

Ascoli-Arzela's Theorem (Metric Space Version)

Keiichi Miyajima Ibaraki University Faculty of Engineering Hitachi, Ibaraki, Japan

Hiroshi Yamazaki Nagano Prefectural Institute of Technology Nagano, Japan

Summary. In this article, the Ascoli-Arzela's theorem on metric space is formalized [\[12\]](#page-6-0), [\[13\]](#page-6-1), [\[16\]](#page-6-2). First, we gave definitions of equicontinuousness and equiboundedness of a set of continuous functions $[19]$, $[14]$, $[9]$, $[17]$, $[18]$. Next, we formalized the Ascoli-Arzela's theorem using those definitions, and proved this theorem. From this result, Ascoli-Arzela's theorem can be applied in a metric space that is easier to apply.

MSC: [46B50](http://zbmath.org/classification/?q=cc:46B50) [68V20](http://zbmath.org/classification/?q=cc:68V20)

Keywords: Ascoli-Arzela's theorem; equicontinuousness of continuous functions; equiboundedness of continuous functions

MML identifier: [ASCOLI2](http://fm.mizar.org/miz/ascoli2.miz), version: [8.1.14 5.84.1473](http://ftp.mizar.org/)

1. Equicontinuousness and Equiboundedness of Continuous **FUNCTIONS**

Now we state the propositions:

- (1) Let us consider a non empty metric space *T*, and a subset *A* of *T*. Then A ⊂ \overline{A} .
- (2) Let us consider a non empty topological space *S*, a non empty metric space *T*, a function *f* from *S* into T_{top} , and a point *x* of *S*. Then *f* is continuous at *x* if and only if for every real number *e* such that 0 *< e* there exists a subset *H* of *S* such that *H* is open and $x \in H$ and for every point *y* of *S* such that $y \in H$ holds $\rho(f(x)(\in T), f(y)(\in T)) < e$.

PROOF: For every subset *G* of T_{top} such that *G* is open and $f(x) \in G$ there exists a subset *H* of *S* such that *H* is open and $x \in H$ and $f \circ H \subseteq G$ by [\[8,](#page-6-8) (15)], [\[10,](#page-6-9) (11)]. \square

Let *S*, *T* be non empty metric spaces and *F* be a subset of (the carrier of *T*) (the carrier of *S*) . We say that *F* is equibounded if and only if

(Def. 1) there exists a subset *K* of *T* such that *K* is bounded and for every function *f* from the carrier of *S* into the carrier of *T* such that $f \in F$ for every element *x* of *S*, $f(x) \in K$.

Let x_0 be a point of *S*. We say that *F* is equicontinuous at x_0 if and only if

(Def. 2) for every real number e such that $0 < e$ there exists a real number d such that $0 < d$ and for every function f from the carrier of S into the carrier of *T* such that $f \in F$ for every point *x* of *S* such that $\rho(x, x_0) < d$ holds $\rho(f(x), f(x_0)) < e$.

We say that F is equicontinuous if and only if

(Def. 3) for every real number e such that $0 < e$ there exists a real number d such that $0 < d$ and for every function f from the carrier of S into the carrier of *T* such that $f \in F$ for every points x_1, x_2 of *S* such that $\rho(x_1, x_2) < d$ holds $\rho(f(x_1), f(x_2)) < e$.

2. Ascoli-Arzela's Theorem

Now we state the proposition:

(3) Let us consider a non empty metric space *Z*, and a non empty subset *F* of *Z*. If *Z* is complete, then $Z\bar{F}$ is complete. PROOF: Set $N = Z \setminus \overline{F}$. Reconsider $S_1 = S_2$ as a sequence of *Z*. For every real number r such that $r > 0$ there exists a natural number k such that for every natural numbers *n*, *m* such that $n \geq k$ and $m \geq k$ holds $\rho(S_1(n), S_1(m)) < r$. Consider *H* being a subset of Z_{top} such that $H = F$ and $\overline{F} = \overline{H}$. For every natural number $n, S_1(n) \in \overline{H}$ by [\[5,](#page-5-0) (4)]. Reconsider $L = \lim S_1$ as a point of *N*. For every real number *r* such that $0 < r$ there exists a natural number *m* such that for every natural number *n* such that $m \leqslant n$ holds $\rho(S2(n), L) < r$.

