

U-Small and U-Locally Small Categories¹

Roland Coghetto cafr-MSA2P asbl Rue de la Brasserie 5 7100 La Louvière, Belgium

Summary. Category theory is developed from the beginning of Mizar Mathematical Library [4]. Gradually it was expanded, with several different definitions for a category: Category ([5]) and category (in [12] or with another definition in [15]) based on [14] and [10]. In the following, we will only use, among these 3 definitions, the first, as well as the notion \mathcal{U} for Grothendieck's non-empty Universe.

The first part of this work is devoted to the definitions of $\mathcal{U}\text{-set}$ and proper classes $\mathcal{U}\text{-class}$.

The second part is largely influenced by the number 0 Universe of the first presentation of SGA 4 [1], we define the notion of an \mathcal{U} -small set (and of \mathcal{U} -small group as well as of \mathcal{U} -small Category). This allows us to access the formalization of the definition of \mathcal{U} -Category.

Finally, we introduce the notions of \mathcal{U} -small Category and \mathcal{U} -locally small Category and some classic examples (adapted from "Example 1.1.4" by Emily Riehl in "Category theory in Context" [13]).

MSC: 03E70 18-00 68V20

Keywords: Tarski-Grothendieck set theory; Grothendieck universe; U-small category; U-locally small category

MML identifier: CLASSES5, version: 8.1.14 5.82.1469

¹This work has been supported by the *Centre autonome de formation et de recherche en mathématiques et sciences avec assistants de preuve*, ASBL (non-profit organization). Enterprise number: 0777.779.751. Belgium.

1. Preliminaries

Now we state the propositions:

- (1) Let us consider a non empty set X. Then $\{\langle A, B \rangle$, where A, B are elements of X : if $B = \emptyset$, then $A = \emptyset\} = (X \times X) \setminus (X \setminus \{\emptyset\} \times \{\emptyset\})$.
- (2) Let us consider a non empty set X. Suppose $\{\emptyset\}$ is an element of X. Then $\{\emptyset\} \notin \text{Funcs } X$.
- (3) \mathbb{N}_{even} is denumerable.
- (4) \mathbb{N}_{odd} is denumerable.
- (5) Let us consider non empty sets X, Y, and an element y of Y. Then $X \times \{y\} \subseteq \bigcup Y^X$.
- (6) Let us consider a non empty set X, and a non zero natural number n. If X^n is finite, then X is finite.

Let us consider a non empty set X. Now we state the propositions:

- (7) \bigcup SmallestPartition(X) = X.
- (8) $X \approx \text{SmallestPartition}(X).$

Now we state the proposition:

(9) Let us consider a strict object-category C. Then $(C^{\text{op}})^{\text{op}} = C$.

Let x_1, x_2, x_3, x_4, x_5 be objects. The functor $\langle x_1, x_2, x_3, x_4, x_5 \rangle$ yielding an object is defined by the term

(Def. 1) $\langle \langle x_1, x_2, x_3, x_4 \rangle, x_5 \rangle$.

Let x be an object. We say that x is quintuple if and only if

(Def. 2) there exist objects x_1, x_2, x_3, x_4, x_5 such that $x = \langle x_1, x_2, x_3, x_4, x_5 \rangle$.

Let x_1 , x_2 , x_3 , x_4 , x_5 be objects. Let us note that $\langle x_1, x_2, x_3, x_4, x_5 \rangle$ is quintuple.

Now we state the proposition:

- (10) Let us consider objects x_1 , x_2 , x_3 , x_4 , x_5 , y_1 , y_2 , y_3 , y_4 , y_5 . Suppose $\langle x_1, x_2, x_3, x_4, x_5 \rangle = \langle y_1, y_2, y_3, y_4, y_5 \rangle$. Then
 - (i) $x_1 = y_1$, and
 - (ii) $x_2 = y_2$, and
 - (iii) $x_3 = y_3$, and
 - (iv) $x_4 = y_4$, and
 - (v) $x_5 = y_5$.

One can verify that there exists an object which is quintuple and there exists a set which is quintuple.

Let x be an object. Assume x is quintuple. The functor $(x)_1$ yielding an object is defined by

(Def. 3) for every objects y_1 , y_2 , y_3 , y_4 , y_5 such that $x = \langle y_1, y_2, y_3, y_4, y_5 \rangle$ holds $it = y_1$.

Assume x is quintuple. The functor $(x)_2$ yielding an object is defined by

(Def. 4) for every objects y_1 , y_2 , y_3 , y_4 , y_5 such that $x = \langle y_1, y_2, y_3, y_4, y_5 \rangle$ holds $it = y_2$.

Assume x is quintuple. The functor $(x)_3$ yielding an object is defined by

(Def. 5) for every objects y_1 , y_2 , y_3 , y_4 , y_5 such that $x = \langle y_1, y_2, y_3, y_4, y_5 \rangle$ holds $it = y_3$.

Assume x is quintuple. The functor $(x)_4$ yielding an object is defined by

(Def. 6) for every objects y_1, y_2, y_3, y_4, y_5 such that $x = \langle y_1, y_2, y_3, y_4, y_5 \rangle$ holds $it = y_4$.

