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Summary. In this paper we formalize in Mizar [4], [5] and we prove the in-
terconversion between Cartesian product types and tuple types and their integra-
tion for measures in higher dimensional spaces. In Mizar, two types of representa-
tions are mainly used for higher-dimensional sets: those using direct products and
those using tuples. The direct product type is suitable for recursively extending
from lower dimensions to higher dimensions, but is not suitable for representa-
tions of general orders such as n-dimensional. The tuple type compensates for
this disadvantage and is also used as the domain of multivariable functions. Ho-
wever, the direct relationship (universality) between Cartesian product type and
tuple type has not yet been demonstrated.

In this paper, we prove the universality between Cartesian product type and
tuple type, and construct a measure on the set of tuple types [12] and [1]. We
then show that the integral over the Cartesian product type coincides with the
integral over the set of tuple types.
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1. Universality of Cartesian Product Type Sets and Tuple Type
Sets

Now we state the propositions:
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(1) Let us consider non empty sets X, Y, and a function f from X into Y.
Suppose f is bijective. Then

(i) ◦f is bijective, and

(ii) for every subset s of X, (◦f)(s) = f◦s.

Proof: For every object y such that y ∈ 2Y there exists an object x such
that x ∈ 2X and y = (◦f)(x) by [7, (77)]. �

(2) Let us consider non empty sets X, Y, a function f from X into Y, and
a field S of subsets of X. If f is bijective, then (◦f)◦S is a field of subsets
of Y.
Proof: ◦f is bijective. Reconsider S1 = (◦f)◦S as a family of subsets of
Y. For every sets A, B such that A, B ∈ S1 holds A ∩ B ∈ S1 by (1), [7,
(62)]. For every subset A of Y such that A ∈ S1 holds Ac ∈ S1 by (1), [7,
(64)], [16, (113)]. �

Let X, Y be non empty sets, f be a function from X into Y, and S be a field
of subsets of X. Assume f is bijective. The functor CopyField(f, S) yielding
a field of subsets of Y is defined by the term

(Def. 1) (◦f)◦S.

Now we state the proposition:

(3) Let us consider non empty sets X, Y, a function f from X into Y, and
a σ-field S of subsets of X. Suppose f is bijective. Then (◦f)◦S is a σ-field
of subsets of Y.
Proof: Set S1 = (◦f)◦S. ◦f is bijective. For every sequence A1 of subsets
of Y such that rngA1 ⊆ S1 holds IntersectionA1 ∈ S1 by [8, (4)], [9, (3)],
[13, (13)], (1). �

Let X, Y be non empty sets, f be a function from X into Y, and S be
a σ-field of subsets of X. Assume f is bijective. The functor CopyField(f, S)
yielding a σ-field of subsets of Y is defined by the term

(Def. 2) (◦f)◦S.

Let us consider non empty sets X, Y, a function f from X into Y, a field S

of subsets of X, and a measure M on S. Now we state the propositions:

(4) Suppose f is bijective. Then

(i) there exists a function G from S into CopyField(f, S) such that G =
◦f�S and domG = S and rngG = CopyField(f, S) and G is bijective,
and

(ii) there exists a function F from CopyField(f, S) into S such that F =
(◦f�S)−1 and rngF = S and domF = CopyField(f, S) and F is
bijective.
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(5) Suppose f is bijective. Then there exists a measureM1 on CopyField(f, S)
such that

(i) M1 = M · ((◦f�S)−1), and

(ii) for every element s of CopyField(f, S), there exists an element t of S
such that s = f◦t and M1(s) = M(t).

Proof: Consider F being a function from CopyField(f, S) into S such
that F = (◦f�S)−1 and rngF = S and domF = CopyField(f, S) and F is
bijective. Consider G being a function from S into CopyField(f, S) such
that G = ◦f�S and domG = S and rngG = CopyField(f, S) and G is
bijective. Reconsider M1 = M ·F as a function from CopyField(f, S) into
R. (◦f�S)(∅) = f◦∅. For every element s of CopyField(f, S), there exists
an element t of S such that s = f◦t and M1(s) = M(t) by [7, (49)], (1), [7,
(13), (34)]. For every elements A, B of CopyField(f, S) such that A misses
B and A ∪ B ∈ CopyField(f, S) holds M1(A ∪ B) = M1(A) + M1(B) by
[7, (62)], (1), [7, (49), (34)]. �

Let X, Y be non empty sets, f be a function from X into Y, S be a field
of subsets of X, and M be a measure on S. Assume f is bijective. The functor
CopyMeasure(f,M) yielding a measure on CopyField(f, S) is defined by

(Def. 3) it = M · ((◦f�S)−1) and for every element s of CopyField(f, S), there
exists an element t of S such that s = f◦t and it(s) = M(t).

