

Ascoli-Arzela's Theorem (Metric Space Version)

Keiichi Miyajima Ibaraki University Faculty of Engineering Hitachi, Ibaraki, Japan Hiroshi Yamazaki Nagano Prefectural Institute of Technology Nagano, Japan

Summary. In this article, the Ascoli-Arzela's theorem on metric space is formalized [12], [13], [16]. First, we gave definitions of equicontinuousness and equiboundedness of a set of continuous functions [19], [14], [9], [17], [18]. Next, we formalized the Ascoli-Arzela's theorem using those definitions, and proved this theorem. From this result, Ascoli-Arzela's theorem can be applied in a metric space that is easier to apply.

MSC: 46B50 68V20

Keywords: Ascoli-Arzela's theorem; equicontinuousness of continuous functions; equiboundedness of continuous functions

MML identifier: ASCOLI2, version: 8.1.14 5.84.1473

1. Equicontinuousness and Equiboundedness of Continuous Functions

Now we state the propositions:

- (1) Let us consider a non empty metric space T, and a subset A of T. Then $A \subseteq \overline{A}$.
- (2) Let us consider a non empty topological space S, a non empty metric space T, a function f from S into T_{top} , and a point x of S. Then f is continuous at x if and only if for every real number e such that 0 < e there exists a subset H of S such that H is open and $x \in H$ and for every point y of S such that $y \in H$ holds $\rho(f(x)(\in T), f(y)(\in T)) < e$.

PROOF: For every subset G of T_{top} such that G is open and $f(x) \in G$ there exists a subset H of S such that H is open and $x \in H$ and $f^{\circ}H \subseteq G$ by [8, (15)], [10, (11)]. \Box

Let S, T be non empty metric spaces and F be a subset of (the carrier of T)^(the carrier of S). We say that F is equibounded if and only if

(Def. 1) there exists a subset K of T such that K is bounded and for every function f from the carrier of S into the carrier of T such that $f \in F$ for every element x of S, $f(x) \in K$.

Let x_0 be a point of S. We say that F is equicontinuous at x_0 if and only if

(Def. 2) for every real number e such that 0 < e there exists a real number d such that 0 < d and for every function f from the carrier of S into the carrier of T such that $f \in F$ for every point x of S such that $\rho(x, x_0) < d$ holds $\rho(f(x), f(x_0)) < e$.

We say that F is equicontinuous if and only if

(Def. 3) for every real number e such that 0 < e there exists a real number d such that 0 < d and for every function f from the carrier of S into the carrier of T such that $f \in F$ for every points x_1, x_2 of S such that $\rho(x_1, x_2) < d$ holds $\rho(f(x_1), f(x_2)) < e$.

2. Ascoli-Arzela's Theorem

Now we state the proposition:

(3) Let us consider a non empty metric space Z, and a non empty subset F of Z. If Z is complete, then $Z | \overline{F}$ is complete. PROOF: Set $N = Z | \overline{F}$. Reconsider $S_1 = S2$ as a sequence of Z. For every real number r such that r > 0 there exists a natural number k such that for every natural numbers n, m such that $n \ge k$ and $m \ge k$ holds $\rho(S_1(n), S_1(m)) < r$. Consider H being a subset of Z_{top} such that H = Fand $\overline{F} = \overline{H}$. For every natural number n, $S_1(n) \in \overline{H}$ by [5, (4)]. Reconsider $L = \lim S_1$ as a point of N. For every real number r such that 0 < r there exists a natural number m such that for every natural number n such that $m \le n$ holds $\rho(S_2(n), L) < r$. \Box

Let us consider a non empty metric space Z and a non empty subset H of Z. Now we state the propositions:

(4) $Z \upharpoonright H$ is totally bounded if and only if $Z \upharpoonright \overline{H}$ is totally bounded. PROOF: Consider D being a subset of Z_{top} such that D = H and $\overline{H} = \overline{D}$. $Z \upharpoonright H$ is totally bounded by [10, (4)]. \Box

- (5) If Z is complete and $Z \upharpoonright H$ is totally bounded, then \overline{H} is sequentially compact and $Z \upharpoonright \overline{H}$ is compact. The theorem is a consequence of (3) and (4).
- (6) Suppose Z is complete. Then
 - (i) $Z \upharpoonright H$ is totally bounded iff \overline{H} is sequentially compact, and
 - (ii) $Z \upharpoonright H$ is totally bounded iff $Z \upharpoonright \overline{H}$ is compact.

