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Summary. In this article we formalize in Mizar [1], [2] the isoperimetric
theorem, inspired by Peter D. Lax’s “A Short Path to the Shortest Path” [12].
Notably, Lax’s proof is remarkably concise, spanning just one page, demonstra-
ting the elegance of his approach.

Our formalization begins by establishing fundamental properties of conti-
nuous and differentiable functions, including theorems on integrals and diffe-
rentiation rules. Building upon these, it progresses to the proof of the isope-
rimetric theorem, addressing the following question: Among all curves of fixed
length connecting two points on the x-axis, which curve maximizes the area be-
tween the curve and the x-axis? The formalization proves that for parametric
curves (x(t), y(t)) with fixed length and endpoints on the x-axis, the integral∫ π
0
y(t)x′(t) dt is maximized when the curve is a semicircle.
This work represents the 99th problem solved in Freek Wiedijk’s “Formalizing

100 Theorems” project, underscoring the significance of this effort in the context
of formalization of mathematics. The historical background on the isoperimetric
theorem is detailed in [9] and [3].
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1. Foundations of Continuity and Integration

From now on a, b, r denote real numbers, A denotes a non empty set, X,
x denote sets, f , g, F , G denote partial functions from R to R, and n denotes
an element of N.

Now we state the propositions:
1This work was supported by JSPS KAKENHI Grant Number 24K14897.
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(1) Let us consider real numbers a, b, C, and a partial function u from R
to R. Suppose a < b and [a, b] ⊆ domu and u is continuous and for every
real number t such that t ∈ ]a, b[ holds u(t) = C. Let us consider a real
number t. If t ∈ [a, b], then u(t) = C.

Proof: Define M(natural number) =
b−a
2
$1+1

(∈ R). Consider S4 being
a function from N into R such that for every element x of N, S4(x) =M(x)

from [6, Sch. 4]. For every natural number n, S4(n) =
b−a
2

n+1 . Consider S2
being a constant function from N into R such that for every natural num-
ber x, S2(x) = a. Set S0 = S2 + S4. rngS0 ⊆ ]a, b[ by [10, (7)]. For every
natural number n, (u∗S0)(n) = C by [6, (108), (112)]. For every objects
x, y such that x, y ∈ dom(u∗S0) holds (u∗S0)(x) = (u∗S0)(y). Consider
S3 being a constant function from N into R such that for every natural
number x, S3(x) = b. Set S1 = S3 − S4. rngS1 ⊆ ]a, b[ by [10, (7), (10)].
For every natural number n, (u∗S1)(n) = C by [6, (108), (112)]. For every
objects x, y such that x, y ∈ dom(u∗S1) holds (u∗S1)(x) = (u∗S1)(y). For
every real number t such that t ∈ [a, b] holds u(t) = C by [11, (25)]. �

(2) Let us consider real numbers a, b, c, d, and a partial function f from R
to R. Suppose a ¬ b and c ¬ d and [a, b] ⊆ dom f and c, d ∈ [a, b] and
f�[a, b] is continuous and for every real number t such that t ∈ [c, d] holds

0 ¬ f(t). Then 0 ¬
d∫
c

f(x)dx.

Proof: For every object x such that x ∈ dom(f � [c, d]) holds (f �
[c, d])(x) = (|f | � [c, d])(x) by [5, (47)], [15, (57)], [4, (43)]. �

(3) Let us consider real numbers a, b, c, d, and partial functions f , g from R
to R. Suppose a ¬ b and c ¬ d and [a, b] ⊆ dom f and [a, b] ⊆ dom g and c,
d ∈ [a, b] and f�[a, b] is continuous and g�[a, b] is continuous and for every

real number t such that t ∈ [c, d] holds f(t) ¬ g(t). Then
d∫
c

f(x)dx ¬

d∫
c

g(x)dx. The theorem is a consequence of (2).