Let us consider a non empty metric space *Z* and a non empty subset *H* of *Z*. Now we state the propositions:

(4) $Z \mid H$ is totally bounded if and only if $Z \mid \overline{H}$ is totally bounded. PROOF: Consider *D* being a subset of Z_{top} such that $D = H$ and $\overline{H} = \overline{D}$. $Z \upharpoonright H$ is totally bounded by [\[10,](#page-6-9) (4)]. \Box

- (5) If *Z* is complete and Z *H* is totally bounded, then *H* is sequentially compact and Z ^{\uparrow} If is compact. The theorem is a consequence of (3) and (4).
- (6) Suppose *Z* is complete. Then
	- (i) $Z \mid H$ is totally bounded iff \overline{H} is sequentially compact, and
	- (ii) $Z \upharpoonright H$ is totally bounded iff $Z \upharpoonright \overline{H}$ is compact.

The theorem is a consequence of (3) and (4).

Let *S* be a non empty topological space and *T* be a non empty metric space. The continuous functions of *S* and *T* yielding a non empty set is defined by the term

(Def. 4) $\{f, \text{ where } f \text{ is a function from } S \text{ into } T_{\text{top}} : f \text{ is continuous}\}.$

Now we state the propositions:

- (7) Let us consider a metric space *X*, and elements *x*, *y*, *v*, *w* of *X*. Then $| \rho(x, y) - \rho(v, w) |$ ≤ $\rho(x, v) + \rho(y, w)$.
- (8) Let us consider a non empty topological space *S*, a non empty metric space *T*, and functions f , g from S into T_{top} . Suppose f is continuous and *g* is continuous. Let us consider a real map *D*¹ of *S*. Suppose for every point *x* of *S*, $D_1(x) = \rho(f(x)) \in T$, $g(x) \in T$). Then D_1 is continuous. The theorem is a consequence of (2) and (7).
- (9) Let us consider a non empty, compact topological space *S*, a non empty metric space *T*, and functions f , g from S into T_{top} . Suppose f is continuous and *g* is continuous. Let us consider a real map *D*¹ of *S*. Suppose for every point *x* of *S*, $D_1(x) = \rho(f(x)) \in T$, $g(x) \in T$). Then
	- (i) rng $D_1 \neq \emptyset$, and
	- (ii) rng D_1 is upper bounded and lower bounded.

The theorem is a consequence of (8).

(10) Let us consider a non empty topological space *S*, and a non empty metric space T . Then there exists a function F from (the continuous functions of *S* and *T*) \times (the continuous functions of *S* and *T*) into R such that for every functions *f*, *g* from *S* into T_{top} such that $f, g \in$ the continuous functions of *S* and *T* there exists a real map D_1 of *S* such that for every point *x* of *S*, $D_1(x) = \rho(f(x)) \in T$, $g(x) \in T$) and $F(f, g) = \sup \text{rng } D_1$. PROOF: Set F_1 = the continuous functions of *S* and *T*. Define $\mathcal{P}[\text{object}, \text{object}, \text{object}]$ there exist functions f , g from S into T_{top} and there exists a real map D_1 of *S* such that $\$_1 = f$ and $\$_2 = g$ and for every point *t* of *S*, $D_1(t) = \rho(f(t)(\in T), g(t)(\in T))$ and $\$_3 = \text{sup rng } D_1$. For every objects *x*, *y* such that *x*, *y* \in *F*₁ there exists an object *z* such that $z \in \mathbb{R}$ and

 $\mathcal{P}[x, y, z]$. Consider *F* being a function from $F_1 \times F_1$ into R such that for every objects *x*, *y* such that $x, y \in F_1$ holds $\mathcal{P}[x, y, F(x, y)]$ from [\[3,](#page-5-1) Sch. 1 . \Box

Let *S* be a non empty topological space and *T* be a non empty metric space. The functor $\boxed{\text{dist-Func}(S, T)}$ yielding a function from (the continuous functions of *S* and *T*) \times (the continuous functions of *S* and *T*) into R is defined by

(Def. 5) for every functions *f*, *g* from *S* into T_{top} such that $f, g \in$ the continuous functions of S and T there exists a real map D_1 of S such that for every point *x* of *S*, $D_1(x) = \rho(f(x)) \in T$, $g(x) \in T$) and $it(f, g) = \sup \text{rng } D_1$. The functor MetricSpace-of-ContinuousFunctions (S, T) yielding a metric

structure is defined by the term

(Def. 6) (the continuous functions of *S* and *T*, dist-Func(*S,T*)).

