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Introduction

In this paper, Problems 41 from Section I, 92, 121, 122, 123 from Section
IV, 172, 182, 183, 191, 192, and 192a from Section V of [8] are formalized, using
the Mizar formalism [2], [1]. The paper is a part of the project Formalization of
Elementary Number Theory in Mizar [7], [4], [5], [6], [3].

In the preliminary section, we proved some trivial but useful facts about
numbers.

In problem 92 the inequality pk+1+pk+2 ¬ p1 ·p2· . . . ·pk should be justified
for any integer k ­ 3, where pk denotes the k-th prime. Because we count primes
starting from the index 0, we formulated the fact as:
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3 <= k implies
primenumber(k) + primenumber(k+1) <= Product primesFinS(k);

where primesFinS(k) denotes the finite sequence of primes of the length k, and
elements of finite sequences are indexed from 1.

Problem 121 about finding the least positive integer n for which k · 22n + 1
is composite is represented as separated theorems for every positive k ¬ 10.

Problem 122 requires finding all positive integers k ¬ 10 such that every
number k · 22n + 1 (n = 1, 2, . . . ) is composite. The proof lies in the fact that
numbers (3 · t + 2) · 22n + 1 are all divisible by 3 and greater than 3, for every
natural t, and every positive natural n. In the book, there are minor misprints
in the proof, where 2 · 222 + 1 should be 2 · 22n + 1 and 5 · 222 + 1 should be
5 · 22n + 1.

Problems 191 and 192 are generalized from positive integers to non-zero
integers.

Problem 192a is formulated incorrectly in the book. It asks to prove that
the system of two equations x2 + 7y2 = z2 and 7x2 + y2 = t2 has no solutions
in positive integers x, y, z, and t. However, it has solutions, for instance, x = 3,
y = 1, z = 4, and t = 8. The example is provided in the book.

Proofs of other problems are straightforward formalizations of solutions given
in the book.

1. Preliminaries

From now on a, b, c, k, m, n denote natural numbers, i, j denote integers,
and p denotes a prime number.

Now we state the propositions:

(1) If n < 3, then n = 0 or n = 1 or n = 2.

(2) If n < 4, then n = 0 or n = 1 or n = 2 or n = 3.

(3) If n < 5, then n = 0 or n = 1 or n = 2 or n = 3 or n = 4.

Let us note that 12 is non integer and there exists a rational number which
is non natural and there exists a rational number which is non integer.

Now we state the proposition:

(4) If j 6= 0 and ij is integer, then j | i.
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Let q be a non integer rational number. One can verify that q2 is non integer.
Now we state the proposition:

(5) If ab · c is natural and b 6= 0 and a and b are relatively prime, then there
exists a natural number d such that c = b · d.

2. Problem 41

Let us consider an integer k. Now we state the propositions:

(6) 2 · k + 1 and 9 · k + 4 are relatively prime.

(7) gcd(2 · k − 1, 9 · k + 4) = gcd(k + 8, 17).

3. Problem 92

Now we state the proposition:

(8) If m > 1 and n > 1 and m and n are relatively prime, then there exist
prime numbers p, q such that p | m and p - n and q | n and q - m and
p 6= q.

Let us consider k. The functor primesFinS(k) yielding a finite sequence of
elements of N is defined by

(Def. 1) len it = k and for every natural number i such that i < k holds it(i+1) =
pr(i).

Let us observe that primesFinS(0) is empty.
Now we state the propositions:

(9) primesFinS(1) = 〈2〉.
(10) primesFinS(2) = 〈2, 3〉.
(11) primesFinS(3) = 〈2, 3, 5〉.
(12) p < pr(k) if and only if primeindex(p) < k.

(13) If primeindex(p) < k, then 1 + primeindex(p) ∈ dom(primesFinS(k)).

(14) If primeindex(p) < k, then (primesFinS(k))(1 + primeindex(p)) = p.

(15) If p < pr(k), then p ∈ rng primesFinS(k). The theorem is a consequence
of (13), (12), and (14).

(16) If p and
∏

primesFinS(k) are relatively prime, then pr(k) ¬ p. The
theorem is a consequence of (15).

Let us consider k. Let us note that primesFinS(k) is positive yielding and
primesFinS(k) is increasing.

Let R be an extended real-valued binary relation. We say that R has values
greater or equal one if and only if
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(Def. 2) for every extended real r such that r ∈ rngR holds r ­ 1.

Observe that 〈1〉 has values greater or equal one and there exists a natural-
valued finite sequence which has values greater or equal one.

Let f be an extended real-valued function. Let us observe that f has values
greater or equal one if and only if the condition (Def. 3) is satisfied.

(Def. 3) for every object x such that x ∈ dom f holds f(x) ­ 1.

