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Summary. Category theory is developed from the beginning of Mizar
Mathematical Library [4]. Gradually it was expanded, with several different de-
finitions for a category: Category ([5]) and category (in [12] or with another
definition in [15]) based on [14] and [10]. In the following, we will only use,
among these 3 definitions, the first, as well as the notion U for Grothendieck’s
non-empty Universe.

The first part of this work is devoted to the definitions of U-set and proper
classes U-class.

The second part is largely influenced by the number 0 Universe of the first
presentation of SGA 4 [1], we define the notion of an U-small set (and of
U-small group as well as of U-small Category). This allows us to access the
formalization of the definition of U-Category.

Finally, we introduce the notions of U-small Category and U-locally small
Category and some classic examples (adapted from “Example 1.1.4” by Emily
Riehl in “Category theory in Context” [13]).
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1. Preliminaries

Now we state the propositions:

(1) Let us consider a non empty set X. Then {〈〈A, B〉〉, where A,B are
elements of X : if B = ∅, then A = ∅} = (X ×X) \ (X \ {∅} × {∅}).

(2) Let us consider a non empty set X. Suppose {∅} is an element of X.
Then {∅} /∈ FuncsX.

(3) Neven is denumerable.

(4) Nodd is denumerable.

(5) Let us consider non empty sets X, Y, and an element y of Y. Then X ×
{y} ⊆

⋃
Y X .

(6) Let us consider a non empty set X, and a non zero natural number n.
If Xn is finite, then X is finite.

Let us consider a non empty set X. Now we state the propositions:

(7)
⋃

SmallestPartition(X) = X.

(8) X ≈ SmallestPartition(X).

Now we state the proposition:

(9) Let us consider a strict object-category C. Then (Cop)op = C.

Let x1, x2, x3, x4, x5 be objects. The functor 〈〈x1, x2, x3, x4, x5〉〉 yielding
an object is defined by the term

(Def. 1) 〈〈〈〈x1, x2, x3, x4〉〉, x5〉〉.
Let x be an object. We say that x is quintuple if and only if

(Def. 2) there exist objects x1, x2, x3, x4, x5 such that x = 〈〈x1, x2, x3, x4, x5〉〉.
Let x1, x2, x3, x4, x5 be objects. Let us note that 〈〈x1, x2, x3, x4, x5〉〉 is

quintuple.
Now we state the proposition:

(10) Let us consider objects x1, x2, x3, x4, x5, y1, y2, y3, y4, y5. Suppose
〈〈x1, x2, x3, x4, x5〉〉 = 〈〈y1, y2, y3, y4, y5〉〉. Then

(i) x1 = y1, and

(ii) x2 = y2, and

(iii) x3 = y3, and

(iv) x4 = y4, and

(v) x5 = y5.

One can verify that there exists an object which is quintuple and there exists
a set which is quintuple.

Let x be an object. Assume x is quintuple. The functor (x)1 yielding an ob-
ject is defined by
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(Def. 3) for every objects y1, y2, y3, y4, y5 such that x = 〈〈y1, y2, y3, y4, y5〉〉 holds
it = y1.

Assume x is quintuple. The functor (x)2 yielding an object is defined by

(Def. 4) for every objects y1, y2, y3, y4, y5 such that x = 〈〈y1, y2, y3, y4, y5〉〉 holds
it = y2.

Assume x is quintuple. The functor (x)3 yielding an object is defined by

(Def. 5) for every objects y1, y2, y3, y4, y5 such that x = 〈〈y1, y2, y3, y4, y5〉〉 holds
it = y3.

Assume x is quintuple. The functor (x)4 yielding an object is defined by

(Def. 6) for every objects y1, y2, y3, y4, y5 such that x = 〈〈y1, y2, y3, y4, y5〉〉 holds
it = y4.

Assume x is quintuple. The functor (x)5 yielding an object is defined by

(Def. 7) for every objects y1, y2, y3, y4, y5 such that x = 〈〈y1, y2, y3, y4, y5〉〉 holds
it = y5.

Let x1, x2, x3, x4, x5 be objects. Observe that (〈〈x1, x2, x3, x4, x5〉〉)1 reduces
to x1 and (〈〈x1, x2, x3, x4, x5〉〉)2 reduces to x2 and (〈〈x1, x2, x3, x4, x5〉〉)3 reduces
to x3 and (〈〈x1, x2, x3, x4, x5〉〉)4 reduces to x4 and (〈〈x1, x2, x3, x4, x5〉〉)5 reduces
to x5.

