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Introduction

In this paper, Problems 38 from Section I, 58 from Section III, 160, 164,
168, 171, 188, 195, 196, and 198 from Section V of [17] are formalized, using
the Mizar formalism [6, 5]. The paper is a part of the project Formalization of
Elementary Number Theory in Mizar [14].

In the preliminary section, we provided some valuable facts about the mo-
notonicity of functions.

Problem 38 concerns a comparison between the number of divisors of the
form 4k + 1 and the number of divisors of the form 4k + 3 for a given positive
integer. We demonstrate that the number of divisors of the form 4k+1 is greater
than or equal to that of the form 4k+3. Furthermore, we show that there are an
infinite number of cases where equality is observed, as well as instances where
the former is greater. To prove the last two problems, we utilize the families
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of numbers indicated in the book, for which we prove that they are infinite.
The original proof is inductive with respect to the number of prime numbers
of the form 4k + 3 in the decomposition into prime numbers in first powers. In
the induction step, we encountered an obstacle. For illustrative purposes, let us
consider the case of n = 3 · 3 · 3, which has s+ 1 = 3 divisors of the form 4k+ 3.
Then the only distribution n = m · q where m has s divisors of the form 4k + 3
is for m = 32, q = 3. We define g to be the number of divisors in the form 4k+1
of m (30, 32), and h to be the number of divisors in the form 4k+3 of n (31,33).
Then m · q should have g + h divisors of the form 4k+ 1 but has only 2: 30, 32.
We have also noticed that this property only occurs if m and q are coprime.

To solve this problem we considered our proof, which uses the idea proposed
in the book. First, we prove that for any prime number p to a power other than
zero n holds (pn)4k+1 ­ (pn)4k+3 where (pn)4k+1 and (pn)4k+3 are the numbers of
pn divisors of the form 4k+1 and 4k+3, respectively. Then, we consider induction
with respect to the number of distinct prime factors that appear with non-zero
exponents in the prime factorization. Let n =

∏s+1
i=1 p

ni
i where p1 < p2 < . . . <

ps+1 are primes and the ni are positive integers. Set m =
∏s
i=1 p

ni
i , q = pns+1s+1 .

From what has been proven before, we have (q)4k+1 ­ (q)4k+3 and (m)4k+1 ­
(m)4k+3 by induction, which gives ((m)4k+1− (m)4k+3) · ((q)4k+1− (q)4k+3) ­ 0
and consequently:

(m)4k+1 ·(q)4k+1+(m)4k+3 ·(q)4k+3 ­ (m)4k+1 ·(q)4k+3+(m)4k+3 ·(q)4k+1 (I.1)

The proof is completed by showing that (n)4k+1 = (m)4k+1 · (q)4k+1+(m)4k+3 ·
(q)4k+3, (n)4k+3 = (m)4k+1 · (q)4k+3 + (m)4k+3 · (q)4k+1 and that it holds since
m, q are coprime.

Problem 58 asks about the existence of arbitrarily long arithmetic pro-
gression formed of different positive integers, whose terms are powers of po-
sitive integers with integer exponents greater than 1. Such terms are named
perfect powers [10]. The proof of the problem considers only progressions with
positive lengths, while we generalized the proof to arbitrary length s, where the
solution for s = 0 is the empty finite sequence.

It is worth mentioning that we found two errors (just misprints) in the proof
of Problem 58. The formula for numbers Qk should be

Qk = k(ak+1)/pk
s∏
n=1
n6=k

nan/pk

that is one should consider numbers nan/pk , but not nak/pk in the
∏

. Moreover,
in the book it is written “pk|an if k 6= n, where n is a positive integer >
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s”, while n must be ¬ s – it is reflected in the defintion of a finite sequence
sequenceAnPk(s,k).

Problem 160 requires finding all solutions in positive integers x, y, z, t, with
x ¬ y ¬ z ¬ t of the equation

1
x

+
1
y

+
1
z

+
1
t

= 1.

The proof given in the book presents 14 different solutions of the equation, but
one of them x = 2, y = 4, z = 5, t = 24 is incorrect

(
1
2 + 1

4 + 1
5 + 1

24 = 119
120 6= 1

)
.

It should be x = 2, y = 4, z = 5, and t = 20.

Problem 168 concerns proving that for every positive integer s, the equation

1
x21

+
1
x22

+ · · ·+ 1
x2s

=
1
x2s+1

has infinitely many solutions in positive integers x1, x2, . . . , xs, xs+1. The original
proof is splited into several cases – but the case for s = 2 provides a wrong
solution 1

152 + 1
122 = 1

202 . It should be 1
152 + 1

202 = 1
122 .

Problem 196 asks to solve the problem of A. Moessner of finding all solutions
in positive integers x, y, z, t of the system of equations

x+ y = zt, z + t = xy

where x ¬ y and x ¬ z ¬ t and to prove that this system has infinitely many
integer solutions x, y, z, and t. The proof in the book is divided into several
cases. The case for x > 2 is slightly imprecise. It claims that z1t1+2z1+2t1+4 ­
z1 + t1 + 9, for z1 = z − 2, and t1 = t − 2, but we could prove only inequality
z1t1 + 2z1 + 2t1 + 4 ­ z1 + t1 + 7. Anyway, our restriction could be used to
complete the proof.