Let f be an extended real-valued finite sequence. One can verify that f has
values greater or equal one if and only if the condition (Def. 4) is satisfied.

(Def. 4) for every natural number n such that 1 ¬ n ¬ len f holds f(n) ­ 1.

One can verify that every extended real-valued binary relation which is emp-
ty has also values greater or equal one and every extended real-valued binary
relation which has values greater or equal one is also positive yielding.

Now we state the propositions:

(17) If m ¬ n, then primesFinS(n)�m = primesFinS(m).

(18) Let us consider extended real-valued binary relations P , R. Suppose
rngP ⊆ rngR and R has values greater or equal one. Then P has values
greater or equal one.

(19) Let us consider extended real-valued finite sequences f , g. Suppose f a g

has values greater or equal one. Then

(i) f has values greater or equal one, and

(ii) g has values greater or equal one.

(20) Let us consider an extended real r. If 〈r〉 has values greater or equal one,
then r ­ 1.

Let us consider a real-valued finite sequence f with values greater or equal
one. Now we state the propositions:

(21)
∏
f ­ 1.

Proof: Define P[finite sequence of elements of R] ≡ for every real-valued
finite sequence g with values greater or equal one such that g = $1 holds∏

$1 ­ 1. For every finite sequence p of elements of R and for every
element x of R such that P[p] holds P[p a 〈x〉]. For every finite sequence
p of elements of R, P[p]. �

(22)
∏

(f�n) ¬
∏
f . The theorem is a consequence of (19) and (20).

Let us consider k. One can verify that primesFinS(k) has values greater or
equal one.

Now we state the proposition:

(23) If 3 ¬ k, then pr(k) + pr(k + 1) ¬
∏

primesFinS(k). The theorem is
a consequence of (8) and (16).
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4. Problem 121

Let k, n be natural numbers. We say that n satisfies Sierpiński Problem 121
for k if and only if

(Def. 5) k · 22n + 1 is composite and for every positive natural number m such
that m < n holds k · 22m + 1 is not composite.

Now we state the propositions:

(24) 5 satisfies Sierpiński Problem 121 for 1. The theorem is a consequence
of (3).

(25) 1 satisfies Sierpiński Problem 121 for 2.

(26) 2 satisfies Sierpiński Problem 121 for 3.

(27) 2 satisfies Sierpiński Problem 121 for 4.

(28) 1 satisfies Sierpiński Problem 121 for 5.

(29) 1 satisfies Sierpiński Problem 121 for 6.

(30) 3 satisfies Sierpiński Problem 121 for 7. The theorem is a consequence
of (1).

(31) 1 satisfies Sierpiński Problem 121 for 8.

(32) 2 satisfies Sierpiński Problem 121 for 9.

(33) 2 satisfies Sierpiński Problem 121 for 10.

5. Problem 122

Let us consider a positive natural number n.
Now we state the propositions:

(34) 3 | (3 · a+ 2) · 22n + 1.

(35) 2 · 22n + 1 is composite.

(36) 5 · 22n + 1 is composite. The theorem is a consequence of (34).

(37) 8 · 22n + 1 is composite. The theorem is a consequence of (34).

(38) Let us consider a positive natural number k. Then k ¬ 10 and for every
positive natural number n, k·22n+1 is composite if and only if k ∈ {2, 5, 8}.
The theorem is a consequence of (24), (26), (27), (30), (32), (33), (35), (36),
and (37).
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6. Problem 123

Now we state the propositions:

(39) 22
n+1

+ 22
n

+ 1 ­ 7.

(40) If n > 0, then 22
n+1

+ 22
n

+ 1 ­ 21.

(41) If n > 1, then 22
n+1

+ 22
n

+ 1 ­ 273.

(42) If m is even or m = 2 · n, then 2m mod 3 = 1.
Proof: Define P[natural number] ≡ 22·$1 mod 3 = 1. For every k such
that P[k] holds P[k + 1]. For every k, P[k]. �

(43) If m is odd or m = 2 · n+ 1, then 2m mod 3 = 2.
Proof: Define P[natural number] ≡ 22·$1+1 mod 3 = 2. For every k such
that P[k] holds P[k + 1]. For every k, P[k]. �

(44) Let us consider a non zero natural number n. Then 3 | 22n+1 + 22
n

+ 1.
The theorem is a consequence of (42).

(45) 7 | 22n+1 + 22
n

+ 1. The theorem is a consequence of (42) and (43).

Let n be a non zero natural number. Note that 13 ·(2
2n+1+22

n
+1) is natural.

Now we state the proposition:

(46) Let us consider a non zero natural number n. If n > 1, then 13 · (2
2n+1 +

22
n

+ 1) is composite. The theorem is a consequence of (39), (45), (44),
and (41).

