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Summary. In this article, we prove the transcendence of the number e
using the Mizar formalism [4], along with Hurwitz’s proof [11]. This subject has
been implemented over the past decade in other theorem provers, such as HOL
Light [6] and Coq [5]. This article prepares the necessary definitions and lemmas.
The main body of the proof will be presented separately.
At the beginning, we formalize a lemma about algebraic numbers, namely for
a polynomial over Z which has a root equal to e, if suppose e is algebraic, in
another word e is not transcendental number as theorem. (see E_TRANS2:41). It
corresponds to the equation (3) of [11].

Then, we define a polynomial transformation F . For a polynomial f over Q
with degree r, we introduce a functor: (see E_TRANS1:def 11)

F : f(x) 7→ f(x) + f ′(x) + f ′′(x) + · · ·+ f (r)(x)

In Hurwitz’s proof he defines F (x) = f(x) + f ′(x) + f ′′(x) + · · · + f (r)(x) as
equation (1) in [11]. In the actual formalization for constructing F we generate
a finite sequence of polynomials defined by G = {f (i)(x)}, then F is formalized
as the summation of it, namely F = SumG. Since higher order derivations for a
ring have been implemented in [30], we are able to formalize ith component of G.
Then we apply the mean value theorem to exF (x) on an interval and formalize
the following equation quoted as equation (2) in [11]: (see E_TRANS1:34)

F (x)− exF (0) = −xe(1−ϑ)xf(ϑx).

The rest of the section is devoted to preparing lemmas to define the particular
polynomial f(x) = 1

(p−1)!x
p−1(1−x)p(2−x)p · · · (n−x)p which play an important

role of the main proof.
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1. Preliminaries

From now on n, k denote natural numbers, L denotes a commutative ring,
R denotes an integral domain, and x0 denotes a positive real number.

The functor 1
expR

yielding a function from R into R is defined by the term

(Def. 1) 1
the function exp .

One can verify that 1
expR

is differentiable as a function from R into R and
the function exp is differentiable as a function from R into R.

Now we state the propositions:

(1) Let us consider natural numbers n, m, and an element b of R. Then
(n ·m) · b = n · (m · b).
Proof: Define P[natural number] ≡ ($1 ·m) · b = $1 · (m · b). For every
natural number n such that P[n] holds P[n + 1] by [22, (15), (13)]. For
every natural number n, P[n] from [2, Sch. 2]. �

(2) Let us consider finite sequences F , G of elements of RF. Suppose lenF =
lenG and for every natural number i such that i ∈ domF holds F (i) ¬
G(i). Then

∑
F ¬

∑
G.

Proof:
∑
F ¬

∑
G by [3, (4), (59)], [2, (11)], [3, (5)]. �

Now we state the propositions:

(3) Generalization of ZMATRLIN:42:
Let us consider an ideal I of L, and a finite sequence F of elements of L.
Suppose for every natural number i such that i ∈ domF holds F (i) ∈ I.
Then

∑
F ∈ I.

Proof: Define P[natural number] ≡ for every finite sequence F of ele-
ments of L such that lenF = $1 and for every natural number i such that
i ∈ domF holds F (i) ∈ I holds

∑
F ∈ I. P[0] by [29, (43)], [1, (2)]. For

every natural number n such that P[n] holds P[n+ 1] by [3, (4), (59)], [2,
(11)], [3, (5)]. For every natural number n, P[n] from [2, Sch. 2]. �

(4) Let us consider an element a of L, and a non empty finite sequence p
of elements of the carrier of L. Suppose for every natural number j such
that j ∈ dom p holds a | p/j . Then a |

∑
p.

Proof: For every natural number i such that i ∈ dom p holds p(i) ∈
{a}–ideal by [13, (18)]. �

Let k, j be natural numbers. The functor ηk,j yielding an element of N is
defined by the term

(Def. 2) k!
(k−′j)! .

Now we state the proposition:

(5) Let us consider natural numbers k, j. If j ¬ k, then j! ·
(k
j

)
= ηk,j .
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Let R be a (ZR)-extending commutative ring and i be an integer. One can
verify that i(∈ R) reduces to i.

Now we state the propositions:

(6) Let us consider a natural number n, and an element f of the carrier of
Polynom-Ring FQ. Then n · f = n(∈ FQ) · f .
Proof: Define P[natural number] ≡ $1 · f = $1(∈ FQ) · f . P[0] by [17,
(26)], [22, (12)]. For every natural number k such that P[k] holds P[k+ 1]
by [10, (7)], [22, (13), (15)]. For every natural number k, P[k] from [2,
Sch. 2]. �

(7) Let us consider a natural number n, and elements f , g of L. If f | g,
then f | n · g.

