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Summary. In this article, the Ascoli-Arzela’s theorem on metric space
is formalized [12], [13], [16]. First, we gave definitions of equicontinuousness and
equiboundedness of a set of continuous functions [19], [14], [9], [I7], [18]. Next, we
formalized the Ascoli-Arzela’s theorem using those definitions, and proved this
theorem. From this result, Ascoli-Arzela’s theorem can be applied in a metric
space that is easier to apply.
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1. EQUICONTINUOUSNESS AND EQUIBOUNDEDNESS OF CONTINUOUS
FUNCTIONS

Now we state the propositions:

(1) Let us consider a non empty metric space T', and a subset A of T'. Then
ACA.

(2) Let us consider a non empty topological space S, a non empty metric
space T', a function f from S into Tigp, and a point x of S. Then f is
continuous at z if and only if for every real number e such that 0 < e
there exists a subset H of S such that H is open and z € H and for every
point y of S such that y € H holds p(f(z)(e T), f(y)(€ T)) <e.
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PRrROOF: For every subset G of Tiop, such that G is open and f(z) € G
there exists a subset H of S such that H is open and x € H and f°H C G
by [8, (15)], [10, (11)]. O
Let S, T be non empty metric spaces and F be a subset of (the carrier of
T )(the cartier of ) e gay that F is equibounded if and only if

(Def. 1) there exists a subset K of T' such that K is bounded and for every
function f from the carrier of S into the carrier of T" such that f € F for
every element x of S, f(z) € K.

Let xg be a point of S. We say that F' is equicontinuous at x¢ if and only if

(Def. 2) for every real number e such that 0 < e there exists a real number d such
that 0 < d and for every function f from the carrier of S into the carrier
of T such that f € F for every point = of S such that p(x,z) < d holds

p(f(x), f(x0)) <e.

We say that F'is equicontinuous if and only if

(Def. 3) for every real number e such that 0 < e there exists a real number d such
that 0 < d and for every function f from the carrier of S into the carrier
of T such that f € F for every points x1, 2 of S such that p(x1,z2) < d

holds p(f (x1), f(z2)) <e.

2. ASCOLI-ARZELA’S THEOREM

Now we state the proposition:

(3) Let us consider a non empty metric space Z, and a non empty subset F
of Z. If Z is complete, then Z|F is complete.
PROOF: Set N = Z|F. Reconsider S; = S2 as a sequence of Z. For
every real number r such that r > 0 there exists a natural number k such
that for every natural numbers n, m such that n > k and m > k holds
p(S1(n),S1(m)) < r. Consider H being a subset of Zi,, such that H = F

and F' = H. For every natural number n, S1(n) € H by [5, (4)]. Reconsider
L =1im 57 as a point of N. For every real number r such that 0 < r there
exists a natural number m such that for every natural number n such that

m < n holds p(S2(n), L) <r.O
Let us consider a non empty metric space Z and a non empty subset H of
Z. Now we state the propositions:
(4) ZIH is totally bounded if and only if Z|H is totally bounded.

PROOF: Consider D being a subset of Zop, such that D = H and H = D.
ZH is totally bounded by [10, (4)]. O
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(5) If Z is complete and Z|H is totally bounded, then H is sequentially
compact and Z|H is compact. The theorem is a consequence of (3) and
(4).

(6) Suppose Z is complete. Then
(i) Z[H is totally bounded iff H is sequentially compact, and
(i) Z|H is totally bounded iff Z|H is compact.

The theorem is a consequence of (3) and (4).

Let S be a non empty topological space and T' be a non empty metric space.
The continuous functions of S and 7" yielding a non empty set is defined by the
term

(Def. 4) {f, where f is a function from S into Tiop, : f is continuous}.

Now we state the propositions:

(7) Let us consider a metric space X, and elements x, y, v, w of X. Then
(2, y) — p(v,w)| < p(z,v) + p(y, w).

(8) Let us consider a non empty topological space S, a non empty metric
space T', and functions f, g from S into Tiop. Suppose f is continuous and
g is continuous. Let us consider a real map D; of S. Suppose for every
point = of S, Di(z) = p(f(x)(€ T),g(zx)(€ T)). Then D; is continuous.
The theorem is a consequence of (2) and (7).

