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Summary. This article is continuation of [? ] and we formalize the main

part of Hurwitz’s proof [10] using the Mizar formalism [3], [4]. For related proof
developments in Coq or HOL Light, see [? | and [5], respectively. The following
is a summary of the formalized proof:
In the first chapter we define a polynomial fo over Z and observe properties of
fo. Tt is defined by fo(x) = 2P~ (x — 1)P(xz — 2)P - -- (x — m)P, where p is an odd
prime number and m + 1 is the number of component of the products. The fy
is defined as E_TRANS2:def 5. The component (x — j)(j—o,1
by 7(j) in the article and obtain:

m) are represented

.....

The second chapter is about properties of fo and F'(fo) where F is introduced [?
], the transformation F(f) = f+ f' + f" +--- + fld9 5,

We observe k'" differentiation of the fy and evaluate by a number j. The following
number-theoretical properties are obtained:

LTS, 7(3)7(0) = ((=1)[™) * (m!))[” (E_TRANS2:17),
2. fM0)=0if0<k<p—2 (E_TRANS2:18),
7 0) = k([T 7)) (k—p+1)if p< k (B.-TRANS2: 24),

4. fMG)=0ifk<p,1<j<m (E.TRANS2: 26),
5. 7 =7(G)u+plv Qu,v e Z[X]) if p<k,1<j<m (E-TRANS2:30),
6. fiPG)e@)ifp<h1<ji<m (E,TRANS2 1 32).

We denote F for F(fo) for simplicity.
7. F(0) = (p—DI((=D)™) = (m!))|? + plu (Fu € Z[X]) (E-TRANS2: 33),
8. F(j) € (p))if1<j<m (E-TRANS2:34),
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We then obtain an equation system shown as below: where C; stands for

-ith

coefficient of the i**"* coefficient of go. This is based on the equation system (4)

stated in Hurwitz’s proof [10].

TmCF0) - & 1)'006 FO0) =g wCOEO
TmOF1) - EyGeFO0) = giyta
ﬁC’mF(m) — ﬁC’memF(O) = ﬁcmé‘m

where each equation is a product of i'" coefficient of go and F(i) — e*F(i)(=
—ie" =1 f(9i)) which is from the result of the mean value theorem to e*F(z).
In actual coding the sequence Cp,F(m) and (p — 1)!Cyne™F(0) are defined as
delta_1 and delta_2 respectively.

We have new equation by adding each term of the equation system vertically:

1 & , 1T =, 1 &
=T Z:ciF(z) - o Zcie F(0) = =T Z:cia

One can verify and formalize that the left hand side is not divided by p, because
the first term of p| =55 1),20 F(i) and p | g5 2e’ ‘C;F(0). The right-hand side
is a member of Z and bounded by 1/2 by choosmg sufficiently large p, this means
it is 0. This contradicts the left-hand side nature. Therefore e is transcendental
number.

MSC: [11J81/ 168V20
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1. PRELIMINARIES

From now on R denotes an integral domain, p denotes an odd, prime natural
number, and m denotes a positive natural number.
Now we state the propositions:

(1) Let us consider a natural number 7, and an element r of Rp. Then (i —

r)=1-T.
PROOF: Define P[natural number] = >~($; — r) = $;-r. For every natural
number ¢ such that P[i] holds P[i + 1] by [6, (60)], [24, (71)], [18, (13),

(15)]. For every natural number 4, P[i] from [I, Sch. 2]. D
(2) Let us consider sequences p1, g1 of Z®. Then (p; * q1)(0) = p1(0) - ¢1(0).


http://zbmath.org/classification/?q=cc:11J81
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2. ON THE RING OF POLYNOMIALS

Now we state the propositions:

(3) Let us consider an element f of the carrier of Polynom-Ring ZR, and
a natural number n. Then @f" = (¢f)".

PROOF: Define P[natural number] = @f% = (@f)$1. P[0] by [18, (8)]. For
every natural number k such that P[k] holds P[k + 1] by [18, (10), (8)], [?
, (27)]. For every natural number k, P[k] from [I, Sch. 2]. O

(4) Let us consider an element f of the carrier of Polynom-Ring R, and
a natural number n. Then A f™" = (A f)".
PROOF: Define P[natural number] = ~f%1 = (~f)%. For every natural
number k such that P[k] holds P[k + 1] by [18, (10), (8)], [14, (19)]. For
every natural number k, P[k] from [I, Sch. 2]. O

