
196
         per cases by Th5, Th6, CARD_1:88, TARSKI:def 2;
          suppose X@x = 0.Z_2;
197
198
           hence thesis by A2, Def3;
199
          end;
200
          suppose X@x = 1.Z_2;
```

```
201
            hence thesis by A2, Def3;
202
          end;
203
       end;
204
      end;
206
      theorem
       for x being set holds {}@x = 0.Z_2 by Def3;
207
209
      theorem Th15:
      for X being set, u,v being Subset of X, x being Element of X
       holds (u + v) = u + v = u
211
212
     proof
213
      let X be set, u,v be Subset of X, x be Element of X;
214
215
        suppose
      A1: x in u \+\ v;
216
217
         then
     A2: (u \ +\ v)@x = 1.Z_2  by Def3;
218
219
       per cases;
220
          suppose
221
     A3: x in u;
222
            then
     A4: not x in v by A1,XB00LE_0:1;
A5: u@x = 1.Z_2 by A3,Def3;
223
224
225
            v@x = 0.Z_2 \text{ by A4,Def3};
226
            hence thesis by A2, A5, RLVECT_1:10;
227
          end:
228
          suppose
229
     A6: not x in u;
230
            then
231
      A7:
            x in v by A1,XBOOLE_0:1;
      A8: u@x = 0.Z_2 \text{ by A6,Def3};
232
233
            v@x = 1.Z_2 \text{ by A7,Def3};
234
            hence thesis by A2,A8,RLVECT_1:10;
235
          end;
236
237
        suppose
238
     A9: not x in u \+\ v;
239
         then
      A10: (u \+\ v)@x = 0.Z_2  by Def3;
240
241
         per cases;
          suppose
     A11: x in u;
243
244
            then
     A12: x in v by A9, XBOOLE_0:1;
245
246
            u@x = 1.Z_2 \text{ by A11,Def3};
            hence thesis by A10,A12,Def3,Th7;
248
          end;
249
          suppose
250
     A13: not x in u;
251
             then
252
     A14: not x in v by A9, XBOOLE_0:1;
253
      A15: u@x = 0.Z_2 by A13, Def3;
            v@x = 0.Z_2 \text{ by A14,Def3};
254
255
            hence thesis by A10,A15,RLVECT_1:10;
256
          end;
257
        end;
258
      end;
260
      theorem
        for X,Y being set holds X = Y iff for x being set holds X@x = Y@x
261
262
263
264
        thus X = Y implies for x being set holds X@x = Y@x;
        thus (for x being set holds X@x = Y@x) implies X = Y
265
266
       proof
267
          assume
     A1: for x being set holds X@x = Y@x;
268
269
          thus X c= Y
```

```
270
          proof
271
           let y be set such that
272
     A2:
           y in X;
273
            X@y = 1.Z_2 \text{ by A2,Def3};
274
            then Y@y = 1.Z_2 by A1;
275
            hence thesis by Def3;
276
          end;
277
          let y be set such that
278
     A3: y in Y;
279
          Y@y = 1.Z_2 by A3,Def3;
280
          then X@y = 1.Z_2 by A1;
         hence thesis by Def3;
281
282
        end;
283
     end:
285
      begin :: The Boolean Bector Space of Subsets of a Set
287
      definition
288
        let X be set, a be Element of Z_2, c be Subset of X;
289
        func a \*\ c -> Subset of X equals
290
        :Def4:
        c if a = 1.Z_2, {}X if a = 0.Z_2;
291
292
        consistency;
293
        coherence:
294
     end;
296
      definition
297
        let X be set;
298
        func bspace-sum(X) -> BinOp of bool X means
299
300
        for c,d being Subset of X
301
        holds it.(c,d) = c +\ d;
302
        existence
        proof
303
304
          defpred P[set,set,set] means
          ex a,b being Subset of X st $1 = a & $2 = b & $3 = a \+\ b;
305
306
     A1: for x,y being set st x in bool X & y in bool X ex z being set
307
          st z in bool X & P[x,y,z]
         proof
308
           let x,y be set such that
309
          x in bool X and
310
311
      A3: y in bool X;
            reconsider x,y as Subset of X by A2,A3;
312
313
            set z = x + y;
314
            take z;
315
            thus thesis;
316
          end;
          consider f being Function of [:bool X,bool X:],bool X such that
317
318
     A4: for x,y being set st x in bool X & y in bool X
319
         holds P[x,y,f.(x,y)] from BINOP_1:sch 1(A1);
320
          reconsider f as BinOp of bool X;
321
      A5: for c,d being Subset of X holds f.(c,d) = c + d
         proof
322
323
            let c,d be Subset of X;
324
            consider a,b being Subset of {\tt X} such that
325
     A6:
          c = a and
326
      A7: d = b and
      A8: f.(c,d) = a + b by A4;
327
328
            thus thesis by A6, A7, A8;
329
          end;
330
          take f;
331
          thus thesis by A5;
332
        end;
333
        uniqueness
334
        proof
335
          let f,g be BinOp of bool X such that
336
      A9: for c,d being Subset of X holds f.(c,d) = c + d and
     A10: for c,d being Subset of X holds g.(c,d) = c +\ d;
338
          dom f = [:bool X,bool X:] by FUNCT_2:def 1;
```

```
339
          then
     A11: dom f = dom g by FUNCT_2:def 1;
340
341
         for x being set st x in dom f holds f.x = g.x
342
         proof
343
           let x be set such that
344
     A12: x in dom f;
345
           consider y,z being set such that
346
     A13: y in bool X and
347
     A14: z in bool X and
348
     A15: x = [y,z] by A12,ZFMISC_1:def 2;
349
            reconsider y as Subset of X by A13;
350
            reconsider z as Subset of X by A14;
351
            f.(y,z) = y + z & g.(y,z) = y + z by A9,A10;
352
           hence thesis by A15;
353
          end;
354
          hence thesis by A11,FUNCT_1:9;
355
        end;
356
      end;
358
      theorem Th17:
359
       for a being Element of Z_2, c,d being Subset of X
360
       holds a \*\ (c \+\ d) = (a \*\ c) \+\ (a \*\ d)
361
      proof
362
      let a be Element of Z_2, c,d be Subset of X;
363
        per cases by Th5, Th6, CARD_1:88, TARSKI:def 2;
       suppose a = 0.Z_2;
364
          then a \*\ (c \+\ d) = {}X & a \*\ c = {}X & a \*\ d = {}X by Def4;
365
366
         hence thesis;
367
        end;
368
        suppose a = 1.Z_2;
369
         then a \*\ (c \+\ d) = c \+\ d \& a \*\ c = c \& a \*\ d = d by Def4;
370
         hence thesis;
371
       end:
372
      end;
374
      theorem Th18:
       for a,b being Element of Z_2, c being Subset of X
375
376
       holds (a+b) \*\ c = (a \*\ c) \+\ (b \*\ c)
377
      let a,b be Element of Z_2, c be Subset of X;
378
       per cases by Th5,Th6,CARD_1:88,TARSKI:def 2;
379
380
       suppose
381
     A1: a = 0.Z_2;
382
          then a \*\ c = {}X  by Def4;
         hence thesis by A1, RLVECT_1:10;
384
        end;
385
       suppose
386
     A2: a = 1.Z_2;
387
       per cases by Th5, Th6, CARD_1:88, TARSKI:def 2;
388
          suppose
389
      A3: b = 0.Z_2;
            then b \*\ c = {}X  by Def4;
390
391
           hence thesis by A3, RLVECT_1:10;
392
          end:
393
          suppose
394
     A4: b = 1.Z_2;
395
            then
      A5: b \*\ c = c by Def4;
396
            c + c = {}X by XBOOLE_1:92;
397
398
           hence thesis by A2, A4, A5, Def4, Th7;
399
400
       end;
401
      end:
403
      theorem
       for c being Subset of X holds (1.Z_2) \  \  c = c  by Def4;
404
406
     theorem Th20:
       for a,b being Element of Z_2, c being Subset of X
407
```

```
408
        holds a \*\ (b \*\ c) = (a*b) \*\ c
409
      proof
410
       let a,b be Element of Z_2, c be Subset of X;
411
        per cases by Th5,Th6,CARD_1:88,TARSKI:def 2;
412
        suppose
413
      A1: a = 0.Z_2;
414
         then
      A2: a*b = 0.Z_2 by VECTSP_1:39;
415
          a \*\ (b \*\ c) = {}X by A1,Def4;
416
417
         hence thesis by A2,Def4;
418
        end;
419
        suppose
420
     A3: a = 1.Z_2;
          then a \*\ (b \*\ c) = b \*\ c by Def4;
421
422
         hence thesis by A3, VECTSP_1:def 16;
423
        end;
424
     end;
426
      definition
427
        let X be set;
428
        func
429
        bspace-scalar-mult(X) -> Function of [:the carrier of Z_2,bool X:],bool X
430
        means
431
        :Def6:
432
        for a being Element of Z_2, c being Subset of X
433
        holds it.(a,c) = a \*\ c;
434
        existence
435
        proof
436
          defpred P[set,set,set] means ex a being Element of Z_2,
437
          c being Subset of X st 1 = a & 2 = c & 3 = a \times c;
438
      A1: for x,y being set st x in the carrier of Z_2 & y in bool X ex z being set
          st z in bool X & P[x,y,z]
439
440
          proof
           let x,y be set such that
441
442
     A2:
           x in the carrier of Z_2 and
443
      A3: y in bool X;
444
            reconsider x as Element of Z_2 by A2;
            reconsider y as Subset of X by A3;
445
            446
447
            take z;
448
            thus thesis;
449
          end;
          consider f being Function of [:the carrier of Z_2,bool X:],bool X such that
450
451
      A4: for x,y being set st x in the carrier of Z_2 & y in bool X
452
         holds P[x,y,f.(x,y)] from BINOP_1:sch 1(A1);
453
      A5: for a being Element of Z_2, c being Subset of X holds f.(a,c) = a *\ c
454
          proof
455
           let a be Element of Z_2, c be Subset of X;
456
            consider a' being Element of Z_2, c' being Subset of X such that
     A6: a = a' and
457
458
     A7: c = c' and
459
      A8:
           f.(a,c) = a' \*\ c' by A4;
            thus thesis by A6,A7,A8;
461
          end:
462
          take f:
463
          thus thesis by A5;
464
        end;
465
        uniqueness
466
        proof
          let f,g be Function of [:the carrier of Z_2,bool X:],bool X such that
467
468
     A9: for a being Element of Z_2, c being Subset of X
469
         holds f.(a,c) = a \times c and
470
      A10: for a being Element of Z_2, c being Subset of X holds g.(a,c) = a *\ c;
471
          dom f = [:the carrier of Z_2,bool X:] by FUNCT_2:def 1;
472
         then
     A11: dom f = dom g by FUNCT_2:def 1;
473
474
         for x being set st x in dom f holds f.x = g.x
```

```
475
          proof
476
           let x be set such that
477
      A12: x in dom f;
478
            consider y,z being set such that
479
     A13: y in the carrier of Z_2 and
480
      A14: z in bool X and
     A15: x = [y,z] by A12,ZFMISC_1:def 2;
481
            reconsider y as Element of Z_2 by A13;
482
483
            reconsider z as Subset of X by A14;
484
            f.(y,z) = y \times z & g.(y,z) = y \times z by A9,A10;
485
           hence thesis by A15;
486
          end;
          hence thesis by A11,FUNCT_1:9;
487
488
       end;
489
      end;
491
      definition
492
       let X be set;
493
        func bspace(X) -> non empty VectSpStr over Z_2 equals
       VectSpStr (# bool X,
495
496
          bspace-sum(X), {}X, bspace-scalar-mult(X) #);
497
        coherence;
498
      end;
500
     Lm1: for a,b,c being Element of bspace(X), A,B,C being Subset of X
      st a = A \& b = B \& c = C \text{ holds } a+(b+c) = A \+\ (B \+\ C)
      & (a+b)+c = (A +\ B) +\ C
502
503
      proof
504
       let a,b,c be Element of bspace(X);
505
        let A,B,C be Subset of X;
        assume
507
      A1: a = A \& b = B \& c = C;
       thus a+(b+c) = A + (B + C)
508
509
       proof
510
         b+c = B + C by A1,Def5;
511
          hence thesis by A1,Def5;
512
        end;
        thus (a+b)+c = (A +\ B) +\ C
513
514
       proof
         a+b = A + B by A1,Def5;
515
516
          hence thesis by A1,Def5;
517
        end;
518
      end;
      Lm2: for a,b being Element of Z_2, x,y being Element of bspace(X),
521
      c,d being Subset of X st x = c & y = d holds (a*x)+(b*y)
      = (a \*\ c) \+\ (b \*\ d) & a*(x+y) = a \*\ (c \+\ d) &
522
      523
524
525
      let a,b be Element of Z_2, x,y be Element of bspace(X), c,d be Subset of X
526
       such that
     A1: x = c and
527
      A2: y = d;
528
529
       thus (a*x)+(b*y) = (a \*\ c) \+\ (b \*\ d)
530
       proof
531
      A3: a*x = a \\*\ c by A1,Def6;
        b*y = b \*\ d by A2,Def6;
532
533
         hence thesis by A3,Def5;
534
        end:
535
        thus a*(x+y) = a \*\ (c \+\ d)
536
        proof
      A4: x+y = c + d by A1, A2, Def5;
537
538
         thus thesis by A4,Def6;
539
        end:
540
        thus (a+b)*x = (a+b) \ \ c by A1,Def6;
541
        thus (a*b)*x = (a*b) \ \ c by A1,Def6;
       thus a*(b*x) = a \* (b \* c)
543
        proof
```

```
544
         b*x = b \  \  \  \   c by A1,Def6;
545
         hence thesis by Def6;
546
       end;
547
     end:
549
     theorem Th21:
550
       bspace(X) is Abelian
551
     proof
552
      let x,y be Element of bspace(X);
553
       reconsider A = x, B = y as Subset of X;
       x+y = B \ + \ A by Def5
554
555
         .= y+x by Def5;
556
       hence thesis;
557
     end;
559
     theorem Th22:
560
       bspace(X) is add-associative
561
562
       let x,y,z be Element of bspace(X);
563
       reconsider A = x, B = y, C = z as Subset of X;
       x+(y+z) = A + (B + C) by Lm1
564
565
          .= (A \+\ B) \+\ C by XBOOLE_1:91
566
          = (x+y)+z by Lm1;
567
       hence thesis;
568
     end:
570
     theorem Th23:
571
       bspace(X) is right_zeroed
572
     proof
       let x be Element of bspace(X);
573
574
       reconsider A = x as Subset of X;
575
       reconsider Z = 0.bspace(X) as Subset of X;
576
       x+0.bspace(X) = A + Z by Def5
577
         .= x:
578
       hence thesis;
579
     end:
581
     theorem Th24:
582
       bspace(X) is right_complementable
583
      let x be Element of bspace(X);
585
       reconsider A = x as Subset of X;
     A1: A +\ A = {}X  by XBOOLE_1:92;
586
587
       take x;
588
       thus thesis by A1,Def5;
589
591
     theorem Th25:
592
       for a being Element of Z_2, x,y being Element of bspace(X)
593
       holds a*(x+y) = (a*x)+(a*y)
594
     proof
595
       let a be Element of Z_2, x,y be Element of bspace(X);
596
       reconsider c = x, d = y as Subset of X;
597
        a*(x+y) = a \* (c + d) by Lm2
598
        .= (a \*\ c) \+\ (a \*\ d) by Th17
599
          .= (a*x)+(a*y) by Lm2;
600
       hence thesis:
601
     end;
603
     theorem Th26:
       for a,b being Element of Z_2, x being Element of bspace(X)
604
605
       holds (a+b)*x = (a*x)+(b*x)
606
607
       let a,b be Element of Z_2, x be Element of bspace(X);
608
       reconsider c = x as Subset of X;
        609
610
        .= (a \*\ c) \+\ (b \*\ c) by Th18
611
          .= (a*x)+(b*x) by Lm2;
       hence thesis;
612
613
     end:
```

```
615
      theorem Th27:
616
       for a,b being Element of Z_2, x being Element of bspace(X)
       holds (a*b)*x = a*(b*x)
617
618
      proof
619
      let a,b be Element of Z_2, x be Element of bspace(X);
620
        reconsider c = x as Subset of X;
       (a*b)*x = (a*b) \ \ c \ by \ Lm2
621
          .= a \*\ (b \*\ c) by Th20
622
          .= a*(b*x) by Lm2;
623
624
      hence thesis;
625
      end;
627
      theorem Th28:
628
       for x being Element of bspace(X) holds (1_Z_2)*x = x
629
630
      let x be Element of bspace(X);
631
        reconsider c = x as Subset of X;
       (1_Z_2)*x = (1_Z_2) \ \ c \ by Def6
632
633
          .= c by Def4;
634
       hence thesis;
635
     end;
637
      theorem Th29:
638
       bspace(X) is VectSp-like
      proof
639
640
        let a,b be Element of Z_2, x,y be Element of bspace(X);
641
        thus a*(x+y) = (a*x)+(a*y) by Th25;
        thus (a+b)*x = (a*x)+(b*x) by Th26;
642
643
        thus (a*b)*x = a*(b*x) by Th27;
       thus (1.Z_2)*x = x by Th28;
644
645
      end;
647
      registration
648
      let X be set;
       cluster bspace(X) -> VectSp-like Abelian right_complementable
649
650
          add-associative right_zeroed;
651
       coherence by Th21, Th22, Th23, Th24, Th29;
652
654
      begin :: The Linear Independence and Linear Span of Singleton Subsets
656
     definition
657
       let X be set;
658
        attr X is Singleton means
       :Def8:
660
       X is non empty trivial;
661
     end:
663
     registration
        cluster Singleton -> non empty trivial set;
664
665
        coherence by Def8;
        cluster non empty trivial -> Singleton set;
666
667
       coherence by Def8;
668
     end;
670
     definition
671
        let X be set, f be Subset of X;
        redefine attr f is Singleton means
673
        :Def9:
        ex x being set st x in X & f = \{x\};
674
675
        compatibility
676
677
          thus f is Singleton implies ex x being set st x in X & f = \{x\}
          proof
678
            assume f is Singleton;
679
680
            then f is non empty trivial;
681
            then consider \boldsymbol{x} being set such that
682
          f = {x} by REALSET1:def 4;
683
            take x;
            x in f by A1, TARSKI: def 1;
684
685
            hence x in X;
686
            thus thesis by A1;
```

```
687
          end;
688
          thus thesis;
689
        end;
690
      end;
692
      definition
693
        let X be set;
694
        func singletons(X) equals
696
        { f where f is Subset of X : f is Singleton };
697
        coherence;
698
      end;
700
      definition
701
        let X be set;
702
        {\tt redefine \ func \ singletons(X) \ -> \ Subset \ of \ bspace(X);}
703
        coherence
704
        proof
          set S = singletons(X);
705
          S c= bool(X)
706
707
          proof
708
            let f be set such that
709
      A1: f in S;
            consider g being Subset of X such that
710
      A2: f = g and g is Singleton by A1;
711
712
            reconsider f as Subset of X by A2;
713
            f is Element of bool(X);
714
           hence thesis;
715
          end:
716
          hence thesis:
717
        end;
718
     end;
720
     registration
721
        let X be non empty set;
722
        cluster singletons(X) -> non empty;
723
724
        proof
725
          consider {\tt x} being Element of {\tt X};
726
          {x} in singletons(X);
727
          hence thesis;
728
        end;
729
      end;
731
732
        for X being non empty set, f being Subset of X
733
        st f is Element of singletons(X) holds f is Singleton
      proof
734
735
       let {\tt X} be non empty set, f be Subset of {\tt X} such that
736
      A1: f is Element of singletons(X);
737
       f in singletons(X) by A1;
738
       then consider g being Subset of X such that
739
     A2: g = f and
740
      A3: g is Singleton;
741
       thus thesis by A2,A3;
742
744
      definition
745
       let F be Field, V be VectSp of F, 1 be Linear_Combination of V,
746
        x be Element of V;
        redefine func 1.x -> Element of F;
747
748
        coherence
749
        proof
750
          1.x in [#]F;
751
          hence thesis;
752
        end;
753
      end:
755
      definition
756
        let X be non empty set, s be FinSequence of bspace(X), x be Element of X;
757
        func s@x -> FinSequence of Z_2 means
758
        :Def11:
```

```
759
        len it = len s
760
        & for j being Nat st 1 <= j & j <= len s holds it.j = (s.j)@x;
761
        existence
762
        proof
763
          deffunc F(set) = (s.$1)@x;
764
          consider p being FinSequence such that
     A1: len p = len s and
765
      A2: for k being Nat st k in dom p holds p.k = F(k) from FINSEQ_1:sch 2;
766
767
     A3: for j being Nat st 1 <= j & j <= len s holds p.j = (s.j)@x
        proof
768
769
           let j be Nat such that
770
     A4: 1 <= j and
     A5: j <= len s;
771
772
            j in dom p by A4,A5,A1,FINSEQ_3:27;
773
           hence thesis by A2;
774
          end;
775
          rng p c= the carrier of Z_2
776
          proof
777
           let y be set such that
     A6: y in rng p;
778
779
            consider a being set such that
     A7: a in dom p and
781
     A8: p.a = y by A6, FUNCT_1: def 5;
            p.a = (s.a)@x by A2,A7;
782
783
           hence thesis by A8;
784
          end:
785
          then reconsider p as FinSequence of Z_2 by FINSEQ_1:def 4;
786
          take p;
         thus thesis by A1,A3;
787
788
        end:
789
        uniqueness
790
791
          let f,g be FinSequence of Z_2 such that
792
     A9: len f = len s & for j being Nat st 1 <= j & j <= len s
         holds f.j = (s.j)@x and
793
794
      A10: len g = len s & for j being Nat st 1 <= j & j <= len s
795
         holds g.j = (s.j)@x;
796
          for k being Nat st 1 <= k & k <= len f holds f.k = g.k
797
         proof
798
           let k be Nat such that
     A11: 1 <= k and
799
800
     A12: k <= len f;
801
            f.k = (s.k)@x & g.k = (s.k)@x by A9,A10,A11,A12;
803
          end;
         hence thesis by A9,A10,FINSEQ_1:18;
804
805
       end;
806
808
      theorem Th31:
809
        for {\tt X} being non empty set, {\tt x} being Element of {\tt X}
810
        holds (<*>(bspace(X)))@x = <*>Z_2
811
812
       let X be non empty set, x be Element of X;
       set V = bspace(X);
813
        set L = (\langle * \rangle V)@x;
814
       len L = len <*>V by Def11
815
816
          .= 0;
817
       hence thesis;
818
     end;
     theorem Th32:
820
821
       for X being set, u,v being Element of bspace(X), x being Element of X
822
       holds (u + v)@x = u@x + v@x
823
       let X be set, u,v be Element of bspace(X), x be Element of X;
824
825
        reconsider u' = u, v' = v as Subset of X;
        (u + v)@x = (u' + v')@x by Def5
826
```

```
827
          = (u'@x) + (v'@x) by Th15;
828
       hence thesis:
829
      end:
831
       for X being non empty set, s being FinSequence of bspace(X),
       f being Element of bspace(X), x being Element of X
holds (s ^ <*f*>)@x = (s@x) ^ <*f@x*>
833
834
835
     proof
836
       let X be non empty set, s be FinSequence of bspace(X),
       f be Element of bspace(X), x be Element of X;
837
838
        set L = (s ^ <*f*>) @x;
        set R = (s@x) ^ <*f@x*>;
839
840
     A1: len L = len (s ^ <*f*>) by Def11
841
          .= (len s) + (len <*f*>) by FINSEQ_1:35
          .= (len s) + 1 by FINSEQ_1:56;
     A2: len ((s@x) ^ <*f@x*>) = (len (s@x)) + (len <*f@x*>) by FINSEQ_1:35
843
         .= (len s) + (len <*f@x*>) by Def11
844
          .= (len s) + 1 by FINSEQ_1:56;
845
846
        for k being Nat st 1 <= k & k <= len L holds L.k = R.k
       proof
847
848
         let k be Nat such that
849
     A3: 1 <= k and
850
     A4: k <= len L:
      A5: k in NAT by ORDINAL1:def 13;
851
852
          per cases by A1,A4,NAT_1:8;
853
          suppose
854
     A6: k <= len s;
            k <= len (s ^ <*f*>) by A4, Def11;
855
856
            then
857
     A7: L.k = ((s ^**f**).k)@x by A3,Def11;
858
            dom (s@x) = Seg (len (s@x)) by FINSEQ_1:def 3
859
              .= Seg (len s) by Def11;
860
            then k in dom (s@x) by A3, A5, A6;
861
            then
862
     A8: R.k = (s@x).k by FINSEQ_1:def 7
863
              .= (s.k)@x by A3,A6,Def11;
            dom s = Seg (len s) by FINSEQ_1:def 3;
865
            then k in dom s by A3, A5, A6;
866
           hence thesis by A7, A8, FINSEQ_1:def 7;
867
          end;
868
         suppose
     A9: k = len L;
     A10: k <= len (s ^ <*f*>) by A4,Def11;
870
     A11: len (s@x) = len s by Def11;
871
            dom (<*f@x*>) = {1} by FINSEQ_1:4, def 8;
872
873
            then 1 in dom (<*f@x*>) by TARSKI:def 1;
874
            then
875
     A12: R.k = <*f@x*>.1 by A1, A9, A11, FINSEQ_1:def 7
876
             .= f@x by FINSEQ 1:def 8;
            dom (<*f*>) = {1} by FINSEQ_1:4, def 8;
877
878
            then 1 in dom (<*f*>) by TARSKI:def 1;
879
            then (s ^<*f*>).k = <*f*>.1 by A1,A9,FINSEQ_1:def 7
880
              .= f by FINSEQ_1:def 8;
881
            hence thesis by A3, A10, A12, Def11;
882
          end:
883
        end:
884
        hence thesis by A1, A2, FINSEQ_1:18;
885
887
      theorem Th34:
888
        for X being non empty set, s being FinSequence of bspace(X),
889
        x being Element of X holds (Sum s)@x = Sum (s@x)
890
891
        let X be non empty set, s be FinSequence of bspace(X), x be Element of X;
892
        set V = bspace(X);
        defpred Q[FinSequence of V] means (Sum ($1))@x = Sum (($1)@x);
893
894
     A1: Q[<*>V]
```

