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Summary. This article is continuation of [? ] and we formalize the main
part of Hurwitz’s proof [10] using the Mizar formalism [3], [4]. For related proof
developments in Coq or HOL Light, see [? ] and [5], respectively. The following
is a summary of the formalized proof:
In the first chapter we define a polynomial f0 over Z and observe properties of
f0. It is defined by f0(x) = xp−1(x− 1)p(x− 2)p · · · (x−m)p, where p is an odd
prime number and m + 1 is the number of component of the products. The f0
is defined as E_TRANS2:def 5. The component (x− j)(j=0,1,...,m) are represented
by τ(j) in the article and obtain:

f0 = τ(0)p−1
m∏
j=1

τ(j)p

The second chapter is about properties of f0 and F (f0) where F is introduced [?
], the transformation F (f) = f + f ′ + f ′′ + · · ·+ f (deg f).
We observe kth differentiation of the f0 and evaluate by a number j. The following
number-theoretical properties are obtained:

1.
∏m
j=1 τ(j)p(0) = (((−1)|m) ∗ (m!))|p (E_TRANS2:17),

2. f (k)0 (0) = 0 if 0 ¬ k ¬ p− 2 (E_TRANS2:18),

3. f (k)0 (0) = k!(
∏m
j=1 τ(j))(k − p+ 1) if p ¬ k (E TRANS2 : 24),

4. f (k)0 (j) = 0 if k ¬ p, 1 ¬ j ¬ m (E TRANS2 : 26),

5. f (k)0 = τ(j)u+ p!v (∃u, v ∈ Z[X]) if p ¬ k, 1 ¬ j ¬ m (E TRANS2 : 30),

6. f (k)0 (j) ∈ (p!) if p ¬ k, 1 ¬ j ¬ m (E TRANS2 : 32).

We denote F for F (f0) for simplicity.

7. F(0) = (p− 1)!(((−1)|m) ∗ (m!))|p + p!u (∃u ∈ Z[X]) (E TRANS2 : 33),

8. F(j) ∈ (p!) if 1 ¬ j ¬ m (E TRANS2 : 34),
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We then obtain an equation system shown as below: where Ci stands for
coefficient of the iith coefficient of g0. This is based on the equation system (4)
stated in Hurwitz’s proof [10].

1
(p−1)!C0F(0) − 1

(p−1)!C0e
0F(0) = 1

(p−1)!C0ε0
1

(p−1)!C1F(1) − 1
(p−1)!C1e

1F(0) = 1
(p−1)!C1ε1

...
...

...
1

(p−1)!CmF(m) − 1
(p−1)!Cme

mF(0) = 1
(p−1)!Cmεm

where each equation is a product of ith coefficient of g0 and F(i) − exF(i)(=
−ie(i−ϑ)if0(ϑi)) which is from the result of the mean value theorem to exF(x).
In actual coding the sequence CmF(m) and (p− 1)!CmemF(0) are defined as
delta 1 and delta 2 respectively.
We have new equation by adding each term of the equation system vertically:

1
(p− 1)!

m∑
i=1

CiF(i) − 1
(p− 1)!

m∑
i=1

Cie
iF(0) =

1
(p− 1)!

m∑
i=1

Ciεi

One can verify and formalize that the left hand side is not divided by p, because
the first term of p| 1

(p−1)!ΣCiF(i) and p 6 | 1
(p−1)!Σe

iCiF(0). The right-hand side
is a member of Z and bounded by 1/2 by choosing sufficiently large p, this means
it is 0. This contradicts the left-hand side nature. Therefore e is transcendental
number.
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1. Preliminaries

From now on R denotes an integral domain, p denotes an odd, prime natural
number, and m denotes a positive natural number.

Now we state the propositions:

(1) Let us consider a natural number i, and an element r of RF. Then
∑

(i 7→
r) = i · r.
Proof: Define P[natural number] ≡

∑
($1 7→ r) = $1 ·r. For every natural

number i such that P[i] holds P[i + 1] by [6, (60)], [24, (71)], [18, (13),
(15)]. For every natural number i, P[i] from [1, Sch. 2]. �

(2) Let us consider sequences p1, q1 of ZR. Then (p1 ∗ q1)(0) = p1(0) · q1(0).

http://zbmath.org/classification/?q=cc:11J81
http://zbmath.org/classification/?q=cc:68V20
http://fm.mizar.org/miz/e_trans2.miz
http://ftp.mizar.org/
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2. On the Ring of Polynomials

Now we state the propositions:

(3) Let us consider an element f of the carrier of Polynom-Ring ZR, and
a natural number n. Then @fn = (@f)n.