Let R be an add-associative, right zeroed, right complementable, distribu-
tive, non empty double loop structure and f be an element of the carrier of
Polynom-RingR. The functor xf yielding a polynomial over R is defined by
the term

(Def. 3) f .

Let p be a polynomial over R. The functor p̂ yielding an element of the carrier
of Polynom-RingR is defined by the term

(Def. 4) p.

Observe that there exists a finite sequence of elements of FQ which is Z-
valued and 0.FQ is Z-valued and 1.FQ is Z-valued and there exists a polynomial
over FQ which is monic and Z-valued.

Now we state the proposition:

(8) Let us consider an element f of the carrier of Polynom-RingR. Then
rng f = f◦(Support f) ∪ {0R}.
Proof: For every object y such that y ∈ f◦(N \ (Support f)) holds y ∈
{0R}. For every object y such that y ∈ {0R} holds y ∈ f◦(N\ (Support f))
by [18, (8)]. �

Let f be an element of the carrier of Polynom-Ring FQ. The functor denomi-set(f)
yielding a non empty, finite subset of N is defined by the term

(Def. 5) (TRANQN)◦(rng f).

The functor denomi-seq(f) yielding a non empty finite sequence of elements
of N is defined by the term

(Def. 6) CFS(denomi-set(f)).

Now we state the propositions:

(9) Let us consider an element f of the carrier of Polynom-Ring FQ. Then∏
denomi-seq(f) is not zero.
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(10) Let us consider an element f of the carrier of Polynom-Ring FQ, and
a natural number i. Then

(i) den f(i) ∈ denomi-set(f), and

(ii) there exists an integer z such that z · (den f(i)) =
∏

denomi-seq(f).

(11) Let us consider fields K, L, and an element w of L. Suppose K is a sub-
ring of L and w is integral over K. Then AnnPoly(w,K) is maximal.

(12) Let us consider an element f of Polynom-Ring FQ, and a non zero natural
number n. If f is irreducible, then n · f is irreducible. The theorem is
a consequence of (7) and (6).

(13) Let us consider an element x of RF. Suppose x is irrational. Let us
consider a non zero polynomial g over FQ. If ExtEval(g, x) = 0, then
deg(g) ­ 2.

2. Some Properties of Algebraic Numbers

Now we state the proposition:

(14) Let us consider a polynomial g over FQ. Suppose deg(g) ­ 2 and ĝ is
irreducible. Then g(0) 6= 0FQ .
Proof: Reconsider g1 = NormPoly ĝ as a polynomial over FQ. g1(0) 6= 0FQ

by [17, (31)], [21, (50)], [17, (40)], [25, (30), (37)]. �

3. Constructing Polynomial Transformation ′F ′

Now we state the propositions:

(15) Let us consider a non degenerated integral domain L, a non zero natural
number n, and a non zero element a of L. If char(L) = 0, then n · a 6= 0L.

(16) Let us consider a commutative ring R, an element f of the carrier of
Polynom-RingR, and a natural number i. Suppose i ­ 1 and the length
of f is at most i and f(i− 1) 6= 0R. Then len f = i.
Proof: For every natural number i such that i ­ 1 and the length of f is
at most i and f(i− 1) 6= 0R holds len f = i by [2, (13)], [18, (8)]. �

(17) Let us consider an integral domain R, and an element f of the carrier of
Polynom-RingR. Suppose len f > 1 and char(R) = 0. Then len(Der1(R))(f) =
len f − 1.
Proof: Reconsider l1 = len f − 1 as a natural number. For every natural
number i such that i ­ l1 holds (Der1(R))(f)(i) = 0R by [18, (8)]. �
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(18) Let us consider an integral domain L, a derivation D of L, an element f
of the carrier of L, and natural numbers j, n. Then Dn(j · f) = j ·Dn(f).
Proof: For every element f of the carrier of L and for every natural
numbers j, n, Dn(j · f) = j ·Dn(f) by [19, (18)], [30, (9), (6)]. �

(19) Let us consider a natural number k, and an element f of the carrier
of Polynom-Ring ZR. Suppose (Der1(ZR))1(f1) = 1Polynom-RingZR . Let us

consider a natural number j. Suppose 1 ¬ j ¬ k. Then (Der1(ZR))j(fk) =
ηk,j · fk−

′j .
Proof: Set D = Der1(ZR). Define P[natural number] ≡ for every natural
number j such that 1 ¬ j ¬ $1 holds Dj(f$1) = η$1,j · f$1−

′j . For every
natural number k such that for every natural number n such that n < k

holds P[n] holds P[k] by [19, (19)], [30, (7)], [15, (15)], [19, (20)]. For every
natural number k, P[k] from [2, Sch. 4]. �

(20) Let us consider a natural number k, and an element f of the carrier
of Polynom-Ring ZR. Suppose (Der1(ZR))1(f1) = 1Polynom-RingZR . Then

(Der1(ZR))k(fk) = k! · (1Polynom-RingZR). The theorem is a consequence of
(19).