Assume x is quintuple. The functor $(x)_5$ yielding an object is defined by

(Def. 7) for every objects y_1 , y_2 , y_3 , y_4 , y_5 such that $x = \langle y_1, y_2, y_3, y_4, y_5 \rangle$ holds $it = y_5$.

Let x_1, x_2, x_3, x_4, x_5 be objects. Observe that $(\langle x_1, x_2, x_3, x_4, x_5 \rangle)_1$ reduces to x_1 and $(\langle x_1, x_2, x_3, x_4, x_5 \rangle)_2$ reduces to x_2 and $(\langle x_1, x_2, x_3, x_4, x_5 \rangle)_3$ reduces to x_3 and $(\langle x_1, x_2, x_3, x_4, x_5 \rangle)_4$ reduces to x_4 and $(\langle x_1, x_2, x_3, x_4, x_5 \rangle)_5$ reduces to x_5 .

Let x be a quintuple object. Observe that $\langle (x)_1, (x)_2, (x)_3, (x)_4, (x)_5 \rangle$ reduces to x.

2. Some Elementary Properties

From now on \mathcal{U} denotes a universal class and x denotes an element of \mathcal{U} . Now we state the propositions:

- (11) Let us consider objects x_1, x_2, x_3 . Suppose $x = \langle x_1, x_2, x_3 \rangle$. Then
 - (i) x_1 is an element of \mathcal{U} , and
 - (ii) x_2 is an element of \mathcal{U} , and
 - (iii) x_3 is an element of \mathcal{U} .

(12) Let us consider objects x_1, x_2, x_3, x_4 . Suppose $x = \langle x_1, x_2, x_3, x_4 \rangle$. Then

- (i) x_1 is an element of \mathcal{U} , and
- (ii) x_2 is an element of \mathcal{U} , and
- (iii) x_3 is an element of \mathcal{U} , and
- (iv) x_4 is an element of \mathcal{U} .

The theorem is a consequence of (11).

- (13) Let us consider elements x_1, x_2, x_3, x_4, x_5 of \mathcal{U} . Then $\langle x_1, x_2, x_3, x_4, x_5 \rangle$ is an element of \mathcal{U} .
- (14) Let us consider objects x_1, x_2, x_3, x_4, x_5 . Suppose $x = \langle x_1, x_2, x_3, x_4, x_5 \rangle$. Then
 - (i) x_1 is an element of \mathcal{U} , and
 - (ii) x_2 is an element of \mathcal{U} , and
 - (iii) x_3 is an element of \mathcal{U} , and
 - (iv) x_4 is an element of \mathcal{U} , and
 - (v) x_5 is an element of \mathcal{U} .

The theorem is a consequence of (12).

Let \mathcal{U} be a universal class and u_1 , u_2 , u_3 be elements of \mathcal{U} . Observe that the functor $\langle u_1, u_2, u_3 \rangle$ yields an element of \mathcal{U} . Let u_4 be an element of \mathcal{U} . Let us observe that the functor $\langle u_1, u_2, u_3, u_4 \rangle$ yields an element of \mathcal{U} . Let u_5 be an element of \mathcal{U} . Observe that the functor $\langle u_1, u_2, u_3, u_4, u_5 \rangle$ yields an element of \mathcal{U} . Now we state the propositions:

- (15) Let us consider a subset x of \mathbf{U}_0 . If x is finite, then x is an element of \mathbf{U}_0 .
- (16) Let us consider a finite set X. If $X \subseteq \mathbf{U}_0$, then $X \in \mathbf{U}_0$. PROOF: Consider p being a function such that $\operatorname{rng} p = X$ and $\operatorname{dom} p \in \omega$. Define $\mathcal{P}[\operatorname{object}, \operatorname{object}] \equiv \$_2 = \{p(\$_1)\}$. Consider g being a function such that $\operatorname{dom} g = \operatorname{dom} p$ and for every object x such that $x \in \operatorname{dom} p$ holds $\mathcal{P}[x, g(x)]$ from [2, Sch. 1]. $\operatorname{rng} g \subseteq \mathbf{U}_0$ by [11, (57)]. $\bigcup \operatorname{rng} g = X$. \Box
- (17) (i) $\bigcup \{\mathbb{N}\} \subseteq \mathbf{U}_0$, and
 - (ii) $\bigcup \{\mathbb{N}\} \notin \mathbf{U}_0$, and
 - (iii) $\{\mathbb{N}\} \not\subseteq \mathbf{U}_0$, and
 - (iv) $\{\mathbb{N}\} \notin \mathbf{U}_0$.

(18) Let us consider an object x. Then $x \in \mathcal{U}$ if and only if $\{x\} \in \mathcal{U}$.

Let us consider a set X and a non zero natural number n. Now we state the propositions:

- (19) If $\{X\}^{\text{Seg }n}$ is an element of \mathcal{U} , then X is an element of \mathcal{U} . The theorem is a consequence of (18).
- (20) If $\{X\}^n$ is an element of \mathcal{U} , then X is an element of \mathcal{U} . The theorem is a consequence of (19).

Now we state the proposition:

(21) Let us consider a set X. If $\bigcup X \in \mathcal{U}$, then $X \in \mathcal{U}$.

3. Set and Class

Let X be a non empty set and x be an object. We say that x is X-Set if and only if

(Def. 8) $x \in X$.

