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Summary. In this article, the Ascoli-Arzela’s theorem on metric space
is formalized [12], [13], [16]. First, we gave definitions of equicontinuousness and
equiboundedness of a set of continuous functions [19], [14], [9], [17], [18]. Next, we
formalized the Ascoli-Arzela’s theorem using those definitions, and proved this
theorem. From this result, Ascoli-Arzela’s theorem can be applied in a metric
space that is easier to apply.
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1. Equicontinuousness and Equiboundedness of Continuous
Functions

Now we state the propositions:

(1) Let us consider a non empty metric space T , and a subset A of T . Then
A ⊆ A.

(2) Let us consider a non empty topological space S, a non empty metric
space T , a function f from S into Ttop, and a point x of S. Then f is
continuous at x if and only if for every real number e such that 0 < e

there exists a subset H of S such that H is open and x ∈ H and for every
point y of S such that y ∈ H holds ρ(f(x)(∈ T ), f(y)(∈ T )) < e.
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Proof: For every subset G of Ttop such that G is open and f(x) ∈ G

there exists a subset H of S such that H is open and x ∈ H and f◦H ⊆ G
by [8, (15)], [10, (11)]. �

Let S, T be non empty metric spaces and F be a subset of (the carrier of
T )(the carrier of S). We say that F is equibounded if and only if

(Def. 1) there exists a subset K of T such that K is bounded and for every
function f from the carrier of S into the carrier of T such that f ∈ F for
every element x of S, f(x) ∈ K.

Let x0 be a point of S. We say that F is equicontinuous at x0 if and only if

(Def. 2) for every real number e such that 0 < e there exists a real number d such
that 0 < d and for every function f from the carrier of S into the carrier
of T such that f ∈ F for every point x of S such that ρ(x, x0) < d holds
ρ(f(x), f(x0)) < e.

We say that F is equicontinuous if and only if

(Def. 3) for every real number e such that 0 < e there exists a real number d such
that 0 < d and for every function f from the carrier of S into the carrier
of T such that f ∈ F for every points x1, x2 of S such that ρ(x1, x2) < d

holds ρ(f(x1), f(x2)) < e.

2. Ascoli-Arzela’s Theorem

Now we state the proposition:

(3) Let us consider a non empty metric space Z, and a non empty subset F
of Z. If Z is complete, then Z�F is complete.
Proof: Set N = Z�F . Reconsider S1 = S2 as a sequence of Z. For
every real number r such that r > 0 there exists a natural number k such
that for every natural numbers n, m such that n ­ k and m ­ k holds
ρ(S1(n), S1(m)) < r. Consider H being a subset of Ztop such that H = F

and F = H. For every natural number n, S1(n) ∈ H by [5, (4)]. Reconsider
L = limS1 as a point of N . For every real number r such that 0 < r there
exists a natural number m such that for every natural number n such that
m ¬ n holds ρ(S2(n), L) < r. �

Let us consider a non empty metric space Z and a non empty subset H of
Z. Now we state the propositions:

(4) Z�H is totally bounded if and only if Z�H is totally bounded.
Proof: Consider D being a subset of Ztop such that D = H and H = D.
Z�H is totally bounded by [10, (4)]. �
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(5) If Z is complete and Z�H is totally bounded, then H is sequentially
compact and Z�H is compact. The theorem is a consequence of (3) and
(4).

(6) Suppose Z is complete. Then

(i) Z�H is totally bounded iff H is sequentially compact, and

(ii) Z�H is totally bounded iff Z�H is compact.

The theorem is a consequence of (3) and (4).

Let S be a non empty topological space and T be a non empty metric space.
The continuous functions of S and T yielding a non empty set is defined by the
term

(Def. 4) {f , where f is a function from S into Ttop : f is continuous}.

Now we state the propositions:

(7) Let us consider a metric space X, and elements x, y, v, w of X. Then
|ρ(x, y)− ρ(v, w)| ¬ ρ(x, v) + ρ(y, w).

(8) Let us consider a non empty topological space S, a non empty metric
space T , and functions f , g from S into Ttop. Suppose f is continuous and
g is continuous. Let us consider a real map D1 of S. Suppose for every
point x of S, D1(x) = ρ(f(x)(∈ T ), g(x)(∈ T )). Then D1 is continuous.
The theorem is a consequence of (2) and (7).

(9) Let us consider a non empty, compact topological space S, a non empty
metric space T , and functions f , g from S into Ttop. Suppose f is conti-
nuous and g is continuous. Let us consider a real map D1 of S. Suppose
for every point x of S, D1(x) = ρ(f(x)(∈ T ), g(x)(∈ T )). Then

(i) rngD1 6= ∅, and

(ii) rngD1 is upper bounded and lower bounded.

The theorem is a consequence of (8).

