

Formal Proof of Transcendence of the Number e. Part II

Yasushige Watase Suginami-ku Matsunoki 6, 3-21 Tokyo Japan

Summary. This article is continuation of [?] and we formalize the main part of Hurwitz's proof [10] using the Mizar formalism [3], [4]. For related proof developments in Coq or HOL Light, see [?] and [5], respectively. The following is a summary of the formalized proof:

In the first chapter we define a polynomial f_0 over \mathbb{Z} and observe properties of f_0 . It is defined by $f_0(x) = x^{p-1}(x-1)^p(x-2)^p \cdots (x-m)^p$, where p is an odd prime number and m+1 is the number of component of the products. The f_0 is defined as **E_TRANS2:def 5**. The component $(x-j)_{(j=0,1,...,m)}$ are represented by $\tau(j)$ in the article and obtain:

$$f_0 = \tau(0)^{p-1} \prod_{j=1}^m \tau(j)^p$$

The second chapter is about properties of f_0 and $F(f_0)$ where F is introduced [?], the transformation $F(f) = f + f' + f'' + \cdots + f^{(\deg f)}$.

We observe k^{th} differentiation of the f_0 and evaluate by a number j. The following number-theoretical properties are obtained:

- 1. $\prod_{i=1}^{m} \tau(j)^{p}(0) = (((-1)|^{m}) * (m!))|^{p}$ (E_TRANS2:17),
- 2. $f_0^{(k)}(0) = 0$ if $0 \le k \le p 2$ (E_TRANS2:18),
- 3. $f_0^{(k)}(0) = k! (\prod_{j=1}^m \tau(j))(k-p+1)$ if $p \leq k$ (E_TRANS2:24),
- 4. $f_0^{(k)}(j) = 0$ if $k \leq p, 1 \leq j \leq m$ (E_TRANS2 : 26),
- 5. $f_0^{(k)} = \tau(j)u + p!v \ (\exists u, v \in \mathbb{Z}[X]) \text{ if } p \leq k, 1 \leq j \leq m \ (\text{E}_{\text{TRANS2}}: 30),$
- 6. $f_0^{(k)}(j) \in (p!)$ if $p \leq k, 1 \leq j \leq m$ (E_TRANS2:32).

We denote **F** for $F(f_0)$ for simplicity.

- 7. $\mathbf{F}(0) = (p-1)!(((-1))^m) * (m!))|^p + p!u \ (\exists u \in \mathbb{Z}[X]) \ (\text{E-TRANS2}: 33),$
- 8. $\mathbf{F}(j) \in (p!)$ if $1 \leq j \leq m$ (E_TRANS2:34),

© 2024 The Author(s) / AMU (Association of Mizar Users) under CC BY-SA 3.0 license We then obtain an equation system shown as below: where C_i stands for coefficient of the i^{ith} coefficient of g_0 . This is based on the equation system (4) stated in Hurwitz's proof [10].

$$\begin{cases} \frac{1}{(p-1)!} C_0 \mathbf{F}(0) & - & \frac{1}{(p-1)!} C_0 e^0 \mathbf{F}(0) & = \frac{1}{(p-1)!} C_0 \varepsilon_0 \\ \frac{1}{(p-1)!} C_1 \mathbf{F}(1) & - & \frac{1}{(p-1)!} C_1 e^1 \mathbf{F}(0) & = \frac{1}{(p-1)!} C_1 \varepsilon_1 \\ \vdots & \vdots & \vdots \\ \frac{1}{(p-1)!} C_m \mathbf{F}(m) & - & \frac{1}{(p-1)!} C_m e^m \mathbf{F}(0) & = \frac{1}{(p-1)!} C_m \varepsilon_m \end{cases}$$

where each equation is a product of i^{th} coefficient of g_0 and $\mathbf{F}(i) - e^x \mathbf{F}(i) (= -ie^{(i-\vartheta)i} f_0(\vartheta i))$ which is from the result of the mean value theorem to $e^x \mathbf{F}(x)$. In actual coding the sequence $C_m \mathbf{F}(m)$ and $(p-1)! C_m e^m \mathbf{F}(0)$ are defined as delta_1 and delta_2 respectively.

We have new equation by adding each term of the equation system vertically:

$$\frac{1}{(p-1)!} \sum_{i=1}^{m} C_i \mathbf{F}(i) - \frac{1}{(p-1)!} \sum_{i=1}^{m} C_i e^i \mathbf{F}(0) = \frac{1}{(p-1)!} \sum_{i=1}^{m} C_i \varepsilon_i$$

One can verify and formalize that the left hand side is not divided by p, because the first term of $p|\frac{1}{(p-1)!}\Sigma C_i \mathbf{F}(i)$ and $p \not\mid \frac{1}{(p-1)!}\Sigma e^i C_i \mathbf{F}(0)$. The right-hand side is a member of \mathbb{Z} and bounded by 1/2 by choosing sufficiently large p, this means it is 0. This contradicts the left-hand side nature. Therefore e is transcendental number.

