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Summary. In this article, we prove the transcendence of the number e

using the Mizar formalism [4], along with Hurwitz’s proof [11]. This subject has
been implemented over the past decade in other theorem provers, such as HOL
Light [6] and Coq [5]. This article prepares the necessary definitions and lemmas.
The main body of the proof will be presented separately.
At the beginning, we formalize a lemma about algebraic numbers, namely for
a polynomial over Z which has a root equal to e, if suppose e is algebraic, in
another word e is not transcendental number as theorem. (see E_TRANS2:41). It
corresponds to the equation (3) of [11].

Then, we define a polynomial transformation F'. For a polynomial f over Q
with degree r, we introduce a functor: (see E_TRANS1:def 11)

F: f(m) — f(a:) + f/(I) + f”(x) 4+ f(’”)(l,)

In Hurwitz’s proof he defines F(z) = f(z) + f'(z) + f"(z) + - + f(z) as
equation (1) in [II]. In the actual formalization for constructing F' we generate
a finite sequence of polynomials defined by G' = {f(?(z)}, then F is formalized
as the summation of it, namely F' = SumG. Since higher order derivations for a
ring have been implemented in [30], we are able to formalize it" component of G.
Then we apply the mean value theorem to e®F(z) on an interval and formalize
the following equation quoted as equation (2) in [II]: (see E_TRANS1:34)

F(z) — e"F(0) = —ze " f(¥z).

The rest of the section is devoted to preparing lemmas to define the particular
polynomial f(x) = ﬁx”fl(lf:ﬂ)p@fx)p -+ (n—2)? which play an important
role of the main proof.
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1. PRELIMINARIES

From now on n, k denote natural numbers, L denotes a commutative ring,
R denotes an integral domain, and xy denotes a positive real number.

The functor | == | yielding a function from R into R is defined by the term

eXPRr

(Def. 1) 1

the function exp*
One can verify that # is differentiable as a function from R into R and
the function exp is differentiable as a function from R into R.

Now we state the propositions:

(1) Let us consider natural numbers n, m, and an element b of R. Then
(n-m)-b=n-(m-0b).
PROOF: Define P[natural number] = ($1-m)-b = $;1 - (m - b). For every
natural number n such that P[n] holds Pln + 1] by [22] (15), (13)]. For
every natural number n, P[n] from [2, Sch. 2]. O

(2) Let us consider finite sequences F', G of elements of Rp. Suppose len F' =
len G and for every natural number 4 such that i € dom F' holds F(i) <
G(7). Then Y F < Y. G.
ProoF: 3" F <> G by [3, (4), (59)], [2, (11)], [3, (5)]. O

Now we state the propositions:

(3) GENERALIZATION OF ZMATRLIN:42:
Let us consider an ideal I of L, and a finite sequence F' of elements of L.
Suppose for every natural number ¢ such that ¢ € dom F' holds F'(i) € I.
Then > F € I.
PROOF: Define Plnatural number] = for every finite sequence F of ele-
ments of L such that len F' = $; and for every natural number ¢ such that
i € dom F' holds F'(i) € I holds > F € I. P[0] by [29, (43)], [1, (2)]. For
every natural number n such that P[n| holds P[n + 1] by [3, (4), (59)], [2,
(11)], [3} (5)]. For every natural number n, P[n| from [2, Sch. 2]. O

(4) Let us consider an element a of L, and a non empty finite sequence p
of elements of the carrier of L. Suppose for every natural number j such
that j € domp holds a | p/;. Then a | > p.
PROOF: For every natural number ¢ such that i € domp holds p(i) €
{a}-ideal by [13, (18)]. O

Let k, j be natural numbers. The functor 7 ; yielding an element of N is

defined by the term
k!
Now we state the proposition:

(5) Let us consider natural numbers k, j. If j < k, then j!- (lj) = Nk, j-
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Let R be a (ZR)-extending commutative ring and i be an integer. One can
verify that i(€ R) reduces to i.
Now we state the propositions:

(6) Let us consider a natural number n, and an element f of the carrier of
Polynom-Ring Fg. Then n - f = n(e Fg) - f.
PROOF: Define P[natural number] = $; - f = $1(€ Fg) - f. P[0] by [17,
(26)], [22, (12)]. For every natural number k such that P[k] holds P[k + 1]
by [10, (7)], [22, (13), (15)]. For every natural number k, P[k] from [2]
Sch. 2]. O

(7) Let us consider a natural number n, and elements f, g of L. If f | g,
then f | n-g.