Proof: Define P[natural number] ≡ @f$1 = (@f)$1 . P[0] by [18, (8)]. For
every natural number k such that P[k] holds P[k+ 1] by [18, (10), (8)], [?
, (27)]. For every natural number k, P[k] from [1, Sch. 2]. �

(4) Let us consider an element f of the carrier of Polynom-RingR, and
a natural number n. Then xfn = (xf)n.
Proof: Define P[natural number] ≡ xf$1 = (xf)$1 . For every natural
number k such that P[k] holds P[k + 1] by [18, (10), (8)], [14, (19)]. For
every natural number k, P[k] from [1, Sch. 2]. �

(5) Let us consider a natural number n, and an element f of the carrier of
Polynom-Ring ZR. Then n · f = n(∈ ZR) · f .
Proof: Define P[natural number] ≡ $1 · f = $1(∈ ZR) · f . For every
natural number k such that P[k] holds P[k + 1] by [9, (9), (7)], [18, (13),
(15)]. For every natural number k, P[k] from [1, Sch. 2]. �

(6) Let us consider an element M of RF, and a finite sequence F of elements
of RF. Suppose for every natural number i such that i ∈ domF holds
|F (i)| ¬M . Then |

∏
F | ¬M lenF .

Proof: Define P[natural number] ≡ for every finite sequence F of ele-
ments of RF such that lenF = $1 and for every natural number i such
that i ∈ domF holds |F (i)| ¬M holds |

∏
F | ¬M lenF . P[0] by [24, (80)],

[18, (8)]. For every natural number n such that P[n] holds P[n+ 1] by [7,
(29)], [1, (11)], [2, (1)], [24, (78)]. For every natural number n, P[n] from
[1, Sch. 2]. �

Let p be a polynomial over ZR. Observe that the functor |p| yields a sequence
of ZR and is defined by

(Def. 1) for every natural number n, it(n) = |p(n)|.
Note that |p| is finite-Support as a (the carrier of ZR)-valued function.
In the sequel g denotes a non zero polynomial over ZR.
Let us consider g. One can verify that rng |g| is finite.
Now we state the proposition:

(7) Let us consider a non zero polynomial g over ZR. Then there exists
a natural number M such that for every natural number i, |g(i)| ¬M .
Proof: rng |g| ⊆ N. Reconsider S = rng |g| as a finite, non empty,
natural-membered set. Reconsider M = maxS as a natural number. For
every natural number i, |g(i)| ¬M by [8, (3)]. �
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3. The Polynomial f0 and Its Properties

Let i be a natural number. The functor τ(i) yielding an element of the carrier
of Polynom-Ring ZR is defined by the term

(Def. 2) 〈(−i)(∈ ZR), 1ZR〉.
Let p be a non zero natural number and m be a natural number. The functor

x.(m, p) yielding a finite sequence of elements of the carrier of Polynom-Ring ZR
is defined by

(Def. 3) len it = m and for every natural number i such that i ∈ dom it holds
it(i) = (τ(i))p.

Let p be an odd, prime natural number and m be a positive natural number.
The functor ff-0(m, p) yielding a finite sequence of elements of the carrier of

Polynom-Ring ZR is defined by the term

(Def. 4) x.(m, p) a 〈(τ(0))p−
′1〉.

The functor f-0(m, p) yielding an element of the carrier of Polynom-Ring ZR
is defined by the term

(Def. 5)
∏

ff-0(m, p).

Now we state the propositions:

(8) Let us consider natural numbers i, n. Then lenx(τ(i))n = n+ 1.

(9) Let us consider elements f , g of the carrier of Polynom-Ring ZR. Suppose
(lenxf) · (lenxg) 6= 0. Then lenxf · g = lenxf + lenxg − 1.

(10) Let us consider a non zero natural number k, and an odd, prime natural
number p. Then

(i) x.(k, p) a 〈(τ(k + 1))p〉 = x.(k + 1, p), and

(ii)
∏

x.(k + 1, p) = (
∏

x.(k, p)) · (τ(k + 1))p.