MSC: 11J81 68V20

Keywords: transcendental number; algebraic number; Hurwitz

MML identifier: E_TRANS2, version: 8.1.14 5.83.1471

1. Preliminaries

From now on R denotes an integral domain, p denotes an odd, prime natural number, and m denotes a positive natural number.

Now we state the propositions:

(1) Let us consider a natural number i, and an element r of \mathbb{R}_{F} . Then $\sum (i \mapsto r) = i \cdot r$.

PROOF: Define $\mathcal{P}[\text{natural number}] \equiv \sum (\$_1 \mapsto r) = \$_1 \cdot r$. For every natural number *i* such that $\mathcal{P}[i]$ holds $\mathcal{P}[i+1]$ by [6, (60)], [24, (71)], [18, (13), (15)]. For every natural number *i*, $\mathcal{P}[i]$ from [1, Sch. 2]. \Box

(2) Let us consider sequences p_1 , q_1 of $\mathbb{Z}^{\mathbb{R}}$. Then $(p_1 * q_1)(0) = p_1(0) \cdot q_1(0)$.

2. On the Ring of Polynomials

Now we state the propositions:

- (3) Let us consider an element f of the carrier of Polynom-Ring $\mathbb{Z}^{\mathbb{R}}$, and a natural number n. Then ${}^{@}f^{n} = ({}^{@}f)^{n}$. PROOF: Define $\mathcal{P}[$ natural number $] \equiv {}^{@}f^{\$_{1}} = ({}^{@}f)^{\$_{1}}$. $\mathcal{P}[0]$ by [18, (8)]. For every natural number k such that $\mathcal{P}[k]$ holds $\mathcal{P}[k+1]$ by [18, (10), (8)], [? , (27)]. For every natural number k, $\mathcal{P}[k]$ from [1, Sch. 2]. \Box
- (4) Let us consider an element f of the carrier of Polynom-Ring R, and a natural number n. Then $\curvearrowleft f^n = (\curvearrowleft f)^n$. PROOF: Define $\mathcal{P}[$ natural number $] \equiv \curvearrowleft f^{\$_1} = (\frown f)^{\$_1}$. For every natural number k such that $\mathcal{P}[k]$ holds $\mathcal{P}[k+1]$ by [18, (10), (8)], [14, (19)]. For every natural number k, $\mathcal{P}[k]$ from [1, Sch. 2]. \Box
- (5) Let us consider a natural number n, and an element f of the carrier of Polynom-Ring $\mathbb{Z}^{\mathbb{R}}$. Then $n \cdot f = n \in \mathbb{Z}^{\mathbb{R}} \cdot f$. PROOF: Define $\mathcal{P}[\text{natural number}] \equiv \$_1 \cdot f = \$_1 \in \mathbb{Z}^{\mathbb{R}} \cdot f$. For every natural number k such that $\mathcal{P}[k]$ holds $\mathcal{P}[k+1]$ by [9, (9), (7)], [18, (13), (15)]. For every natural number k, $\mathcal{P}[k]$ from [1, Sch. 2]. \Box
- (6) Let us consider an element M of \mathbb{R}_F , and a finite sequence F of elements of \mathbb{R}_F . Suppose for every natural number i such that $i \in \text{dom } F$ holds $|F(i)| \leq M$. Then $|\prod F| \leq M^{\text{len } F}$.

PROOF: Define $\mathcal{P}[\text{natural number}] \equiv \text{for every finite sequence } F \text{ of elements of } \mathbb{R}_F \text{ such that } \ln F = \$_1 \text{ and for every natural number } i \text{ such that } i \in \text{dom } F \text{ holds } |F(i)| \leq M \text{ holds } |\prod F| \leq M^{\text{len } F} \cdot \mathcal{P}[0] \text{ by } [24, (80)], [18, (8)].$ For every natural number n such that $\mathcal{P}[n]$ holds $\mathcal{P}[n+1]$ by [7, (29)], [1, (11)], [2, (1)], [24, (78)]. For every natural number $n, \mathcal{P}[n]$ from [1, Sch. 2]. \Box

Let p be a polynomial over \mathbb{Z}^R . Observe that the functor |p| yields a sequence of \mathbb{Z}^R and is defined by

- (Def. 1) for every natural number n, it(n) = |p(n)|. Note that |p| is finite-Support as a (the carrier of $\mathbb{Z}^{\mathbb{R}}$)-valued function. In the sequel g denotes a non zero polynomial over $\mathbb{Z}^{\mathbb{R}}$. Let us consider g. One can verify that rng |g| is finite. Now we state the proposition:
 - (7) Let us consider a non zero polynomial g over $\mathbb{Z}^{\mathbb{R}}$. Then there exists a natural number M such that for every natural number i, $|g(i)| \leq M$. PROOF: rng $|g| \subseteq \mathbb{N}$. Reconsider $S = \operatorname{rng} |g|$ as a finite, non empty, natural-membered set. Reconsider $M = \max S$ as a natural number. For every natural number i, $|g(i)| \leq M$ by [8, (3)]. \Box

3. The Polynomial f_0 and Its Properties

Let *i* be a natural number. The functor $\tau(i)$ yielding an element of the carrier of Polynom-Ring $\mathbb{Z}^{\mathbb{R}}$ is defined by the term

(Def. 2) $\langle (-i) (\in \mathbb{Z}^{\mathbb{R}}), 1_{\mathbb{Z}^{\mathbb{R}}} \rangle$.

