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Summary. In this paper, we continue the work on formalizing problems
from Sierpiński’s book. We present a detailed formalization of selected problems
verified using the Mizar system, focusing on properties of arithmetic progres-
sions and specific characteristics related to the occurrence of prime numbers,
particularly in the context of Chebyshev’s theorem.

The formalization encompasses problems 63, 65, 66, 67, 68, 93, 95, 96, 102,
and 103.
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1. Problem 63

From now on a, b, d, n, k, i, j, x, s denote natural numbers.
Now we state the propositions:

(1) Let us consider finite 0-sequences f , g of N. Then value(f a g, b) =
value(f, b) + (value(g, b)) · blen f .
Proof: Consider f2 being a finite 0-sequence of N such that dom f2 =
dom f and for every natural number i such that i ∈ dom f2 holds f2(i) =
f(i) · bi and value(f, b) =

∑
f2. Consider g1 being a finite 0-sequence of

N such that dom g1 = dom g and for every natural number i such that
i ∈ dom g1 holds g1(i) = g(i) · bi and value(g, b) =

∑
g1. Consider f1 being

a finite 0-sequence of N such that dom f1 = dom(f a g) and for every
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natural number i such that i ∈ dom f1 holds f1(i) = (f a g)(i) · bi and
value(f a g, b) =

∑
f1. Consider F1, G1 being finite 0-sequences such that

lenF1 = len f and lenG1 = len g and f1 = F1 a G1. For every natural
number k such that k ∈ dom f2 holds f2(k) = F1(k) by [26, (21)]. Set
B = blen f . For every natural number k such that k ∈ dom g1 holds (B ·
g1)(k) = G1(k) by [26, (23)], [19, (8)]. �

(2) If b > 1 and n > 0 and n · bk ¬ x < (n + 1) · bk, then digits(n, b) =
(digits(x, b))�k. The theorem is a consequence of (1).

(3) If b > 0 and d > 1 and s > 0, then there exist natural numbers m,
i such that (digits((ArProg(a, b))(m), d))�i = digits(s, d). The theorem is
a consequence of (2).

Now we state the proposition:

(4) Problem 63:
If b > 0 and s > 0, then there exist natural numbers m, i such that
(digits((ArProg(a, b))(m), 10))�i = digits(s, 10).

2. Problem 67

Now we state the proposition:

(5) Problem 67:
Let us consider natural numbers a, b. Suppose a > 0 and a and b are
relatively prime. Then there exists an infinite subset N of N such that
for every natural numbers n, m such that n, m ∈ N and n 6= m holds
(ArProg(b, a))(n) and (ArProg(b, a))(m) are relatively prime.
Proof: Define X [set] ≡ $1 is finite and 0 /∈ $1 and for every natural
numbers n, m such that n, m ∈ $1 and n 6= m holds (ArProg(b, a))(n)
and (ArProg(b, a))(m) are relatively prime. Define G[object, object] ≡ for
every set Y such that Y = $1 and X [Y ] there exists a natural number k
such that k /∈ Y and $2 = Y ∪ {k} and X [Y ∪ {k}]. For every object x
such that x ∈ 2N there exists an object y such that y ∈ 2N and G[x, y]
by [7, (103)], [12, (7)], [14, (17)], [23, (4)]. Consider g being a function
such that dom g = 2N and rng g ⊆ 2N and for every object x such that
x ∈ 2N holds G[x, g(x)] from [6, Sch. 6]. Define G(object, object) = g($2).
Consider f being a function such that dom f = N and f(0) = ∅ and for
every natural number n, f(n + 1) = G(n, f(n)) from [2, Sch. 11]. Define
F [natural number] ≡ f($1) is finite and f($1) ∈ 2N and X [f($1)] and for
every finite setX such thatX = f($1) holds X = $1. If F [n], then F [n+1]
by [8, (137)], [1, (41)]. F [n] from [2, Sch. 2].