Let x be a quintuple object. Observe that 〈〈(x)1, (x)2, (x)3, (x)4, (x)5〉〉 redu-
ces to x.

2. Some Elementary Properties

From now on U denotes a universal class and x denotes an element of U .
Now we state the propositions:

(11) Let us consider objects x1, x2, x3. Suppose x = 〈〈x1, x2, x3〉〉. Then

(i) x1 is an element of U , and

(ii) x2 is an element of U , and

(iii) x3 is an element of U .

(12) Let us consider objects x1, x2, x3, x4. Suppose x = 〈〈x1, x2, x3, x4〉〉. Then

(i) x1 is an element of U , and

(ii) x2 is an element of U , and

(iii) x3 is an element of U , and

(iv) x4 is an element of U .

The theorem is a consequence of (11).



78 roland coghetto

(13) Let us consider elements x1, x2, x3, x4, x5 of U . Then 〈〈x1, x2, x3, x4, x5〉〉
is an element of U .

(14) Let us consider objects x1, x2, x3, x4, x5. Suppose x = 〈〈x1, x2, x3, x4, x5〉〉.
Then

(i) x1 is an element of U , and

(ii) x2 is an element of U , and

(iii) x3 is an element of U , and

(iv) x4 is an element of U , and

(v) x5 is an element of U .

The theorem is a consequence of (12).

Let U be a universal class and u1, u2, u3 be elements of U . Observe that
the functor 〈〈u1, u2, u3〉〉 yields an element of U . Let u4 be an element of U . Let
us observe that the functor 〈〈u1, u2, u3, u4〉〉 yields an element of U . Let u5 be
an element of U . Observe that the functor 〈〈u1, u2, u3, u4, u5〉〉 yields an element
of U . Now we state the propositions:

(15) Let us consider a subset x of U0. If x is finite, then x is an element of
U0.

(16) Let us consider a finite set X. If X ⊆ U0, then X ∈ U0.
Proof: Consider p being a function such that rng p = X and dom p ∈ ω.
Define P[object, object] ≡ $2 = {p($1)}. Consider g being a function such
that dom g = dom p and for every object x such that x ∈ dom p holds
P[x, g(x)] from [2, Sch. 1]. rng g ⊆ U0 by [11, (57)].

⋃
rng g = X. �

(17) (i)
⋃
{N} ⊆ U0, and

(ii)
⋃
{N} /∈ U0, and

(iii) {N} 6⊆ U0, and

(iv) {N} /∈ U0.
(18) Let us consider an object x. Then x ∈ U if and only if {x} ∈ U .

Let us consider a set X and a non zero natural number n. Now we state the
propositions:

(19) If {X}Segn is an element of U , then X is an element of U . The theorem
is a consequence of (18).

(20) If {X}n is an element of U , then X is an element of U . The theorem is
a consequence of (19).

Now we state the proposition:

(21) Let us consider a set X. If
⋃
X ∈ U , then X ∈ U .
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3. Set and Class

Let X be a non empty set and x be an object. We say that x is X-Set if
and only if

(Def. 8) x ∈ X.

A Set of X is a set defined by

(Def. 9) it is X-Set.

Now we state the propositions:

(22) Let us consider universal classes U1, U2. Suppose U1 ∈ U2. Let us consider
an object x. If x is U1-Set, then x is U2-Set.

(23) Let us consider universal classes U1, U2. If U1 ∈ U2, then every Set of U1
is a Set of U2.

(24) Every Set of U0 is finite.

(25) Let us consider a subset x of U0. If x is finite, then x is a Set of U0. The
theorem is a consequence of (15).

(26) Let us consider an object x. Then x is a Set of U0 if and only if x is
a set of a finite rank.

Let U be a universal class and x be an object. We say that x is U-Class if
and only if

(Def. 10) x ∈ 2U and x /∈ U .

Now we state the proposition:

(27) Let us consider a set x. If x is U-Class, then x is not empty.

Let U be a universal class.
A Class of U is a non empty set defined by

(Def. 11) it is U-Class.

Now we state the propositions:

(28) Let us consider a finite subset X of U . Then X ∈ U . The theorem is
a consequence of (18) and (7).

(29) Every Class of U is not finite. The theorem is a consequence of (28).

(30) Let us consider a Set X of U . Then U \X is a Class of U .