Now we state the proposition:

(6) Let us consider non empty sets X, Y, a function f from X into Y, a σ-
field S of subsets of X, and a σ-measure M on S. Suppose f is bijective.
Then there exists a σ-measure M1 on CopyField(f, S) such that

(i) M1 = M · ((◦f�S)−1), and

(ii) for every element s of CopyField(f, S), there exists an element t of S
such that s = f◦t and M1(s) = M(t).

Proof: Reconsider S0 = S as a field of subsets of X. Consider F being
a function from CopyField(f, S0) into S0 such that F = (◦f�S0)−1 and
rngF = S0 and domF = CopyField(f, S0) and F is bijective. Consider G
being a function from S0 into CopyField(f, S0) such that G = ◦f�S0 and
domG = S0 and rngG = CopyField(f, S0) and G is bijective. Consider
M1 being a measure on CopyField(f, S0) such that M1 = M · ((◦f�S0)−1)
and for every element s of CopyField(f, S0), there exists an element t of
S0 such that s = f◦t and M1(s) = M(t). For every sequence s of separated
subsets of CopyField(f, S),

∑
M1 · s = M1(

⋃
rng s) by [7, (62), (13)], [8,

(63)], [9, (3)]. �
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Let X, Y be non empty sets, f be a function from X into Y, S be a σ-field
of subsets of X, and M be a σ-measure on S. Assume f is bijective. The functor
CopyMeasure(f,M) yielding a σ-measure on CopyField(f, S) is defined by

(Def. 4) it = M · ((◦f�S)−1) and for every element s of CopyField(f, S), there
exists an element t of S such that s = f◦t and it(s) = M(t).

Let m be a non zero natural number and X be a non-empty, m-element finite
sequence. The functor Pt2FinSeq(X) yielding an m-element finite sequence is
defined by

(Def. 5) there exists a function i1 from
∏
FS SubFin(X, 1) into

∏
SubFin(X, 1)

such that it(1) = i1 and i1 is bijective and for every object x such that
x ∈
∏
FS SubFin(X, 1) holds i1(x) = 〈x〉 and for every non zero natural

number i such that i < m there exists a function F2 from
∏
FS SubFin(X, i)

into
∏

SubFin(X, i) and there exists a function I3 from
∏
FS SubFin(X, i)×

ElmFin(X, i + 1) into
∏

SubFin(X, i + 1) such that F2 = it(i) and I3 =
it(i + 1) and F2 is bijective and I3 is bijective and for every objects x,
y such that x ∈

∏
FS SubFin(X, i) and y ∈ ElmFin(X, i + 1) there exists

a finite sequence s such that F2(x) = s and I3(x, y) = s a 〈y〉.
Now we state the proposition:

(7) Let us consider non zero natural numbers m, n, and a non-empty, m-
element finite sequence X. Suppose n ¬ m. Then (Pt2FinSeq(X))(n) is
a function from

∏
FS SubFin(X,n) into

∏
SubFin(X,n).

Proof: Define P[natural number] ≡ if 1 ¬ $1 ¬ n, then there exists
a non zero natural number i such that $1 = i and (Pt2FinSeq(X))(i) is
a function from

∏
FS SubFin(X, i) into

∏
SubFin(X, i). For every natural

number k such that P[k] holds P[k + 1] by [2, (13), (14)], [11, (9)]. For
every natural number k, P[k] from [2, Sch. 2]. Consider i being a non zero
natural number such that i = n and (Pt2FinSeq(X))(i) is a function from∏
FS SubFin(X, i) into

∏
SubFin(X, i). �

Let us consider non zero natural numbers m, n1, n2, k and a non-empty,
m-element finite sequence X. Now we state the propositions:

(8) Suppose k ¬ n1 ¬ n2 ¬ m. Then

(i) SubFin(SubFin(X,n1), k) = SubFin(SubFin(X,n2), k), and

(ii) ElmFin(SubFin(X,n1), k) = ElmFin(SubFin(X,n2), k).