Let *S* be a non empty, compact topological space. Note that MetricSpace-of-Continuous is reflexive, discernible, symmetric, and triangle.

Let *S* be a non empty topological space. One can verify that MetricSpace-of-Continuous is non empty and strict and the continuous functions of *S* and *T* is non empty and functional.

Let *S* be a non empty, compact topological space. Note that MetricSpace-of-Continuous is constituted functions.

Let *f* be an element of MetricSpace-of-ContinuousFunctions(*S, T*) and *v* be a point of *S*. One can check that the functor $f(v)$ yields a point of T_{top} . Now we state the propositions:

- (11) Let us consider a non empty, compact topological space *S*, a non empty metric space *T*, points *f*, *g* of MetricSpace-of-ContinuousFunctions(*S, T*), and a point *t* of *S*. Then $\rho(f(t)(\in T), g(t)(\in T)) \leqslant \rho(f, g)$. The theorem is a consequence of (9).
- (12) Let us consider a non empty, compact topological space *S*, a non empty metric space *T*, points *f*, *g* of MetricSpace-of-ContinuousFunctions(*S, T*), functions f_1 , g_1 from *S* into *T*, and a real number *e*. Suppose $f = f_1$ and $g = g_1$ and for every point *t* of *S*, $\rho(f_1(t), g_1(t)) \leq e$. Then $\rho(f, g) \leq e$. The theorem is a consequence of (9).
- (13) Let us consider a non empty, compact topological space *S*, and a non empty metric space T . Suppose T is complete. Then MetricSpace-of-ContinuousFunc is complete. The theorem is a consequence of (11) , (2) , and (12) .
- (14) Let us consider a non empty, compact topological space *S*, and a non empty metric space *T*. Suppose *T* is complete. Let us consider a non empty subset *H* of MetricSpace-of-ContinuousFunctions (S, T) . Then \overline{H} is sequentially compact if and only if MetricSpace-of-ContinuousFunctions(*S, T*)*H*

is totally bounded. The theorem is a consequence of (13) , (3) , and (4) .

Let us consider a non empty metric space *M*, a non empty, compact topological space *S*, a non empty metric space *T*, a subset *G* of (the carrier of $T)^{\text{(the carrier of }M)}$, and a non empty subset *H* of MetricSpace-of-ContinuousFunctions(*S*, *T*). Now we state the propositions:

- (15) If $S = M_{\text{top}}$, then if $G = H$ and MetricSpace-of-ContinuousFunctions (S, T) is totally bounded, then *G* is equicontinuous. PROOF: Set $Z = \text{MetricSpace-of-ContinuousFunctions}(S, T)$. Set $M_2 =$ *Z*^{\vert}*H*. Define *Q*[object, object] \equiv there exists a point *w* of *M*₂ such that $\$_2 = w$ and $\$_1 = \text{Ball}(w, 1)$. For every real number *e* such that $0 < e$ there exists a real number d such that $0 < d$ and for every function f from the carrier of *M* into the carrier of *T* such that $f \in G$ for every points x_1 , *x*₂ of *M* such that $\rho(x_1, x_2) < d$ holds $\rho(f(x_1), f(x_2)) < e$ by [\[6,](#page-5-2) (2)], [\[4,](#page-5-3) (3) , $[11, (133)]$ $[11, (133)]$, $[5, (35)]$ $[5, (35)]$. \square
- (16) Suppose $S = M_{\text{top}}$. Then suppose $G = H$ and MetricSpace-of-ContinuousFunctions is totally bounded. Then
	- (i) for every point x of S and for every non empty subset H_1 of T such that $H_1 = \{f(x), \text{ where } f \text{ is a function from } S \text{ into } T : f \in H\}$ holds $T \upharpoonright H_1$ is totally bounded, and
	- (ii) *G* is equicontinuous.