A Set of X is a set defined by

(Def. 9) it is X-Set.

Now we state the propositions:

- (22) Let us consider universal classes U_1, U_2 . Suppose $U_1 \in U_2$. Let us consider an object x. If x is U_1 -Set, then x is U_2 -Set.
- (23) Let us consider universal classes U_1, U_2 . If $U_1 \in U_2$, then every Set of U_1 is a Set of U_2 .
- (24) Every Set of \mathbf{U}_0 is finite.
- (25) Let us consider a subset x of \mathbf{U}_0 . If x is finite, then x is a Set of \mathbf{U}_0 . The theorem is a consequence of (15).
- (26) Let us consider an object x. Then x is a Set of \mathbf{U}_0 if and only if x is a set of a finite rank.

Let \mathcal{U} be a universal class and x be an object. We say that <u>x is \mathcal{U} -Class</u> if and only if

(Def. 10) $x \in 2^{\mathcal{U}}$ and $x \notin \mathcal{U}$.

Now we state the proposition:

(27) Let us consider a set x. If x is \mathcal{U} -Class, then x is not empty.

Let \mathcal{U} be a universal class.

A Class of \mathcal{U} is a non empty set defined by

(Def. 11) it is \mathcal{U} -Class.

Now we state the propositions:

- (28) Let us consider a finite subset X of \mathcal{U} . Then $X \in \mathcal{U}$. The theorem is a consequence of (18) and (7).
- (29) Every Class of \mathcal{U} is not finite. The theorem is a consequence of (28).
- (30) Let us consider a Set X of \mathcal{U} . Then $\mathcal{U} \setminus X$ is a Class of \mathcal{U} .
- (31) Every non finite subset of \mathbf{U}_0 is a Class of \mathbf{U}_0 .
- (32) \mathbb{N} is a Class of \mathbf{U}_0 .
- (33) \mathbb{N}_{even} is a Class of \mathbf{U}_0 . The theorem is a consequence of (3) and (31).
- (34) \mathbb{N}_{odd} is a Class of \mathbf{U}_0 . The theorem is a consequence of (4) and (31).
- (35) Let us consider an object x. Then

(i) x is not \mathcal{U} -Class, or

(ii) x is not \mathcal{U} -Set.

- (36) Let us consider universal classes U_1, U_2 . Suppose $U_1 \in U_2$. Let us consider an object x. If x is U_1 -Class, then x is U_2 -Set.
- (37) (i) $\bigcup \{\mathbb{N}\}$ is \mathbf{U}_0 -Class, and
 - (ii) $\{\mathbb{N}\}$ is not \mathbf{U}_0 -Class, and
 - (iii) $\{\mathbb{N}\}$ is not \mathbf{U}_0 -Set.

4. CATEGORIES OF GROUPS AND UNIVERSES

From now on U_1 , U_2 denote universal classes.

Now we state the propositions:

- (38) Let us consider an object x. Then there exists \mathcal{U} such that x is \mathcal{U} -Set.
- (39) Every set is (GrothendieckUniverse(x))-Set.

Let U_1, U_2 be universal classes. The functor $\sup(U_1, U_2)$ yielding a universal class is defined by the term

(Def. 12)

$$\left\{ \begin{array}{ll} U_1, & \text{if } U_2 \in U_1, \\ U_2, & \text{otherwise.} \end{array} \right.$$

Now we state the propositions:

- (40) Let us consider universal classes U_1 , U_2 , a Set x of U_1 , and a Set y of U_2 . Then there exists a Set z of $\sup(U_1, U_2)$ such that for every object a, $a \in z$ iff a = x or a = y.
- (41) Let us consider a Set X of \mathcal{U} . Then $\bigcup X$ is a Set of \mathcal{U} .

Let us consider a set X. Now we state the propositions:

- (42) If $\bigcup X$ is a Set of \mathcal{U} , then X is a Set of \mathcal{U} . The theorem is a consequence of (21).
- (43) If $\bigcup X$ is empty, then X is \mathcal{U} -Set. Now we state the propositions:
- (44) Let us consider a Class X of \mathcal{U} . Then $\bigcup X$ is a Class of \mathcal{U} . The theorem is a consequence of (43) and (21).
- (45) There exists a set X such that
 - (i) $\bigcup X$ is a Class of \mathbf{U}_0 , and
 - (ii) X is not a Class of \mathbf{U}_0 , and
 - (iii) X is not a Set of \mathbf{U}_0 , and
 - (iv) X is a Set of \mathbf{U}_1 .

The theorem is a consequence of (17).

- (46) Let us consider a Set X of \mathcal{U} , and a set Y. If $Y \in X$, then Y is a Set of \mathcal{U} .
- (47) Let us consider a Class X of \mathcal{U} , and a set Y. If $Y \in X$, then Y is a Set of \mathcal{U} .

5. U-PETIT

Let \mathcal{U} be a universal class and x be a set. We say that x is \mathcal{U} -petit if and only if

(Def. 13) there exists an element u of \mathcal{U} such that $u \approx x$.

Now we state the proposition:

(48) Every element of \mathcal{U} is \mathcal{U} -petit.