Let p be a non zero natural number and m be a natural number. The functor $\mathbf{x}.(m,p)$ yielding a finite sequence of elements of the carrier of Polynom-Ring $\mathbb{Z}^{\mathbb{R}}$ is defined by

(Def. 3) len it = m and for every natural number i such that $i \in \text{dom } it$ holds $it(i) = (\tau(i))^p$.

Let p be an odd, prime natural number and m be a positive natural number. The functor $\operatorname{ff-0}(m, p)$ yielding a finite sequence of elements of the carrier of Polynom-Ring $\mathbb{Z}^{\mathbb{R}}$ is defined by the term

(Def. 4)
$$x.(m,p) \cap \langle (\tau(0))^{p-1} \rangle.$$

The functor f-0(m, p) yielding an element of the carrier of Polynom-Ring $\mathbb{Z}^{\mathbb{R}}$ is defined by the term

(Def. 5)
$$\prod$$
 ff-0 (m, p) .

Now we state the propositions:

- (8) Let us consider natural numbers *i*, *n*. Then len $(\tau(i))^n = n + 1$.
- (9) Let us consider elements f, g of the carrier of Polynom-Ring $\mathbb{Z}^{\mathbb{R}}$. Suppose $(\operatorname{len} \frown f) \cdot (\operatorname{len} \frown g) \neq 0$. Then $\operatorname{len} \frown f \cdot g = \operatorname{len} \frown f + \operatorname{len} \frown g 1$.
- (10) Let us consider a non zero natural number k, and an odd, prime natural number p. Then
 - (i) $x.(k,p) \cap \langle (\tau(k+1))^p \rangle = x.(k+1,p)$, and
 - (ii) $\prod x.(k+1,p) = (\prod x.(k,p)) \cdot (\tau(k+1))^p$.

PROOF: $\mathbf{x}.(k,p) \land \langle (\tau(k+1))^p \rangle = \mathbf{x}.(k+1,p)$ by [6, (16)], [2, (9)], [1, (19)], [2, (5), (3)]. \Box

Let us consider an odd, prime natural number p and a positive natural number m. Now we state the propositions:

(11) len $\operatorname{sc}(m,p) = m \cdot p + 1.$

PROOF: Define $\mathcal{P}[\text{non zero natural number}] \equiv \text{len} \cap \prod x.(\$_1, p) = \$_1 \cdot p + 1.$ $\mathcal{P}[1]$ by [2, (40)], [22, (11)], (8). For every non zero natural number k such that $\mathcal{P}[k]$ holds $\mathcal{P}[k+1]$. For every non zero natural number k, $\mathcal{P}[k]$ from [1, Sch. 10]. \Box

(12) len f $0(m, p) = m \cdot p + p$. The theorem is a consequence of (11), (8), and (9).

Now we state the propositions:

- (13) Let us consider a natural number *i*. Then $(\text{Der1}(\mathbb{Z}^{\mathbb{R}}))(\tau(i)) = 1_{\text{Polynom-Ring }\mathbb{Z}^{\mathbb{R}}}$.
- (14) Let us consider an element f of the carrier of Polynom-Ring $\mathbb{Z}^{\mathbb{R}}$, and a natural number i. Then

(i)
$$(\tau(0) * f)(i+1) = f(i)$$
, and

(ii)
$$(\tau(0) * f)(0) = 0_{\mathbb{Z}^{R}}$$
.

PROOF: For every natural number i, $(\tau(0) * f)(i + 1) = f(i)$ and $(\tau(0) * f)(0) = 0_{\mathbb{Z}^R}$ by [14, (16)], [19, (12)], [23, (31)]. \Box

From now on f denotes an element of the carrier of Polynom-Ring \mathbb{Z}^{R} . Now we state the propositions:

- (15) Let us consider an odd, prime natural number p, and a positive natural number m. Then
 - (i) $\operatorname{len} \mathbf{x}.(m, p) = m$, and
 - (ii) len ff-0(m, p) = m + 1, and
 - (iii) $(\text{ff-0}(m,p))(\text{len x}.(m,p)+1) = (\tau(0))^{p-1}.$
- (16) Let us consider an odd, prime natural number p, a positive natural number m, and a natural number k. Suppose $0 \le k \le p-1$. Let us consider natural numbers i, j. Suppose $i \in \text{Seg}(k+1)$. Then $\tau(j) \mid$ (LBZ(Der1($\mathbb{Z}^{\mathbb{R}}$), $k, \prod (\text{ff-0}(m, p))_{|j}, (\tau(j))^p)_{/i}$. PROOF: Set $D = \text{Der1}(\mathbb{Z}^{\mathbb{R}})$. For every natural numbers i, j such that $i \in \text{Seg}(k+1)$ holds $\tau(j) \mid (\text{LBZ}(D, k, \prod (\text{ff-0}(m, p))_{|j}, (\tau(j))^p))_{/i}$ by (13), [15, (19)], [18, (8)], [2, (1)]. \Box
- (17) Let us consider an odd, prime natural number p, and a positive natural number m. Then $(\bigcap \prod x.(m,p))(0) = ((-1)^m \cdot (m!))^p$. PROOF: Define $\mathcal{P}[\text{natural number}] \equiv (\bigcap \prod x.(\$_1, p))(0) = ((-1)^{\$_1} \cdot (\$_1!))^p$. $\mathcal{P}[1]$ by [2, (40)], [22, (11)], [13, (13)]. For every non zero natural number k such that $\mathcal{P}[k]$ holds $\mathcal{P}[k+1]$ by (10), (2), [13, (7), (6), (15)]. For every non zero natural number k, $\mathcal{P}[k]$ from [1, Sch. 10]. \Box

Let us consider an odd, prime natural number p, a positive natural number m, and a natural number k. Now we state the propositions:

- (18) If $0 \le k \le p 2$, then $(\text{Der1}(\mathbb{Z}^{\mathbb{R}}))^{k}(f 0(m, p))(0) = 0_{\mathbb{Z}^{\mathbb{R}}}$.
- (19) Suppose $0 \leq k \leq p-2$. Then $\operatorname{eval}(\operatorname{O}(\operatorname{Der}1(\mathbb{Z}^{\mathbb{R}}))^{k}(\operatorname{f-0}(m,p)), 0_{\mathbb{Z}^{\mathbb{R}}}) = 0_{\mathbb{Z}^{\mathbb{R}}}$. The theorem is a consequence of (18).

Now we state the propositions:

(20) Let us consider an odd, prime natural number p, and a positive natural number m. Then $eval(\curvearrowleft (Der1(\mathbb{Z}^{\mathbb{R}}))^{p-'1}(f \cdot 0(m, p)), 0_{\mathbb{Z}^{\mathbb{R}}}) = (p - '1)! \cdot (((-1)^{m} \cdot (m!))^{p} (\in \mathbb{Z}^{\mathbb{R}}))$. The theorem is a consequence of (17).

- (21) Let us consider an odd, prime natural number p, a positive natural number m, and a non zero natural number k. Suppose $p \leq k$. Then $eval(\curvearrowleft(Der1(\mathbb{Z}^{\mathbb{R}}))^{k}(f \cdot 0(m, p)), 0_{\mathbb{Z}^{\mathbb{R}}}) = k! \cdot (\curvearrowleft \prod x.(m, p))(k (p 1)).$
- (22) Let us consider a natural number j, and an element u of the carrier of Polynom-Ring $\mathbb{Z}^{\mathbb{R}}$. Then $\operatorname{eval}(\curvearrowleft(\tau(j)) \cdot u, j(\in \mathbb{Z}^{\mathbb{R}})) = 0_{\mathbb{Z}^{\mathbb{R}}}$.
- (23) Let us consider an odd, prime natural number p, a positive natural number m, and natural numbers k, j. Suppose k < p and $j \in \text{Seg } m$. Then $\text{eval}(\curvearrowleft(\text{Der1}(\mathbb{Z}^{\mathbb{R}}))^{k}(\text{f-0}(m,p)), j(\in \mathbb{Z}^{\mathbb{R}})) = 0_{\mathbb{Z}^{\mathbb{R}}}$. The theorem is a consequence of (16) and (22).
- (24) Let us consider a natural number *i*. Then $(\text{Der1}(\mathbb{Z}^{\mathbb{R}}))(\tau(i)) = 1_{\text{Polynom-Ring }\mathbb{Z}^{\mathbb{R}}}$.
- (25) Let us consider an odd, prime natural number p, a positive natural number m, and natural numbers j, k. Suppose $j \in \text{Seg } m$ and $p \leq k$. Let us consider a natural number i. Suppose $i \in \text{Seg } p$. Then $\tau(j) \mid$ $(\text{LBZ}(\text{Der1}(\mathbb{Z}^{\mathbb{R}}), k, \prod (\text{ff-0}(m, p))_{|j|}, (\tau(j))^{p}))_{/i}$. PROOF: For every natural number i such that $i \in \text{Seg } p$ holds $\tau(j) \mid$ $(\text{LBZ}(\text{Der1}(\mathbb{Z}^{\mathbb{R}}), k, \prod (\text{ff-0}(m, p))_{|j|}, (\tau(j))^{p}))_{/i}$ by [2, (1)], (24), [15, (19)], $[18, (8)]. \square$
- (26) Let us consider an odd, prime natural number p, a positive natural number m, natural numbers k, j, and a natural number i. Suppose p+1 < i and $i \in \text{dom}(\text{LBZ}(\text{Der1}(\mathbb{Z}^{\mathbb{R}}), k, \prod (\text{ff-0}(m, p))_{|j}, (\tau(j))^{p}))$. Then $(\text{LBZ}(\text{Der1}(\mathbb{Z}^{\mathbb{R}}), k, \prod (\text{ff-0}(m, p))_{|j}, (\tau(j))^{p}))$.

