

Formal Proof of Transcendence of the Number *e***. Part II**

Yasushige Watase Suginami-ku Matsunoki 6, 3-21 Tokyo Japan

Summary. This article is continuation of [?] and we formalize the main part of Hurwitz's proof [\[10\]](#page-9-0) using the Mizar formalism [\[3\]](#page-8-0), [\[4\]](#page-9-1). For related proof developments in Coq or HOL Light, see [**?**] and [\[5\]](#page-9-2), respectively. The following is a summary of the formalized proof:

In the first chapter we define a polynomial f_0 over $\mathbb Z$ and observe properties of *f*₀. It is defined by $f_0(x) = x^{p-1}(x-1)^p(x-2)^p \cdots (x-m)^p$, where *p* is an odd prime number and $m + 1$ is the number of component of the products. The f_0 is defined as **E_TRANS2:def** 5. The component $(x - j)_{(j=0,1,...,m)}$ are represented by $\tau(i)$ in the article and obtain:

$$
f_0 = \tau(0)^{p-1} \prod_{j=1}^m \tau(j)^p
$$

The second chapter is about properties of f_0 and $F(f_0)$ where F is introduced [?], the transformation $F(f) = f + f' + f'' + \cdots + f^{(deg f)}$.

We observe k^{th} differentiation of the f_0 and evaluate by a number *j*. The following number-theoretical properties are obtained:

1. $\prod_{j=1}^{m} \tau(j)^p(0) = (((-1)|^m) * (m!))|^p$ (E_TRANS2:17),

2.
$$
f_0^{(k)}(0) = 0
$$
 if $0 \le k \le p - 2$ (E_{TRANS2:18}),

- 3. $f_0^{(k)}(0) = k! (\prod_{j=1}^m \tau(j))(k p + 1)$ if $p \leq k$ (E_TRANS2 : 24),
- 4. $f_0^{(k)}(j) = 0$ if $k \leq p, 1 \leq j \leq m$ (E_TRANS2 : 26),
- 5. $f_0^{(k)} = \tau(j)u + p!v \ (\exists u, v \in \mathbb{Z}[X]) \text{ if } p \leq k, 1 \leq j \leq m \ (\text{E_TRANS2 : 30}),$
- 6. $f_0^{(k)}(j) \in (p!)$ if $p \le k, 1 \le j \le m$ (E_TRANS2 : 32).

We denote **F** for $F(f_0)$ for simplicity.

- 7. **F**(0) = $(p-1)!(((-1)|^m) * (m!))]^p + p!u \ (\exists u \in \mathbb{Z}[X])$ (E_TRANS2 : 33),
- 8. $\mathbf{F}(i) \in (p!)$ if $1 \leq i \leq m$ (E_TRANS2 : 34),

c 2024 The Author(s) / AMU (Association of Mizar Users) 121 under [CC BY-SA 3.0 license](http://creativecommons.org/licenses/by-sa/3.0/)

We then obtain an equation system shown as below: where C_i stands for coefficient of the i^{ith} coefficient of g_0 . This is based on the equation system (4) stated in Hurwitz's proof [\[10\]](#page-9-0).

$$
\begin{cases}\n\frac{1}{(p-1)!} C_0 \mathbf{F}(0) - \frac{1}{(p-1)!} C_0 e^0 \mathbf{F}(0) = \frac{1}{(p-1)!} C_0 \varepsilon_0 \\
\frac{1}{(p-1)!} C_1 \mathbf{F}(1) - \frac{1}{(p-1)!} C_1 e^1 \mathbf{F}(0) = \frac{1}{(p-1)!} C_1 \varepsilon_1 \\
\vdots \qquad \vdots \qquad \vdots \\
\frac{1}{(p-1)!} C_m \mathbf{F}(m) - \frac{1}{(p-1)!} C_m e^m \mathbf{F}(0) = \frac{1}{(p-1)!} C_m \varepsilon_m\n\end{cases}
$$

where each equation is a product of i^{th} coefficient of g_0 and $\mathbf{F}(i) - e^x \mathbf{F}(i)$ (= $-i e^{(i-\vartheta)i} f_0(\vartheta i)$ which is from the result of the mean value theorem to $e^x \mathbf{F}(x)$. In actual coding the sequence $C_m \mathbf{F}(m)$ and $(p-1)! C_m e^m \mathbf{F}(0)$ are defined as delta₋₁ and delta₋₂ respectively.

We have new equation by adding each term of the equation system vertically:

$$
\frac{1}{(p-1)!} \sum_{i=1}^{m} C_i \mathbf{F}(i) - \frac{1}{(p-1)!} \sum_{i=1}^{m} C_i e^i \mathbf{F}(0) = \frac{1}{(p-1)!} \sum_{i=1}^{m} C_i \varepsilon_i
$$

One can verify and formalize that the left hand side is not divided by p , because the first term of $p|_{\overline{(p-1)!}}\Sigma C_i \mathbf{F}(i)$ and $p \nmid \frac{1}{(p-1)!}\Sigma e^i C_i \mathbf{F}(0)$. The right-hand side is a member of $\mathbb Z$ and bounded by $1/2$ by choosing sufficiently large p, this means it is 0. This contradicts the left-hand side nature. Therefore *e* is transcendental number.

MSC: [11J81](http://zbmath.org/classification/?q=cc:11J81) [68V20](http://zbmath.org/classification/?q=cc:68V20)

Keywords: transcendental number; algebraic number; Hurwitz

MML identifier: E [TRANS2](http://fm.mizar.org/miz/e_trans2.miz), version: [8.1.14 5.83.1471](http://ftp.mizar.org/)

1. Preliminaries

From now on *R* denotes an integral domain, *p* denotes an odd, prime natural number, and *m* denotes a positive natural number.