```
895
        proof
896
          set e = <*>V;
           reconsider z = 0.V as Subset of X;
897
898
      A2: Sum e = 0.V by RLVECT_1:60;
899
       A3: e@x = <*>Z_2 by Th31;
900
           z@x = 0.Z_2 by Def3;
           hence thesis by A2, A3, RLVECT_1:60;
901
902
        end:
       A4: for p being FinSequence of V, f being Element of V st Q[p]
903
904
        holds Q[p ^ <*f*>]
905
906
           let p be FinSequence of V, f be Element of V such that
907
       A5: Q[p];
           (Sum (p ^ <*f*>))@x = ((Sum p) + (Sum <*f*>))@x by RLVECT_1:58
908
909
             .= ((Sum p) + f)@x by RLVECT_1:61
910
             .= (Sum p)@x + f@x by Th32
             .= Sum (p@x) + Sum (<*f@x*>) by A5,RLVECT_1:61

.= Sum (p@x ^ <*f@x*>) by RLVECT_1:58

.= Sum ((p ^ <*f*>)@x) by Th33;
911
912
913
914
           hence thesis;
915
         end:
        for p being FinSequence of V holds Q[p] from IndSeqS(A1,A4);
917
        hence thesis;
918
       end:
920
       theorem Th35:
921
        for X being non empty set, 1 being Linear_Combination of bspace(X),
922
        x being Element of bspace(X) st x in Carrier 1 holds 1.x = 1_2_2
923
       {\tt proof}
        let X be non empty set, 1 be Linear_Combination of bspace(X),
924
925
        x be Element of bspace(X) such that
       A1: x in Carrier 1;
927
       1.x <> 0.Z_2 by A1, VECTSP_6:20;
        hence thesis by Th5, Th6, CARD_1:88, TARSKI:def 2;
928
929
       end;
931
       theorem Th36:
932
        singletons {} = {}
933
      proof
934
        set X = \{\};
935
        assume singletons(X) <> {};
        then consider f being set such that
937
       A1: f in singletons(X) by XBOOLE_0:def 1;
        consider g being Subset of X such that g = f and
938
939
       A2: g is Singleton by A1;
940
        consider x being set such that
       A3: x \text{ in } X \text{ and } g = \{x\} \text{ by A2};
941
942
        thus thesis by A3;
943
       end;
945
       theorem Th37:
        singletons(X) is linearly-independent
946
       proof
947
948
        per cases;
949
         suppose
950
       A1: X is empty;
951
           thus thesis by A1, Th36;
952
         end;
953
         suppose X is non empty;
954
           then reconsider X as non empty set;
955
           set V = bspace(X);
956
           set S = singletons(X);
957
           for 1 being Linear_Combination of S st Sum 1 = 0.V holds Carrier 1 = {}
958
           proof
             let 1 be Linear_Combination of S such that
959
960
      A2: Sum 1 = 0.V;
961
             set C = Carrier 1;
             reconsider s = Sum 1 as Subset of X;
962
             assume C <> {};
963
```

```
964
             then consider f being Element of V such that
 965
       A3: f in C by SUBSET_1:10;
 966
             reconsider f as Subset of X;
 967
             C c= S by VECTSP_6:def 7;
 968
             then f is Singleton by A3, Th30;
 969
             then consider x being set such that
 970
      A4: x in X and
 971
      A5: f = \{x\} by Def9;
             x in f by A5, TARSKI: def 1;
 972
 973
             then
 974
      A6:
             f@x = 1.Z_2 by Def3;
 975
             reconsider x as Element of X by A4;
 976
       A7:
             s@x = 0.Z_2 by A2,Def3;
 977
       A8: for g being Subset of X st g \Leftrightarrow f & g in C holds g@x = 0.Z_2
 978
             proof
 979
               let g be Subset of X such that
      A9:
              g <> f and
 981
       A10:
               g in C;
               C c= S by VECTSP_6:def 7;
 982
 983
               then g is Singleton by A10, Th30;
 984
               then consider y being set such that
               y in X and
 985
 986
       A12:
               g = \{y\} by Def9;
               reconsider y as Element of X by A11;
 987
 988
               ทดพ
 989
                 assume g@x <> 0.Z_2;
 990
                 then x in {y} by A12,Def3;
 991
                 hence contradiction by A5,A9,A12,TARSKI:def 1;
 992
               end:
 993
               hence thesis:
 994
             end;
 995
             reconsider g = f as Element of V;
 996
             reconsider m = 1!(C \setminus \{g\}) as Linear_Combination of C \setminus \{g\};
 997
             reconsider n = 1!{g} as Linear Combination of {g};
 998
             reconsider t = Sum m, u = Sum n as Subset of X;
 999
      A13: 1!(Carrier 1) = 1 by RANKNULL:24;
1000
       A14: {g} c= Carrier 1 by A3,ZFMISC_1:37;
1001
             reconsider 1 as Linear_Combination of C by A13;
             1 = n + m by A14, RANKNULL: 27;
1002
             then Sum 1 = (Sum m) + (Sum n) by VECTSP_6:77;
1003
1004
             then s = t + u  by Def5;
1005
             then
1006
       A15: s@x = t@x + u@x by Th15;
       A16: t@x = 0
1007
             proof
1008
1009
      A17:
             for F being FinSequence of V st F is one-to-one & rng F = Carrier m
1010
              holds (m (#) F)@x = (len F) |-> 0.Z_2
               proof
1011
1012
                let F be FinSequence of V such that F is one-to-one and
1013
                 rng F = Carrier m;
      A18:
                 set L = (m (\#) F)@x;
1014
                 set R = (len F) |-> 0.Z_2;
1015
1016
      A19:
                 len (m (#) F) = len F by VECTSP_6:def 8;
1017
                 then
1018
       A20:
                 len L = len F by Def11;
1019
                 dom R = Seg (len F) by FUNCOP_1:19;
1020
                 then
1021
       A21:
                 len L = len R by A20,FINSEQ_1:def 3;
1022
                 for k being Nat st 1 <= k & k <= len L holds L.k = R.k
1023
                 proof
1024
                  let k be Nat such that
1025
       A22:
                   1 <= k and
                   k <= len I.:
1026
       A23:
                   len (m (#) F) = len F by VECTSP_6:def 8;
1027
1028
                   dom (m (#) F) = Seg (len F) by FINSEQ_1:def 3;
1029
```

```
1030
       A25:
                    k in NAT by ORDINAL1:def 13;
1031
                    then k in dom (m (#) F) by A20, A22, A23, A24;
1032
                    then
1033
       A26:
                    (m (#) F).k = m.(F/.k)*(F/.k) by VECTSP_6:def 8;
1034
                    dom F = Seg (len F) by FINSEQ_1:def 3;
1035
1036
       A27:
                    k in dom F by A20, A22, A23, A25;
1037
                    then
       A28:
                    F/.k = F.k by PARTFUN1:def 8;
1038
1039
                    then
1040
       A29:
                    F/.k in Carrier m by A18,A27,FUNCT_1:12;
                    reconsider Fk = F/.k as Subset of X;
1041
1042
                    m.(F/.k) = 1_Z_2 \text{ by A18,A27,A28,Th35,FUNCT}_1:12;
1043
                    then
                    (m (#) F).k = Fk by A26, VECTSP_1:def 26;
1044
       A30:
1045
       A31:
                    Carrier m = C \setminus \{f\}
1046
                    proof
1047
                      thus Carrier m c= C \setminus \{f\} by VECTSP_6:def 7;
1048
                      thus C \setminus \{f\} c= Carrier m
1049
                      proof
1050
                        let y be set such that
1051
                        y in C \setminus \{f\};
       A32:
1052
       A33:
                        y in C by A32, XBOOLE_0:def 5;
                        reconsider y as Element of V by A32;
1053
1054
                        now
1055
                          assume
1056
       A34:
                          not y in Carrier m;
1057
                          m.y = 1.y by A32, RANKNULL: 25;
                           then 1.y = 0.Z_2 by A34;
1058
                          hence contradiction by A33, VECTSP_6:20;
1059
1060
                         end;
1061
                        hence thesis;
1062
                      end;
                    end;
1063
       A35:
                    Fk <> f
1064
1065
                    proof
1066
                      assume Fk = f;
1067
                      then not f in {f} by A29,A31,XBOOLE_0:def 5;
                      hence contradiction by TARSKI:def 1;
1068
1069
                    end:
1070
       A36:
                    Fk in C by A29, A31, XBOOLE_0:def 5;
1071
       A37:
                    L.k = ((m (#) F).k)@x by A19,A20,A22,A23,Def11
1072
                       .= 0.Z_2 \text{ by } A8,A30,A35,A36;
1073
                    k in Seg (len F) by A20, A22, A23, A25;
1074
                    hence thesis by A37,FUNCOP_1:13;
1075
                  end:
1076
                  hence thesis by A21,FINSEQ_1:18;
1077
                end;
1078
                consider F being FinSequence of V such that
       A38:
1079
                F is one-to-one and
                rng F = Carrier m and
1080
       A39:
                t = Sum (m (#) F) by VECTSP_6:def 9;
       A40:
1081
1082
       A41:
                (Sum (m (#) F))@x = Sum ((m (#) F)@x) by Th34;
1083
                (m (#) F)@x = (len F) \mid -> 0.Z_2 by A17,A38,A39;
1084
                hence thesis by A40, A41, Th5, MATRIX_3:13;
1085
              end;
              u = f
1086
              proof
1087
1088
       A42:
                Sum n = (n.g)*g by VECTSP_6:43;
1089
                g in {g} by TARSKI:def 1;
1090
                then
                n.g = 1.g by RANKNULL:25;
1091
       A43:
                1.g \iff 0.Z_2 \text{ by A3,VECTSP\_6:20};
1092
1093
                then
1094
                1.g = 1_Z_2 by Th5,Th6,CARD_1:88,TARSKI:def 2;
       A44:
                thus thesis by A42, A43, A44, VECTSP_1:def 26;
1095
```

```
1096
              end;
1097
             hence thesis by A6, A7, A15, A16, Th5, RLVECT_1:10;
1098
           end;
1099
           hence thesis by VECTSP_7:def 1;
1100
1101
1103
       theorem
1104
         for f being Element of bspace(X) st (ex x being set st x in X & f = \{x\})
1105
         holds f in singletons(X);
1107
       theorem Th39:
1108
         for {\tt X} being finite set, {\tt A} being Subset of {\tt X}
1109
         ex 1 being Linear_Combination of singletons(X) st Sum 1 = A
1110
       proof
         let X be finite set, A be Subset of X;
1111
         set V = bspace(X);
1112
1113
         set S = singletons(X);
1114
         defpred P[set] means $1 is Subset of X
         implies ex 1 being Linear_Combination of S st Sum 1 = $1;
1115
1116
       A1: A is finite;
       A2: P[{}]
1117
1118
        proof
1119
           assume {} is Subset of X;
1120
           reconsider 1 = ZeroLC(V) as Linear_Combination of S by VECTSP_6:26;
       A3: Sum 1 = 0.V by VECTSP_6:41;
1121
1122
           take 1:
1123
           thus thesis by A3;
1124
         end:
1125
       A4: for x,B being set st x in A & B c= A & P[B] holds P[B \/ \{x\}]
1126
1127
           let x,B be set such that x in A and B c= A and
1128
      A5: P[B]:
1129
           assume
1130
       A6: B \/\ {x} is Subset of X;
1131
           then reconsider B as Subset of X by XBOOLE_1:11;
1132
           consider 1 being Linear_Combination of S such that
1133
      A7: Sum 1 = B by A5;
1134
           per cases;
1135
           suppose
1136
       A8: x in B;
1137
             take 1;
1138
             thus thesis by A7, A8, ZFMISC_1:46;
1139
            end;
1140
           suppose
1141
       A9: not x in B;
1142
             reconsider f = {x} as Element of V by A6,XBOOLE_1:11;
1143
             reconsider g = f as Subset of X;
             reconsider z = ZeroLC(V) as Linear_Combination of {}V by VECTSP_6:26;
1144
             set m = z +* (f,1_Z_2);
1145
             m is Linear_Combination of {}V \/ {f} by RANKNULL:23;
1146
1147
              then reconsider m = z +* (f,1_Z_2) as Linear_Combination of \{f\};
1148
             dom z = [#]V by FUNCT_2:169;
1149
             then
       A10: m.f = 1_Z_2 \text{ by FUNCT}_7:33;
1150
1151
       A11: B misses {x} by A9,ZFMISC_1:56;
1152
             f in S;
1153
              then {f} c= S by ZFMISC_1:37;
1154
             then m is Linear_Combination of S by VECTSP_6:25;
             then reconsider n = 1 + m as Linear_Combination of S by VECTSP_6:52;
1155
       A12: Sum n = (Sum 1) + (Sum m) by VECTSP_6:77
1156
1157
               = (Sum 1) + (m.f)*f by VECTSP_6:43
1158
               .= (Sum 1) + f by A10, VECTSP_1:def 26
1159
               .= B \+\ g by A7,Def5
               .= (B \/ {x}) \ (B /\ {x}) by XBOOLE_1:101

.= (B \/ {x}) \ {} by A11,XBOOLE_0:def 7
1160
1161
1162
               .= B \ / \{x\};
1163
             take n;
```

```
1164
             thus thesis by A12;
1165
           end:
1166
         end:
1167
         P[A] from FINSET_1:sch 2(A1,A2,A4);
1168
         hence thesis;
1169
1171
       theorem Th40:
1172
        for X being finite set holds Lin(singletons(X)) = bspace(X)
1173
       proof
1174
         let X be finite set;
1175
         set V = bspace(X);
1176
         set S = singletons(X);
1177
         for v being Element of V holds v in Lin(S)
1178
         proof
1179
          let v be Element of V;
1180
           reconsider f = v as Subset of X;
1181
           consider A being set such that
1182
      A1: A c= X and
1183
       A2: f = A;
1184
          reconsider A as Subset of X by A1;
1185
           consider 1 being Linear_Combination of {\tt S} such that
      A3: Sum 1 = A by Th39;
1186
          thus thesis by A2,A3,VECTSP_7:12;
1187
1188
        hence thesis by VECTSP_4:40;
1189
1190
       end;
1192
       theorem Th41:
        for X being finite set holds singletons(X) is Basis of bspace(X)
1193
1194
       proof
1195
        let X be finite set;
1196
       A1: singletons(X) is linearly-independent by Th37;
1197
         Lin(singletons(X)) = bspace(X) by Th40;
         hence thesis by A1, VECTSP_7:def 3;
1198
1199
       end:
1201
       registration
1202
        let X be finite set;
1203
         cluster singletons(X) -> finite;
1204
         coherence;
1205
       end;
1207
       registration
         let X be finite set;
1208
        cluster bspace(X) -> finite-dimensional;
1209
1210
         coherence
1211
         proof
           set S = singletons(X);
1212
1213
       A1: S is Basis of bspace(X) by Th41;
1214
         thus thesis by A1, MATRLIN: def 3;
1215
         end;
1216
       end:
1218
       theorem
        card (singletons X) = card X
1219
1220
       proof
1221
         defpred P[set,set] means 1 in X & 2 = {1};
1222
       A2: for x being set st x in X holds ex y being set st P[x,y];
        consider f being Function such that
1224
       A3: dom f = X and
      A4: for x being set st x in X holds P[x,f.x] from CLASSES1:sch 1(A2);
1225
1226
      A5: f is one-to-one
1227
        proof
1228
          let x1,x2 be set such that
1229
       A6: x1 in dom f and
1230
      A7: x2 in dom f and
1231
       A8: f.x1 = f.x2;
1232
       A9: P[x1,f.x1] by A3,A4,A6;
1233
           P[x2,f.x2] by A3,A4,A7;
```

```
1234
           hence thesis by A8,A9,ZFMISC_1:6;
1235
1236
         rng f = singletons(X)
1237
         proof
1238
           thus rng f c= singletons(X)
           proof
1239
1240
            let y be set such that
1241
       A10: y in rng f;
1242
             consider x being set such that
1243
      A11: x in dom f and
1244
       A12: y = f.x by A10,FUNCT_1:def 5;
1245
       A13: f.x = \{x\} by A3, A4, A11;
1246
             then reconsider fx = f.x as Subset of X by A3, A11, ZFMISC 1:37;
1247
             fx is Singleton by A13;
1248
             hence thesis by A12;
1249
           end;
1250
           let y be set such that
1251
       A14: y in singletons(X);
           consider z being Subset of X such that
1252
       A15: y = z and
1253
1254
       A16: z is Singleton by A14;
          reconsider y as Subset of X by A15;
1256
           consider x being set such that
      A17: x in X and
1257
1258
       A18: y = \{x\} by A15,A16,Def9;
1259
           reconsider x as Element of X by A17;
1260
           y = f.x by A4,A17,A18;
           hence thesis by A3,A17,FUNCT_1:12;
1261
1262
         then X, singletons(X) are_equipotent by A3, A5, WELLORD2: def 4;
1263
1264
         hence thesis by CARD_1:21;
1265
1267
       theorem
1268
         card [#](bspace X) = exp(2,card(X)) by CARD_2:44;
1270
       theorem
1271
         dim\ bspace \{\} = 0
1272
         card [#]bspace {} = 1 by CARD_2:60,ZFMISC_1:1;
1273
1274
         hence thesis by RANKNULL:5;
1275
       end;
```

B.3 Euler's polyhedron formula

Note: there is a discrepency between the formal text to be presented and the discussion in the body of the dissertation, especially chapter 3. There, I distinguished the concept of 'simple connectedness' from the neologism 'being a homology sphere' (suggested to me by R. Solovay). The editors of the MIZAR Mathematical Library have approved my change from simply-connected to homology-sphere, but this change is not yet reflected in the edition of the library as it stands on April 15, 2009.

```
1 :: Euler's Polyhedron Formula
2 :: by Jesse Alama
3 ::
4 :: Received October 9, 2007
5 :: Copyright (c) 2007 Association of Mizar Users
7 environ
```

```
vocabularies FINSET_1, FUNCT_1, FUNCT_2, CARD_1, SUBSET_1, TARSKI, BOOLE,
10
           RELAT_1, ORDINAL2, VECTSP_1, VECTSP_9, INT_1, RLVECT_1, GROUP_1, ARYTM_1,
           FINSEQ_1, FINSEQ_2, QC_LANG1, RLSUB_1, BSPACE, RANKNULL, RLVECT_3,
11
12
           MATRLIN, FINSEQ_4, POLYFORM, VECTSP10, PRALG_1, MATRIX_2, POWER,
13
           FUNCOP_1, ARYTM, VALUED_0;
14
      notations TARSKI, XBOOLE_0, ENUMSET1, ZFMISC_1, SUBSET_1, RELAT_1, FUNCT_1,
           RELSET_1, PARTFUN1, FUNCT_2, BINOP_1, CARD_1, NUMBERS, FUNCOP_1,
15
           FINSET_1, XCMPLX_0, XXREAL_0, NAT_1, INT_1, CARD_2,
16
17
           VALUED_O, FINSEQ_1,
18
           FINSEQ_2, POWER, RVSUM_1, NEWTON, ABIAN, STRUCT_0, RLVECT_1, GROUP_1,
19
           VECTSP_1, VECTSP_4, VECTSP_5, VECTSP_7, FVSUM_1, GR_CY_1, MATRLIN,
20
           VECTSP_9, RANKNULL, BSPACE;
21
      constructors NAT_1, VECTSP_9, BINOP_1, REALSET1, FINSOP_1, XXREAL_0, FVSUM_1,
           WELLORD2, BSPACE, REAL_1, BINOP_2, RANKNULL, VECTSP_7, VECTSP_5, NEWTON,
22
23
           GR_CY_1, ABIAN, POWER, CARD_2, CARD_3;
24
      registrations FRAENKEL, FINSET_1, XBOOLE_0, FUNCT_1, FUNCT_2, RELAT_1,
           SUBSET_1, NAT_1, INT_1, VECTSP_1, STRUCT_0, FINSEQ_1, FINSEQ_2, CARD_1,
26
           MATRLIN, BSPACE, ORDINAL1, NEWTON, RVSUM_1, FUNCOP_1, POLYNOM1, ABIAN,
27
           XREAL_O, NUMBERS, JORDAN23, GOBRD13, XCMPLX_O, XXREAL_O, VALUED_O,
           PARTFUN1:
28
29
      requirements NUMERALS, BOOLE, ARITHM, SUBSET, REAL;
      definitions XBOOLE_0, BINOP_1, STRUCT_0, TARSKI, FVSUM_1, FINSEQ_1, BSPACE,
31
           RANKNULL, ALGSTR_0;
      theorems XBOOLE_0, FUNCT_1, RELAT_1, XBOOLE_1, TARSKI, ZFMISC_1, FUNCT_2,
32
           GROUP_1, RLVECT_1, VECTSP_1, FVSUM_1, FINSEQ_2, CARD_1, FINSEQ_1, NAT_1,
33
34
           FINSOP_1, VECTSP_4, BSPACE, RANKNULL, VECTSP_9, ORDINAL1, NEWTON,
35
            RVSUM_1, GR_CY_1, FUNCOP_1, XREAL_1, XXREAL_0, INT_1, JORDAN16, POWER
           FIB_NUM2, NUMBERS, CARD_2, PRE_CIRC, FINSEQ_3, SUBSET_1, MOD_2, MATRIX_3,
36
           CALCUL_1, PARTFUN1, VALUED_0, RELSET_1;
37
     schemes FUNCT_2, FINSEQ_1, FINSEQ_2;
38
40
     begin
42
     theorem Th1:
43
      for X,c,d being set st (ex a,b being set st a <> b & X = {a,b}) & c in X &
44
       d in X \& c \iff d \text{ holds } X = \{c,d\}
     proof
46
      let X.c.d be set such that
47
     A1: ex a,b being set st a <> b & X = {a,b} and
48
     A2: c in X and
49
     A3: d in X and
    A4: c <> d;
51
      consider a,b being set such that a <> b and
     A5: X = \{a,b\} by A1;
52
     A6: {c,d} c= X by A2,A3,ZFMISC_1:38;
53
54
      X c= {c,d}
       proof
55
56
     A7: c = a \text{ or } c = b \text{ by A2,A5,TARSKI:def 2};
     A8: d = a or d = b by A3, A5, TARSKI: def 2;
57
58
         let x be set such that
59
     A9: x in X;
         per cases by A5,A9,TARSKI:def 2;
60
61
         suppose x = a;
          hence thesis by A4, A7, A8, TARSKI: def 2;
62
63
         end:
64
         suppose x = b;
65
           hence thesis by A4,A7,A8,TARSKI:def 2;
66
67
       end;
68
       hence thesis by A6, XBOOLE_0:def 10;
69
71
     theorem Th2:
72
      for f being Function st f is one-to-one holds card (dom f) = card (rng f)
73
     {\tt proof}
74
      let f be Function such that
75
     A1: f is one-to-one;
     A2: dom f, f .: (dom f) are_equipotent by A1,CARD_1:60;
       f .: (dom f) = rng f by RELAT_1:146;
```

```
78
       hence thesis by A2, CARD_1:21;
79
81
     begin :: Arithmetical Preliminaries
83
     reserve n for Nat,
84
      k for Integer;
86
     theorem Th3:
87
      1 <= k implies k is Nat
 88
     proof
       assume 1 <= k;
89
       then reconsider k as Element of NAT by INT_1:16;
90
91
       k is Nat;
92
      hence thesis;
93
     end;
95
     definition
      let a be Integer, b be Nat;
97
       redefine func a*b -> Element of INT;
      coherence by INT_1:def 2;
98
99
     end:
101
     theorem Th4:
102
       1 is odd
103
     proof
104
       1 = (2*(0 qua Nat) qua Nat)+ 1;
105
      hence thesis;
106
     end;
108
     theorem Th5:
109
      2 is even
110
     proof
       2 = 2*1;
111
112
      hence thesis;
113
115
     theorem Th6:
116
      3 is odd
117
     proof
      3 = 2*1 + 1;
118
      hence thesis;
119
120
     end:
122
     theorem Th7:
123
       4 is even
124
     proof
125
      4 = 2*2;
126
       hence thesis;
127
     end:
129
     theorem Th8:
130
      n is even implies (-1)|^n = 1
     proof
131
132
       assume
133
     A1: n is even;
134
      reconsider n as Element of NAT by ORDINAL1:def 13;
135
       (-1)|^n = (-1) to_power n by POWER:46;
      hence thesis by A1,FIB_NUM2:5;
136
137
     end;
139
     theorem Th9:
140
       n is odd implies (-1)|^n = -1
141
     proof
142
       assume
143
     A1: n is odd;
       reconsider n as Element of NAT by ORDINAL1:def 13;
144
       (-1) | ^n = (-1) to_power n by POWER:46;
145
      hence thesis by A1,FIB_NUM2:3;
146
147
149
     theorem Th10:
150
     (-1) |^ n is Integer
151
     proof
152
       per cases;
```

```
153
        suppose n is even;
154
         hence thesis by Th8;
155
         end:
156
        suppose n is odd;
157
         hence thesis by Th9;
158
159
     end;
161
162
        let a be Integer, n be Nat;
        redefine func a | n -> Element of INT;
163
164
        coherence
       proof
165
166
         consider b being Element of NAT such that
167
      A1: a = b or a = -b by INT_1:8;
          per cases by A1;
168
169
          suppose a = b;
170
            then reconsider a as Element of NAT;
171
            reconsider s = a | n as Element of NAT by ORDINAL1:def 13;
172
            s in NAT;
173
            hence thesis by NUMBERS:17;
174
          end:
175
          suppose
176
     A2: a = -b;
177
      A3:
            -b = (-1)*b;
            reconsider bn = b |^ n as Element of NAT by ORDINAL1:def 13;
178
            (-1) |^n is Integer by Th10;
179
            then reconsider 1 = (-1) | n as Element of INT by INT_1:def 2;
180
181
            a |\hat{n} = 1*bn by A2,A3,NEWTON:12;
182
            hence thesis;
183
184
        end;
185
      end;
      Lm1: for x being Element of NAT st 0 < x holds 0 qua Nat+1 <= x by NAT_1:13;
187
       for p,q,r being FinSequence holds len (p \hat{} q) <= len (p \hat{} (q \hat{} r))
190
      proof
191
        let p,q,r be FinSequence; len ((p \hat{} q) \hat{} r) = len (p \hat{} (q \hat{} r)) by FINSEQ_1:45;
192
193
194
       hence thesis by CALCUL_1:6;
195
      end;
197
      theorem Th12:
      1 < n + 2
      proof
199
200
        0 < n + 1  implies 1 < n + 2
201
       proof
202
         assume 0 < n + 1;
203
          0 qua Nat + 1 = 1;
204
          hence thesis by XREAL_1:10;
205
        end:
206
       hence thesis;
207
      end;
209
     theorem Th13:
210
        (-1)|^2 = 1
211
      proof
       (-1)|^2 = (-1)|^(1+1)
          = ((-1)|^1)*((-1)|^1) by NEWTON:13
213
          = ((-1)|^1)*(-1) by NEWTON:10
214
215
          .= (-1)*(-1) by NEWTON:10;
216
       hence thesis;
219
      theorem Th14:
220
        for n being Nat holds (-1) | n = (-1) | (n+2)
221
        let n be Nat;
222
223
        (-1)|^{(n+2)} = ((-1)|^{n})*((-1)|^{2}) by NEWTON:13
```