Proof: x.(k, p)a 〈(τ(k + 1))p〉 = x.(k+1, p) by [6, (16)], [2, (9)], [1, (19)],
[2, (5), (3)]. �

Let us consider an odd, prime natural number p and a positive natural
number m. Now we state the propositions:

(11) lenx
∏

x.(m, p) = m · p+ 1.
Proof: Define P[non zero natural number] ≡ lenx

∏
x.($1, p) = $1 ·p+1.

P[1] by [2, (40)], [22, (11)], (8). For every non zero natural number k such
that P[k] holds P[k+ 1]. For every non zero natural number k, P[k] from
[1, Sch. 10]. �

(12) lenxf-0(m, p) = m · p + p. The theorem is a consequence of (11), (8),
and (9).

Now we state the propositions:
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(13) Let us consider a natural number i. Then (Der1(ZR))(τ(i)) = 1Polynom-RingZR .

(14) Let us consider an element f of the carrier of Polynom-Ring ZR, and
a natural number i. Then

(i) (τ(0) ∗ f)(i+ 1) = f(i), and

(ii) (τ(0) ∗ f)(0) = 0ZR .

Proof: For every natural number i, (τ(0) ∗ f)(i + 1) = f(i) and (τ(0) ∗
f)(0) = 0ZR by [14, (16)], [19, (12)], [23, (31)]. �

From now on f denotes an element of the carrier of Polynom-Ring ZR.
Now we state the propositions:

(15) Let us consider an odd, prime natural number p, and a positive natural
number m. Then

(i) len x.(m, p) = m, and

(ii) len ff-0(m, p) = m+ 1, and

(iii) (ff-0(m, p))(len x.(m, p) + 1) = (τ(0))p−
′1.

(16) Let us consider an odd, prime natural number p, a positive natural
number m, and a natural number k. Suppose 0 ¬ k ¬ p − 1. Let us
consider natural numbers i, j. Suppose i ∈ Seg(k + 1). Then τ(j) |
(LBZ(Der1(ZR), k,

∏
(ff-0(m, p))�j , (τ(j))p))/i.

Proof: Set D = Der1(ZR). For every natural numbers i, j such that
i ∈ Seg(k + 1) holds τ(j) | (LBZ(D, k,

∏
(ff-0(m, p))�j , (τ(j))p))/i by (13),

[15, (19)], [18, (8)], [2, (1)]. �

(17) Let us consider an odd, prime natural number p, and a positive natural
number m. Then (x

∏
x.(m, p))(0) = ((−1)m · (m!))p.

Proof: Define P[natural number] ≡ (x
∏

x.($1, p))(0) = ((−1)$1 · ($1!))
p
.

P[1] by [2, (40)], [22, (11)], [13, (13)]. For every non zero natural number
k such that P[k] holds P[k + 1] by (10), (2), [13, (7), (6), (15)]. For every
non zero natural number k, P[k] from [1, Sch. 10]. �

Let us consider an odd, prime natural number p, a positive natural number
m, and a natural number k. Now we state the propositions:

(18) If 0 ¬ k ¬ p−′ 2, then (Der1(ZR))k(f-0(m, p))(0) = 0ZR .

(19) Suppose 0 ¬ k ¬ p−′2. Then eval(x(Der1(ZR))k(f-0(m, p)), 0ZR) = 0ZR .
The theorem is a consequence of (18).

Now we state the propositions:

(20) Let us consider an odd, prime natural number p, and a positive natu-

ral number m. Then eval(x(Der1(ZR))p−
′1(f-0(m, p)), 0ZR) = (p −′ 1)! ·

(((−1)m · (m!))p(∈ ZR)). The theorem is a consequence of (17).
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(21) Let us consider an odd, prime natural number p, a positive natural
number m, and a non zero natural number k. Suppose p ¬ k. Then
eval(x(Der1(ZR))k(f-0(m, p)), 0ZR) = k! · (x

∏
x.(m, p))(k −′ (p−′ 1)).

(22) Let us consider a natural number j, and an element u of the carrier of
Polynom-Ring ZR. Then eval(x(τ(j)) · u, j(∈ ZR)) = 0ZR .

(23) Let us consider an odd, prime natural number p, a positive natural num-
ber m, and natural numbers k, j. Suppose k < p and j ∈ Segm. Then
eval(x(Der1(ZR))k(f-0(m, p)), j(∈ ZR)) = 0ZR . The theorem is a conse-
quence of (16) and (22).

