

Formal Proof of Transcendence of the Number *e***. Part I**

Yasushige Watase Suginami-ku Matsunoki 6, 3-21 Tokyo Japan

Summary. In this article, we prove the transcendence of the number *e* using the Mizar formalism [\[4\]](#page-8-0), along with Hurwitz's proof [\[11\]](#page-8-1). This subject has been implemented over the past decade in other theorem provers, such as HOL Light [\[6\]](#page-8-2) and Coq [\[5\]](#page-8-3). This article prepares the necessary definitions and lemmas. The main body of the proof will be presented separately.

At the beginning, we formalize a lemma about algebraic numbers, namely for a polynomial over Z which has a root equal to *e*, if suppose *e* is algebraic, in another word *e* is not transcendental number as theorem. (see E_TRANS2:41). It corresponds to the equation (3) of [\[11\]](#page-8-1).

Then, we define a polynomial transformation F . For a polynomial f over $\mathbb Q$ with degree r , we introduce a functor: (see E _TRANS1:def 11)

$$
F: f(x) \mapsto f(x) + f'(x) + f''(x) + \dots + f^{(r)}(x)
$$

In Hurwitz's proof he defines $F(x) = f(x) + f'(x) + f''(x) + \cdots + f^{(r)}(x)$ as equation (1) in [\[11\]](#page-8-1). In the actual formalization for constructing F we generate a finite sequence of polynomials defined by $G = \{f^{(i)}(x)\}\$, then *F* is formalized as the summation of it, namely $F = SumG$. Since higher order derivations for a ring have been implemented in [\[30\]](#page-9-0), we are able to formalize *i th* component of *G*. Then we apply the mean value theorem to $e^x F(x)$ on an interval and formalize the following equation quoted as equation (2) in [\[11\]](#page-8-1): (see $E_TRANS1:34$)

$$
F(x) - ex F(0) = -xe(1-\vartheta)x f(\vartheta x).
$$

The rest of the section is devoted to preparing lemmas to define the particular polynomial $f(x) = \frac{1}{(p-1)!}x^{p-1}(1-x)^p(2-x)^p\cdots(n-x)^p$ which play an important role of the main proof.

MSC: [11J81](http://zbmath.org/classification/?q=cc:11J81) [68V20](http://zbmath.org/classification/?q=cc:68V20)

Keywords: transcendental number; Hurwitz

MML identifier: E [TRANS1](http://fm.mizar.org/miz/e_trans1.miz), version: [8.1.14 5.83.1471](http://ftp.mizar.org/)

 $\begin{array}{c} \textcircled{c} \text{ } 2024 \text{ \ \textcolor{red}{The Author(s) \text{ } / \text{ AMU}} } \\ \textcircled{Association of Mizar Users)} \end{array}$ 111 (Association of Mizar Users)
under [CC BY-SA 3.0 license](http://creativecommons.org/licenses/by-sa/3.0/)

1. Preliminaries

From now on n , k denote natural numbers, L denotes a commutative ring, *R* denotes an integral domain, and *x*⁰ denotes a positive real number.

The functor $\frac{1}{\exp_R}$ yielding a function from R into R is defined by the term

(Def. 1) $\frac{1}{\text{the function } \exp}$.

One can verify that $\frac{1}{\exp_R}$ is differentiable as a function from R into R and the function exp is differentiable as a function from $\mathbb R$ into $\mathbb R$.

Now we state the propositions:

(1) Let us consider natural numbers *n*, *m*, and an element *b* of *R*. Then $(n \cdot m) \cdot b = n \cdot (m \cdot b).$

PROOF: Define $\mathcal{P}[\text{natural number}] \equiv (\$_1 \cdot m) \cdot b = \$_1 \cdot (m \cdot b)$. For every natural number *n* such that $\mathcal{P}[n]$ holds $\mathcal{P}[n+1]$ by [\[22,](#page-8-4) (15), (13)]. For every natural number *n*, $\mathcal{P}[n]$ from [\[2,](#page-7-0) Sch. 2]. \Box

(2) Let us consider finite sequences *F*, *G* of elements of \mathbb{R}_F . Suppose len *F* = len *G* and for every natural number *i* such that $i \in \text{dom } F$ holds $F(i) \leq$ $G(i)$. Then $\sum F \leqslant \sum G$. PROOF: $\sum F \leqslant \sum G$ by [\[3,](#page-8-5) (4), (59)], [\[2,](#page-7-0) (11)], [3, (5)]. \square

Now we state the propositions:

(3) Generalization of ZMATRLIN:42:

Let us consider an ideal *I* of *L*, and a finite sequence *F* of elements of *L*. Suppose for every natural number *i* such that $i \in \text{dom } F$ holds $F(i) \in I$. Then $\sum F \in I$.