```
224
          = (-1) | ^n  by Th13;
225
       hence thesis;
226
     end:
228
      begin :: Preliminaries on Finite Sequences
230
     registration
       let f be FinSequence of INT, k be Nat;
        cluster f.k -> integer;
232
233
        coherence
234
        proof
235
          per cases;
236
          suppose k in dom f;
237
            then f.k = f/.k by PARTFUN1:def 8;
238
           hence thesis;
239
          end:
240
          suppose not k in dom f;
          hence thesis by FUNCT_1:def 4;
241
242
          end;
243
        end:
244
      end:
246
      :: A theorem on telescoping sequences of integers.
248
      theorem Th15:
        for a,b,s being FinSequence of INT st len s > 0 & len a = len s &
249
250
        len b = len s & (for n being Nat st 1 <= n & n <= len s
251
        holds s.n = a.n + b.n) & (for k being Nat st 1 <= k & k < len s
252
        holds b.k = -(a.(k+1)) holds Sum s = (a.1) + (b.(len s))
253
     proof
254
       let a,b,s be FinSequence of INT such that
255
      A1: len s > 0 and
      A2: len a = len s and
256
257
      A3: len b = len s and
258
      A4: for n being Nat st 1 <= n & n <= len s holds s.n = a.n + b.n and
     A5: for k being Nat st 1 <= k & k < len s holds b.k = -(a.(k+1));
260
        defpred P[FinSequence of INT] means len $1 > 0 implies
        for a,b being FinSequence of INT st len a = len $1 & len b = len $1 &
261
262
        (for n being Nat st 1 <= n & n <= len $1 holds $1.n = a.n + b.n) &
263
        (for k being Nat st 1 <= k & k < len 1 \text{ holds } b.k = -(a.(k+1))
        holds Sum $1 = a.1 + b.(len $1);
265
     A6: P[<*>INT];
266
     A7: for p being FinSequence of INT, x being Element of INT st P[p]
267
       holds P[p^<*x*>]
        proof
268
269
          let p be FinSequence of INT, x be Element of INT such that
270
     A8: P[p];
271
          set t = p ^ <*x*>;
          assume len t > 0; :: this is outright provable, of course
272
273
          let a,b be FinSequence of INT such that
274
     A9: len a = len t and
275
      A10: len b = len t and
     A11: for n being Nat st 1 <= n & n <= len t holds t.n = a.n + b.n and
276
      A12: for k being Nat st 1 <= k & k < len t holds b.k = -(a.(k+1));
277
278
     A13: Sum t = (Sum p) + x by GR_CY_1:20;
279
          per cases;
280
          suppose
281
     A14: len p = 0;
            then p = {};
282
283
            then
284
     A15: Sum p = 0 by GR_CY_1:22;
285
      A16: t = \langle *x* \rangle
286
            proof
             p = {} by A14;
287
             hence thesis by FINSEQ_1:47;
288
289
            end:
290
            then
     A17: len t = 1 by FINSEQ_1:56;
292
            reconsider egy = 1 as Nat;
```

```
293
            egy <= len t by A16,FINSEQ_1:56;
294
            then t.egy = a.egy + b.egy by A11;
295
            hence thesis by A13,A15,A16,A17,FINSEQ_1:57;
296
          end;
297
          suppose
298
      A18: len p > 0;
            set m = len p;
299
            set a' = a|m;
300
            set b' = b|m;
301
302
      A19: m <= len a & m <= len b by A9,A10,CALCUL_1:6;
303
            then
     A20: len a' = len p by FINSEQ_1:80;
304
      A21: len b' = len p by A19,FINSEQ_1:80;
305
306
      A22: for n being Nat st 1 <= n & n <= len p holds p.n = a'.n + b'.n
307
            proof
308
              let n be Nat such that
309
     A23:
             1 \le n and
             n <= len p;
310
      A24:
              len p <= len t by CALCUL_1:6;</pre>
311
312
              then
313
     A25:
             n <= len t by A24,XXREAL_0:2;
              dom p = Seg len p by FINSEQ_1:def 3;
315
              then
     A26: n in dom p by A23,A24,FINSEQ_1:3;
316
              reconsider n as Element of NAT by ORDINAL1:def 13;
317
318
              p.n = t.n by A26, FINSEQ_1:def 7
319
               .= a.n + b.n by A11,A23,A25
                .= a'.n + b.n by A24,FINSEQ_3:121
320
                .= a'.n + b'.n by A24,FINSEQ_3:121;
321
322
              hence thesis;
323
            end;
324
            for n being Nat st 1 <= n & n < len p holds b'.n = -(a'.(n+1))
325
            proof
326
             let n be Nat such that
327
      A27:
             1 <= n and
328
      A28:
             n < len p;
329
              reconsider n as Element of NAT by ORDINAL1:def 13;
330
      A29:
              b'.n = b.n by A28,FINSEQ_3:121;
              n + 1 <= len p by A28, INT_1:20;
331
      A30:
332
              len p <= len t by CALCUL_1:6;</pre>
333
              then
334
      A31:
              n < len t by A28,XXREAL_0:2;</pre>
              a'.(n+1) = a.(n+1) by A30,FINSEQ_3:121;
335
              hence thesis by A12, A27, A29, A31;
337
            end;
338
            then
339
      A32: Sum p = a'.1 + b'.(len p) by A8,A18,A20,A21,A22;
340
      A33: a'.1 = a.1
341
342
              reconsider egy = 1 as Element of NAT;
              0 qua Nat + 1 = 1;
343
              then egy <= len p by A18, INT_1:20;
344
345
              hence thesis by FINSEQ_3:121;
346
347
            x = -(b'.(len p)) + b.(len t)
            proof
348
      A34:
349
              len t = (len p) + 1
350
              proof
351
               len <*x*> = 1 by FINSEQ_1:56;
352
                hence thesis by FINSEQ_1:35;
353
              end;
      A35:
             1 <= len t
354
355
              {\tt proof}
                0 qua Nat + 1 = 1;
356
357
                hence thesis by A34, XREAL_1:8;
```

```
359
      A36:
              a.(len t) = -(b'.(len p))
              proof
361
      A37:
                len p < len t
362
                proof
363
                  0 qua Nat + len p = len p;
364
                  hence thesis by A34, XREAL_1:8;
                1 <= len p by A18, Lm1;
366
367
                then
368
     A38:
                b.(len p) = -(a.(len p + 1)) by A12,A37;
                b.(len p) = b'.(len p) by FINSEQ_3:121;
369
                hence thesis by A34,A38;
370
371
              end;
              x = t.(len p + 1) by FINSEQ_1:59
372
373
                .= -(b'.(len p)) + b.(len t) by A11,A34,A35,A36;
374
              hence thesis;
375
            end;
376
            hence thesis by A13,A32,A33;
377
          end;
378
        end:
379
        for p being FinSequence of INT holds P[p] from FINSEQ_2:sch 2(A6,A7);
380
        hence thesis by A1, A2, A3, A4, A5;
381
383
      theorem Th16:
       for p,q,r being FinSequence holds
384
385
        len (p ^ q ^ r) = (len p) + (len q) + (len r)
386
      proof
387
        let p,q,r be FinSequence;
        len (p \hat{q} r) = (len (p \hat{q})) + (len r) by FINSEQ_1:35
388
         .= ((len p) + (len q)) + (len r) by FINSEQ_1:35;
389
390
       hence thesis;
391
     end:
393
      theorem Th17:
       for x being set, p,q being FinSequence holds (<*x*> ^ p ^ q).1 = x
394
395
396
      let x be set, p,q be FinSequence;
397
        <*x*> \hat{p} q = <*x*> \hat{q} by FINSEQ_1:45;
398
       hence thesis by FINSEQ_1:58;
399
      end;
401
      theorem Th18:
402
       for x being set, p,q being FinSequence
        holds (p \hat{q} < *x*>).((len p) + (len q) + 1) = x
403
404
      proof
405
       let x be set, p,q be FinSequence;
406
        set s = p ^ q;
        (s ^ <*x*>).((len s) + 1) = x by FINSEQ_1:59;
       hence thesis by FINSEQ_1:35;
408
409
      end:
411
      theorem Th19:
        for p,q,r being FinSequence, k being Nat st len p < k & k <= len (p ^ q)
412
413
        holds (p \hat{q} \hat{r}).k = q.(k - (len p))
414
415
        let p,q,r be FinSequence, k be Nat such that
416
      A1: len p < k and
417
      A2: k \le len (p ^ q);
        len (p ^{\circ} q) <= len (p ^{\circ} (q ^{\circ} r)) by Th11;
then k <= len (p ^{\circ} (q ^{\circ} r)) by A2,XXREAL_0:2;
418
419
420
      A3: (p ^ (q ^ r)).k = (q ^ r).(k - (len p)) by A1,FINSEQ_1:37;
421
        set n = k - (len p);
422
        (len p) - (len p) = 0;
423
424
        then
425
     A4: 0 < n by A1, XREAL_1:11;
       0 qua Nat + 1 = 1;
427
        then
```

```
428
     A5: 1 <= n by A4, INT_1:20;
      then reconsider n as Nat by Th3;
430
     A6: k <= (len p) + (len q) by A2,FINSEQ_1:35;
431
       n <= len q
432
       proof
433
          ((len p) + (len q)) - (len p) = len q;
          hence thesis by A6, XREAL_1:11;
434
435
        end:
        then n in Seg (len q) by A5,FINSEQ_1:3;
436
437
       then
438
     A7: n in dom q by FINSEQ_1:def 3;
      reconsider n as Element of NAT by ORDINAL1:def 13;
439
440
        (q \hat{r}).n = q.n by A7,FINSEQ_1:def 7;
441
       hence thesis by A3,FINSEQ_1:45;
442
     end;
444
     definition
445
       let a be Integer;
446
       redefine func <*a*> -> FinSequence of INT;
447
      proof
     set s = <*a*>;
A1: rng s = {a} by FINSEQ_1:55;
449
450
       a in INT by INT_1:def 2;
451
452
          then {a} c= INT by ZFMISC_1:37;
         hence thesis by A1,FINSEQ_1:def 4;
454
       end:
455
     end;
457
     definition
       let a,b be Integer;
458
       redefine func <*a,b*> -> FinSequence of INT;
459
460
       coherence
      proof
461
462
         set s = <*a,b*>;
     A1: rng s = \{a,b\} by FINSEQ_2:147;
463
464
          {a,b} c= INT
          proof
465
466
            a in INT & b in INT by INT_1:def 2;
            hence thesis by ZFMISC_1:38;
467
468
          end:
          hence thesis by A1,FINSEQ_1:def 4;
469
470
       end;
471
473
     definition
474
      let a,b,c be Integer;
475
        redefine func <*a,b,c*> -> FinSequence of INT;
476
       coherence
      proof
477
478
         set s = <*a,b,c*>;
479
     A1: rng s = \{a,b,c\} by FINSEQ_2:148;
480
          {a,b,c} c= INT
     proof
A2: a in INT by INT_1:def 2;
A3: b in INT by INT_1:def 2;
481
482
483
484
            c in INT by INT_1:def 2;
485
            hence thesis by A2, A3, JORDAN16:2;
         hence thesis by A1,FINSEQ_1:def 4;
487
488
       end:
489
      end;
491
      definition
       let p,q be FinSequence of INT;
492
493
        redefine func p ^ q -> FinSequence of INT;
494
        coherence by FINSEQ_1:96;
```

```
497
      theorem Th20:
498
       for p,q being FinSequence of INT holds Sum (p ^ q) = (Sum p) + (Sum q)
499
500
        let p,q be FinSequence of INT;
501
      A1: rng p c= REAL by NUMBERS:15,XBOOLE_1:1;
502
        rng q c= REAL by NUMBERS:15,XBOOLE_1:1;
        then reconsider p,q as real-valued FinSequence by A1,VALUED_0:def 3;
504
        Sum (p \hat{q}) = (Sum p) + (Sum q) by RVSUM_1:105;
505
        hence thesis;
506
     end:
508
     theorem Th21:
509
        for k being Integer, p being FinSequence of INT
510
        holds Sum (<*k*> ^p) = k + (Sum p)
511
     proof
       let k be Integer, p be FinSequence of INT;
512
        reconsider k as Element of INT by INT_1:def 2;
513
        Sum (**k*> ^ p) = (Sum p) + (Sum (**k*>) by Th20
.= Sum (p ^ (**k*>) by Th20
514
515
516
          .= k + (Sum p) by GR_CY_1:20;
517
        hence thesis;
518
     end:
520
      theorem Th22:
521
       for p,q,r being FinSequence of INT
        holds Sum (p \hat{q} \hat{r}) = (Sum p) + (Sum q) + (Sum r)
522
523
524
        let p,q,r be FinSequence of INT;
525
        Sum (p \hat{q} r) = (Sum (p \hat{q})) + (Sum r) by Th20
         .= ((Sum p) + (Sum q)) + Sum r by Th20;
526
527
       hence thesis:
528
     end:
530
     theorem
531
       for a being Element of Z_2 holds Sum <*a*> = a by FINSOP_1:12;
533
     begin :: Polyhedra and Incidence Matrices
535
      :: An incidence matrix is a function that says of any two objects
      :: (contained in some set) whether they are incidence to each other.
536
     definition
539
       let X.Y be set:
       mode incidence-matrix of X,Y is Element of Funcs([:X,Y:],{0.Z 2,1.Z 2});
540
541
543
      theorem Th24:
       for X,Y being set holds [:X,Y:] --> 1.Z_2 is incidence-matrix of X,Y
544
545
546
       let X,Y be set;
547
        set f = [:X,Y:] --> 1.Z_2;
     A1: dom f = [:X,Y:] by FUNCOP_1:19;
548
     A2: rng f c= {1.Z_2} by FUNCOP_1:19;
549
550
       \{1.Z_2\}\ c= \{0.Z_2,1.Z_2\}\ by\ ZFMISC_1:12;
551
        then rng f c= {0.Z_2,1.Z_2} by A2,XBOOLE_1:1;
       hence thesis by A1, FUNCT_2:def 2;
553
     end:
555
      :: A polyhedron (one might call it an abstract polyhedron) consists of
556
      :: two pieces of data: a sequence of ordered sets, representing the
557
      :: polytope sets (they are ordered for convenience's sake) and a
558
      :: sequence of incidence matrices, which lays out the incidence
559
      :: relation between the (k-1)-polytopes and the k-polytopes.
561
     definition
562
        struct PolyhedronStr(# PolytopsF ->FinSequence-yielding FinSequence,
          IncidenceF ->Function-yielding FinSequence #);
563
564
566
      :: The following properties, 'polyhedron_1', 'polyhedron_2', and
      :: 'polyhedron_3' are admittedly a bit contrived. However, they ensure
568
      :: that a PolyhedronStr is a polyhedron: that there is one more polytope set
569
      :: than incidence matrix, that the incidience matrices are incidence matrices
```

```
:: of the right sets, and that each term of the polytope sequence is an
     :: enumeration of the respective polytope set.
       let p be PolyhedronStr;
575
        attr p is polyhedron_1 means
576
        :Def1:
577
        len the IncidenceF of p = len(the PolytopsF of p) - 1;
        attr p is polyhedron_2 means
        :Def2:
580
       for n being Nat
581
        st 1 <= n & n < len the PolytopsF of p holds (the IncidenceF of p).n
582
        is incidence-matrix of rng ((the PolytopsF of p).n),
583
        rng ((the PolytopsF of p).(n+1));
584
        attr p is polyhedron_3 means
        :Def3:
585
586
        for n being Nat
587
        st 1 <= n & n <= len the PolytopsF of p
588
        holds (the PolytopsF of p).n is non empty &
589
       (the PolytopsF of p).n is one-to-one;
590
     registration
593
       cluster polyhedron_1 polyhedron_2 polyhedron_3 PolyhedronStr;
594
        existence
595
        proof
          reconsider F = <*<*{}*>*> as FinSequence-yielding FinSequence;
596
597
          reconsider I = <*>{} as Function-yielding FinSequence;
598
          take p = PolyhedronStr(#F,I#);
     A1: len F = 1 by FINSEQ_1:56;
599
          len I = 1-1;
600
601
          hence p is polyhedron_1 by A1,Def1;
602
          for n being Nat st 1 <= n & n < 1
603
          holds I.n is incidence-matrix of rng (F.n),rng (F.(n+1));
604
          hence p is polyhedron_2 by A1,Def2;
605
          let n be Nat such that
606
     A2: 1 <= n and
607
      A3: n <= len the PolytopsF of p;
608
         n = 1 by A1,A2,A3,XXREAL_0:1;
         hence thesis by FINSEQ_1:def 8;
609
610
       end:
611
      end;
613
     definition
614
      mode polyhedron is polyhedron_1 polyhedron_2 polyhedron_3 PolyhedronStr;
     end;
615
617
     reserve p for polyhedron,
      k for Integer,
618
619
       n for Nat;
621 :: The dimension \dim(p) of a polyhedron p is just the number of
622 :: polytope sets that it has.
624
     definition
625
       let p be polyhedron;
626
      func dim(p) -> Element of NAT equals
628
     len the PolytopsF of p;
629
       coherence;
632
     :: For integers k such that 0 <= k <= \dim(p), the set of k-polytopes
      :: is data already given by the polyhedron. For k = dim(p), the set
     :: is the singleton \{p\}, which seems clear enough. For k = -1, it is
635
      :: convenient to define the set of k-polytopes to be {{}}. Doing this
636
      :: ensures that, if p is simply connected, then any two vertices are
637
      :: connected by a system of edges.
638
639
     :: For k < -1 and k > dim(p), the set of k-polytopes of p is empty.
641
      let p be polyhedron, k be Integer;
```

```
643
        func k-polytopes(p) -> finite set means
644
        :Def5:
645
        (k < -1 implies it = {}) &
        (k = -1 \text{ implies it } = \{\{\}\}) \& (-1 < k \& k < \dim(p) \text{ implies}
646
647
        it = rng ((the PolytopsF of p).(k+1))) & (k = dim(p) implies it = \{p\}) &
648
        (k > dim(p) implies it = {});
649
        existence
        proof
650
          set F = the PolytopsF of p;
651
652
          per cases by XXREAL_0:1;
653
          suppose
     A1: k < -1;
654
655
            take {};
656
            thus thesis by A1;
657
          end;
658
          suppose
659
     A2: k = -1;
660
            take {{}};
661
            thus thesis by A2;
662
          end:
663
          suppose
664
     A3: -1 < k \& k < dim(p);
665
            -1 + 1 = 0;
666
            then 0 <= k by A3, INT_1:20;
            then reconsider k as Element of NAT by INT_1:16;
667
            set n = k + 1;
668
669
            reconsider Fn = F.n as FinSequence;
670
            take rng Fn;
671
           thus thesis by A3;
672
          end:
673
          suppose
674
      A4: k = dim(p);
675
            take {p};
676
           thus thesis by A4;
677
          end:
678
          suppose
679
     A5: k > dim(p);
680
            take {};
            thus thesis by A5;
682
          end;
683
        end;
684
        uniqueness
        proof
685
686
          set F = the PolytopsF of p;
687
          let X,Y be finite set such that
     A6: k < -1 implies X = \{\} and
688
     A7: k = -1 implies X = \{\{\}\} and
689
     A8: (-1 < k & k < dim(p)) implies X = rng (F.(k+1)) and
690
691
      A9: k = dim(p) implies X = \{p\} and
692
      A10: k > dim(p) implies X = \{\} and
693
     A11: k < -1 implies Y = \{\} and
     A12: k = -1 implies Y = \{\{\}\} and
694
     A13: (-1 < k & k < dim(p)) implies Y = rng (F.(k+1)) and
695
696
      A14: k = dim(p) implies Y = \{p\} and
697
      A15: k > dim(p) implies Y = \{\};
698
          per cases by XXREAL_0:1;
          suppose k < -1;
699
700
           hence thesis by A6,A11;
701
          end:
702
          suppose k = -1;
703
           hence thesis by A7, A12;
704
          end:
705
          suppose -1 < k & k < dim(p);
706
            hence thesis by A8, A13;
707
          end;
708
          suppose k = dim(p);
```

```
709
            hence thesis by A9, A14;
710
          end;
711
          suppose k > dim(p);
712
           hence thesis by A10,A15;
713
714
        end;
715
     end;
717
     theorem Th25:
       -1 < k & k < dim(p) implies k + 1 is Nat & 1 <= k + 1 & k + 1 <= dim(p)
718
     proof
719
720
       assume
721
     A1: -1 < k;
722
       assume
723
      A2: k < dim(p);
724
      -1 + 1 = 0;
725
       then
726
     A3: 0 < k + 1 by A1, XREAL_1:8;
727
       then reconsider n = k + 1 as Element of NAT by INT_1:16;
728
      A4: n is Nat;
729
      0 qua Nat + 1 = 1;
       hence thesis by A2, A3, A4, INT_1:20;
730
731
     end;
733
     theorem Th26:
       k-polytopes(p) is non empty iff (-1 <= k & k <= dim(p))
734
735
      proof
      set X = k-polytopes(p);
737
        thus X is non empty implies -1 <= k & k <= dim(p) by Def5;
738
       thus -1 \le k \& k \le \dim(p) implies k-polytopes(p) is non empty
739
      proof
740
         assume
741
     A1: -1 <= k;
742
          assume
743
     A2: k <= dim(p);
        per cases by A1,A2,XXREAL_0:1;
744
          suppose k = -1;
745
746
           hence thesis by Def5;
747
          end;
748
         suppose
749
     A3: -1 < k & k < dim(p);
750
            set F = the PolytopsF of p;
     A4: k-polytopes(p) = rng (F.(k+1)) by A3,Def5;
751
752
            set n = k + 1;
     A5: 1 <= n by A3, Th25;
754
     A6: n <= dim(p) by A3, Th25;
            reconsider n as Element of NAT by A5, INT_1:16;
755
756
            reconsider n as Nat;
757
            F.n is non empty & F.n is one-to-one by A5,A6,Def3;
758
            hence thesis by A4;
759
          end;
          suppose k = dim(p);
760
761
            then k-polytopes(p) = \{p\} by Def5;
762
            hence thesis;
763
          end;
764
       end;
765
     end;
768
       k < dim(p) implies k - 1 < dim(p) by XREAL_1:148,XXREAL_0:2;</pre>
      :: As we defined the set of k-polytopes for all integers k, we define
     :: the an incidence matrix, eta(p,k), for any integer k. Naturally,
772
      :: for almost all k, this is the empty matrix (empty function). The
      \hfill :: two cases in which we extend the data already given by the
774
      :: polyhedron itself is for k = 0 and k = dim(p). For the latter, we
      :: declare that the empty set (the unique -1-dimensional polytope) is
      :: incident to all 0-polytopes. For the latter, we declare that every
```

```
777
     :: (dim(p)-1)-polytope is incidence to p, the unique dim(p)-polytope
     :: of p.
778
780
781
        let p be polyhedron, k be Integer;
        func eta(p,k) -> incidence-matrix of (k-1)-polytopes(p),k-polytopes(p) means
782
783
        :Def6:
784
        (k < 0 \text{ implies it = {}}) &
785
        (k = 0 implies it = [:\{\{\}\},0-polytopes(p):] \longrightarrow 1.Z_2) &
786
        (0 < k & k < dim(p) implies it = (the IncidenceF of p).k) &
787
        (k = dim(p) implies it = [:(dim(p) - 1)-polytopes(p), {p}:] --> 1.Z_2) &
788
        (k > dim(p) implies it = {});
789
        existence
790
        proof
791
          per cases by XXREAL_0:1;
792
          suppose
793
     A1: k < 0;
794
            (k-1)-polytopes(p) = {}
795
            proof
796
              k - 1 < 0 qua Nat - 1 by A1, XREAL_1:11;
797
             hence thesis by Th26;
798
            end:
799
            then
            [:(k-1)-polytopes(p),k-polytopes(p):] = {} by ZFMISC_1:113;
800
      A2:
801
            set f = {};
            reconsider f as Function;
803
            reconsider f as
            Function of [:(k-1)-polytopes(p),k-polytopes(p):],\{0.Z_2,1.Z_2\}
804
805
            by A2, RELSET 1:25;
806
            reconsider f as
807
            Element of Funcs([:(k-1)-polytopes(p),k-polytopes(p):],{0.Z_2,1.Z_2})
808
            by FUNCT_2:11;
809
            take f:
810
            thus thesis by A1;
811
          end;
812
          suppose
813
     A3: k > dim(p);
            then k-polytopes(p) = {} by Th26;
814
815
            then
      A4: [:(k-1)-polytopes(p),k-polytopes(p):] = {} by ZFMISC_1:113;
816
817
            set f = {};
818
            reconsider f as Function;
819
            reconsider f as
            Function of [:(k-1)-polytopes(p),k-polytopes(p):],\{0.Z_2,1.Z_2\}
820
821
            by A4, RELSET_1:25;
822
            reconsider f as
823
            \label{eq:element} \textbf{Element of Funcs}([:(k-1)-polytopes(p),k-polytopes(p):],\{0.Z_2,1.Z_2\})
            by FUNCT_2:11;
825
            take f:
826
            thus thesis by A3:
827
           end;
828
          suppose
           0 < k & k < dim(p);
829
      A5:
830
            set F = the PolytopsF of p, I = the IncidenceF of p;
            0 qua Nat + 1 = 1;
831
832
            then
833
      A6:
            1 <= k by A5, INT_1:20;
            1 - 1 = 0;
834
            then -1 < k - 1 & k - 1 < \dim(p) by A5, A6, Th27, XREAL_1:11;
835
836
            (k-1)-polytopes(p) = rng (F.((k-1)+1)) by Def5;
837
      A7:
838
            k-polytopes(p) = rng (F.(k+1)) by A5,Def5;
839
            reconsider k' = k as Nat by A6, Th3;
            reconsider Ik = I.k' as incidence-matrix of (k-1)-polytopes(p),
840
841
            k-polytopes(p) by A5, A6, A7, A8, Def2;
842
            take Ik;
843
            thus thesis by A5;
```