(5) Let us consider a natural number n, and an element f of the carrier of
Polynom-Ring Z®. Then n - f = n(c ZR) - f.
PROOF: Define P[natural number] = $; - f = $;(€ ZR) - f. For every
natural number & such that P[k| holds P[k + 1] by [9} (9), (7)], [I8, (13),
(15)]. For every natural number k, P[k| from [I, Sch. 2]. O

(6) Let us consider an element M of Ry, and a finite sequence F of elements
of Rg. Suppose for every natural number ¢ such that ¢ € dom F' holds
|F(i)| < M. Then |[[ F| < M F,
PROOF: Define P[natural number| = for every finite sequence F' of ele-
ments of Rr such that len F' = $; and for every natural number ¢ such
that 4 € dom F holds |F(i)] < M holds |[[ F| < M'**¥. P[0] by [24, (80)],
[18, (8)]. For every natural number n such that P[n| holds P[n + 1] by [7,
(29)], [, (11)], [2, (1)], [24, (78)]. For every natural number n, P[n] from
[T, Sch. 2]. O

Let p be a polynomial over ZR. Observe that the functor p| yields a sequence

of Z® and is defined by

(Def. 1) for every natural number n, it(n) = [p(n)|.

Note that |p| is finite-Support as a (the carrier of Z®)-valued function.
In the sequel g denotes a non zero polynomial over Z~.

Let us consider g. One can verify that rng |g| is finite.

Now we state the proposition:

(7) Let us consider a non zero polynomial g over Z®. Then there exists
a natural number M such that for every natural number 4, |g(i)| < M.
PrOOF: rng|g|] € N. Reconsider S = rnglg| as a finite, non empty,
natural-membered set. Reconsider M = max S as a natural number. For
every natural number 4, |g(i)| < M by [8, (3)]. O
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3. THE POLYNOMIAL fy AND ITS PROPERTIES

Let i be a natural number. The functor 7(i) yielding an element of the carrier
of Polynom-Ring Z® is defined by the term
(Def. 2)  ((—i)(€ ZR), 14r).
Let p be a non zero natural number and m be a natural number. The functor

yielding a finite sequence of elements of the carrier of Polynom-Ring Z®
is defined by

(Def. 3) lenit = m and for every natural number i such that ¢ € dom it holds
it(i) = (7(2))P.
Let p be an odd, prime natural number and m be a positive natural number.
The functor yielding a finite sequence of elements of the carrier of
Polynom-Ring Z® is defined by the term
(Def. 4)  x.(m,p) ™ ((T(0))P~1).
The functor yielding an element of the carrier of Polynom-Ring Z%
is defined by the term
(Def. 5) TIff-0(m,p).
Now we state the propositions:
(8) Let us consider natural numbers 7, n. Then len\(7(i))" =n + 1.
(9) Let us consider elements f, g of the carrier of Polynom-Ring Z®. Suppose
(lenf) - (lenvng) # 0. Then lenf - g = lenf + leng — 1.
(10) Let us consider a non zero natural number k, and an odd, prime natural
number p. Then

(i) x.(k,p) = ((7(k +1))*) = x.(k + 1, p), and
(i) [Ix.(k+1,p) = ([Ix-(k,p)) - (T(k + 1))".
PROOF: x.(k,p) ~{((T(k + 1))?) = x.(k+1,p) by [6, (16)], [2, (9)], [1} (19)],
2, (5), (3)]. O
Let us consider an odd, prime natural number p and a positive natural
number m. Now we state the propositions:
(11) lenA[[x.(m,p) =m-p+ 1.
PROOF: Define P[non zero natural number] = len ] x.($1,p) = $1-p+1.

P[1] by [2, (40)], [22} (11)], (8). For every non zero natural number k such
that P[k] holds P[k + 1]. For every non zero natural number k, P[k] from

[1, Sch. 10]. O
(12) lenf-0(m,p) = m - p + p. The theorem is a consequence of (11), (8),
and (9).

Now we state the propositions:
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(13) Let us consider a natural number i. Then (Derl(ZR))(7(i)) = Lpolynom-Ring ZR -

(14) Let us consider an element f of the carrier of Polynom-Ring Z®, and
a natural number ¢. Then

(i) (7(0)* f)(i +1) = f(i), and
(if) (7(0) = f)(0) = Ozr.

PROOF: For every natural number i, (7(0) * f)(i + 1) = f(i) and (7(0) *
From now on f denotes an element of the carrier of Polynom-Ring ZR.
Now we state the propositions:

(15) Let us consider an odd, prime natural number p, and a positive natural
number m. Then

(i) lenx.(m,p) = m, and
(ii) lenff-0(m,p) =m+ 1, and

(iil) (-0(m, p))(lenx.(m,p) + 1) = (v(0))"".