PROOF: Define $\mathcal{P}[\text{natural number}] \equiv \text{for every finite sequence } F \text{ of elements } F$ ments of *L* such that len $F = \$_1$ and for every natural number *i* such that $i \in \text{dom } F$ holds $F(i) \in I$ holds $\sum F \in I$. $\mathcal{P}[0]$ by [\[29,](#page-9-1) (43)], [\[1,](#page-7-1) (2)]. For every natural number *n* such that $\mathcal{P}[n]$ holds $\mathcal{P}[n+1]$ by [\[3,](#page-8-5) (4), (59)], [\[2,](#page-7-0) (11) , $[3, (5)$ $[3, (5)$. For every natural number *n*, $\mathcal{P}[n]$ from [\[2,](#page-7-0) Sch. 2]. \Box

(4) Let us consider an element *a* of *L*, and a non empty finite sequence *p* of elements of the carrier of *L*. Suppose for every natural number *j* such that $j \in \text{dom } p$ holds $a \mid p_{j}$. Then $a \mid \sum p$. PROOF: For every natural number *i* such that $i \in \text{dom } p$ holds $p(i) \in$ $\{a\}$ –ideal by [\[13,](#page-8-6) (18)]. \square

Let *k*, *j* be natural numbers. The functor $\eta_{k,j}$ yielding an element of N is defined by the term

 $(\text{Def. 2}) \quad \frac{k!}{(k-j)!}.$

Now we state the proposition:

(5) Let us consider natural numbers *k*, *j*. If $j \leq k$, then $j! \cdot {k \choose i}$ $j^{(k)}_{j} = \eta_{k,j}.$

Let *R* be a (\mathbb{Z}^R) -extending commutative ring and *i* be an integer. One can verify that $i \in R$ reduces to *i*.

Now we state the propositions:

- (6) Let us consider a natural number *n*, and an element *f* of the carrier of Polynom-Ring $\mathbb{F}_{\mathbb{Q}}$. Then $n \cdot f = n(\in \mathbb{F}_{\mathbb{Q}}) \cdot f$. PROOF: Define $\mathcal{P}[\text{natural number}] \equiv \$_1 \cdot f = \$_1(\in \mathbb{F}_0) \cdot f$. $\mathcal{P}[0]$ by [\[17,](#page-8-7) (26) , $[22, (12)]$ $[22, (12)]$. For every natural number *k* such that $\mathcal{P}[k]$ holds $\mathcal{P}[k+1]$ by [\[10,](#page-8-8) (7)], [\[22,](#page-8-4) (13) , (15)]. For every natural number *k*, $P[k]$ from [\[2,](#page-7-0) Sch. 2. \square
- (7) Let us consider a natural number *n*, and elements f , g of L . If $f | g$, then $f | n \cdot q$.

Let R be an add-associative, right zeroed, right complementable, distributive, non empty double loop structure and *f* be an element of the carrier of Polynom-Ring *R*. The functor $\cap f$ yielding a polynomial over *R* is defined by the term

(Def. 3) *f*.

Let p be a polynomial over R. The functor \hat{p} yielding an element of the carrier of Polynom-Ring *R* is defined by the term

(Def. 4) *p*.

Observe that there exists a finite sequence of elements of $\mathbb{F}_{\mathbb{Q}}$ which is \mathbb{Z} valued and $0.\mathbb{F}_{\mathbb{Q}}$ is Z-valued and $1.\mathbb{F}_{\mathbb{Q}}$ is Z-valued and there exists a polynomial over $\mathbb{F}_{\mathbb{Q}}$ which is monic and Z-valued.

Now we state the proposition:

(8) Let us consider an element *f* of the carrier of Polynom-Ring *R*. Then $\text{rng } f = f^{\circ}(\text{Support } f) \cup \{0_R\}.$

PROOF: For every object *y* such that $y \in f^{\circ}(\mathbb{N} \setminus (\text{Support } f))$ holds $y \in$ *{*0*R}*. For every object *y* such that *y* ∈ {0*R}* holds *y* ∈ *f*[○]($\mathbb{N}\setminus$ (Support *f*)) by [\[18,](#page-8-9) (8)]. \square

Let *f* be an element of the carrier of Polynom-Ring $\mathbb{F}_{\mathbb{Q}}$. The functor denomi-set(yielding a non empty, finite subset of N is defined by the term

(Def. 5) (TRANQN)*◦* (rng *f*).