```
844
           end;
845
           suppose
      A9: k = 0;
846
847
             per cases;
848
             suppose
849
      A10:
               k = dim(p);
850
      A11:
               (k-1)-polytopes(p) = {{}} by A9,Def5;
851
               set f = [:{\{\}},{p}:] \longrightarrow 1.Z_2;
               reconsider f as incidence-matrix of \{\{\}\},\{p\} by Th24;
852
853
               reconsider f as incidence-matrix of (k-1)-polytopes(p),
854
               k-polytopes(p) by A10,A11,Def5;
855
               take f;
856
               thus thesis by A9, A10, Def5;
857
             end;
858
             suppose
859
      A12:
               k <> dim(p);
860
               set f = [:{\{\}}, 0-polytopes(p):] --> 1.Z_2;
861
               reconsider f as incidence-matrix of {{}},0-polytopes(p) by Th24;
               reconsider f as incidence-matrix of (k-1)-polytopes(p),
862
863
               k-polytopes(p) by A9,Def5;
864
               take f:
               thus thesis by A9,A12;
866
             end;
867
           end:
868
           suppose
869
      A13: k = dim(p);
870
             per cases;
871
             suppose
872
             k = 0;
      A14:
873
               then
874
      A15:
               (k-1)-polytopes(p) = \{\{\}\} by Def5;
875
               set f = [:{\{\}\}, \{p\}:}] \longrightarrow 1.Z_2;
876
               reconsider f as incidence-matrix of {{}},{p} by Th24;
877
               reconsider f as incidence-matrix of (k-1)-polytopes(p),
878
               k-polytopes(p) by A13,A15,Def5;
879
               take f:
880
               thus thesis by A13,A14,Def5;
881
             end;
882
             suppose
883
      A16:
              k <> 0;
884
               set f = [:(dim(p) - 1)-polytopes(p),{p}:] \longrightarrow 1.Z_2;
885
               reconsider f as incidence-matrix of (\dim(p) - 1)-polytopes(p),\{p\}
886
               by Th24;
               reconsider f as incidence-matrix of (k-1)-polytopes(p),
888
               k-polytopes(p) by A13,Def5;
889
               take f;
               thus thesis by A13,A16;
890
891
             end;
892
           end;
893
         end;
894
        uniqueness
895
        proof
896
           set I = the IncidenceF of p;
897
           let s,t be incidence-matrix of (k-1)-polytopes(p), k-polytopes(p) such that
      A17: (k < 0 \text{ implies } s = \{\}) and
898
      A18: (k = 0 \text{ implies } s = [:{\{\}}, 0-polytopes(p):] \longrightarrow 1.Z_2) and
899
      A19: (0 < k \& k < dim(p) implies s = I.k) and
900
901
      A20: (k = dim(p) implies s = [:(dim(p) - 1)-polytopes(p),\{p\}:] --> 1.Z_2) and
902
      A21: (k > dim(p) implies s = {}) and
      A22: (k < 0 \text{ implies } t = \{\}) and
      A23: (k = 0 \text{ implies } t = [:{\{\}}, 0-polytopes(p):] --> 1.Z_2) and
904
      A24: (0 < k & k < \dim(p) implies t = I.k) and
905
906
      A25: (k = dim(p) implies t = [:(dim(p) - 1)-polytopes(p),\{p\}:] --> 1.Z_2) and
907
      A26: (k > dim(p) implies t = {});
908
           per cases by XXREAL_0:1;
           suppose k < 0;
```

```
910
             hence thesis by A17,A22;
911
           end;
912
           suppose k = 0;
913
            hence thesis by A18,A23;
914
           end;
915
           suppose 0 < k & k < dim(p);
916
            hence thesis by A19,A24;
917
           end:
918
           suppose k = dim(p);
919
            hence thesis by A20,A25;
920
           suppose k > dim(p);
921
922
             hence thesis by A21,A26;
923
           end:
924
         end;
925
       end;
927
      definition
928
        let p be polyhedron, k be Integer;
929
         func k-polytope-seq(p) -> FinSequence means
930
931
         (k < -1 \text{ implies it } = <*>{}) & (k = -1 \text{ implies it } = <*{}*>) &
         (-1 < k \& k < dim(p) implies it = (the PolytopsF of p).(k+1)) \&
932
         (k = dim(p) implies it = <*p*>) & (k > dim(p) implies it = <*>{});
933
934
         existence
935
        proof
          per cases by XXREAL_0:1;
936
937
           suppose
938
      A1: k < -1;
939
             take <*>{};
940
             thus thesis by A1;
941
           end;
942
           suppose
943
      A2: k = -1;
944
             take <*{}*>;
945
             thus thesis by A2;
946
           end;
947
          suppose
      A3: -1 < k & k < dim(p);
948
             set F = the PolytopsF of p;
949
             take F.(k+1);
950
951
             thus thesis by A3;
952
           end;
953
           suppose
954
      A4: k = dim(p);
955
             take <*p*>;
956
             thus thesis by A4;
957
           end;
958
          suppose
      A5: k > dim(p);
959
960
             take <*>{};
961
             thus thesis by A5;
           end;
963
        end:
964
        uniqueness
        proof
965
966
           set F = the PolytopsF of p;
967
           let s,t be FinSequence such that
     A6: (k < -1 \text{ implies } s = <*>{}) \text{ and}
A7: (k = -1 \text{ implies } s = <*{}*>) \text{ and}
968
970
      A8: (-1 < k & k < dim(p) implies s = F.(k+1)) and
971
      A9: (k = dim(p) implies s = <*p*>) and
      A10: (k > dim(p) implies s = <*>{}) and
972
     A11: (k < -1 \text{ implies } t = <*>{}) and A12: (k = -1 \text{ implies } t = <*{}*>) and
973
975
      A13: (-1 < k \& k < dim(p) implies t = F.(k+1)) and
     A14: (k = dim(p) implies t = <*p*>) and
976
```

```
977
       A15: (k > dim(p) implies t = <*>{});
          per cases by XXREAL_0:1;
978
           suppose k < -1;</pre>
 979
 980
            hence thesis by A6,A11;
 981
           end;
 982
           suppose k = -1;
            hence thesis by A7,A12;
 983
 984
           end:
           suppose -1 < k \& k < dim(p);
 985
 986
             hence thesis by A8,A13;
 987
           suppose k = dim(p);
 988
 989
             hence thesis by A9, A14;
 990
           end;
 991
           suppose k > dim(p);
 992
             hence thesis by A10,A15;
 993
 994
        end;
995
       end;
 997
       definition
998
        let p be polyhedron, k be Integer;
        func num-polytopes(p,k) -> Element of NAT equals
999
1001
        card(k-polytopes(p));
1002
        coherence;
1003
       end;
       :: It will be convenient to use these in the cases of Euler's
1006
       :: polyhedron formula that interest us.
1008
       definition
1009
        let p be polyhedron;
         func num-vertices(p) -> Element of NAT equals
1010
1012
         num-polytopes(p,0);
1013
         correctness;
         func num-edges(p) -> Element of NAT equals
1014
1016
         num-polytopes(p,1);
1017
         correctness;
         func num-faces(p) -> Element of NAT equals
1018
1020
         num-polytopes(p,2);
1021
        correctness;
1022
       end;
1024
       theorem Th28:
1025
       dom (k-polytope-seq(p)) = Seg (num-polytopes(p,k))
1026
       proof
        set F = the PolytopsF of p;
1027
        per cases;
1028
1029
         suppose
       A1: k < -1;
1030
1031
           then
1032
       A2: k-polytope-seq(p) = <*>{} by Def7;
1033
           k-polytopes(p) = {} by A1,Def5;
1034
           hence thesis by A2,FINSEQ_1:def 3;
1035
1036
         suppose
       A3: -1 \le k \& k \le \dim(p);
1037
1038
           per cases by A3,XXREAL_0:1;
1039
           suppose
1040
      A4: k = -1;
1041
             then
       A5: k-polytopes(p) = {{}} by Def5;
1042
1043
       A6: k-polytope-seq(p) = <*{}*> by A4,Def7;
1044
             num-polytopes(p,k) = 1 by A5, CARD_2:60;
1045
             len (k-polytope-seq(p)) = 1 by A6,FINSEQ_1:56;
1046
            hence thesis by A7,FINSEQ_1:def 3;
1047
           end;
1048
           suppose
       A8: -1 < k & k < dim(p);
1049
```

```
1050
      A9: k-polytope-seq(p) = F.(k+1) by Def7;
1051
1052
       A10: k-polytopes(p) = rng (F.(k+1)) by A8,Def5;
1053
             set n = k + 1;
1054
             reconsider n as Nat by A8, Th25;
1055
             reconsider Fn = F.n as FinSequence;
1056
             1 <= n & n <= dim(p) by A8, Th25;
             then Fn is one-to-one by Def3;
1057
             then num-polytopes(p,k) = card (dom Fn) by A10,Th2;
1058
1059
             then len Fn = num-polytopes(p,k) by PRE_CIRC:21;
1060
             hence thesis by A9,FINSEQ_1:def 3;
1061
           end;
1062
           suppose
1063
      A11: k = dim(p);
1064
             then
1065
       A12: k-polytopes(p) = {p} by Def5;
1066
       A13: k-polytope-seq(p) = <*p*> by A11,Def7;
1067
       A14: num-polytopes(p,k) = 1 by A12, CARD_2:60;
             len (k-polytope-seq(p)) = 1 by A13,FINSEQ_1:56;
1068
1069
             hence thesis by A14,FINSEQ_1:def 3;
1070
           end:
1071
1072
         suppose
1073
      A15: k > dim(p);
1074
           then
       A16: k-polytope-seq(p) = <*>{} by Def7;
1075
1076
           k-polytopes(p) = {} by A15,Def5;
1077
           hence thesis by A16,FINSEQ_1:def 3;
1078
         end:
1079
       end:
1081
       theorem Th29:
1082
        len (k-polytope-seq(p)) = num-polytopes(p,k)
1083
       proof
1084
         \label{eq:constraints} dom\ (k-polytope-seq(p)) \ = \ Seg\ (num-polytopes(p,k)) \ by \ Th28;
1085
         hence thesis by FINSEQ_1:def 3;
1086
       end;
1088
       theorem Th30:
1089
        rng (k-polytope-seq(p)) = k-polytopes(p)
1090
1091
        set F = the PolytopsF of p;
1092
         per cases:
1093
         suppose
1094
       A1: k < -1;
1095
           then k-polytopes(p) = {} by Def5;
1096
           hence thesis by A1,Def7,RELAT_1:60;
1097
         end;
1098
         suppose
1099
      A2: -1 \le k \& k \le dim(p);
1100
           per cases by A2,XXREAL_0:1;
1101
           suppose
      A3: k = -1;
1102
1103
             then
1104
       A4: k-polytopes(p) = {{}} by Def5;
1105
             k-polytope-seq(p) = <*{}*> by A3,Def7;
1106
             hence thesis by A4,FINSEQ_1:55;
1107
           end;
1108
           suppose
            -1 < k & k < dim(p);
1109
       A5:
             then k-polytopes(p) = rng (F.(k+1)) by Def5;
1110
1111
             hence thesis by A5, Def7;
1112
           end;
1113
           suppose
      A6: k = dim(p);
1114
1115
             then
      A7: k-polytopes(p) = {p} by Def5;
1116
1117
             k-polytope-seq(p) = <*p*> by A6,Def7;
```

```
1118
             hence thesis by A7,FINSEQ_1:55;
1119
           end:
1120
         end;
1121
         suppose
1122
       A8: k > dim(p);
1123
           then k-polytopes(p) = {} by Def5;
           hence thesis by A8,Def7,RELAT_1:60;
1124
1125
        end:
1126
       end;
1128
       theorem Th31:
1129
         num-polytopes(p,-1) = 1
1130
       proof
1131
        reconsider minusone = -1 as Integer;
1132
         minusone-polytopes(p) = {{}} by Def5;
        hence thesis by CARD_1:50;
1133
1134
       end:
1136
       theorem Th32:
1137
        num-polytopes(p,dim(p)) = 1
1138
1139
         dim(p)-polytopes(p) = {p} by Def5;
        hence thesis by CARD_1:50;
1140
1141
       end;
1143
       :: The k-polytope sets aren't really sets: they're ordered sets
1144
       :: (finite sequences).
1145
       :: Since the k-polytope sets are empty for k < -1 and k > \dim(p), we
1146
1147
       :: have to put a condition on n and k for the definition to make
1148
1150
       definition
1151
         let p be polyhedron, k be Integer, n be Nat;
1152
1153
       A1: 1 <= n & n <= num-polytopes(p,k) & -1 <= k & k <= dim(p);
1154
         func n-th-polytope(p,k) \rightarrow Element of k-polytopes(p) equals
1155
         :Def12:
1156
         (k-polytope-seq(p)).n;
1157
         coherence
1158
         proof
1159
           n in Seg num-polytopes(p,k) by A1,FINSEQ_1:3;
           then n in dom (k-polytope-seq(p)) by Th28;
1160
           then (k-polytope-seq(p)).n in rng (k-polytope-seq(p)) by FUNCT_1:12;
1161
1162
           hence thesis by Th30;
1163
1164
       end;
1166
       theorem Th33:
        -1 <= k & k <= dim(p) implies for x being Element of k-polytopes(p)
1167
1168
        ex n being Nat st x = n-th-polytope(p,k) & 1 <= n & n <= num-polytopes(p,k)
1169
       proof
1170
         assume
1171
       A1: -1 \le k \& k \le dim(p);
1172
        let x be Element of k-polytopes(p);
1173
         per cases by A1,XXREAL_0:1;
1174
         suppose
1175
       A2: k = -1;
1176
           then
1177
       A3: k-polytopes(p) = {{}} by Def5;
1178
           then
       A4: x = {} by TARSKI:def 1;
1179
1180
           reconsider n = 1 as Nat;
1181
           k-polytope-seq(p) = <*{}*> by A2,Def7;
       A5: (k-polytope-seq(p)).n = {} by FINSEQ_1:def 8;
1183
1184
       A6: n \le num-polytopes(p,k) by A3,CARD_1:50;
1185
           take n;
1186
           thus thesis by A1, A4, A5, A6, Def12;
1187
```

```
1188
         suppose
       A7: k = dim(p);
1189
1190
           then
1191
       A8: k-polytopes(p) = {p} by Def5;
1192
           then
1193
       A9: x = p by TARSKI:def 1;
          reconsider n = 1 as Nat;
1194
1195
       A10: num-polytopes(p,k) = 1 by A8, CARD_1:50;
           k-polytope-seq(p) = <*p*> by A7,Def7;
1196
1197
           then
1198
       A11: (k-polytope-seq(p)).n = p by FINSEQ_1:def 8;
1199
           take n;
1200
           thus thesis by A1, A9, A10, A11, Def12;
1201
         end;
1202
         suppose
1203
       A12: -1 < k & k < dim(p);
1204
          set F = the PolytopsF of p;
1205
       A13: k-polytopes(p) = rng (F.(k+1)) by A12, Def5;
1206
      A14: k-polytope-seq(p) = F.(k+1) by A12,Def7;
1207
           then
1208
      A15: num-polytopes(p,k) = len (F.(k+1)) by Th29;
1209
      A16: -1 + 1 < k + 1 by A12, XREAL_1:8;
1210
       A17: k + 1 \le dim(p) by A12, INT_1:20;
1211
       A18: 0 qua Nat + 1 <= k + 1 by A16, INT_1:20;
           reconsider k' = k + 1 as Element of NAT by A16, INT_1:16;
1212
1213
           F.k' is non empty by A17,A18,Def3;
1214
           then rng (F.k') is non empty;
1215
           then consider m being set such that
1216
       A19: m in dom (F.k') and
       A20: (F.k').m = x by A13, FUNCT_1:def 5;
1217
          reconsider Fk' = F.k' as FinSequence;
1218
1219
       A21: dom Fk' = Seg (len Fk') by FINSEQ_1:def 3;
1220
           reconsider m as Element of NAT by A19;
1221
       A22: 1 <= m & m <= len Fk' by A19,A21,FINSEQ_1:3;
1222
           take m:
1223
           thus thesis by A12, A14, A15, A20, A22, Def12;
1224
         end;
1225
       end;
1227
       theorem Th34:
1228
         k-polytope-seq(p) is one-to-one
1229
       proof
1230
         set s = k-polytope-seq(p);
         per cases by XXREAL_0:1;
1231
1232
         suppose k < -1;
1233
          hence thesis by Def7;
1234
         end;
1235
         suppose k = -1;
1236
           hence thesis by Def7;
1237
         end:
1238
         suppose
1239
       A1: -1 < k & k < dim(p);
          set F = the PolytopsF of p;
1240
1241
       A2: s = F.(k+1) by A1, Def7;
       A3: -1 + 1 < k + 1 by A1, XREAL_1:8;
1242
1243
           then reconsider m = k + 1 as Element of NAT by INT_1:16;
1244
       A4: 0 qua Nat + 1 <= m by A3, INT_1:20;
1245
           m <= dim(p) by A1, INT_1:20;
1246
           hence thesis by A2, A4, Def3;
1247
         suppose k = dim(p);
then s = <*p*> by Def7;
1248
1249
1250
           hence thesis;
1251
1252
         suppose k > dim(p);
1253
           hence thesis by Def7;
```

```
1254
         end;
1255
      end:
1257
       theorem Th35:
1258
         -1 <= k & k <= dim(p) implies for m,n being Nat
         st 1 <= n & n <= num-polytopes(p,k) & 1 <= m & m <= num-polytopes(p,k)
1259
1260
         & n-th-polytope(p,k) = m-th-polytope(p,k) holds m = n
1261
       proof
       A1: -1 <= k & k <= dim(p);
1263
        let m,n be Nat such that
1264
       A2: 1 <= n and
1265
1266
       A3: n \le num-polytopes(p,k) and
1267
       A4: 1 <= m and
1268
       A5: m <= num-polytopes(p,k) and
1269
       A6: n-th-polytope(p,k) = m-th-polytope(p,k);
1270
         set s = k-polytope-seq(p);
1271
       A7: n-th-polytope(p,k) = s.n by A1,A2,A3,Def12;
       A8: m-th-polytope(p,k) = s.m by A1,A4,A5,Def12;
1272
1273
         n in Seg (num-polytopes(p,k)) by A2,A3,FINSEQ_1:3;
1274
         then
1275
       A9: n in dom s by Th28;
         m in Seg (num-polytopes(p,k)) by A4,A5,FINSEQ_1:3;
1276
1277
1278
       A10: m in dom s by Th28;
        s is one-to-one by Th34;
         hence thesis by A6,A7,A8,A9,A10,FUNCT_1:def 8;
1280
1281
       end:
1283
       definition
         let p be polyhedron, k be Integer, x be Element of (k-1)-polytopes(p),
1284
1285
         y be Element of k-polytopes(p);
1286
         assume
1287
       A1: 0 \le k \ k \le \dim(p);
1288
        func incidence-value(x,y) -> Element of Z_2 equals
1289
         :Def13:
1290
         eta(p,k).(x,y);
1291
         coherence
         proof
1292
1293
          set n = eta(p,k);
1294
       A2: dom n = [:(k-1)-polytopes(p),k-polytopes(p):] by FUNCT_2:169;
1295
       A3: (k-1)-polytopes(p) \Leftrightarrow \{\}
1296
           proof
1297
              set m = k - 1;
1298
              0 qua Nat - 1 = -1;
1299
              then
             -1 <= m by A1, XREAL_1:11;
1300
             m \le dim(p) - (0 qua Nat) by A1,XREAL_1:15;
1301
1302
             hence thesis by A4, Th26;
1303
1304
            k-polytopes(p) <> {} by A1, Th26;
1305
            then
1306
       A5: [x,y] in dom n by A2,A3,ZFMISC_1:106;
1307
       A6: rng n c= \{0.Z_2, 1.Z_2\} by FUNCT_2:169;
1308
           n.[x,y] in rng n by A5,FUNCT_1:12;
1309
           hence thesis by A6,BSPACE:3,5,6;
1310
         end;
1311
       end;
       begin :: The Chain Spaces and their Subspaces. Boundary of a k-chain.
1313
       :: The set of subsets of the k-polytopes naturally forms a vector
       :: space over the field Z_2. Addition is disjoint union, and scalar
1316
       :: multiplication is defined by the equations 1*x = x, 0*x = 0.
1317
1319
       definition
1320
         let p be polyhedron, k be Integer;
         \label{lem:chain-space} \texttt{func} \ k-\texttt{chain-space}(p) \ \mbox{$-$>$ finite-dimensional VectSp of $Z_2$ equals}
1321
1322
         bspace(k-polytopes(p));
```

```
1323
         coherence;
1324
       end;
1326
1327
         for x being Element of k-polytopes(p)
         holds (0.(k-chain-space(p)))@x = 0.Z_2 by BSPACE:14;
1328
1330
1331
         num-polytopes(p,k) = dim (k-chain-space(p))
1332
       proof
1333
       A1: singletons(k-polytopes(p)) is Basis of k-chain-space(p) by BSPACE:41;
1334
         set n = dim (k-chain-space(p));
1335
         n = card (singletons(k-polytopes(p))) by A1, VECTSP_9:def 2;
1336
         hence thesis by BSPACE:42;
1337
       end:
1339
       :: A k-chain is a set of k-polytopes.
1341
       definition
1342
         let p be polyhedron, k be Integer;
         func k-chains(p) -> non empty finite set equals
1343
1345
         bool (k-polytopes(p));
1346
         coherence:
1347
       end;
1349
       definition
1350
         let p be polyhedron, k be Integer, x be Element of (k-1)-polytopes(p),
1351
          v be Element of k-chain-space(p);
1352
          func incidence-sequence(x,v) -> FinSequence of Z_2 means
1353
1354
          ((k-1)-polytopes(p) is empty implies it = <*>{}) &
1355
          ((k-1)-polytopes(p) \  \, \text{is non empty implies len it = num-polytopes}(p,k)\\
          & for n being Nat st 1 <= n & n <= num-polytopes(p,k) holds it.n =
1356
1357
          (\texttt{v@}(\texttt{n-th-polytope}(\texttt{p},\texttt{k}))) * \texttt{incidence-value}(\texttt{x},\texttt{n-th-polytope}(\texttt{p},\texttt{k})));
1358
          existence
         proof
1359
1360
            per cases;
1361
            suppose
1362
       A1:
              (k-1)-polytopes(p) is empty;
1363
              set s = <*>{};
1364
              rng s c= the carrier of Z_2 by XBOOLE_1:2;
1365
              then reconsider s as FinSequence of Z_2 by FINSEQ_1:def 4;
1366
              take s:
1367
              thus thesis by A1;
1368
            end;
1369
            suppose
1370
            (k-1)-polytopes(p) is non empty;
1371
              deffunc F(Nat) =
1372
              (\texttt{v@(\$1-th-polytope(p,k)))*incidence-value(x,\$1-th-polytope(p,k));}
1373
              consider s being FinSequence of Z_2 such that
1374
       A3:
              len s = num-polytopes(p,k) and
1375
              for n being Nat st n in dom s
              holds s.n = F(n) from FINSEQ_2:sch 1;
1376
1377
       A5: dom s = Seg num-polytopes(p,k) by A3,FINSEQ_1:def 3;
1378
       A6:
              for n being Nat st 1 <= n & n <= num-polytopes(p,k) holds s.n =
1379
              (\texttt{v@(n-th-polytope(p,k)))*incidence-value(x,n-th-polytope(p,k))}
1380
              proof
1381
               let n be Nat such that
1382
       A7:
               1 <= n and
1383
       A8:
               n <= num-polytopes(p,k);</pre>
1384
       A9:
               n in Seg num-polytopes(p,k) by A7,A8,FINSEQ_1:3;
1385
               thus thesis by A4,A9,A5;
1386
              end;
1387
              take s:
1388
              thus thesis by A2, A3, A6;
1389
            end;
1390
1391
          uniqueness
1392
          proof
1393
           let s,t be FinSequence of Z_2 such that
```

```
1394
       A10: (k-1)-polytopes(p) is empty implies s = <*>{} and
1395
       A11: (k-1)-polytopes(p) is non empty implies len(s) = num-polytopes(p,k) &
            (for n being Nat st 1 <= n & n <= num-polytopes(p,k) holds s.n =
1396
1397
            (\texttt{v@}(\texttt{n-th-polytope}(\texttt{p},\texttt{k}))) * \texttt{incidence-value}(\texttt{x},\texttt{n-th-polytope}(\texttt{p},\texttt{k}))) \text{ and }
1398
       A12: (k-1)-polytopes(p) is empty implies t = <*>{} and
1399
       A13: (k-1)-polytopes(p) is non empty implies len(t) = num-polytopes(p,k) &
           for n being Nat st 1 <= n & n <= num-polytopes(p,k) holds t.n =
1400
            (\texttt{v@(n-th-polytope(p,k)))*incidence-value(x,n-th-polytope(p,k))};\\
1401
            per cases:
1402
1403
            suppose (k-1)-polytopes(p) is empty;
1404
             hence thesis by A10,A12;
1405
            end;
1406
           suppose
       A14: (k-1)-polytopes(p) is non empty;
1407
1408
             for n being Nat st 1 <= n & n <= len s holds s.n = t.n
1409
             proof
1410
               let n be Nat such that
       A15:
               1 <= n and
1411
              n <= len s;
1412
       A16:
1413
               reconsider n as Nat;
1414
                 \texttt{s.n} = (\texttt{v@(n-th-polytope(p,k)))*incidence-value(x,n-th-polytope(p,k))} 
1415
                by A11,A14,A15,A16;
1416
               hence thesis by A11, A13, A14, A15, A16;
1417
              end:
1418
             hence thesis by A11,A13,A14,FINSEQ_1:18;
1419
            end:
1420
         end;
1421
1423
       theorem Th38:
1424
         for c,d being Element of k-chain-space(p), x being Element of k-polytopes(p)
         holds (c+d)@x = (c@x) + (d@x)
1425
1426
       proof
1427
         let c,d be Element of k-chain-space(p), x be Element of k-polytopes(p);
1428
         c+d = c \ + \ d  by BSPACE:def 5;
1429
         hence thesis by BSPACE:15;
1430
       end;
1432
       theorem Th39:
1433
         for c,d being Element of k-chain-space(p),
1434
          x being Element of (k-1)-polytopes(p) holds incidence-sequence(x,c+d)
1435
         = incidence-sequence(x,c) + incidence-sequence(x,d)
1436
       proof
         let c,d be Element of k-chain-space(p), x be Element of (k-1)-polytopes(p);
1437
1438
         set n = num-polytopes(p,k);
1439
         set 1 = incidence-sequence(x,c+d);
         set isc = incidence-sequence(x,c);
1440
1441
         set isd = incidence-sequence(x,d);
         set r = isc + isd;
1442
1443
         per cases;
1444
         suppose
1445
      A1: (k-1)-polytopes(p) is empty;
1446
           then
       A2: isc = <*>(the carrier of Z 2) by Def16;
1447
       A3: isd = <*>(the carrier of Z_2) by A1,Def16;
1448
1449
           reconsider isc as Element of O-tuples_on the carrier of Z_2
1450
           by A2,FINSEQ_2:114;
1451
           reconsider isd as Element of O-tuples_on the carrier of Z_2
           by A3,FINSEQ_2:114;
1452
           isc + isd is Element of O-tuples_on the carrier of Z_2;
1453
1454
           then r = <*>(the carrier of Z_2) by FINSEQ_2:113;
1455
           hence thesis by A1, Def16;
1456
         end;
1457
         suppose
       A4: (k-1)-polytopes(p) is non empty;
1458
1459
       A5: len(1) = n & len(r) = n
          proof
1460
1461
       A6: len isc = n by A4,Def16;
```