PROOF: Set $D = \text{Der1}(\mathbb{Z}^{\mathbb{R}})$. Set $P_1 = \text{Polynom-Ring } \mathbb{Z}^{\mathbb{R}}$. Set $x_1 = \tau(j)$. Set $y_1 = \prod(\text{ff-0}(m,p))_{|j|}$. $1_{P_1} = D(x_1)$. For every natural number i such that p + 1 < i and $i \in \text{dom}(\text{LBZ}(D,k,y_1,x_1^p))$ holds $(\text{LBZ}(D,k,y_1,x_1^p))_{/i} = 0_{P_1}$ by [2, (1)], [?, (21)]. \Box

(27) Let us consider an odd, prime natural number p, a positive natural number m, and natural numbers k, j. Suppose $j \in \text{Seg } m$ and $p \leq k$. Then there exist elements u, v of the carrier of Polynom-Ring $\mathbb{Z}^{\mathbb{R}}$ such that $(\text{Der1}(\mathbb{Z}^{\mathbb{R}}))^{k}(\text{f-0}(m,p)) = (\tau(j)) \cdot u + p! \cdot v.$

PROOF: Set $D = \text{Der1}(\mathbb{Z}^{\mathbb{R}})$. Set $P_1 = \text{Polynom-Ring } \mathbb{Z}^{\mathbb{R}}$. Set $t_1 = \tau(j)$. Set $j = \prod (\text{ff-0}(m, p))_{|j}$. $1_{P_1} = D(t_1)$. Reconsider $l_3 = \text{LBZ}(D, k, j, t_1^p)$ as a non empty finite sequence of elements of the carrier of Polynom-Ring $\mathbb{Z}^{\mathbb{R}}$. Set $l_4 = l_3 | p$. For every natural number i such that $i \in \text{Seg } p$ holds $\tau(j) | l_{4/i}$ by [2, (1)], [8, (49)], (25). Consider u being an element of P_1 such that $\sum l_4 = (\tau(j)) \cdot u$. Set $k_2 = k + 1 - (p+1)$. For every natural number i_1 such that $i_1 \in \text{dom}(l_{3|p+1})$ holds $(l_{3|p+1})_{i_1} = 0_{P_1}$ by [2, (1)], [7, (27)], (26). $l_{3|p+1} = k_2 \mapsto 0_{P_1}$ by [6, (57)]. \Box

(28) Let us consider an element u of the carrier of Polynom-Ring $\mathbb{Z}^{\mathbb{R}}$, and elements a, b of $\mathbb{Z}^{\mathbb{R}}$. Then $\operatorname{eval}(a \cdot (\frown u), b) \in \{a\}$ -ideal.

(29) Let us consider an odd, prime natural number p, a positive natural number m, and natural numbers k, j. Suppose $j \in \text{Seg } m$ and $p \leq k$. Then $\text{eval}(\curvearrowleft(\text{Der1}(\mathbb{Z}^{\mathbb{R}}))^{k}(\text{f-0}(m,p)), j(\in \mathbb{Z}^{\mathbb{R}})) \in \{p! (\in \mathbb{Z}^{\mathbb{R}})\}$ -ideal. The theorem is a consequence of (27), (22), (5), and (28).

Now we state the propositions:

- (30) Now WE APPLY THE POLYNOMIAL TRANSFORMATION 'F' TO F_0.: Let us consider an odd, prime natural number p, and a positive natural number m. Then there exists an element u of $\mathbb{Z}^{\mathbb{R}}$ such that $(\mathcal{F} f \cdot 0(m, p))(0) = (p - '1)! \cdot (((-1)^m \cdot (m!))^p (\in \mathbb{Z}^{\mathbb{R}})) + p! (\in \mathbb{Z}^{\mathbb{R}}) \cdot u$. PROOF: Set $G_3 = \mathcal{G} f \cdot 0(m, p)$. Set $p_1 = p - '1$. $eval(G_3 \upharpoonright (p - '1), 0_{\mathbb{Z}^{\mathbb{R}}}) = p_1 \mapsto 0_{\mathbb{Z}^{\mathbb{R}}}$ by [2, (1)], [21, (25)], [8, (49)], (19). For every natural number j such that $j \in dom(eval(G_3 \upharpoonright p, 0_{\mathbb{Z}^{\mathbb{R}}}))$ holds $(eval(G_3 \upharpoonright p, 0_{\mathbb{Z}^{\mathbb{R}}}))(j) \in \{p! (\in \mathbb{Z}^{\mathbb{R}})\}$ -ideal by [2, (1)], [11, (6)], (21), [12, (18), (19)]. Consider u being an element of $\mathbb{Z}^{\mathbb{R}}$ such that $(Eval(\curvearrowleft^{\mathbb{Q}} \sum G_3 \bowtie p))(0) = p! (\in \mathbb{Z}^{\mathbb{R}}) \cdot u$. \Box
- (31) Let us consider an odd, prime natural number p, a positive natural number m, and a natural number j. Suppose $j \in \text{Seg } m$. Then $(\mathcal{F} \text{f-}0(m, p))(j \in \mathbb{R}_F)) \in \{p! (\in \mathbb{Z}^R)\}$ -ideal.