Now we state the propositions:

(1) Let us consider a natural number *i*, and an element *r* of \mathbb{R}_F . Then $\sum (i \mapsto$ $r) = i \cdot r$.

PROOF: Define $\mathcal{P}[\text{natural number}] \equiv \sum(\$_1 \mapsto r) = \$_1 \cdot r$. For every natural number *i* such that $P[i]$ holds $P[i + 1]$ by [\[6,](#page-9-3) (60)], [\[24,](#page-9-4) (71)], [\[18,](#page-9-5) (13), (15)]. For every natural number *i*, $\mathcal{P}[i]$ from [\[1,](#page-8-1) Sch. 2]. \Box

(2) Let us consider sequences p_1 , q_1 of \mathbb{Z}^R . Then $(p_1 * q_1)(0) = p_1(0) \cdot q_1(0)$.

2. On the Ring of Polynomials

Now we state the propositions:

- (3) Let us consider an element f of the carrier of Polynom-Ring \mathbb{Z}^R , and a natural number *n*. Then $^{\circledR}f^{n} = (\,^{\circledR}f)^{n}$. PROOF: Define $\mathcal{P}[\text{natural number}] \equiv \mathcal{Q}f^{s_1} = (\mathcal{Q}f)^{s_1}$. $\mathcal{P}[0]$ by [\[18,](#page-9-5) (8)]. For every natural number *k* such that $P[k]$ holds $P[k+1]$ by [\[18,](#page-9-5) (10), (8)], [? , (27). For every natural number *k*, $\mathcal{P}[k]$ from [\[1,](#page-8-1) Sch. 2]. \Box
- (4) Let us consider an element *f* of the carrier of Polynom-Ring *R*, and a natural number *n*. Then $\widehat{} f^n = (\widehat{} f)^n$. PROOF: Define $\mathcal{P}[\text{natural number}] \equiv \bigcap f^{s_1} = (\bigcap f)^{s_1}$. For every natural number *k* such that $P[k]$ holds $P[k+1]$ by [\[18,](#page-9-5) (10), (8)], [\[14,](#page-9-6) (19)]. For every natural number *k*, $P[k]$ from [\[1,](#page-8-1) Sch. 2]. \Box
- (5) Let us consider a natural number *n*, and an element *f* of the carrier of Polynom-Ring \mathbb{Z}^R . Then $n \cdot f = n(\in \mathbb{Z}^R) \cdot f$. PROOF: Define $\mathcal{P}[\text{natural number}] \equiv \$_1 \cdot f = \$_1(\in \mathbb{Z}^R) \cdot f$. For every natural number *k* such that $\mathcal{P}[k]$ holds $\mathcal{P}[k+1]$ by [\[9,](#page-9-7) (9), (7)], [\[18,](#page-9-5) (13), (15)]. For every natural number *k*, $\mathcal{P}[k]$ from [\[1,](#page-8-1) Sch. 2]. \Box
- (6) Let us consider an element *M* of \mathbb{R}_F , and a finite sequence *F* of elements of \mathbb{R}_F . Suppose for every natural number *i* such that $i \in \text{dom } F$ holds $|F(i)| \leq M$. Then $|\prod F| \leq M^{\text{len } F}$.

PROOF: Define $\mathcal{P}[\text{natural number}] \equiv \text{for every finite sequence } F \text{ of elements } F$ ments of \mathbb{R}_F such that len $F = \$_1$ and for every natural number *i* such that $i \in \text{dom } F$ holds $|F(i)| \leq M$ holds $|\prod F| \leq M^{\text{len } F}$. $\mathcal{P}[0]$ by [\[24,](#page-9-4) (80)], [\[18,](#page-9-5) (8)]. For every natural number *n* such that $\mathcal{P}[n]$ holds $\mathcal{P}[n+1]$ by [\[7,](#page-9-8) (29) , $[1, (11)]$ $[1, (11)]$, $[2, (1)]$ $[2, (1)]$, $[24, (78)]$ $[24, (78)]$. For every natural number *n*, $\mathcal{P}[n]$ from $[1, Sch. 2]$ $[1, Sch. 2]$. \square

Let *p* be a polynomial over \mathbb{Z}^R . Observe that the functor $|p|$ yields a sequence of \mathbb{Z}^R and is defined by

- (Def. 1) for every natural number *n*, $it(n) = |p(n)|$. Note that $|p|$ is finite-Support as a (the carrier of \mathbb{Z}^R)-valued function. In the sequel g denotes a non zero polynomial over \mathbb{Z}^R . Let us consider *q*. One can verify that rng |*q*| is finite. Now we state the proposition:
	- (7) Let us consider a non zero polynomial *g* over \mathbb{Z}^R . Then there exists a natural number *M* such that for every natural number $i, |g(i)| \leq M$. PROOF: rng $|g| \subseteq \mathbb{N}$. Reconsider $S = \text{rng } |g|$ as a finite, non empty, natural-membered set. Reconsider $M = \max S$ as a natural number. For every natural number *i*, $|g(i)| \leq M$ by [\[8,](#page-9-9) (3)]. \Box

3. The Polynomial *f*⁰ and Its Properties

Let *i* be a natural number. The functor $\tau(i)$ yielding an element of the carrier of Polynom-Ring \mathbb{Z}^R is defined by the term

 $(\text{Def. 2}) \quad \langle (-i) (\in \mathbb{Z}^{\mathcal{R}}), 1_{\mathbb{Z}^{\mathcal{R}}}\rangle.$

Let p be a non zero natural number and m be a natural number. The functor $\mathbf{x}.\mathbf(m,p)$ yielding a finite sequence of elements of the carrier of Polynom-Ring $\mathbb{Z}^{\mathbf{R}}$ is defined by

(Def. 3) len $it = m$ and for every natural number *i* such that $i \in \text{dom } it$ holds $it(i) = (\tau(i))^p$.