Let us consider a set x. Now we state the propositions:

- (49) $x \text{ is } \mathcal{U}\text{-petit if and only if } \overline{\overline{x}} \in \overline{\mathcal{U}}.$
- (50) $\{x\}$ is \mathcal{U} -petit.

Let \mathcal{U} be a universal class and G be a group. We say that G is \mathcal{U} -element if and only if

(Def. 14) the carrier of G is an element of \mathcal{U} .

Now we state the proposition:

(51) Let us consider a group G. Suppose G is \mathcal{U} -element. Then the multiplication of G is an element of \mathcal{U} .

Let \mathcal{U} be a universal class and G be a group. We say that G is \mathcal{U} -petit if and only if

(Def. 15) there exists a group g such that g is \mathcal{U} -element and G and g are isomorphic.

Let C be an object-category. We say that C is \mathcal{U} -element if and only if

(Def. 16) the carrier of C is an element of \mathcal{U} and the carrier' of C is an element of \mathcal{U} .

Now we state the propositions:

- (52) Let us consider an object-category C. Suppose C is \mathcal{U} -element. Then
 - (i) the source of C is an element of \mathcal{U} , and
 - (ii) the target of C is an element of \mathcal{U} , and
 - (iii) the composition of C is an element of \mathcal{U} .
- (53) Let us consider elements o, m of \mathcal{U} . Then $\dot{\bigcirc}(o, m)$ is \mathcal{U} -element.

Let \mathcal{U} be a universal class. Observe that there exists an object-category which is \mathcal{U} -element.

- Let C be an object-category. We say that C is U-petit if and only if
- (Def. 17) there exists a strict object-category c such that c is \mathcal{U} -element and $C \cong c$. Now we state the propositions:
 - (54) Let us consider an object-category A, and an object a of A. Then $\langle \langle \operatorname{id}_a, \operatorname{id}_a \rangle$, $\operatorname{id}_a \rangle \in$ the composition of A.
 - (55) Let us consider objects o, m. Then the composition of $\dot{\bigcirc}(o,m) = \{\langle \langle m, m \rangle, m \rangle\}$. PROOF: Set $A = \dot{\bigcirc}(o,m)$. The composition of $A \subseteq \{\langle \langle m, m \rangle, m \rangle\}$ by [5, (16)]. \Box
 - (56) Let us consider objects o, m, and an object c of $\dot{\bigcirc}(o, m)$. Then c = o.
 - (57) Let us consider objects o, m, and an element c of $\dot{\bigcirc}(o, m)$. Then
 - (i) c is an object of $\dot{\bigcirc}(o, m)$, and
 - (ii) c = o, and
 - (iii) $\operatorname{id}_c = m$.
 - (58) Let us consider objects o_1 , o_2 , m_1 , m_2 . Then $\dot{\bigcirc}(o_1, m_1) \cong \dot{\bigcirc}(o_2, m_2)$. The theorem is a consequence of (57).
 - (59) Let us consider objects o, m. Then $\dot{\bigcirc}(o, m)$ is \mathcal{U} -petit. The theorem is a consequence of (53) and (58).

Let \mathcal{U} be a universal class. Let us observe that there exists an object-category which is \mathcal{U} -petit.

Now we state the propositions:

- (60) There exists a \mathcal{U} -petit object-category C such that
 - (i) the carrier of C is not an element of \mathcal{U} , and
 - (ii) the carrier' of C is an element of \mathcal{U} .

The theorem is a consequence of (59) and (18).

- (61) There exists a \mathcal{U} -petit object-category C such that
 - (i) the carrier of C is not an element of \mathcal{U} , and
 - (ii) the carrier' of C is not an element of \mathcal{U} .

The theorem is a consequence of (59) and (18).

- (62) There exists a \mathcal{U} -petit object-category C such that
 - (i) the carrier of C is an element of \mathcal{U} , and
 - (ii) the carrier' of C is not an element of \mathcal{U} .

The theorem is a consequence of (59) and (18).

- (63) There exists a \mathcal{U} -petit object-category C such that C is not \mathcal{U} -element. The theorem is a consequence of (62).
- (64) Let us consider a strict object-category C. If C is \mathcal{U} -element, then C is \mathcal{U} -petit.

Let \mathcal{U} be a universal class and C be an object-category. We say that C is \mathcal{U} -Category if and only if

(Def. 18) for every objects x, y of C, hom(x, y) is \mathcal{U} -petit. Let us observe that there exists an object-category which is \mathcal{U} -Category. Now we state the proposition:

(65) Let us consider object-categories C, D, and a functor F from C to D. Then $F \subseteq$ (the carrier' of C) × (the carrier' of D).

Let us consider object-categories C, D. Now we state the propositions:

- (66) Funct $(C, D) \subseteq 2^{\alpha \times \beta}$, where α is the carrier' of C and β is the carrier' of D.
- (67) NatTrans $(C, D) \subseteq (2^{\alpha \times \beta} \times 2^{\alpha \times \beta}) \times 2^{\gamma \times \beta}$, where α is the carrier' of C, β is the carrier' of D, and γ is the carrier of C.