(21) Let us consider a natural number j. Suppose j > k. Let us consider
an element f of the carrier of Polynom-Ring ZR. Suppose (Der1(ZR))1(f1) =
1Polynom-RingZR . Then (Der1(ZR))j(fk) = 0Polynom-RingZR .
Proof: Set L = Polynom-Ring ZR. Set D = Der1(ZR). For every element
f of the carrier of L such thatD1(f1) = 1Polynom-RingZR holdsDj(fk) = 0L
by [26, (3)], [2, (14)], [19, (20)], [9, (15)]. �

(22) Let us consider an integral domain R, an element f of the carrier of
Polynom-RingR, a natural number k, and a natural number i. Then
(Der1(R))k(f)(i) = ηi+k,k · f(i+ k).
Proof: Set D = Der1(R). Define P[natural number] ≡ for every natural
number i for every natural number i, D$1(f)(i) = ηi+$1,$1 · f(i+ $1). For
every natural number k such that P[k] holds P[k+ 1] by [30, (9)], (1). For
every natural number i, D0(f)(i) = ηi+0,0 ·f(i+0) by [19, (18)], [22, (13)].
For every natural number k, P[k] from [2, Sch. 2]. �

(23) Let us consider a function h from R into R, and a finite sequence s of
elements of the carrier of R. If h is additive, then h(

∑
s) =

∑
h · s.

Proof: Define P[natural number] ≡ for every function h from R into R
for every finite sequence s of elements of R such that len s = $1 and h

is additive holds h(
∑
s) =

∑
h · s. P[0] by [29, (75)], [13, (6)], [31, (27)],

[29, (43)]. For every natural number n such that P[n] holds P[n + 1] by
[8, (3)], [3, (4), (59)], [2, (11)]. For every natural number n, P[n] from [2,
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Sch. 2]. �

(24) Let us consider an integral domain R, an element f of the carrier of
Polynom-RingR, and a natural number j. Suppose len f > j and char(R) =
0. Then len (Der1(R))j(f) = len f − j.
Proof: Reconsider l1 = len f − 1 as a natural number. Reconsider l3 =
len f − j as a natural number. Reconsider l4 = l3− 1 as a natural number.
Reconsider l5 =

(l4+j
l4

)
· (j!) as a natural number. ηl4+j,j =

(l4+j
j

)
· (j!).

(Der1(R))j(f)(l4) = l5 · f(l1). For every natural number i such that i ­ l3
holds (Der1(R))j(f)(i) = 0R by [18, (8)], (22). �

Let p be an element of the carrier of Polynom-Ring ZR. The functor @p
yielding an element of the carrier of Polynom-Ring RF is defined by the term

(Def. 7) p.

Let F be a finite sequence of elements of the carrier of Polynom-Ring ZR. The
functor @F yielding a finite sequence of elements of the carrier of Polynom-Ring RF
is defined by

(Def. 8) dom it = domF and for every natural number i such that i ∈ domF

holds it(i) = @F/i.

Let L be a commutative ring, F be a finite sequence of elements of the carrier
of Polynom-RingL, and x be an element of L. The functor eval(F, x) yielding
a finite sequence of elements of the carrier of L is defined by

(Def. 9) dom it = domF and for every natural number i such that i ∈ domF

holds it(i) = eval(xF/i, x).

Now we state the propositions:

(25) Let us consider a natural number N0, a commutative ring L, a finite
sequence F of elements of the carrier of Polynom-RingL, and an ele-
ment x of L. Suppose lenF = N0 + 1. Then eval(F, x) = eval(F �N0, x) a

〈eval(xF/ lenF , x)〉.
Proof: For every natural number k such that 1 ¬ k ¬ len eval(F, x) holds
(eval(F, x))(k) = (eval(F �N0, x) a 〈eval(xF/ lenF , x)〉)(k) by [3, (9)], [27,
(18)], [8, (47)], [3, (6), (4)]. �

(26) Let us consider a commutative ring L, a finite sequence F of elements of
the carrier of Polynom-RingL, and an element x of L. Then eval(x

∑
F, x) =∑

eval(F, x). The theorem is a consequence of (25).