(31) Every non finite subset of U0 is a Class of U0.

(32) N is a Class of U0.

(33) Neven is a Class of U0. The theorem is a consequence of (3) and (31).

(34) Nodd is a Class of U0. The theorem is a consequence of (4) and (31).

(35) Let us consider an object x. Then

(i) x is not U-Class, or
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(ii) x is not U-Set.

(36) Let us consider universal classes U1, U2. Suppose U1 ∈ U2. Let us consider
an object x. If x is U1-Class, then x is U2-Set.

(37) (i)
⋃
{N} is U0-Class, and

(ii) {N} is not U0-Class, and

(iii) {N} is not U0-Set.

4. Categories of Groups and Universes

From now on U1, U2 denote universal classes.
Now we state the propositions:

(38) Let us consider an object x. Then there exists U such that x is U-Set.

(39) Every set is (GrothendieckUniverse(x))-Set.

Let U1, U2 be universal classes. The functor sup(U1, U2) yielding a universal
class is defined by the term

(Def. 12)

{
U1, if U2 ∈ U1,
U2, otherwise.

Now we state the propositions:

(40) Let us consider universal classes U1, U2, a Set x of U1, and a Set y of
U2. Then there exists a Set z of sup(U1, U2) such that for every object a,
a ∈ z iff a = x or a = y.

(41) Let us consider a Set X of U . Then
⋃
X is a Set of U .

Let us consider a set X. Now we state the propositions:

(42) If
⋃
X is a Set of U , then X is a Set of U . The theorem is a consequence

of (21).

(43) If
⋃
X is empty, then X is U-Set.

Now we state the propositions:

(44) Let us consider a Class X of U . Then
⋃
X is a Class of U . The theorem

is a consequence of (43) and (21).

(45) There exists a set X such that

(i)
⋃
X is a Class of U0, and

(ii) X is not a Class of U0, and

(iii) X is not a Set of U0, and

(iv) X is a Set of U1.

The theorem is a consequence of (17).
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(46) Let us consider a Set X of U , and a set Y. If Y ∈ X, then Y is a Set of
U .

(47) Let us consider a Class X of U , and a set Y. If Y ∈ X, then Y is a Set
of U .

5. U-petit

Let U be a universal class and x be a set. We say that x is U-petit if and
only if

(Def. 13) there exists an element u of U such that u ≈ x.

Now we state the proposition:

(48) Every element of U is U-petit.

Let us consider a set x. Now we state the propositions:

(49) x is U-petit if and only if x ∈ U .

(50) {x} is U-petit.

Let U be a universal class and G be a group. We say that G is U-element if
and only if

(Def. 14) the carrier of G is an element of U .

Now we state the proposition:

(51) Let us consider a group G. Suppose G is U-element. Then the multipli-
cation of G is an element of U .

Let U be a universal class and G be a group. We say that G is U-petit if
and only if

(Def. 15) there exists a group g such that g is U-element and G and g are isomor-
phic.

Let C be an object-category. We say that C is U-element if and only if

(Def. 16) the carrier of C is an element of U and the carrier’ of C is an element of
U .

Now we state the propositions:

(52) Let us consider an object-category C. Suppose C is U-element. Then

(i) the source of C is an element of U , and

(ii) the target of C is an element of U , and

(iii) the composition of C is an element of U .

(53) Let us consider elements o, m of U . Then �̇(o,m) is U-element.
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Let U be a universal class. Observe that there exists an object-category
which is U-element.

Let C be an object-category. We say that C is U-petit if and only if

(Def. 17) there exists a strict object-category c such that c is U-element and C ∼= c.

Now we state the propositions:

(54) Let us consider an object-category A, and an object a of A. Then 〈〈〈〈ida,
ida〉〉, ida〉〉 ∈ the composition of A.

(55) Let us consider objects o, m. Then the composition of �̇(o,m) = {〈〈〈〈m,
m〉〉, m〉〉}.
Proof: Set A = �̇(o,m). The composition of A ⊆ {〈〈〈〈m, m〉〉, m〉〉} by [5,
(16)]. �

(56) Let us consider objects o, m, and an object c of �̇(o,m). Then c = o.

(57) Let us consider objects o, m, and an element c of �̇(o,m). Then

(i) c is an object of �̇(o,m), and

(ii) c = o, and

(iii) idc = m.

(58) Let us consider objects o1, o2, m1, m2. Then �̇(o1,m1) ∼= �̇(o2,m2).
The theorem is a consequence of (57).