Let R be an add-associative, right zeroed, right complementable, distribu-
tive, non empty double loop structure and f be an element of the carrier of
Polynom-Ring R. The functor \\f yielding a polynomial over R is defined by
the term

(Def. 3) f.

Let p be a polynomial over R. The functor p yielding an element of the carrier
of Polynom-Ring R is defined by the term

(Def. 4) p.

Observe that there exists a finite sequence of elements of Fg which is Z-
valued and 0.Fq is Z-valued and 1.Fg is Z-valued and there exists a polynomial
over Fg which is monic and Z-valued.

Now we state the proposition:

(8) Let us consider an element f of the carrier of Polynom-Ring R. Then
mg f = f°(Support f) U{0r}.
PROOF: For every object y such that y € f°(N\ (Support f)) holds y €
{Og}. For every object y such that y € {Or} holds y € f°(N\ (Support f))
by [18, (8)]. O
Let f be an element of the carrier of Polynom-Ring Fg. The functor l denomi-set( f) |
yielding a non empty, finite subset of N is defined by the term
(Def. 5) (TRANQN)®(rng f).
The functor ‘ denomi-seq( f) ‘ yielding a non empty finite sequence of elements
of N is defined by the term
(Def. 6) CFS(denomi-set(f)).

Now we state the propositions:

(9) Let us consider an element f of the carrier of Polynom-Ring Fgp. Then
[T denomi-seq( f) is not zero.
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(10) Let us consider an element f of the carrier of Polynom-Ring Fp, and
a natural number 7. Then

(i) den f(i) € denomi-set(f), and
(ii) there exists an integer z such that z - (den f(i)) = [] denomi-seq(f).

(11) Let us consider fields K, L, and an element w of L. Suppose K is a sub-
ring of L and w is integral over K. Then AnnPoly(w, K) is maximal.
(12) Let us consider an element f of Polynom-RingFg, and a non zero natural

number n. If f is irreducible, then n - f is irreducible. The theorem is
a consequence of (7) and (6).
(13) Let us consider an element z of Rp. Suppose z is irrational. Let us

consider a non zero polynomial g over Fg. If ExtEval(g,z) = 0, then
deg(g) > 2.

2. SOME PROPERTIES OF ALGEBRAIC NUMBERS

Now we state the proposition:

(14) Let us consider a polynomial g over Fg. Suppose deg(g) > 2 and ¢ is
irreducible. Then g(0) # Op,.
PROOF: Reconsider g; = NormPoly g as a polynomial over Fg. g1(0) # Or,
by [17, (31)], [21}, (50)], [T, (40)], [25, (30), (37)]. O

3. CONSTRUCTING POLYNOMIAL TRANSFORMATION 'F'

Now we state the propositions:

(15) Let us consider a non degenerated integral domain L, a non zero natural
number 7, and a non zero element a of L. If char(L) = 0, then n-a # 0f.

(16) Let us consider a commutative ring R, an element f of the carrier of
Polynom-Ring R, and a natural number 4. Suppose ¢ > 1 and the length
of f is at most ¢ and f(i — 1) # Og. Then len f = i.
PROOF: For every natural number ¢ such that ¢ > 1 and the length of f is
at most ¢ and f(i — 1) # Og holds len f = ¢ by [2} (13)], [18, (8)]. O

(17) Let us consider an integral domain R, and an element f of the carrier of
Polynom-Ring R. Suppose len f > 1 and char(R) = 0. Then len(Derl(R))(f) =
len f — 1.
PROOF: Reconsider [y = len f — 1 as a natural number. For every natural
number 4 such that ¢ > [ holds (Derl(R))(f)(i) = 0g by [18 (8)]. O
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(18) Let us consider an integral domain L, a derivation D of L, an element f
of the carrier of L, and natural numbers j, n. Then D"(j - f) = j - D"(f).
PRrROOF: For every element f of the carrier of L and for every natural
numbers j, n, D"(j - f) =7 - D"(f) by [19, (18)], 30, (9), (6)]. O

(19) Let us consider a natural number k, and an element f of the carrier

of Polynom-Ring Z®. Suppose (Derl(ZR))l(fl) = Ipolynom-Ring zZR - Liet us
consider a natural number j. Suppose 1 < j < k. Then (Derl(ZR))’ (f*) =
My - f7.
PROOF: Set D = Derl(ZR). Define P[natural number| = for every natural
number j such that 1 < j < $; holds D7(f%1) = ng, - f81="3 For every
natural number k£ such that for every natural number n such that n < k
holds P[n] holds P[k] by [19, (19)], [30L (7)], [15, (15)], [19, (20)]. For every
natural number k, P[k] from [2, Sch. 4]. O

(20) Let us consider a natural number k, and an element f of the carrier
of Polynom-Ring Z%. Suppose (Derl(ZR))l( I = Ipolynom-Ringzr- Then
(Derl(ZR))k(fk) = k! (1polynom-Ring z& )- The theorem is a consequence of
(19).