The functor denomi-seq(f) yielding a non empty finite sequence of elements of $\mathbb N$ is defined by the term

(Def. 6) CFS(denomi-set(*f*)).

Now we state the propositions:

(9) Let us consider an element f of the carrier of Polynom-Ring $\mathbb{F}_{\mathbb{Q}}$. Then Π denomi-seq(f) is not zero.

- (10) Let us consider an element f of the carrier of Polynom-Ring $\mathbb{F}_{\mathbb{Q}}$, and a natural number *i*. Then
	- (i) den *f*(*i*) *∈* denomi-set(*f*), and
	- (ii) there exists an integer *z* such that $z \cdot (\text{den } f(i)) = \prod \text{denomi-seq}(f)$.
- (11) Let us consider fields *K*, *L*, and an element *w* of *L*. Suppose *K* is a subring of *L* and *w* is integral over *K*. Then $AnnPoly(w, K)$ is maximal.
- (12) Let us consider an element f of Polynom-Ring $\mathbb{F}_{\mathbb{Q}}$, and a non zero natural number *n*. If *f* is irreducible, then $n \cdot f$ is irreducible. The theorem is a consequence of (7) and (6).
- (13) Let us consider an element x of \mathbb{R}_F . Suppose x is irrational. Let us consider a non zero polynomial *g* over $\mathbb{F}_{\mathbb{Q}}$. If ExtEval $(g, x) = 0$, then $deg(g) \geqslant 2$.

2. Some Properties of Algebraic Numbers

Now we state the proposition:

- (14) Let us consider a polynomial *g* over $\mathbb{F}_{\mathbb{Q}}$. Suppose $\deg(g) \geq 2$ and \hat{g} is irreducible. Then $g(0) \neq 0_{\mathbb{F}_0}$. PROOF: Reconsider $g_1 = \text{NormPoly}\hat{g}$ as a polynomial over $\mathbb{F}_{\mathbb{Q}}$. $g_1(0) \neq 0_{\mathbb{F}_{\mathbb{Q}}}$ by [\[17,](#page-8-7) (31)], [\[21,](#page-8-10) (50)], [17, (40)], [\[25,](#page-8-11) (30), (37)]. \Box
	- 3. CONSTRUCTING POLYNOMIAL TRANSFORMATION 'F'

Now we state the propositions:

- (15) Let us consider a non degenerated integral domain *L*, a non zero natural number *n*, and a non zero element *a* of *L*. If $char(L) = 0$, then $n \cdot a \neq 0_L$.
- (16) Let us consider a commutative ring *R*, an element *f* of the carrier of Polynom-Ring *R*, and a natural number *i*. Suppose $i \geq 1$ and the length of *f* is at most *i* and $f(i-1) \neq 0_R$. Then len $f = i$. PROOF: For every natural number *i* such that $i \geq 1$ and the length of f is at most *i* and $f(i-1) \neq 0_R$ holds len $f = i$ by [\[2,](#page-7-0) (13)], [\[18,](#page-8-9) (8)]. □
- (17) Let us consider an integral domain *R*, and an element *f* of the carrier of Polynom-Ring *R*. Suppose len $f > 1$ and $char(R) = 0$. Then $len(Der1(R))(f) =$ len *f −* 1.

PROOF: Reconsider $l_1 = \text{len } f - 1$ as a natural number. For every natural number *i* such that $i \ge l_1$ holds $(Der1(R))(f)(i) = 0_R$ by [\[18,](#page-8-9) (8)]. \Box

- (18) Let us consider an integral domain *L*, a derivation *D* of *L*, an element *f* of the carrier of *L*, and natural numbers *j*, *n*. Then $D^n(j \cdot f) = j \cdot D^n(f)$. PROOF: For every element f of the carrier of L and for every natural numbers *j*, *n*, *Dⁿ*(*j* ⋅ *f*) = *j* ⋅ *D*^{*n*}(*f*) by [\[19,](#page-8-12) (18)], [\[30,](#page-9-0) (9), (6)]. □
- (19) Let us consider a natural number *k*, and an element *f* of the carrier of Polynom-Ring \mathbb{Z}^R . Suppose $(Der1(\mathbb{Z}^R))$ ¹ $(f^1) = 1_{\text{Polynom-Ring }\mathbb{Z}^R}$. Let us consider a natural number *j*. Suppose $1 \leqslant j \leqslant k$. Then $(\text{Der}1(\mathbb{Z}^R))^{j}(f^{k}) =$ $\eta_{k,j} \cdot f^{k-j}$. PROOF: Set $D = \text{Der}1(\mathbb{Z}^R)$. Define $\mathcal{P}[\text{natural number}] \equiv \text{for every natural}$

number *j* such that $1 \leq j \leq \mathfrak{F}_1$ holds $D^j(f^{\mathfrak{F}_1}) = \eta_{\mathfrak{F}_1,j} \cdot f^{\mathfrak{F}_1-j}$. For every natural number k such that for every natural number n such that $n < k$ holds $\mathcal{P}[n]$ holds $\mathcal{P}[k]$ by [\[19,](#page-8-12) (19)], [\[30,](#page-9-0) (7)], [\[15,](#page-8-13) (15)], [19, (20)]. For every natural number *k*, $\mathcal{P}[k]$ from [\[2,](#page-7-0) Sch. 4]. \Box