(24) Let us consider a natural number i. Then (Der1(ZR))(τ(i)) = 1Polynom-RingZR .

(25) Let us consider an odd, prime natural number p, a positive natural
number m, and natural numbers j, k. Suppose j ∈ Segm and p ¬ k.
Let us consider a natural number i. Suppose i ∈ Seg p. Then τ(j) |
(LBZ(Der1(ZR), k,

∏
(ff-0(m, p))�j , (τ(j))p))/i.

Proof: For every natural number i such that i ∈ Seg p holds τ(j) |
(LBZ(Der1(ZR), k,

∏
(ff-0(m, p))�j , (τ(j))p))/i by [2, (1)], (24), [15, (19)],

[18, (8)]. �

(26) Let us consider an odd, prime natural number p, a positive natural num-
ber m, natural numbers k, j, and a natural number i. Suppose p+1 < i and
i ∈ dom(LBZ(Der1(ZR), k,

∏
(ff-0(m, p))�j , (τ(j))p)). Then (LBZ(Der1(ZR), k,

∏
(ff-0(m, p))�j , (τ(j))p))/i =

0Polynom-RingZR .
Proof: SetD = Der1(ZR). Set P1 = Polynom-Ring ZR. Set x1 = τ(j). Set
y1 =

∏
(ff-0(m, p))�j . 1P1 = D(x1). For every natural number i such that

p + 1 < i and i ∈ dom(LBZ(D, k, y1, x1p)) holds (LBZ(D, k, y1, x1p))/i =
0P1 by [2, (1)], [? , (21)]. �

(27) Let us consider an odd, prime natural number p, a positive natural num-
ber m, and natural numbers k, j. Suppose j ∈ Segm and p ¬ k. Then
there exist elements u, v of the carrier of Polynom-Ring ZR such that
(Der1(ZR))k(f-0(m, p)) = (τ(j)) · u+ p! · v.
Proof: Set D = Der1(ZR). Set P1 = Polynom-Ring ZR. Set t1 = τ(j). Set
j =
∏

(ff-0(m, p))�j . 1P1 = D(t1). Reconsider l3 = LBZ(D, k, j, t1p) as a non
empty finite sequence of elements of the carrier of Polynom-Ring ZR. Set
l4 = l3�p. For every natural number i such that i ∈ Seg p holds τ(j) | l4/i
by [2, (1)], [8, (49)], (25). Consider u being an element of P1 such that∑
l4 = (τ(j)) · u. Set k2 = k + 1 −′ (p + 1). For every natural number i1

such that i1 ∈ dom(l3�p+1) holds (l3�p+1)/i1 = 0P1 by [2, (1)], [7, (27)],
(26). l3�p+1 = k2 7→ 0P1 by [6, (57)]. �

(28) Let us consider an element u of the carrier of Polynom-Ring ZR, and
elements a, b of ZR. Then eval(a · (xu), b) ∈ {a}–ideal.
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(29) Let us consider an odd, prime natural number p, a positive natural num-
ber m, and natural numbers k, j. Suppose j ∈ Segm and p ¬ k. Then
eval(x(Der1(ZR))k(f-0(m, p)), j(∈ ZR)) ∈ {p!(∈ ZR)}–ideal. The theorem
is a consequence of (27), (22), (5), and (28).

Now we state the propositions:

(30) Now we apply the polynomial transformation ’F’ to f 0.:
Let us consider an odd, prime natural number p, and a positive natural
numberm. Then there exists an element u of ZR such that (F f-0(m, p))(0) =
(p−′ 1)! · (((−1)m · (m!))p(∈ ZR)) + p!(∈ ZR) · u.
Proof: Set G3 = G f-0(m, p). Set p1 = p −′ 1. eval(G3�(p −′ 1), 0ZR) =
p1 7→ 0ZR by [2, (1)], [21, (25)], [8, (49)], (19). For every natural number
j such that j ∈ dom(eval(G3�p, 0ZR)) holds (eval(G3�p, 0ZR))(j) ∈ {p!(∈
ZR)}–ideal by [2, (1)], [11, (6)], (21), [12, (18), (19)]. Consider u being
an element of ZR such that (Eval(x@