Let *p* be an odd, prime natural number and *m* be a positive natural number. The functor $\left| \frac{\mathbf{f}-\mathbf{0}(m,p)}{\mathbf{f}-\mathbf{0}(m,p)} \right|$ yielding a finite sequence of elements of the carrier of Polynom-Ring \mathbb{Z}^R is defined by the term

(Def. 4)
$$
\mathbf{x}.(m, p) \sim \langle (\tau(0))^{p-1} \rangle
$$
.

The functor $f(0(m, p))$ yielding an element of the carrier of Polynom-Ring \mathbb{Z}^R is defined by the term

$$
(Def. 5) \quad \prod \text{ff-0}(m, p).
$$

Now we state the propositions:

- (8) Let us consider natural numbers *i*, *n*. Then len $\bigcap (\tau(i))^n = n + 1$.
- (9) Let us consider elements f, g of the carrier of Polynom-Ring \mathbb{Z}^R . Suppose $(\text{len}\bigtriangleup f)\cdot(\text{len}\bigtriangleup g)\neq 0.$ Then $\text{len}\bigtriangleup f\cdot g=\text{len}\bigtriangleup f+\text{len}\bigtriangleup g-1.$
- (10) Let us consider a non zero natural number *k*, and an odd, prime natural number *p*. Then
	- (i) $\mathbf{x} \cdot (k, p) \cap \langle (\tau(k+1))^p \rangle = \mathbf{x} \cdot (k+1, p)$, and
	- (ii) $\prod x.(k+1, p) = (\prod x.(k, p)) \cdot (\tau(k+1))^p$.

PROOF: $x.(k, p) \hat{ } ((\tau(k+1))^p) = x.(k+1, p)$ by [\[6,](#page-9-3) (16)], [\[2,](#page-8-2) (9)], [\[1,](#page-8-1) (19)], $[2, (5), (3)]$ $[2, (5), (3)]$. \square

Let us consider an odd, prime natural number p and a positive natural number *m*. Now we state the propositions:

 (11) len $\cap \prod x.(m, p) = m \cdot p + 1.$

PROOF: Define $\mathcal{P}[\text{non zero natural number}] \equiv \text{len} \cap \prod x.(\$_1, p) = \$_1 \cdot p + 1.$ $\mathcal{P}[1]$ by [\[2,](#page-8-2) (40)], [\[22,](#page-9-10) (11)], (8). For every non zero natural number *k* such that $P[k]$ holds $P[k+1]$. For every non zero natural number $k, P[k]$ from [\[1,](#page-8-1) Sch. 10]. \square

 (12) len \curvearrowleft f-0(*m, p*) = *m · p* + *p*. The theorem is a consequence of (11), (8), and (9).

Now we state the propositions:

- (13) Let us consider a natural number *i*. Then $(Der1(\mathbb{Z}^R))(\tau(i)) = 1_{\text{Polynom-Ring } \mathbb{Z}^R}$.
- (14) Let us consider an element f of the carrier of Polynom-Ring \mathbb{Z}^R , and a natural number *i*. Then

(i)
$$
(\tau(0) * f)(i + 1) = f(i)
$$
, and

(ii)
$$
(\tau(0) * f)(0) = 0_{\mathbb{Z}^R}
$$
.

PROOF: For every natural number *i*, $(\tau(0) * f)(i + 1) = f(i)$ and $(\tau(0) * f)(i + 1) = f(i)$ $f(0) = 0_{\mathbb{Z}^R}$ by [\[14,](#page-9-6) (16)], [\[19,](#page-9-11) (12)], [\[23,](#page-9-12) (31)]. \Box

From now on f denotes an element of the carrier of Polynom-Ring \mathbb{Z}^R . Now we state the propositions:

- (15) Let us consider an odd, prime natural number *p*, and a positive natural number *m*. Then
	- (i) len x $(m, p) = m$, and
	- (ii) len ff-0(m, p) = $m + 1$, and
	- (iii) $(ff-0(m, p))(len x.(m, p) + 1) = (\tau(0))^{p-1}.$
- (16) Let us consider an odd, prime natural number *p*, a positive natural number *m*, and a natural number *k*. Suppose $0 \le k \le p-1$. Let us consider natural numbers *i*, *j*. Suppose $i \in \text{Seg}(k + 1)$. Then $\tau(j)$ $(\text{LBZ}(\text{Der}1(\mathbb{Z}^{\text{R}}), k, \prod(\text{ff-0}(m, p))_{\mid j}, (\tau(j))^p))_{/i}.$ PROOF: Set $D = \text{Der}1(\mathbb{Z}^R)$. For every natural numbers *i*, *j* such that $i \in \text{Seg}(k+1) \text{ holds } \tau(j) \mid (\text{LBZ}(D, k, \prod(\text{ff-0}(m, p))_{\mid j}, (\tau(j))^p))_{\mid i} \text{ by (13)},$ $[15, (19)], [18, (8)], [2, (1)]. \square$ $[15, (19)], [18, (8)], [2, (1)]. \square$
- (17) Let us consider an odd, prime natural number *p*, and a positive natural number *m*. Then $(\bigcap \mathbb{I} x.(m, p))(0) = ((-1)^m \cdot (m!))^p$. PROOF: Define $\mathcal{P}[\text{natural number}] \equiv (\cap \prod x.(\$_1, p))(0) = ((-1)^{\$_1} \cdot (\$_1))$ ^p. $P[1]$ by $[2, (40)]$ $[2, (40)]$, $[22, (11)]$ $[22, (11)]$, $[13, (13)]$ $[13, (13)]$. For every non zero natural number *k* such that $P[k]$ holds $P[k+1]$ by (10), (2), [\[13,](#page-9-14) (7), (6), (15)]. For every non zero natural number *k*, $P[k]$ from [\[1,](#page-8-1) Sch. 10]. \Box

