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Summary. In this article we formalize in Mizar [2], [3] various differen-
tiability properties of Lipschitzian bilinear operators in real normed spaces. It
covers topics such as partial differentiability, continuity, and total differentiabili-
ty of these operators. The work extends results for linear operators to the bilinear
case and provides theorems on the behavior of differential operators up to arbi-
trary order. Key results include the Lipschitz continuity of partial derivatives,
the representation of the total derivative in terms of partial derivatives, and the
continuous differentiability of Lipschitzian bilinear operators on open subsets of
the product space. We referred to [9], [20], [15], [16] in this formalization.
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1. Fundamental Properties and Partial Differentiability

From now on E, F , G, S, T , W , Y denote real normed spaces, f , f1, f2
denote partial functions from S to T , Z denotes a subset of S, and i, n denote
natural numbers.

Now we state the propositions:

(1) Let us consider a bilinear operator f from E × F into G, and a point z
of E × F . Then
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(i) f · (reproj1(z)) is a linear operator from E into G, and

(ii) f · (reproj2(z)) is a linear operator from F into G.

Proof: Reconsider L1 = f · (reproj1(z)) as a function from E into G. For
every elements x, y of E, L1(x+y) = L1(x)+L1(y) by [5, (15)], [11, (12)].
For every vector x of E and for every real number a, L1(a · x) = a ·L1(x)
by [5, (15)], [11, (12)]. Reconsider L2 = f · (reproj2(z)) as a function from
F into G. For every elements x, y of F , L2(x + y) = L2(x) + L2(y) by
[5, (15)], [11, (12)]. For every vector x of F and for every real number a,
L2(a · x) = a · L2(x) by [5, (15)], [11, (12)]. �

(2) Let us consider a Lipschitzian bilinear operator f from E × F into G,
and a point z of E × F . Then

(i) f · (reproj1(z)) is a Lipschitzian linear operator from E into G, and

(ii) f · (reproj2(z)) is a Lipschitzian linear operator from F into G, and

(iii) there exists a point g of NormSpaceOfBoundedBilinOpersR(E,F,G)
such that f = g and for every vector x of E, ‖(f · (reproj1(z)))(x)‖ ¬
‖g‖ ·‖(z)2‖ ·‖x‖ and for every vector y of F , ‖(f · (reproj2(z)))(y)‖ ¬
‖g‖ · ‖(z)1‖ · ‖y‖.

Proof: Reconsider g = f as a point of NormSpaceOfBoundedBilinOpersR(E,F,G).
Set K = ‖g‖. Reconsider L1 = f · (reproj1(z)) as a linear operator from
E into G. Reconsider L2 = f · (reproj2(z)) as a linear operator from F
into G. Set K1 = K · ‖(z)2‖. Set K2 = K · ‖(z)1‖. For every vector x of
E, ‖L1(x)‖ ¬ K1 · ‖x‖ by [5, (15)], [10, (16)]. For every vector y of F ,
‖L2(y)‖ ¬ K2 · ‖y‖ by [5, (15)], [10, (16)]. �

(3) Let us consider a Lipschitzian bilinear operator f from E × F into G.
Then there exists a real number K such that

(i) 0 ¬ K, and

(ii) for every point z of E×F , for every point x of E, ‖(f ·(reproj1(z)))(x)‖ ¬
K · ‖(z)2‖ · ‖x‖ and for every point y of F , ‖(f · (reproj2(z)))(y)‖ ¬
K · ‖(z)1‖ · ‖y‖.

Proof: Consider K being a real number such that 0 ¬ K and for every
vector x of E and for every vector y of F , ‖f(x, y)‖ ¬ K · ‖x‖ · ‖y‖.
Set L1 = f · (reproj1(z)). Set K1 = K · ‖(z)2‖. For every vector x of E,
‖L1(x)‖ ¬ K1 · ‖x‖ by [5, (15)]. �

(4) Let us consider a Lipschitzian bilinear operator f from E × F into G,
and a point z of E × F . Then

(i) f is partially differentiable in z w.r.t. 1, and

(ii) partdiff(f, z) w.r.t. 1 = f · (reproj1(z)), and
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(iii) f is partially differentiable in z w.r.t. 2, and

(iv) partdiff(f, z) w.r.t. 2 = f · (reproj2(z)).

The theorem is a consequence of (2).