(9) If k ¬ n1 ¬ n2 ¬ m, then (Pt2FinSeq(SubFin(X,n1)))(k) = (Pt2FinSeq(SubFin(X,n2)))(k).
Proof: SetX1 = SubFin(X,n1). SetX2 = SubFin(X,n2). Define P[natural
number] ≡ if 1 ¬ $1 ¬ n1, then there exists a non zero natural number i
such that i = $1 and (Pt2FinSeq(X1))(i) = (Pt2FinSeq(X2))(i). For every
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natural number i such that P[i] holds P[i+ 1] by [2, (14)], (8), [7, (2)], [2,
(13)]. For every natural number i, P[i] from [2, Sch. 2]. �

Now we state the propositions:

(10) Let us consider non zero natural numbers m, n, k, and a non-empty, m-
element finite sequenceX. Suppose k ¬ n ¬ m. Then (Pt2FinSeq(X))(k) =
(Pt2FinSeq(SubFin(X,n)))(k). The theorem is a consequence of (9).

(11) Let us consider non zero natural numbers m, n, a non-empty, m-element
finite sequenceX, and a function P from

∏
FS SubFin(X,n) into

∏
SubFin(X,n).

If n ¬ m and P = (Pt2FinSeq(X))(n), then P is bijective.
Proof: Define P[natural number] ≡ if 1 ¬ $1 ¬ n, then there exists a non
zero natural number i and there exists a function F from

∏
FS SubFin(X, i)

into
∏

SubFin(X, i) such that $1 = i and F = (Pt2FinSeq(X))(i) and F

is bijective. For every natural number k such that P[k] holds P[k + 1] by
[2, (13), (14)], [11, (9)]. For every natural number k, P[k] from [2, Sch. 2].
�

Let m be a non zero natural number and X be a non-empty, m-element
finite sequence. The functor CarProd(X) yielding a function from

∏
FSX into∏

X is defined by the term

(Def. 6) (Pt2FinSeq(X))(m).

Now we state the propositions:

(12) Let us consider a non zero natural number m, and a non-empty, m-
element finite sequence X. Then CarProd(X) is bijective. The theorem is
a consequence of (11).

(13) Let us consider a non zero natural number n, a non-empty, (n + 1)-
element finite sequenceX, and objects x, y. Suppose x ∈

∏
FS SubFin(X,n)

and y ∈ ElmFin(X,n+ 1). Then there exist finite sequences s, t such that

(i) (CarProd(SubFin(X,n)))(x) = s, and

(ii) 〈y〉 = t, and

(iii) (CarProd(X))(x, y) = s a t.

The theorem is a consequence of (10).

Let n be a non zero natural number, X be a non-empty, n-element finite
sequence, and S be a family of σ-fields of X. The functor XProd-Field(S)
yielding a σ-field of subsets of

∏
X is defined by the term

(Def. 7) CopyField(CarProd(X),
∏
Field S).

Let m be a family of σ-measures of S. The functor XProd-Measure(m)
yielding a σ-measure on XProd-Field(S) is defined by the term

(Def. 8) CopyMeasure(CarProd(X),MeasureProd(m)).
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Now we state the propositions:

(14) Let us consider non empty sets X, Y, and a function f from X into Y.
Suppose f is bijective. Then there exists a function g from Y into X such
that

(i) g is bijective, and

(ii) g = f−1, and

(iii) ◦g = (◦f)−1.

Proof: Reconsider g = f−1 as a function from Y into X. ◦f is bijective. ◦g
is bijective. For every objects x, y such that x ∈ dom(◦f) and y ∈ dom(◦g)
holds (◦f)(x) = y iff (◦g)(y) = x by (1), [7, (85), (94), (43)]. �

(15) Let us consider non empty sets X, Y, a function T from X into Y,

a partial function f from X to R, and a partial function g from Y to R.
Suppose T is bijective and g = f · (T−1). Then

(i) dom g = T ◦ dom f , and

(ii) dom g = (◦T )(dom f).

The theorem is a consequence of (1).