Let us consider an odd, prime natural number p, a positive natural number *m*, and a natural number *k*. Now we state the propositions:

- (18) If $0 \le k \le p 2$, then $(Der1(\mathbb{Z}^R))^{k}$ (f-0(*m*, *p*))(0) = 0_{\mathbb{Z}^R .}
- (19) Suppose $0 \le k \le p-2$. Then $eval(\bigcap (Der1(\mathbb{Z}^R))^{k}(f-0(m, p)), 0_{\mathbb{Z}^R}) = 0_{\mathbb{Z}^R}$. The theorem is a consequence of (18).

Now we state the propositions:

(20) Let us consider an odd, prime natural number p , and a positive natural number *m*. Then $eval(\bigcap (Der1(\mathbb{Z}^R))^{p-1}(f-0(m, p)), 0_{\mathbb{Z}^R}) = (p - 1)! \cdot$ $(((-1)^m \cdot (m!)^p (\in \mathbb{Z}^R))$. The theorem is a consequence of (17).

- (21) Let us consider an odd, prime natural number *p*, a positive natural number *m*, and a non zero natural number *k*. Suppose $p \leq k$. Then $\text{eval}(\bigtriangleup(\text{Der}1(\mathbb{Z}^{\text{R}}))^k(\text{f-0}(m, p)), 0_{\mathbb{Z}^{\text{R}}}) = k! \cdot (\bigtriangleup \text{r}(\text{X}, p))(k - (p - 1)).$
- (22) Let us consider a natural number *j*, and an element *u* of the carrier of Polynom-Ring \mathbb{Z}^R . Then $eval(\bigtriangleup(\tau(j)) \cdot u, j(\in \mathbb{Z}^R)) = 0_{\mathbb{Z}^R}$.
- (23) Let us consider an odd, prime natural number *p*, a positive natural number *m*, and natural numbers *k*, *j*. Suppose $k < p$ and $j \in \text{Seg } m$. Then $eval(\bigtriangleup(Der1(\mathbb{Z}^R))^{k}(f\text{-}0(m, p)), j(\in \mathbb{Z}^R)) = 0_{\mathbb{Z}^R}$. The theorem is a consequence of (16) and (22) .
- (24) Let us consider a natural number *i*. Then $(Der1(\mathbb{Z}^R))(\tau(i)) = 1_{\text{Polynom-Ring } \mathbb{Z}^R}$.
- (25) Let us consider an odd, prime natural number *p*, a positive natural number *m*, and natural numbers *j*, *k*. Suppose $j \in \text{Seg } m$ and $p \leq k$. Let us consider a natural number *i*. Suppose $i \in \text{Seg } p$. Then $\tau(j)$ $(\text{LBZ}(\text{Der}1(\mathbb{Z}^{\text{R}}), k, \prod(\text{ff-0}(m, p))_{\restriction j}, (\tau(j))^p))_{/i}.$ PROOF: For every natural number *i* such that $i \in \text{Seg } p$ holds $\tau(j)$ $(\text{LBZ}(\text{Der}1(\mathbb{Z}^{\text{R}}), k, \prod(\text{ff-0}(m, p))_{\mid j}, (\tau(j))^p))_{\mid i} \text{ by } [2, (1)], (24), [15, (19)],$ $(\text{LBZ}(\text{Der}1(\mathbb{Z}^{\text{R}}), k, \prod(\text{ff-0}(m, p))_{\mid j}, (\tau(j))^p))_{\mid i} \text{ by } [2, (1)], (24), [15, (19)],$ $(\text{LBZ}(\text{Der}1(\mathbb{Z}^{\text{R}}), k, \prod(\text{ff-0}(m, p))_{\mid j}, (\tau(j))^p))_{\mid i} \text{ by } [2, (1)], (24), [15, (19)],$ $(\text{LBZ}(\text{Der}1(\mathbb{Z}^{\text{R}}), k, \prod(\text{ff-0}(m, p))_{\mid j}, (\tau(j))^p))_{\mid i} \text{ by } [2, (1)], (24), [15, (19)],$ $(\text{LBZ}(\text{Der}1(\mathbb{Z}^{\text{R}}), k, \prod(\text{ff-0}(m, p))_{\mid j}, (\tau(j))^p))_{\mid i} \text{ by } [2, (1)], (24), [15, (19)],$ $[18, (8)]$ $[18, (8)]$. \square
- (26) Let us consider an odd, prime natural number *p*, a positive natural number *m*, natural numbers k , j , and a natural number i . Suppose $p+1 < i$ and $i \in \text{dom}(\text{LBZ}(\text{Der}1(\mathbb{Z}^{\text{R}}), k, \prod(\text{ff-0}(m, p))_{[j]}, (\tau(j))^p))$. Then $(\text{LBZ}(\text{Der}1(\mathbb{Z}^{\text{R}}), k, \prod(\text{ff-0}(m, p))_{[j]}, (\tau(j))^p))$. $0_{\rm Polynom-Ring\mathbb{Z}^R}$.