```
1462
      A7: len isd = n by A4,Def16;
1463
             reconsider isc as Element of n-tuples_on the carrier of Z_2
1464
             by A6,FINSEQ 2:110;
1465
             reconsider isd as Element of n-tuples_on the carrier of Z_2
1466
             by A7,FINSEQ_2:110;
1467
             reconsider s = isc + isd as Element of n-tuples_on the carrier of Z_2;
             len s = n by FINSEQ_2:109;
1468
1469
            hence thesis by A4, Def16;
1470
           end;
1471
           for n being Nat st 1 <= n & n <= len l holds l.n = r.n
1472
           proof
1473
            let m be Nat such that
1474
      A8:
            1 <= m and
      A9: m <= len 1;
1475
1476
             set a = m-th-polytope(p,k);
1477
             set iva = incidence-value(x,a);
1478 A10: len l = n by A4,Def16;
1479
             then
      A11: 1.m = ((c+d)@a)*iva by A4,A8,A9,Def16;
1480
1481
      A12: isc.m = (c@a)*iva by A4,A8,A9,A10,Def16;
1482
      A13: isd.m = (d@a)*iva by A4,A8,A9,A10,Def16;
      A14: dom r = Seg n by A5,FINSEQ_1:def 3;
1484
      A15: len l = n by A4, Def16;
             m in NAT by ORDINAL1:def 13;
1485
1486
             then m in dom r by A8,A9,A14,A15;
             then r.m = (c@a)*iva + (d@a)*iva by A12,A13,FVSUM_1:21
1487
1488
              .= (c@a + d@a)*iva by VECTSP_1:def 12
1489
               .= 1.m by A11, Th38;
1490
             hence thesis:
1491
           end:
1492
           hence thesis by A5,FINSEQ_1:18;
1493
         end;
1494
1496
       theorem Th40:
1497
        for c,d being Element of k-chain-space(p),
1498
         x being Element of (k-1)-polytopes(p)
         holds Sum (incidence-sequence(x,c) + incidence-sequence(x,d))
1499
         = (Sum incidence-sequence(x,c)) + (Sum incidence-sequence(x,d))
1500
1501
      proof
1502
       let c,d be Element of k-chain-space(p), x be Element of (k-1)-polytopes(p);
1503
         set isc = incidence-sequence(x,c);
         set isd = incidence-sequence(x,d);
1504
1505
         per cases;
1506
         suppose
1507
      A1: (k-1)-polytopes(p) is empty;
1508
           then
1509
      A2: isc = <*>(the carrier of Z_2) by Def16;
1510
      A3: isd = <*>(the carrier of Z_2) by A1,Def16;
           reconsider isc as Element of O-tuples_on the carrier of Z_2
1511
1512
           by A2,FINSEQ_2:114;
1513
           reconsider isd as Element of O-tuples_on the carrier of Z_2
1514
           by A3,FINSEQ_2:114;
1515
       A4: Sum isc = 0.Z_2 by FVSUM_1:93;
       A5: Sum isd = 0.Z_2 by FVSUM_1:93;
1516
1517
           reconsider s = isc + isd as Element of O-tuples_on the carrier of Z_2;
1518
           Sum s = 0.Z_2 by FVSUM_1:93;
1519
           hence thesis by A4, A5, RLVECT_1:def 7;
1520
         end;
1521
         suppose
1522
      A6: (k-1)-polytopes(p) is non empty;
1523
          reconsider n = num-polytopes(p,k) as Element of NAT;
1524
      A7: len isc = n by A6,Def16;
1525
      A8: len isd = n by A6, Def16;
1526
          reconsider isc' = isc
1527
           as Element of n-tuples_on the carrier of Z_2 by A7,FINSEQ_2:110;
1528
           reconsider isd' = isd
```

```
1529
           as Element of n-tuples_on the carrier of Z_2 by A8,FINSEQ_2:110;
1530
           Sum (isc + isd) = Sum (isc' + isd')
1531
             .= Sum (isc) + Sum (isd) by FVSUM_1:95;
1532
           hence thesis;
1533
         end;
1534
1536
       theorem Th41:
1537
         for c,d being Element of k-chain-space(p),
1538
         x being Element of (k-1)-polytopes(p) holds Sum incidence-sequence(x,c+d)
1539
         = (Sum incidence-sequence(x,c)) + (Sum incidence-sequence(x,d))
1540
       proof
         let c,d be Element of k-chain-space(p), x be Element of (k-1)-polytopes(p);
1541
1542
         Sum incidence-sequence(x,c+d)
1543
         = Sum (incidence-sequence(x,c) + incidence-sequence(x,d)) by Th39
1544
           .= (Sum incidence-sequence(x,c)) + (Sum incidence-sequence(x,d)) by Th40;
1545
         hence thesis;
1546
       end:
1548
       theorem Th42:
1549
         for c being Element of k-chain-space(p), a being Element of Z_2,
         x being Element of k-polytopes(p) holds (a*c)@x = a*(c@x)
1550
       proof
1551
1552
         let c be Element of k-chain-space(p), a be Element of Z_2,
1553
         x be Element of k-polytopes(p);
1554
         per cases by BSPACE:8;
1555
         suppose
1556
       A1: a = 0.Z_2;
1557
           then
1558
       A2: a*(c@x) = 0.Z_2 \text{ by VECTSP}_1:39;
           a*c = 0.(k-chain-space(p)) by A1, VECTSP_1:59;
1559
           hence thesis by A2,BSPACE:14;
1560
1561
         end:
1562
         suppose
1563
       A3: a = 1.Z_2;
1564
           then a*(c@x) = c@x by VECTSP_1:def 16;
1565
           hence thesis by A3, VECTSP_1:def 26;
1566
         end:
1567
       end;
1569
       theorem Th43:
1570
         for c being Element of k-chain-space(p), a being Element of Z_2,
         x being Element of (k-1)-polytopes(p)
1571
1572
         holds incidence-sequence(x,a*c) = a*incidence-sequence(<math>x,c)
1573
        let c be Element of k-chain-space(p), a be Element of Z_2,
1575
         x be Element of (k-1)-polytopes(p);
1576
         set 1 = incidence-sequence(x,a*c);
1577
         set isc = incidence-sequence(x,c);
1578
         set r = a*isc;
         per cases;
1579
1580
         suppose
1581
       A1: (k-1)-polytopes(p) is empty;
1582
           then isc = <*>(the carrier of Z_2) by Def16;
1583
           then reconsider isc as Element of 0-tuples_on the carrier of Z_2
1584
           by FINSEQ_2:114;
1585
           a*isc is Element of O-tuples_on the carrier of Z_2;
1586
           then reconsider r as Element of O-tuples_on the carrier of Z_2;
           r = <*>(the carrier of Z_2) by FINSEQ_2:113;
1587
1588
           hence thesis by A1, Def16;
1589
         end;
1590
         suppose
1591
       A2: (k-1)-polytopes(p) is non empty;
       set n = num-polytopes(p,k);
A3: len l = n & len r = n
1592
1593
1594
           proof
1595
             len isc = n by A2,Def16;
1596
             then reconsider isc as Element of n-tuples_on the carrier of Z_2
1597
             by FINSEQ 2:110:
```

```
1598
             set r = a*isc;
1599
             reconsider r as Element of n-tuples_on the carrier of Z_2;
1600
             len r = n by FINSEQ_2:109;
1601
            hence thesis by A2, Def16;
1602
           end;
1603
           for m being Nat st 1 <= m & m <= len l holds 1.m = r.m
1604
           proof
1605
             let m be Nat such that
      A4: 1 <= m and
1606
1607
      A5: m <= len 1;
1608
             set s = m-th-polytope(p,k);
             set ivs = incidence-value(x,s);
1609
1610
      A6:
             len l = n by A2, Def16;
1611
             then
      A7:
             1.m = ((a*c)@s)*ivs by A2,A4,A5,Def16;
1612
1613
      A8:
             isc.m = (c@s)*ivs by A2,A4,A5,A6,Def16;
1614
             dom r = Seg n by A3,FINSEQ_1:def 3;
1615
      A10: len 1 = n by A2, Def16;
             m in NAT by ORDINAL1:def 13;
1616
1617
             then m in Seg n by A4,A5,A10;
1618
             then r.m = a*((c@s)*ivs) by A8,A9,FVSUM_1:62
1619
              .= (a*(c@s))*ivs by GROUP_1:def 4
1620
               .= 1.m by A7, Th42;
1621
             hence thesis:
1622
           end:
           hence thesis by A3,FINSEQ_1:18;
1623
1624
1625
1627
       theorem Th44:
1628
         for c,d being Element of k-chain-space(p)
1629
         holds c = d iff for x being Element of k-polytopes(p) holds c@x = d@x
1630
      proof
1631
         let c,d be Element of k-chain-space(p);
         thus c = d implies for x being Element of k-polytopes(p) holds c@x = d@x;
1632
1633
         thus (for x being Element of k-polytopes(p) holds c@x = d@x) implies c = d
1634
         proof
1635
          assume
1636
       A1: for x being Element of k-polytopes(p) holds c@x = d@x;
1637
           thus c c= d
1638
           proof
1639
             let x be set such that
1640
      A2: x in c;
1641
             reconsider c as Subset of k-polytopes(p);
             reconsider x as Element of k-polytopes(p) by A2;
1642
             c@x = 1.Z_2 by A2,BSPACE:def 3;
1643
1644
             then d@x = 1.Z_2 by A1;
1645
             hence thesis by BSPACE:9;
1646
           end;
1647
           thus d c= c
1648
           proof
1649
            let x be set such that
1650
           x in d;
1651
             reconsider d as Subset of k-polytopes(p);
1652
             reconsider x as Element of k-polytopes(p) by A3;
             d@x = 1.Z_2 by A3,BSPACE:def 3;
1653
             then c@x = 1.Z_2 by A1;
1654
1655
             hence thesis by BSPACE:9;
1656
           end;
1657
         end;
1658
      end:
1660
1661
        for c,d being Element of k-chain-space(p) holds c = d iff
1662
         for x being Element of k-polytopes(p) holds x in c iff x in d
1663
         let c,d be Element of k-chain-space(p);
1664
1665
         thus c = d
```

```
1666
         implies for x being Element of k-polytopes(p) holds x in c iff x in d;
1667
         thus (for x being Element of k-polytopes(p) holds x in c iff x in d)
1668
         implies c = d
1669
         proof
1670
           assume
1671
       A1: for x being Element of k-polytopes(p) holds x in c iff x in d;
1672
           assume c <> d;
           then consider \boldsymbol{x} being Element of k\text{-polytopes}(\boldsymbol{p}) such that
1673
1674
       A2: c@x \iff d@x by Th44;
1675
           not (x in c iff x in d) by A2,BSPACE:13;
1676
           hence thesis by A1;
1677
         end;
1678
       end;
1680
1681
         ChainEx { p() -> polyhedron, k() -> Integer,
1682
         P[Element of k()-polytopes(p())] } : ex c being Subset of k()-polytopes(p())
1683
         st for x being Element of k()-polytopes(p())
         holds x in c iff (P[x] & x in k()-polytopes(p()))
1684
1685
1686
         set c = { x where x is Element of k()-polytopes(p()) :
1687
         P[x] & x in k()-polytopes(p()) };
         c c= k()-polytopes(p())
1688
1689
         proof
1690
           let x be set such that
1691
       A1: x in c;
1692
           consider y being Element of k()-polytopes(p()) such that
1693
       A2: x = y and P[y] and
       A3: y in k()-polytopes(p()) by A1;
1694
1695
           thus thesis by A2,A3;
1696
1697
         then reconsider c as Subset of k()-polytopes(p());
1698
       A4: for x being Element of k()-polytopes(p()) holds
         x in c iff (P[x] \& x in k()-polytopes(p()))
1699
1700
         proof
1701
           let x be Element of k()-polytopes(p());
1702
           thus x in c implies (P[x] & x in k()-polytopes(p()))
1703
           proof
1704
             assume x in c:
1705
             then consider y being Element of k()-polytopes(p()) such that
1706
       A5:
             y = x and
1707
       A6:
             P[y] and
1708
             y in k()-polytopes(p());
1709
             thus thesis by A5, A6, A7;
1710
           end:
           thus (P[x] \& x \text{ in } k()-polytopes(p())) \text{ implies } x \text{ in } c;
1711
1712
         end;
1713
         take c;
1714
         thus thesis by A4;
1715
1717
       :: The boundary of a k-chain v is the (k-1)-chain consisting of the
1718
       :: (k-1)-polytopes that are on the "perimeter" of v. Being on the
       :: perimeter amounts the sum of the incidence sequence being non-zero,
1719
       :: i.e., being equal to 1.
1720
1722
       definition
1723
         let p be polyhedron, k be Integer, v be Element of k-chain-space(p);
         func Boundary(v) -> Element of (k-1)-chain-space(p) means
1724
1725
1726
         ((k-1)-polytopes(p) \text{ is empty implies it = 0.}((k-1)-chain-space(p))) &
1727
         ((k-1)-polytopes(p) is non empty implies
1728
         for x being Element of (k-1)-polytopes(p)
1729
         holds x in it iff Sum incidence-sequence(x,v) = 1.Z_2;
1730
         existence
1731
         proof
1732
           per cases;
1733
           suppose
1734
       A1: (k-1)-polytopes(p) is empty;
```

```
1735
             take 0.((k-1)-chain-space(p));
1736
             thus thesis by A1;
1737
           end;
1738
           suppose
1739
          (k-1)-polytopes(p) is non empty;
1740
             defpred Q[Element of (k-1)-polytopes(p)] means
1741
             Sum incidence-sequence($1,v) = 1.Z_2;
1742
             consider c being Subset of (k-1)-polytopes(p) such that
1743
       A3: for x being Element of (k-1)-polytopes(p)
1744
             holds x in c iff (Q[x] & x in (k-1)-polytopes(p)) from ChainEx;
1745
             reconsider c as Element of (k-1)-chain-space(p);
1746
             take c;
1747
             thus thesis by A3;
1748
           end;
1749
         end;
1750
         uniqueness
1751
         proof
1752
           let c,d be Element of (k-1)-chain-space(p) such that
1753
       A4: (k-1)-polytopes(p) is empty implies c = 0.((k-1)-chain-space(p)) and
1754
       A5: (k-1)-polytopes(p) is non empty implies
1755
           for x being Element of (k-1)-polytopes(p)
1756
           holds x in c iff Sum incidence-sequence(x,v) = 1.Z_2 and
1757
        (k-1)-polytopes(p) is empty implies d = 0.((k-1)-chain-space(p)) and
1758
       A7: (k-1)-polytopes(p) is non empty implies
1759
           for x being Element of (k-1)-polytopes(p)
           holds x in d iff Sum incidence-sequence(x,v) = 1.Z_2;
1760
1761
           per cases;
1762
           suppose (k-1)-polytopes(p) is empty;
1763
            hence thesis by A4;
1764
           end:
1765
           suppose
1766
             (k-1)-polytopes(p) is non empty;
1767
             for x being Element of (k-1)-polytopes(p) holds x in c iff x in d
1768
             proof
1769
               let x be Element of (k-1)-polytopes(p);
1770
               thus {\tt x} in {\tt c} implies {\tt x} in {\tt d}
1771
               proof
1772
                 assume x in c;
                 then Sum incidence-sequence(x,v) = 1.Z_2 by A5;
1773
1774
                 hence thesis by A7,A8;
1775
               end;
1776
               thus x in d implies x in c
1777
               proof
1778
                 assume x in d;
1779
                 then Sum incidence-sequence(x,v) = 1.Z_2 by A7;
                hence thesis by A5,A8;
1780
1781
               end;
1782
              end;
1783
             hence thesis by Th45;
1784
           end;
1785
         end;
1786
       end:
1788
       theorem Th46:
         for c being Element of k-chain-space(p),
1789
1790
         x being Element of (k-1)-polytopes(p)
1791
         holds (Boundary(c))@x = Sum incidence-sequence(x,c)
1792
1793
         let c be Element of k-chain-space(p), x be Element of (k-1)-polytopes(p);
1794
         set b = Boundary(c);
1795
         per cases;
1796
         suppose
1797
       A1: (k-1)-polytopes(p) is empty;
1798
1799
       A2: Boundary(c) = 0.((k-1)-chain-space(p));
1800
           set iscx = incidence-sequence(x,c);
           iscx = <*>(the carrier of Z_2) by A1,Def16;
1801
```

```
1802
           then Sum iscx = 0.Z_2 by RLVECT_1:60;
1803
           hence thesis by A2,BSPACE:14;
1804
         end;
1805
         suppose
1806
       A3: (k-1)-polytopes(p) is non empty;
1807
           then
1808
       A4: x in b iff Sum incidence-sequence(x,c) = 1.Z_2 by Def17;
1809
           per cases;
1810
           suppose x in b;
1811
             hence thesis by A4,BSPACE:def 3;
1812
           end;
1813
           suppose
1814
       A5: not x in b;
             then Sum incidence-sequence(x,c) \Leftrightarrow 1.Z_2 by A3,Def17;
1815
1816
             then Sum incidence-sequence(x,c) = 0.Z_2 by BSPACE:8;
1817
             hence thesis by A5,BSPACE:def 3;
1818
1819
         end;
1820
       end;
1822
       :: Every dimension k has its own boundary operation.
1824
       definition
1825
         let p be polyhedron, k be Integer;
         func k-boundary(p) -> Function of k-chain-space(p),(k-1)-chain-space(p)
1827
1828
         :Def18:
1829
         for c being Element of k-chain-space(p) holds it.c = Boundary(c);
1830
         existence
1831
1832
           defpred Q[set,set] means
           ex c being Element of k-chain-space(p) st $1 = c & $2 = Boundary(c);
1833
1834
       A1: for x being set st x in k-chains(p) holds
1835
           ex y being set st y in (k-1)-chains(p) & Q[x,y]
1836
1837
             let x be set such that
1838
       A2: x in k-chains(p);
1839
             reconsider x as Element of k-chain-space(p) by A2;
             set b = Boundary(x);
1840
1841
             take b;
1842
             thus thesis;
1843
           end;
           consider f being Function of k-chains(p), (k-1)-chains(p) such that
1844
       A3: for x being set st x in k-chains(p) holds Q[x,f.x] from FUNCT_2:sch 1(A1);
1845
1846
           reconsider f as Function of k-chain-space(p),(k-1)-chain-space(p);
1847
       A4: for c being Element of k-chain-space(p) holds f.c = Boundary(c)
           proof
1848
1849
             let c be Element of k-chain-space(p);
1850
             Q[c,f.c] by A3;
1851
             hence thesis;
1852
           end;
1853
           take f;
1854
           thus thesis by A4;
1855
         end;
1856
         uniqueness
1857
         proof
1858
           let f,g be Function of k-chain-space(p),(k-1)-chain-space(p) such that
1859
       A5: for c being Element of k-chain-space(p) holds f.c = Boundary(c) and
1860
       A6: for c being Element of k-chain-space(p) holds g.c = Boundary(c);
           dom f = [#](k-chain-space(p)) by FUNCT_2:def 1;
1861
1862
           then
1863
       A7: dom f = dom g by FUNCT_2:def 1;
1864
           for x being set st x in dom f holds f.x = g.x
1865
           proof
1866
             let x be set such that
1867
       A8: x in dom f;
             reconsider x as Element of k-chain-space(p) by A8;
1868
1869
             f.x = Boundary(x) by A5;
```

```
1870
             hence thesis by A6;
1871
           end;
1872
           hence thesis by A7, FUNCT_1:9;
1873
         end:
1874
      end;
1876
      theorem Th47:
1877
         for c,d being Element of k-chain-space(p)
1878
         holds Boundary(c+d) = Boundary(c) + Boundary(d)
1879
         let c,d be Element of k-chain-space(p);
1880
1881
         set bc = Boundary(c):
         set bd = Boundary(d);
1882
1883
         set s = c+d;
1884
         set 1 = Boundary(s);
1885
         set r = bc+bd;
1886
         for x being Element of (k-1)-polytopes(p) holds l@x = r@x
1887
         proof
1888
           let x be Element of (k-1)-polytopes(p);
1889
      A1: 1@x = Sum incidence-sequence(x,s) by Th46;
1890
           set a = bc@x;
1891
           set b = bd@x;
1892
      A2: r@x = a+b by Th38;
1893
      A3: a = Sum incidence-sequence(x,c) by Th46;
1894
           b = Sum incidence-sequence(x,d) by Th46;
           hence thesis by A1, A2, A3, Th41;
1895
1896
         end:
1897
         hence thesis by Th44;
1898
       end;
1900
       theorem Th48:
1901
         for a being Element of Z_2, c being Element of k-chain-space(p)
1902
         holds Boundary(a*c) = a*(Boundary(c))
1903
1904
        let a be Element of Z_2, c be Element of k-chain-space(p);
1905
         set lsm = a*c:
1906
         set 1 = Boundary(lsm);
1907
         set rb = Boundary(c);
1908
         set r = a*rb;
         for x being Element of (k-1)-polytopes(p) holds l@x = r@x
1909
1910
         proof
1911
          let x be Element of (k-1)-polytopes(p);
1912
      A1: 10x = Sum incidence-sequence(x,lsm) by Th46;
1913
       A2: rb@x = Sum incidence-sequence(x,c) by Th46;
1914
          set b = rb@x;
1915
       A3: r@x = a*b by Th42;
           incidence-sequence(x,lsm) = a*incidence-sequence(x,c) by Th43;
1916
1917
           hence thesis by A1,A2,A3,FVSUM_1:92;
1918
         end;
1919
         hence thesis by Th44;
1920
1922
      :: As defined, the k-boundary operator gives rise to a linear
1923
      :: transformation.
1925
      theorem Th49:
1926
         k-boundary(p) is
1927
         linear-transformation of k-chain-space(p),(k-1)-chain-space(p)
1928
      proof
         set V = k-chain-space(p);
1929
1930
         set b = k-boundary(p);
1931
      A1: for x,y being Element of V holds b.(x+y) = (b.x) + (b.y)
1932
         proof
1933
           let x,y be Element of V;
1934
           b.(x+y) = Boundary(x+y) by Def18
1935
             .= Boundary(x) + Boundary(y) by Th47
1936
             .= (b.x) + Boundary(y) by Def18
             = (b.x) + (b.y) by Def18;
1938
           hence thesis;
```

```
1939
          end;
1940
          for a being Element of Z_2, x being Element of V holds b.(a*x) = a*(b.x)
1941
          proof
1942
            let a be Element of Z_2, x be Element of V;
1943
            b.(a*x) = Boundary(a*x) by Def18
1944
              .= a*(Boundary(x)) by Th48
1945
              .= a*(b.x) by Def18;
1946
            hence thesis;
1947
          end:
1948
         hence thesis by A1,MOD_2:def 5;
1949
1951
        definition
1952
         let p be polyhedron, k be Integer;
1953
          redefine func k-boundary(p) \rightarrow linear-transformation of k-chain-space(p),
1954
         (k-1)-chain-space(p);
1955
         coherence by Th49;
1956
        end;
1958
       :: The term "circuit" is used in Lakatos. (A more customary term is
1959
        :: "cycle".)
1961
        definition
1962
         let p be polyhedron, k be Integer;
1963
          \label{eq:func_space} \texttt{func} \ k\text{-circuit-space}(p) \ \text{->} \ \texttt{Subspace} \ \texttt{of} \ k\text{-chain-space}(p) \ \texttt{equals}
1964
          ker (k-boundary(p));
1965
         coherence;
1966
        end:
1968
        definition
1969
         let p be polyhedron, k be Integer;
          func k-circuits(p) -> non empty Subset of k-chains(p) equals
1970
1971
          [#](k-circuit-space(p));
1972
         coherence by VECTSP_4:def 2;
1973
1975
        definition
1976
          let p be polyhedron, k be Integer;
1977
          func k-bounding-chain-space(p) -> Subspace of k-chain-space(p) equals
         im ((k+1)-boundary(p));
1978
1979
         coherence;
1980
        end;
1982
        definition
1983
         let p be polyhedron, k be Integer;
1984
          func k-bounding-chains(p) \rightarrow non empty Subset of k-chains(p) equals
1985
          [#](k-bounding-chain-space(p));
         coherence by VECTSP_4:def 2;
1986
1987
        end:
1989
        definition
1990
         let p be polyhedron, k be Integer;
          \texttt{func } \texttt{k-bounding-circuit-space(p)} \overset{\smile}{\rightarrow} \texttt{Subspace of } \texttt{k-chain-space(p)} \enspace \texttt{equals}
1991
          \label{eq:chain-space} $$(k$-bounding-chain-space(p)) /\ (k$-circuit-space(p));
1992
1993
         coherence;
1994
1996
        definition
1997
          let p be polyhedron, k be Integer;
          func k-bounding-circuits(p) -> non empty Subset of k-chains(p) equals
1998
1999
          [#](k-bounding-circuit-space(p));
         coherence by VECTSP_4:def 2;
2000
2001
        end;
2003
       theorem
2004
         dim (k-chain-space(p))
2005
          = rank (k-boundary(p)) + nullity (k-boundary(p)) by RANKNULL:44;
2007
        begin :: Simply Connected and Eulerian Polyhedra
2009
        :: The property of being simply connected is that circuits are
2010
       :: bounding, and vice versa (any bounding chain is a circuit).
2012
       definition
2013
         let p be polyhedron;
2014
          attr p is simply-connected means
```