(16) Let us consider an odd, prime natural number p, a positive natural
number m, and a natural number k. Suppose 0 < k < p — 1. Let us
consider natural numbers ¢, j. Suppose i € Seg(k + 1). Then 7(j) |
(LBZ(Der1(Z), k, [1(f-0(m, p)) 15, (7(7))")) s-

PROOF: Set D = Derl(Z®). For every natural numbers i, j such that

i € Seg(k + 1) holds 7(j) | (LBZ(D, k, [T(f-0(m, p)) 15, (7(4))")) i by (13),

[15, (19)], [18, (8)], [2, (1)]. O

(17) Let us consider an odd, prime natural number p, and a positive natural
number m. Then (A[[x.(m,p))(0) = ((=1)™ - (m!))".

PROOF: Define P[natural number] = (A[]x.($1,p))(0) = ((=1)% - ($:1)".

P[1] by [2, (40)], [22, (11)], [13] (13)]. For every non zero natural number

k such that P[k] holds P[k + 1] by (10), (2), [13} (7), (6), (15)]. For every

non zero natural number k, P[k] from [I, Sch. 10]. O

Let us consider an odd, prime natural number p, a positive natural number
m, and a natural number k. Now we state the propositions:

(18) Tf0 <k <p—'2, then (Derl(ZR))"(£-0(m,p))(0) = Oyx.
(19) Suppose 0 < k < p—'2. Then eval(n(Derl(ZR))k(f—O(m,p)), Ozr) = Ozr.
The theorem is a consequence of (18).
Now we state the propositions:
(20) Let us consider an odd, prime natural number p, and a positive natu-
ral number m. Then eval(f\(Derl(ZR))pfll(f—()(m,p)),OZR) =(p-"1-
(((=1)™ - (m!))P(€ ZR)). The theorem is a consequence of (17).
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(21) Let us consider an odd, prime natural number p, a positive natural
number m, and a non zero natural number k. Suppose p < k. Then
eval(f\(Derl(ZR))k(f—O(m,p)),OZR) =kl (A[Ix.(m,p))(k—"(p—"1)).

(22) Let us consider a natural number j, and an element u of the carrier of
Polynom-Ring ZE. Then eval(~\(7(5)) - u, j(€ ZR)) = Oyr.

(23) Let us consider an odd, prime natural number p, a positive natural num-
ber m, and natural numbers k, j. Suppose k < p and j € Segm. Then
eval(m(Derl(ZR))k(f—O(m,p)),j(E ZR)) = 0zr. The theorem is a conse-
quence of (16) and (22).

(24) Let us consider a natural number . Then (Der1(ZR))(7(i)) = Lpolynom-Ring ZR -

(25) Let us consider an odd, prime natural number p, a positive natural
number m, and natural numbers j, k. Suppose j € Segm and p < k.
Let us consider a natural number i. Suppose i € Segp. Then 7(j) |
(LBZ(Derl(Z%), k, TT(f-0(m, p)) 15, (7(5))")) i-

PRrROOF: For every natural number i such that i € Segp holds 7(j) |
(LBZ(DerL(Z"), k, TT(f-0(m., p)1, (7(7))")) /i by [2 (1)), (24), [15, (19)],
[18, (8)]. O

(26) Let us consider an odd, prime natural number p, a positive natural num-

ber m, natural numbers &, j, and a natural number i. Suppose p+1 < i and
i € dom(LBZ(Der1(Z®), k, TI(f-0(m, p)) 1, (7(4))F)). Then (LBZ(Derl(ZR), k, T](ff-C
OPolynom—Ring 7R -
PROOF: Set D = Derl(Z®). Set P; = Polynom-Ring Z®. Set x; = 7(3). Set
y1 = [[(ff-0(m, p))};. 1p, = D(x1). For every natural number ¢ such that
p+1<iand i€ dom(LBZ(D,k,y1,21?)) holds (LBZ(D, k,y1,z1));; =
OP1 by [27 (1)]7 [? ’ (21)]’ O