(5) Let us consider points s, t of E × F , and a real number a. Then

(i) s = 〈〈(s)1, (s)2〉〉, and

(ii) ((s+ t))1 = (s)1 + (t)1, and

(iii) ((s+ t))2 = (s)2 + (t)2, and

(iv) ((s− t))1 = (s)1 − (t)1, and

(v) ((s− t))2 = (s)2 − (t)2, and

(vi) (a · s)1 = a · ((s)1), and

(vii) (a · s)2 = a · ((s)2).

(6) Let us consider a Lipschitzian bilinear operator f from E × F into G.
Then there exists a real number K such that

(i) 0 ¬ K, and

(ii) for every point z of E × F , ‖partdiff(f, z) w.r.t. 1‖ ¬ K · ‖z‖ and
‖partdiff(f, z) w.r.t. 2‖ ¬ K · ‖z‖.

The theorem is a consequence of (3), (2), (4), and (5).

2. Total Differentiability and Continuity

Let us consider a Lipschitzian bilinear operator f from E × F into G. Now
we state the propositions:

(7) (i) for every points z1, z2 of E × F , partdiff(f, z1 + z2) w.r.t. 1 =
partdiff(f, z1) w.r.t. 1 + partdiff(f, z2) w.r.t. 1, and

(ii) for every point z of E×F and for every real number a, partdiff(f, a ·
z) w.r.t. 1 = a · (partdiff(f, z) w.r.t. 1), and

(iii) for every points z1, z2 of E×F , partdiff(f, z1−z2) w.r.t. 1 = partdiff(f, z1) w.r.t. 1−
partdiff(f, z2) w.r.t. 1.

The theorem is a consequence of (4) and (5).

(8) (i) for every points z1, z2 of E × F , partdiff(f, z1 + z2) w.r.t. 2 =
partdiff(f, z1) w.r.t. 2 + partdiff(f, z2) w.r.t. 2, and

(ii) for every point z of E×F and for every real number a, partdiff(f, a ·
z) w.r.t. 2 = a · (partdiff(f, z) w.r.t. 2), and
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(iii) for every points z1, z2 of E×F , partdiff(f, z1−z2) w.r.t. 2 = partdiff(f, z1) w.r.t. 2−
partdiff(f, z2) w.r.t. 2.

The theorem is a consequence of (4) and (5).

Now we state the proposition:

(9) Let us consider a Lipschitzian bilinear operator f from E × F into G,
and a subset Z of E × F . Suppose Z is open. Then

(i) f is partially differentiable on Z w.r.t. 1, and

(ii) f is partially differentiable on Z w.r.t. 2, and

(iii) f �1 Z is continuous on Z, and

(iv) f �2 Z is continuous on Z.

Proof: For every point x of E × F such that x ∈ Z holds f is partially
differentiable in x w.r.t. 1. For every point x of E×F such that x ∈ Z holds
f is partially differentiable in x w.r.t. 2. Set g1 = f �1 Z. Set g2 = f �2 Z.
Consider K being a real number such that 0 ¬ K and for every point z
of E × F , ‖partdiff(f, z) w.r.t. 1‖ ¬ K · ‖z‖ and ‖partdiff(f, z) w.r.t. 2‖ ¬
K · ‖z‖. For every point t0 of E × F and for every real number r such
that t0 ∈ Z and 0 < r there exists a real number s such that 0 < s and
for every point t1 of E × F such that t1 ∈ Z and ‖t1 − t0‖ < s holds
‖g1/t1 − g1/t0‖ < r by (7), [13, (4)]. For every point t0 of E × F and for
every real number r such that t0 ∈ Z and 0 < r there exists a real number
s such that 0 < s and for every point t1 of E × F such that t1 ∈ Z and
‖t1 − t0‖ < s holds ‖g2/t1 − g2/t0‖ < r by (8), [13, (4)]. �

Let us consider a Lipschitzian bilinear operator f from E × F into G. Now
we state the propositions:

(10) There exists a real number K such that

(i) 0 ¬ K, and

(ii) for every point z of E×F , there exists a Lipschitzian linear operator
L from E ×F into G such that for every point d1 of E and for every
point d2 of F , L(d1, d2) = f(d1, (z)2)+f((z)1, d2) and for every point
s of E × F , ‖L(s)‖ ¬ K · ‖z‖ · ‖s‖.