PROOF: For every point x of S and for every non empty subset H_1 of T such that $H_1 = \{f(x), \text{ where } f \text{ is a function from } S \text{ into } T : f \in H\}$ holds *T*^{H_1} is totally bounded by [\[10,](#page-6-9) (11)], (11), [\[5,](#page-5-0) (35)]. \Box

- (17) Suppose $S = M_{\text{top}}$ and *T* is complete and $G = H$. Then MetricSpace-of-Continuous is totally bounded if and only if *G* is equicontinuous and for every point *x* of *S* and for every non empty subset H_1 of *T* such that $H_1 = \{f(x), \text{ where }$ *f* is a function from *S* into $T : f \in H$ *}* holds $T | \overline{H_1}$ is compact. PROOF: Set $Z =$ MetricSpace-of-ContinuousFunctions(S, T). Set $M_2 =$ *ZH*. For every real number *e* such that *e >* 0 there exists a family *L* of subsets of M_2 such that *L* is finite and the carrier of $M_2 = \bigcup L$ and for every subset *C* of M_2 such that $C \in L$ there exists an element *w* of M_2 such that $C = \text{Ball}(w, e)$ by [\[2,](#page-5-4) (29)], [\[10,](#page-6-9) (1)], [\[7,](#page-5-5) (1)], [\[1,](#page-5-6) (93), (16)]. \Box
- (18) Suppose $S = M_{\text{top}}$ and *T* is complete and $G = H$. Then \overline{H} is sequentially compact if and only if *G* is equicontinuous and for every point *x* of *S* and for every non empty subset H_1 of T such that $H_1 = \{f(x), \text{ where } f \text{ is }$ a function from *S* into $T: f \in H$ } holds $T|\overline{H_1}$ is compact. The theorem is a consequence of (14) and (17).

Let us consider a non empty metric space *M*, a non empty, compact topological space *S*, a non empty metric space *T*, a non empty subset *F* of MetricSpace-of-ContinuousFunctions (S, T) , and a subset *G* of (the carrier of *T*)^{(the carrier of *M*). Now we state the propositions:}

- (19) Suppose $S = M_{\text{top}}$ and *T* is complete and $G = F$. Then MetricSpace-of-Continuous is compact if and only if *G* is equicontinuous and for every point *x* of *S* and for every non empty subset F_2 of T such that $F_2 = \{f(x), \text{ where } f \text{ is } \}$ a function from *S* into $T: f \in F$ } holds $T \setminus \overline{F_2}$ is compact. The theorem is a consequence of (14) and (17).
- (20) Suppose $S = M_{\text{top}}$ and *T* is complete and $G = F$. Then MetricSpace-of-Continuous is compact if and only if for every point *x* of *M*, *G* is equicontinuous at *x* and for every point x of S and for every non empty subset F_2 of T such that $F_2 = \{f(x), \text{ where } f \text{ is a function from } S \text{ into } T : f \in F\}$ holds $T\overline{F_2}$ is compact. The theorem is a consequence of (19).

Now we state the proposition:

(21) Let us consider a non empty metric space *M*, a non empty, compact topological space S , a non empty metric space T , a compact subset U of T_{top} , a non empty subset *F* of MetricSpace-of-ContinuousFunctions(*S,T*), and a subset *G* of (the carrier of T)^{α}. Suppose $S = M_{\text{top}}$ and *T* is complete and $G = F$ and for every function f such that $f \in F$ holds rng $f \subseteq U$. Then MetricSpace-of-ContinuousFunctions $(S,T)\bar{F}$ is compact if and only if *G* is equicontinuous, where α is the carrier of *M*.

PROOF: Set $Z =$ MetricSpace-of-ContinuousFunctions(S, T). \overline{F} is sequentially compact iff $Z \nvert F$ is totally bounded. For every point *x* of *S* and for every non empty subset F_2 of T such that $F_2 = \{f(x), \text{ where } f \text{ is }$ a function from *S* into $T: f \in F$ } holds $T \rvert \overline{F_2}$ is compact by [\[5,](#page-5-0) (4)], [\[2,](#page-5-4) (34)], [\[15,](#page-6-11) (19), (22)]. \Box

Acknowledgement: The authors would like to express our gratitude to Prof. Yasunari Shidama for his support and encouragement.