PROOF: Set $D = \text{Der}1(\mathbb{Z}^R)$. Set $P_1 = \text{Polynomial}$. Set $x_1 = \tau(j)$. Set $y_1 = \prod_{i=1}^n (f_i - o(m, p))_{i}$, $1_{P_1} = D(x_1)$. For every natural number *i* such that $p + 1 < i$ and $i \in \text{dom}(\text{LBZ}(D, k, y_1, x_1^p))$ holds $(\text{LBZ}(D, k, y_1, x_1^p))_{/i}$ 0_{P_1} by [\[2,](#page-8-2) (1)], [?, (21)]. \square

(27) Let us consider an odd, prime natural number *p*, a positive natural number *m*, and natural numbers *k*, *j*. Suppose $j \in \text{Seg } m$ and $p \leq k$. Then there exist elements *u*, *v* of the carrier of Polynom-Ring \mathbb{Z}^R such that $(\text{Der}1(\mathbb{Z}^{\mathbf{R}}))^{k}(\text{f-0}(m, p)) = (\tau(j)) \cdot u + p! \cdot v.$

PROOF: Set $D = \text{Der}1(\mathbb{Z}^R)$. Set $P_1 = \text{Polynomial} \mathbb{Z}^R$. Set $t_1 = \tau(j)$. Set $j = \prod_{i} (\text{ff-0}(m, p))_{|j}$. $1_{P_1} = D(t_1)$. Reconsider $l_3 = \text{LBZ}(D, k, j, t_1^p)$ as a non empty finite sequence of elements of the carrier of Polynom-Ring \mathbb{Z}^R . Set $l_4 = l_3$ [*p*. For every natural number *i* such that $i \in \text{Seg } p$ holds $\tau(j) | l_{4/i}$ by $[2, (1)]$ $[2, (1)]$, $[8, (49)]$ $[8, (49)]$, (25) . Consider *u* being an element of P_1 such that $\sum l_4 = (\tau(j)) \cdot u$. Set $k_2 = k+1 - (p+1)$. For every natural number i_1 such that $i_1 \in \text{dom}(l_{3\lfloor p+1})$ holds $(l_{3\lfloor p+1 \rfloor})_{i_1} = 0_{P_1}$ by [\[2,](#page-8-2) (1)], [\[7,](#page-9-8) (27)], (26) . $l_{3|p+1} = k_2$ → 0_{P_1} by [\[6,](#page-9-3) (57)]. □

(28) Let us consider an element *u* of the carrier of Polynom-Ring \mathbb{Z}^R , and elements *a*, *b* of \mathbb{Z}^R . Then eval $(a \cdot (\neg u), b) \in \{a\}$ -ideal.

(29) Let us consider an odd, prime natural number *p*, a positive natural number *m*, and natural numbers *k*, *j*. Suppose $j \in \text{Seg } m$ and $p \leq k$. Then $\text{eval}(\bigtriangleup(\text{Der}1(\mathbb{Z}^{\text{R}}))^k(\text{f-0}(m, p)), j(\in \mathbb{Z}^{\text{R}})) \in \{p!(\in \mathbb{Z}^{\text{R}})\}$ -ideal. The theorem is a consequence of (27) , (22) , (5) , and (28) .

Now we state the propositions:

- (30) NOW WE APPLY THE POLYNOMIAL TRANSFORMATION $'F'$ to F_0 . Let us consider an odd, prime natural number p , and a positive natural number *m*. Then there exists an element *u* of $\mathbb{Z}^{\mathbb{R}}$ such that $(\mathcal{F} \cdot f \cdot o(m, p))(0) =$ $(p - 1)! \cdot (((-1)^m \cdot (m!))^p (\in \mathbb{Z}^R)) + p! (\in \mathbb{Z}^R) \cdot u.$ PROOF: Set $G_3 = \mathcal{G} f \cdot 0(m, p)$. Set $p_1 = p - 1$. eval $(G_3 \mid (p - 1), 0_{\mathbb{Z}}) =$ $p_1 \mapsto 0_{\mathbb{Z}^R}$ by [\[2,](#page-8-2) (1)], [\[21,](#page-9-15) (25)], [\[8,](#page-9-9) (49)], (19). For every natural number *j* such that *j* ∈ dom(eval($G_{3|p}$, $0_{\mathbb{Z}^R}$)) holds (eval($G_{3|p}$, $0_{\mathbb{Z}^R}$))(*j*) ∈ { $p!$ (∈ Z ^R)*}*–ideal by [\[2,](#page-8-2) (1)], [\[11,](#page-9-16) (6)], (21), [\[12,](#page-9-17) (18), (19)]. Consider *u* being an element of \mathbb{Z}^R such that $(\text{Eval}(\bigcap_{\alpha}^{\mathbb{Q}}\sum G_{3\mid p})(0) = p!(\in \mathbb{Z}^R) \cdot u$. \square
- (31) Let us consider an odd, prime natural number *p*, a positive natural number *m*, and a natural number *j*. Suppose $j \in \text{Seg } m$. Then $(\mathcal{F} \mathit{f} \text{-}0(m, p))(j(\in$ \mathbb{R}_{F})) \in { $p!(\in \mathbb{Z}^{\mathrm{R}})$ }-ideal.

PROOF: Set $G_3 = \mathcal{G} f \cdot 0(m, p)$. eval $(G_3[p, j(\in \mathbb{Z}^R)) = p \mapsto 0_{\mathbb{Z}^R}$ by [\[2,](#page-8-2) (1)], [\[21,](#page-9-15) (25)], [\[8,](#page-9-9) (49)], (23). For every natural number *k* such that $k \in \text{dom}(\text{eval}(G_{3\mid p}, j(\in \mathbb{Z}^{\mathbb{R}})))$ holds $(\text{eval}(G_{3\mid p}, j(\in \mathbb{Z}^{\mathbb{R}})))(k) \in \{p!(\in \mathbb{Z}^{\mathbb{R}}) \}$ $(\mathbb{Z}^{\mathbf{R}})$ }-ideal by [\[2,](#page-8-2) (1)], (29). \square