Now we state the propositions:

- (68) Let us consider sets X, Y, Z. Suppose $X, Y, Z \in \mathcal{U}$. Then $2^{(2^{X \times Y} \times 2^{X \times Y}) \times 2^{Z \times Y}} \in \mathcal{U}$.
- (69) Let us consider non empty sets X, Y. Suppose Y^X is an element of \mathcal{U} . Then X is an element of \mathcal{U} . The theorem is a consequence of (5).

Now we state the propositions:

- (70) PROP 1.1.1 A) SGA4:
 Let us consider object-categories C, D. Suppose C is U-element and D is U-element. Then Functors(D, C) is U-element. The theorem is a consequence of (66) and (67).
- (71) Let us consider a set c. Suppose $c \in \overline{\overline{\mathcal{U}}}$. Then $\overline{\overline{2^c}} \in \mathcal{U}$.
- (72) Let us consider cardinal numbers c_1, c_2 . Suppose $c_1, c_2 \in \overline{\mathcal{U}}$. Then $\overline{2^{c_1 \times c_2}} \in \mathcal{U}$.

6. CATEGORY GROUPCAT

Let x be an object. The functor op0(x) yielding an element of $\{x\}$ is defined by the term

(Def. 19) x.

The functor op1(x) yielding a unary operation on $\{x\}$ is defined by the term (Def. 20) $x \mapsto x$.

The functor $\operatorname{op2}(x)$ yielding a binary operation on $\{x\}$ is defined by the term (Def. 21) $[\langle x, x \rangle \mapsto x]$.

Now we state the proposition:

(73) (i) $op0(0) = op_0$, and

- (ii) $op1(0) = op_1$, and
- (iii) $op2(0) = op_2$.

Let x be an object. The functor TrivialAddLoopStr(x) yielding a non empty additive loop structure is defined by the term

(Def. 22) $\langle \{x\}, \operatorname{op2}(x), \operatorname{op0}(x) \rangle$.

Now we state the propositions:

- (74) Trivial-addLoopStr = TrivialAddLoopStr(0).
- (75) Let us consider an object x. Then TrivialAddLoopStr(x) is a strict group.
- (76) (i) op0(x) is an element of \mathcal{U} , and

(ii) op1(x) is an element of \mathcal{U} , and

- (iii) op2(x) is an element of \mathcal{U} .
- (77) comp TrivialAddLoopStr(x) is an element of \mathcal{U} .
- (78) There exists an element y of \mathcal{U} such that $P_{ob} y$, TrivialAddLoopStr(x). The theorem is a consequence of (76) and (77).
- (79) \bigcup the set of all the carrier of TrivialAddLoopStr(x) where x is an element of $\mathcal{U} = \mathcal{U}$.
- (80) TrivialAddLoopStr(x) \in GroupObj(\mathcal{U}). The theorem is a consequence of (78).
- (81) GroupObj $(\mathcal{U}) \approx \mathcal{U}$.

PROOF: Set $G_1 = \text{GroupObj}(\mathcal{U})$. Reconsider $G_2 = G_1$ as a non empty set. Define $\mathcal{P}[\text{object}, \text{object}] \equiv \$_2 \in \mathcal{U}$ and $P_{\text{ob}} \$_2, \$_1$. For every element xof G_2 , there exists an element y of \mathcal{U} such that $\mathcal{P}[x, y]$. Consider f being a function from G_2 into \mathcal{U} such that for every element x of G_2 , $\mathcal{P}[x, f(x)]$ from [7, Sch. 3]. Define $\mathcal{Q}(\text{object}) = \text{TrivialAddLoopStr}(\$_1)$. For every object x such that $x \in \mathcal{U}$ holds $\mathcal{Q}(x) \in \text{GroupObj}(\mathcal{U})$. Consider g being a function from \mathcal{U} into GroupObj (\mathcal{U}) such that for every object x such that $x \in \mathcal{U}$ holds $g(x) = \mathcal{Q}(x)$ from [7, Sch. 2]. \Box

(82) GroupObj(\mathcal{U}) is not \mathcal{U} -petit. The theorem is a consequence of (81).

7. OBJECT-CATEGORY REPRESENTED BY A SET

Let C be an object-category. The functor CatToSet(C) yielding a set is defined by the term

(Def. 23) $\langle \text{the carrier of } C, \text{the carrier' of } C, \text{the source of } C, \text{the target of } C, \text{the composition of } C \rangle$.

Let C be a quintuple set. We say that C is StrCategory-like if and only if

(Def. 24) there exist sets y_1 , y_2 , y_3 , y_4 , y_5 such that $y_1 = (C)_1$ and $y_2 = (C)_2$ and $y_3 = (C)_3$ and $y_4 = (C)_4$ and $y_5 = (C)_5$ and y_3 is a function from y_2 into y_1 and y_4 is a function from y_2 into y_1 and y_5 is a partial function from $y_2 \times y_2$ to y_2 .

Observe that there exists a quintuple set which is StrCategory-like.

Let C be a StrCategory-like, quintuple set. The functor SetToCat(C) yielding a strict category structure is defined by

(Def. 25) there exist sets y_1 , y_2 and there exist functions y_3 , y_4 from y_2 into y_1 and there exists a partial function y_5 from $y_2 \times y_2$ to y_2 such that $y_1 = (C)_1$ and $y_2 = (C)_2$ and $y_3 = (C)_3$ and $y_4 = (C)_4$ and $y_5 = (C)_5$ and $it = \langle y_1, y_2, y_3, y_4, y_5 \rangle$.