REFERENCES

- [1] Grzegorz Bancerek and Krzysztof Hryniewiecki. [Segments of natural numbers and finite](http://fm.mizar.org/1990-1/pdf1-1/finseq_1.pdf) [sequences.](http://fm.mizar.org/1990-1/pdf1-1/finseq_1.pdf) *Formalized Mathematics*, 1(**1**):107–114, 1990.
- [2] Leszek Borys. [Paracompact and metrizable spaces.](http://fm.mizar.org/1991-2/pdf2-4/pcomps_1.pdf) *Formalized Mathematics*, 2(**4**):481– 485, 1991.
- [3] Czesław Byliński. [Binary operations.](http://fm.mizar.org/1990-1/pdf1-1/binop_1.pdf) *Formalized Mathematics*, 1(**1**):175–180, 1990.
- [4] Czesław Byliński. [Functions and their basic properties.](http://fm.mizar.org/1990-1/pdf1-1/funct_1.pdf) *Formalized Mathematics*, 1(**1**): 55–65, 1990.
- [5] Czesław Byliński. [Functions from a set to a set.](http://fm.mizar.org/1990-1/pdf1-1/funct_2.pdf) *Formalized Mathematics*, 1(**1**):153–164, 1990.
- [6] Czesław Byliński. [Some basic properties of sets.](http://fm.mizar.org/1990-1/pdf1-1/zfmisc_1.pdf) *Formalized Mathematics*, 1(**1**):47–53, 1990.
- [7] Agata Darmochwał. [Compact spaces.](http://fm.mizar.org/1990-1/pdf1-2/compts_1.pdf) *Formalized Mathematics*, 1(**2**):383–386, 1990.
- [8] Agata Darmochwał and Yatsuka Nakamura. [Metric spaces as topological spaces – funda](http://fm.mizar.org/1991-2/pdf2-4/topmetr.pdf)[mental concepts.](http://fm.mizar.org/1991-2/pdf2-4/topmetr.pdf) *Formalized Mathematics*, 2(**4**):605–608, 1991.
- [9] Bruce K. Driver. *Analysis Tools with Applications*. Springer, Berlin, 2003.
- [10] Stanisława Kanas, Adam Lecko, and Mariusz Startek. [Metric spaces.](http://fm.mizar.org/1990-1/pdf1-3/metric_1.pdf) *Formalized Mathematics*, 1(**3**):607–610, 1990.
- [11] Jarosław Kotowicz. [Convergent real sequences. Upper and lower bound of sets of real](http://fm.mizar.org/1990-1/pdf1-3/seq_4.pdf) [numbers.](http://fm.mizar.org/1990-1/pdf1-3/seq_4.pdf) *Formalized Mathematics*, 1(**3**):477–481, 1990.
- [12] Serge Lang. *Real and Functional Analysis (Texts in Mathematics)*. Springer-Verlag, 1993.
- [13] Kazuo Matsuzaka. *Sets and Topology (Introduction to Mathematics)*. IwanamiShoten, 2000.
- [14] Tohru Ozawa. Ascoli-Arzelà theorem. 2012.
- [15] Beata Padlewska and Agata Darmochwał. [Topological spaces and continuous functions.](http://fm.mizar.org/1990-1/pdf1-1/pre_topc.pdf) *Formalized Mathematics*, 1(**1**):223–230, 1990.
- [16] Michael Read and Barry Simon. *Functional Analysis (Methods of Modern Mathematical Physics)*. Academic Press, 1980.
- [17] Laurent Schwartz. *Th´eorie des ensembles et topologie, tome 1. Analyse*. Hermann, 1997.
- [18] Laurent Schwartz. *Calcul différentiel, tome 2. Analyse*. Hermann, 1997.
- [19] Kˆosaku Yosida. *Functional Analysis*. Springer, 1980.

Accepted November 28, 2024