PROOF: Set $G_3 = \mathcal{G}$ f-0(m, p). eval $(G_3 \upharpoonright p, j \in \mathbb{Z}^R)$ = $p \mapsto 0_{\mathbb{Z}^R}$ by [2, (1)], [21, (25)], [8, (49)], (23). For every natural number k such that $k \in \operatorname{dom}(\operatorname{eval}(G_3 \bowtie p, j \in \mathbb{Z}^R)))$ holds $(\operatorname{eval}(G_3 \bowtie p, j \in \mathbb{Z}^R))(k) \in \{p! \in \mathbb{Z}^R\}$ -ideal by [2, (1)], (29). \Box

4. The Main Part of the Proof

Now we state the proposition:

(32) Let us consider an element x of \mathbb{R}_{F} . Then $(\mathrm{Eval}(\curvearrowleft^{@}\mathbf{f}-\mathbf{0}(m,p)))(x) = (\mathrm{eval}(\curvearrowleft^{@}\mathbf{\Pi}\mathbf{x}.(m,p),x)) \cdot (\mathrm{eval}(\curvearrowleft^{@}(\tau(\mathbf{0}))^{p-\prime 1},x)).$

Let us consider m, p, and g. The functor delta-1(m, p, g) yielding a finite sequence of elements of \mathbb{R}_{F} is defined by

(Def. 6) len it = m and for every natural number i such that $i \in \text{dom } it$ holds $it(i) = g(i) \cdot (\mathcal{F} \text{f-}0(m, p))(i(\in \mathbb{R}_F)).$

In the sequel z_0 denotes a non zero element of \mathbb{R}_{F} .

Let us consider m, p, g, and z_0 . The functor delta- $2(m, p, g, z_0)$ yielding a finite sequence of elements of \mathbb{R}_F is defined by

(Def. 7) len it = m and for every natural number i such that $i \in \text{dom } it$ holds $it(i) = -g(i) \cdot (\text{power}_{\mathbb{R}_{F}}(z_{0}, i) \cdot (\mathcal{F} \text{f-}0(m, p))(0)).$

The functor $\operatorname{delta}(m, p, g, z_0)$ yielding a finite sequence of elements of \mathbb{R}_{F} is defined by the term

(Def. 8) delta-1(m, p, g) + delta- $2(m, p, g, z_0)$.

The functor $\hat{\text{delta}}(m, p, g)$ yielding a finite sequence of elements of $\mathbb{Z}^{\mathbb{R}}$ is defined by the term

(Def. 9) delta-1(m, p, g).

Now we state the propositions:

- (33) $\sum \text{delta-1}(m, p, g) \in \mathbb{Z}^{\mathbb{R}}$. PROOF: For every natural number *i* such that $i \in \text{dom}(\text{delta-1}(m, p, g))$ holds $(\text{delta-1}(m, p, g))(i) \in \mathbb{Z}$ by [?, (30)]. \Box
- (34) Let us consider a non zero polynomial g over $\mathbb{Z}^{\mathbb{R}}$. Suppose deg(g) = m. Let us consider a non zero element x of $\mathbb{R}_{\mathbb{F}}$. Then $\sum \text{delta-2}(m, p, g, x) = g(0) \cdot (\mathcal{F} f \cdot 0(m, p))(0) - (\text{ExtEval}(g, x)) \cdot (\mathcal{F} f \cdot 0(m, p))(0)$. PROOF: For every non zero element x of $\mathbb{R}_{\mathbb{F}}$, $\sum \text{delta-2}(m, p, g, x) = g(0) \cdot (\mathcal{F} f \cdot 0(m, p))(0) - (\text{ExtEval}(g, x)) \cdot (\mathcal{F} f \cdot 0(m, p))(0)$ by [18, (8)], [24, (72)], (30), [2, (39), (22), (1)]. \Box
- (35) $\sum \text{delta-1}(m, p, g) \in \{p! (\in \mathbb{Z}^{\mathbb{R}})\}$ -ideal. The theorem is a consequence of (31).
- (36) Let us consider an element x of \mathbb{R}_{F} . Suppose $0 < x \leq m$. Let us consider a natural number i. Suppose $i \in \operatorname{Seg} m$. Then $|\operatorname{eval}(\curvearrowleft^{@}(\mathbf{x}.(m,p))_{/i},x)| \leq m^{p}$.