(4) Let us consider real numbers a, b, c, d, e, and a partial function f from
R to R. Suppose a ¬ b and c ¬ d and c, d ∈ [a, b] and [a, b] ⊆ dom f and
f�[a, b] is continuous and for every real number t such that t ∈ [c, d] holds

e ¬ f(t). Then e · (d− c) ¬
d∫
c

f(x)dx.

Proof: Set g = R 7−→ e. For every real number t such that t ∈ [c, d] holds
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g(t) ¬ f(t) by [14, (7)].
d∫
c

g(x)dx ¬
d∫
c

f(x)dx. �

(5) Let us consider real numbers a, b, c, d, e, and a partial function f from R
to R. Suppose 0 < e and a ¬ b and c < d and c, d ∈ [a, b] and [a, b] ⊆ dom f

and f�[a, b] is continuous and for every real number t such that t ∈ [a, b]
holds 0 ¬ f(t) and for every real number t such that t ∈ [c, d] holds

e ¬ f(t). Then 0 < e · (d− c) ¬
b∫
a

f(x)dx. The theorem is a consequence

of (2) and (4).

(6) Let us consider real numbers a, b, and a partial function f from R to
R. Suppose a ¬ b and [a, b] ⊆ dom f and f�[a, b] is continuous and for
every real number t such that t ∈ [a, b] holds 0 ¬ f(t) and there exists
a real number t0 such that t0 ∈ ]a, b[ and 0 < f(t0). Then there exist real
numbers d, c, e such that

(i) 0 < e, and

(ii) c < d, and

(iii) c, d ∈ [a, b], and

(iv) 0 < e · (d− c) ¬
b∫
a

f(x)dx.

Proof: Consider t0 being a real number such that t0 ∈ ]a, b[ and 0 <

f(t0). Set e = f(t0)
2 . Consider s0 being a real number such that 0 < s0

and for every real number t such that t ∈ [a, b] and |t − t0| < s0 holds
|f(t)− f(t0)| < e. Set s = s0

2 . Reconsider s2 = min(t0− a, b− t0) as a real
number. Reconsider s3 = min(s, s2) as a real number. Set c = t0 − s3. Set
d = t0 + s3. Set e0 = f(t0)

2 . For every real number t such that t ∈ [c, d]
holds e0 ¬ f(t) by [13, (5)]. �

(7) Let us consider a partial function f from R to R, and real numbers a,
b. Suppose a < b and [a, b] ⊆ dom f and f�[a, b] is continuous. Then there
exists a sequence I of real numbers such that

(i) for every natural number n, I(n) =

b− 1
n+1∫

a+ 1
n+1

f(x)dx, and

(ii) I is convergent, and

(iii) lim I =
b∫
a

f(x)dx.
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Proof: Define M(natural number) = (

b− 1
$1+1∫

a+ 1
$1+1

f(x)dx)(∈ R). Consider

I being a function from N into R such that for every element x of N,
I(x) = M(x) from [6, Sch. 4]. For every natural number n, I(n) =
b− 1

n+1∫
a+ 1

n+1

f(x)dx. Set X = [a, b]. Consider t1, t2 being real numbers such that

t1, t2 ∈ dom(|f |�X) and (|f |�X)(t1) = sup rng(|f |�X) and (|f |�X)(t2) =
inf rng(|f |�X). Set K = (|f |�X)(t1). For every real number t such that

t ∈ X holds |f(t)| ¬ K by [5, (3), (49)]. Set L =
b∫
a

f(x)dx. For every real

number p such that 0 < p there exists a natural number n such that for
every natural number m such that n ¬ m holds |I(m) − L| < p by [11,
(3)], [8, (17)], [15, (74)], [7, (10), (11)]. �

2. Differentiation Rules and Properties

Now we state the propositions:

(8) Let us consider an open subset Z of R. Then

(i) the function sin is differentiable on Z, and

(ii) (the function sin)′�Z = (the function cos)�Z, and

(iii) the function cos is differentiable on Z, and

(iv) (the function cos)′�Z = −(the function sin)�Z.