(27) Let us consider an odd, prime natural number p, a positive natural num-

ber m, and natural numbers k, j. Suppose j € Segm and p < k. Then
there exist elements u, v of the carrier of Polynom-RingZ® such that
(Der1(ZR))* (£-0(m, p)) = (7(j)) - u+ p! - v.
PROOF: Set D = Derl(ZR?). Set P; = Polynom-Ring Z®. Set t; = 7(35). Set
j = [1(ff-0(m, p)) ;. 1p, = D(t1). Reconsider I3 = LBZ(D, k,j, t1?) as a non
empty finite sequence of elements of the carrier of Polynom-Ring Z®. Set
ly = l3]p. For every natural number i such that i € Segp holds 7(j) | la/;
by [2, (1)], [8 (49)], (25). Consider u being an element of P; such that
Soly = (7(§)) - u. Set ka = k+1—'(p+ 1). For every natural number i,
such that 4, € dom(l3)p41) holds (I3)p41) /5, = Op, by [2, (1)], [T, (27)],
(26). L i1 = k2 Opy by 6L (57)]. O

(28) Let us consider an element u of the carrier of Polynom-Ring Z®, and
elements a, b of Z®. Then eval(a - (\\u),b) € {a}-ideal.
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(29) Let us consider an odd, prime natural number p, a positive natural num-
ber m, and natural numbers k, j. Suppose j € Segm and p < k. Then
eval(m(Derl(ZR))k(f—O(m,p)),j(e ZR)) € {p!(€ Z®)}-ideal. The theorem
is a consequence of (27), (22), (5), and (28).

Now we state the propositions:

(30) NOW WE APPLY THE POLYNOMIAL TRANSFORMATION 'F’ TO F_0.:
Let us consider an odd, prime natural number p, and a positive natural
number m. Then there exists an element u of Z® such that (Ff-0(m, p))(0) =
(=" D! ((~1)™ - (m))P(€ ZR)) + pl(€ ZR) - u
PROOF: Set G3 = G{-0(m,p). Set p1 = p —" 1. eval(Gs[(p —' 1),0r) =
p1 — Ozr by [2 (1)], [21, (25)], [8, (49)], (19). For every natural number
J such that j € dom(eval(G3j,,0zr)) holds (eval(G3,,0zr))(j) € {p!(€
ZR)}-ideal by [2, (1)], [IT, (6)], (21), [12, (18), (19)]. Consider u being
an element of Z® such that (Eval(n®Y G3,))(0) = p!(€ ZR) - u. O

(31) Let us consider an odd, prime natural number p, a positive natural num-
ber m, and a natural number j. Suppose j € Segm. Then (F{-0(m,p))(j(€
Rr)) € {p!(€ Z%)}-ideal.

PROOF: Set G3 = Gf-0(m,p). eval(Gslp,j(€ ZR)) = p — Oz by [2,
(1], [21, (25)], [8, (49)], (23). For every natural number k such that
k € dom(eval(Gsp,7(€ ZR))) holds (eval(Gs,,j(€ ZR)))(k) € {pl(€
7ZR)}-ideal by [2, (1)], (29). O

4. THE MAIN PART OF THE PROOF

Now we state the proposition:
(32) Let us consider an element 2 of Rp. Then (Eval(~®f-0(m,p)))(z) =
(eval(A T x.(m, p), z)) - (eval(~Y(7(0))P 1, 2)).
Let us consider m, p, and g. The functor ! yielding a finite
sequence of elements of Rp is defined by
(Def. 6) lenit = m and for every natural number i such that i € dom it holds
it(i) = g(i) - (F£-0(m, p))(i(€ Rr)).
In the sequel zy denotes a non zero element of Rp.
Let us consider m, p, g, and zg. The functor yielding
a finite sequence of elements of Ry is defined by

(Def. 7) lenit = m and for every natural number ¢ such that ¢ € dom ¢t holds
it(i) = —g(i) - (powerg (20,%) - (F£-0(m, p))(0)).
The functor - yielding a finite sequence of elements of Ry
is defined by the term
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(Def 8) delta_l(ma b, g) + delta‘_2(m7 b9, ZO)'

The functor aelta(m,p, g)| yielding a finite sequence of elements of Z® is
defined by the term

(Def. 9) delta-1(m,p, g).

Now we state the propositions:

(33) Y. delta-1(m,p,g) € ZR.

PROOF: For every natural number ¢ such that i € dom(delta-1(m,p,g))
holds (delta-1(m, p, g))(i) € Z by [?, (30)]. O

(34) Let us consider a non zero polynomial g over ZR. Suppose deg(g) = m.
Let us consider a non zero element x of Rp. Then ) delta-2(m,p, g,z) =
9(0) - (F£-0(m, p))(0) — (ExtEval(g, z)) - (F £-0(m, p))(0).