Proof: Consider K being a real number such that 0 ¬ K and for every
vector x of E and for every vector y of F , ‖f(x, y)‖ ¬ K · ‖x‖ · ‖y‖. Define
Q(element of E, element of F ) = f($1, (z)2) + f((z)1, $2). Consider L0

being a function from (the carrier of E)×(the carrier of F ) into the carrier
of G such that for every element x of the carrier of E and for every element
y of the carrier of F , L0(x, y) = Q(x, y) from [4, Sch. 4]. Reconsider
L = L0 as a function from E × F into G. For every elements x, y of E ×



Differentiability properties of lipschitzian bilinear ... 159

F , L(x + y) = L(x) + L(y) by [12, (18)], [11, (12)]. For every vector x of
E × F and for every real number a, L(a · x) = a · L(x) by [12, (18)], [11,
(12)]. Set K1 = 2 ·K · ‖z‖. For every vector w of E×F , ‖L(w)‖ ¬ K1 · ‖w‖
by [12, (18)], [14, (15)], [13, (4)]. �

(11) There exists a real number K such that

(i) 0 ¬ K, and

(ii) for every point z of E×F , f is differentiable in z and for every point
d1 of E and for every point d2 of F , f ′(z)(d1, d2) = f(d1, (z)2) +
f((z)1, d2) and ‖f ′(z)‖ ¬ K · ‖z‖.

Proof: Consider K0 being a real number such that 0 ¬ K0 and for every
vector x of E and for every vector y of F , ‖f(x, y)‖ ¬ K0 · ‖x‖ · ‖y‖.
Consider K being a real number such that 0 ¬ K and for every point z
of E × F , there exists a Lipschitzian linear operator L from E × F into
G such that for every point d1 of E for every point d2 of F , L(d1, d2) =
f(d1, (z)2)+f((z)1, d2) and for every point s of E×F , ‖L(s)‖ ¬ K·‖z‖·‖s‖.
Consider L being a Lipschitzian linear operator from E × F into G such
that for every point d1 of E and for every point d2 of F , L(d1, d2) =
f(d1, (z)2)+f((z)1, d2) and for every point s of E×F , ‖L(s)‖ ¬ K·‖z‖·‖s‖.
Reconsider L0 = L as a point of the real norm space of bounded linear
operators from E × F into G. Define Q(element of E, element of F ) =
f($1, $2). ConsiderR being a function from (the carrier of E)×(the carrier
of F ) into the carrier of G such that for every element d1 of the carrier
of E and for every element d2 of the carrier of F , R(d1, d2) = Q(d1, d2)
from [4, Sch. 4]. For every real number r such that r > 0 there exists
a real number d such that d > 0 and for every point w of E×F such that
w 6= 0E×F and ‖w‖ < d holds ‖w‖−1 · ‖R/w‖ < r by [13, (4)], [12, (18)],
[14, (15)]. For every point w of E × F such that w ∈ the neighbourhood
of z holds f/w−f/z = L0(w− z) +R/w−z by [12, (18)], [19, (1)], [11, (12)].
�

Now we state the propositions:

(12) Let us consider a Lipschitzian bilinear operator f from E × F into G,
a point z of E×F , a point d1 of E, and a point d2 of F . Then f ′(z)(d1, d2) =
(partdiff(f, z) w.r.t. 1)(d1)+(partdiff(f, z) w.r.t. 2)(d2). The theorem is a con-
sequence of (11) and (4).

(13) Let us consider a Lipschitzian bilinear operator f from E × F into G.
Then

(i) for every points z1, z2 of E × F , f ′(z1 + z2) = f ′(z1) + f ′(z2), and
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(ii) for every point z of E × F and for every real number a, f ′(a · z) =
a · f ′(z), and

(iii) for every points z1, z2 of E × F , f ′(z1 − z2) = f ′(z1)− f ′(z2).

The theorem is a consequence of (12), (7), and (8).

(14) Let us consider a Lipschitzian bilinear operator f from E × F into G,
and a subset Z of E × F . Suppose Z is open. Then

(i) f is differentiable on Z, and

(ii) f ′�Z is continuous on Z.

Proof: Consider K being a real number such that 0 ¬ K and for every
point z of E × F , f is differentiable in z and for every point d1 of E
and for every point d2 of F , f ′(z)(d1, d2) = f(d1, (z)2) + f((z)1, d2) and
‖f ′(z)‖ ¬ K · ‖z‖. Set g1 = f ′�Z . For every point t0 of E×F and for every
real number r such that t0 ∈ Z and 0 < r there exists a real number s
such that 0 < s and for every point t1 of E × F such that t1 ∈ Z and
‖t1 − t0‖ < s holds ‖g1/t1 − g1/t0‖ < r by (13), [13, (4)]. �

3. Higher-Order Derivatives and Special Properties

Now we state the propositions:

(15) Let us consider a Lipschitzian bilinear operator f from E × F into G.
Then

(i) f ′�ΩE×F is Lipschitzian linear operator from E×F into the real norm
space of bounded linear operators from E × F into G, differentiable
on ΩE×F , and continuous on the carrier of E × F , and

(ii) for every point z of E × F , (f ′�ΩE×F )′(z) = f ′�ΩE×F .