(9) Let us consider a partial function f from R to R. Then f + f = 2 · f .

Let us consider a partial function f from R to R, a subset Z of R, and a real
number x. Now we state the propositions:

(10) If Z is open and x ∈ Z and Z ⊆ dom f , then f�Z is differentiable in x

iff f is differentiable in x.

(11) If Z is open and x ∈ Z and Z ⊆ dom f and f is differentiable in x, then
f ′(x) = (f�Z)′(x). The theorem is a consequence of (10).

Now we state the propositions:

(12) Let us consider a partial function f from R to R, and subsets X, Z of
R. Suppose Z is open and Z ⊆ X and f is differentiable on X. Then
f ′�Z = f ′�X�Z.
Proof: For every object x such that x ∈ dom(f ′�X�Z) holds (f ′�X�Z)(x) =
f ′�Z(x) by [5, (49)]. �
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(13) Let us consider real numbers a, b, and a partial function u from R to
R. Suppose a < b and u is differentiable on ]a, b[ and domu = [a, b] and
u is continuous and for every real number t such that t ∈ ]a, b[ holds
u′�]a,b[(t) = 0. Then there exists a real number C such that for every real
number t such that t ∈ [a, b] holds u(t) = C. The theorem is a consequence
of (1).

3. Properties of Parametric Curves and Area Calculations

Now we state the proposition:

(14) Let us consider partial functions x, y from R to R, and an open subset
Z of R. Suppose x is differentiable and y is differentiable and [0, π] ⊆
Z ⊆ domx and Z ⊆ dom y and y′�Z is continuous and x′�Z is continuous
and for every real number t such that t ∈ Z holds x′�Z(t)2 + y′�Z(t)2 = 1
and y(0) = 0 and y(π) = 0. Then there exists a partial function u from
R to R and there exists a sequence F of real numbers such that u is
differentiable on ]0, π[ and u′�]0,π[ is continuous and domu = [0, π] and
u is continuous and y�[0, π] = (u · (the function sin))�[0, π] and for eve-
ry real number t such that t ∈ ]0, π[ holds y′(t) = u′(t) · (the function
sin)(t)+u(t)·(the function cos)(t) and for every natural number n, F (n) =
π− 1

n+1∫
1

n+1

((AffineMap(0, 1))− ((u′�]0,π[ · u
′
�]0,π[) · (the function sin)) · (the function sin))(x)dx

and F is convergent and
π∫
0

(y · x′�Z)(x)dx ¬ 1
2
· (

π∫
0

(y · y + x′�Z · x′�Z)(x)dx)

and y·y+x′�Z ·x′�Z = y·y+(AffineMap(0, 1))−y′�Z ·y′�Z and
π∫
0

(y · y + x′�Z · x′�Z)(x)dx =

π∫
0

(y · y + (AffineMap(0, 1))− y′�Z · y′�Z)(x)dx and
π∫
0

(y · y + (AffineMap(0, 1))− y′�Z · y′�Z)(x)dx =

limF .

4. Formalization of the Isoperimetric Theorem

Now we state the propositions:

(15) Let us consider partial functions x, y from R to R, and an open subset
Z of R. Suppose x is differentiable and y is differentiable and [0, π] ⊆ Z ⊆
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domx and Z ⊆ dom y and x′�Z is continuous and y′�Z is continuous and
for every real number t such that t ∈ Z holds x′�Z(t)2 + y′�Z(t)2 = 1 and
y(0) = 0 and y(π) = 0. Then

(i)
π∫
0

(y · x′�Z)(x)dx ¬ 1
2
· π, and

(ii)
π∫
0

(y · x′�Z)(x)dx =
1
2
·π iff for every real number t such that t ∈ [0, π]

holds y(t) = (the function sin)(t) and x(t) = −(the function cos)(t)+
(the function cos)(0) + x(0) or for every real number t such that t ∈
[0, π] holds y(t) = −(the function sin)(t) and x(t) = (the function
cos)(t)− (the function cos)(0) + x(0).

