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INTRODUCTION

Path and cycle graphs are two fundamental graph families (cf. [5], [I8], [8]).
In this article both types are formalized in the Mizar system [9], [4] (based on
the formalization of graphs in [I5]), in a way that also includes the 1-cycle,
2-cycle, ray and double-ray graph in the definitions. It is shown how a finite
path graph can be constructed successively and how to construct cycle graphs
from finite path graphs. A maximal graph path is characterized for every path
graph, as well. Furthermore, the rather obvious fact that a graph circuit in a
cycle graph covers all its vertices and edges is proven and constitutes the longest
proof in this work.

1. PRELIMINARIES

One can verify that there exists a graph which is trivial, non-directed-multi,
and loopfull.

Let G be a non acyclic graph. One can verify that there exists a subgraph
of G which is non acyclic.

Now we state the propositions:
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(1) Let us consider a graph Gy, a subgraph G5 of Gy, a vertex v of G1, and

a vertex vy of G9. Suppose v1 = vo. Then
(i) va.inDegree() C vy.inDegree(), and
(ii) wva.outDegree() C v;.outDegree(), and

(iii) vo.degree() C vy.degree().

(2) Let us consider a graph G, and a trail T" of G. Then T.length() =
T.edges().

Let G be a non trivial, connected graph. One can verify that every vertex of
G is non isolated.

Let G be a non acyclic graph. One can verify that there exists a walk of G
which is cycle-like.

Now we state the propositions:

(3) Let us consider a non trivial, tree-like graph 7', a vertex v of T, and
a subgraph F' of T' with vertex v removed. Then F.numComponents() =
v.degree().

PROOF: Define H(vertex of F') = F.reachableFrom($;). Consider 2’ being

a function from the vertices of F' into F.componentSet() such that for

every vertex w of F, h/(w) = H(w) from [6, Sch. 8]. O

(4) Let us consider a non trivial, finite, tree-like graph 7', a vertex v of T,
a subgraph F' of T with vertex v removed, and a component C' of F'. Then
there exists a vertex w of T" such that

(i) w is endvertex, and
(ii) w € the vertices of C.

(5) Let us consider a graph G, objects v, e, w, a vertex vy of Ga, a super-
graph G of G2 extended by v, w and e between them, and a vertex vy of
(1. Suppose v # v and v; # w and v; = vo. Then

(i) vy.edgesIn() = vg.edgesIn(), and
(ii) wvy.inDegree() = vq.inDegree(), and

(iii) v1.edgesOut() = va.edgesOut(), and
(iv) vi.outDegree() = vo.outDegree(), and
(v) v1.edgesInOut() = vy.edgesInOut(), and
(vi) vy.degree() = vo.degree().

(6) Let us consider a graph Ga, a vertex v of Gy, objects e, w, a supergraph

G1 of G5 extended by v, w and e between them, and a vertex v; of Gj.
Suppose e ¢ the edges of G2 and w ¢ the vertices of G5 and v; = v. Then

(i) vi.edgesIn() = v.edgesIn(), and
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(ii) v1.inDegree() = v.inDegree(), and

(iii) v1.edgesOut() = v.edgesOut() U {e}, and

(iv) vi.outDegree() = v.outDegree() + 1, and

(v) vi.edgesInOut() = v.edgesInOut() U {e}, and
(vi) vy.degree() = v.degree() + 1.

(7) Let us consider a graph Go, objects v, e, a vertex w of G, a supergraph
G of G2 extended by v, w and e between them, and a vertex w; of Gjy.
Suppose e ¢ the edges of G2 and v ¢ the vertices of G and w; = w. Then

(i) w;.edgesIn() = w.edgesIn() U {e}, and
) wi.inDegree() = w.inDegree() + 1, and
) wi.edgesOut() = w.edgesOut(), and

(iv) w;.outDegree() = w.outDegree(), and
) wi.edgesInOut() = w.edgesInOut() U {e}, and
(vi) wi.degree() = w.degree() + 1.

(8) Let us consider a graph G, and a component C of G. Then C.endVertices() C
G.endVertices().

Let G be an edgeless graph. Let us note that G.endVertices() is empty.