- (20) Let us consider a natural number *k*, and an element *f* of the carrier of Polynom-Ring \mathbb{Z}^R . Suppose $(Der1(\mathbb{Z}^R))$ ¹ $(f^1) = 1_{Polynomial}$ Then $(\text{Der}1(\mathbb{Z}^R))^k(f^k) = k! \cdot (1_{\text{Polynomial}} \mathbb{Z}^R)$. The theorem is a consequence of (19).
- (21) Let us consider a natural number *j*. Suppose *j > k*. Let us consider an element *f* of the carrier of Polynom-Ring \mathbb{Z}^R . Suppose $(Der1(\mathbb{Z}^R))$ ¹ (f^1) = $1_{\text{Polynomial}}$ \mathbb{Z}^R . Then $(\text{Der}1(\mathbb{Z}^R))^j(f^k) = 0_{\text{Polynomial}}$ \mathbb{Z}^R . PROOF: Set $L =$ Polynom-Ring \mathbb{Z}^R . Set $D = \text{Der}1(\mathbb{Z}^R)$. For every element f of the carrier of L such that $D^1(f^1) = 1_{\text{Polynom-Ring }\mathbb{Z}^R}$ holds $D^j(f^k) = 0_L$ by [\[26,](#page-8-14) (3)], [\[2,](#page-7-0) (14)], [\[19,](#page-8-12) (20)], [\[9,](#page-8-15) (15)]. \Box
- (22) Let us consider an integral domain *R*, an element *f* of the carrier of Polynom-Ring *R*, a natural number *k*, and a natural number *i*. Then $(\text{Der}1(R))^k(f)(i) = \eta_{i+k,k} \cdot f(i+k).$ PROOF: Set $D = \text{Der}1(R)$. Define $\mathcal{P}[\text{natural number}] \equiv \text{for every natural}$ number *i* for every natural number *i*, $D^{\$1}(f)(i) = \eta_{i+\$1,\$1} \cdot f(i+\$1)$. For every natural number *k* such that $\mathcal{P}[k]$ holds $\mathcal{P}[k+1]$ by [\[30,](#page-9-0) (9)], (1). For every natural number *i*, $D^0(f)(i) = \eta_{i+0,0} \cdot f(i+0)$ by [\[19,](#page-8-12) (18)], [\[22,](#page-8-4) (13)]. For every natural number *k*, $\mathcal{P}[k]$ from [\[2,](#page-7-0) Sch. 2]. \Box
- (23) Let us consider a function *h* from *R* into *R*, and a finite sequence *s* of elements of the carrier of *R*. If *h* is additive, then $h(\sum s) = \sum h \cdot s$. PROOF: Define $\mathcal{P}[\text{natural number}] \equiv \text{for every function } h \text{ from } R \text{ into } R$ for every finite sequence *s* of elements of *R* such that len $s = \hat{s}_1$ and *h* is additive holds $h(\sum s) = \sum h \cdot s$. *P*[0] by [\[29,](#page-9-1) (75)], [\[13,](#page-8-6) (6)], [\[31,](#page-9-2) (27)], [\[29,](#page-9-1) (43)]. For every natural number *n* such that $\mathcal{P}[n]$ holds $\mathcal{P}[n+1]$ by [\[8,](#page-8-16) (3)], [\[3,](#page-8-5) (4), (59)], [\[2,](#page-7-0) (11)]. For every natural number *n*, *P*[*n*] from [\[2,](#page-7-0)

Sch. 2]. \square

(24) Let us consider an integral domain *R*, an element *f* of the carrier of Polynom-Ring *R*, and a natural number *j*. Suppose len $f > j$ and char(*R*) = 0. Then $\text{len}(\text{Der}1(R))^j(f) = \text{len } f - j.$