(10) Let us consider a non empty topological space S, and a non empty metric
space T . Then there exists a function F from (the continuous functions
of S and T )× (the continuous functions of S and T ) into R such that for
every functions f , g from S into Ttop such that f , g ∈ the continuous
functions of S and T there exists a real map D1 of S such that for every
point x of S, D1(x) = ρ(f(x)(∈ T ), g(x)(∈ T )) and F (f, g) = sup rngD1.
Proof: Set F1 = the continuous functions of S and T . Define P[object, object, object] ≡
there exist functions f , g from S into Ttop and there exists a real map
D1 of S such that $1 = f and $2 = g and for every point t of S,
D1(t) = ρ(f(t)(∈ T ), g(t)(∈ T )) and $3 = sup rngD1. For every objects
x, y such that x, y ∈ F1 there exists an object z such that z ∈ R and



142 keiichi miyajima and hiroshi yamazaki

P[x, y, z]. Consider F being a function from F1 × F1 into R such that
for every objects x, y such that x, y ∈ F1 holds P[x, y, F (x, y)] from [3,
Sch. 1]. �

Let S be a non empty topological space and T be a non empty metric space.
The functor dist-Func(S, T ) yielding a function from (the continuous functions
of S and T )× (the continuous functions of S and T ) into R is defined by

(Def. 5) for every functions f , g from S into Ttop such that f , g ∈ the continuous
functions of S and T there exists a real map D1 of S such that for every
point x of S, D1(x) = ρ(f(x)(∈ T ), g(x)(∈ T )) and it(f, g) = sup rngD1.

The functor MetricSpace-of-ContinuousFunctions(S, T ) yielding a metric
structure is defined by the term

(Def. 6) 〈the continuous functions of S and T, dist-Func(S, T )〉.
Let S be a non empty, compact topological space. Note that MetricSpace-of-ContinuousFunctions(S, T )

is reflexive, discernible, symmetric, and triangle.
Let S be a non empty topological space. One can verify that MetricSpace-of-ContinuousFunctions(S, T )

is non empty and strict and the continuous functions of S and T is non empty
and functional.

Let S be a non empty, compact topological space. Note that MetricSpace-of-ContinuousFunctions(S, T )
is constituted functions.

Let f be an element of MetricSpace-of-ContinuousFunctions(S, T ) and v be
a point of S. One can check that the functor f(v) yields a point of Ttop. Now
we state the propositions:

(11) Let us consider a non empty, compact topological space S, a non empty
metric space T , points f , g of MetricSpace-of-ContinuousFunctions(S, T ),
and a point t of S. Then ρ(f(t)(∈ T ), g(t)(∈ T )) ¬ ρ(f, g). The theorem
is a consequence of (9).

(12) Let us consider a non empty, compact topological space S, a non empty
metric space T , points f , g of MetricSpace-of-ContinuousFunctions(S, T ),
functions f1, g1 from S into T , and a real number e. Suppose f = f1 and
g = g1 and for every point t of S, ρ(f1(t), g1(t)) ¬ e. Then ρ(f, g) ¬ e.
The theorem is a consequence of (9).

(13) Let us consider a non empty, compact topological space S, and a non
empty metric space T . Suppose T is complete. Then MetricSpace-of-ContinuousFunctions(S, T )
is complete. The theorem is a consequence of (11), (2), and (12).

(14) Let us consider a non empty, compact topological space S, and a non
empty metric space T . Suppose T is complete. Let us consider a non empty
subset H of MetricSpace-of-ContinuousFunctions(S, T ). Then H is sequ-
entially compact if and only if MetricSpace-of-ContinuousFunctions(S, T )�H
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is totally bounded. The theorem is a consequence of (13), (3), and (4).

Let us consider a non empty metric space M , a non empty, compact to-
pological space S, a non empty metric space T , a subset G of (the carrier of
T )(the carrier of M), and a non empty subsetH of MetricSpace-of-ContinuousFunctions(S, T ).
Now we state the propositions:

(15) If S = Mtop, then ifG = H and MetricSpace-of-ContinuousFunctions(S, T )�H
is totally bounded, then G is equicontinuous.
Proof: Set Z = MetricSpace-of-ContinuousFunctions(S, T ). Set M2 =
Z�H. Define Q[object, object] ≡ there exists a point w of M2 such that
$2 = w and $1 = Ball(w, 1). For every real number e such that 0 < e

there exists a real number d such that 0 < d and for every function f from
the carrier of M into the carrier of T such that f ∈ G for every points x1,
x2 of M such that ρ(x1, x2) < d holds ρ(f(x1), f(x2)) < e by [6, (2)], [4,
(3)], [11, (133)], [5, (35)]. �

(16) Suppose S = Mtop. Then supposeG = H and MetricSpace-of-ContinuousFunctions(S, T )�H
is totally bounded. Then

(i) for every point x of S and for every non empty subset H1 of T such
that H1 = {f(x), where f is a function from S into T : f ∈ H} holds
T �H1 is totally bounded, and

(ii) G is equicontinuous.