2. PATH GRAPHS

Let G be a graph. We say that G is path-like if and only if
(Def. 1) @ is tree-like and for every vertex v of G, v.degree() C 2.

Observe that every graph which is path-like is also tree-like, locally-finite,
and with max degree and every graph which is trivial and edgeless is also path-
like and every graph which is trivial and path-like is also edgeless and there
exists a graph which is finite and path-like.

Now we state the proposition:

(9) Let us consider a locally-finite graph G. Then G is path-like if and only
if G is tree-like and for every vertex v of G, v.degree() < 2.
Let F' be a graph-yielding function. We say that F' is path-like if and only if
(Def. 2) for every object x such that € dom F' there exists a graph G such that
F(z) = G and G is path-like.

Let P be a path-like graph. Observe that (P) is path-like and N — P is
path-like.

Let F' be a non empty, graph-yielding function. Let us note that F' is path-
like if and only if the condition (Def. 3) is satisfied.
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(Def. 3) for every element x of dom F', F(x) is path-like.

Let S be a graph sequence. Observe that S is path-like if and only if the
condition (Def. 4) is satisfied.

(Def. 4) for every natural number n, S(n) is path-like.

One can verify that every graph-yielding function which is empty is also
path-like and every graph-yielding function which is trivial and edgeless is also
path-like and every graph-yielding function which is path-like is also tree-like
and there exists a graph sequence which is non empty and path-like.

Let F' be a path-like, non empty, graph-yielding function and x be an ele-
ment of dom F'. One can check that F(z) is path-like.

Let S be a path-like graph sequence and n be a natural number. One can
check that S(n) is path-like.

Let p be a path-like, graph-yielding finite sequence. Note that p[n is path-like
and p), is path-like.

Let m be a natural number. Let us observe that smid(p, m,n) is path-like
and (p(m),...,p(n)) is path-like.

Let p, ¢ be path-like, graph-yielding finite sequences. Note that p ™ ¢ is
path-like and p ~~ ¢ is path-like.

Let P;, P, be path-like graphs. One can verify that (P;, P;) is path-like.

Let P3 be a path-like graph. One can check that (Py, P, P3) is path-like.

Let S be a graph-membered set. We say that S is path-like if and only if

(Def. 5) for every graph G such that G € S holds G is path-like.

Observe that every graph-membered set which is empty is also path-like and
every graph-membered set which is path-like is also tree-like.

Let P; be a path-like graph. Let us note that {P;} is path-like.

Let P, be a path-like graph. Let us observe that { P, P»} is path-like.

Let F' be a path-like, graph-yielding function. One can verify that rng F' is
path-like.

Let X be a path-like, graph-membered set. Note that every subset of X is
path-like.

Let Y be a set. Observe that X NY is path-like and X \ Y is path-like.

Let X, Y be path-like, graph-membered sets. One can verify that X UY is
path-like and X =Y is path-like and there exists a graph-membered set which
is non empty and path-like.

Let S be a non empty, path-like, graph-membered set. Let us observe that
every element of S is path-like.

Now we state the propositions:

(10) Let us consider a path-like graph P, a vertex ve of Py, objects e, ws, and
a supergraph P; of P5 extended by vs, we and e between them. If vy is en-
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dvertex or P; is trivial, then P; is path-like. The theorem is a consequence
of (6) and (5).

(11) Let us consider a path-like graph P,, objects vg, €, a vertex wy of P, and
a supergraph P; of P> extended by vo, wo and e between them. If ws is en-
dvertex or P is trivial, then Pj is path-like. The theorem is a consequence
of (7) and (5).

Let n be a natural number. One can check that there exists a graph which
is (n + 1)-vertex, n-edge, and path-like.

Let n be a non zero natural number. Let us note that there exists a graph
which is n-vertex, (n —'1)-edge, and path-like and there exists a graph which is
(n + 1)-vertex, n-edge, path-like, and non trivial.

Let P be a path-like graph. Let us observe that every subgraph of P which
is connected is also path-like.

Now we state the propositions:

(12) Let us consider a graph Gg, objects vi, €, ve, and a supergraph G of
G extended by v, v9 and e between them. If GG is path-like, then Gs is
path-like.

(13) Let us consider a path-like graph P;, a vertex v of Pj, and a subgraph
P, of P; with vertex v removed. If v is endvertex or P; is trivial, then P»
is path-like.