PROOF: Reconsider $l_1 = \text{len } f - 1$ as a natural number. Reconsider $l_3 =$ len *f* − *j* as a natural number. Reconsider $l_4 = l_3 - 1$ as a natural number. Reconsider $l_5 = \begin{pmatrix} l_4 + j_1 \\ l_4 \end{pmatrix}$ $\eta_{l_4+j}^{(+j)}$ · (*j*!) as a natural number. $\eta_{l_4+j,j} = \binom{l_4+j}{j} \cdot (j!)$. $(\text{Der}1(R))^j(f)(l_4) = l_5 \cdot f(l_1)$. For every natural number *i* such that $i \geq l_3$ holds $(Der1(R))^{j}(f)(i) = 0_R$ by [\[18,](#page-8-9) (8)], (22). \square

Let *p* be an element of the carrier of Polynom-Ring \mathbb{Z}^R . The functor \mathbb{Q}_p yielding an element of the carrier of Polynom-Ring \mathbb{R}_{F} is defined by the term

(Def. 7) *p*.

Let F be a finite sequence of elements of the carrier of Polynom-Ring \mathbb{Z}^R . The functor ${}^@F$ yielding a finite sequence of elements of the carrier of Polynom-Ring \mathbb{R}_F is defined by

(Def. 8) dom $it = \text{dom } F$ and for every natural number i such that $i \in \text{dom } F$ holds $it(i) = {}^{\circledR}F_{/i}$.

Let *L* be a commutative ring, *F* be a finite sequence of elements of the carrier of Polynom-Ring L, and x be an element of L. The functor $eval(F, x)$ yielding a finite sequence of elements of the carrier of *L* is defined by

(Def. 9) dom $it = \text{dom } F$ and for every natural number *i* such that $i \in \text{dom } F$ holds $it(i) = eval(\bigcap F_{/i}, x)$.

Now we state the propositions:

(25) Let us consider a natural number N_0 , a commutative ring L , a finite sequence *F* of elements of the carrier of Polynom-Ring *L*, and an element *x* of *L*. Suppose len $F = N_0 + 1$. Then $eval(F, x) = eval(F \upharpoonright N_0, x)$ $\langle \text{eval}(\sqrt{F} / \text{len } F, x) \rangle$.

PROOF: For every natural number *k* such that $1 \leq k \leq \text{len eval}(F, x)$ holds $(\text{eval}(F, x))(k) = (\text{eval}(F \mid N_0, x) \cap (\text{eval}(\bigwedge F_{/\text{len } F}, x)))(k)$ by [\[3,](#page-8-5) (9)], [\[27,](#page-8-17) (18) , $[8, (47)]$ $[8, (47)]$, $[3, (6), (4)]$ $[3, (6), (4)]$. \square

- (26) Let us consider a commutative ring *L*, a finite sequence *F* of elements of the carrier of Polynom-Ring *L*, and an element *x* of *L*. Then $eval(\neg \sum F, x)$ \sum eval(*F, x*). The theorem is a consequence of (25).
- (27) Let us consider elements p, q of the carrier of Polynom-Ring \mathbb{Z}^R . Then

(i)
$$
\mathbf{Q}(p+q) = \mathbf{Q}(p) + \mathbf{Q}(q)
$$
, and

(ii) ${}^{\circledR}p \cdot q = ({}^{\circledR}p) \cdot ({}^{\circledR}q).$

Let *f* be an element of the carrier of Polynom-Ring \mathbb{Z}^R . The functor $\mathcal{G} f$ yielding a finite sequence of elements of the carrier of Polynom-Ring $\mathbb{Z}^{\mathbf{R}}$ is defined by

(Def. 10) len $it = \text{len } f$ and for every natural number *i* such that $i \in \text{dom } it$ holds $it(i) = (\text{Der}1(\mathbb{Z}^{\mathbf{R}}))^{i-i} (f).$

Now we state the propositions:

(28) Let us consider a finite sequence F of elements of the carrier of Polynom-Ring \mathbb{Z}^R , an element *x* of \mathbb{Z}^R , and an element *x*₁ of \mathbb{R}_F . If $x = x_1$, then $eval({}^@F, x_1) =$ $eval(F, x).$

PROOF: For every natural number *i* such that $i \in \text{dom}(\text{eval}({}^{\mathcal{Q}} F, x_1))$ holds $(\text{eval}({}^@F,x_1))(i) = (\text{eval}(F,x))(i)$ by [\[8,](#page-8-16) (3)], [\[23,](#page-8-18) (27)]. \Box

- (29) Let us consider a finite sequence F of elements of the carrier of Polynom-Ring \mathbb{Z}^R . Then $\sum^{\mathcal{Q}} F = \mathcal{Q} \sum F$. The theorem is a consequence of (27).
- (30) Let us consider an element x_0 of \mathbb{Z}^R , an element x of \mathbb{R}_F , and a finite sequence *F* of elements of the carrier of Polynom-Ring \mathbb{Z}^R . Suppose $x = x_0$. Then $(\text{Eval}(\bigcap^{\mathcal{Q}} \sum F))(x) = \sum \text{eval}(F, x_0)$. The theorem is a consequence of (28), (29), and (26).