4. The Main Part of the Proof

Now we state the proposition:

(32) Let us consider an element *x* of \mathbb{R}_F . Then $(\text{Eval}(\cap \mathbb{G}f-0(m, p)))(x) =$ $(\text{eval}(\bigtriangleup^@ \prod x.(m, p), x)) \cdot (\text{eval}(\bigtriangleup^@ (\tau(0))^{p-1}, x)).$

Let us consider *m*, *p*, and *g*. The functor delta-1 (m, p, g) yielding a finite sequence of elements of \mathbb{R}_{F} is defined by

(Def. 6) len $it = m$ and for every natural number *i* such that $i \in \text{dom } it$ holds $it(i) = q(i) \cdot (\mathcal{F} f \cdot 0(m, p))(i(\in \mathbb{R}_F)).$

In the sequel z_0 denotes a non zero element of \mathbb{R}_F .

Let us consider *m*, *p*, *g*, and *z*₀. The functor $\left|\frac{\text{delta-2}(m, p, q, z_0)}{\text{delta-2}(m, p, q, z_0)}\right|$ yielding a finite sequence of elements of \mathbb{R}_{F} is defined by

(Def. 7) len $it = m$ and for every natural number *i* such that $i \in \text{dom } it$ holds $it(i) = -g(i) \cdot (power_{\mathbb{R}_F}(z_0, i) \cdot (\mathcal{F}f \cdot 0(m, p))(0)).$

The functor $\left[\frac{\text{delta}(m, p, g, z_0)}{\text{delta}(m, p, g, z_0)}\right]$ yielding a finite sequence of elements of \mathbb{R}_F is defined by the term

(Def. 8) delta-1 (m, p, g) + delta-2 (m, p, g, z_0) .

The functor $\left| \frac{\partial \text{elta}(m, p, g)}{\partial t} \right|$ yielding a finite sequence of elements of \mathbb{Z}^R is defined by the term

(Def. 9) delta-1(*m, p, g*).

Now we state the propositions:

- (33) \sum delta-1 $(m, p, g) \in \mathbb{Z}^R$. PROOF: For every natural number *i* such that $i \in \text{dom}(\text{delta-1}(m, p, g))$ holds $(\text{delta-1}(m, p, g))(i) \in \mathbb{Z}$ by [?, (30)]. \Box
- (34) Let us consider a non zero polynomial *g* over \mathbb{Z}^R . Suppose deg(*g*) = *m*. Let us consider a non zero element *x* of \mathbb{R}_F . Then \sum delta-2 (m, p, g, x) = $g(0) \cdot (\mathcal{F}f - 0(m, p))(0) - (\text{ExtEval}(g, x)) \cdot (\mathcal{F}f - 0(m, p))(0).$ PROOF: For every non zero element *x* of \mathbb{R}_F , \sum delta-2 $(m, p, g, x) = g(0) \cdot$ (*F* f-0(*m, p*))(0) *−* (ExtEval(*g, x*))*·*(*F* f-0(*m, p*))(0) by [\[18,](#page-9-5) (8)], [\[24,](#page-9-4) (72)], $(30), [2, (39), (22), (1)]. \square$ $(30), [2, (39), (22), (1)]. \square$ $(30), [2, (39), (22), (1)]. \square$
- (35) \sum delta-1 $(m, p, g) \in \{p! (\in \mathbb{Z}^R)\}$ -ideal. The theorem is a consequence of (31).
- (36) Let us consider an element *x* of \mathbb{R}_F . Suppose $0 < x \leq m$. Let us consider a natural number *i*. Suppose $i \in \text{Seg } m$. Then $|\text{eval}(\bigtriangleup^{\mathbb{Q}}(x,(m,p))_{/i},x)| \leq$ *m^p* .

PROOF: Set $F_1 = \mathbb{R}_F$. Reconsider $z_0 = -i$ as an element of F_1 . $|(z_0 + x)^p| \le$ m^p by [\[17,](#page-9-18) (9)]. \Box

- (37) Let us consider an element *x* of \mathbb{R}_F . Then $eval(\bigtriangleup^{\mathbb{Q}}(\tau(0))^{p-1}, x) = x^{p-1}$. The theorem is a consequence of (3) and (4).
- (38) (i) m^{m+1} ExpSeq_R is convergent, and

(ii) $\lim m^{m+1}$ ExpSeq_R = 0.

- (39) Let us consider a non zero natural number M , and a non zero element z_0 of \mathbb{R}_F . Suppose $z_0 = e$. Then there exists a natural number n_1 such that for every natural number *n* such that $n_1 \leq n$ holds $\left|\frac{(m^{m+1})^n}{n!} - 0\right| < \frac{1}{2\cdot (M\cdot)}$ $\frac{1}{2 \cdot (M \cdot (z_0^m))}$. The theorem is a consequence of (38).
- (40) Every Z-valued polynomial over $\mathbb{F}_{\mathbb{O}}$ is a polynomial over \mathbb{Z}^R . The following theorem corresponds to the equation (3) in [**?**]. Now we state the proposition:
- (41) Suppose *e* is algebraic. Then there exists a Z-valued polynomial *g* over $\mathbb{F}_{\mathbb{O}}$ such that
	- (i) \hat{g} is irreducible, and
	- (ii) ExtEval $(q, e(\in \mathbb{R}_{F})) = 0$, and
	- (iii) deg(q) ≥ 2 , and

 (iv) $g(0) \neq 0$ _{F_Q}.