(16) Let us consider non empty sets X, Y, a σ-field S of subsets of X, a func-
tion T from X into Y, a partial function f from X to R, a partial function
g from Y to R, an element A of S, and an element B of CopyField(T, S).
Suppose T is bijective and g = f · (T−1). Let us consider a real number r.
Then T ◦(LE-dom(f, r)) = LE-dom(g, r).
Proof: For every object x, x ∈ T ◦(LE-dom(f, r)) iff x ∈ LE-dom(g, r) by
[7, (13), (11), (35)]. �

(17) Let us consider non empty sets X, Y, a σ-field S of subsets of X, and
a function T from X into Y. Suppose T is bijective. Then there exists
a function H from Y into X such that

(i) H is bijective, and

(ii) H = T−1, and

(iii) H−1 = T , and

(iv) ◦H = (◦T )−1, and

(v) (◦H)◦(CopyField(T, S)) = S, and

(vi) CopyField(H,CopyField(T, S)) = S.

The theorem is a consequence of (1) and (14).

(18) Let us consider non empty sets X, Y, a σ-field S of subsets of X, a func-
tion T from X into Y, and a subset A of X. If T is bijective, then A ∈ S
iff T ◦A ∈ CopyField(T, S). The theorem is a consequence of (17) and (1).
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(19) Let us consider non empty sets X, Y, a σ-field S of subsets of X,
a function T from X into Y, and a subset B of Y. If T is bijective, then
T−1(B) ∈ S iff B ∈ CopyField(T, S). The theorem is a consequence of
(17) and (18).

2. Integral on a Tuple Type Set (one-dimensional)

Now we state the propositions:

(20) Let us consider non empty sets X, Y, a σ-field S of subsets of X, a func-
tion T from X into Y, a partial function f from X to R, a partial function
g from Y to R, an element A of S, and an element B of CopyField(T, S).
Suppose T is bijective and B = T ◦A and g = f · (T−1). Then f is A-
measurable if and only if g is B-measurable. The theorem is a consequence
of (17), (1), and (16).

(21) Let us consider non empty sets X, Y, a σ-field S of subsets of X, a func-
tion T from X into Y, and a finite sequence F of separated subsets of S.
Suppose T is bijective. Then (◦T �S) · F is a finite sequence of separated
subsets of CopyField(T, S).
Proof: Set H = ◦T �S. Reconsider G = H · F as a finite sequence of
elements of CopyField(T, S). For every objects m, n such that m 6= n

holds G(m) misses G(n) by [7, (12), (49)], (1), [7, (62)]. �

(22) Let us consider non empty sets X, Y, a σ-field S of subsets of X, a func-
tion T from X into Y, a partial function f from X to R, and a partial
function g from Y to R. Suppose T is bijective and g = f ·(T−1). Then f is
simple function in S if and only if g is simple function in CopyField(T, S).
The theorem is a consequence of (17).

(23) Let us consider non empty sets X, Y, a function T from X into Y,

a partial function f from X to R, and a partial function g from Y to R.
Suppose T is bijective and g = f · (T−1). Then f is non-negative if and
only if g is non-negative.

(24) Let us consider non empty sets X, Y, a σ-field S of subsets of X, a func-
tion T from X into Y, a finite sequence F of separated subsets of S, a finite
sequence a of elements of R, a partial function f from X to R, and a par-
tial function g from Y to R. Suppose T is bijective and g = f · (T−1) and
F and a are representation of f . Then there exists a finite sequence G of
separated subsets of CopyField(T, S) such that

(i) G = (◦T �S) · F , and

(ii) G and a are representation of g.
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Proof: Set H = ◦T �S. Reconsider G = H · F as a finite sequence of
separated subsets of CopyField(T, S). For every object x, x ∈ dom g iff
x ∈
⋃

rngG by [7, (11), (35)], (1), [7, (49), (13), (3)]. For every natural
number n such that n ∈ domG for every object x such that x ∈ G(n)
holds g(x) = a(n) by [7, (12), (49)], (1), [7, (13), (34)]. �

Let us consider non empty sets X, Y, a σ-field S of subsets of X, a function
T from X into Y, a σ-measure M on S, a partial function f from X to R, and
a partial function g from Y to R. Now we state the propositions:

(25) Suppose T is bijective and g = f · (T−1) and f is simple function in S

and f is non-negative. Then
∫
g

(CopyMeasure(T,M))(x)dx =
∫
f

M(x)dx.