PROOF: For every non zero element = of Ry, Y delta-2(m,p, g,x) = ¢(0) -
(F £-0(m, p))(0) — (ExtEval(g, z)) - (£ £-0(m, p))(0) by [18, (8)], 24, (72)],
(30), [2, (39), (22), (1)]. O

(35) S delta-1(m,p, g) € {p!(€ ZR)}-ideal. The theorem is a consequence of
(31).

(36) Let us consider an element x of Rr. Suppose 0 < x < m. Let us consider
a natural number i. Suppose i € Segm. Then |eval(~(x.(m,p)) ;, x)| <
mpP.

PROOF: Set F}; = Rp. Reconsider zg = —i as an element of F}. |(z9 + )| <
mP by [17, (9)]. O

(37) Let us consider an element = of Rp. Then eval(m@(T(O))p_ll, x) =P,

The theorem is a consequence of (3) and (4).

(38) (i) m™*! ExpSeqg is convergent, and
(ii) lim m™*! ExpSeqr = 0.
(39) Let us consider a non zero natural number M, and a non zero element z

of Rr. Suppose zy = e. Then there exists a natural number n; such that for

every natural number n such that n; < n holds | (mn:!—l) -0 < m

The theorem is a consequence of (38).
(40) Every Z-valued polynomial over Fg is a polynomial over ZR.

The following theorem corresponds to the equation (3) in [? ].
Now we state the proposition:

(41) Suppose e is algebraic. Then there exists a Z-valued polynomial g over
Fg such that

(i) g is irreducible, and
(ii) ExtEval(g, e(€ Rp)) =0, and
(iii) deg(g) > 2, and
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(iv) g(0) # Oy

PRrOOF: Consider x being an element of Cp such that z = e and z is inte-
gral over [Fg. Consider fo being an element of Polynom-Ring Fg such that
fo # 0.Fg and {fo}-ideal = AnnPoly(z,Fg) and fy = NormPoly fy. Con-
sider f being a polynomial over Fg such that fo = f and ExtEval(f,z) =
Ocp. Reconsider m = []denomi-seq(fp) as a non zero natural number.
Reconsider Uy = m - fo as an element of the carrier of Polynom-Ring Fg.
rmg Up C Z by [23, (27)], [?, (10)]. O

Now we state the proposition:

(42) e is transcendental.

1]
2]
3]

Proor: Consider g being a Z-valued polynomial over Fg such that g is
irreducible and ExtEval(g, e(€ Rp)) = 0 and deg(g) > 2 and g(0) # Op,.
Reconsider go = ¢ as a polynomial over Z®. Reconsider gy = ¢ as a non
zero polynomial over Z®. Reconsider mg = deg(go) as a positive natural
number. Reconsider zy = e as a non zero element of Rr. Consider My being
a natural number such that for every natural number 7, |go(i)| < M. Con-
sider n1 being a natural number such that for every natural number n such
that ny < n holds |(m0720!+1) 0] < 3 1 g7+ Consider py be-

-(mo-Mo-mo™0 (2o
ing a prime number such that n; —I—mo—i—Mo <p1->. delta(mo,pl, 90, 20) =
E delta'l(mOapb gO)+Z delta'Q(mOa P1; 9o, ZO) by [187 (7)] E delta'l(m07pla gO) S
Z®R. Consider u being an element of Z® such that (Ff-0(mg,p1))(0) =
(b1~ DL ((~1)™ - (moD) (€ ZR)) + pal(€ ZR) -, 202mo o) i

an element of Z® and Zdelta(_;l(:nfiﬁl’go’m) = (((=1)™ - (mg"))" (€ Z*) +

p1-u) - go(0) by (34), [7, (1)], [23, (1)], [I8, (19)]. >_ delta-1(mo,p1,90) €
{p1!(€ ZR)}-ideal. Consider v being an element of Z® such that 3" delta-1(mq, p1, go)

' R\ . > delta-1(mo,p1,90) ] > delta(mo,p1,90,20) R
pl(e Z%) - v. (p1—"1)! = D ) (p1—"1)! € Z* and
>~ delta(mo,p1,90,20) _ > delta~1(mo,p1,90) Zdelta— (mo,p1,90,70) | delta(mo,p1,90,20) <
(p1—"1)! o (p1—"1)! T (p1—"1)! y | <

(p1—"1)!

. delta(mo,p1,90,2
L by [20, (11)], [I6, (5)). 2=2mep000) _ gy 1 (14)). O
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