We say that C is category-like if and only if

(Def. 26) there exist sets y_1 , y_2 and there exist functions y_3 , y_4 from y_2 into y_1 and there exists a partial function y_5 from $y_2 \times y_2$ to y_2 such that $y_1 = (C)_1$ and $y_2 = (C)_2$ and $y_3 = (C)_3$ and $y_4 = (C)_4$ and $y_5 = (C)_5$ and $\langle y_1, y_2, y_3, y_4, y_5 \rangle$ is an object-category.

Let us observe that there exists a StrCategory-like, quintuple set which is category-like and there exists a StrCategory-like, quintuple set which is non empty and category-like.

Let C be a category-like, StrCategory-like, quintuple set. The functor Obj C yielding a set is defined by the term

(Def. 27) $(C)_1$.

The functor Mor C yielding a set is defined by the term

(Def. 28) $(C)_2$.

We say that C is non-empty if and only if

(Def. 29) $\operatorname{Obj} C$ is not empty.

Observe that there exists a category-like, StrCategory-like, quintuple set which is non-empty.

A CategorySet is a non-empty, category-like, StrCategory-like, quintuple set. Now we state the proposition:

(83) Every CategorySet is not empty.

Observe that every CategorySet is non empty.

Let C be a CategorySet. The functor SetToCat(C) yielding a strict objectcategory is defined by

(Def. 30) there exist sets y_1 , y_2 and there exist functions y_3 , y_4 from y_2 into y_1 and there exists a partial function y_5 from $y_2 \times y_2$ to y_2 such that $y_1 = (C)_1$ and $y_2 = (C)_2$ and $y_3 = (C)_3$ and $y_4 = (C)_4$ and $y_5 = (C)_5$ and $it = \langle y_1, y_2, y_3, y_4, y_5 \rangle$.

Let C be a strict object-category. One can check that the functor CatToSet(C) yields a CategorySet. Now we state the propositions:

- (84) Let us consider a CategorySet C. Then CatToSet(SetToCat(C)) = C.
- (85) Let us consider a strict object-category C. Then SetToCat(CatToSet(C)) = C.
- (86) Let us consider an object-category C. Then C is \mathcal{U} -element if and only if CatToSet(C) is \mathcal{U} -Set. The theorem is a consequence of (52), (13), and (14).
- (87) Let us consider a CategorySet C. Then C is \mathcal{U} -Set if and only if SetToCat(C) is \mathcal{U} -element. The theorem is a consequence of (14) and (84).
 - Let C, D be CategorySets. We say that $C \cong D$ if and only if
- (Def. 31) $\operatorname{SetToCat}(C) \cong \operatorname{SetToCat}(D)$.

Now we state the proposition:

(88) Let us consider strict object-categories C, D. If $C \cong D$, then $CatToSet(C) \cong CatToSet(D)$. The theorem is a consequence of (85).

Let \mathcal{U} be a universal class and C be a CategorySet. We say that C is \mathcal{U} -petit if and only if

(Def. 32) there exists a CategorySet c such that c is \mathcal{U} -Set and $C \cong c$.

Now we state the proposition:

(89) Let us consider a strict object-category C. Then C is \mathcal{U} -petit if and only if CatToSet(C) is \mathcal{U} -petit. The theorem is a consequence of (86), (88), (85), and (87).

Let C, D be CategorySets. The functor $\operatorname{Funct}(C, D)$ yielding a set is defined by the term

(Def. 33) $\operatorname{Funct}(\operatorname{SetToCat}(C), \operatorname{SetToCat}(D)).$

The functor $\operatorname{Functors}(D, C)$ yielding a CategorySet is defined by the term

- (Def. 34) CatToSet(Functors(SetToCat(D), SetToCat(C))). Now we state the proposition:
 - (90) Let us consider CategorySets C, D. Then

(i) $\operatorname{Obj} \operatorname{Functors}(D, C) = \operatorname{Funct}(\operatorname{SetToCat}(C), \operatorname{SetToCat}(D))$, and

(ii) Mor Functors(D, C) = NatTrans(SetToCat(C), SetToCat(D)).

Now we state the proposition:

(91) PROP 1.1.1 A) SGA4:

Let us consider CategorySets C, D. Suppose C is \mathcal{U} -Set and D is \mathcal{U} -Set. Then Functors(D, C) is \mathcal{U} -Set. The theorem is a consequence of (87), (70), and (86).

8. Small and Locally-small Categories

Let \mathcal{U} be a universal class and C be an object-category. We introduce the notation C is \mathcal{U} -small as a synonym of C is \mathcal{U} -element.

Observe that there exists an object-category which is \mathcal{U} -small.

Now we state the propositions:

- (92) Let us consider sets o, m. Suppose m is not \mathcal{U} -Set or o is not \mathcal{U} -Set. Then $\dot{\bigcirc}(o,m)$ is not \mathcal{U} -small. The theorem is a consequence of (18).
- (93) Let us consider objects o, m. Suppose $\dot{\bigcirc}(o, m)$ is \mathcal{U} -small. Then
 - (i) m is \mathcal{U} -Set, and
 - (ii) o is \mathcal{U} -Set.