Proof: g is simple function in CopyField(T, S) and g is non-negative.
Consider F being a finite sequence of separated subsets of S, a, x being
finite sequences of elements of R such that F and a are representation of
f and a(1) = 0R and for every natural number n such that 2 ¬ n and
n ∈ dom a holds 0R < a(n) < +∞ and domx = domF and for every
natural number n such that n ∈ domx holds x(n) = a(n) · (M · F )(n)

and
∫
f

M(x)dx =
∑

x. Consider G being a finite sequence of separated

subsets of CopyField(T, S) such that G = (◦T �S) · F and G and a are re-
presentation of g. Set L = CopyMeasure(T,M). For every natural number
n such that n ∈ domx holds x(n) = a(n) · (L ·G)(n) by [7, (13)], (1), [7,
(49)]. �

(26) Suppose T is bijective and g = f · (T−1) and f is simple function in S

and f is non-negative. Then
∫ ′ g d CopyMeasure(T,M) =

∫ ′ f dM . The
theorem is a consequence of (25).

Now we state the propositions:

(27) Let us consider non empty sets X, Y, a function T from X into Y,

a partial function f from X to R, and a partial function g from Y to R.
Suppose T is bijective and g = f · (T−1). Then

(i) max+(g) = (max+(f)) · (T−1), and

(ii) max−(g) = (max−(f)) · (T−1).

Proof: Reconsider H = T−1 as a function from Y into X. Reconsider
g1 = (max+(f)) · H as a partial function from Y to R. For every object
x, x ∈ dom g1 iff x ∈ dom g by [7, (11)]. For every element y of Y such
that y ∈ dom g1 holds g1(y) = max(g(y), 0R) by [7, (11), (13)]. Reconsider
g1 = (max−(f)) ·H as a partial function from Y to R. For every object x,
x ∈ dom g1 iff x ∈ dom g by [7, (11)]. For every element y of Y such that
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y ∈ dom g1 holds g1(y) = max(−g(y), 0R) by [7, (11), (13)]. �

(28) Let us consider non empty sets X, Y, a σ-field S of subsets of X, a func-
tion T from X into Y, a σ-measure M on S, a partial function f from X

to R, a partial function g from Y to R, and an element A of S. Suppose
T is bijective and g = f · (T−1) and A = dom f and f is A-measurable.
Then there exists an element B of CopyField(T, S) such that

(i) B = T ◦A, and

(ii) B = dom g, and

(iii) g is B-measurable.

The theorem is a consequence of (1) and (20).

(29) Let us consider non empty sets X, Y, a σ-field S of subsets of X, a func-
tion T from X into Y, a σ-measure M on S, a partial function f from X

to R, an element A of S, and a partial function g from Y to R. Suppose
T is bijective and g = f · (T−1) and f is non-negative and A = dom f and
f is A-measurable. Then

∫+ g d CopyMeasure(T,M) =
∫+ f dM .

Proof: Reconsider B = T ◦A as an element of CopyField(T, S). g is B-
measurable. g is non-negative. Consider F being a sequence of partial
functions from X into R, K being a sequence of extended reals such that
for every natural number n, F (n) is simple function in S and dom(F (n)) =
dom f and for every natural number n, F (n) is non-negative and for every
natural numbers n, m such that n ¬ m for every element x of X such
that x ∈ dom f holds F (n)(x) ¬ F (m)(x) and for every element x of X
such that x ∈ dom f holds F#x is convergent and lim(F#x) = f(x) and
for every natural number n, K(n) =

∫ ′ F (n) dM and K is convergent and∫+ f dM = limK. Reconsider H = T−1 as a function from Y into X. Con-
sider H being a function from Y into X such that H is bijective and H =
T−1 and H−1 = T and ◦H = (◦T )−1 and (◦H)◦(CopyField(T, S)) = S and
CopyField(H,CopyField(T, S)) = S. For every object x, x ∈ T ◦ dom f iff
x ∈ dom g by [8, (5)], [7, (34), (11), (35)]. For every natural number
n, dom(F (n) · H) = T ◦ dom(F (n)) by [7, (11), (35)], [8, (5)], [7, (34)].
Define N (natural number) = F ($1) · H. Consider G being a sequence
of partial functions from Y into R such that for every natural number
n, G(n) = N (n) from [14, Sch. 1]. Set L = CopyMeasure(T,M). For
every natural number n, G(n) is simple function in CopyField(T, S) and
dom(G(n)) = dom g. For every natural number n, G(n) is non-negative.
For every natural numbers n, m such that n ¬ m for every element y
of Y such that y ∈ dom g holds G(n)(y) ¬ G(m)(y) by [7, (11), (13)].
For every element y of Y such that y ∈ dom g holds G#y is convergent
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and lim(G#y) = g(y) by [7, (11), (13)]. For every natural number n,
K(n) =