The proofs for the other problems are direct formalizations of the solutions
presented in the book.

1. Preliminaries

From now on a, b, k, m, n, s denote natural numbers, c, c1, c2, c3 denote
complex numbers, i, j, z denote integers, p denotes a prime number, and x
denotes an object.
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Let p be a prime number. One can check that p(∈ P) reduces to p.
Let a, b, c, d be integers. One can verify that 〈〈a, b, c, d〉〉(∈ Z × Z × Z × Z)

reduces to 〈〈a, b, c, d〉〉.
Let us consider n. One can check that there exists a finite sequence which

is positive yielding, natural-valued, and n-elements and every binary relation
which is non-empty and natural-valued is also positive yielding.

Let D be a set and f be a D-valued finite 0-sequence. One can verify that
XFS2FS(f) is D-valued.

Now we state the proposition:

(1) Let us consider a finite 0-sequence f . If n ∈ dom(XFS2FS(f)), then
n− 1 ∈ dom f .

Let f be an increasing, extended real-valued finite 0-sequence. One can check
that XFS2FS(f) is increasing.

Let f be a decreasing, extended real-valued finite 0-sequence. Let us observe
that XFS2FS(f) is decreasing.

Let f be a non-increasing, extended real-valued finite 0-sequence. Let us
note that XFS2FS(f) is non-increasing.

Let f be a non-decreasing, extended real-valued finite 0-sequence. One can
check that XFS2FS(f) is non-decreasing.

Let r be a positive real number and f be a positive yielding, real-valued
function. One can verify that r · f is positive yielding.

Let f be an increasing, real-valued function. Note that r · f is increasing.
Let r be a negative real number. Note that r · f is decreasing.
Let r be a positive real number and f be a decreasing, real-valued function.

Let us observe that r · f is decreasing.
Let r be a negative real number. Let us observe that r · f is increasing.
Let r be a positive real number and f be a non-increasing, real-valued func-

tion. Note that r · f is non-increasing.
Let r be a negative real number. Note that r · f is non-decreasing.
Let r be a positive real number and f be a non-decreasing, real-valued

function. Let us observe that r · f is non-decreasing.
Let r be a negative real number. Let us observe that r · f is non-increasing.
Now we state the proposition:

(2) Let us consider a finite-support function f . Then rng f ⊆ rng(f� support f)∪
{0}.

Let f be a finite-support function. Let us observe that rng f is finite.
Now we state the propositions:

(3) Let us consider a complex-valued finite sequence f , and a finite sequence
g of elements of CF. If f = g, then

∏
f =

∏
g.
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(4) Let us consider a complex number a, and complex-valued finite sequences
p, q. Suppose len p = len q and there exists a natural number i such that
i ∈ dom p and q(i) = a · p(i) and for every natural number j such that
j ∈ dom p and i 6= j holds q(j) = p(j). Then

∏
q = a · (

∏
p). The theorem

is a consequence of (3).

2. Problem 38

Now we state the propositions:

(5) If n mod 4 = 0 or n mod 4 = 2, then n ·m mod 4 = 0 or n ·m mod 4 = 2.

(6) If n ·m mod 4 = 1, then n mod 4 = 1 or n mod 4 = 3. The theorem is
a consequence of (5).

(7) If n ·m mod 4 = 3, then n mod 4 = 1 and m mod 4 = 3 or n mod 4 = 3
and m mod 4 = 1. The theorem is a consequence of (5).

(8) If n mod 4 = 1 and m mod 4 = 1 or n mod 4 = 3 and m mod 4 = 3,
then n ·m mod 4 = 1.

(9) If n mod 4 = 1 and m mod 4 = 3 or n mod 4 = 3 and m mod 4 = 1,
then n ·m mod 4 = 3.

(10) If p is prime and p mod 4 = 1 and n | pk, then n mod 4 = 1.
Proof: Consider t being an element of N such that n = pt and t ¬ k.
Define P[natural number] ≡ p$1 mod 4 = 1. For every natural number i
such that P[i] holds P[i+ 1] by (8), [12, (6)]. For every natural number i,
P[i] from [3, Sch. 2]. �

(11) If p mod 4 = 3, then p2·n mod 4 = 1 and p2·n+1 mod 4 = 3.
Proof: Define P[natural number] ≡ p2·$1 mod 4 = 1 and p2·$1+1 mod 4 =
3. For every natural number i such that P[i] holds P[i + 1] by [12, (6)],
(8), (9). For every natural number i, P[i] from [3, Sch. 2]. �

Let n, m, r be integers. The functor divisors(n,m, r) yielding a subset of
N is defined by the term

(Def. 1) {k, where k is a natural number : k mod m = r and k | n}.