The theorem is a consequence of (92).

Let \mathcal{U} be a universal class. One can verify that there exists an object-category which is non \mathcal{U} -small.

Let C be an object-category. We say that C is \mathcal{U} -locally small if and only if

(Def. 35) for every objects x, y of C, hom(x, y) is \mathcal{U} -Set.

Note that there exists an object-category which is \mathcal{U} -locally small and there exists a non void, non empty object-category which is \mathcal{U} -locally small.

Now we state the propositions:

- (94) Every \mathcal{U} -small object-category is \mathcal{U} -locally small.
- (95) Let us consider an object o. Then $\dot{\bigcirc}(o, \mathcal{U})$ is not \mathcal{U} -locally small. PROOF: Set $C = \dot{\bigcirc}(o', \mathcal{U})$. C is not \mathcal{U} -locally small by [3, (3)], (18). \Box

Let \mathcal{U} be a universal class. Let us observe that there exists an object-category which is non \mathcal{U} -locally small.

Let us consider a \mathcal{U} -locally small object-category C. Now we state the propositions:

(96) Suppose the carrier of C is \mathcal{U} -Set. Then \bigcup the set of all hom(a, b) where a, b are objects of C is an element of \mathcal{U} .

PROOF: Define $\mathcal{P}[\text{object of } C, \text{element of } \mathcal{U}] \equiv \bigcup$ the set of all hom $(\$_1, b)$ where b is an object of $C = \$_2$. Consider f being a function from the carrier of C into \mathcal{U} such that for every element x of the carrier of C, $\mathcal{P}[x, f(x)]$ from [7, Sch. 3]. For every object x such that $x \in \text{dom } f$ holds $f(x) \in \mathcal{U}$. \Box

(97) If the carrier of C is \mathcal{U} -Set, then C is \mathcal{U} -small. The theorem is a consequence of (96).

Now we state the propositions:

- (98) Let us consider \mathcal{U} -small object-categories C, D. Then
 - (i) Functors(D, C) is \mathcal{U} -small, and
 - (ii) NatTrans(C, D) is \mathcal{U} -Set.

The theorem is a consequence of (70).

- (99) Let us consider a \mathcal{U} -small object-category C. Then C^{op} is a \mathcal{U} -small object-category.
- (100) Let us consider a \mathcal{U} -locally small object-category C. Then C^{op} is a \mathcal{U} -locally small object-category.

9. Examples

Let X be a set. One can verify that the functor id_X yields an element of X^X . Now we state the propositions:

- (101) Funcs $\mathcal{U} \subset \mathcal{U}$. PROOF: Funcs $\mathcal{U} \subseteq \mathcal{U}$ by [8, (77)], [9, (81)]. \Box
- (102) Funcs \mathcal{U} is \mathcal{U} -Class. The theorem is a consequence of (101).
- (103) $(\mathcal{U} \times \mathcal{U}) \setminus (\mathcal{U} \setminus \{\emptyset\} \times \{\emptyset\})$ is not an element of \mathcal{U} .
- (104) (i) $\pi_1(\operatorname{Maps} \mathcal{U}) \subseteq \mathcal{U} \times \mathcal{U}$, and

(ii)
$$(\mathcal{U} \times \mathcal{U}) \setminus (\mathcal{U} \setminus \{\emptyset\} \times \{\emptyset\}) \subseteq \pi_1(\operatorname{Maps} \mathcal{U})$$
, and

(iii) $\pi_2(\operatorname{Maps} \mathcal{U}) = \operatorname{Funcs} \mathcal{U}.$

PROOF: $\pi_1(\text{Maps}\mathcal{U}) \subseteq \mathcal{U} \times \mathcal{U}$. $(\mathcal{U} \times \mathcal{U}) \cap \{\langle A, B \rangle$, where A, B are elements of \mathcal{U} : if $B = \emptyset$, then $A = \emptyset\} \subseteq \pi_1(\text{Maps}\mathcal{U})$ by [6, (1)]. $\pi_2(\text{Maps}\mathcal{U}) =$ Funcs \mathcal{U} by [6, (1)]. \Box

- (105) Maps $\mathcal{U} \subseteq \mathcal{U}$.
- (106) The carrier' of $\mathbf{Ens}_{\mathcal{U}}$ is \mathcal{U} -Class. The theorem is a consequence of (102), (104), and (105).
- (107) (i) $\mathbf{Ens}_{\mathcal{U}}$ is a non \mathcal{U} -small object-category, and
 - (ii) the carrier of $\mathbf{Ens}_{\mathcal{U}}$ is \mathcal{U} -Class, and

(iii) the carrier' of $\mathbf{Ens}_{\mathcal{U}}$ is \mathcal{U} -Class.

The theorem is a consequence of (106).

(108) Let us consider universal classes \mathcal{U} , V. Suppose $\mathcal{U} \in V$. Then $\mathbf{Ens}_{\mathcal{U}}$ is a V-small object-category. The theorem is a consequence of (107).

Let A_1 be an Abelian group. The functor $\# A_1$ yielding a function from (the carrier of A_1) × (the carrier of A_1) into the carrier of A_1 is defined by the term

(Def. 36) the addition of A_1 .