(59) Let us consider objects o, m. Then �̇(o,m) is U-petit. The theorem is
a consequence of (53) and (58).

Let U be a universal class. Let us observe that there exists an object-category
which is U-petit.

Now we state the propositions:

(60) There exists a U-petit object-category C such that

(i) the carrier of C is not an element of U , and

(ii) the carrier’ of C is an element of U .

The theorem is a consequence of (59) and (18).

(61) There exists a U-petit object-category C such that

(i) the carrier of C is not an element of U , and

(ii) the carrier’ of C is not an element of U .

The theorem is a consequence of (59) and (18).

(62) There exists a U-petit object-category C such that

(i) the carrier of C is an element of U , and

(ii) the carrier’ of C is not an element of U .

The theorem is a consequence of (59) and (18).
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(63) There exists a U-petit object-category C such that C is not U-element.
The theorem is a consequence of (62).

(64) Let us consider a strict object-category C. If C is U-element, then C is
U-petit.

Let U be a universal class and C be an object-category. We say that C is U-Category
if and only if

(Def. 18) for every objects x, y of C, hom(x, y) is U-petit.

Let us observe that there exists an object-category which is U-Category.
Now we state the proposition:

(65) Let us consider object-categories C, D, and a functor F from C to D.
Then F ⊆ (the carrier’ of C)× (the carrier’ of D).

Let us consider object-categories C, D. Now we state the propositions:

(66) Funct(C,D) ⊆ 2α×β, where α is the carrier’ of C and β is the carrier’ of
D.

(67) NatTrans(C,D) ⊆ (2α×β × 2α×β)× 2γ×β, where α is the carrier’ of C, β
is the carrier’ of D, and γ is the carrier of C.

Now we state the propositions:

(68) Let us consider setsX, Y, Z. SupposeX, Y, Z ∈ U . Then 2(2
X×Y ×2X×Y )×2Z×Y ∈

U .

(69) Let us consider non empty sets X, Y. Suppose Y X is an element of U .
Then X is an element of U . The theorem is a consequence of (5).

Now we state the propositions:

(70) PROP 1.1.1 a) SGA4:
Let us consider object-categories C, D. Suppose C is U-element and D is
U-element. Then Functors(D,C) is U-element. The theorem is a consequ-
ence of (66) and (67).

(71) Let us consider a set c. Suppose c ∈ U . Then 2c ∈ U .

(72) Let us consider cardinal numbers c1, c2. Suppose c1, c2 ∈ U . Then
2c1×c2 ∈ U .

6. Category GroupCat

Let x be an object. The functor op0(x) yielding an element of {x} is defined
by the term

(Def. 19) x.

The functor op1(x) yielding a unary operation on {x} is defined by the term

(Def. 20) x 7−→. x.
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The functor op2(x) yielding a binary operation on {x} is defined by the term

(Def. 21) [〈〈x, x〉〉 7→ x].

Now we state the proposition:

(73) (i) op0(0) = op0, and

(ii) op1(0) = op1, and

(iii) op2(0) = op2.

Let x be an object. The functor TrivialAddLoopStr(x) yielding a non empty
additive loop structure is defined by the term

(Def. 22) 〈{x}, op2(x), op0(x)〉.
Now we state the propositions:

(74) Trivial-addLoopStr = TrivialAddLoopStr(0).

(75) Let us consider an object x. Then TrivialAddLoopStr(x) is a strict group.

(76) (i) op0(x) is an element of U , and

(ii) op1(x) is an element of U , and

(iii) op2(x) is an element of U .

(77) comp TrivialAddLoopStr(x) is an element of U .

(78) There exists an element y of U such that Pob y,TrivialAddLoopStr(x).
The theorem is a consequence of (76) and (77).

(79)
⋃

the set of all the carrier of TrivialAddLoopStr(x) where x is an element
of U = U .

(80) TrivialAddLoopStr(x) ∈ GroupObj(U). The theorem is a consequence
of (78).

(81) GroupObj(U) ≈ U .