The theorem is a consequence of (3) and (4).

Let S be a non empty topological space and T be a non empty metric space. The continuous functions of S and T yielding a non empty set is defined by the term

(Def. 4) $\{f, \text{ where } f \text{ is a function from } S \text{ into } T_{\text{top}} : f \text{ is continuous}\}.$

Now we state the propositions:

- (7) Let us consider a metric space X, and elements x, y, v, w of X. Then $|\rho(x, y) \rho(v, w)| \leq \rho(x, v) + \rho(y, w).$
- (8) Let us consider a non empty topological space S, a non empty metric space T, and functions f, g from S into T_{top} . Suppose f is continuous and g is continuous. Let us consider a real map D_1 of S. Suppose for every point x of S, $D_1(x) = \rho(f(x) \in T), g(x) \in T)$. Then D_1 is continuous. The theorem is a consequence of (2) and (7).
- (9) Let us consider a non empty, compact topological space S, a non empty metric space T, and functions f, g from S into T_{top} . Suppose f is continuous and g is continuous. Let us consider a real map D_1 of S. Suppose for every point x of S, $D_1(x) = \rho(f(x) \in T), g(x) \in T)$). Then
 - (i) $\operatorname{rng} D_1 \neq \emptyset$, and
 - (ii) $\operatorname{rng} D_1$ is upper bounded and lower bounded.

The theorem is a consequence of (8).

(10) Let us consider a non empty topological space S, and a non empty metric space T. Then there exists a function F from (the continuous functions of S and T) × (the continuous functions of S and T) into \mathbb{R} such that for every functions f, g from S into T_{top} such that f, $g \in$ the continuous functions of S and T there exists a real map D_1 of S such that for every point x of S, $D_1(x) = \rho(f(x)(\in T), g(x)(\in T))$ and $F(f,g) = \sup \operatorname{rng} D_1$. PROOF: Set F_1 = the continuous functions of S and T. Define $\mathcal{P}[\text{object, object, object}]$ there exist functions f, g from S into T_{top} and there exists a real map D_1 of S such that $\$_1 = f$ and $\$_2 = g$ and for every point t of S, $D_1(t) = \rho(f(t)(\in T), g(t)(\in T)))$ and $\$_3 = \sup \operatorname{rng} D_1$. For every objects x, y such that $x, y \in F_1$ there exists an object z such that $z \in \mathbb{R}$ and $\mathcal{P}[x, y, z]$. Consider F being a function from $F_1 \times F_1$ into \mathbb{R} such that for every objects x, y such that $x, y \in F_1$ holds $\mathcal{P}[x, y, F(x, y)]$ from [3, Sch. 1]. \Box

Let S be a non empty topological space and T be a non empty metric space. The functor dist-Func(S, T) yielding a function from (the continuous functions of S and T) × (the continuous functions of S and T) into \mathbb{R} is defined by

(Def. 5) for every functions f, g from S into T_{top} such that $f, g \in$ the continuous functions of S and T there exists a real map D_1 of S such that for every point x of $S, D_1(x) = \rho(f(x)(\in T), g(x)(\in T))$ and $it(f, g) = \sup \operatorname{rng} D_1$.

The functor MetricSpace-of-ContinuousFunctions(S,T) yielding a metric structure is defined by the term

(Def. 6) (the continuous functions of S and T, dist-Func(S,T)).

Let S be a non empty, compact topological space. Note that MetricSpace-of-Continuous is reflexive, discernible, symmetric, and triangle.

Let S be a non empty topological space. One can verify that MetricSpace-of-Continuous is non empty and strict and the continuous functions of S and T is non empty and functional.

Let S be a non empty, compact topological space. Note that MetricSpace-of-Continuous is constituted functions.