∑
G3�p))(0) = p!(∈ ZR) · u. �

(31) Let us consider an odd, prime natural number p, a positive natural num-
berm, and a natural number j. Suppose j ∈ Segm. Then (F f-0(m, p))(j(∈
RF)) ∈ {p!(∈ ZR)}–ideal.
Proof: Set G3 = G f-0(m, p). eval(G3�p, j(∈ ZR)) = p 7→ 0ZR by [2,
(1)], [21, (25)], [8, (49)], (23). For every natural number k such that
k ∈ dom(eval(G3�p, j(∈ ZR))) holds (eval(G3�p, j(∈ ZR)))(k) ∈ {p!(∈
ZR)}–ideal by [2, (1)], (29). �

4. The Main Part of the Proof

Now we state the proposition:

(32) Let us consider an element x of RF. Then (Eval(x@f-0(m, p)))(x) =
(eval(x@

∏
x.(m, p), x)) · (eval(x@(τ(0))p−

′1, x)).

Let us consider m, p, and g. The functor delta-1(m, p, g) yielding a finite
sequence of elements of RF is defined by

(Def. 6) len it = m and for every natural number i such that i ∈ dom it holds
it(i) = g(i) · (F f-0(m, p))(i(∈ RF)).

In the sequel z0 denotes a non zero element of RF.
Let us consider m, p, g, and z0. The functor delta-2(m, p, g, z0) yielding

a finite sequence of elements of RF is defined by

(Def. 7) len it = m and for every natural number i such that i ∈ dom it holds
it(i) = −g(i) · (powerRF(z0, i) · (F f-0(m, p))(0)).

The functor delta(m, p, g, z0) yielding a finite sequence of elements of RF
is defined by the term
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(Def. 8) delta-1(m, p, g) + delta-2(m, p, g, z0).

The functor d̂elta(m, p, g) yielding a finite sequence of elements of ZR is
defined by the term

(Def. 9) delta-1(m, p, g).

Now we state the propositions:

(33)
∑

delta-1(m, p, g) ∈ ZR.
Proof: For every natural number i such that i ∈ dom(delta-1(m, p, g))
holds (delta-1(m, p, g))(i) ∈ Z by [? , (30)]. �

(34) Let us consider a non zero polynomial g over ZR. Suppose deg(g) = m.
Let us consider a non zero element x of RF. Then

∑
delta-2(m, p, g, x) =

g(0) · (F f-0(m, p))(0)− (ExtEval(g, x)) · (F f-0(m, p))(0).
Proof: For every non zero element x of RF,

∑
delta-2(m, p, g, x) = g(0) ·

(F f-0(m, p))(0)− (ExtEval(g, x)) · (F f-0(m, p))(0) by [18, (8)], [24, (72)],
(30), [2, (39), (22), (1)]. �

(35)
∑

delta-1(m, p, g) ∈ {p!(∈ ZR)}–ideal. The theorem is a consequence of
(31).

(36) Let us consider an element x of RF. Suppose 0 < x ¬ m. Let us consider
a natural number i. Suppose i ∈ Segm. Then | eval(x@(x.(m, p))/i, x)| ¬
mp.
Proof: Set F1 = RF. Reconsider z0 = −i as an element of F1. |(z0 + x)p| ¬
mp by [17, (9)]. �

(37) Let us consider an element x of RF. Then eval(x@(τ(0))p−
′1, x) = xp−

′1.
The theorem is a consequence of (3) and (4).

(38) (i) mm+1 ExpSeqR is convergent, and

(ii) limmm+1 ExpSeqR = 0.

(39) Let us consider a non zero natural number M , and a non zero element z0
of RF. Suppose z0 = e. Then there exists a natural number n1 such that for
every natural number n such that n1 ¬ n holds | (m

m+1)n

n! −0| < 1
2·(M ·(z0m)) .

The theorem is a consequence of (38).

(40) Every Z-valued polynomial over FQ is a polynomial over ZR.

The following theorem corresponds to the equation (3) in [? ].
Now we state the proposition:

(41) Suppose e is algebraic. Then there exists a Z-valued polynomial g over
FQ such that

(i) ĝ is irreducible, and

(ii) ExtEval(g, e(∈ RF)) = 0, and

(iii) deg(g) ­ 2, and
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(iv) g(0) 6= 0FQ .

Proof: Consider x being an element of CF such that x = e and x is inte-
gral over FQ. Consider f0 being an element of Polynom-Ring FQ such that
f0 6= 0.FQ and {f0}–ideal = AnnPoly(x,FQ) and f0 = NormPoly f0. Con-
sider f being a polynomial over FQ such that f0 = f and ExtEval(f, x) =
0CF . Reconsider m =

∏
denomi-seq(f0) as a non zero natural number.