```
2015
2016
        for k being Integer holds k-circuits(p) = k-bounding-chains(p);
2017
2019
        p is simply-connected iff for n being Integer holds n-circuit-space(p)
2020
2021
         = n-bounding-chain-space(p)
2022
      proof
2023
         defpred Q[polyhedron] means for n being Integer holds n-circuit-space(\$1)
2024
         = n-bounding-chain-space($1);
2025
         thus p is simply-connected implies Q[p]
2026
         proof
2027
           assume
2028
      A1: p is simply-connected;
2029
           let n be Integer;
2030
           n-circuits(p) = n-bounding-chains(p) by A1,Def25;
2031
           hence thesis by VECTSP_4:37;
2032
         end:
2033
         thus Q[p] implies p is simply-connected
2034
         proof
2035
           assume
2036
      A2: Q[p];
2037
         let n be Integer;
2038
           thus thesis by A2;
2039
         end:
2040
       definition
2042
2043
        let p be polyhedron;
2044
         func alternating-f-vector(p) -> FinSequence of INT means
2045
2046
         len(it) = dim(p) + 2 & (for k being Nat st 1 <= k & k <= dim(p) + 2
         holds it.k = ((-1)|^k)*num-polytopes(p,k-2));
2047
2048
         existence
2049
         proof
2050
           deffunc F(Nat) = ((-1)|^$1)*num-polytopes(p,$1-2);
2051
           consider s being FinSequence of INT such that
2052
      A1: len s = dim(p) + 2 and
2053
      A2: for j being Nat st j in dom s
2054
           holds s.j = F(j) \text{ from } FINSEQ_2:sch 1;
2055
       A3: dom s = Seg(dim(p) + 2) by A1,FINSEQ_1:def 3;
      A4: for j being Nat st 1 <= j & j <= dim(p) + 2
           holds s.j = ((-1)|^{j})*num-polytopes(p,j-2)
2057
2058
           proof
2059
             let j be Nat such that
      A5: 1 <= j and
2060
      A6: j <= dim(p) + 2;
2061
             j in Seg (dim(p) + 2) by A5, A6, FINSEQ_1:3;
2062
2063
             thus thesis by A2,A7,A3;
2064
           end;
2065
           take s;
2066
           thus thesis by A1,A4;
2067
         end;
2068
         uniqueness
2069
         proof
2070
           let s,t be FinSequence of INT such that
2071
      A8: len(s) = dim(p) + 2 and
2072
       A9: for k being Nat st 1 <= k & k <= dim(p) + 2
2073
          holds s.k = ((-1)|^k)*num-polytopes(p,k-2) and
       A10: len(t) = dim(p) + 2 and
2074
       A11: for k being Nat st 1 <= k & k <= \dim(p) + 2
2075
2076
           holds t.k = ((-1)|^k)*num-polytopes(p,k-2);
2077
           for k being Nat st 1 <= k & k <= len s holds s.k = t.k
2078
           proof
2079
             let k be Nat such that
      A12: 1 <= k and
2080
      A13: k <= len s;
2081
2082
             reconsider k as Nat;
```

```
2083
              s.k = ((-1)|^k)*num-polytopes(p,k-2) by A8,A9,A12,A13;
2084
             hence thesis by A8, A11, A12, A13;
2085
           end;
2086
           hence thesis by A8,A10,FINSEQ_1:18;
2087
2088
2090
       definition
2091
         let p be polyhedron;
2092
         func alternating-proper-f-vector(p) -> FinSequence of INT means
2094
         len(it) = dim(p) & (for k being Nat st 1 <= k & k <= dim(p)</pre>
2095
         \label{eq:holds} \mbox{holds it.k = ((-1)|^(k+1))*num-polytopes(p,k-1));}
2096
         existence
2097
         proof
2098
           deffunc F(Nat) = ((-1)|^{($1+1)})*num-polytopes(p,$1-1);
2099
           consider s being FinSequence of INT such that
       A1: len s = dim(p) and
2100
2101
       A2: for j being Nat st j in dom s holds s.j = F(j) from FINSEQ_2:sch 1;
2102
       A3: dom s = Seg dim p by A1,FINSEQ_1:def 3;
2103
       A4: for j being Nat st 1 <= j & j <= dim(p)
2104
           holds s.j = ((-1)|^{(j+1)})*num-polytopes(p,j-1)
2105
           proof
2106
             let j be Nat such that
2107
      A5:
             1 <= j and
2108
      A6: j <= dim(p);
             j in Seg dim(p) by A5, A6, FINSEQ_1:3;
2109
2110
             thus thesis by A2, A7, A3;
2111
           end:
2112
           take s:
2113
           thus thesis by A1,A4;
2114
         end;
2115
         uniqueness
2116
         proof
2117
           let s,t be FinSequence of INT such that
2118
      A8: len(s) = dim(p) and
2119
       A9: for k being Nat st 1 <= k & k <= dim(p)
          holds s.k = ((-1)|^{(k+1)})*num-polytopes(p,k-1) and
2120
2121
       A10: len(t) = dim(p) and
       A11: for k being Nat st 1 <= k & k <= \dim(p)
2122
2123
           \label{eq:holds_tk} \mbox{holds t.k = ((-1)|^(k+1))*num-polytopes(p,k-1);}
2124
           for k being Nat st 1 <= k & k <= len s holds s.k = t.k
           proof
2126
             let k be Nat such that
      A12: 1 <= k and
2127
      A13: k <= len s;
2128
2129
             reconsider k as Nat;
2130
              s.k = ((-1)|^{(k+1)})*num-polytopes(p,k-1) by A8,A9,A12,A13;
2131
             hence thesis by A8, A11, A12, A13;
2132
           end:
           hence thesis by A8,A10,FINSEQ_1:18;
2133
2134
         end;
2135
       end;
2137
       definition
2138
         let p be polyhedron;
2139
         func alternating-semi-proper-f-vector(p) \rightarrow FinSequence of INT means
2140
         len(it) = dim(p) + 1 & (for k being Nat st 1 <= k & k <= dim(p) + 1
2141
         \label{eq:holds} \mbox{holds it.k = ((-1)|^(k+1))*num-polytopes(p,k-1));}
2142
2143
         existence
         proof
2144
           deffunc F(Nat) = ((-1)|^($1+1))*num-polytopes(p,$1-1);
2145
2146
           consider s being FinSequence of INT such that
       A1: len s = dim(p) + 1 and
2147
2148
       A2: for j being Nat st j in dom s
2149
           holds s.j = F(j) from FINSEQ_2:sch 1;
2150
       A3: dom s = Seg(dim(p) + 1) by A1,FINSEQ_1:def 3;
```

```
2151
      A4: for j being Nat st 1 <= j & j <= dim(p) + 1
         holds s.j = ((-1)|^{(j+1)})*num-polytopes(p,j-1)
2152
2153
           proof
2154
             let j be Nat such that
2155
      A5: 1 <= j and
      A6: j <= dim(p) + 1;
A7: j in Seg (dim(p) + 1) by A5,A6,FINSEQ_1:3;
2156
2157
2158
            thus thesis by A2,A7,A3;
2159
           end;
2160
           take s;
2161
           thus thesis by A1,A4;
2162
         end;
2163
         uniqueness
2164
         proof
2165
           let s,t be FinSequence of INT such that
2166
      A8: len(s) = dim(p) + 1 and
2167
      A9: for k being Nat st 1 <= k & k <= dim(p) + 1
2168
           holds s.k = ((-1)|^(k+1))*num-polytopes(p,k-1) and
      A10: len(t) = dim(p) + 1 and
2169
2170
      A11: for k being Nat st 1 <= k & k <= dim(p) + 1
2171
           holds t.k = ((-1)|^(k+1))*num-polytopes(p,k-1);
2172
           for k being Nat st 1 <= k & k <= len s holds s.k = t.k
2173
           proof
2174
            let k be Nat such that
      A12: 1 <= k and
2175
2176
      A13: k <= len s;
2177
             reconsider k as Nat;
2178
             s.k = ((-1)|^{(k+1)})*num-polytopes(p,k-1) by A8,A9,A12,A13;
2179
            hence thesis by A8, A11, A12, A13;
2180
           end:
2181
           hence thesis by A8,A10,FINSEQ_1:18;
2182
         end;
2183
2185
       theorem Th52:
2186
       1 <= n & n <= len (alternating-proper-f-vector(p))
2187
         implies (alternating-proper-f-vector(p)).n
         = ((-1)|^(n+1))*(dim ((n-2)-bounding-chain-space(p)))
2188
2189
        + ((-1)|^(n+1))*(dim ((n-1)-circuit-space(p)))
2190
      proof
2191
       set apcs = alternating-proper-f-vector(p);
2192
         assume
2193 A1: 1 <= n;
2194
        assume n <= len apcs;
2195
        then
2196
      A2: n \le dim(p) by Def27;
2197
        set a = (-1)|^{(n+1)};
         apcs.n = a*num-polytopes(p,n-1) by A1,A2,Def27
2198
2199
           .= a*(dim ((n-1)-chain-space(p))) by Th37
2200
           .= a*(rank ((n-1)-boundary p) + nullity ((n-1)-boundary p)) by RANKNULL:44
2201
           .= (a*dim ((n-2)-bounding-chain-space(p)))
2202
         + (a*dim ((n-1)-circuit-space(p)));
2203
        hence thesis;
2204
      end:
2206
       :: The term "eulerian" comes from Lakatos.
2208
      definition
2209
       let p be polyhedron;
2210
         attr p is eulerian means
2211
         :Def29:
2212
        Sum (alternating-proper-f-vector(p)) = 1 + (-1)|^(dim(p)+1);
2213
2215
      theorem Th53:
2216
         alternating-semi-proper-f-vector(p)
2217
         = alternating-proper-f-vector(p) ^ <*(-1)|^(dim(p))*>
2218 proof
2219
        set d = dim(p);
```

```
2220
         set aspcs = alternating-semi-proper-f-vector(p);
2221
         set apcs = alternating-proper-f-vector(p);
         set r = apcs ^<*(-1)|^(dim(p))*>;
2222
2223
       A1: len aspcs = d + 1 by Def28;
2224
         len r = (len apcs) + (len <*(-1)|^(\dim(p))*>) by FINSEQ_1:35
2225
           = d + (len <*(-1)|^(dim(p))*>) by Def27
           .= d + 1 by FINSEQ_1:57;
2226
2227
         then
       A2: len aspcs = len r by Def28;
2228
2229
        for n being Nat st 1 <= n & n <= len aspcs holds aspcs.n = r.n
2230
2231
          let n be Nat such that
2232
       A3: 1 \le n and
       A4: n <= len aspcs;
2233
2234
          per cases by A1,A4,NAT_1:8;
2235
           suppose
2236
      A5: n \le d;
       A6: len apcs = d by Def27;
A7: dom apcs = Seg (len apcs) by FINSEQ_1:def 3;
2237
2238
2239
             n in NAT by ORDINAL1:def 13;
2240
             then n in dom apcs by A3,A5,A6,A7;
             then r.n = apcs.n by FINSEQ_1:def 7
2241
               .= ((-1)|^{\hat{}}(n+1))*num-polytopes(p,n-1) by A3,A5,Def27;
2242
             hence thesis by A1,A3,A4,Def28;
2243
2244
           end:
2245
           suppose
2246
       A8: n = d + 1;
2247
             then
       A9: aspcs.n = ((-1)|^n(n+1))*num-polytopes(p,n-1) by A3,Def28
2248
               = ((-1)|^{(n+1)})*1 by A8, Th32
2249
2250
               = (-1)|^(n+1);
2251
             n = (len apcs) + 1 by A8, Def27;
2252
             then r.n = (-1) \mid ^d by FINSEQ_1:59
2253
              = (-1)|^{(d+2)} by Th14;
2254
             hence thesis by A8,A9;
2255
           end:
2256
         end;
2257
         hence thesis by A2,FINSEQ_1:18;
2258
2260
       :: Another characterization of Eulerian polyhedra
2262
       definition
        let p be polyhedron;
2263
2264
         redefine attr p is eulerian means
2265
2266
         Sum (alternating-semi-proper-f-vector(p)) = 1;
2267
         compatibility
2268
         proof
2269
           set apcs = alternating-proper-f-vector(p);
2270
           set aspcs = alternating-semi-proper-f-vector(p);
2271
           aspcs = apcs ^<*(-1)|^(dim(p))*> by Th53;
2272
           then
2273
       A1: Sum aspcs = (Sum apcs) + (-1)|^(dim(p)) by GR_CY_1:20;
2274
       A2: p is eulerian implies Sum aspcs = 1
2275
           proof
2276
             assume p is eulerian;
2277
             then Sum aspcs = 1 + (-1)|^{(\dim(p)+1)} + (-1)|^{(\dim(p))} by A1, Def29
2278
               .= 1 + (-1)*((-1)|^{(\dim(p))} + (-1)|^{(\dim(p))} by NEWTON:11
               .= 1;
2279
2280
             hence thesis;
2281
           end;
2282
           Sum aspcs = 1 implies p is eulerian
2283
           proof
2284
             assume Sum aspcs = 1;
             then Sum apcs = 1 + (-1)*((-1)|^(\dim(p))) by A1
2285
               = 1 + (-1)|^{(\dim(p)+1)} by NEWTON:11;
2286
2287
             hence thesis by Def29;
```

```
2288
           end;
2289
           hence thesis by A2;
2290
         end;
2291
      end:
2293
      theorem Th54:
2294
        alternating-f-vector(p) = <*-1*> ^ alternating-semi-proper-f-vector(p)
      proof
2295
2296
       set acs = alternating-f-vector(p);
2297
         set aspcs = alternating-semi-proper-f-vector(p);
2298
         set d = dim(p);
        set r = \langle *-1* \rangle aspcs;
2299
      A1: len r = (len <*-1*>) + (len aspcs) by FINSEQ_1:35
2300
2301
           .= (len <*-1*>) + (d + 1) by Def28
2302
           .= 1 + (d + 1) by FINSEQ_1:57
           .= d + 2;
2303
2304
        then
2305
      A2: len acs = len r by Def26;
2306
       for n being Nat st 1 <= n & n <= len acs holds acs.n = r.n
2307
        proof
2308
          let n be Nat such that
2309
      A3: 1 <= n and
      A4: n <= len acs;
2310
2311
      A5: n \le d + 2 by A4, Def26;
2312
           per cases by A3,XXREAL_0:1;
2313
           suppose
      A6: n = 1;
2314
2315
             then acs.n = ((-1)|^1)*num-polytopes(p,1-2) by A5,Def26
              .= (-1)*num-polytopes(p,-1) by NEWTON:10
2316
2317
              = (-1)*1 by Th31
2318
               .= -1;
2319
             hence thesis by A6,FINSEQ_1:58;
2320
           end;
2321
          suppose
      A7: n > 1;
2322
2323
             then
2324
             1 - 1 < n - 1 by XREAL_1:11;
             then reconsider m = n - 1 as Element of NAT by INT_1:16;
2326
             0 < 0 qua Nat + m by A8;
2327
             then
2328
      A9: 1 <= m by NAT_1:19;
2329
             n - 1 \le (d + 2) - 1 by A5, XREAL_1:11;
2330
             then
2331
      A10: m \le d + 1;
      A11: r.n = aspcs.(n-1)
2332
2333
             proof
2334
              len <*-1*> = 1 by FINSEQ_1:56;
2335
              hence thesis by A1, A5, A7, FINSEQ_1:37;
2336
2337
             aspcs.m = ((-1)|^(m+1))*num-polytopes(p,m-1) by A9,A10,Def28
2338
               .= ((-1)|^n)*(num-polytopes(p,n-2));
2339
            hence thesis by A3, A5, A11, Def26;
2340
           end;
2341
         end;
2342
         hence thesis by A2,FINSEQ_1:18;
2343
      end;
2345
       :: Yet another characterization of eulerian polyhedra
2347
       definition
2348
        let p be polyhedron;
2349
         redefine attr p is eulerian means
2350
         :Def31:
2351
         Sum (alternating-f-vector(p)) = 0;
2352
         compatibility
2353
         proof
2354
          set acs = alternating-f-vector(p);
2355
          set aspcs = alternating-semi-proper-f-vector(p);
          acs = <*-1*> ^ aspcs by Th54;
2356
```

```
2357
           then
      A1: Sum acs = -1 + (Sum aspcs) by Th21;
2358
2359
           p is eulerian implies Sum acs = 0
2360
           proof
2361
             assume p is eulerian;
2362
             then Sum acs = -1 + 1 by A1,Def30
2363
              .= 0;
2364
             hence thesis;
2365
           end;
2366
           hence thesis by A1,Def30;
2367
         end;
2368
      end;
2370
       begin :: The Extremal Chain Spaces
2372
       theorem Th55:
2373
        0-polytopes(p) is non empty
      proof
2374
        set d = dim(p);
2375
2376
        per cases:
2377
         suppose d = 0;
2378
           then 0-polytopes(p) = {p} by Def5;
2379
           hence thesis;
2380
         end;
        suppose d > 0;
2381
2382
          hence thesis by Th26;
2383
         end;
2384
2386
       theorem Th56:
2387
        card [#]((-1)-chain-space(p)) = 2
2388
2389
         (-1)-polytopes(p) = {{}} by Def5;
         then card ((-1)-polytopes(p)) = 1 by CARD_1:50;
2390
2391
         then card [#]((-1)-chain-space(p)) = exp(2,1) by BSPACE:43
2392
           .= 2 by CARD_2:40;
2393
         hence thesis;
2394
       end;
2396
       theorem Th57:
2397
        [#]((-1)-chain-space(p)) = { {}, {{}}} }
2398
       proof
        (-1)-polytopes(p) = {{}} by Def5;
2399
2400
        hence thesis by ZFMISC_1:30;
2401
2403
       theorem Th58:
2404
       for x being Element of k-polytopes(p), e being Element of (k-1)-polytopes(p)
        st k = 0 & e = {} holds incidence-value(e,x) = 1.Z_2
2405
2406
      proof
2407
        let x be Element of k-polytopes(p),
2408
        e be Element of (k-1)-polytopes(p) such that
2409
       A1: k = 0 and
2410
       A2: e = {};
       A3: 0 \le k \& k \le dim(p) by A1;
       A4: eta(p,k) = [:{{}},0-polytopes(p):] --> 1.Z_2 by A1,Def6;
2412
       A5: {} in {{}} by TARSKI:def 1;
2413
2414
         O-polytopes(p) is non empty by A3,Th26;
2415
       A6: [\{\},x] in [:\{\{\}\},0-polytopes(p):] by A1,A5,ZFMISC_1:106;
2417
        incidence-value(e,x) = eta(p,k).(e,x) by A3,Def13
           .= 1.Z_2 by A2,A4,A6,FUNCOP_1:13;
2418
2419
        hence thesis;
2420
2422
       theorem Th59:
2423
         for k being Integer, x being Element of k-polytopes(p),
         v being Element of k-chain-space(p), e being Element of (k-1)-polytopes(p),
2424
         n being Nat st k = 0 & v = \{x\} & e = \{\} & x = n-th-polytope(p,k)
2425
2426
        & 1 <= n & n <= num-polytopes(p,k) holds incidence-sequence(e,v).n = 1.Z_2
2427
       proof
```

```
2428
         let k be Integer, x be Element of k-polytopes(p),
2429
         v be Element of k-chain-space(p), e be Element of (k-1)-polytopes(p),
2430
        n be Nat such that
2431
      A1: k = 0 and
2432
      A2: v = \{x\} and
2433
       A3: e = {} and
       A4: x = n-th-polytope(p,k) and
2435
       A5: 1 <= n and
2436
      A6: n <= num-polytopes(p,k);
2437
        set iseq = incidence-sequence(e,v);
2438
      A7: (k-1)-polytopes(p) is non empty by A1, Def5;
2439
      A8: x in v by A2, TARSKI: def 1;
         iseq.n = (v@x)*incidence-value(e,x) by A4,A5,A6,A7,Def16
2440
2441
           .= (1.Z_2)*incidence-value(e,x) by A8,BSPACE:def 3
           .= (1.Z_2)*(1.Z_2) by A1,A3,Th58
2442
2443
           .= 1.Z_2 by VECTSP_1:def 16;
2444
         hence thesis;
2445
       end;
2447
       theorem Th60:
2448
        for k being Integer, x being Element of k-polytopes(p),
2449
         e being Element of (k-1)-polytopes(p), v being Element of k-chain-space(p),
2450
         m,n being Nat st k = 0 & v = \{x\} & x = n-th-polytope(p,k) & 1 <= m &
2451
         m <= num-polytopes(p,k) & 1 <= n & n <= num-polytopes(p,k) & m <> n
2452
         holds incidence-sequence(e,v).m = 0.Z_2
2453
2454
         let k be Integer, x be Element of k-polytopes(p),
2455
         e be Element of (k-1)-polytopes(p), v be Element of k-chain-space(p),
2456
        m.n be Nat such that
      A1: k = 0 and
2457
2458
      A2: v = \{x\} and
2459
       A3: x = n-th-polytope(p,k) and
2460
      A4: 1 <= m and
2461
       A5: m <= num-polytopes(p,k) and
      A6: 1 <= n and
2462
2463
      A7: n <= num-polytopes(p,k) and
2464
      A8: m <> n;
        set iseq = incidence-sequence(e,v);
2466
         -1 <= k & k <= dim(p) by A1;
2467
        then
2468
      A9: m-th-polytope(p,k) <> x by A3,A4,A5,A6,A7,A8,Th35;
2469
2470
           assume v@(m-th-polytope(p,k)) = 1.Z_2;
2471
           then m-th-polytope(p,k) in {x} by A2,BSPACE:9;
2472
           hence contradiction by A9, TARSKI:def 1;
2473
         end:
2474
         then
2475
       A10: v@(m-th-polytope(p,k)) = 0.Z_2 by BSPACE:11;
2476
         (k-1)-polytopes(p) is non empty by A1,Def5;
         then iseq.m = (0.Z_2)*(incidence-value(e,m-th-polytope(p,k)))
2477
         by A4,A5,A10,Def16
2478
2479
           .= 0.Z_2 by VECTSP_1:39;
2480
         hence thesis;
2481
       end:
2483
       theorem Th61:
2484
        for k being Integer, x being Element of k-polytopes(p),
2485
         v being Element of k-chain-space(p), e being Element of (k-1)-polytopes(p)
2486
        st k = 0 \& v = \{x\} \& e = \{\} holds Sum incidence-sequence(e,v) = 1.Z_2
2487
      proof
        let k be Integer, x be Element of k-polytopes(p),
2488
2489
        v be Element of k-chain-space(p),
2490
         e be Element of (k-1)-polytopes(p) such that
2491
      A1: k = 0 and
2492
      A2: v = \{x\} and
      A3: e = \{\};
2493
2494
         set iseq = incidence-sequence(e,v);
2495
         -1 <= k & k <= dim(p) by A1;
```

```
2496
         then consider n being Nat such that
      A4: x = n-th-polytope(p,k) and
2497
       A5: 1 <= n and
2498
       A6: n \le num-polytopes(p,k) by Th33;
2499
2500
         (k-1)-polytopes(p) is non empty by A1,Def5;
2501
2502
       A7: len iseq = num-polytopes(p,k) by Def16;
2503
         dom iseq = Seg (len iseq) by FINSEQ_1:def 3;
2504
         then
2505
       A8: n in dom iseq by A5,A6,A7,FINSEQ_1:3;
2506
       A9: iseq.n = 1.Z_2 by A1, A2, A3, A4, A5, A6, Th59;
2507
         for m being Nat st m in dom iseq & m \Leftrightarrow n holds iseq.m = 0.Z_2
2508
         proof
2509
          let m be Nat such that
2510
       A10: m in dom iseq and
2511
       A11: m <> n;
2512
         m in Seg (len iseq) by A10,FINSEQ_1:def 3;
2513
           then 1 <= m & m <= len iseq by FINSEQ_1:3;
          hence thesis by A1,A2,A4,A5,A6,A7,A11,Th60;
2514
2515
         end:
2516
         hence thesis by A8, A9, MATRIX_3:14;
2517
       end;
2519
       theorem Th62:
2520
        for x being Element of 0-polytopes(p) holds (0-boundary(p)).(\{x\}) = \{\{\}\}
2521
2522
         let x be Element of O-polytopes(p);
         set T = 0-boundary(p);
2523
2524
         reconsider minusone = 0 qua Nat - 1 as Integer;
2525
         O-polytopes(p) is non empty by Th55;
2526
         then reconsider v = \{x\} as Subset of O-polytopes(p) by ZFMISC_1:37;
2527
         reconsider v as Element of O-chain-space(p);
2528
       A1: T.v = Boundary(v) by Def18;
2529
        reconsider bv = Boundary(v) as Element of minusone-chain-space(p);
2530
       A2: minusone-polytopes(p) is non empty by Def5;
2531
         (0 qua Nat-1)-polytopes(p) = {{}} by Def5;
2532
         then reconsider null = {} as
2533
         Element of (0 qua Nat-1)-polytopes(p) by TARSKI:def 1;
2534
         null in bv iff Sum incidence-sequence(null,v) = 1.Z_2 by A2,Def17;
2535
         then
2536
       A3: {null} c= bv by Th61,ZFMISC_1:37;
2537
         bv c= {null}
         proof
2539
           let y be set such that
2540
       A4: y in by;
       A5: [#] (minusone-chain-space(p)) = { {}, {{}}} } by Th57;
2541
2542
           per cases by A5,TARSKI:def 2;
           suppose bv = {};
2543
2544
            hence thesis by A4;
2545
           end:
           suppose bv = \{\{\}\};
2546
2547
            hence thesis by A4;
2548
2549
         end;
2550
         hence thesis by A1,A3,XBOOLE_0:def 10;
2551
       end:
2553
       theorem Th63:
2554
        k = -1 implies dim(k-bounding-chain-space(p)) = 1
2555
       proof
2556
        assume
2557
       A1: k = -1;
        set T = 0-boundary(p);
2558
         set V = k-bounding-chain-space(p);
2559
2560
        card [#]V = 2
2561
         proof
       A2: T.(0.(0-chain-space(p))) = 0.(k-chain-space(p)) by A1,RANKNULL:9
2562
2563
```