Proof: For every point x of S and for every non empty subset H1 of T
such that H1 = {f(x), where f is a function from S into T : f ∈ H} holds
T �H1 is totally bounded by [10, (11)], (11), [5, (35)]. �

(17) Suppose S = Mtop and T is complete andG = H. Then MetricSpace-of-ContinuousFunctions(S, T )�H
is totally bounded if and only if G is equicontinuous and for every point x
of S and for every non empty subset H1 of T such that H1 = {f(x), where
f is a function from S into T : f ∈ H} holds T �H1 is compact.
Proof: Set Z = MetricSpace-of-ContinuousFunctions(S, T ). Set M2 =
Z�H. For every real number e such that e > 0 there exists a family L of
subsets of M2 such that L is finite and the carrier of M2 =

⋃
L and for

every subset C of M2 such that C ∈ L there exists an element w of M2
such that C = Ball(w, e) by [2, (29)], [10, (1)], [7, (1)], [1, (93), (16)]. �

(18) Suppose S = Mtop and T is complete and G = H. Then H is sequentially
compact if and only if G is equicontinuous and for every point x of S and
for every non empty subset H1 of T such that H1 = {f(x), where f is
a function from S into T : f ∈ H} holds T �H1 is compact. The theorem
is a consequence of (14) and (17).

Let us consider a non empty metric space M , a non empty, compact to-
pological space S, a non empty metric space T , a non empty subset F of
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MetricSpace-of-ContinuousFunctions(S, T ), and a subset G of (the carrier of
T )(the carrier of M). Now we state the propositions:

(19) Suppose S = Mtop and T is complete andG = F . Then MetricSpace-of-ContinuousFunctions(S, T )�F
is compact if and only if G is equicontinuous and for every point x of S
and for every non empty subset F2 of T such that F2 = {f(x), where f is
a function from S into T : f ∈ F} holds T �F2 is compact. The theorem is
a consequence of (14) and (17).

(20) Suppose S = Mtop and T is complete andG = F . Then MetricSpace-of-ContinuousFunctions(S, T )�F
is compact if and only if for every point x of M , G is equicontinuous at x
and for every point x of S and for every non empty subset F2 of T such
that F2 = {f(x), where f is a function from S into T : f ∈ F} holds T �F2
is compact. The theorem is a consequence of (19).

Now we state the proposition:

(21) Let us consider a non empty metric space M , a non empty, compact
topological space S, a non empty metric space T , a compact subset U of
Ttop, a non empty subset F of MetricSpace-of-ContinuousFunctions(S, T ),
and a subset G of (the carrier of T )α. Suppose S = Mtop and T is complete
and G = F and for every function f such that f ∈ F holds rng f ⊆ U .
Then MetricSpace-of-ContinuousFunctions(S, T )�F is compact if and only
if G is equicontinuous, where α is the carrier of M .
Proof: Set Z = MetricSpace-of-ContinuousFunctions(S, T ). F is sequ-
entially compact iff Z�F is totally bounded. For every point x of S and
for every non empty subset F2 of T such that F2 = {f(x), where f is
a function from S into T : f ∈ F} holds T �F2 is compact by [5, (4)], [2,
(34)], [15, (19), (22)]. �

Acknowledgement: The authors would like to express our gratitude to
Prof. Yasunari Shidama for his support and encouragement.

References

[1] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite
sequences. Formalized Mathematics, 1(1):107–114, 1990.

[2] Leszek Borys. Paracompact and metrizable spaces. Formalized Mathematics, 2(4):481–
485, 1991.

[3] Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175–180, 1990.
[4] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):

55–65, 1990.
[5] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164,

1990.
[6] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47–53,

1990.
[7] Agata Darmochwał. Compact spaces. Formalized Mathematics, 1(2):383–386, 1990.

http://fm.mizar.org/1990-1/pdf1-1/finseq_1.pdf
http://fm.mizar.org/1990-1/pdf1-1/finseq_1.pdf
http://fm.mizar.org/1991-2/pdf2-4/pcomps_1.pdf
http://fm.mizar.org/1990-1/pdf1-1/binop_1.pdf
http://fm.mizar.org/1990-1/pdf1-1/funct_1.pdf
http://fm.mizar.org/1990-1/pdf1-1/funct_2.pdf
http://fm.mizar.org/1990-1/pdf1-1/zfmisc_1.pdf
http://fm.mizar.org/1990-1/pdf1-2/compts_1.pdf


Ascoli-Arzela’s theorem (metric space version) 145

[8] Agata Darmochwał and Yatsuka Nakamura. Metric spaces as topological spaces – funda-
mental concepts. Formalized Mathematics, 2(4):605–608, 1991.

[9] Bruce K. Driver. Analysis Tools with Applications. Springer, Berlin, 2003.
[10] Stanisława Kanas, Adam Lecko, and Mariusz Startek. Metric spaces. Formalized Mathe-

matics, 1(3):607–610, 1990.
[11] Jarosław Kotowicz. Convergent real sequences. Upper and lower bound of sets of real

numbers. Formalized Mathematics, 1(3):477–481, 1990.
[12] Serge Lang. Real and Functional Analysis (Texts in Mathematics). Springer-Verlag, 1993.
[13] Kazuo Matsuzaka. Sets and Topology (Introduction to Mathematics). IwanamiShoten,

2000.
[14] Tohru Ozawa. Ascoli-Arzelà theorem. 2012.
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