PROOF: Set $F_1 = \mathbb{R}_F$. Reconsider $z_0 = -i$ as an element of F_1 . $|(z_0 + x)^p| \leq m^p$ by [17, (9)]. \Box

- (37) Let us consider an element x of \mathbb{R}_{F} . Then $\operatorname{eval}(\curvearrowleft^{@}(\tau(0))^{p-\prime 1}, x) = x^{p-\prime 1}$. The theorem is a consequence of (3) and (4).
- (38) (i) $m^{m+1} \operatorname{ExpSeq}_{\mathbb{R}}$ is convergent, and

(ii) $\lim m^{m+1} \operatorname{ExpSeq}_{\mathbb{R}} = 0.$

- (39) Let us consider a non zero natural number M, and a non zero element z_0 of \mathbb{R}_{F} . Suppose $z_0 = e$. Then there exists a natural number n_1 such that for every natural number n such that $n_1 \leq n$ holds $\left|\frac{(m^{m+1})^n}{n!} 0\right| < \frac{1}{2 \cdot (M \cdot (z_0^m))}$. The theorem is a consequence of (38).
- (40) Every \mathbb{Z} -valued polynomial over $\mathbb{F}_{\mathbb{Q}}$ is a polynomial over $\mathbb{Z}^{\mathbb{R}}$. The following theorem corresponds to the equation (3) in [?]. Now we state the proposition:
- (41) Suppose *e* is algebraic. Then there exists a \mathbb{Z} -valued polynomial *g* over $\mathbb{F}_{\mathbb{Q}}$ such that
 - (i) \hat{g} is irreducible, and
 - (ii) $\operatorname{ExtEval}(g, e(\in \mathbb{R}_{\mathrm{F}})) = 0$, and
 - (iii) $\deg(g) \ge 2$, and

(iv) $g(0) \neq 0_{\mathbb{F}_{\mathbb{O}}}$.

PROOF: Consider x being an element of \mathbb{C}_{F} such that x = e and x is integral over $\mathbb{F}_{\mathbb{Q}}$. Consider f_0 being an element of Polynom-Ring $\mathbb{F}_{\mathbb{Q}}$ such that $f_0 \neq \mathbf{0}$. $\mathbb{F}_{\mathbb{Q}}$ and $\{f_0\}$ -ideal = AnnPoly $(x, \mathbb{F}_{\mathbb{Q}})$ and f_0 = NormPoly f_0 . Consider f being a polynomial over $\mathbb{F}_{\mathbb{Q}}$ such that $f_0 = f$ and $\mathrm{ExtEval}(f, x) = 0_{\mathbb{C}_{\mathrm{F}}}$. Reconsider $m = \prod$ denomi-seq (f_0) as a non zero natural number. Reconsider $\mathcal{O}_0 = m \cdot f_0$ as an element of the carrier of Polynom-Ring $\mathbb{F}_{\mathbb{Q}}$. rng $\mathcal{O}_0 \subseteq \mathbb{Z}$ by [23, (27)], [?, (10)]. \Box

Now we state the proposition:

(42) e is transcendental.

PROOF: Consider g being a Z-valued polynomial over $\mathbb{F}_{\mathbb{Q}}$ such that \hat{g} is irreducible and ExtEval $(g, e(\in \mathbb{R}_{F})) = 0$ and $\deg(g) \ge 2$ and $g(0) \ne 0_{\mathbb{F}_{Q}}$. Reconsider $g_{0} = g$ as a polynomial over $\mathbb{Z}^{\mathbb{R}}$. Reconsider $g_{0} = g$ as a non zero polynomial over $\mathbb{Z}^{\mathbb{R}}$. Reconsider $m_{0} = \deg(g_{0})$ as a positive natural number. Reconsider $z_{0} = e$ as a non zero element of \mathbb{R}_{F} . Consider M_{0} being a natural number such that for every natural number $i, |g_{0}(i)| \le M_{0}$. Consider n_{1} being a natural number such that for every natural number n such that $n_{1} \le n$ holds $\left|\frac{(m_{0}^{m_{0}+1})^{n}}{n!} - 0\right| < \frac{1}{2\cdot(m_{0}\cdot M_{0}\cdot m_{0}^{m_{0}+1}\cdot(z_{0}^{m_{0}}))}$. Consider p_{1} being a prime number such that $n_{1} + m_{0} + M_{0} < p_{1}$. $\sum \det(m_{0}, p_{1}, g_{0}, z_{0}) =$ $\sum \det(n_{0}, p_{1}, g_{0}) + \sum \det(2m_{0}, p_{1}, g_{0}, z_{0})$ by [18, (7)]. $\sum \det(n_{0}, p_{1}, g_{0}) \in$ $\mathbb{Z}^{\mathbb{R}}$. Consider u being an element of $\mathbb{Z}^{\mathbb{R}}$ such that $(\mathcal{F} f - 0(m_{0}, p_{1}))(0) =$ $(p_{1} - '1)! \cdot (((-1)^{m_{0}} \cdot (m_{0}!))^{p_{1}} (\in \mathbb{Z}^{\mathbb{R}})) + p_{1}! (\in \mathbb{Z}^{\mathbb{R}}) \cdot u$. $\sum \frac{\det(n_{0}, p_{1}, g_{0}, z_{0})}{(p_{1} - '1)!}$ is an element of $\mathbb{Z}^{\mathbb{R}}$ and $\frac{\sum \det(2m_{0}, p_{1}, g_{0}, z_{0})}{(p_{1} - '1)!} = (((-1)^{m_{0}} \cdot (m_{0}!))^{p_{1}} (\in \mathbb{Z}^{\mathbb{R}}) +$ $p_{1} \cdot u \cdot g_{0}(0)$ by (34), [?, (1)], [23, (1)], [18, (19]]. $\sum \det(n_{0}, p_{1}, g_{0}, z_{0}) \in$ $\{p_{1}! (\in \mathbb{Z}^{\mathbb{R}}) + v. \frac{\sum \det(1m_{0}, p_{1}, g_{0})}{(p_{1} - '1)!} \in \mathbb{Z}^{\mathbb{R}}$ and $\sum \frac{\det(m_{0}, p_{1}, g_{0}, z_{0})}{(p_{1} - '1)!} = p_{1} \cdot v. \frac{\sum \det(m_{0}, p_{1}, g_{0}, z_{0})}{(p_{1} - '1)!} \in \mathbb{Z}^{\mathbb{R}}$ and $\frac{\sum \det(m_{0}, p_{1}, g_{0}, z_{0})}{(p_{1} - '1)!} = \sum \frac{\sum \det(n_{0}, p_{1}, g_{0}, z_{0})}{(p_{1} - '1)!} = 0$ by [1, (14)]. \Box