(14) Let us consider a finite, path-like graph G, and a connected subgraph
H of G. Then there exists a non empty, finite, path-like, graph-yielding
finite sequence p such that

(i) p(1) = H, and
(ii) p(lenp) = G, and
(iii) lenp = G.order() — H.order() + 1, and
)

(iv) for every element n of domp such that n < lenp — 1 there exist
vertices vy, vy of G and there exists an object e such that p(n + 1)
is a supergraph of p(n) extended by vy, vy and e between them and
e € (the edges of G) \ (the edges of p(n)) and (v; € the vertices of
p(n) and ve ¢ the vertices of p(n) and if p(n) is not trivial, then v, €
p(n).endVertices() or v; ¢ the vertices of p(n) and vy € the vertices
of p(n) and if p(n) is not trivial, then vy € p(n).endVertices()).

PROOF: Define P[natural number] = for every finite, path-like graph G for
every connected subgraph H of G such that $; = G.order() — H.order()
there exists a non empty, finite, path-like, graph-yielding finite sequence p
such that p(1) ~ H and p(lenp) = G and lenp = G.order() — H.order()+1
and for every element n of dom p such that n < len p—1 there exist vertices
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vy, v2 of G and there exists an object e such that p(n+ 1) is a supergraph
of p(n) extended by v1, v2 and e between them and e € (the edges of
G)\ (the edges of p(n)) and (v; € the vertices of p(n) and vy ¢ the vertices
of p(n) and if p(n) is not trivial, then v; € p(n).endVertices() or v; ¢
the vertices of p(n) and v2 € the vertices of p(n) and if p(n) is not trivial,
then ve € p(n).endVertices()). P[0] by [15, (117)], [11} (21)], [3, (40)], [17,
(25)]. For every natural number k such that P[k] holds P[k + 1] by [15]
(117), (26)], [11), (31)], [15, (48), (47), (107)]. For every natural number k,
Plk] from [2, Sch. 2]. O
Let us consider a finite, path-like graph G. Then there exists a non
empty, finite, path-like, graph-yielding finite sequence p such that
(i) p(1) is trivial and edgeless, and
(ii) p(lenp) = G, and
(iii) lenp = G.order(), and
(iv) for every element n of domp such that n < lenp — 1 there exist
vertices vy, v2 of G and there exists an object e such that p(n + 1)
is a supergraph of p(n) extended by v1, vy and e between them and
e € (the edges of G) \ (the edges of p(n)) and (v; € the vertices of
p(n) and if n > 2, then v; € p(n).endVertices() and va ¢ the vertices
of p(n) or vy ¢ the vertices of p(n) and ve € the vertices of p(n) and
if n > 2, then vy € p(n).endVertices()).

PROOF: Set H = the trivial subgraph of G. Consider p being a non empty,
finite, path-like, graph-yielding finite sequence such that p(1) ~ H and
p(lenp) = G and lenp = G.order() — H.order() + 1 and for every element n
of dom p such that n < lenp — 1 there exist vertices v1, v9 of G and there
exists an object e such that p(n + 1) is a supergraph of p(n) extended
by v1, v and e between them and e € (the edges of G) \ (the edges of
p(n)) and (v1 € the vertices of p(n) and vy ¢ the vertices of p(n) and if
p(n) is not trivial, then v; € p(n).endVertices() or vy ¢ the vertices of
p(n) and ve € the vertices of p(n) and if p(n) is not trivial, then vy €
p(n).endVertices()). Consider v1, v2 being vertices of G, e being an object
such that p(n+1) is a supergraph of p(n) extended by v1, v2 and e between
them and e € (the edges of G)\ (the edges of p(n)) and (v, € the vertices
of p(n) and v ¢ the vertices of p(n) and if p(n) is not trivial, then v; €
p(n).endVertices() or v; ¢ the vertices of p(n) and ve € the vertices of
p(n) and if p(n) is not trivial, then vy € p(n).endVertices()). If n > 2, then
p(n) is not trivial by [16, (3)], [I7, (25)], [10, (143), (144)]. O