⋃
rng f is infinite by [2, (43)],

[8, (74)], [2, (13)].
⋃

rng f ⊆ N. Reconsider N =
⋃

rng f as an infinite
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subset of N. Define G[natural number] ≡ for every natural number n,
f(n) ⊆ f(n+ $1). For every k such that G[k] holds G[k + 1]. G[n] from [2,
Sch. 2]. Consider N being a set such that n ∈ N and N ∈ rng f . Consider
x4 being an object such that x4 ∈ dom f and f(x4) = N . Consider M
being a set such that m ∈M and M ∈ rng f . Consider x3 being an object
such that x3 ∈ dom f and f(x3) =M . �

3. Problem 68

Now we state the proposition:

(6) Problem 68:
Suppose a > 0 and b > 0. Then there exists an infinite subset N of N such
that for every natural numbers n, m for every prime number p such that
n, m ∈ N holds p | (ArProg(b, a))(n) iff p | (ArProg(b, a))(m).
Proof: Set d = gcd(a, a+ b). Consider a1, c being natural numbers such
that a = d · a1 and a + b = d · c and a1 and c are relatively prime.
c > 1 by [2, (14)]. For every natural number n, a1 | (cEuler a1)n+1 − 1
by [2, (14)], [20, (12)], [9, (18)], [28, (15)]. Define F(natural number) =

c · (c
Euler a1 )$1+1−1

a1
+ 1. Consider f being a function such that dom f = N

and for every element x of N, f(x) = F(x) from [6, Sch. 4]. rng f ⊆ N. For
every objects x1, x2 such that x1, x2 ∈ dom f and f(x1) = f(x2) holds
x1 = x2 by [10, (30)]. Reconsider N = rng f as an infinite subset of N. For
every natural number n and for every prime number p such that n ∈ N
holds p | (ArProg(b, a))(n) iff p | d or p | c by [12, (7)], [19, (9), (6)], [27,
(7)]. �

4. Problem 65

Now we state the propositions:

(7) (i) Fib(6) = 8, and

(ii) Fib(7) = 13, and

(iii) Fib(8) = 21, and

(iv) Fib(9) = 34, and

(v) Fib(10) = 55, and

(vi) Fib(11) = 89, and

(vii) Fib(12) = 144, and

(viii) Fib(13) = 233, and
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(ix) Fib(14) = 377, and

(x) Fib(15) = 610, and

(xi) Fib(16) = 987, and

(xii) Fib(17) = 1597, and

(xiii) Fib(18) = 2584, and

(xiv) Fib(19) = 4181, and

(xv) Fib(20) = 6765, and

(xvi) Fib(21) = 10946, and

(xvii) Fib(22) = 17711, and

(xviii) Fib(23) = 28657, and

(xix) Fib(24) = 46368, and

(xx) Fib(25) = 75025.

(8) Fib(n+ 2) ­ n.
Proof: Define P[natural number] ≡ Fib($1 + 2) ­ $1. For every n such
that P[n] holds P[n+ 1] by [13, (44)], [2, (13)]. For every n, P[n] from [2,
Sch. 2]. �

(9) If k < n ¬ 7, then there exists i such that Fib(i) mod n = k. The
theorem is a consequence of (7).

(10) Let us consider a natural number j. Suppose 0 < j ¬ 7. Then there
exists a natural number i such that

(i) i > 0, and

(ii) Fib(0) ≡ Fib(i) (mod j), and

(iii) Fib(1) ≡ Fib(i+ 1) (mod j).

The theorem is a consequence of (7).

(11) Suppose Fib(n) ≡ Fib(n + i) (mod j) and Fib(n + 1) ≡ Fib(n + i +
1) (mod j). Let us consider natural numbers x, y. Suppose x ≡ y (mod i).
Then Fib(x) ≡ Fib(y) (mod j).
Proof: Define P[natural number] ≡ Fib($1) ≡ Fib($1 + i) (mod j) and
Fib($1+1) ≡ Fib($1+i+1) (mod j). DefineQ[natural number] ≡ P[n+$1].
For every natural number k such that Q[k] holds Q[k+1] by [24, (16)], [4,
(1)]. For every natural number k, Q[k] from [2, Sch. 2]. Define R[natural
number] ≡ if $1 ¬ n, then for every natural number i such that i = n− $1
holds P[i]. For every natural number k such that R[k] holds R[k+1] by [4,
(1)], [2, (13)], [24, (17)]. For every natural number k, R[k] from [2, Sch. 2].
For every natural number k, Fib(k) ≡ Fib(k + i) (mod j) by [2, (21)]. �
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(12) Let us consider natural numbers i, j, k. Suppose 0 < j and k < i and
for every natural numbers x, y such that x ≡ y (mod j) holds Fib(x) ≡
Fib(y) (mod i) and for every natural number x such that x < j holds
Fib(x) mod i 6= k. Let us consider a natural numberm. Then (ArProg(k, i))(m)
is not Fibonacci.