```
2564
           0-polytopes(p) <> {} by Th55;
2565
           then consider x being set such that
2566
      A3: x in 0-polytopes(p) by XBOOLE_0:def 1;
           reconsider x as Element of O-polytopes(p) by A3;
2567
2568
           set v = \{x\};
2569
      A4: T.v = \{\{\}\}\ by Th62;
      A5: dom T = [#](O-chain-space(p)) by RANKNULL:7;
2571
           reconsider v as Subset of O-polytopes(p) by A3,ZFMISC_1:37;
2572
           reconsider v as Element of O-chain-space(p);
2573
      A6: v in dom T by A5;
2574
       A7: {} in rng T by A2, A5, FUNCT_1:12;
           {{}} in rng T by A4, A6, FUNCT_1:12;
2575
2576
           then
2577
       A8: \{\{\},\{\{\}\}\}\}\ c= rng T by A7,ZFMISC_1:38;
2578
           card \{\{\},\{\{\}\}\}\} = 2 by CARD_2:76;
2579
           then
2580
      A9: 2 c= card rng T by A8, CARD_1:27;
2581
       A10: card rng T = card (T .: [#](0-chain-space(p))) by FUNCT_2:45
             .= card [#]V by A1,RANKNULL:def 2;
2582
2583
           [#]V c= [#](k-chain-space(p)) by VECTSP_4:def 2;
2584
           then card [#]V c= card [#](k-chain-space(p)) by CARD_1:27;
2585
           then card [#]V c= 2 by A1,Th56;
2586
           hence thesis by A9,A10,XBOOLE_0:def 10;
2587
         end:
2588
         hence thesis by RANKNULL:6;
2589
       end:
2591
       theorem Th64:
2592
         card [#](dim(p)-chain-space(p)) = 2
2593
2594
         dim(p)-polytopes(p) = {p} by Def5;
2595
         then card (dim(p)-polytopes(p)) = 1 by CARD_1:50;
         then card [#]((dim(p))-chain-space(p)) = exp(2,1) by BSPACE:43
2596
2597
           .= 2 by CARD_2:40;
2598
         hence thesis;
2599
       end;
2601
       theorem Th65:
        {p} is Element of dim(p)-chain-space(p)
2602
2603
       proof
2604
         dim(p)-polytopes(p) = {p} by Def5;
2605
         hence thesis by ZFMISC_1:def 1;
2606
       end:
2608
       theorem Th66:
2609
        {p} in [#](dim(p)-chain-space(p))
2610
2611
         {p} is Element of dim(p)-chain-space(p) by Th65;
2612
         hence thesis;
2613
       end:
2615
       theorem Th67:
        (dim(p) - 1)-polytopes(p) is non empty
2616
2617
       proof
2618
        set n = dim(p) - 1;
2619
      A1: -1 <= n
2620
        proof
2621
           0 qua Nat - 1 = -1;
2622
           hence thesis by XREAL_1:11;
2623
2624
         n \le dim(p) by XREAL_1:148;
2625
         hence thesis by A1, Th26;
2626
      end;
2628
2629
         let p be polyhedron;
         cluster (dim(p)-1)-polytopes(p) -> non empty;
2630
2631
         coherence by Th67;
2632
       end:
```

```
2634
       theorem Th68:
2635
        [#](dim(p)-chain-space(p)) = { 0.(dim(p)-chain-space(p)), {p} }
2636
       proof
2637
        set V = dim(p)-chain-space(p);
2638
        set C = [#]V;
2639
       A1: card C = 2 by Th64;
       reconsider C as finite set;
2640
2641
        consider a,b being set such that
2642
       A2: a \iff b and
2643
       A3: C = \{a,b\} by A1, CARD_2:79;
2644
         {p} in C by Th66;
2645
        hence thesis by A2, A3, Th1;
2646
       end;
2648
       theorem Th69:
2649
        for x being Element of dim(p)-chain-space(p)
2650
        holds x = 0.(dim(p)-chain-space(p)) or x = \{p\}
2651
       proof
2652
        set V = dim(p)-chain-space(p);
2653
         let x be Element of V;
2654
        x in [#]V;
2655
         then x in { 0.V, {p} } by Th68;
        hence thesis by TARSKI:def 2;
2656
2657
       end;
2659
       theorem Th70:
         for x,y being Element of dim(p)-chain-space(p) st x <> y
2660
2661
        holds x = 0.(dim(p)-chain-space(p)) or y = 0.(dim(p)-chain-space(p))
2662
       proof
        set V = dim(p)-chain-space(p);
2663
2664
        let x,y be Element of V such that
2665
       A1: x <> y;
2666
        assume
2667
       A2: x <> 0.V;
2668
        assume
2669
       A3: y <> 0.V;
        x = \{p\} \text{ by A2,Th69};
2670
2671
        hence contradiction by A1,A3,Th69;
2672
2674
       theorem
2675
        dim(p)-polytope-seq(p) = <*p*> by Def7;
2677
       theorem Th72:
2678
        1-th-polytope(p,dim(p)) = p
2680
        reconsider egy = 1 as Nat;
       A1: egy <= num-polytopes(p,dim(p)) by Th32;
2681
2682
        set s = dim(p)-polytope-seq(p);
2683
       A2: s = <*p*> by Def7;
2684
        egy-th-polytope(p,dim(p)) = s.egy by A1,Def12
2685
           .= p by A2,FINSEQ_1:57;
        hence thesis;
2686
2687
       end;
2689
       theorem Th73:
        for c being Element of dim(p)-chain-space(p),
2690
2691
        x being Element of dim(p)-polytopes(p) st c = {p} holds c@x = 1.Z_2
2692
        let c be Element of dim(p)-chain-space(p),
2694
         x be Element of dim(p)-polytopes(p) such that
       A1: c = \{p\};
2695
2696
        dim(p)-polytopes(p) = {p} by Def5;
2697
        hence thesis by A1,BSPACE:def 3;
2698
2700
       theorem Th74:
2701
         for x being Element of (\dim(p)-1)-polytopes(p),
         c being Element of dim(p)-polytopes(p) st c = p
        holds incidence-value(x,c) = 1.Z_2
2703
2704
       proof
```

```
2705
         let x be Element of (\dim(p)-1)-polytopes(p),
2706
         c be Element of dim(p)-polytopes(p) such that
      A1: c = p;
2707
2708
        set f = [:(dim(p)-1)-polytopes(p),{p}:] --> 1.Z_2;
2709
       A2: eta(p,dim(p)) = f by Def6;
2710
       A3: dom f = [:(dim(p)-1)-polytopes(p),{p}:] by FUNCOP_1:19;
        c in {p} by A1, TARSKI:def 1;
2711
2712
         then [x,c] in dom f by A3,ZFMISC_1:106;
2713
         then f.(x,c) in rng f by FUNCT_1:12;
2714
         then f.(x,c) in \{1.Z_2\} by FUNCOP_1:14;
2715
         then f.(x,c) = 1.Z_2 by TARSKI:def 1;
2716
         hence thesis by A2, Def13;
2717
       end;
2719
       theorem Th75:
2720
       for x being Element of (dim(p)-1)-polytopes(p),
2721
         c being Element of dim(p)-chain-space(p) st c = {p}
2722
         holds incidence-sequence(x,c) = <*1.Z_2*>
2723
2724
         let x be Element of (\dim(p)-1)-polytopes(p),
2725
         c be Element of dim(p)-chain-space(p) such that
2726
      A1: c = \{p\};
2727
        set iseq = incidence-sequence(x,c);
2728
         num-polytopes(p,dim(p))=1 by Th32;
2729
2730
      A2: len iseq = 1 by Def16;
2731
        iseq.1 = 1.Z_2
2732
         proof
2733
          reconsider egy = 1 as Nat;
2734
       A3: egy <= num-polytopes(p,dim(p)) by Th32;
2735
           set z = egy-th-polytope(p,dim(p));
2736
       A4: iseq.egy = (c@z)*(incidence-value(x,z)) by A3,Def16;
       A5: c@z = 1.Z_2 by A1, Th73;
2737
           incidence-value(x,z) = 1.Z_2 by Th72,Th74; :: !!!
2738
2739
           hence thesis by A4, A5, VECTSP_1:def 16;
2740
2741
         hence thesis by A2,FINSEQ_1:57;
2742
      end;
2744
2745
         for x being Element of (\dim(p)-1)-polytopes(p),
2746
         c being Element of dim(p)-chain-space(p) st c = \{p\}
2747
         holds Sum incidence-sequence(x,c) = 1.Z_2
2748
      proof
2749
        let x be Element of (dim(p)-1)-polytopes(p),
         c be Element of dim(p)-chain-space(p) such that
2750
2751
      A1: c = \{p\};
2752
        incidence-sequence(x,c) = <*1.Z_2*> by A1,Th75;
2753
         hence thesis by FINSOP_1:12;
2754
2756
      :: The boundary operation applied to the unique non-zero vector of the
2757
       :: \dim(p)-chain space gives the "top" vector of the (\dim(p)-1)-chain
      :: space. In other words, every (dim(p)-1)-polytope is incidence to
2759
       :: the whole polyhedron.
2761
       theorem Th77:
2762
        (\dim(p)-boundary(p)).\{p\} = (\dim(p)-1)-polytopes(p)
2763
       proof
2764
         set T = dim(p)-boundary(p);
2765
         set X = (dim(p)-1)-polytopes(p);
2766
         reconsider c = {p} as Element of dim(p)-chain-space(p) by Th65;
         reconsider d = X as Element of (dim(p)-1)-chain-space(p) by ZFMISC_1:def 1;
2767
         reconsider Tc = T.c as Element of (dim(p)-1)-chain-space(p);
2768
2769
         for x being Element of X holds x in Tc iff x in d
         proof
2770
           let x be Element of X;
2771
2772
           thus x in Tc implies x in d;
2773
          thus x in d implies x in Tc
```

```
2774
           proof
2775
             assume x in d;
2776
             Sum incidence-sequence(x,c) = 1.Z_2 by Th76;
2777
             then x in Boundary(c) by Def17;
2778
             hence thesis by Def18;
2779
2780
         end;
2781
         hence thesis by SUBSET_1:8;
2782
       end;
2784
       theorem Th78:
2785
         dim(p)-boundary(p) is one-to-one
2786
       proof
2787
         set T = dim(p)-boundary(p);
2788
         set U = (dim(p) - 1)-chain-space(p);
2789
         set V = dim(p)-chain-space(p);
         set B = {p};
2790
2791
         assume not T is one-to-one;
2792
         then consider x1,x2 being set such that
2793
       A1: x1 in dom T and
      A2: x2 in dom T and
2795
       A3: T.x1 = T.x2 and
      A4: x1 <> x2 by FUNCT_1:def 8;
2796
         reconsider x1 as Element of V by A1;
2797
2798
         reconsider x2 as Element of V by A2;
2799
         per cases by A4, Th70;
2800
         suppose
       A5: x1 = 0.V;
2801
2802
           then
2803
       A6: x2 = B by A4, Th69;
2804
           T.x1 = 0.U by A5, RANKNULL:9;
2805
           hence thesis by A3, A6, Th77;
2806
         end:
2807
         suppose
2808
       A7: x2 = 0.V;
2809
           then
2810
       A8: x1 = B by A4, Th69;
           T.x2 = 0.U by A7, RANKNULL:9;
2812
           hence thesis by A3,A8,Th77;
2813
         end;
2814
       end;
2816
       theorem Th79:
2817
        dim ((dim(p)-1)-bounding-chain-space(p)) = 1
2818
       proof
2819
         set d = dim(p);
         set T = d-boundary(p);
2821
         set U = d-chain-space(p);
2822
         set V = (d-1)-bounding-chain-space(p);
2823
       A1: T is one-to-one by Th78;
       A2: card [#]V = card (T .: [#]U) by RANKNULL:def 2
2824
2825
           .= card (rng T) by FUNCT_2:45;
2826
         card (dom T) = card [#]U by RANKNULL:7
2827
           .= 2 by Th64;
         then card [#] V = 2 by A1, A2, Th2;
2828
2829
        hence thesis by RANKNULL:6;
2830
2832
       theorem Th80:
         p is simply-connected implies dim ((\dim(p)-1)-\text{circuit-space}(p)) = 1
2833
2834
       proof
2835
         assume
2836
       A1: p is simply-connected;
2837
         set d = dim(p);
         set U = (d-1)-bounding-chain-space(p);
2838
2839
         set V = (d-1)-circuit-space(p);
2840
         U = V by A1, Th51;
         hence thesis by Th79;
2842
       end:
```

```
2844
      theorem Th81:
       1 < n & n < dim(p) + 2 implies (alternating-f-vector(p)).n
2846
        = (alternating-proper-f-vector(p)).(n-1)
2847
      proof
2848
        assume
2849
      A1: 1 < n;
2850
        assume
2851
      A2: n < dim(p) + 2;
2852
       set acs = alternating-f-vector(p);
2853
        set apcs = alternating-proper-f-vector(p);
2854
      A3: acs.n = ((-1)|^n)*num-polytopes(p,n-2) by A1,A2,Def26;
        0 <= n - 1
2855
2856
         proof
2857
          1 - 1 = 0;
2858
          hence thesis by A1, XREAL_1:15;
2859
         end:
2860
        then reconsider m = n - 1 as Element of NAT by INT_1:16;
2861
        reconsider m as Nat;
2862 A4: 1 <= m
2863
       proof
2864
      A5: 2 <= n
2865
         proof
2866
            1 + 1 = 2;
2867
            hence thesis by A1, INT_1:20;
2868
           end:
          2 - 1 = 1;
2869
2870
          hence thesis by A5, XREAL_1:15;
2871
         end;
2872
         m <= dim(p)
2873
         proof
          n < (dim(p) + 1) + 1 by A2;
2874
2875
           then n \le dim(p) + 1 by NAT_1:13;
2876
           then n - 1 \le (\dim(p) + 1) - 1 by XREAL_1:11;
2877
          hence thesis;
2878
         end:
         then apcs.m = ((-1)|^{(m+1)})*num-polytopes(p,m-1) by A4,Def27;
2879
2880
         hence thesis by A3;
2881
2883
      theorem Th82:
2884
       alternating-f-vector(p)
2885
         = <*-1*> ^ alternating-proper-f-vector(p) ^ <*(-1)|^(dim(p))*>
2886
      proof
       set acs = alternating-f-vector(p);
2887
2888
         set apcs = alternating-proper-f-vector(p);
         set r = <*-1*> ^ apcs ^ <*(-1)|^(dim(p))*>;
2889
2890
         set n = dim(p);
2891 A1: len acs = n + 2 by Def26;
      A2: len apcs = n by Def27;
2892
      A3: len r = (len <*-1*>) + (len apcs) + (len <*(-1)|^(\dim(p))*>) by Th16;
2893
2894
      A4: len <*-1*> = 1 by FINSEQ_1:56;
2895
      A5: len <*(-1)|^(\dim(p))*> = 1 by FINSEQ_1:56;
2896
       for k being Nat st 1 <= k & k <= len acs holds acs.k = r.k
2897
        proof
2898
         let k be Nat such that
2899
      A6: 1 <= k and
2900
      A7: k <= len acs;
2901
         per cases by A1,A6,A7,XXREAL_0:1;
2902
          suppose
2903
      A8: k = 1;
2904
      A9: 1 \le n + 2 by Th12;
2905
             reconsider o = 1 as Nat;
2906
             0 - 2 = -1;
2907
             then
      A10: acs.o = ((-1)|^o)*num-polytopes(p,-1) by A9,Def26;
2908
2909
      A11: (-1)|^1 = -1 by Th4, Th9;
2910
             num-polytopes(p,-1) = 1 by Th31;
```

```
2911
             hence thesis by A8,A10,A11,Th17;
2912
           end:
2913
           suppose
       A12: k = n + 2;
2914
2915
             then 1 <= k by Th12;
2916
       A13: acs.k = ((-1)|^k)*num-polytopes(p,k-2) by A12, Def26;
2917
2918
       A14: r.k = (-1)|^k
2919
             proof
2920
               k = (len < *-1*> + len (apcs) + 1)
2921
               proof
                len <*-1*> = 1 by FINSEQ_1:56;
2922
2923
                 hence thesis by A2, A12;
2924
               end:
2925
               then r.k = (-1)|^{(dim(p))} by Th18
2926
                 = (-1) \mid ^k \text{ by A12,Th14};
2927
               hence thesis;
2928
             end;
             num-polytopes(p,k-2) = 1 by A12, Th32;
2929
2930
             hence thesis by A13,A14;
2931
           end:
2932
           suppose
2933
       A15: 1 < k & k < n + 2;
             set m = k - 1;
2934
       A16: len <*-1*> = 1 by FINSEQ_1:56;
2935
             k <= len (<*-1*> ^ apcs)
2936
2937
             proof
2938
       A17:
              len (<*-1*> ^ apcs) = (len <*-1*> + len apcs) by FINSEQ_1:35
                = n + 1 \text{ by A2,FINSEQ}_1:56;
2939
       A18:
               k + 1 <= n + 2 by A15, INT_1:20;
2940
2941
       A19:
               (k + 1) - 1 = k;
               (n + 2) - 1 = n + 1;
2942
2943
               hence thesis by A17, A18, A19, XREAL_1:11;
2944
             end:
2945
             then r.k = apcs.m by A15,A16,Th19;
2946
             hence thesis by A15, Th81;
2947
           end;
2948
2949
        hence thesis by A1, A2, A3, A4, A5, FINSEQ_1:18;
2950
       end:
2952
       begin :: A Generalized Euler Relation and its 1-, 2-, and 3-dimensional Special Cases
2954
       theorem Th83:
2955
         dim(p) is odd implies Sum (alternating-f-vector(p))
2956
         = Sum (alternating-proper-f-vector(p)) - 2
2958
        assume
2959
       A1: dim(p) is odd;
2960
         set acs = alternating-f-vector(p);
2961
         set apcs = alternating-proper-f-vector(p);
2962
       A2: acs = <*-1*> ^ apcs ^ <*(-1)|^(dim(p))*> by Th82;
       A3: (-1)|^{(\dim(p))} = -1 by A1, Th9;
2963
2964
        reconsider minusone = -1 as Integer;
         reconsider lastterm = (-1)|^{(\dim(p))} as Integer;
2965
2966
         Sum acs = (Sum <*minusone*>) + (Sum apcs) + (Sum <*lastterm*>) by A2,Th22
2967
           .= (Sum <*minusone*>) + (Sum apcs) + (-1) by A3,RVSUM_1:103
2968
           .= (-1) + (Sum apcs) + (-1) by RVSUM_1:103
2969
           .= (Sum apcs) - 2;
2970
        hence thesis;
2971
       end;
2973
       theorem Th84:
2974
         dim(p) is even implies Sum (alternating-f-vector(p))
2975
         = Sum (alternating-proper-f-vector(p))
2976
       proof
2977
         assume
      A1: dim(p) is even;
2979
         set acs = alternating-f-vector(p);
```

```
2980
         set apcs = alternating-proper-f-vector(p);
       A2: acs = <*-1*> ^apcs ^a <*(-1)|^(dim(p))*> by Th82;
       A3: (-1)|^(\dim(p)) = 1 by A1, Th8;
2982
2983
         reconsider minusone = -1 as Integer;
         reconsider lastterm = (-1)|^(dim(p)) as Integer;
2984
2985
         Sum acs = (Sum <*minusone*>) + (Sum apcs) + (Sum <*lastterm*>) by A2,Th22
          .= (Sum <*minusone*>) + (Sum apcs) + 1 by A3,RVSUM_1:103
2986
2987
            .= (-1) + (Sum apcs) + 1 by RVSUM_1:103
2988
           .= Sum apcs;
2989
         hence thesis;
2990
       end:
2992
       theorem Th85:
2993
         dim(p) = 1 implies Sum alternating-proper-f-vector(p) = num-polytopes(p,0)
2994
       proof
2995
2996
      A1: dim(p) = 1;
2997
        set apcs = alternating-proper-f-vector(p);
2998
       A2: len apcs = 1 by A1, Def27;
2999
        reconsider egy = 1 as Nat;
3000
      A3: apcs.egy = (-1)|^(egy+1)*num-polytopes(p,egy-1) by A1,Def27;
3001
         (-1)|^{(egy+1)} = 1 by Th5, Th8;
         then apcs = <*num-polytopes(p,0)*> by A2,A3,FINSEQ_1:57;
3002
3003
        hence thesis by RVSUM_1:103;
3004
       end:
3006
       theorem Th86:
         \label{eq:dim(p) = 2 implies Sum alternating-proper-f-vector(p)} dim(p) = 2 implies Sum alternating-proper-f-vector(p)
3007
3008
         = num-polytopes(p,0) - num-polytopes(p,1)
3009
3010
         assume
3011
      A1: dim(p) = 2;
3012
        set apcs = alternating-proper-f-vector(p);
      A2: len apcs = 2 by A1, Def27;
3013
       reconsider o = 1 as Nat;
3014
3015
         reconsider t = 2 as Nat;
      A3: apcs.o = ((-1)|^{(o+1)})*num-polytopes(p,o-1) by A1,Def27;
3016
       A4: apcs.t = ((-1)|^(t+1))*num-polytopes(p,t-1) by A1,Def27;
3017
      A5: (-1)|^(o+1) = 1 by Th5,Th8;
3018
       A6: (-1)|^{(t+1)} = -1 by Th6, Th9;
3019
3020
        reconsider apcso = apcs.o as Integer;
3021
         reconsider apcst = apcs.t as Integer;
3022
      A7: apcs = <*apcso,apcst*> by A2,FINSEQ_1:61;
3023
        Sum apcs = apcso + apcst by A7,RVSUM_1:107
3024
           .= num-polytopes(p,0) - num-polytopes(p,1) by A3,A4,A5,A6;
3025
         hence thesis;
3026
3028
      theorem Th87:
3029
         dim(p) = 3 implies Sum alternating-proper-f-vector(p)
3030
         = num-polytopes(p,0) - num-polytopes(p,1) + num-polytopes(p,2)
3031
3032
        assume
3033
      A1: dim(p) = 3;
3034
        set apcs = alternating-proper-f-vector(p);
3035
      A2: len apcs = 3 by A1, Def27;
3036
        reconsider o = 1 as Nat;
3037
         reconsider tw = 2 as Nat;
3038
        reconsider th = 3 as Nat;
         reconsider mo = -1 as Integer;
3039
      A3: (-1)|^{(o+1)} = 1 by Th5, Th8;
3040
       A4: (-1)|^(tw+1) = -1 by Th6, Th9;
3041
3042
       A5: (-1)|^{(th+1)} = 1 by Th7, Th8;
3043
       A6: apcs.o = o*num-polytopes(p,o-1) by A1,A3,Def27;
3044
       A7: apcs.tw = mo*num-polytopes(p,tw-1) by A1,A4,Def27;
3045
       A8: apcs.th = o*num-polytopes(p,th-1) by A1,A5,Def27;
3046
         reconsider apcson = apcs.o as Integer;
         reconsider apcstw = apcs.tw as Integer;
3047
         reconsider apcsth = apcs.th as Integer;
3048
```

```
3049
       A9: apcs = <*apcson,apcstw,apcsth*> by A2,FINSEQ_1:62;
         Sum apcs = apcson + apcstw + apcsth by A9,RVSUM_1:108
3050
3051
           .= num-polytopes(p,0)
         - num-polytopes(p,1) + num-polytopes(p,2) by A6,A7,A8;
3052
3053
        hence thesis;
3054
3056
       :: A trivial special case
       theorem Th88:
3058
3059
        dim(p) = 0 implies p is eulerian
3060
       proof
        set d = dim(p);
3062
         assume
       A1: d = 0:
3063
3064
         set apcs = alternating-proper-f-vector(p);
3065
         (-1)|^{(d+1)} = -1 by A1, NEWTON: 10;
3066
         then
3067
       A2: 1 + (-1)|^(d+1) = 0;
3068
        len apcs = 0 by A1, Def27;
         then apcs = <*>INT;
3069
3070
         hence thesis by A2,Def29,GR_CY_1:22;
3071
3073
       theorem Th89:
3074
        p is simply-connected implies p is eulerian
3075
       proof
3076
        assume
       A1: p is simply-connected;
3077
3078
         set apcs = alternating-proper-f-vector(p);
3079
         per cases;
3080
         suppose dim(p) = 0;
3081
          hence thesis by Th88;
3082
         end:
3083
         suppose dim(p) > 0;
3084
           then
3085
       A2: len apcs > 0 by Def27;
3087
       :: Split the alternating characteristic sequence into a sum of two
3088
           deffunc A(Nat) = ((-1)|^{(1+1)}*(dim ((1-2)-bounding-chain-space(p)));
           deffunc B(Nat) = ((-1)|^{(\$1+1)})*(dim ((\$1-1)-circuit-space(p)));
3090
3091
           consider a being FinSequence such that
3092
       A3: len a = len apcs and
3093
       A4: for n being Nat st n in dom a holds a.n = A(n) from FINSEQ_1:sch 2;
           consider b being FinSequence such that
3095
       A5: len b = len apcs and
       A6: for n being Nat st n in dom b holds b.n = B(n) from FINSEQ_1:sch 2;
3096
3097
           rng a c= INT & rng b c= INT
           proof
3098
3099
             thus rng a c= INT
3100
             proof
3101
               let y be set such that
       A7:
3102
               y in rng a;
3103
               consider x being set such that
3104
       A8:
               {\tt x} in dom a and
3105
               y = a.x by A7, FUNCT_1:def 5;
               reconsider x as Element of NAT by A8;
3106
               a.x = ((-1)|^(x+1))*(dim ((x-2)-bounding-chain-space(p))) by A4,A8;
3107
3108
               hence thesis by A9;
3109
             end;
3110
             thus rng b c= INT
3111
             proof
               let y be set such that
3112
3113
       A10:
               y in rng b;
3114
               consider \boldsymbol{x} being set such that
3115
               x in dom b and
3116
       A12:
               y = b.x by A10, FUNCT_1:def 5;
               reconsider x as Element of NAT by A11;
3117
```