Let K be a field, o be an object, and n be a natural number. The functor nMatrixFieldCat(K, o, n) yielding a non empty, non void, strict category structure is defined by the term

(Def. 37)
$$({o}, \text{the carrier of } K_{\mathbf{G}}^{n \times n}, ((\text{the carrier of } K_{\mathbf{G}}^{n \times n}) \longmapsto o), ((\text{the carrier of } K_{\mathbf{G}}^{n \times n}) \longmapsto o), \# K_{\mathbf{G}}^{n \times n}).$$

One can verify that nMatrixFieldCat(K, o, n) is category-like and nMatrixFieldCat(K, o, n) is transitive and nMatrixFieldCat(K, o, n) is associative and nMatrixFieldCat(K, o, n) is reflexive and nMatrixFieldCat(K, o, n) has identities.

Now we state the proposition:

- (109) Let us consider a field K, an element o of \mathcal{U} , and a non zero natural number n. Suppose the carrier of K is an element of \mathcal{U} . Then
 - (i) the carrier of nMatrixFieldCat(K, o, n) is trivial, and
 - (ii) nMatrixFieldCat(K, o, n) is \mathcal{U} -small object-category and \mathcal{U} -locally small object-category.

The theorem is a consequence of (18) and (94).

Let us consider an element o of \mathbf{U}_0 and a non zero natural number n. Now we state the propositions:

- (110) (i) the carrier of nMatrixFieldCat($\mathbb{R}_{\mathrm{F}}, o, n$) is trivial and U₀-Set, and
 - (ii) nMatrixFieldCat($\mathbb{R}_{\mathrm{F}}, o, n$) is not a U₀-small object-category, and
 - (iii) nMatrixFieldCat($\mathbb{R}_{\mathbf{F}}, o, n$) is not a U₀-locally small object-category, and
 - (iv) nMatrixFieldCat(\mathbb{R}_{F} , o, n) is U₁-small object-category and U₁-locally small object-category.

The theorem is a consequence of (18), (6), and (109).

- (111) (i) the carrier of nMatrixFieldCat($\mathbb{C}_{\mathrm{F}}, o, n$) is trivial and U₀-Set, and
 - (ii) nMatrixFieldCat($\mathbb{C}_{\mathrm{F}}, o, n$) is not a U₀-small object-category, and
 - (iii) nMatrixFieldCat($\mathbb{C}_{\mathcal{F}}, o, n$) is not a U₀-locally small object-category, and

(iv) nMatrixFieldCat($\mathbb{C}_{\mathrm{F}}, o, n$) is U₁-small object-category and U₁-locally small object-category.

The theorem is a consequence of (18), (6), and (109).

References

- Michael Artin, Alexander Grothendieck, and Jean-Louis Verdier. Théorie des topos et cohomologie étale des schémas. Tome 1: Théorie des topos (exposés i à iv). In Séminaire de Géométrie Algébrique du Bois Marie, 1963/64, SGA 4, volume 269 of Lecture Notes in Mathematics. Springer, 1972.
- [2] Grzegorz Bancerek. Tarski's classes and ranks. Formalized Mathematics, 1(3):563-567, 1990.
- [3] Grzegorz Bancerek and Agata Darmochwał. Comma category. Formalized Mathematics, 2(5):679-681, 1991.
- [4] Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, Karol Pak, and Josef Urban. Mizar: State-of-the-art and beyond. In Manfred Kerber, Jacques Carette, Cezary Kaliszyk, Florian Rabe, and Volker Sorge, editors, *Intelligent Computer Mathematics*, volume 9150 of *Lecture Notes in Computer Science*, pages 261–279. Springer International Publishing, 2015. ISBN 978-3-319-20614-1. doi:10.1007/978-3-319-20615-8_17.
- [5] Czesław Byliński. Introduction to categories and functors. Formalized Mathematics, 1 (2):409-420, 1990.
- [6] Czesław Byliński. Category Ens. Formalized Mathematics, 2(4):527–533, 1991.
- [7] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164, 1990.
- [8] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47–53, 1990.
- Roland Coghetto. Non-trivial universes and sequences of universes. Formalized Mathematics, 30(1):53-66, 2022. doi:10.2478/forma-2022-0005.
- [10] Saunders Mac Lane. Categories for the Working Mathematician, volume 5 of Graduate Texts in Mathematics. Springer-Verlag, New York, Heidelberg, Berlin, 1971.
- Bogdan Nowak and Grzegorz Bancerek. Universal classes. Formalized Mathematics, 1(3): 595–600, 1990.
- [12] Marco Riccardi. Object-free definition of categories. Formalized Mathematics, 21(3): 193–205, 2013. doi:10.2478/forma-2013-0021.
- [13] Emily Riehl. Category Theory in Context. Courier Dover Publications, 2017.
- [14] Zbigniew Semadeni and Antoni Wiweger. Wstęp do teorii kategorii i funktorów, volume 45 of Biblioteka Matematyczna. PWN, Warszawa, 1978.
- [15] Andrzej Trybulec. Categories without uniqueness of cod and dom. Formalized Mathematics, 5(2):259-267, 1996.

Accepted November 8, 2024