PROOF: Consider *x* being an element of $\mathbb{C}_{\mathbb{F}}$ such that $x = e$ and *x* is integral over $\mathbb{F}_{\mathbb{Q}}$. Consider f_0 being an element of Polynom-Ring $\mathbb{F}_{\mathbb{Q}}$ such that $f_0 \neq 0.\mathbb{F}_{\mathbb{Q}}$ and $\{f_0\}$ –ideal = AnnPoly $(x,\mathbb{F}_{\mathbb{Q}})$ and $f_0 = \text{NormPoly } f_0$. Consider *f* being a polynomial over $\mathbb{F}_{\mathbb{O}}$ such that $f_0 = f$ and $\text{ExtEval}(f, x) =$ $0_{\mathbb{C}_{\mathrm{F}}}$. Reconsider $m = \prod$ denomi-seq(f_0) as a non zero natural number. Reconsider $\mathcal{O}_0 = m \cdot f_0$ as an element of the carrier of Polynom-Ring $\mathbb{F}_{\mathbb{Q}}$. rng \mho_0 ⊆ Z by [\[23,](#page-9-12) (27)], [?, (10)]. □

Now we state the proposition:

(42) *e* is transcendental.

PROOF: Consider *g* being a Z-valued polynomial over $\mathbb{F}_{\mathbb{Q}}$ such that \hat{g} is irreducible and $\text{ExtEval}(g, e(\in \mathbb{R}_{F})) = 0$ and $\text{deg}(g) \geq 2$ and $g(0) \neq 0_{\mathbb{F}_{Q}}$. Reconsider $g_0 = g$ as a polynomial over \mathbb{Z}^R . Reconsider $g_0 = g$ as a non zero polynomial over \mathbb{Z}^R . Reconsider $m_0 = \deg(g_0)$ as a positive natural number. Reconsider $z_0 = e$ as a non zero element of \mathbb{R}_F . Consider M_0 being a natural number such that for every natural number $i, |g_0(i)| \leq M_0$. Consider n_1 being a natural number such that for every natural number n such that $n_1 \leq n$ holds $\left| \frac{(m_0^{m_0+1})^n}{n!} - 0 \right| < \frac{1}{2 \cdot (m_0 \cdot M_0 \cdot m_0^r)}$ $\frac{1}{2 \cdot (m_0 \cdot M_0 \cdot m_0^{m_0+1} \cdot (z_0^{m_0}))}$. Consider p_1 be- $\log a$ prime number such that $n_1 + m_0 + M_0 < p_1$. $\sum \text{delta}(m_0, p_1, g_0, z_0) =$ \sum delta-1(m_0, p_1, g_0)+ \sum delta-2(m_0, p_1, g_0, z_0) by [\[18,](#page-9-5) (7)]. \sum delta-1(m_0, p_1, g_0) \in $\mathbb{Z}^{\mathbf{R}}$. Consider *u* being an element of $\mathbb{Z}^{\mathbf{R}}$ such that $(\mathcal{F} \cdot \mathbf{f} \cdot \mathbf{O}(m_0, p_1))(0) =$ $(p_1-1)! \cdot (((-1)^{m_0} \cdot (m_0!))^{p_1} (\in \mathbb{Z}^R)) + p_1! (\in \mathbb{Z}^R) \cdot u. \ \frac{\sum \text{delta-2}(m_0, p_1, g_0, z_0)}{(p_1-1)!}$ is an element of \mathbb{Z}^R and $\frac{\sum \text{delta-2}(m_0, p_1, g_0, z_0)}{(p_1 - 1)!} = (((-1)^{m_0} \cdot (m_0!))^{p_1} (\in \mathbb{Z}^R) +$ $p_1 \cdot u \cdot g_0(0)$ by (34), [?, (1)], [\[23,](#page-9-12) (1)], [\[18,](#page-9-5) (19)]. $\sum \text{delta-1}(m_0, p_1, g_0) \in$ ${p_1}$!($\in \mathbb{Z}^R$)}-ideal. Consider *v* being an element of \mathbb{Z}^R such that \sum delta-1(*m*₀*, p*₁*, g*₀) $p_1!(\in \mathbb{Z}^R) \cdot v.$ $\frac{\sum \text{delta-1}(m_0,p_1,g_0)}{(p_1-1)!} = p_1 \cdot v.$ $\frac{\sum \text{delta}(m_0,p_1,g_0,z_0)}{(p_1-1)!} \in \mathbb{Z}^R$ and $\frac{\sum \text{delta}(m_0, p_1, g_0, z_0)}{(p_1 - 1)!} = \frac{\sum \text{delta-1}(m_0, p_1, g_0)}{(p_1 - 1)!} + \frac{\sum \text{delta-2}(m_0, p_1, g_0, z_0)}{(p_1 - 1)!} \cdot \frac{\sum \text{delta}(m_0, p_1, g_0, z_0)}{(p_1 - 1)!} \leq$ 1 $\frac{1}{2}$ by [\[20,](#page-9-19) (11)], [\[16,](#page-9-20) (5)]. $\frac{\sum \text{delta}(m_0, p_1, g_0, z_0)}{(p_1 - 1)!} = 0$ by [\[1,](#page-8-1) (14)]. □