Let us consider a non empty, graph-yielding finite sequence p. Suppose
p(1) is path-like and for every element n of domp such that n <lenp —1
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there exist objects vy, e, vo such that p(n + 1) is a supergraph of p(n)
extended by vy, vy and e between them and (p(n) is trivial or v; €
p(n).endVertices() or ve € p(n).endVertices()). Then p(lenp) is path-like.
PROOF: Define P[natural number] = if $; < lenp — 1, then p($; + 1)
is a path-like graph. For every natural number n such that P[n] holds
Pln + 1] by [17, (25)], [10, (56)], (10), (11). For every natural number n,
P[n] from [2, Sch. 2]. O

(17) Let us consider a non trivial, finite, path-like graph G. Then there exists
a non empty, finite, path-like, graph-yielding finite sequence p such that

(i) p(1) is 2-vertex and path-like, and
(ii) p(lenp) = G, and
(iii) lenp+ 1 = G.order(), and
)

(iv) for every element n of domp such that n < lenp — 1 there exist
vertices vy, vy of G and there exists an object e such that p(n + 1)
is a supergraph of p(n) extended by v1, vy and e between them and
e € (the edges of G)\ (the edges of p(n)) and (v; € p(n).endVertices()
and ve ¢ the vertices of p(n) or v; ¢ the vertices of p(n) and vy €
p(n).endVertices()).

The theorem is a consequence of (15), (10), and (11).

(18) Let us consider a non empty, graph-yielding finite sequence p. Suppose

p(1) is non trivial and path-like and for every element n of dom p such that
n < len p—1 there exist objects vy, e, vy such that p(n+1) is a supergraph of
p(n) extended by vy, v2 and e between them and (v; € p(n).endVertices()
or vy € p(n).endVertices()). Then p(lenp) is path-like.
PROOF: Define P[natural number] = if $; < lenp — 1, then p($; + 1)
is a path-like graph. For every natural number n such that P[n] holds
Pln + 1] by [17, (25)], [10, (56)], (10), (11). For every natural number n,
P[n] from [2, Sch. 2]. O

(19) Let us consider graphs G, G2, and a partial graph mapping F' from G
to Go. If F is isomorphism, then G is path-like iff G5 is path-like.

(20) Let us consider graphs G1, Ga. If G1 ~ G2, then if G is path-like, then
G is path-like.

(21) Let us consider a graph Gi, a set E, and a graph Ga given by reversing
directions of the edges F of G1. Then G is path-like if and only if Gs is
path-like. The theorem is a consequence of (19).

Let P, be a 2-vertex, path-like graph. One can verify that every vertex of
Py is endvertex.
Now we state the propositions:

171
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Let us consider a finite, non trivial, path-like graph P. Then 6(P) = 1.
PRrROOF: Consider p being a non empty, finite, path-like, graph-yielding
finite sequence such that p(1) is 2-vertex and path-like and p(lenp) = P
and lenp + 1 = P.order() and for every element n of domp such that
n < lenp — 1 there exist vertices v1, vo of P and there exists an object
e such that p(n 4+ 1) is a supergraph of p(n) extended by v, vo and e
between them and e € (the edges of P) \ (the edges of p(n)) and (v; €
p(n).endVertices() and vy ¢ the vertices of p(n) or v; ¢ the vertices of
p(n) and vy € p(n).endVertices()). Define P[natural number] = for every
graph H such that H = p($; + 1) and $; < lenp—1 holds 6(H) = 1. P]0]
by [15, (174)], [12} (36)]. For every natural number k such that P[k] holds
Plk + 1] by [I7, (25)], [10, (141)], [15, (174)], [12, (35)]. For every natural
number k, P[k] from [2, Sch. 2]. O

Let us consider a finite, path-like graph P. Then there exists a vertex-
distinct path Py of P such that

(i) Py.vertices() = the vertices of P, and
(ii) Pp.edges() = the edges of P, and

(iii) P.endVertices() = { Py first(), Pp.last()} iff P is not trivial, and

(iv) Py is trivial iff P is trivial, and

)
)
)
(v) Py is closed iff P is trivial, and

(vi) Py is minimum length.