Let f be an element of MetricSpace-of-ContinuousFunctions(S, T) and v be a point of S. One can check that the functor f(v) yields a point of T_{top} . Now we state the propositions:

- (11) Let us consider a non empty, compact topological space S, a non empty metric space T, points f, g of MetricSpace-of-ContinuousFunctions(S, T), and a point t of S. Then $\rho(f(t)(\in T), g(t)(\in T)) \leq \rho(f, g)$. The theorem is a consequence of (9).
- (12) Let us consider a non empty, compact topological space S, a non empty metric space T, points f, g of MetricSpace-of-ContinuousFunctions(S, T), functions f_1 , g_1 from S into T, and a real number e. Suppose $f = f_1$ and $g = g_1$ and for every point t of S, $\rho(f_1(t), g_1(t)) \leq e$. Then $\rho(f, g) \leq e$. The theorem is a consequence of (9).
- (13) Let us consider a non empty, compact topological space S, and a non empty metric space T. Suppose T is complete. Then MetricSpace-of-ContinuousFunc is complete. The theorem is a consequence of (11), (2), and (12).
- (14) Let us consider a non empty, compact topological space S, and a non empty metric space T. Suppose T is complete. Let us consider a non empty subset H of MetricSpace-of-ContinuousFunctions(S, T). Then \overline{H} is sequentially compact if and only if MetricSpace-of-ContinuousFunctions(S, T)

is totally bounded. The theorem is a consequence of (13), (3), and (4).

Let us consider a non empty metric space M, a non empty, compact topological space S, a non empty metric space T, a subset G of (the carrier of T)^(the carrier of M), and a non empty subset H of MetricSpace-of-ContinuousFunctions(S, T) Now we state the propositions:

- (15) If $S = M_{top}$, then if G = H and MetricSpace-of-ContinuousFunctions $(S, T) \upharpoonright H$ is totally bounded, then G is equicontinuous. PROOF: Set Z = MetricSpace-of-ContinuousFunctions(S, T). Set $M_2 =$ $Z \upharpoonright H$. Define $\mathcal{Q}[\text{object}, \text{object}] \equiv$ there exists a point w of M_2 such that $\$_2 = w$ and $\$_1 = \text{Ball}(w, 1)$. For every real number e such that 0 < ethere exists a real number d such that 0 < d and for every function f from the carrier of M into the carrier of T such that $f \in G$ for every points x_1 , x_2 of M such that $\rho(x_1, x_2) < d$ holds $\rho(f(x_1), f(x_2)) < e$ by [6, (2)], [4, (3)], [11, (133)], [5, (35)]. \Box
- (16) Suppose $S = M_{top}$. Then suppose G = H and MetricSpace-of-ContinuousFunctions is totally bounded. Then
 - (i) for every point x of S and for every non empty subset H_1 of T such that $H_1 = \{f(x), \text{ where } f \text{ is a function from } S \text{ into } T : f \in H\}$ holds $T \upharpoonright H_1$ is totally bounded, and
 - (ii) G is equicontinuous.

PROOF: For every point x of S and for every non empty subset H_1 of T such that $H_1 = \{f(x), \text{ where } f \text{ is a function from } S \text{ into } T : f \in H\}$ holds $T \upharpoonright H_1$ is totally bounded by [10, (11)], (11), [5, (35)]. \Box

- (17) Suppose $S = M_{top}$ and T is complete and G = H. Then MetricSpace-of-Continuous is totally bounded if and only if G is equicontinuous and for every point xof S and for every non empty subset H_1 of T such that $H_1 = \{f(x), where$ f is a function from S into $T : f \in H\}$ holds $T \upharpoonright \overline{H_1}$ is compact. PROOF: Set Z = MetricSpace-of-ContinuousFunctions(S, T). Set $M_2 =$ $Z \upharpoonright H$. For every real number e such that e > 0 there exists a family L of subsets of M_2 such that L is finite and the carrier of $M_2 = \bigcup L$ and for every subset C of M_2 such that $C \in L$ there exists an element w of M_2 such that C = Ball(w, e) by $[2, (29)], [10, (1)], [7, (1)], [1, (93), (16)]. \square$
- (18) Suppose $S = M_{top}$ and T is complete and G = H. Then \overline{H} is sequentially compact if and only if G is equicontinuous and for every point x of S and for every non empty subset H_1 of T such that $H_1 = \{f(x), \text{ where } f \text{ is a function from } S \text{ into } T : f \in H\}$ holds $T \upharpoonright \overline{H_1}$ is compact. The theorem is a consequence of (14) and (17).