Now we state the proposition:

(12) Let us consider integers n, m, r. Then k ∈ divisors(n,m, r) if and only
if k mod m = r and k | n.

Let n be a positive natural number andm, r be integers. Note that divisors(n,m, r)
is finite.

Now we state the propositions:
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(13) Let us consider integers n,m, r, p. Then k ∈ divisors(n,m, r)∪divisors(n,m, p)
if and only if (k mod m = r or k mod m = p) and k | n. The theorem is
a consequence of (12).

(14) Let us consider integers n, m, r. If k 6= i, then divisors(n,m, k) misses
divisors(n,m, i). The theorem is a consequence of (12).

(15) (i) divisors(2n, 4, 3) = ∅, and

(ii) divisors(2n, 4, 1) = {1}.
Proof: divisors(2n, 4, 3) = ∅ by (12), [9, (5)]. divisors(2n, 4, 1) ⊆ {1}. �

Let us consider a prime number p and a natural number n. Now we state
the propositions:

(16) {k, where k is a natural number : k | pn} = n+ 1.

Proof: Define P[natural number] ≡ {k, where k is a natural number : k | p$1} =
$1 + 1. Set X = {k, where k is a natural number : k | p0}. X ⊆ {1} by
[13, (13)]. For every natural number i such that P[i] holds P[i+ 1] by [2,
(41)]. For every natural number i, P[i] from [3, Sch. 2]. �

(17) Suppose p mod 4 = 1. Then

(i) divisors(pn, 4, 1) = n+ 1, and

(ii) divisors(pn, 4, 3) = 0.

The theorem is a consequence of (10) and (16).

Now we state the propositions:

(18) Let us consider a prime number p, m, and n. Suppose p mod 4 = 3.
Then

(i) divisors(pn, 4, 1)∪divisors(pn, 4, 3) = {k, where k is a natural number :
k | pn}, and

(ii) if n = 2·m, then divisors(pn, 4, 1) = m+1 and divisors(pn, 4, 3) = m,
and

(iii) if n = 2·m+1, then divisors(pn, 4, 1) = m+1 and divisors(pn, 4, 3) =
m+ 1.

Proof: Define P[natural number] ≡ for every m, divisors(p$1 , 4, 1) ∪
divisors(p$1 , 4, 3) = {k, where k is a natural number : k | p$1} and if

$1 = 2 ·m, then divisors(p$1 , 4, 1) = m+1 and divisors(p$1 , 4, 3) = m and

if $1 = 2 ·m+ 1, then divisors(p$1 , 4, 1) = m+ 1 and divisors(p$1 , 4, 3) =
m + 1. P[0] by [12, (4)], [9, (5)], [13, (13)], [7, (33)]. For every natural
number i such that P[i] holds P[i + 1] by [21, (36)], [16, (9)], (11), [12,
(6)]. For every natural number i, P[i] from [3, Sch. 2]. �

(19) If p is prime, then p = 2 or p mod 4 = 1 or p mod 4 = 3.
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(20) If n > 1, then there exists a prime number p such that p | n and for
every prime number q such that q | n holds q ¬ p.
Proof: Define P[natural number] ≡ $1 is prime and $1 | n. Consider k
being a natural number such that P[k] and for every natural number n
such that P[n] holds n ¬ k from [3, Sch. 6]. �

(21) Suppose n is positive and p is prime and p | n. Then there exist positive
natural numbers k, m such that

(i) 0 < k, and

(ii) n = m · pk, and

(iii) m and p are relatively prime.

Proof: Consider u being a positive natural number such that n ¬ pu.
Define P[natural number] ≡ p$1 | n. For every natural number k such that
P[k] holds k ¬ u by [15, (93)], [9, (30)]. Consider k being a natural number
such that P[k] and for every natural number n such that P[n] holds n ¬ k
from [3, Sch. 6]. Consider m being a natural number such that n = pk ·m.
Consider m1 being a natural number such that m = p ·m1. �

(22) Let us consider a non zero natural number n. Then divisors(n, 4, 3) ¬
divisors(n, 4, 1).
Proof: Define P[natural number] ≡ for every non zero natural number
n such that for every prime number p such that p | n holds p ¬ $1 holds

divisors(n, 4, 3) ¬ divisors(n, 4, 1). For every natural number k such that
for every natural number n such that n < k holds P[n] holds P[k] by [12,
(4)], [13, (28)], [3, (9)], (20). For every natural number k, P[k] from [3,
Sch. 4]. �

(23) If m is even, then 3m mod 4 = 1.

(24) If m is odd, then 3m mod 4 = 3.