∫ ′G(n) dL. �

(30) Let us consider non empty sets X, Y, a σ-field S of subsets of X, a func-
tion T from X into Y, a σ-measure M on S, a partial function f from X to
R, a partial function g from Y to R, and an element B of CopyField(T, S).
Suppose T is bijective and g = f · (T−1) and B = dom g and g is B-
measurable. Then there exists an element A of S such that

(i) B = T ◦A, and

(ii) A = dom f , and

(iii) f is A-measurable.

The theorem is a consequence of (17), (19), (1), (15), and (20).

Let us consider non empty sets X, Y, a σ-field S of subsets of X, a function T
from X into Y, a σ-measure M on S, a partial function f from X to R, a partial
function g from Y to R, and an element A of S. Now we state the propositions:

(31) Suppose T is bijective and g = f · (T−1) and A = dom f and f is A-
measurable. Then

(i)
∫+max+(f) dM =

∫+max+(g) d CopyMeasure(T,M), and

(ii)
∫+max−(f) dM =

∫+max−(g) d CopyMeasure(T,M).

The theorem is a consequence of (27) and (29).

(32) Suppose T is bijective and g = f · (T−1) and A = dom f and f is A-
measurable. Then

∫
g d CopyMeasure(T,M) =

∫
f dM . The theorem is

a consequence of (31).

Now we state the proposition:

(33) Let us consider non empty sets X, Y, a σ-field S of subsets of X, a func-
tion T from X into Y, a σ-measure M on S, a partial function f from X

to R, and a partial function g from Y to R. Suppose T is bijective and
g = f · (T−1). Then f is integrable on M if and only if g is integrable
on CopyMeasure(T,M). The theorem is a consequence of (28), (31), (17),
(1), and (20).

3. Integral over Tuple Type Sets (n-dimensional)

Now we state the propositions:

(34) Let us consider a non zero natural number n, a non-empty, n-element
finite sequence X, a family of σ-fields S of X, a family of σ-measures m
of S, a partial function f from

∏
FSX to R, a partial function g from∏

X to R, an element A of
∏
Field S, and an element B of XProd-Field(S).
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SupposeB = (CarProd(X))◦A and g = f ·((CarProd(X))−1). Then f is A-
measurable if and only if g is B-measurable. The theorem is a consequence
of (12) and (20).

(35) Let us consider a non zero natural number n, a non-empty, n-element
finite sequence X, a family of σ-fields S of X, a family of σ-measures m
of S, a partial function f from

∏
FSX to R, a partial function g from

∏
X

to R, and an element A of
∏
Field S. Suppose g = f · ((CarProd(X))−1)

and A = dom f and f is A-measurable. Then
∫
g d XProd-Measure(m) =∫

f d MeasureProd(m).

(36) Let us consider a non zero natural number n, a non-empty, n-element
finite sequence X, a family of σ-fields S of X, a family of σ-measures m
of S, a partial function f from

∏
FSX to R, and a partial function g from∏

X to R. Suppose g = f · ((CarProd(X))−1). Then f is integrable on
MeasureProd(m) if and only if g is integrable on XProd-Measure(m). The
theorem is a consequence of (12) and (33).

4. Lebesgue Type Measure and Lebesgue Integral on ??REAL n

Let n be a non zero natural number. Let us observe that Seg n 7−→ R is
non-empty and n-element as a finite sequence.

The functor L-Field(n) yielding a family of σ-fields of Seg n 7−→ R is defined
by the term

(Def. 9) Seg n 7−→ L-Field.

The functor L-Meas(n) yielding a family of σ-measures of L-Field(n) is
defined by the term

(Def. 10) Seg n 7−→ L-Meas.

The functor XL-Field(n) yielding a σ-field of subsets of Rn is defined by
the term

(Def. 11) XProd-Field(L-Field(n)).