(9) Let us consider a non empty, compact topological space S, a non empty
metric space T', and functions f, g from S into Tie,. Suppose f is conti-

nuous and ¢ is continuous. Let us consider a real map Dy of S. Suppose
for every point x of S, D1(z) = p(f(x)(€ T),g(x)(€ T)). Then

(i) rng Dy # 0, and
(ii) rng D; is upper bounded and lower bounded.

The theorem is a consequence of (8).

(10) Let us consider a non empty topological space S, and a non empty metric
space T'. Then there exists a function F' from (the continuous functions
of S and T') x (the continuous functions of S and T") into R such that for
every functions f, g from S into Ti,p, such that f, g € the continuous
functions of S and T there exists a real map D; of S such that for every
point z of S, Di(x) = p(f(z)(€ T),g(x)(e T)) and F(f,g) = suprng D;.
PROOF: Set F} = the continuous functions of S and T'. Define P[object, object, object
there exist functions f, g from S into Ti,p, and there exists a real map
Dy of S such that $; = f and $2 = ¢ and for every point t of S,
Dy (t) = p(f(t)(e T),g9(t)(e T)) and $3 = suprng D;. For every objects
x, y such that x, y € F} there exists an object z such that z € R and
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Plz,y,z]. Consider F being a function from F; x Fj into R such that
for every objects x, y such that z, y € F; holds Plz,y, F(z,y)] from [3|

Sch. 1]. O
Let S be a non empty topological space and T be a non empty metric space.
The functor yielding a function from (the continuous functions

of S and T') x (the continuous functions of S and T') into R is defined by

(Def. 5) for every functions f, g from S into Tiop such that f, g € the continuous
functions of S and T there exists a real map Dj of S such that for every
point = of S, Dy(z) = p(f(x)(€ T),g(x)(€ T)) and it(f,g) = suprng D;.

structure is defined by the term

(Def. 6) (the continuous functions of S and T dist-Func(S,T)).

Let S be a non empty, compact topological space. Note that MetricSpace-of-Continuous
is reflexive, discernible, symmetric, and triangle.

Let S be a non empty topological space. One can verify that MetricSpace-of-Continuous
is non empty and strict and the continuous functions of S and 7' is non empty
and functional.

Let S be a non empty, compact topological space. Note that MetricSpace-of-Continuous
is constituted functions.

Let f be an element of MetricSpace-of-ContinuousFunctions(S,T") and v be
a point of S. One can check that the functor f(v) yields a point of Tiop. Now
we state the propositions:

(11) Let us consider a non empty, compact topological space S, a non empty
metric space T, points f, g of MetricSpace-of-ContinuousFunctions(S, T'),
and a point ¢ of S. Then p(f(t)(€ T),g(t)(€ T)) < p(f,g). The theorem
is a consequence of (9).

(12) Let us consider a non empty, compact topological space S, a non empty
metric space T, points f, g of MetricSpace-of-ContinuousFunctions(S, T'),
functions f1, g1 from S into T', and a real number e. Suppose f = f1 and
g = g1 and for every point t of S, p(f1(t),91(t)) < e. Then p(f,g) < e.
The theorem is a consequence of (9).

(13) Let us consider a non empty, compact topological space S, and a non
empty metric space T'. Suppose T is complete. Then MetricSpace-of-ContinuousFunc
is complete. The theorem is a consequence of (11), (2), and (12).

(14) Let us consider a non empty, compact topological space S, and a non
empty metric space T'. Suppose 7" is complete. Let us consider a non empty
subset H of MetricSpace-of-ContinuousFunctions(S, T). Then H is sequ-
entially compact if and only if MetricSpace-of-ContinuousFunctions(S, T") [ H
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is totally bounded. The theorem is a consequence of (13), (3), and (4).