(21) Let us consider a natural number j. Suppose j > k. Let us consider
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an element f of the carrier of Polynom-Ring Z®. Suppose (Derl(ZR))1 (fH =

1Polynom—Ring zr. Then (DeI‘l(ZR))j (fk) = OPolynom—Ring ZR-

PROOF: Set L = Polynom-Ring Z®. Set D = Der1(ZY®). For every element
f of the carrier of L such that D'(f!) = Lpolynom-Ring z& Nolds DI(f*) =0y
by 26, (3)], [2 (1)), [19, (20)), [9, (15)]. O

(22) Let us consider an integral domain R, an element f of the carrier of

Polynom-Ring R, a natural number k, and a natural number ¢. Then
(Derl(R))*(f)() = misn - (i + k).
PROOF: Set D = Derl(R). Define P[natural number| = for every natural
number i for every natural number i, D% (f)(i) = 1.5, g, - f(i + $1). For
every natural number k such that P[k] holds P[k + 1] by [30, (9)], (1). For
every natural number i, D°(f)(i) = ni10,0- f(i+0) by [19, (18)], [22 (13)].
For every natural number k, P[k] from [2, Sch. 2]. O

(23) Let us consider a function h from R into R, and a finite sequence s of
elements of the carrier of R. If h is additive, then h(}_s) =>"h-s.
PROOF: Define P[natural number| = for every function h from R into R
for every finite sequence s of elements of R such that lens = $; and h
is additive holds h(}s) = > h-s. P[0] by [29, (75)], [13, (6)], [31 (27)],
[29, (43)]. For every natural number n such that P[n] holds P[n + 1] by
[8, (3)], B, (4), (59)], [2, (11)]. For every natural number n, P[n] from [2]
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Sch. 2]. O

(24) Let us consider an integral domain R, an element f of the carrier of
Polynom-Ring R, and a natural number j. Suppose len f > j and char(R) =
0. Then len (Derl(R))’(f) = len f — j.
PROOF: Reconsider [ = len f — 1 as a natural number. Reconsider I3 =
len f — j as a natural number. Reconsider I4 = I3 — 1 as a natural number.
Reconsider I5 = (lﬂrj) - (4!) as a natural number. n;,4;; = (14?) (4.
(Derl(R)) (f)(Il4) =I5 - f(I1). For every natural number i such that i > I3
holds (Der1(R))’(f)(i) = Og by [I8, (8)], (22). O
Let p be an element of the carrier of Polynom-RingZ®. The functor %
yielding an element of the carrier of Polynom-Ring Ry is defined by the term

(Def. 7) p.

Let F be a finite sequence of elements of the carrier of Polynom-Ring Z®. The
functor °F yielding a finite sequence of elements of the carrier of Polynom-Ring Ry
is defined by

(Def. 8) dom it = dom F' and for every natural number ¢ such that ¢ € dom F
holds it(i) = “F);.
Let L be a commutative ring, F' be a finite sequence of elements of the carrier
of Polynom-Ring L, and = be an element of L. The functor eval(F, z) yielding
a finite sequence of elements of the carrier of L is defined by

(Def. 9) domit = dom F' and for every natural number ¢ such that i € dom F
holds it (i) = eval(~F;, ).

Now we state the propositions:

(25) Let us consider a natural number Ny, a commutative ring L, a finite
sequence F' of elements of the carrier of Polynom-Ring L, and an ele-
ment = of L. Suppose len F' = Ny + 1. Then eval(F,z) = eval(F [Ny, z) ™
<€V&1(\K\F/ len F's iL‘>>
PROOF: For every natural number k such that 1 < k < leneval(F, z) holds
(eval(F,z))(k) = (eval(F[Np,x) ™ <eval(f\F/lenF,:z:)>)(k:) by [B, (9)], [27,
(18)], 8, (47)], 3, (6), (4)]. O

(26) Let us consider a commutative ring L, a finite sequence F of elements of
the carrier of Polynom-Ring L, and an element x of L. Then eval(\\Y_ F,z) =
> eval(F,z). The theorem is a consequence of (25).