Let us consider a natural number n. Now we state the propositions:

(25) divisors(32·n+1, 4, 1) = {3m : m is even and m ¬ 2 · n+ 1}.
Proof: Set A = divisors(32·n+1, 4, 1). Set B = {3m : m is even and m ¬
2 · n + 1}. A ⊆ B by [9, (34), (41)], (24). Consider m such that x = 3m

and m is even and m ¬ 2 · n+ 1. 3m mod 4 = 1. �

(26) divisors(32·n+1, 4, 3) = {3m, where m is a natural number : m is odd and
m ¬ 2 · n+ 1}.
Proof: Set A = divisors(32·n+1, 4, 3). Set B = {3m, where m is a natural
number : m is odd and m ¬ 2 · n + 1}. A ⊆ B by [9, (34), (41)], (23).
Considerm such that x = 3m andm is odd andm ¬ 2·n+1. 3mmod 4 = 3.
�

Now we state the propositions:
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(27) {3m, where m is a natural number : m is even and m ¬ 2 · n+ 1} = n+
1.
Proof: Define F(natural number) = 3$1 . Define A(natural number) =
{F(m), where m is a natural number : m is even and m ¬ 2 · $1 + 1}.

Define P[natural number] ≡ A($1) = $1 + 1. P[0] by [3, (25)], [1, (30)].
If P[a], then P[a + 1] by [3, (16)], [9, (30)], [3, (13), (62)]. P[a] from [3,
Sch. 2]. �

(28) {3m, where m is a natural number : m is odd and m ¬ 2 · n+ 1} = n+
1.
Proof: Define F(natural number) = 3$1 . Define A(natural number) =
{F(m), where m is a natural number : m is odd and m ¬ 2 · $1 + 1}.

Define P[natural number] ≡ A($1) = $1 + 1. P[0] by [3, (25)], [1, (30)].
If P[a], then P[a + 1] by [3, (16)], [9, (30)], [3, (13), (62)]. P[a] from [3,
Sch. 2]. �

(29) divisors(32·n+1, 4, 1) = n+ 1. The theorem is a consequence of (25) and
(27).

(30) divisors(32·n+1, 4, 3) = n+ 1. The theorem is a consequence of (26) and
(28).

(31) divisors(32·n+1, 4, 1) = divisors(32·n+1, 4, 3). The theorem is a consequ-
ence of (25), (26), (27), and (28).

(32) {n, where n is a natural number : divisors(32·n+1, 4, 1) = divisors(32·n+1, 4, 3)}
is infinite.
Proof: DefineA(natural number) = divisors(32·$1+1, 4, 1). Define B(natural
number) = divisors(32·$1+1, 4, 3). SetX = {n, where n is a natural number :

A(n) = B(n)}. A(0) = B(0). X is natural-membered. For every a such
that a ∈ X there exists a natural number b such that b > a and b ∈ X by
[3, (16)], (31). �

(33) {n, where n is a natural number : divisors(n, 4, 1) = divisors(n, 4, 3)} is
infinite.
Proof: Define A(natural number) = divisors($1, 4, 1). Define B(natural
number) = divisors($1, 4, 3). Set X = {n, where n is a natural number :

A(n) = B(n)}. Set n = 32·0+1. A(n) = 1. B(n) = 1. X is natural-
membered. For every a such that a ∈ X there exists a natural number b
such that b > a and b ∈ X by [12, (86)], (29), (30). �

(34) If k | 5n, then k mod 4 = 1.

(35) There exists no k such that k mod 4 = 3 and k | 5n.
(36) {k, where k is a natural number : k | 5n} = divisors(5n, 4, 1). The the-
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orem is a consequence of (34).

(37) {k, where k is a natural number : k | 5n} = n+ 1.
Proof: Define F(natural number) = 5$1 . Define A(natural number) =
{m, wherem is a natural number :m | F($1)}. Define P[natural number] ≡
A($1) = $1 + 1. P[0] by (34), [3, (25)], [1, (30)]. If P[a], then P[a+ 1] by
[3, (16)], [9, (66), (34), (59)]. P[a] from [3, Sch. 2]. �

(38) divisors(5n, 4, 3) = ∅. The theorem is a consequence of (34).

(39) {n, where n is a natural number : divisors(5n, 4, 1) > divisors(5n, 4, 3)}
is infinite.
Proof: Define A(natural number) = divisors(5$1 , 4, 1). Define B(natural
number) = divisors(5$1 , 4, 3). Set X = {n, where n is a natural number :

A(n) > B(n)}. {k, where k is a natural number : k | 50} = A(0). A(0) =

0 + 1. A(0) > B(0). X is natural-membered. For every a such that a ∈ X
there exists a natural number b such that b > a and b ∈ X by [3, (16)],
(37), (36), (38). �

(40) {n, where n is a positive natural number : divisors(n, 4, 1) > divisors(n, 4, 3)}
is infinite.
Proof: Define A(positive natural number) = divisors($1, 4, 1). Define
B(positive natural number) = divisors($1, 4, 3). Set X = {n, where n is

a positive natural number : A(n) > B(n)}. Set n = 50. {k, where k is

a natural number : k | n} = A(n). A(n) = 0 + 1. B(n) = 0. X is natural-
membered. For every a such that a ∈ X there exists a natural number b
such that b > a and b ∈ X by [12, (86)], (38), [1, (27)], (36). �

3. Problem 58

Let X be a set. We say that X is positive-membered if and only if

(Def. 2) for every extended real x such that x ∈ X holds x > 0.