Let us consider a non empty metric space M, a non empty, compact topological space S, a non empty metric space T, a non empty subset F of MetricSpace-of-ContinuousFunctions(S, T), and a subset G of (the carrier of T)^(the carrier of M). Now we state the propositions:

- (19) Suppose $S = M_{top}$ and T is complete and G = F. Then MetricSpace-of-Continuous is compact if and only if G is equicontinuous and for every point x of Sand for every non empty subset F_2 of T such that $F_2 = \{f(x), where f \text{ is} a \text{ function from } S \text{ into } T : f \in F\}$ holds $T \upharpoonright \overline{F_2}$ is compact. The theorem is a consequence of (14) and (17).
- (20) Suppose $S = M_{top}$ and T is complete and G = F. Then MetricSpace-of-Continuous is compact if and only if for every point x of M, G is equicontinuous at xand for every point x of S and for every non empty subset F_2 of T such that $F_2 = \{f(x), \text{ where } f \text{ is a function from } S \text{ into } T : f \in F\}$ holds $T \upharpoonright \overline{F_2}$ is compact. The theorem is a consequence of (19).

Now we state the proposition:

(21) Let us consider a non empty metric space M, a non empty, compact topological space S, a non empty metric space T, a compact subset U of T_{top} , a non empty subset F of MetricSpace-of-ContinuousFunctions(S, T), and a subset G of (the carrier of T)^{α}. Suppose $S = M_{\text{top}}$ and T is complete and G = F and for every function f such that $f \in F$ holds rng $f \subseteq U$. Then MetricSpace-of-ContinuousFunctions $(S, T) \upharpoonright \overline{F}$ is compact if and only if G is equicontinuous, where α is the carrier of M.

PROOF: Set Z = MetricSpace-of-ContinuousFunctions(S, T). \overline{F} is sequentially compact iff $Z \upharpoonright F$ is totally bounded. For every point x of S and for every non empty subset F_2 of T such that $F_2 = \{f(x), \text{ where } f \text{ is a function from } S \text{ into } T : f \in F\}$ holds $T \upharpoonright \overline{F_2}$ is compact by [5, (4)], [2, (34)], [15, (19), (22)]. \Box

ACKNOWLEDGEMENT: The authors would like to express our gratitude to Prof. Yasunari Shidama for his support and encouragement.

References

- Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107–114, 1990.
- [2] Leszek Borys. Paracompact and metrizable spaces. Formalized Mathematics, 2(4):481– 485, 1991.
- [3] Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175–180, 1990.
- [4] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1): 55–65, 1990.
- [5] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164, 1990.
- [6] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47–53, 1990.
- [7] Agata Darmochwał. Compact spaces. Formalized Mathematics, 1(2):383–386, 1990.

- [8] Agata Darmochwał and Yatsuka Nakamura. Metric spaces as topological spaces fundamental concepts. Formalized Mathematics, 2(4):605–608, 1991.
- [9] Bruce K. Driver. Analysis Tools with Applications. Springer, Berlin, 2003.
- [10] Stanisława Kanas, Adam Lecko, and Mariusz Startek. Metric spaces. Formalized Mathematics, 1(3):607–610, 1990.
- [11] Jarosław Kotowicz. Convergent real sequences. Upper and lower bound of sets of real numbers. Formalized Mathematics, 1(3):477-481, 1990.
- [12] Serge Lang. Real and Functional Analysis (Texts in Mathematics). Springer-Verlag, 1993.
- [13] Kazuo Matsuzaka. Sets and Topology (Introduction to Mathematics). IwanamiShoten, 2000.
- [14] Tohru Ozawa. Ascoli-Arzelà theorem. 2012.
- [15] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223–230, 1990.
- [16] Michael Read and Barry Simon. Functional Analysis (Methods of Modern Mathematical Physics). Academic Press, 1980.
- [17] Laurent Schwartz. Théorie des ensembles et topologie, tome 1. Analyse. Hermann, 1997.
- [18] Laurent Schwartz. Calcul différentiel, tome 2. Analyse. Hermann, 1997.
- [19] Kôsaku Yosida. Functional Analysis. Springer, 1980.

Accepted November 28, 2024