The functor XL-Meas(n) yielding a σ-measure on XL-Field(n) is defined
by the term

(Def. 12) XProd-Measure(L-Meas(n)).

Now we state the propositions:

(37) (i)
∏
FS Seg 1 7−→ R = R, and

(ii) ElmFin(Seg 1 7−→ R, 1) = R, and

(iii)
∏
FS Seg 2 7−→ R = R× R, and

(iv) ElmFin(Seg 2 7−→ R, 2) = R, and
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(v)
∏
FS Seg 3 7−→ R = R× R× R.

(38) (i) CarProd(Seg 1 7−→ R) is a function from R into R1, and

(ii) for every object s such that s ∈ R holds (CarProd(Seg 1 7−→ R))(s) =
〈s〉.

The theorem is a consequence of (37).

(39) (i) CarProd(Seg 2 7−→ R) is a function from R× R into R2, and

(ii) for every objects s, t such that s, t ∈ R holds (CarProd(Seg 2 7−→
R))(〈〈s, t〉〉) = 〈s, t〉.

Proof: Set F = CarProd(Seg 2 7−→ R). For every objects s, t such that
s, t ∈ R holds F (〈〈s, t〉〉) = 〈s, t〉 by [7, (49)], [15, (7)], [3, (40)], [6, (59)]. �

(40) (i) CarProd(Seg 3 7−→ R) is a function from R× R× R into R3, and

(ii) for every objects s, t, u such that s, t, u ∈ R holds (CarProd(Seg 3 7−→
R))(〈〈〈〈s, t〉〉, u〉〉) = 〈s, t, u〉.

Proof: Set H = CarProd(Seg 3 7−→ R). For every objects s, t, u such
that s, t, u ∈ R holds H(〈〈〈〈s, t〉〉, u〉〉) = 〈s, t, u〉 by [7, (49)], [15, (7)], [3,
(44)], [6, (61)]. �

(41) (i)
∏
Field L-Field(1) = L-Field, and

(ii) the Borel sets ⊆
∏
Field L-Field(1), and

(iii) for every subset I of R such that I is an interval holds I ∈
∏
Field L-Field(1).

(42) (i)
∏
Field L-Field(2) = σ(MeasRect(L-Field,L-Field)), and

(ii) MeasRect(L-Field,L-Field) ⊆ σ(MeasRect(L-Field,L-Field)), and

(iii) the set of all A×B where A is an element of the Borel sets, B is an element
of the Borel sets ⊆ MeasRect(L-Field,L-Field), and

(iv) {I×J , where I, J are subsets of R : I is an interval and J is an interval} ⊆
the set of all A×B where A is an element of the Borel sets, B is an element
of the Borel sets.

(43) (i)
∏
Field L-Field(3) = σ(MeasRect(σ(MeasRect(L-Field,L-Field)),L-Field)),

and

(ii) MeasRect(σ(MeasRect(L-Field,L-Field)),L-Field) ⊆ σ(MeasRect(σ(MeasRect(L-Field,L-Field)),L-Field)),
and

(iii) the set of all A×B×C where A is an element of the Borel sets, B is
an element of the Borel sets, C is an element of the Borel sets ⊆ MeasRect(σ(MeasRect(L-Field,L-Field)),L-Field),
and

(iv) {I × J × K, where I, J,K are subsets of R : I is an interval and
J is an interval and K is an interval} ⊆ the set of all A×B×C where
A is an element of the Borel sets, B is an element of the Borel sets, C is
an element of the Borel sets.
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(44) Let us consider a non zero natural number n. Then
∏
Field L-Field(n +

1) = σ(MeasRect(
∏
Field L-Field(n),L-Field)).

(45) (i) MeasureProd(L-Meas(1)) = L-Meas, and

(ii) for every element E of L-Field, E ∈
∏
Field L-Field(1).

The theorem is a consequence of (41).

(46) (i) MeasureProd(L-Meas(2)) = ProdMeas(L-Meas,L-Meas), and

(ii) for every elements E1, E2 of L-Field, E1×E2 ∈ MeasRect(L-Field,L-Field)
and (MeasureProd(L-Meas(2)))(E1×E2) = (L-Meas)(E1)·(L-Meas)(E2).