Let n be a non zero natural number. Let us note that {n} is positive-
membered.

Let m be a non zero natural number. Let us observe that {m,n} is positive-
membered and N \ {0} is positive-membered and there exists a set which is non
empty, finite, and positive-membered and there exists a set which is infinite and
positive-membered.

Now we state the proposition:

(41) Let us consider a positive-membered set A, and a set B. If B ⊆ A, then
B is positive-membered.
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Let A be a positive-membered set. Note that every subset of A is positive-
membered.

Let X be a positive-membered set. Observe that every binary relation which
is X-valued is also positive yielding.

Let n be a natural number. Observe that Seg n is positive-membered.
Let X be a positive-membered set. Let us observe that idX is positive yiel-

ding.
Let n be a natural number. One can check that idseq(n) is positive yielding

and idseq(n) is increasing and P is positive-membered.

Let s be a natural number. The functor PrimeNumbersS(s) yielding a se-
quence of P is defined by

(Def. 3) for every natural number n, it(n) = pr(n).

Let us note that PrimeNumbersS(s) is increasing and PrimeNumbersS(s) is
onto and PrimeNumbersS(s)�s is increasing.

The functor PrimeNumbersFS(s) yielding a finite sequence of elements of
P is defined by the term

(Def. 4) XFS2FS(PrimeNumbersS(s)�s).

Now we state the propositions:

(42) Let us consider a natural number s. Then len PrimeNumbersFS(s) = s.

(43) Let us consider natural numbers n, s. If n < s, then (PrimeNumbersFS(s))(n+
1) = pr(n).

(44) Let us consider a non zero natural number n, and a natural number
s. If n ¬ s, then (PrimeNumbersFS(s))(n) = pr(n − 1). The theorem is
a consequence of (43).

Let s be a natural number. Observe that PrimeNumbersFS(s) is increasing
and PrimeNumbersFS(s) is positive yielding.

Let s be a non zero natural number. One can verify that PrimeNumbersFS(s)
is non empty and PrimeNumbersFS(s) is Chinese remainder.

Now we state the proposition:

(45) Let us consider natural numbers k, s. Suppose k < s. Then
∏
PrimeNumbersFS(s)

pr(k)
is a natural number. The theorem is a consequence of (43).

Let s be a natural number. The functor sequenceA(s) yielding a finite
sequence of elements of N is defined by

(Def. 5) len it = s and for every non zero natural number k such that k ¬ s for

every natural number e such that e =
∏
PrimeNumbersFS(s)
pr(k−1) holds it(k) =

CRT(0, e,−1,pr(k − 1)) +
∏

PrimeNumbersFS(s).



Elementary number theory problems. Part XV – ... 101

Let us observe that sequenceA(s) is s-elements and sequenceA(s) is positive
yielding.

Now we state the propositions:

(46) Let us consider non zero natural numbers k, s. If k ¬ s, then pr(k− 1) |
(sequenceA(s))(k) + 1. The theorem is a consequence of (45), (42), and
(44).

(47) Let us consider non zero natural numbers k, n. Suppose k 6= n and
n ¬ s and k ¬ s. Then pr(k − 1) | (sequenceA(s))(n). The theorem is
a consequence of (42), (44), and (45).

Let f , g be real-valued functions. The functor fg yielding a function is defined
by

(Def. 6) dom it = dom f ∩ dom g and for every object x such that x ∈ dom it
holds it(x) = f(x)g(x).

Let f , g be real-valued finite sequences. One can verify that fg is finite
sequence-like.

Let n be a natural number and f , g be n-elements, real-valued finite sequ-
ences. One can verify that fg is n-elements.

Let f , g be real-valued functions. Let us note that fg is R-valued.
Let f be a rational-valued function and g be an integer-valued function. One

can check that fg is Q-valued.
Let f be an integer-valued function and g be a natural-valued function. Let

us observe that fg is Z-valued.
Let f , g be natural-valued functions. One can check that fg is N-valued.
Let f , g be positive yielding, real-valued functions. Let us observe that fg

is positive yielding.
Let s be a natural number. The functor numberQ(s) yielding a natural

number is defined by the term

(Def. 7)
∏

(idseq(s))sequenceA(s).

Note that numberQ(s) is positive.

The functor Problem58Solution(s) yielding a finite sequence of elements of
N is defined by the term

(Def. 8) numberQ(s) · idseq(s).

Observe that Problem58Solution(s) is s-elements.
Now we state the proposition:

(48) If 1 ¬ k ¬ s, then (Problem58Solution(s))(k) = k · (numberQ(s)).

Let s be a natural number. One can verify that Problem58Solution(s) is
increasing and positive yielding.
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The functor sequenceAk1Pk(s) yielding a finite sequence of elements of N
is defined by

(Def. 9) len it = s and for every non zero natural number k such that k ¬ s holds
it(k) = (sequenceA(s))(k)+1

pr(k−1) .