Proof: Set G1 = GroupObj(U). Reconsider G2 = G1 as a non empty
set. Define P[object, object] ≡ $2 ∈ U and Pob $2, $1. For every element x
of G2, there exists an element y of U such that P[x, y]. Consider f being
a function from G2 into U such that for every element x of G2, P[x, f(x)]
from [7, Sch. 3]. Define Q(object) = TrivialAddLoopStr($1). For every
object x such that x ∈ U holds Q(x) ∈ GroupObj(U). Consider g being
a function from U into GroupObj(U) such that for every object x such
that x ∈ U holds g(x) = Q(x) from [7, Sch. 2]. �

(82) GroupObj(U) is not U-petit. The theorem is a consequence of (81).
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7. Object-category Represented by a Set

Let C be an object-category. The functor CatToSet(C) yielding a set is
defined by the term

(Def. 23) 〈〈the carrier of C, the carrier’ of C, the source of C, the target of C, the composition
of C〉〉.

Let C be a quintuple set. We say that C is StrCategory-like if and only if

(Def. 24) there exist sets y1, y2, y3, y4, y5 such that y1 = (C)1 and y2 = (C)2 and
y3 = (C)3 and y4 = (C)4 and y5 = (C)5 and y3 is a function from y2 into
y1 and y4 is a function from y2 into y1 and y5 is a partial function from
y2 × y2 to y2.

Observe that there exists a quintuple set which is StrCategory-like.
Let C be a StrCategory-like, quintuple set. The functor SetToCat(C) yiel-

ding a strict category structure is defined by

(Def. 25) there exist sets y1, y2 and there exist functions y3, y4 from y2 into y1
and there exists a partial function y5 from y2 × y2 to y2 such that y1 =
(C)1 and y2 = (C)2 and y3 = (C)3 and y4 = (C)4 and y5 = (C)5 and
it = 〈〈y1, y2, y3, y4, y5〉〉.

We say that C is category-like if and only if

(Def. 26) there exist sets y1, y2 and there exist functions y3, y4 from y2 into y1
and there exists a partial function y5 from y2 × y2 to y2 such that y1 =
(C)1 and y2 = (C)2 and y3 = (C)3 and y4 = (C)4 and y5 = (C)5 and
〈〈y1, y2, y3, y4, y5〉〉 is an object-category.

Let us observe that there exists a StrCategory-like, quintuple set which is
category-like and there exists a StrCategory-like, quintuple set which is non
empty and category-like.

Let C be a category-like, StrCategory-like, quintuple set. The functor ObjC
yielding a set is defined by the term

(Def. 27) (C)1.

The functor MorC yielding a set is defined by the term

(Def. 28) (C)2.

We say that C is non-empty if and only if

(Def. 29) ObjC is not empty.

Observe that there exists a category-like, StrCategory-like, quintuple set
which is non-empty.

A CategorySet is a non-empty, category-like, StrCategory-like, quintuple
set. Now we state the proposition:

(83) Every CategorySet is not empty.
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Observe that every CategorySet is non empty.
Let C be a CategorySet. The functor SetToCat(C) yielding a strict object-

category is defined by

(Def. 30) there exist sets y1, y2 and there exist functions y3, y4 from y2 into y1
and there exists a partial function y5 from y2 × y2 to y2 such that y1 =
(C)1 and y2 = (C)2 and y3 = (C)3 and y4 = (C)4 and y5 = (C)5 and
it = 〈〈y1, y2, y3, y4, y5〉〉.

Let C be a strict object-category. One can check that the functor CatToSet(C)
yields a CategorySet. Now we state the propositions:

(84) Let us consider a CategorySet C. Then CatToSet(SetToCat(C)) = C.

(85) Let us consider a strict object-category C. Then SetToCat(CatToSet(C)) =
C.

(86) Let us consider an object-category C. Then C is U-element if and only
if CatToSet(C) is U-Set. The theorem is a consequence of (52), (13), and
(14).

(87) Let us consider a CategorySet C. Then C is U-Set if and only if SetToCat(C)
is U-element. The theorem is a consequence of (14) and (84).

Let C, D be CategorySets. We say that C ∼= D if and only if

(Def. 31) SetToCat(C) ∼= SetToCat(D).

Now we state the proposition:

(88) Let us consider strict object-categories C,D. If C ∼= D, then CatToSet(C) ∼=
CatToSet(D). The theorem is a consequence of (85).

Let U be a universal class and C be a CategorySet. We say that C is U-petit
if and only if

(Def. 32) there exists a CategorySet c such that c is U-Set and C ∼= c.

Now we state the proposition:

(89) Let us consider a strict object-category C. Then C is U-petit if and only
if CatToSet(C) is U-petit. The theorem is a consequence of (86), (88),
(85), and (87).