PROOF: Define P[natural number| = for every finite, path-like graph P
such that P.order() = $; + 1 there exists a vertex-distinct path Py of P
such that Py.vertices() = the vertices of P and Py.edges() = the edges
of P and (P.endVertices() = {Py.first(), Pp.last()} iff P is not trivial)
and (P is closed iff P is trivial) and Py is minimum length. P[0] by [15]
(26), (22)], [13, (90)]. For every natural number n such that P[n] holds
P[n + 1] by [15, (26)], (22), [15, (174)], (13). For every natural number
n, P[n] from [2, Sch. 2]. Consider n being a natural number such that
P.order() = n + 1. Consider Py being a vertex-distinct path of P such
that Pp.vertices() = the vertices of P and Py.edges() = the edges of P
and (P.endVertices() = {Fp.first(), Pp.last()} iff P is not trivial) and (P
is closed iff P is trivial) and Py is minimum length. OJ

Let us consider a non zero natural number n, and n-vertex, path-like
graphs P;, P,. Then P, is Pj-isomorphic. The theorem is a consequence
of (23).

Let us consider a natural number n, and n-edge, path-like graphs P,
P,. Then P» is Pj-isomorphic. The theorem is a consequence of (24).
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Let us consider a non trivial, path-like graph P. Then

(i) P.order() =2 iff A(P) =1, and

(ii) P.order() # 2 iff A(P) = 2.

Let us consider a non trivial, path-like graph P, and a vertex v of P. If
v is not endvertex, then v.degree() = 2.

Let us consider a finite, non trivial, path-like graph P. Now we state the
propositions:

(28)

(29)

There exist vertices vy, vo of P such that
(i) v1 # vo, and
(ii) P.endVertices() = {v1,va}.

The theorem is a consequence of (23).

P.endVertices() = 2. The theorem is a consequence of (28).

Now we state the proposition:

(30)

Let us consider a finite, non trivial graph G. Suppose G is acyclic and
0(G) =1 and G.endVertices() = 2. Then G is path-like.
PROOF: Set F' = the subgraph of G with vertex v removed. 3 C F.numComponents|()
Consider c1, c2, c3 being objects such that ¢, ¢ € F.componentSet() and
c3 € F.componentSet() and ¢; # ¢ and ¢ # c3 and co # c3. Consider v;
being a vertex of F' such that ¢; = F.reachableFrom(v;). Consider vy be-
ing a vertex of F' such that ¢y = F.reachableFrom(vy). Consider vz being
a vertex of F such that c3 = F.reachableFrom(vs). Set C; = the subgraph
of F' induced by F'.reachableFrom(v;). Set Cy = the subgraph of F
induced by F'.reachableFrom(vsg). Set C3 = the subgraph of F' induced
by F'.reachableFrom(vs). Consider w; being a vertex of G such that w;
is endvertex and w; € the vertices of C. Consider wy being a vertex of

G such that ws is endvertex and wg € the vertices of Cy. Consider ws
being a vertex of G such that ws is endvertex and ws € the vertices of
Cg. w1 75 w2 by [14, (12)]. w2 75 w3 by [14, (12)]. w3 75 w1 by [14, (12)]. g

One can verify that every graph which is 2-vertex, simple, and connected is

also path-like and every graph which is 2-vertex and path-like is also complete.

Let n be a natural number. Let us observe that every graph which is (n+ 3)-
vertex and path-like is also non complete.

3. CYCLE GRAPHS

Let G be a graph. We say that G is cycle-like if and only if

(Def. 6)

G is connected, non acyclic, and 2-regular.
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One can verify that there exists a graph which is non trivial and cycle-like
and every graph which is connected, non acyclic, and 2-regular is also cycle-like
and every graph which is cycle-like is also connected, non acyclic, and 2-regular.

Now we state the proposition:

(31) Let us consider a cycle-like graph G, and a circuit-like walk C' of G. Then
(i) C.vertices() = the vertices of G, and
(ii) C.edges() = the edges of G.

Note that every graph which is cycle-like is also non edgeless, finite, and
with max degree.
Now we state the proposition:

(32) Let us consider a cycle-like graph G. Then G.order() = G.size().

One can check that every graph which is trivial, non-directed-multi, and
loopfull is also cycle-like and every graph which is trivial and cycle-like is also
non-multi and loopfull and every graph which is non trivial and cycle-like is also
loopless and there exists a graph which is trivial and cycle-like.