Let us observe that sequenceAk1Pk(s) is s-elements.

Let k be a non zero natural number. Assume k ¬ s. The functor sequenceAnPk(s, k)
yielding a finite sequence of elements of N is defined by

(Def. 10) len it = s and for every non zero natural number n such that n ¬ s holds
if n 6= k, then it(n) = (sequenceA(s))(n)

pr(k−1) and if n = k, then it(n) = 0.

The functor sequenceQk(s) yielding a finite sequence of elements of N is
defined by

(Def. 11) len it = s and for every non zero natural number k such that k ¬ s holds
it(k) = k(sequenceAk1Pk(s))(k) · (

∏
(idseq(s))sequenceAnPk(s,k)).

Let us note that sequenceQk(s) is s-elements.
Now we state the propositions:

(49) Let us consider non zero natural numbers k, w. Suppose k ¬ s and w ¬ s
and w 6= k. Then ((idseq(s))sequenceA(s))(w) = ((idseq(s))sequenceAnPk(s,k))

pr(k−1)
(w).

(50) Let us consider a non zero natural number k. Suppose k ¬ s. Then
(Problem58Solution(s))(k) = (sequenceQk(s))(k)pr(k−1).
Proof: Set p = pr(k−1). Set A3 = sequenceAnPk(s, k). Set I = idseq(s).
Set A = sequenceA(s). Set F = IA3 . For every natural number j such
that j ∈ domF p and k 6= j holds (IA)(j) = F p(j) by [19, (25)], (49).∏
IA = kA(k) · (

∏
F )p. �

Note that there exists a finite sequence of elements of N which is finite
arithmetic progression-like, increasing, and positive yielding.

Let s be a natural number. One can check that Problem58Solution(s) is
finite arithmetic progression-like.

Now we state the proposition:

(51) Let us consider a natural number s. Then there exists a finite arithmetic
progression-like, increasing, positive yielding finite sequence f of elements
of N such that

(i) len f = s, and

(ii) for every natural number i such that 1 ¬ i ¬ len f holds f(i) is
perfect power.

The theorem is a consequence of (50).
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4. Problem 160

Now we state the proposition:

(52) Let us consider positive natural numbers x, y, z, t. Suppose x ¬ y ¬ z ¬
t. Then 1x + 1

y + 1
z + 1

t = 1 if and only if x = 2 and y = 3 and z = 7 and
t = 42 or x = 2 and y = 3 and z = 8 and t = 24 or x = 2 and y = 3 and
z = 9 and t = 18 or x = 2 and y = 3 and z = 10 and t = 15 or x = 2 and
y = 3 and z = 12 and t = 12 or x = 2 and y = 4 and z = 5 and t = 20
or x = 2 and y = 4 and z = 6 and t = 12 or x = 2 and y = 4 and z = 8
and t = 8 or x = 2 and y = 5 and z = 5 and t = 10 or x = 2 and y = 6
and z = 6 and t = 6 or x = 3 and y = 3 and z = 4 and t = 12 or x = 3
and y = 3 and z = 6 and t = 6 or x = 3 and y = 4 and z = 4 and t = 6
or x = 4 and y = 4 and z = 4 and t = 4.
Proof: If 1x + 1y + 1z + 1t = 1, then x = 2 and y = 3 and z = 7 and t = 42
or x = 2 and y = 3 and z = 8 and t = 24 or x = 2 and y = 3 and z = 9
and t = 18 or x = 2 and y = 3 and z = 10 and t = 15 or x = 2 and y = 3
and z = 12 and t = 12 or x = 2 and y = 4 and z = 5 and t = 20 or x = 2
and y = 4 and z = 6 and t = 12 or x = 2 and y = 4 and z = 8 and t = 8
or x = 2 and y = 5 and z = 5 and t = 10 or x = 2 and y = 6 and z = 6
and t = 6 or x = 3 and y = 3 and z = 4 and t = 12 or x = 3 and y = 3
and z = 6 and t = 6 or x = 3 and y = 4 and z = 4 and t = 6 or x = 4 and
y = 4 and z = 4 and t = 4 by [3, (23), (13)], [11, (37)]. �

5. Problem 164

Now we state the proposition:

(53) Let us consider positive integers x, y, z, t. Then 1
x2

+ 1
y2

+ 1
z2

+ 1
t2

= 1
if and only if x = 2 and y = 2 and z = 2 and t = 2.
Proof: If 1

x2
+ 1
y2

+ 1
z2

+ 1
t2

= 1, then x = 2 and y = 2 and z = 2 and
t = 2 by [3, (23)]. �

6. Problem 168

In the sequel f , g denote complex-valued finite sequences.
Now we state the propositions:

(54) len f2 = len f .

(55) len f−1 = len f .

(56) (c · f)�n = c · (f�n).
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Let us consider a complex-valued function f . Now we state the propositions:

(57) (f−1)2 = f2−1.