The Definition below corresponds to the Transformation (1) in [**?**]

Let *f* be an element of the carrier of Polynom-Ring \mathbb{Z}^R . The functor $\mathcal{F} f$ yielding a function from $\mathbb R$ into $\mathbb R$ is defined by the term

(Def. 11) Eval $(\bigcap^{\mathbb{Q}} \Sigma \mathcal{G} f)$.

4. Construct the Equation (2) in [\[11\]](#page-8-1)

Now we state the proposition:

(31) Let us consider an element p of the carrier of Polynom-Ring \mathbb{R}_F . Then $\text{Eval}(\neg p)$ ' $\rvert = \text{Eval}(\neg (\text{Der}1(\mathbb{R}_F))(p)).$

PROOF: Set $D_1 = \text{Der}1(\mathbb{R}_F)$. Define $\mathcal{P}[\text{natural number}] \equiv \text{for every ele-}$ ment *p* of the carrier of Polynom-Ring \mathbb{R}_F such that len $\cap p \leq \mathcal{F}_1$ holds Eval($\cap p$)'| = Eval($\cap D_1(p)$). $\mathcal{P}[0]$ by [\[16,](#page-8-19) (5)], [\[24,](#page-8-20) (58)], [\[12,](#page-8-21) (52), (54)]. If $\mathcal{P}[n]$, then $\mathcal{P}[n+1]$ by [\[12,](#page-8-21) (36)], [\[16,](#page-8-19) (3)], [12, (37), (55), (14)]. $\mathcal{P}[n]$ from [\[2,](#page-7-0) Sch. 2]. \square

Let *f* be an element of the carrier of Polynom-Ring \mathbb{Z}^R . The functor $\Phi(f)$ yielding a function from $\mathbb R$ into $\mathbb R$ is defined by the term

(Def. 12) $\frac{1}{\exp_R} \cdot \mathcal{F} f$.

Note that $\mathcal F f$ is differentiable as a function from $\mathbb R$ into $\mathbb R$.

Let us consider an element f of the carrier of Polynom-Ring \mathbb{Z}^R . Now we state the propositions:

 (32) $(\frac{1}{\text{evr}})$ $\frac{1}{\exp_R} \cdot \mathcal{F} f$) $[0, x_0]$ is continuous.

PROOF: Set $f_1 = \frac{1}{\text{the function exp}}$. Set $f_2 = \mathcal{F}f$. For every real number *r* such that $r \in \text{dom}((f_1 \cdot f_2)\upharpoonright [0, x_0])$ holds $(f_1 \cdot f_2)\upharpoonright [0, x_0]$ is continuous in r by [\[14,](#page-8-22) (45)], [\[20,](#page-8-23) (7)]. \square

- (33) ¹ $\frac{1}{\exp_R} \cdot \mathcal{F} f$ is differentiable on $]0, x_0[$. Now we state the proposition:
- (34) The following theorem corresponds to the equation (2) in [**?**].:

Let us consider an element f of the carrier of Polynom-Ring \mathbb{Z}^R , and a positive real number x_0 . Suppose len $f > 0$. Then there exists a real number *s* such that

- (i) $0 < s < 1$, and
- (ii) $(\mathcal{F}f)(x_0)$ (the function exp) $(x_0)\cdot(\mathcal{F}f)(0) = -x_0\cdot(\text{the function } \exp)(x_0\cdot(1-\$

Now we state the proposition:

(35) Ring Extended version of FIELD 13:13.: Let us consider an integral domain F , a ring extension E of F , a polynomial p over F , a polynomial q over E , an element a of F , and an element *b* of *E*. If $p = q$ and $a = b$, then $a \cdot p = b \cdot q$.