The theorem is a consequence of (14), (13), and (11).

(16) Let us consider a Lipschitzian linear operator L from E into F . Then

(i) L′(ΩE)(0) = L, and

(ii) L′(ΩE)(1) = ΩE 7−→ L, and

(iii) L′(ΩE)(2) = ΩE 7−→ (ΩE 7−→ (ΩE 7−→ 0F )), and

(iv) L′(ΩE)(3) = ΩE 7−→ (ΩE 7−→ (ΩE 7−→ (ΩE 7−→ 0F ))).

Proof: For every object z such that z ∈ domL′�ΩE holds L′�ΩE (z) =
L by [7, (26)]. For every object z such that z ∈ dom(L′�ΩE )′�ΩE holds
(L′�ΩE )′�ΩE (z) = ΩE 7−→ (ΩE 7−→ 0F ) by [8, (33)]. Reconsider L1 =
L′(ΩE)(2) as a partial function from E to the real norm space of bo-
unded linear operators from E into the real norm space of bounded linear
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operators from E into F . For every object z such that z ∈ domL1
′
�ΩE

holds L1
′
�ΩE (z) = ΩE 7−→ (ΩE 7−→ (ΩE 7−→ 0F )) by [8, (33)]. �

(17) Let us consider a natural number i. Then 0diffSP(E(i+1),F ) = ΩE 7−→
0diffSP(Ei,F ).

Let us consider a Lipschitzian linear operator L from E into F and a natural
number i. Now we state the propositions:

(18) diffΩE (L, i+ 2) = ΩE 7−→ 0diffSP(E(i+2),F ).
Proof: Define P[natural number] ≡ diffΩE (L, $1+2) = ΩE 7−→ 0diffSP(E($1+2),F ).
P[0] by [6, (7), (10)], [17, (31)], (16). For every natural number i such that
P[i] holds P[i + 1] by [18, (13), (8)], [8, (33)], [6, (10), (13)]. For every
natural number i, P[i] from [1, Sch. 2]. �

(19) (i) diffΩE (L, i+ 1) is differentiable on ΩE , and

(ii) diffΩE (L, i+ 1)′�ΩE = ΩE 7−→ 0diffSP(E(i+2),F ), and

(iii) diffΩE (L, i+ 1)′�ΩE is continuous on ΩE .
Proof: Define P[natural number] ≡ diffΩE (L, $1 + 1) is differentiable on
ΩE and diffΩE (L, $1 + 1)′�ΩE = ΩE 7−→ 0diffSP(E($1+2),F ) and diffΩE (L, $1 +
1)′�ΩE is continuous on ΩE . P[0] by [6, (7), (10)], [17, (31)], (16). For every
natural number i such that P[i] holds P[i+ 1] by [6, (13)], [18, (13), (8)],
[8, (33)]. For every natural number i, P[i] from [1, Sch. 2]. �

(20) (i) diffΩE (L, i) is differentiable on ΩE , and

(ii) diffΩE (L, i)′�ΩE is continuous on ΩE .
The theorem is a consequence of (16) and (19).

Now we state the proposition:

(21) Let us consider a Lipschitzian bilinear operator B from E × F into G,
and a natural number i. Then

(i) diffΩE×F (B, i) is differentiable on ΩE×F , and

(ii) diffΩE×F (B, i)′�ΩE×F is continuous on ΩE×F .

Proof: Reconsider L = B′�ΩE×F as a Lipschitzian linear operator from E×
F into the real norm space of bounded linear operators from E×F into G.
Set G1 = the real norm space of bounded linear operators from E×F into
G. Define P[natural number] ≡ diffΩE×F (B, $1 + 1) = diffΩE×F (L, $1) and

diffSP((E × F )($1+1), G) = diffSP((E × F )$1 , G1). P[0] by [6, (11), (7)].
For every natural number n such that P[n] holds P[n + 1] by [6, (10),
(13)]. For every natural number n, P[n] from [1, Sch. 2]. �
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