(58) (c · f)−1 = c−1 · f−1.
Now we state the propositions:

(59) (f a g)2 = f2 a g2. The theorem is a consequence of (54).

(60) (f a g)−1 = f−1 a g−1. The theorem is a consequence of (55).

(61) (f�n)−1 = f−1�n. The theorem is a consequence of (55).

(62) (f�n)2 = f2�n. The theorem is a consequence of (54).

(63) 〈c〉−1 = 〈c−1〉. The theorem is a consequence of (55).

(64) 〈c1, c2〉−1 = 〈c1−1, c2−1〉. The theorem is a consequence of (63) and (60).

(65) 〈c1, c2, c3〉−1 = 〈c1−1, c2−1, c3−1〉. The theorem is a consequence of (64),
(63), and (60).

Let s be a natural number and f be an (s + 1)-elements, complex-valued
finite sequence. We say that f is solution of Sierp168 if and only if

(Def. 12)
∑

((f�s)−1)2 = 1
f(s+1)2 .

Let a be an object. One can verify that 〈a〉 is (0 + 1)-elements.
Let a, b be objects. One can verify that 〈a, b〉 is (1 + 1)-elements.
Let a, b, c be objects. One can verify that 〈a, b, c〉 is (2 + 1)-elements.
Now we state the propositions:

(66) 〈0〉 is solution of Sierp168.

(67) 〈1, 1〉 is solution of Sierp168.
Proof: Set f = 〈1, 1〉. Set h = f�1. Set g = (h−1)2. g = 〈1〉 by [19, (29)].
�

(68) 〈15, 20, 12〉 is solution of Sierp168.
Proof: Set f = 〈15, 20, 12〉. Set h = f�2. Set g = (h−1)2. g = 〈 1152 ,

1
202 〉

by [19, (29)], [4, (45), (59), (44)]. �

(69) Let us consider natural numbers s, n, and an (s+ 1)-elements, complex-
valued finite sequence f . If f is solution of Sierp168, then n · f is solution
of Sierp168. The theorem is a consequence of (57), (58), and (56).

Let s be a positive natural number and f be an (s+ 1)-elements, complex-
valued finite sequence. The functor SierpProblem168FS(f) yielding a finite
sequence is defined by the term

(Def. 13) (12 · (f�(s− 1))) a 〈15 · f(s), 20 · f(s), 12 · f(s+ 1)〉.
One can check that SierpProblem168FS(f) is (s+1+1)-elements and SierpProblem168FS(f)

is complex-valued.
Let f be an (s+1)-elements, real-valued finite sequence. Let us observe that

SierpProblem168FS(f) is real-valued.
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Let f be an (s+ 1)-elements, integer-valued finite sequence. One can verify
that SierpProblem168FS(f) is integer-valued.

Let f be an (s+ 1)-elements, natural-valued finite sequence. One can check
that SierpProblem168FS(f) is natural-valued.

Let c be a non zero complex number. Note that 〈c〉 is non-empty.
Let f be a non-empty, complex-valued finite sequence. One can check that

c · f is non-empty.
Let f be a non-empty finite sequence and n be a natural number. Note that

f�n is non-empty.
Let s be a positive natural number and f be an (s+1)-elements, non-empty,

real-valued finite sequence. Observe that SierpProblem168FS(f) is non-empty.
Now we state the proposition:

(70) Let us consider a positive natural number s. Then there exists an (s +
1)-elements, non-empty, natural-valued finite sequence f such that f is
solution of Sierp168.
Proof: Define P[natural number] ≡ there exists a ($1+1)-elements, non-
empty, natural-valued finite sequence f such that f is solution of Sierp168.
P[1]. For every non zero natural number s such that P[s] holds P[s + 1]
by (56), [4, (44)], [8, (3)], [4, (59), (22), (45)]. For every non zero natural
number k, P[k] from [3, Sch. 10]. �

Let s be a positive natural number.
A Solution of Sierp168 of s is an (s+1)-elements, positive yielding, natural-

valued finite sequence defined by

(Def. 14) it is solution of Sierp168.

Let us note that every Solution of Sierp168 of s is solution of Sierp168.
Let s, n be positive natural numbers and f be a Solution of Sierp168 of s.

Note that n · f is solution of Sierp168.
Now we state the proposition:

(71) Let us consider positive natural numbers s, n, and a Solution of Sierp168
f of s. Then n · f is a Solution of Sierp168 of s.

Let s be a positive natural number and f be an (s + 1)-elements, positive
yielding, natural-valued finite sequence. The functor Solutions-of-Sierp168(f)
yielding a many sorted set indexed by N+ is defined by

(Def. 15) for every non zero natural number n, it(n) = n · f .
Let us note that Solutions-of-Sierp168(f) is one-to-one.
Now we state the propositions:

(72) Let us consider a positive natural number s, and a Solution of Sierp168
f of s. Then rng Solutions-of-Sierp168(f) ⊆ the set of all g where g is
a Solution of Sierp168 of s.
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(73) Let us consider a positive natural number S. Then the set of all f where
f is a Solution of Sierp168 of S is infinite. The theorem is a consequence
of (72).