Now we state the propositions:

- (36) Ring Extension version of REALALG3:16.: Let us consider an integral domain F , a domain ring extension E of F , a polynomial *p* over *F*, an element *a* of *F*, and elements *x*, *b* of *E*. If $b = a$, then $\text{ExtEval}(a \cdot p, x) = b \cdot (\text{ExtEval}(p, x))$. The theorem is a consequence of (35).
- (37) Let us consider a non degenerated commutative ring *L*, a non empty finite sequence *F* of elements of the carrier of Polynom-Ring *L*, and an element *x* of *L*. Then $eval(\cap \prod F, x) = \prod eval(F, x)$. PROOF: For every non zero natural number k such that len $F = k$ holds

 $eval(\cap \prod F, x) = \prod eval(F, x)$ by [\[8,](#page-8-16) (3)], [\[3,](#page-8-5) (40)], [\[28,](#page-9-3) (9)], [\[7,](#page-8-24) (19)]. \square

(38) Let us consider a non empty finite sequence *F* of elements of the carrier of Polynom-Ring \mathbb{Z}^R , and an element *x* of \mathbb{R}_F . Then $eval(\bigcap^{\mathbb{Q}} \prod F, x) =$ Π eval(${}^@F, x$). The theorem is a consequence of (37).

REFERENCES

- [1] Jonathan Backer, Piotr Rudnicki, and Christoph Schwarzweller. [Ring ideals.](http://fm.mizar.org/2001-9/pdf9-3/ideal_1.pdf) *Formalized Mathematics*, 9(**3**):565–582, 2001.
- [2] Grzegorz Bancerek. [The fundamental properties of natural numbers.](http://fm.mizar.org/1990-1/pdf1-1/nat_1.pdf) *Formalized Mathematics*, 1(**1**):41–46, 1990.
- [3] Grzegorz Bancerek and Krzysztof Hryniewiecki. [Segments of natural numbers and finite](http://fm.mizar.org/1990-1/pdf1-1/finseq_1.pdf) [sequences.](http://fm.mizar.org/1990-1/pdf1-1/finseq_1.pdf) *Formalized Mathematics*, 1(**1**):107–114, 1990.
- [4] Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, Karol Pąk, and Josef Urban. [Mizar: State-of-the-art and](http://dx.doi.org/10.1007/978-3-319-20615-8_17) [beyond.](http://dx.doi.org/10.1007/978-3-319-20615-8_17) In Manfred Kerber, Jacques Carette, Cezary Kaliszyk, Florian Rabe, and Volker Sorge, editors, *Intelligent Computer Mathematics*, volume 9150 of *Lecture Notes in Computer Science*, pages 261–279. Springer International Publishing, 2015. ISBN 978-3- 319-20614-1. doi[:10.1007/978-3-319-20615-8](http://dx.doi.org/10.1007/978-3-319-20615-8_17) 17.
- [5] Sophie Bernard, Yves Bertot, Laurence Rideau, and Pierre-Yves Strub. Formal proofs of transcendence for *e* and *π* as an application of multivariate and symmetric polynomials. In Jeremy Avigad and Adam Chlipala, editors, *Proceedings of the 5th ACM SIGPLAN Conference on Certified Programs and Proofs*, pages 76–87. ACM, 2016. doi[:10.1145/2854065.2854072.](http://dx.doi.org/10.1145/2854065.2854072)
- [6] Jesse Bingham. Formalizing a proof that *e* is transcendental. *Journal of Formalized Reasoning*, 4:71–84, 2011.
- [7] Czesław Byliński. [Finite sequences and tuples of elements of a non-empty sets.](http://fm.mizar.org/1990-1/pdf1-3/finseq_2.pdf) *Formalized Mathematics*, 1(**3**):529–536, 1990.
- [8] Czesław Byliński. [Functions and their basic properties.](http://fm.mizar.org/1990-1/pdf1-1/funct_1.pdf) *Formalized Mathematics*, 1(**1**): 55–65, 1990.
- [9] Czesław Byliński. [Functions from a set to a set.](http://fm.mizar.org/1990-1/pdf1-1/funct_2.pdf) *Formalized Mathematics*, 1(**1**):153–164, 1990.
- [10] Ewa Grądzka. [The algebra of polynomials.](http://fm.mizar.org/2001-9/pdf9-3/polyalg1.pdf) *Formalized Mathematics*, 9(**3**):637–643, 2001.
- [11] Adolf Hurwitz. [Beweis der Transcendenz der Zahl e.](http://eudml.org/doc/157680) *Mathematische Annalen*, 43:220–221, 1893.
- [12] Artur Korniłowicz. Differentiability of polynomials over reals. *Formalized Mathematics*, 25(**1**):31–37, 2017. doi[:10.1515/forma-2017-0002.](http://dx.doi.org/10.1515/forma-2017-0002)