(13) (i) Fib(0) ≡ Fib(12) (mod 8), and

(ii) Fib(1) ≡ Fib(12 + 1) (mod 8), and

(iii) for every natural number x such that x < 12 holds Fib(x) mod 8 6= 4
and Fib(x) mod 8 6= 6.

The theorem is a consequence of (7).

Now we state the proposition:

(14) Problem 65:

(i) for every i and j such that 0 < i ¬ 7 there exists k such that
(ArProg(j, i))(k) is Fibonacci, and

(ii) for every k, (ArProg(4, 8))(k) is not Fibonacci.

Proof: For every i and j such that 0 < i ¬ 7 there exists k such that
(ArProg(j, i))(k) is Fibonacci by (10), [24, (58)], (9), [15, (5)]. Fib(0) ≡
Fib(0+12) (mod 8) and Fib(0+1) ≡ Fib(0+12+1) (mod 8). For every natu-
ral numbers x, y such that x ≡ y (mod 12) holds Fib(x) ≡ Fib(y) (mod 8).
For every natural number x such that x < 12 holds Fib(x) mod 8 6= 4. �

5. Problem 66

Now we state the proposition:

(15) Problem 66:

(i) 4 and 11 are relatively prime, and

(ii) for every natural number m, (ArProg(4, 11))(m) is not Fibonacci.

Proof: Fib(0) ≡ Fib(0 + 10) (mod 11) and Fib(0 + 1) ≡ Fib(0 + 10 +
1) (mod 11). For every natural numbers x, y such that x ≡ y (mod 10)
holds Fib(x) ≡ Fib(y) (mod 11). For every natural number x such that
x < 10 holds Fib(x) mod 11 6= 4 by [17, (16)], (7), [13, (21), (22), (23)]. �
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6. Problem 96

Now we state the propositions:

(16) value(〈1〉 a (n 7−→ 3), 10) = 10n+1−7
3 .

Proof: Define P[natural number] ≡ 3 · (value(〈1〉 a ($1 7−→ 3), 10)) =
10$1+1 − 7. For every n such that P[n] holds P[n+ 1] by [26, (87), (27)],
(1), [26, (34), (17)]. For every n, P[n] from [2, Sch. 2]. �

(17) There exists a natural number k such that 17 | k = 1016·n+9−7
3 . The

theorem is a consequence of (16).

(18) 33331 is prime.

(19) 333331 is prime.

Now we state the proposition:

(20) Problem 96:

(i) for every non zero natural number n such that n < 6 holds value(〈1〉a
(n 7−→ 3), 10) is prime, and

(ii) value(〈1〉 a (8 7−→ 3), 10) is not prime, and

(iii) {value(〈1〉a (n 7−→ 3), 10), where n is a natural number : value(〈1〉a
(n 7−→ 3), 10) is non prime} is infinite.

Proof: Consider v being a natural number such that 17 | v = 1016·0+9−7
3 .

value(〈1〉a(8 7−→ 3), 10) = 108+1−7
3 . Set V = {value(〈1〉a(n 7−→ 3), 10), where

n is a natural number : value(〈1〉 a (n 7−→ 3), 10) is not prime }. Define
F(natural number) = 1016·$1+9−7

3 . Consider f being a function such that
dom f = N and for every element d of N, f(d) = F(d) from [6, Sch. 4]. For
every objects x1, x2 such that x1, x2 ∈ dom f and f(x1) = f(x2) holds
x1 = x2 by [10, (30)]. rng f ⊆ V . �

7. Product of Different Primes Selected Properties

Now we state the proposition:

(21) Let us consider a non zero natural number n, and a prime number p.
Suppose support PFExp(n) = {p}. Then n = p(PFExp(n))(p).