(27) Let us consider elements p, ¢ of the carrier of Polynom-Ring Z®. Then
(i) “(p+q) =“p+ %, and
(i) “p-q= (") (“a).
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Let f be an element of the carrier of Polynom-RingZR. The functor G f
yielding a finite sequence of elements of the carrier of Polynom-Ring Z® is defined
by

(Def. 10) lenit = len f and for every natural number i such that i € dom it holds
it(i) = (Der1(ZR)" ().

Now we state the propositions:

(28) Let us consider a finite sequence F of elements of the carrier of Polynom-Ring ZR,
an element z of Z®, and an element z; of Ry. If x = 1, then eval(@F, x1) =
eval(F, x).

PROOF: For every natural number i such that i € dom(eval(°F,z1)) holds
(eval(®F,x1))(i) = (eval(F,z))(i) by [8 (3)], [23 (27)]. O

(29) Let us consider a finite sequence F of elements of the carrier of Polynom-Ring ZR.
Then Y. ®F = @Y F. The theorem is a consequence of (27).

(30) Let us consider an element zo of Z®, an element z of Ry, and a finite
sequence F of elements of the carrier of Polynom-Ring ZR. Suppose z = (.

Then (Eval(~®Y F))(z) = 3 eval(F, zg). The theorem is a consequence
of (28), (29), and (26).

The Definition below corresponds to the Transformation (1) in [? ]

Let f be an element of the carrier of Polynom-Ring Z®. The functor F f
yielding a function from R into R is defined by the term

(Def. 11)  Eval(n®3.G f).

4. CONSTRUCT THE EQUATION (2) IN [I1]

Now we state the proposition:

(31) Let us consider an element p of the carrier of Polynom-Ring Rp. Then
Eval(vp) ¢| = Eval(:~\(Derl(Rg))(p)).
PRrROOF: Set D; = Derl(Rp). Define Plnatural number| = for every ele-
ment p of the carrier of Polynom-Ring Rg such that lensp < $; holds
Eval(«p) €| = Eval(«n\D1(p)). P[0] by [16, (5)], [24, (58)], [12, (52), (54)].
If P[n], then P[n + 1] by [12 (36)], [16, (3)], [I1Z, (37), (55), (14)]. P[n]
from [2, Sch. 2]. O
Let f be an element of the carrier of Polynom-Ring Z®. The functor &(f)
yielding a function from R into R is defined by the term

(Def. 12) L. 7 f.

eXPR

Note that F f is differentiable as a function from R into R.
Let us consider an element f of the carrier of Polynom-Ring Z®. Now we

state the propositions:
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(32) (=2~ - F F)I0, 0] is continuous.

eXpp
PROOF: Set f; = ———~———. Set fo = F f. For every real number r

the function exp*

such that r» € dom((f; - f2)[[0, zo]) holds (f1 - f2)][0, xo] is continuous in r
by [14, (45)], [20; (7)]. O
(33) L. 7 fis differentiable on ]0, zq].

epr
Now we state the proposition:

(34) THE FOLLOWING THEOREM CORRESPONDS TO THE EQUATION (2) IN
[?].:
Let us consider an element f of the carrier of Polynom-Ring ZR, and a po-
sitive real number xg. Suppose len f > 0. Then there exists a real number
s such that

(i) 0 <s<1,and
(ii) (F f)(zo)—(the function exp)(zo)-(F f)(0) = —z¢ - (the function exp)(xo - (1 —

Now we state the proposition:

(35) RING EXTENDED VERSION OF FIELD 13:13.:
Let us consider an integral domain F', a ring extension F of F', a polyno-
mial p over F, a polynomial ¢ over F, an element a of F, and an element
bof E.If p=qganda=0>5,thena-p=>5-q.
Now we state the propositions:

(36) RING EXTENSION VERSION OF REALALG3:16.:
Let us consider an integral domain F', a domain ring extension F of F,
a polynomial p over F', an element a of F', and elements z, b of £. If b = a,
then ExtEval(a - p,z) = b- (ExtEval(p, x)). The theorem is a consequence
of (35).

(37) Let us consider a non degenerated commutative ring L, a non empty fini-
te sequence F' of elements of the carrier of Polynom-Ring L, and an element
x of L. Then eval(A[] F,x) = [[eval(F, x).
PROOF: For every non zero natural number k such that len F = k holds
eval(A[] F,z) = [Jeval(F,x) by [8, (3)], 3, (40)], [28, (9)], [7, (19)]. O

(38) Let us consider a non empty finite sequence F' of elements of the carrier
of Polynom-Ring ZR, and an element x of Rp. Then eval(~®[] F,z) =
[Teval(®F,z). The theorem is a consequence of (37).
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