- [13] Artur Korniłowicz and Christoph Schwarzweller. The first isomorphism theorem and other properties of rings. *Formalized Mathematics*, 22(**4**):291–301, 2014. doi[:10.2478/forma-](http://dx.doi.org/10.2478/forma-2014-0029)[2014-0029.](http://dx.doi.org/10.2478/forma-2014-0029)
- [14] Jarosław Kotowicz. [Partial functions from a domain to the set of real numbers.](http://fm.mizar.org/1990-1/pdf1-4/rfunct_1.pdf) *Formalized Mathematics*, 1(**4**):703–709, 1990.
- [15] Rafał Kwiatek. [Factorial and Newton coefficients.](http://fm.mizar.org/1990-1/pdf1-5/newton.pdf) *Formalized Mathematics*, 1(**5**):887–890, 1990.
- [16] Robert Milewski. [The evaluation of polynomials.](http://fm.mizar.org/2001-9/pdf9-2/polynom4.pdf) *Formalized Mathematics*, 9(**2**):391–395, 2001.
- [17] Robert Milewski. [Fundamental theorem of algebra.](http://fm.mizar.org/2001-9/pdf9-3/polynom5.pdf) *Formalized Mathematics*, 9(**3**):461– 470, 2001.
- [18] Michał Muzalewski and Lesław W. Szczerba. [Construction of finite sequences over ring](http://fm.mizar.org/1991-2/pdf2-1/algseq_1.pdf) [and left-, right-, and bi-modules over a ring.](http://fm.mizar.org/1991-2/pdf2-1/algseq_1.pdf) *Formalized Mathematics*, 2(**1**):97–104, 1991.
- [19] Karol Pąk. Eigenvalues of a linear transformation. *Formalized Mathematics*, 16(**4**):289– 295, 2008. doi[:10.2478/v10037-008-0035-x.](http://dx.doi.org/10.2478/v10037-008-0035-x)
- [20] Konrad Raczkowski and Paweł Sadowski. [Real function continuity.](http://fm.mizar.org/1990-1/pdf1-4/fcont_1.pdf) *Formalized Mathematics*, 1(**4**):787–791, 1990.
- [21] Piotr Rudnicki. [Little Bezout theorem \(factor theorem\).](http://fm.mizar.org/2004-12/pdf12-1/uproots.pdf) *Formalized Mathematics*, 12(**1**): 49–58, 2004.
- [22] Christoph Schwarzweller. [The binomial theorem for algebraic structures.](http://fm.mizar.org/2001-9/pdf9-3/binom.pdf) *Formalized Mathematics*, 9(**3**):559–564, 2001.
- [23] Christoph Schwarzweller. Field extensions and Kronecker's construction. *Formalized Mathematics*, 27(**3**):229–235, 2019. doi[:10.2478/forma-2019-0022.](http://dx.doi.org/10.2478/forma-2019-0022)
- [24] Christoph Schwarzweller and Agnieszka Rowińska-Schwarzweller. Simple extensions. *Formalized Mathematics*, 31(1):287–298, 2023. doi[:10.2478/forma-2023-0023.](http://dx.doi.org/10.2478/forma-2023-0023)
- [25] Christoph Schwarzweller, Artur Korniłowicz, and Agnieszka Rowińska-Schwarzweller. Some algebraic properties of polynomial rings. *Formalized Mathematics*, 24(**3**):227–237, 2016. doi[:10.1515/forma-2016-0019.](http://dx.doi.org/10.1515/forma-2016-0019)
- [26] Michał J. Trybulec. [Integers.](http://fm.mizar.org/1990-1/pdf1-3/int_1.pdf) *Formalized Mathematics*, 1(**3**):501–505, 1990.
- [27] Wojciech A. Trybulec. [Non-contiguous substrings and one-to-one finite sequences.](http://fm.mizar.org/1990-1/pdf1-3/finseq_3.pdf) *Formalized Mathematics*, 1(**3**):569–573, 1990.

120 yasushige watase

- [28] Wojciech A. Trybulec. [Lattice of subgroups of a group. Frattini subgroup.](http://fm.mizar.org/1991-2/pdf2-1/group_4.pdf) *Formalized Mathematics*, 2(**1**):41–47, 1991.
- [29] Wojciech A. Trybulec. [Vectors in real linear space.](http://fm.mizar.org/1990-1/pdf1-2/rlvect_1.pdf) *Formalized Mathematics*, 1(**2**):291–296, 1990.
- [30] Yasushige Watase. Derivation of commutative rings and the Leibniz formula for power of derivation. *Formalized Mathematics*, 29(**1**):1–8, 2021. doi[:10.2478/forma-2021-0001.](http://dx.doi.org/10.2478/forma-2021-0001)
- [31] Edmund Woronowicz. [Relations and their basic properties.](http://fm.mizar.org/1990-1/pdf1-1/relat_1.pdf) *Formalized Mathematics*, 1 (**1**):73–83, 1990.

Accepted November 17, 2024