Reconsider f0 = m · f0 as an element of the carrier of Polynom-Ring FQ.
rng f0 ⊆ Z by [23, (27)], [? , (10)]. �

Now we state the proposition:

(42) e is transcendental.
Proof: Consider g being a Z-valued polynomial over FQ such that ĝ is
irreducible and ExtEval(g, e(∈ RF)) = 0 and deg(g) ­ 2 and g(0) 6= 0FQ .
Reconsider g0 = g as a polynomial over ZR. Reconsider g0 = g as a non
zero polynomial over ZR. Reconsider m0 = deg(g0) as a positive natural
number. Reconsider z0 = e as a non zero element of RF. Consider M0 being
a natural number such that for every natural number i, |g0(i)| ¬M0. Con-
sider n1 being a natural number such that for every natural number n such
that n1 ¬ n holds | (m0

m0+1)n

n! −0| < 1
2·(m0·M0·m0m0+1·(z0m0 )) . Consider p1 be-

ing a prime number such that n1+m0+M0 < p1.
∑

delta(m0, p1, g0, z0) =∑
delta-1(m0, p1, g0)+

∑
delta-2(m0, p1, g0, z0) by [18, (7)].

∑
delta-1(m0, p1, g0) ∈

ZR. Consider u being an element of ZR such that (F f-0(m0, p1))(0) =

(p1−′ 1)! ·(((−1)m0 · (m0!))p1(∈ ZR))+p1!(∈ ZR) ·u.
∑
delta-2(m0,p1,g0,z0)
(p1−′1)! is

an element of ZR and
∑
delta-2(m0,p1,g0,z0)
(p1−′1)! = (((−1)m0 · (m0!))p1(∈ ZR) +

p1 · u) · g0(0) by (34), [? , (1)], [23, (1)], [18, (19)].
∑

delta-1(m0, p1, g0) ∈
{p1!(∈ ZR)}–ideal. Consider v being an element of ZR such that

∑
delta-1(m0, p1, g0) =

p1!(∈ ZR) · v.
∑
delta-1(m0,p1,g0)
(p1−′1)! = p1 · v.

∑
delta(m0,p1,g0,z0)
(p1−′1)! ∈ ZR and∑

delta(m0,p1,g0,z0)
(p1−′1)! =

∑
delta-1(m0,p1,g0)
(p1−′1)! +

∑
delta-2(m0,p1,g0,z0)
(p1−′1)! . |

∑
delta(m0,p1,g0,z0)
(p1−′1)! | ¬

1
2 by [20, (11)], [16, (5)].

∑
delta(m0,p1,g0,z0)
(p1−′1)! = 0 by [1, (14)]. �

References

[1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathe-
matics, 1(1):41–46, 1990.

[2] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite
sequences. Formalized Mathematics, 1(1):107–114, 1990.

[3] Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Ma-
tuszewski, Adam Naumowicz, Karol Pąk, and Josef Urban. Mizar: State-of-the-art and
beyond. In Manfred Kerber, Jacques Carette, Cezary Kaliszyk, Florian Rabe, and Vol-
ker Sorge, editors, Intelligent Computer Mathematics, volume 9150 of Lecture Notes in
Computer Science, pages 261–279. Springer International Publishing, 2015. ISBN 978-3-
319-20614-1. doi:10.1007/978-3-319-20615-8 17.

http://fm.mizar.org/1990-1/pdf1-1/nat_1.pdf
http://fm.mizar.org/1990-1/pdf1-1/finseq_1.pdf
http://fm.mizar.org/1990-1/pdf1-1/finseq_1.pdf
http://dx.doi.org/10.1007/978-3-319-20615-8_17
http://dx.doi.org/10.1007/978-3-319-20615-8_17
http://dx.doi.org/10.1007/978-3-319-20615-8_17


130 yasushige watase

[4] Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Ma-
tuszewski, Adam Naumowicz, and Karol Pąk. The role of the Mizar Mathematical Library
for interactive proof development in Mizar. Journal of Automated Reasoning, 61(1):9–32,
2018. doi:10.1007/s10817-017-9440-6.

[5] Jesse Bingham. Formalizing a proof that e is transcendental. Journal of Formalized
Reasoning, 4:71–84, 2011.

[6] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized
Mathematics, 1(3):529–536, 1990.