Let F' be a graph-yielding function. We say that F' is cycle-like if and only
if

(Def. 7) for every object x such that x € dom F' there exists a graph G such that
F(z) = G and G is cycle-like.

Let C be a cycle-like graph. Observe that (C) is cycle-like and N — C' is
cycle-like.

Let F' be a non empty, graph-yielding function. Let us note that F' is cycle-
like if and only if the condition (Def. 8) is satisfied.

(Def. 8) for every element x of dom F', F(x) is cycle-like.

Let S be a graph sequence. Observe that S is cycle-like if and only if the
condition (Def. 9) is satisfied.

(Def. 9) for every natural number n, S(n) is cycle-like.

One can verify that every graph-yielding function which is empty is also
cycle-like and every graph-yielding function which is trivial, non-directed-multi,
and loopfull is also cycle-like and every graph-yielding function which is cycle-
like is also connected and there exists a graph sequence which is non empty and
cycle-like.

Let F' be a cycle-like, non empty, graph-yielding function and x be an ele-
ment of dom F'. Let us observe that F'(z) is cycle-like.

Let S be a cycle-like graph sequence and n be a natural number. Let us
observe that S(n) is cycle-like.

Let p be a cycle-like, graph-yielding finite sequence. One can verify that p[n
is cycle-like and p|, is cycle-like.
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Let m be a natural number. Let us note that smid(p, m,n) is cycle-like and
(p(m),...,p(n)) is cycle-like.

Let p, ¢ be cycle-like, graph-yielding finite sequences. One can verify that
p " q is cycle-like and p ~ q is cycle-like.

Let Cy, C3 be cycle-like graphs. Observe that (Cq, Cs) is cycle-like.

Let C5 be a cycle-like graph. Let us observe that (C, Ca, C3) is cycle-like.

Let S be a graph-membered set. We say that S is cycle-like if and only if

(Def. 10) for every graph G such that G € S holds G is cycle-like.

Note that every graph-membered set which is empty is also cycle-like and
every graph-membered set which is cycle-like is also connected.

Let C; be a cycle-like graph. One can check that {C4} is cycle-like.

Let Cy be a cycle-like graph. Let us note that {C7, Cs} is cycle-like.

Let F' be a cycle-like, graph-yielding function. Observe that rng F' is cycle-
like.

Let X be a cycle-like, graph-membered set. One can verify that every subset
of X is cycle-like.

Let Y be a set. Note that X NY is cycle-like and X \ Y is cycle-like.

Let X, Y be cycle-like, graph-membered sets. Observe that X UY is cycle-
like and X =Y is cycle-like and there exists a graph-membered set which is non
empty and cycle-like.

Let S be a non empty, cycle-like, graph-membered set. Let us note that
every element of S is cycle-like.

Now we state the propositions:

(33) Let us consider a trivial, edgeless graph G, a vertex v of G, and an ob-
ject e. Then every supergraph of G5 extended by e between vertices v and
v is cycle-like.

(34) Let us consider a finite, non trivial, path-like graph P, elements vy, vg
of P.endVertices(), an object e, and a supergraph C of P extended by e
between vertices v; and vy. Suppose v1 # vy and e ¢ the edges of P. Then
C'is cycle-like. The theorem is a consequence of (29), (27), and (23).

(35) Let us consider a cycle-like graph C, and an edge e of C. Then every
subgraph of C' with edge e removed is finite and path-like. The theorem
is a consequence of (31).

Let C be a cycle-like graph and e be an edge of C'. One can check that every
subgraph of C' with edge e removed is finite and path-like.
Now we state the propositions:

(36) Let us consider a trivial, cycle-like graph Gp, a vertex v of G, and
an edge e of (G1. Then there exists a trivial, edgeless graph G such that
(G1 is a supergraph of G9 extended by e between vertices v and v.
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(37) Let us consider a non trivial, cycle-like graph C, vertices v1, vy of C,
and an edge e of C'. Suppose e joins v1 to v9 in C. Then there exists a non
trivial, finite, path-like graph P such that

(i) e ¢ the edges of P, and

(ii) C is a supergraph of P extended by e between vertices v; and ve,
and

(iii) P.endVertices() = {v1,v2}.
The theorem is a consequence of (28).