(16) Let us consider partial functions x, y from R to R. Suppose x is diffe-
rentiable and y is differentiable and [0, π] ⊆ domx and [0, π] ⊆ dom y and
x′�domx is continuous and y′�dom y is continuous and for every real number
t such that t ∈ domx ∩ dom y holds x′(t)2 + y′(t)2 = 1 and y(0) = 0 and
y(π) = 0. Then

(i)
π∫
0

(y · x′�domx)(x)dx ¬ 1
2
· π, and

(ii)
π∫
0

(y · x′�domx)(x)dx =
1
2
· π iff for every real number t such that t ∈

[0, π] holds y(t) = (the function sin)(t) and x(t) = −(the function cos)(t)+
(the function cos)(0) + x(0) or for every real number t such that t ∈
[0, π] holds y(t) = −(the function sin)(t) and x(t) = (the function
cos)(t)− (the function cos)(0) + x(0).

The theorem is a consequence of (12).

(17) Let us consider partial functions x, y from R to R, and a real num-
ber L. Suppose 0 < L and x is differentiable and y is differentiable and
[0, π] ⊆ domx and [0, π] ⊆ dom y and x′�domx is continuous and y′�dom y is
continuous and for every real number t such that t ∈ domx∩ dom y holds
x′(t)2 + y′(t)2 = L

π and y(0) = 0 and y(π) = 0. Then

(i)
π∫
0

(y · x′�domx)(x)dx ¬ 1
2
· L, and

(ii)
π∫
0

(y · x′�domx)(x)dx =
1
2
· L iff for every real number t such that t ∈
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[0, π] holds y(t) = (the function sin)(t)√
π
L

and x(t) = − (the function cos)(t)√
π
L

+

(the function cos)(0)√
π
L

+ x(0) or for every real number t such that t ∈

[0, π] holds y(t) = − (the function sin)(t)√
π
L

and x(t) = (the function cos)(t)√
π
L

−
(the function cos)(0)√

π
L

+ x(0).

Proof: Set k =
√

π
L . Set x1 = k · x. Set y1 = k · y. For every real

number t such that t ∈ domx1 ∩ dom y1 holds x1
′(t)2 + y1

′(t)2 = 1.
π∫
0

(y1 · x1′�domx1)(x)dx ¬ 1
2
·π and (

π∫
0

(y1 · x1′�domx1)(x)dx =
1
2
·π iff for eve-

ry real number t such that t ∈ [0, π] holds y1(t) = (the function sin)(t) and
x1(t) = −(the function cos)(t) + (the function cos)(0) + x1(0) or for every
real number t such that t ∈ [0, π] holds y1(t) = −(the function sin)(t) and

x1(t) = (the function cos)(t)−(the function cos)(0)+x1(0)).
π∫
0

(y1 · x1′�domx1)(x)dx =

1
2
· π iff

π∫
0

(y · x′�domx)(x)dx =
1
2
· L by [8, (10)]. for every real number

t such that t ∈ [0, π] holds y1(t) = (the function sin)(t) and x1(t) =
−(the function cos)(t) + (the function cos)(0) + x1(0) iff for every real
number t such that t ∈ [0, π] holds y(t) = (the function sin)(t)

k and x(t) =

− (the function cos)(t)k + (the function cos)(0)k +x(0). for every real number t such
that t ∈ [0, π] holds y1(t) = −(the function sin)(t) and x1(t) = (the function
cos)(t)− (the function cos)(0) +x1(0) iff for every real number t such that
t ∈ [0, π] holds y(t) = − (the function sin)(t)k and x(t) = (the function cos)(t)

k −
(the function cos)(0)

k + x(0). �
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