Let us consider a non zero natural number n. Now we state the propositions:

(22) rng PFExp(n) ⊆ {0, 1} and support PFExp(n) = 1 if and only if n is
prime.
Proof: rng PFExp(n) ⊆ {0, 1} by [16, (41)]. �

(23) 0 ∈ rng PFExp(n).
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Now we state the propositions:

(24) Let us consider non zero natural numbers n, m. Suppose n and m are
relatively prime. Then rng PFExp(n·m) = rng PFExp(n)∪rng PFExp(m).
Proof: rng PFExp(n ·m) ⊆ rng PFExp(n) ∪ rng PFExp(m) by (23), [16,
(44)]. rng PFExp(n) ⊆ rng PFExp(n·m) by (23), [16, (44)]. rng PFExp(m) ⊆
rng PFExp(n ·m) by (23), [16, (44)]. �

(25)
∏

primesFinS((n+ 1)) = (
∏

primesFinS(n)) · (pr(n)).

(26) Let us consider a natural number k. Then 2k ¬
∏

primesFinS(k).
Proof: Define P[natural number] ≡ 2$1 ¬

∏
primesFinS($1). If P[n],

then P[n+ 1] by (25), [11, (8), (21)], [19, (6)]. P[n] from [2, Sch. 2]. �

(27) If 2 ¬ n, then there exists a non zero natural number k such that∏
primesFinS(k) ¬ n <

∏
primesFinS((k + 1)).

Proof: Define P[natural number] ≡ n <
∏

primesFinS(($1+1)). Consider
k being a natural number such that 2k ¬ n < 2k+1. 2k+1 ¬

∏
primesFinS((k+

1)). Consider m being a natural number such that P[m] and for eve-
ry natural number w such that P[w] holds m ¬ w from [2, Sch. 5].∏

primesFinS(m) ¬ n by [2, (13)]. �

Let us consider a prime number p and a natural number k. Now we state
the propositions:

(28) (i) p-count(
∏

primesFinS(k)) = 1 iff primeindex(p) < k, and

(ii) p-count(
∏

primesFinS(k)) = 0 iff primeindex(p) ­ k.
Proof: Define P[natural number] ≡ for every prime number p, (p-count(

∏
primesFinS($1)) =

1 iff primeindex(p) < $1) and (p-count(
∏

primesFinS($1)) = 0 iff primeindex(p) ­
$1). P[0] by [7, (94)], [16, (21)]. If P[n], then P[n+ 1] by (25), [16, (28)],
[2, (13)], [16, (24), (22)]. P[n] from [2, Sch. 2]. �

(29) p |
∏

primesFinS(k) if and only if primeindex(p) < k.
Proof: If p |

∏
primesFinS(k), then primeindex(p) < k by [16, (27)], (28).

p-count(
∏

primesFinS(k)) = 1. �

(30) If k ¬ primeindex(p), then p and
∏

primesFinS(k) are relatively prime.
Proof: Define P[natural number] ≡ if $1 ¬ k, then p and

∏
primesFinS($1)

are relatively prime. If P[n], then P[n + 1] by [2, (13)], (25), [11, (21)],
[12, (3)]. P[n] from [2, Sch. 2]. �

Now we state the proposition:

(31) (i) rng PrimeExponents(
∏

primesFinS(n)) ⊆ {0, 1}, and

(ii) support PrimeExponents(
∏

primesFinS(n)) = n.

Proof: Define P[natural number] ≡ support PrimeExponents(
∏

primesFinS($1)) =
$1 and rng PrimeExponents(

∏
primesFinS($1)) ⊆ {0, 1}. For every n such
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that P[n] holds P[n + 1] by (25), [16, (46)], (30), [16, (44)]. For every n,
P[n] from [2, Sch. 2]. �

Let us consider natural numbers n, m. Now we state the propositions:

(32) If for every natural number k such that k < m holds pr(k) | n, then∏
primesFinS(m) | n.
Proof: Define P[natural number] ≡ if $1 ¬ m, then

∏
primesFinS($1) | n.