(38) Let us consider a cycle-like graph C. Then C.order() = 2 if and only if

C' is not non-multi.
PRroor: Consider eq, es, v1, v being objects such that e joins v and v9 in
C and ey joins v and vy in C and ej # eg. Set W1 = C.walkOf (v, e1,v3).
Set Wy = Wi.addEdge(ez2). v1 # v by [15 (16), (57)], [1, (11)], [T, (32)].
The vertices of C' = Wa.vertices(). O
Let n be a natural number. Observe that every graph which is n-vertex and
cycle-like is also n-edge and every graph which is n-edge and cycle-like is also
n-vertex and there exists a graph which is (n + 1)-vertex, (n + 1)-edge, and
cycle-like and every graph which is (n + 2)-vertex and cycle-like is also loopless
and every graph which is (n + 3)-vertex and cycle-like is also simple and there
exists a graph which is (n + 2)-vertex, (n + 2)-edge, loopless, and cycle-like and
there exists a graph which is (n+ 3)-vertex, (n+ 3)-edge, simple, and cycle-like.
Let n be a non zero natural number. Let us observe that there exists a graph
which is n-vertex, n-edge, and cycle-like and every graph which is (n+ 1)-vertex
and cycle-like is also loopless and every graph which is (n+ 2)-vertex and cycle-
like is also simple and there exists a graph which is (n + 1)-vertex, (n+ 1)-edge,
cycle-like, and loopless and there exists a graph which is (n + 2)-vertex, (n + 2)-
edge, cycle-like, and simple.
Now we state the propositions:

(39) Let us consider a cycle-like graph C1, and a non acyclic subgraph Cy of
Cy. Then Cy = Cj. The theorem is a consequence of (31).

(40) Let us consider graphs G1, G, and a partial graph mapping F' from G;
to Go. Suppose F' is isomorphism. Then G is cycle-like if and only if Go
is cycle-like.

(41) Let us consider graphs Gp, G3. Suppose G1 ~ Go. If G is cycle-like,
then Gy is cycle-like. The theorem is a consequence of (40).

(42) Let us consider a graph G1, a set E, and a graph G given by reversing
directions of the edges E of G;. Then G; is cycle-like if and only if G is
cycle-like. The theorem is a consequence of (40).
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(43) Let us consider a non zero natural number n, and n-vertex, cycle-like
graphs C1, C5. Then Cy is Ci-isomorphic. The theorem is a consequence
of (37), (24), and (29).

(44) Let us consider a non zero natural number n, and n-edge, cycle-like
graphs C1, Ca. Then Cy is C-isomorphic.

(45) Let us consider a finite, non trivial, path-like graph P, an object v,
and a supergraph C of P extended by vertex v and edges between v and
P.endVertices() of P. Suppose v ¢ the vertices of P. Then C is simple and

cycle-like.
PRrROOF: P.endVertices() # 0. Consider w;, wy being vertices of P such
that w; # wy and P.endVertices() = {wi,wz}. There exists a com-

ponent G3 of P and there exist vertices wi, we of G3 such that wi,
wy € P.endVertices() and wy # we by [14, (30)]. O

(46) Let us consider a non trivial, cycle-like graph C, and a vertex v of C.
Then every subgraph of C' with vertex v removed is finite and path-like.
The theorem is a consequence of (31).

(47) Let us consider a simple, cycle-like graph C, and a vertex v of C. Then
there exists a non trivial, path-like graph P such that

(i) v ¢ the vertices of P, and

(ii) C is a supergraph of P extended by vertex v and edges between v
and P.endVertices() of P.

PROOF: Set P = the subgraph of C with vertex v removed. P is path-like.
P is not trivial by [15] (26), (48)]. O

One can verify that every graph which is 3-vertex, simple, and complete is
also cycle-like and every graph which is 3-vertex and cycle-like is also simple,
complete, and chordal.

Let n be a natural number. Let us observe that every graph which is (n+4)-
vertex and cycle-like is also non chordal and non complete.

Let n be a non zero natural number. One can check that every graph which
is (n + 3)-vertex and cycle-like is also non chordal and non complete and there
exists a graph which is cycle-like, non complete, and non chordal.
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