Proof: For every elements E1, E2 of L-Field, E1×E2 ∈ MeasRect(L-Field,L-Field)
and (MeasureProd(L-Meas(2)))(E1 × E2) = (L-Meas)(E1) · (L-Meas)(E2)
by [10, (16)], (37), (41), (45). �

(47) (i) MeasureProd(L-Meas(3)) = ProdMeas(ProdMeas(L-Meas,L-Meas),L-Meas),
and

(ii) for every elements E1, E2, E3 of L-Field, E1×E2×E3 ∈ MeasRect(σ(MeasRect(L-Field,L-Field)),L-Field)
and (MeasureProd(L-Meas(3)))(E1×E2×E3) = (L-Meas)(E1)·(L-Meas)(E2)·
(L-Meas)(E3).

Proof: For every elements E1, E2, E3 of L-Field, E1×E2×E3 ∈ MeasRect(σ(MeasRect(L-Field,L-Field)),L-Field)
and (MeasureProd(L-Meas(3)))(E1×E2×E3) = (L-Meas)(E1)·(L-Meas)(E2)·
(L-Meas)(E3) by (46), [10, (16)]. �

(48) Let us consider a non zero natural number n. Then MeasureProd(L-Meas(n+
1)) = ProdMeas(MeasureProd(L-Meas(n)),L-Meas).

(49) Let us consider a non zero natural number n, a partial function f from∏
FS Seg n 7−→ R to R, a partial function g from Rn to R, an element

A of
∏
Field L-Field(n), and an element B of XL-Field(n). Suppose g =

f · ((CarProd(Seg n 7−→ R))−1) and B = (CarProd(Seg n 7−→ R))◦A.
Then f is A-measurable if and only if g is B-measurable. The theorem is
a consequence of (34).

(50) Let us consider a partial function f1 from R×R to R, a partial function f2
from

∏
FS Seg 2 7−→ R to R, an elementA1 of σ(MeasRect(L-Field,L-Field)),

and an element A2 of
∏
Field L-Field(2). Suppose f1 = f2 and A1 = A2.

Then f1 is A1-measurable if and only if f2 is A2-measurable. The theorem
is a consequence of (44), (37), and (41).

(51) Let us consider a partial function f from R×R to R, a partial function g
from R2 to R, an element A of σ(MeasRect(L-Field,L-Field)), and an ele-
ment B of XL-Field(2). Suppose g = f · ((CarProd(Seg 2 7−→ R))−1) and
B = (CarProd(Seg 2 7−→ R))◦A. Then f is A-measurable if and only if g
is B-measurable. The theorem is a consequence of (44), (37), (41), (49),
and (50).
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(52) Let us consider a partial function f1 from (R×R)×R to R, a partial func-
tion f2 from

∏
FS Seg 3 7−→ R to R, an elementA1 of σ(MeasRect(σ(MeasRect(L-Field,L-Field)),L-Field)),

and an element A2 of
∏
Field L-Field(3). Suppose f1 = f2 and A1 = A2.

Then f1 is A1-measurable if and only if f2 is A2-measurable. The theorem
is a consequence of (44), (37), and (41).

(53) Let us consider a partial function f from (R×R)×R to R, a partial func-
tion g fromR3 to R, an elementA of σ(MeasRect(σ(MeasRect(L-Field,L-Field)),L-Field)),
and an element B of XL-Field(3). Suppose g = f · ((CarProd(Seg 3 7−→
R))−1) and B = (CarProd(Seg 3 7−→ R))◦A. Then f is A-measurable if
and only if g is B-measurable. The theorem is a consequence of (44), (37),
(41), (49), and (52).

(54) Let us consider a non zero natural number n, a partial function f

from
∏
FS Seg n 7−→ R to R, a partial function g from Rn to R, and

an element A of
∏
Field L-Field(n). Suppose g = f · ((CarProd(Seg n 7−→

R))−1) and A = dom f and f is A-measurable. Then
∫
g d XL-Meas(n) =∫

f d MeasureProd(L-Meas(n)). The theorem is a consequence of (12) and
(32).

(55) Let us consider a non zero natural number n, a partial function f

from
∏
FS Seg n 7−→ R to R, and a partial function g from Rn to R.

Suppose g = f · ((CarProd(Seg n 7−→ R))−1). Then f is integrable on
MeasureProd(L-Meas(n)) if and only if g is integrable on XL-Meas(n). The
theorem is a consequence of (36).
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