References

- Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
- Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107–114, 1990.
- [3] Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, Karol Pak, and Josef Urban. Mizar: State-of-the-art and beyond. In Manfred Kerber, Jacques Carette, Cezary Kaliszyk, Florian Rabe, and Volker Sorge, editors, *Intelligent Computer Mathematics*, volume 9150 of *Lecture Notes in Computer Science*, pages 261–279. Springer International Publishing, 2015. ISBN 978-3-319-20614-1. doi:10.1007/978-3-319-20615-8_17.

- [4] Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, and Karol Pąk. The role of the Mizar Mathematical Library for interactive proof development in Mizar. *Journal of Automated Reasoning*, 61(1):9–32, 2018. doi:10.1007/s10817-017-9440-6.
- [5] Jesse Bingham. Formalizing a proof that e is transcendental. Journal of Formalized Reasoning, 4:71–84, 2011.
- [6] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. *Formalized Mathematics*, 1(3):529–536, 1990.
- [7] Czesław Byliński. Some properties of restrictions of finite sequences. Formalized Mathematics, 5(2):241–245, 1996.
- [8] Czesław Byliński. Functions and their basic properties. *Formalized Mathematics*, 1(1): 55–65, 1990.
- [9] Ewa Grądzka. The algebra of polynomials. Formalized Mathematics, 9(3):637-643, 2001.
- [10] Adolf Hurwitz. Beweis der Transcendenz der Zahl e. Mathematische Annalen, 43:220–221, 1893.
- [11] Artur Korniłowicz. Elementary number theory problems. Part VIII. Formalized Mathematics, 31(1):87–100, 2023. doi:10.2478/forma-2023-0009.
- [12] Artur Korniłowicz and Christoph Schwarzweller. The first isomorphism theorem and other properties of rings. *Formalized Mathematics*, 22(4):291–301, 2014. doi:10.2478/forma-2014-0029.
- [13] Rafał Kwiatek. Factorial and Newton coefficients. Formalized Mathematics, 1(5):887–890, 1990.
- [14] Robert Milewski. Fundamental theorem of algebra. Formalized Mathematics, 9(3):461– 470, 2001.
- [15] Karol Pąk. Eigenvalues of a linear transformation. Formalized Mathematics, 16(4):289–295, 2008. doi:10.2478/v10037-008-0035-x.
- [16] Jan Popiołek. Some properties of functions modul and signum. Formalized Mathematics, 1(2):263–264, 1990.
- [17] Konrad Raczkowski. Integer and rational exponents. Formalized Mathematics, 2(1):125– 130, 1991.
- [18] Christoph Schwarzweller. The binomial theorem for algebraic structures. Formalized Mathematics, 9(3):559–564, 2001.
- [19] Christoph Schwarzweller. On roots of polynomials over $F[X]/\langle p \rangle$. Formalized Mathematics, 27(2):93–100, 2019. doi:10.2478/forma-2019-0010.
- [20] Yasunari Shidama. The Taylor expansions. Formalized Mathematics, 12(2):195–200, 2004.
- [21] Wojciech A. Trybulec. Non-contiguous substrings and one-to-one finite sequences. Formalized Mathematics, 1(3):569–573, 1990.
- [22] Wojciech A. Trybulec. Binary operations on finite sequences. Formalized Mathematics, 1 (5):979–981, 1990.
- [23] Yasushige Watase. Derivation of commutative rings and the Leibniz formula for power of derivation. Formalized Mathematics, 29(1):1–8, 2021. doi:10.2478/forma-2021-0001.
- [24] Katarzyna Zawadzka. The sum and product of finite sequences of elements of a field. Formalized Mathematics, 3(2):205–211, 1992.

Accepted November 17, 2024