For every natural number i such that P[i] holds P[i+ 1] by [2, (13)], (30),
[10, (4)], (25). For every natural number i, P[i] from [2, Sch. 2]. �

(33) n < m if and only if
∏

primesFinS(n) <
∏

primesFinS(m).
Proof: If n < m, then

∏
primesFinS(n) <

∏
primesFinS(m) by [2, (13)],

[11, (8), (21)], (25). �

8. Problem 93

Now we state the proposition:

(34) Problem 93:
Let us consider a sequence r of real numbers. Suppose for every non zero
natural number n, there exists a prime number q such that r(n) = q

n and
q - n and for every prime number p such that p - n holds q ¬ p. Then

(i) r is convergent, and

(ii) lim r = 0.

Proof: For every real number p such that 0 < p there exists a natural
number n such that for every natural number m such that n ¬ m holds
|r(m)− 0| < p by [21, (1)], (26), [2, (14)], [22, (12)]. �

9. Problem 95

Now we state the proposition:

(35) Problem 95:
Let us consider a non zero natural number s, and a natural number n.
Suppose n >

∏
primesFinS(s). Then there exists a natural number p such

that

(i) n < p < 2 · n, and

(ii) rng PrimeExponents(p) ⊆ {0, 1}, and

(iii) support PrimeExponents(p) = s.
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Proof: Reconsider s1 = s−1 as a natural number. Set P1 =
∏

primesFinS(s1).
Set k = n divP1. Set r = n mod P1. k · P1 + r > P1 · (pr(s1)). Consider
p being a prime number such that k < p ¬ 2 · k. p 6= 2 · k by [12,
(2)], [2, (13)]. s1 < primeindex(p) by [18, (12)]. support PFExp(p) misses
support PFExp(P1). rng PFExp(p ·P1) = rng PFExp(p)∪ rng PFExp(P1).

rng PFExp(p) ⊆ {0, 1}. rng PFExp(P1) ⊆ {0, 1}. support PFExp(p) = 1.
�

10. Problem 102

Now we state the propositions:

(36) Let us consider a natural number n, and a prime number p. If p ¬ n and
p2 | n!, then 2 · p ¬ n.
Proof: Consider o being a natural number such that p · p · o = n!. Set
I = idseq(n). For every real number r such that r ∈ rng I holds 0 < r
by [5, (49)], [25, (25)]. Consider i being a natural number such that i ∈
dom((I�(p−′ 1)) a I�p) and p | ((I�(p−′ 1)) a I�p)(i). �

(37) If 0 < a < b ¬ n, then a · b | n!.
Proof: For every object x such that x ∈ dom〈a, b〉 holds 〈a, b〉(x) ¬ n
by [3, (44), (2)]. For every natural number i such that i ∈ dom〈a〉 holds
〈a〉(i) < b by [3, (38), (2)]. �

(38) Let us consider a prime number p. Suppose 2 < n and n div 2 < p ¬
2 · (n div 2). Then p-count(n!) = 1. The theorem is a consequence of (36).

Now we state the proposition:

(39) Problem 102:
for every natural number n such that n > 1 there exists a prime number
p such that n < p < 2 · n if and only if for every natural number n such
that n > 1 there exists a prime number p such that p-count(n!) = 1.
Proof: Consider p being a prime number such that p-count(2 · n!) = 1.
n < p by (37), [19, (6)], [20, (9)], [11, (40)]. �

11. Problem 103

Now we state the proposition:

(40) Suppose for every natural number n such that n > 5 there exist prime
numbers p, q such that n < p < q < 2 ·n. Let us consider a natural number
n. Suppose n > 10. Then there exist prime numbers p, q such that

(i) p < q, and
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(ii) p-count(n!) = 1, and

(iii) q-count(n!) = 1.

The theorem is a consequence of (36) and (38).
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