(27) Let us consider elements p, q of the carrier of Polynom-Ring ZR. Then

(i) @(p+ q) = @p+ @q, and

(ii) @p · q = (@p) · (@q).
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Let f be an element of the carrier of Polynom-Ring ZR. The functor G f
yielding a finite sequence of elements of the carrier of Polynom-Ring ZR is defined
by

(Def. 10) len it = len f and for every natural number i such that i ∈ dom it holds

it(i) = (Der1(ZR))i−
′1(f).

Now we state the propositions:

(28) Let us consider a finite sequence F of elements of the carrier of Polynom-Ring ZR,
an element x of ZR, and an element x1 of RF. If x = x1, then eval(@F, x1) =
eval(F, x).
Proof: For every natural number i such that i ∈ dom(eval(@F, x1)) holds
(eval(@F, x1))(i) = (eval(F, x))(i) by [8, (3)], [23, (27)]. �

(29) Let us consider a finite sequence F of elements of the carrier of Polynom-Ring ZR.
Then

∑@F = @
∑
F . The theorem is a consequence of (27).

(30) Let us consider an element x0 of ZR, an element x of RF, and a finite
sequence F of elements of the carrier of Polynom-Ring ZR. Suppose x = x0.
Then (Eval(x@

∑
F ))(x) =

∑
eval(F, x0). The theorem is a consequence

of (28), (29), and (26).

The Definition below corresponds to the Transformation (1) in [? ]
Let f be an element of the carrier of Polynom-Ring ZR. The functor F f

yielding a function from R into R is defined by the term

(Def. 11) Eval(x@
∑
G f).

4. Construct the Equation (2) in [11]

Now we state the proposition:

(31) Let us consider an element p of the carrier of Polynom-Ring RF. Then
Eval(xp) ‘| = Eval(x(Der1(RF))(p)).
Proof: Set D1 = Der1(RF). Define P[natural number] ≡ for every ele-
ment p of the carrier of Polynom-Ring RF such that lenxp ¬ $1 holds
Eval(xp) ‘| = Eval(xD1(p)). P[0] by [16, (5)], [24, (58)], [12, (52), (54)].
If P[n], then P[n + 1] by [12, (36)], [16, (3)], [12, (37), (55), (14)]. P[n]
from [2, Sch. 2]. �

Let f be an element of the carrier of Polynom-Ring ZR. The functor Φ(f)
yielding a function from R into R is defined by the term

(Def. 12) 1
expR

· F f .

Note that F f is differentiable as a function from R into R.
Let us consider an element f of the carrier of Polynom-Ring ZR. Now we

state the propositions:
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(32) ( 1
expR

· F f)�[0, x0] is continuous.

Proof: Set f1 = 1
the function exp . Set f2 = F f . For every real number r

such that r ∈ dom((f1 · f2)�[0, x0]) holds (f1 · f2)�[0, x0] is continuous in r
by [14, (45)], [20, (7)]. �

(33) 1
expR

· F f is differentiable on ]0, x0[.

Now we state the proposition:

(34) The following theorem corresponds to the equation (2) in
[? ].:
Let us consider an element f of the carrier of Polynom-Ring ZR, and a po-
sitive real number x0. Suppose len f > 0. Then there exists a real number
s such that

(i) 0 < s < 1, and

(ii) (F f)(x0)−(the function exp)(x0)·(F f)(0) = −x0 · (the function exp)(x0 · (1− s)) · (Eval(x@f))(s · x0).

Now we state the proposition:

(35) Ring Extended version of FIELD 13:13.:
Let us consider an integral domain F , a ring extension E of F , a polyno-
mial p over F , a polynomial q over E, an element a of F , and an element
b of E. If p = q and a = b, then a · p = b · q.

Now we state the propositions:

(36) Ring Extension version of REALALG3:16.:
Let us consider an integral domain F , a domain ring extension E of F ,
a polynomial p over F , an element a of F , and elements x, b of E. If b = a,
then ExtEval(a · p, x) = b · (ExtEval(p, x)). The theorem is a consequence
of (35).

(37) Let us consider a non degenerated commutative ring L, a non empty fini-
te sequence F of elements of the carrier of Polynom-RingL, and an element
x of L. Then eval(x

∏
F, x) =

∏
eval(F, x).

Proof: For every non zero natural number k such that lenF = k holds
eval(x

∏
F, x) =

∏
eval(F, x) by [8, (3)], [3, (40)], [28, (9)], [7, (19)]. �

(38) Let us consider a non empty finite sequence F of elements of the carrier
of Polynom-Ring ZR, and an element x of RF. Then eval(x@

∏
F, x) =∏

eval(@F, x). The theorem is a consequence of (37).
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