7. Problem 171

Now we state the propositions:

(74) Let us consider a positive integer n. Then n ¬ 7 or n ∈ {9, 10, 12, 15} if
and only if there exist no positive integers x, y such that 3 · x+ 5 · y = n.
Proof: If n ¬ 7 or n ∈ {9, 10, 12, 15}, then there exist no positive integers
x, y such that 3 · x + 5 · y = n by [3, (13)], [20, (1)], [13, (30)], [9, (4)].
Consider k being a natural number such that n = 3 · k or n = 3 · k + 1 or
n = 3 · k + 2. �

(75) Let us consider positive integersm, n. Suppose n > 40·m. Let us consider
a finite set A. Suppose A = {〈〈x, y〉〉, where x, y are positive integers : 3 ·
x+ 5 · y = n}. Then A > m. The theorem is a consequence of (74).

8. Problem 188

Now we state the propositions:

(76) If m 6= 0, then i div(gcd(i,m)) and mdiv(gcd(i,m)) are relatively prime.

(77) There exist no positive natural numbers x, y, z, t such that x2+2·y2 = z2

and 2 · x2 + y2 = t2. The theorem is a consequence of (76).

9. Problem 195

Now we state the propositions:

(78) If n is even, then n mod 4 = 0 or n mod 4 = 2.

(79) If n is even, then n ≡ 0 (mod 4) or n ≡ 2 (mod 4). The theorem is
a consequence of (78).

(80) If n is odd, then n mod 4 = 1 or n mod 4 = 3. The theorem is a conse-
quence of (78).

(81) If n is odd, then n ≡ 1 (mod 4) or n ≡ 3 (mod 4). The theorem is
a consequence of (80).

(82) If i is even, then i3 mod 8 = 0.

(83) Let us consider a non zero natural number k. Then there exist no po-
sitive natural numbers x, y such that x2 + 22·k + 1 = y3. The theorem is
a consequence of (82) and (81).
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10. Problem 196

Now we state the proposition:

(84) Let us consider positive natural numbers x, y, z, t. Suppose x ¬ y and
x ¬ z ¬ t. Then x + y = z · t and z + t = x · y if and only if x = 1 and
y = 5 and z = 2 and t = 3 or x = 2 and y = 2 and z = 2 and t = 2.
Proof: If x+ y = z · t and z + t = x · y, then x = 1 and y = 5 and z = 2
and t = 3 or x = 2 and y = 2 and z = 2 and t = 2 by [3, (13)], [18, (5)],
[3, (10)]. �

The functor exampleSierpinski196 yielding a function from N into Z×Z×
Z× Z is defined by

(Def. 16) for every natural number n, it(n) = 〈〈−1, n, 1− n,−1〉〉.
One can check that exampleSierpinski196 is one-to-one.
Now we state the propositions:

(85) rng exampleSierpinski196 ⊆ {〈〈x, y, z, t〉〉, where x, y, z, t are integers : x+
y = z · t and z + t = x · y}.

(86) {〈〈x, y, z, t〉〉, where x, y, z, t are integers : x+ y = z · t and z + t = x · y}
is infinite. The theorem is a consequence of (85).

11. Problem 198

From now on a, b, x, y denote real numbers.
Let r be a non negative real number. One can check that dre is natural.
Let f be a non empty, positive yielding, real-valued finite sequence. Observe

that
∑
f is positive.

Let a, b be positive real numbers and n be a natural number. Let us observe
that (a, b) Subnomialn is positive yielding.

Let r be a non positive real number. Note that 〈r〉 is non positive yielding.
Now we state the propositions:

(87) Let us consider positive natural numbers n, x, y. Suppose a > 0 and
2 ¬ n and xn − yn = a. Then

(i) x < rootn−1(a), and

(ii) y < rootn−1(a).

(88) Let us consider positive natural numbers k, x, y. Suppose a > 0 and
x2·k − y2·k = a. Then

(i) x < rootk(a), and

(ii) y < rootk(a).
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(89) Let us consider complex numbers a, x, y. Then x1 − y1 = a if and only
if x = a+ y.

The scheme FinitePairs deals with natural numbers M, N and a binary
predicate P and states that

(Sch. 1) {〈〈m, n〉〉, where m, n are natural numbers : m < M and n < N and
P[m,n]} is finite.

Now we state the proposition:

(90) Let us consider positive natural numbers a, n. Suppose 2 ¬ n. Then {〈〈x,
y〉〉, where x, y are positive natural numbers : xn − yn = a} is finite.
Proof: Set A = {〈〈x, y〉〉, where x, y are positive natural numbers : xn −
yn = a}. Define P[object, object] ≡ not contradiction. SetM = rootn−1(a).
Set M1 = dMe. Set B = {〈〈x, y〉〉, where x, y are natural numbers : x <
M1 and y < M1 and P[x, y]}. B is finite from FinitePairs. A ⊆ B. �
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