REFERENCES

- [1] Grzegorz Bancerek. [The fundamental properties of natural numbers.](http://fm.mizar.org/1990-1/pdf1-1/nat_1.pdf) *Formalized Mathematics*, 1(**1**):41–46, 1990.
- [2] Grzegorz Bancerek and Krzysztof Hryniewiecki. [Segments of natural numbers and finite](http://fm.mizar.org/1990-1/pdf1-1/finseq_1.pdf) [sequences.](http://fm.mizar.org/1990-1/pdf1-1/finseq_1.pdf) *Formalized Mathematics*, 1(**1**):107–114, 1990.
- [3] Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, Karol Pąk, and Josef Urban. [Mizar: State-of-the-art and](http://dx.doi.org/10.1007/978-3-319-20615-8_17) [beyond.](http://dx.doi.org/10.1007/978-3-319-20615-8_17) In Manfred Kerber, Jacques Carette, Cezary Kaliszyk, Florian Rabe, and Volker Sorge, editors, *Intelligent Computer Mathematics*, volume 9150 of *Lecture Notes in Computer Science*, pages 261–279. Springer International Publishing, 2015. ISBN 978-3- 319-20614-1. doi[:10.1007/978-3-319-20615-8](http://dx.doi.org/10.1007/978-3-319-20615-8_17) 17.
- [4] Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, and Karol Pąk. [The role of the Mizar Mathematical Library](https://doi.org/10.1007/s10817-017-9440-6) [for interactive proof development in Mizar.](https://doi.org/10.1007/s10817-017-9440-6) *Journal of Automated Reasoning*, 61(1):9–32, 2018. doi[:10.1007/s10817-017-9440-6.](http://dx.doi.org/10.1007/s10817-017-9440-6)
- [5] Jesse Bingham. Formalizing a proof that *e* is transcendental. *Journal of Formalized Reasoning*, 4:71–84, 2011.
- [6] Czesław Byliński. [Finite sequences and tuples of elements of a non-empty sets.](http://fm.mizar.org/1990-1/pdf1-3/finseq_2.pdf) *Formalized Mathematics*, 1(**3**):529–536, 1990.
- [7] Czesław Byliński. [Some properties of restrictions of finite sequences.](http://fm.mizar.org/1996-5/pdf5-2/finseq_5.pdf) *Formalized Mathematics*, 5(**2**):241–245, 1996.
- [8] Czesław Byliński. [Functions and their basic properties.](http://fm.mizar.org/1990-1/pdf1-1/funct_1.pdf) *Formalized Mathematics*, 1(**1**): 55–65, 1990.
- [9] Ewa Grądzka. [The algebra of polynomials.](http://fm.mizar.org/2001-9/pdf9-3/polyalg1.pdf) *Formalized Mathematics*, 9(**3**):637–643, 2001.
- [10] Adolf Hurwitz. [Beweis der Transcendenz der Zahl e.](http://eudml.org/doc/157680) *Mathematische Annalen*, 43:220–221, 1893.
- [11] Artur Korniłowicz. Elementary number theory problems. Part VIII. *Formalized Mathematics*, 31(1):87–100, 2023. doi[:10.2478/forma-2023-0009.](http://dx.doi.org/10.2478/forma-2023-0009)
- [12] Artur Korniłowicz and Christoph Schwarzweller. The first isomorphism theorem and other properties of rings. *Formalized Mathematics*, 22(**4**):291–301, 2014. doi[:10.2478/forma-](http://dx.doi.org/10.2478/forma-2014-0029)[2014-0029.](http://dx.doi.org/10.2478/forma-2014-0029)
- [13] Rafał Kwiatek. [Factorial and Newton coefficients.](http://fm.mizar.org/1990-1/pdf1-5/newton.pdf) *Formalized Mathematics*, 1(**5**):887–890, 1990.
- [14] Robert Milewski. [Fundamental theorem of algebra.](http://fm.mizar.org/2001-9/pdf9-3/polynom5.pdf) *Formalized Mathematics*, 9(**3**):461– 470, 2001.
- [15] Karol Pąk. Eigenvalues of a linear transformation. *Formalized Mathematics*, 16(**4**):289– 295, 2008. doi[:10.2478/v10037-008-0035-x.](http://dx.doi.org/10.2478/v10037-008-0035-x)
- [16] Jan Popiołek. [Some properties of functions modul and signum.](http://fm.mizar.org/1990-1/pdf1-2/absvalue.pdf) *Formalized Mathematics*, 1(**2**):263–264, 1990.
- [17] Konrad Raczkowski. [Integer and rational exponents.](http://fm.mizar.org/1991-2/pdf2-1/prepower.pdf) *Formalized Mathematics*, 2(**1**):125– 130, 1991.
- [18] Christoph Schwarzweller. [The binomial theorem for algebraic structures.](http://fm.mizar.org/2001-9/pdf9-3/binom.pdf) *Formalized Mathematics*, 9(**3**):559–564, 2001.
- [19] Christoph Schwarzweller. On roots of polynomials over $F[X]/\langle p \rangle$. *Formalized Mathematics*, 27(**2**):93–100, 2019. doi[:10.2478/forma-2019-0010.](http://dx.doi.org/10.2478/forma-2019-0010)
- [20] Yasunari Shidama. [The Taylor expansions.](http://fm.mizar.org/2004-12/pdf12-2/taylor_1.pdf) *Formalized Mathematics*, 12(**2**):195–200, 2004.
- [21] Wojciech A. Trybulec. [Non-contiguous substrings and one-to-one finite sequences.](http://fm.mizar.org/1990-1/pdf1-3/finseq_3.pdf) *Formalized Mathematics*, 1(**3**):569–573, 1990.
- [22] Wojciech A. Trybulec. [Binary operations on finite sequences.](http://fm.mizar.org/1990-1/pdf1-5/finsop_1.pdf) *Formalized Mathematics*, 1 (**5**):979–981, 1990.
- [23] Yasushige Watase. Derivation of commutative rings and the Leibniz formula for power of derivation. *Formalized Mathematics*, 29(**1**):1–8, 2021. doi[:10.2478/forma-2021-0001.](http://dx.doi.org/10.2478/forma-2021-0001)
- [24] Katarzyna Zawadzka. [The sum and product of finite sequences of elements of a field.](http://fm.mizar.org/1992-3/pdf3-2/fvsum_1.pdf) *Formalized Mathematics*, 3(**2**):205–211, 1992.

Accepted November 17, 2024