Let C, D be CategorySets. The functor Funct(C,D) yielding a set is defined
by the term

(Def. 33) Funct(SetToCat(C), SetToCat(D)).

The functor Functors(D,C) yielding a CategorySet is defined by the term

(Def. 34) CatToSet(Functors(SetToCat(D), SetToCat(C))).

Now we state the proposition:

(90) Let us consider CategorySets C, D. Then

(i) Obj Functors(D,C) = Funct(SetToCat(C), SetToCat(D)), and
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(ii) Mor Functors(D,C) = NatTrans(SetToCat(C),SetToCat(D)).

Now we state the proposition:

(91) PROP 1.1.1 a) SGA4:
Let us consider CategorySets C, D. Suppose C is U-Set and D is U-Set.
Then Functors(D,C) is U-Set. The theorem is a consequence of (87), (70),
and (86).

8. Small and Locally-small Categories

Let U be a universal class and C be an object-category. We introduce the
notation C is U-small as a synonym of C is U-element.

Observe that there exists an object-category which is U-small.
Now we state the propositions:

(92) Let us consider sets o, m. Suppose m is not U-Set or o is not U-Set.
Then �̇(o,m) is not U-small. The theorem is a consequence of (18).

(93) Let us consider objects o, m. Suppose �̇(o,m) is U-small. Then

(i) m is U-Set, and

(ii) o is U-Set.

The theorem is a consequence of (92).

Let U be a universal class. One can verify that there exists an object-category
which is non U-small.

Let C be an object-category. We say that C is U-locally small if and only
if

(Def. 35) for every objects x, y of C, hom(x, y) is U-Set.

Note that there exists an object-category which is U-locally small and there
exists a non void, non empty object-category which is U-locally small.

Now we state the propositions:

(94) Every U-small object-category is U-locally small.

(95) Let us consider an object o. Then �̇(o,U) is not U-locally small.
Proof: Set C = �̇(o′,U). C is not U-locally small by [3, (3)], (18). �

Let U be a universal class. Let us observe that there exists an object-category
which is non U-locally small.

Let us consider a U-locally small object-category C. Now we state the pro-
positions:

(96) Suppose the carrier of C is U-Set. Then
⋃

the set of all hom(a, b) where
a, b are objects of C is an element of U .
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Proof: Define P[object of C, element of U ] ≡
⋃

the set of all hom($1, b) where
b is an object of C = $2. Consider f being a function from the carrier of
C into U such that for every element x of the carrier of C, P[x, f(x)] from
[7, Sch. 3]. For every object x such that x ∈ dom f holds f(x) ∈ U . �

(97) If the carrier of C is U-Set, then C is U-small. The theorem is a conse-
quence of (96).

Now we state the propositions:

(98) Let us consider U-small object-categories C, D. Then

(i) Functors(D,C) is U-small, and

(ii) NatTrans(C,D) is U-Set.

The theorem is a consequence of (70).

(99) Let us consider a U-small object-category C. Then Cop is a U-small
object-category.

(100) Let us consider a U-locally small object-category C. Then Cop is a U-
locally small object-category.

9. Examples

Let X be a set. One can verify that the functor idX yields an element of
XX . Now we state the propositions:

(101) FuncsU ⊂ U .
Proof: FuncsU ⊆ U by [8, (77)], [9, (81)]. �

(102) FuncsU is U-Class. The theorem is a consequence of (101).

(103) (U × U) \ (U \ {∅} × {∅}) is not an element of U .

(104) (i) π1(MapsU) ⊆ U × U , and

(ii) (U × U) \ (U \ {∅} × {∅}) ⊆ π1(MapsU), and

(iii) π2(MapsU) = FuncsU .
Proof: π1(MapsU) ⊆ U×U . (U×U)∩{〈〈A, B〉〉, where A,B are elements
of U : if B = ∅, then A = ∅} ⊆ π1(MapsU) by [6, (1)]. π2(MapsU) =
FuncsU by [6, (1)]. �

(105) MapsU ⊆ U .

(106) The carrier’ of EnsU is U-Class. The theorem is a consequence of (102),
(104), and (105).

(107) (i) EnsU is a non U-small object-category, and

(ii) the carrier of EnsU is U-Class, and
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(iii) the carrier’ of EnsU is U-Class.
The theorem is a consequence of (106).

(108) Let us consider universal classes U , V . Suppose U ∈ V . Then EnsU is
a V -small object-category. The theorem is a consequence of (107).