Let us consider a non empty metric space M, a non empty, compact to-
pological space S, a non empty metric space T', a subset G of (the carrier of
T)(the carrier of M) "1 4 non empty subset H of MetricSpace-of-ContinuousFunctions(S, T’

Now we state the propositions:

(15) IfS = Miop, thenif G = H and MetricSpace-of-ContinuousFunctions(S, T') [H
is totally bounded, then G is equicontinuous.
PROOF: Set Z = MetricSpace-of-ContinuousFunctions(S,T"). Set My =
Z[H. Define Q[object,object] = there exists a point w of My such that
$2 = w and $; = Ball(w,1). For every real number e such that 0 < e
there exists a real number d such that 0 < d and for every function f from
the carrier of M into the carrier of 1" such that f € G for every points z1,
x9 of M such that p(z1,z2) < d holds p(f(z1), f(z2)) < e by [6, (2)], 4,
(3)], (1L (133)], [5 (35)]. O

(16) Suppose S = M;qp. Then suppose G = H and MetricSpace-of-ContinuousFunctions
is totally bounded. Then

(i) for every point z of S and for every non empty subset H; of T' such
that Hy = {f(x), where f is a function from S into T": f € H } holds
T[H, is totally bounded, and
(ii) G is equicontinuous.
PROOF: For every point z of S and for every non empty subset Hy of T
such that H; = {f(z), where f is a function from S into T': f € H} holds
T H; is totally bounded by [10, (11)], (11), [5, (35)]. O
(17) Suppose S = M;p and T is complete and G = H. Then MetricSpace-of-Continuous
is totally bounded if and only if G is equicontinuous and for every point x
of S and for every non empty subset H; of T such that H; = {f(z), where
f is a function from S into T': f € H} holds T'|H; is compact.
PROOF: Set Z = MetricSpace-of-ContinuousFunctions(S,T'). Set My =
ZH. For every real number e such that e > 0 there exists a family L of
subsets of My such that L is finite and the carrier of My = (J L and for
every subset C' of Ms such that C € L there exists an element w of My
such that C' = Ball(w, e) by [2, (29)], [10, (1)], [7, (1)], [1, (93), (16)]. O
(18) Suppose S = M;p and T is complete and G = H. Then H is sequentially
compact if and only if G is equicontinuous and for every point x of S and
for every non empty subset H; of T such that H; = {f(z), where f is
a function from S into T': f € H} holds T[H; is compact. The theorem
is a consequence of (14) and (17).
Let us consider a non empty metric space M, a non empty, compact to-
pological space S, a non empty metric space T, a non empty subset F' of
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MetricSpace-of-ContinuousFunctions(S, T'), and a subset G of (the carrier of

T )(the carrier of M) Now we state the propositions:

(19) Suppose S = M;p, and T is complete and G = F'. Then MetricSpace-of-Continuous
is compact if and only if G is equicontinuous and for every point x of S
and for every non empty subset Fy of T' such that Fo = {f(x), where f is
a function from S into T': f € F'} holds T'[F; is compact. The theorem is
a consequence of (14) and (17).

(20) Suppose S = Mo and T'is complete and G = F'. Then MetricSpace-of-Continuous
is compact if and only if for every point  of M, G is equicontinuous at x
and for every point x of S and for every non empty subset Fy of T such
that I, = {f(z), where f is a function from S into T : f € F'} holds T'|Fy
is compact. The theorem is a consequence of (19).

Now we state the proposition:

(21) Let us consider a non empty metric space M, a non empty, compact

topological space S, a non empty metric space T, a compact subset U of
Tiop, a non empty subset F' of MetricSpace-of-ContinuousFunctions(S, T'),
and a subset G of (the carrier of T')*. Suppose S = Miqp and T is complete
and G = F and for every function f such that f € F holds rng f C U.
Then MetricSpace-of-ContinuousFunctions(S, T') [ F' is compact if and only
if G is equicontinuous, where « is the carrier of M.
PROOF: Set Z = MetricSpace-of-ContinuousFunctions(S,T). F is sequ-
entially compact iff Z[F is totally bounded. For every point x of S and
for every non empty subset Fy of T' such that F» = {f(x), where f is
a function from S into T : f € F'} holds T|F; is compact by [5, (4)], [2,
(34)], [15, (19), (22)]. O
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