[7] Czesław Byliński. Some properties of restrictions of finite sequences. Formalized Mathe-
matics, 5(2):241–245, 1996.

[8] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):
55–65, 1990.

[9] Ewa Grądzka. The algebra of polynomials. Formalized Mathematics, 9(3):637–643, 2001.
[10] Adolf Hurwitz. Beweis der Transcendenz der Zahl e. Mathematische Annalen, 43:220–221,

1893.
[11] Artur Korniłowicz. Elementary number theory problems. Part VIII. Formalized Mathe-
matics, 31(1):87–100, 2023. doi:10.2478/forma-2023-0009.

[12] Artur Korniłowicz and Christoph Schwarzweller. The first isomorphism theorem and other
properties of rings. Formalized Mathematics, 22(4):291–301, 2014. doi:10.2478/forma-
2014-0029.

[13] Rafał Kwiatek. Factorial and Newton coefficients. Formalized Mathematics, 1(5):887–890,
1990.

[14] Robert Milewski. Fundamental theorem of algebra. Formalized Mathematics, 9(3):461–
470, 2001.

[15] Karol Pąk. Eigenvalues of a linear transformation. Formalized Mathematics, 16(4):289–
295, 2008. doi:10.2478/v10037-008-0035-x.

[16] Jan Popiołek. Some properties of functions modul and signum. Formalized Mathematics,
1(2):263–264, 1990.

[17] Konrad Raczkowski. Integer and rational exponents. Formalized Mathematics, 2(1):125–
130, 1991.

[18] Christoph Schwarzweller. The binomial theorem for algebraic structures. Formalized
Mathematics, 9(3):559–564, 2001.

[19] Christoph Schwarzweller. On roots of polynomials over F [X]/〈p〉. Formalized Mathema-
tics, 27(2):93–100, 2019. doi:10.2478/forma-2019-0010.

[20] Yasunari Shidama. The Taylor expansions. Formalized Mathematics, 12(2):195–200, 2004.
[21] Wojciech A. Trybulec. Non-contiguous substrings and one-to-one finite sequences. For-
malized Mathematics, 1(3):569–573, 1990.

[22] Wojciech A. Trybulec. Binary operations on finite sequences. Formalized Mathematics, 1
(5):979–981, 1990.

[23] Yasushige Watase. Derivation of commutative rings and the Leibniz formula for power of
derivation. Formalized Mathematics, 29(1):1–8, 2021. doi:10.2478/forma-2021-0001.

[24] Katarzyna Zawadzka. The sum and product of finite sequences of elements of a field.
Formalized Mathematics, 3(2):205–211, 1992.

Accepted November 17, 2024

https://doi.org/10.1007/s10817-017-9440-6
https://doi.org/10.1007/s10817-017-9440-6
http://dx.doi.org/10.1007/s10817-017-9440-6
http://fm.mizar.org/1990-1/pdf1-3/finseq_2.pdf
http://fm.mizar.org/1996-5/pdf5-2/finseq_5.pdf
http://fm.mizar.org/1990-1/pdf1-1/funct_1.pdf
http://fm.mizar.org/2001-9/pdf9-3/polyalg1.pdf
http://eudml.org/doc/157680
http://dx.doi.org/10.2478/forma-2023-0009
http://dx.doi.org/10.2478/forma-2014-0029
http://dx.doi.org/10.2478/forma-2014-0029
http://fm.mizar.org/1990-1/pdf1-5/newton.pdf
http://fm.mizar.org/2001-9/pdf9-3/polynom5.pdf
http://dx.doi.org/10.2478/v10037-008-0035-x
http://fm.mizar.org/1990-1/pdf1-2/absvalue.pdf
http://fm.mizar.org/1991-2/pdf2-1/prepower.pdf
http://fm.mizar.org/2001-9/pdf9-3/binom.pdf
http://dx.doi.org/10.2478/forma-2019-0010
http://fm.mizar.org/2004-12/pdf12-2/taylor_1.pdf
http://fm.mizar.org/1990-1/pdf1-3/finseq_3.pdf
http://fm.mizar.org/1990-1/pdf1-5/finsop_1.pdf
http://dx.doi.org/10.2478/forma-2021-0001
http://fm.mizar.org/1992-3/pdf3-2/fvsum_1.pdf

	=0pt Formal Proof of Transcendence of the Number e. Part II  By Yasushige Watase  