Let A1 be an Abelian group. The functor #A1 yielding a function from
(the carrier of A1)× (the carrier of A1) into the carrier of A1 is defined by the
term

(Def. 36) the addition of A1.

Let K be a field, o be an object, and n be a natural number. The func-
tor nMatrixFieldCat(K, o, n) yielding a non empty, non void, strict category
structure is defined by the term

(Def. 37) 〈〈{o}, the carrier of Kn×n
G , ((the carrier of Kn×n

G ) 7−→ o), ((the carrier of
Kn×n
G ) 7−→ o),#Kn×n

G 〉〉.
One can verify that nMatrixFieldCat(K, o, n) is category-like and nMatrixFieldCat(K, o, n)

is transitive and nMatrixFieldCat(K, o, n) is associative and nMatrixFieldCat(K, o, n)
is reflexive and nMatrixFieldCat(K, o, n) has identities.

Now we state the proposition:

(109) Let us consider a field K, an element o of U , and a non zero natural
number n. Suppose the carrier of K is an element of U . Then

(i) the carrier of nMatrixFieldCat(K, o, n) is trivial, and

(ii) nMatrixFieldCat(K, o, n) is U-small object-category and U-locally
small object-category.

The theorem is a consequence of (18) and (94).

Let us consider an element o of U0 and a non zero natural number n. Now
we state the propositions:

(110) (i) the carrier of nMatrixFieldCat(RF, o, n) is trivial and U0-Set, and

(ii) nMatrixFieldCat(RF, o, n) is not a U0-small object-category, and

(iii) nMatrixFieldCat(RF, o, n) is not a U0-locally small object-category,
and

(iv) nMatrixFieldCat(RF, o, n) isU1-small object-category andU1-locally
small object-category.

The theorem is a consequence of (18), (6), and (109).

(111) (i) the carrier of nMatrixFieldCat(CF, o, n) is trivial and U0-Set, and

(ii) nMatrixFieldCat(CF, o, n) is not a U0-small object-category, and

(iii) nMatrixFieldCat(CF, o, n) is not a U0-locally small object-category,
and
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(iv) nMatrixFieldCat(CF, o, n) isU1-small object-category andU1-locally
small object-category.

The theorem is a consequence of (18), (6), and (109).
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de Géométrie Algébrique du Bois Marie, 1963/64, SGA 4, volume 269 of Lecture Notes
in Mathematics. Springer, 1972.

[2] Grzegorz Bancerek. Tarski’s classes and ranks. Formalized Mathematics, 1(3):563–567,
1990.

[3] Grzegorz Bancerek and Agata Darmochwał. Comma category. Formalized Mathematics,
2(5):679–681, 1991.

[4] Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Ma-
tuszewski, Adam Naumowicz, Karol Pąk, and Josef Urban. Mizar: State-of-the-art and
beyond. In Manfred Kerber, Jacques Carette, Cezary Kaliszyk, Florian Rabe, and Vol-
ker Sorge, editors, Intelligent Computer Mathematics, volume 9150 of Lecture Notes in
Computer Science, pages 261–279. Springer International Publishing, 2015. ISBN 978-3-
319-20614-1. doi:10.1007/978-3-319-20615-8 17.

[5] Czesław Byliński. Introduction to categories and functors. Formalized Mathematics, 1
(2):409–420, 1990.

[6] Czesław Byliński. Category Ens. Formalized Mathematics, 2(4):527–533, 1991.
[7] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164,

1990.
[8] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47–53,

1990.
[9] Roland Coghetto. Non-trivial universes and sequences of universes. Formalized Mathe-

matics, 30(1):53–66, 2022. doi:10.2478/forma-2022-0005.
[10] Saunders Mac Lane. Categories for the Working Mathematician, volume 5 of Graduate

Texts in Mathematics. Springer-Verlag, New York, Heidelberg, Berlin, 1971.
[11] Bogdan Nowak and Grzegorz Bancerek. Universal classes. Formalized Mathematics, 1(3):

595–600, 1990.
[12] Marco Riccardi. Object-free definition of categories. Formalized Mathematics, 21(3):

193–205, 2013. doi:10.2478/forma-2013-0021.
[13] Emily Riehl. Category Theory in Context. Courier Dover Publications, 2017.
[14] Zbigniew Semadeni and Antoni Wiweger. Wstȩp do teorii kategorii i funktorów, volume 45
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