```
3118
               b.x = ((-1)|^(x+1))*(dim ((x-1)-circuit-space(p))) by A6,A11;
3119
              hence thesis by A12;
3120
             end:
3121
           end:
3122
           then reconsider a,b as FinSequence of INT by FINSEQ_1:def 4;
3123
       A13: for n being Nat st 1 <= n & n <= len apcs holds apcs.n = a.n + b.n
           proof
3125
             let n be Nat such that
      A14: 1 <= n and
3126
3127
       A15: n <= len apcs;
3128
       A16: apcs.n = ((-1)|^(n+1))*(dim ((n-2)-bounding-chain-space(p)))
             + ((-1)|^(n+1))*(dim ((n-1)-circuit-space(p))) by A14,A15,Th52;
3129
3130
             reconsider n' = n as Element of NAT by ORDINAL1:def 13;
       A17: n' in dom b by A14,A15,FINSEQ_3:27,A5;
3131
             n' in dom a by A14,A15,FINSEQ_3:27,A3;
3132
3133
             then a.n' = ((-1)|^{(n'+1)})*(dim ((n'-2)-bounding-chain-space(p))) by A4;
3134
             hence thesis by A6, A16, A17;
3135
           end;
3137
       :: Now we want to how that the alternating characterstic sequence is
3138
      :: a telescoping sum of the sequences a and b. First, we establish
3139
       :: the necessary relation among the sequences a and b.
           for n being Nat st 1 <= n & n < len apcs holds b.n = -(a.(n+1))
3140
           proof
3141
3142
             let n be Nat such that
      A18: 1 <= n and
3143
3144
       A19: n < len apcs;
      A20: n in dom b by A18,A19,FINSEQ_3:27,A5;
3145
3146
             reconsider n as Element of NAT by ORDINAL1:def 13;
3147
       A21: b.n = ((-1)|^{(n+1)})*(dim ((n-1)-circuit-space(p))) by A6,A20;
3148
       A22: n + 1 <= len apcs by A19, INT_1:20;
3149
             1 <= n + 1 by NAT_1:11;
             then n + 1 in dom a by A22,FINSEQ_3:27,A3;
3150
             then a.(n+1) = A(n+1) by A4
3151
3152
               = (((-1)|^{(n+1)})*((-1)|^{1}))*(dim ((n-1)-bounding-chain-space(p)))
3153
             by NEWTON:13
3154
               = ((-1)|^{(n+1)})*(-1)*(dim ((n-1)-bounding-chain-space(p)))
             by NEWTON:10
3155
               .= -((-1)|^(n+1))*(dim ((n-1)-bounding-chain-space(p)))
3156
               .= -(b.n) by A1,A21,Th51;
3157
3158
             hence thesis;
3159
           end;
3160
           then
3161
       A23: Sum apcs = (a.1) + (b.(len apcs)) by A2,A3,A5,A13,Th15;
3162
       A24: a.1 = 1
           proof
3163
3164
             reconsider egy = 1 as Element of NAT;
3165
             1 <= 0 qua Nat + 1;
             then egy <= len apcs by A2,NAT_1:13;
3166
3167
             then egy in dom a by FINSEQ_3:27,A3;
3168
             then a.egy = ((-1)|^{(1+1)})*(dim ((egy-2)-bounding-chain-space(p))) by A4
3169
               .= 1*(dim ((egy-2)-bounding-chain-space(p))) by Th5,Th8
3170
               .= 1 by Th63;
3171
             hence thesis:
3172
           end:
3173
           b.(len apcs) = (-1)|^(\dim(p)+1)
3174
           proof
3175
             reconsider n = len apcs as Element of NAT;
3176
       A25: n = dim(p) by Def27;
             0 qua Nat + 1 = 1;
3177
3178
             then 1 <= len apcs by A2,NAT_1:13;
3179
             then n in dom b by FINSEQ_3:27,A5;
3180
             then b.n = B(n) by A6
               = ((-1)|^{(n+1)})*1 by A1,A25,Th80
3181
3182
               = (-1)|^{(n+1)};
3183
             hence thesis by Def27;
3184
           end:
```

```
3185
           hence thesis by A23,A24,Def29;
3186
        end:
3187
       end;
3189
       :: Euler's Polyhedron Formula in One Dimension: simply-connected
3190
      :: 1-dimensional polyhedra are just line segments.
3193
        p is simply-connected & dim(p) = 1 implies num-vertices(p) = 2
3194
       proof
3195
3196
       A1: p is simply-connected;
        assume
3198
      A2: \dim(p) = 1;
        set acs = alternating-f-vector(p);
3199
3200
        set apcs = alternating-proper-f-vector(p);
3201
         p is eulerian by A1, Th89;
        then 0 = Sum acs by Def31
3202
          .= Sum apcs - 2 by A2, Th4, Th83
3203
3204
           .= num-polytopes(p,0) - 2 by A2,Th85;
3205
        hence thesis;
3206
3208
      :: Euler's Polyhedron Formula in Two Dimensions: polygons have exactly
3209
      :: as many vertices as edges.
3211
      theorem
        p is simply-connected & dim(p) = 2 implies num-vertices(p) = num-edges(p)
3212
3213
3214
3215
      A1: p is simply-connected;
3216
        assume
      A2: dim(p) = 2;
3217
3218
      A3: p is eulerian by A1, Th89;
3219
        set s = num-polytopes(p,0) - num-polytopes(p,1);
3220 A4: s = Sum(alternating-proper-f-vector(p)) by A2, Th86;
3221
        set c = alternating-f-vector(p);
       0 = Sum c by A3, Def31
3222
3223
           .= s by A2,A4,Th5,Th84;
3224
        hence thesis;
3225
3227
      :: Euler's Polyhedron Formula in Three Dimensions: V - E + F = 2.
3229
      theorem
3230
       p is simply-connected & dim(p) = 3
        implies num-vertices(p) - num-edges(p) + num-faces(p) = 2
3232
      proof
3233
        assume
      A1: p is simply-connected;
3234
3235
        assume
3236
      A2: dim(p) = 3;
       A3: p is eulerian by A1, Th89;
       set s = num-polytopes(p,0) - num-polytopes(p,1) + num-polytopes(p,2);
3238
      A4: s = Sum(alternating-proper-f-vector(p)) by A2, Th87;
3239
3240
        set c = alternating-f-vector(p);
3241
        0 = Sum c by A3, Def31
           .= s - 2 by A2,A4,Th6,Th83;
3242
3243
        hence thesis;
3244
       end:
```

C References

- [1] I. Lakatos, *Proofs and Refutations: The Logic of Mathematical Discovery*. (Cambridge University Press, 1976).
- [2] G. Peano, Formulaire de mathématique. (Bocca frères, Ch. Clausen, Turin, 1895).
- [3] M. Davis, A program for Presburger's algorithm, in Proceedings of the Summer Institute of Symbolic Logic at Cornell University (1957), p. 215.
- [4] J. McCarthy, Computer programs for checking mathematical proofs, in Proceedings of the Fifth Symposium in Pure Mathematics (American Mathematical Society, 1961), pp. 219–227.
- [5] N. de Bruijn, A survey of the project Automath, in To H. B. Curry: Essays on Combinatory Logic, Lambda Calculus and Formalism, edited by J. R. Hindley and J. P. Seldin (Academic Press, 1980).
- [6] L. van Bentham-Jutting, Checking Landau's Grundlagen in the AUTOMATH system Tech. Rep. 83, Mathematisch Centrum, Amsterdam (1979).
- [7] R. S. Boyer and J. S. Moore, A Computational Logic. (Academic Press, 1980).
- [8] M. Kaufmann, P. Manolios, and J. S. Moore, *Computer-Aided Reasoning: An Approach*. (Kluwer Academic Publishers, 2000).
- [9] G. W. Leibniz, *Dissertatio de arte combinatorica*, Ph.D. thesis, Universität Altdorf, (1666).
- [10] R. Zach, Hilbert's program. In Stanford Encyclopedia of Philosophy, edited by E. N. Zalta (Fall 2003). Available online at http://plato.stanford.edu/archives/fall2003/entries/hilbert-program/.
- [11] J. Avigad, Computers in mathematical inquiry. In [137]. Forthcoming.
- [12] J. Avigad, Understanding proofs. In [137]. Forthcoming.
- [13] J. Avigad, Mathematical method and proof, Synthese 153 (2006), 105–159.
- [14] N. Shankar, Metamathematics, Machines, and Gödel's Proof, volume 38 of Camridge Tracts in Theoretical Computer Science. (Camridge University Press, 1994).
- [15] A. Korniłowicz, *Jordan curve theorem*, Formalized Mathematics **13**(4) (2005), 481–491.
- [16] T. C. Hales, The Jordan Curve Theorem, formally and informally, American Mathematical Monthly 114(10) (2007), 882–894.
- [17] G. Gonthier, A computer-checked proof of the four-color theorem Tech. Rep., Microsoft Research.
- [18] J. Avigad, K. Donnelly, D. Gray, and P. Raff, A formally verified proof of the prime number theorem, ACM Transactions on Computational Logic 9(1:2) (2007), 1–23.
- [19] F. Wiedijk, 100 theorems, Available online at http://www.cs.ru.nl/~freek/100/.
- [20] The QED Manifesto, in Automated Deduction CADE 12 (Springer-Verlag, 1994), vol. 814 of Lecture Notes in Artificial Intelligence, pp. 238–251.
- [21] J. Harrison, Formal proof—theory and practice, Notices of the American Mathematical Society **55**(11) (2008), 1395–1406.
- [22] MIZAR, Available online at http://www.mizar.org.

- [23] HOL LIGHT, Available online at http://www.cl.cam.ac.uk/~jrh13/hol-light/.
- [24] COQ, Available online at http://coq.inria.fr/.
- [25] K. Appel and W. Haken, Every planar map is four-colorable, Illinois Journal of Mathematics 21 (1977a), 439–567.
- [26] J. Borwein and D. Bailey, Mathematics by Experiment: Plausible Reasoning in the 21st Century. (A. K. Peters, 2004).
- [27] J. Borwein, D. Bailey, and R. Girgensohn, Experimentation in Mathematics: Computational Paths to Discovery. (A. K. Peters, 2004).
- [28] T. Tymoczko, The four-color problem and its philosphical significance, The Journal of Philosophy **76**(2) (1979), 57–83.
- [29] E. R. Swart, The philosophical implications of the four-color problem, The American Mathematical Monthly 87(9) (1980), 697–707.
- [30] M. Detlefsen, The four-color theorem and mathematical proof, The Journal of Philosophy 77(12) (1980), 803.
- [31] D. Bailey and J. Borwein, Experimental mathematics: examples, methods and implications, Notices of the American Mathematical Society **52** (2005), 502–514.
- [32] T. S. Kuhn, *The Structure of Scientific Revolutions*. (University of Chicago Press, 1996), 3rd ed.
- [33] E. Glas, Kuhn, Lakatos, and the image of mathematics, Philosophia Mathematica 3(3) (1995), 225–247.
- [34] D. MacKenzie, Slaying the Kraken: The sociohistory of a mathematical proof, Social Studies of Science **29**(1) (1999), 7–60.
- [35] A. D. Aczel, Fermat's Last Theorem. (Four Walls Eight Windows, 1996).
- [36] T. C. Hales, An overview of the Kepler Conjecture (2002a).
- [37] Editors of the Annals of Mathematics, Editors' statements (2006).
- [38] T. C. Hales, *The* FLYSPECK *project*, Available online at http://www.math.pitt.edu/~thales/flyspeck/.
- [39] R. De Millo, R. J. Lipton, and A. J. Perlis, Social processes and proofs of theorems and programs, Communications of the ACM **22**(5) (1979), 271–280.
- [40] G. Pólya, Mathematics and Plausible Reasoning. (Princeton University Press, 1954).
- [41] G. Pólya, Mathematics and Plausible Reasoning: Patterns of Plausible Inference, volume 2. (Princeton University Press, 1968), 2ndnd ed.
- [42] G. Pólya, Mathematical Discovery: On Understanding, Learning and Teaching Problem Solving. (John Wiley & Sons, 1981), Combined ed. Forward by Peter Hilton.
- [43] I. Lakatos, *Proofs and refutations*, British Journal for the Philosophy of Science **14** (1963–1964), 1–25, 120–139, 221–245, 296–342. In four parts.
- [44] G. Pólya, How to Solve It: A New Aspect of Mathematical Method. (Princeton University Press, 1948/1985), 2nd ed.
- [45] I. Lakatos, Essays in the Logic of Mathematical Discovery, Ph.D. thesis, Cambridge University, (1961).

- [46] I. Lakatos, *Infinite regress and the foundations of mathematics*, Supplementary Volume of the Proceedings of the Aristotelian Society **36** (1962), 155–184. With an erratum.
- [47] I. Lakatos, A renaissance of empiricism in the recent philosophy of mathematics? In [138]. Comments on the discussion following Kalmár's presentation [139].
- [48] I. Lakatos, What does a mathematical proof prove? (1998), Revised and Expanded ed., p. 153–162. [140]
- [49] I. Lakatos, Analysis-Synthesis—a Heuristic Starting Point of Research Programmes in Failed Attempts of Refutations (1978). Volume 2 of [141]
- [50] P. Davis and R. Hersh, *The Mathematical Experience*. (Cambridge University Press, 1980).
- [51] D. Bloor, *Polyhedra and the abominations of Leviticus*, British Journal for the Philosophy of Science **11**(3) (1978), 245–272.
- [52] B. Larvor, Lakatos: An Introduction. (Routledge, 1998).
- [53] W. V. O. Quine, *Review of Proofs and Refutations*, British Journal for the Philosophy of Science **28** (1977), 81–82.
- [54] S. Feferman, The logic of mathematical discovery versus the logical structure of mathematics, in PSA: Proceedings of the Biennial Meeting of the Philosophy of Science Association (1978), pp. 309–327.
- [55] D. Sherry, On mathematical error, Studies in History and Philosophy of Science **28**(3) (1997), 393–416.
- [56] B. Larvor, What is dialectical philosophy of mathematics?, Philosophia Mathematica 9(3) (2001a), 212–229.
- [57] P. Kitcher and W. Aspray, An opinionated introduction. In [58], p. 3–57.
- [58] W. Aspray and P. Kitcher (eds.), *History and Philosophy of Modern Mathematics* Number 11 in Minnesota Studies in the Philosophy of Science. (University of Minnesota Press, 1988).
- [59] M. Leng, *Phenomenology and mathematical practice*, Philosophia Mathematica **10**(3) (2002), 3–25.
- [60] Y. Rav, Why do we prove theorems?, Philosophia Mathematica 7(1) (1999), 5-41.
- [61] Y. Rav, A critique of a formalist-mechanist version of the justification of arguments in mathematicians' proof practices, Philosophia Mathematica 15(3) (2007), 291–320.
- [62] D. Corfield, Towards a Philosophy of Real Mathematics. (Cambridge University Press, 2003).
- [63] R. Hersh, Introducing Imre Lakatos, Mathematical Intelligencer 1(3) (1978), 148–151.
- [64] P. J. Davis and R. Hersh, Rhetoric and mathematics. In The Rhetoric of the Human Sciences: Language and Argument in Scholarship and Public Affairs, edited by J. S. Nelson, A. Megill, and D. N. McCloskey (University of Wisconsin Press, 1987), p. 52–68.
- [65] R. Hersh, Mathematics has a front and a back, Synthese 88 (1991b), 127–133.
- [66] R. Hersh, Fresh breezes in the philosophy of mathematics, American Mathematical Monthly 102(7) (1995), 589–594.

- [67] R. Hersh, *Prove—once more and again*, Philosophia Mathematica **5**(2) (1997), 153–165.
- [68] R. Hersh, Some proposals for reviving the philosophy of mathematics. In [140], p. 10–28.
- [69] R. Hersh (ed.), 18 Unconventional Essays on the Nature of Mathematics (Springer, 2006).
- [70] I. Kant, Prolyomena to Any Future Metaphysics that will be Able to Come Forward as Science. (Cambridge University Press, 1783/2004), Revised ed. Translation and introduction by Gary Hatfield, with selections from the Critique of Pure Reason.
- [71] H. Friedman, Adventures in the formalization of mathematics (2006). Talk given at the Ohio State University Computer Science Colloquium, June 8, 2006.
- [72] J. Harrison, A short history of automated reasoning, in Algebraic Biology 2007, edited by H. Anai, K. Horimoto, and T. Kutsia (Springer, 2007), vol. 4545 of Lecture Notes in Computer Science, pp. 334–349.
- [73] T. Burge, Content preservation, The Philosophical Review 102(4) (1993), 457–488.
- [74] T. Burge, Computer proof, apriori knowledge, and other minds, Nôus **32** (1998), 1–37. Supplement: Philosophical Perspectives 12: Language, Mind and Ontology.
- [75] H. Lehman, An examination of Imre Lakatos' philosophy of mathematics, Philosophical Forum 12 (1980), 33–48.
- [76] I. Hacking, *Imre Lakatos' philosophy of science*, British Journal for the Philosophy of Science **30** (1979), 381–410.
- [77] J. Kadvany, Imre Lakatos and the Guises of Reason. (Duke University Press, 2001).
- [78] P. J. Davis, Fidelity in mathematical discourse: Is one and one really two?, American Mathematical Monthly **79**(3) (1972), 252–263.
- [79] T. Koetsier, Lakatos' Philosophy of Mathematics: A Historical Approach. (North-Holland, 1991).
- [80] A. P. Juskevich and E. Winter (eds.), Leonhard Euler und Christian Goldbach: Briefwechsel 1729-1764 (Akademie-Verlag, Berlin, 1965).
- [81] M. Spivak, A Comprehensive Introduction to Differential Geometry. (Publish or Perish, 1999), 3rd ed. (5 vols.)
- [82] P. Hilton and J. Pedersen, Descartes, Euler, Poincaré, Pólya—and polyhedra, L'Enseignement Mathématique (IIe Série) 27(3-4) (1981), 327–343.
- [83] E. Sandifer, How Euler did it: V, E and F (Part 2), MAA Online (2004b)
- [84] L. Euler, *Elementa doctrinae solidorum*, Novi Commentarii Academiae Scientarum Petropolitanae 4 (1758a), 109–140.
- [85] L. Euler, Demonstratio nonnullarum insignium proprietatum quibus solida hedris planis inclusa sunt praedita, Novi Commentarii Academiae Scientarum Petropolitanae 4 (1758b), 94–108.
- [86] H. Poincaré, Sur la généralisation d'un théorème d'Euler relatif aux polyèdres, Comptes Rendus de Séances de l'Academie des Sciences 117 (1893), 144.
- [87] H. Poincaré, Complément à l'analysis situs, Rendiconti del Circolo Matematico di Palermo 13 (1899), 285–343.

- [88] B. Grünbaum, *Polyhedra with hollow faces*, NATO-ASI Series C Mathematical and Physical Sciences **440** (1994b), 43–70.
- [89] H. S. M. Coxeter, Regular Polytopes. (Dover Publications, 1973).
- [90] J.-F. Dufourd, Polyhedra genus theorem and Euler formula: A hypermap-formalized intuitionistic proof, Theoretical Computer Science 403(2-3) (2008), 133–159.
- [91] J. Alama, The rank+nullity theorem, Formalized Mathematics 15(3) (2007), 137–142.
- [92] J. Alama, The vector space of subsets of a set based on symmetric difference, Formalized Mathematics **16**(1) (2008), 1–6.
- [93] J. Alama, Euler's polyhedron formula, Formalized Mathematics **16**(1) (2008), 7-19. In press.
- [94] S. Lang, Algebra, volume 211 of Graduate Texts in Mathematics. (Springer, 2002).
- [95] W. A. Trybulec, Operations on subspaces in vector space, Formalized Mathematics 1(5) (1990), 871–876.
- [96] W. Trybulec, *Linear combinations in a vector space*, Formalized Mathematics **1**(5) (1990), 877–882.
- [97] M. Żynel, The Steinitz theorem and the dimension of a vector space, Formalized Mathematics 5(3) (1996), 423–428.
- [98] W. A. Trybulec, Basis of vector space, Formalized Mathematics 1(5) (1990), 883–885.
- [99] A. Brøndsted, An Introduction to Convex Polytopes. (Springer, 1983).

[100]

- [101] E. H. Spanier, Algebraic Topology. (Springer-Verlag, 1968).
- [102] A. Blass, Existence of bases implies the axiom of choice. In Axiomatic Set Theory, edited by J. E. Baumgartner, D. A. Martin, and S. Shelah, number 31 in Contemporary Mathematics Series (American Mathematical Society, 1984), p. 31–33.
- [103] S. G. Simpson, Subsystems of Second Order Arithmetic. (Springer, 1999).
- [104] J. Urban, XML-izing MIZAR: Making semantic processing and presentation of MML easy, in MKM 2005: Mathematical Knowledge Management (2005).
- [105] P. Hájek and P. Pudlák, *Metamathematics of First-Order Arithmetic*. (Springer-Verlag, 1993).
- [106] F. Wiedijk, A proposed syntax for binders in MIZAR. Available online at http://www.cs.ru.nl/~freek/mizar/binder.pdf.
- [107] D. Gries and F. B. Schneider, A Logical Approach to Discrete Math. (Springer, 1993).
- [108] D. D. Knuth, Two notes on notation, American Mathematical Monthly 99(5) (1992), 403–422.
- [109] C. Francese and D. Richeson, *The flaw in Euler's proof of his polyhedral formula*, American Mathematical Monthly **114** (2007), 286–296.
- [110] N. L. Biggs, E. K. Lloyd, and R. J. Wilson, Graph Theory: 1736-1936. (Oxford University Press, 1976).
- [111] H. Samelson, In defense of Euler, L'Enseignement Mathématique 42 (1996), 377–382.

- [112] B. Grünbaum, Convex Polytopes, volume 221 of Graduate Texts in Mathematics. (Springer, 2003), 2nd ed.
- [113] B. Lindström, On the realization of convex polytopes, Euler's formula and Möbius functions, Aequationes Mathematicae 6(2-3) (1971), 235–240.
- [114] L. Libkin, Elements of Finite Model Theory. (Springer-Verlag, 2004).
- [115] B. Grünbaum, *Graphs of polyhedra; polyhedra as graphs*, Discrete Mathematics **307** (2007), 445–463.
- [116] E. Steinitz and H. Rademacher, Vorlesungen über die Theorie der Polyeder unter Einschluss der Elemente der Topologie. (Springer, New York, 1976). Reprint of the original 1934 edition.
- [117] K. Kunen, Set Theory: An Introduction to Independence Proofs. (North-Holland, 1980).
- [118] H. E. Rose, Subrecursion: Functions and Hierarchies, volume 9 of Oxford Logic Guides. (Clarendon Press, Oxford, 1984).
- [119] J. Avigad, Number theory and elementary arithmetic, Philosophia Mathematica 11 (2003), 257–284.
- [120] J. Azzouni, The derivation-indicator view of mathematical practice, Philosophia Mathematica 12 (2004), 81–106.
- [121] W. V. O. Quine, Mathematical Logic. (Harvard University Press, 1951), 2nd ed.
- [122] J. Worrall, Lakatos, Imre (Macmillan Reference, 2006), 2nd ed., vol. 5, pp. 171–175.
- [123] E. Glas, The 'Popperian Programme' and mathematics. Part I: The fallibilist logic of mathematical discovery, Studies in History and Philosophy of Science 32(1) (2001a), 119–137.
- [124] E. Glas, The 'Popperian Programme' and mathematics. Part II: From quasiempiricism to mathematical research programmes, Studies in History and Philosophy of Science 32(2) (2001b), 355–376.
- [125] I. Grattan-Guinness, Lakatos and the philosophy of mathematics and science. on popper's philosophy and its prospects, British Journal for the Philosophy of Science 12(3) (1979), 317–337. Review of [141].
- [126] G. Currie, Lakatos's philosophy of mathematics, Synthese **42**(2) (1979), 335–351. Review of [1].
- [127] F. Portoraro, Automated reasoning. In Stanford Encyclopedia of Philosophy, edited by E. N. Zalta (Fall 2008). Available online at http://plato.stanford.edu/archives/fall2008/entries/reasoning-automate%_d/.
- [128] W. McCune, Solution of the Robbin's problem, Journal of Automated Reasoning 19 (1997), 263–276.
- [129] B. Fitelson, Using Mathematica to understand the computer proof of the Robbins Conjecture, Mathematica in Education and Research 7(1) (1997), 17–26.
- [130] D. Fallis, Intentional gaps in mathematical proofs, Synthese 134 (2003), 45–69.
- [131] G. Gonthier, Formal proof—the four-color theorem, Notices of the American Mathematical Society **55**(11) (2008), 1382–1393.

REFERENCES

- [132] D. W. Barnette and B. Grünbaum, On Steinitz's theorem concerning convex 3-polytopes and on some properties of planar graphs, in The Many Facets of Graph Theory: Conference Proceedings, Western Michigan University, Kalamazoo, Michigan, October 31-November 2, 1968., edited by G. Cartrand and S. F. Kapoor (Springer, 1968), pp. 27–40.
- [133] W. A. Trybulec, Subgroup and cosets of subgroups. lagrange theorem, Formalized Mathematics 1(5) (1990), 855–864.
- [134] W. V. O. Quine, Word and Object. (MIT Press, 1964).
- [135] W. V. O. Quine, On the reasons for indeterminacy of translation, Journal of Philosophy 67(6) (1970), 178–183.
- [136] W. V. O. Quine, *Indeterminacy of translation again*, Journal of Philosophy **84**(1) (1987), 5–10.
- [137] P. Mancosu (ed.), The Philosophy of Mathematical Practice. Forthcoming.
- [138] I. Lakatos, ed., Problems in the Philosophy of Mathematics (North-Holland, 1967).
- [139] L. Kalmár, Foundations of mathematics-whither now? In [138], pp. 187–194.
- [140] T. Tymoczko (ed.), New Directions in the Philosophy of Mathematics: An Anthology (Princeton University Press, 1998), Revised and Expanded ed.
- [141] I. Lakatos, Mathematics, Science, and Epistemology: Philosophical Papers, volume 2. (Cambridge University Press, 1978).