7. Problem 172

Now we state the proposition:

(47) Let us consider positive natural numbers n, x, y, z. Then nx + ny = nz

if and only if n = 2 and y = x and z = x+ 1.

8. Problem 182

Now we state the proposition:

(48) Let us consider real numbers a, b, c. If c > 1 and ca = cb, then a = b.

Let us consider positive natural numbers n, x, y, z, t. Now we state the
propositions:

(49) If x ¬ y ¬ z, then nx + ny + nz = nt iff n = 2 and y = x and z = x+ 1
and t = x+ 2 or n = 3 and y = x and z = x and t = x+ 1.
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(50) nx + ny + nz = nt if and only if n = 2 and y = x and z = x + 1 and
t = x + 2 or n = 2 and y = x + 1 and z = x and t = x + 2 or n = 2 and
z = y and x = y + 1 and t = y + 2 or n = 3 and y = x and z = x and
t = x+ 1. The theorem is a consequence of (49).

9. Problem 183

Now we state the proposition:

(51) Let us consider positive natural numbers x, y, z, t. Then 4x+4y+4z 6= 4t.

10. Problem 191

Now we state the proposition:

(52) Let us consider non zero integers x, y, z, t. Then

(i) x2 + 5 · y2 6= z2, or

(ii) 5 · x2 + y2 6= t2.

11. Problem 192

Now we state the propositions:

(53) Let us consider non zero integers x, y, z, t. Then

(i) x2 + 6 · y2 6= z2, or

(ii) 6 · x2 + y2 6= t2.

(54) (i) 32 + 7 · 12 = 42, and

(ii) 7 · 32 + 12 = 82.
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Summary. In this article we continue our proofs on integrals of continuous
functions of three variables in Mizar. In fact, we use similar techniques as in the
case of two variables: we deal with projections of continuous function, the conti-
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Introduction

In this article, following the previous article [9], we continue our proofs on
integrals of continuous functions of three variables in Mizar [2], [3]; for a survey
of formalizations of real analysis in another proof-assistants like ACL2 [11],
Isabelle/HOL [10], Coq [4], see [5].

In the first section, continuity of functions of three variables is shown. These
are used in the proofs of the later sections.
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The second section summarizes the basic properties of the projection of a
continuous function in three variables, a result that is almost as obvious as in
two variables, but is used to transform [8] Riemann and Lebesgue integrals for
real-valued functions (not extended real-valued functions).

In the last section, we prove integrability and iterated integrals of continuous
functions of three variables. Throughout the paper, the basic proof steps follow
[1], [16], and [12].

1. Preliminaries

Now we state the propositions:

(1) Let us consider real normed spaces X, Y, Z, a point u of X × Y × Z,
a point x of X, a point y of Y, and a point z of Z. Suppose u = 〈〈x, y, z〉〉.
Then

(i) ‖u‖ ¬ ‖x‖+ ‖y‖+ ‖z‖, and

(ii) ‖x‖ ¬ ‖u‖, and

(iii) ‖y‖ ¬ ‖u‖, and

(iv) ‖z‖ ¬ ‖u‖.
(2) Let us consider closed interval subsets I, J , K of R, and a subset E of

((the real normed space of R)× (the real normed space of R))× (the real
normed space of R). If E = (I × J)×K, then E is compact.

(3) Let us consider a partial function f from ((the real normed space of R)×
(the real normed space of R)) × (the real normed space of R) to the real
normed space of R, a partial function g from (R×R)×R to R, and a set E.

Suppose f = g and E ⊆ dom f . Then f is uniformly continuous on E

if and only if for every real number e such that 0 < e there exists a real
number r such that 0 < r and for every real numbers x1, x2, y1, y2, z1, z2
such that 〈〈x1, y1, z1〉〉, 〈〈x2, y2, z2〉〉 ∈ E and |x2−x1| < r and |y2− y1| < r

and |z2 − z1| < r holds |g(〈〈x2, y2, z2〉〉)− g(〈〈x1, y1, z1〉〉)| < e.
Proof: For every real number e such that 0 < e there exists a real number
r such that 0 < r and for every points p1, p2 of ((the real normed space
of R)× (the real normed space of R))× (the real normed space of R) such
that p1, p2 ∈ E and ‖p1 − p2‖ < r holds ‖f/p1 − f/p2‖ < e. �

(4) Let us consider intervals I, J , K. Then

(i) (I × J)×K is a subset of ((the real normed space of R)× (the real
normed space of R))× (the real normed space of R), and

(ii) (I ×J)×K ∈ σ(MeasRect(σ(MeasRect(L-Field,L-Field)),L-Field)).
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(5) Let us consider a point u of (the real normed space of R) × (the real
normed space of R)× (the real normed space of R), and a real number r.
Suppose 0 < r. Then there exist real numbers s, x, y, z such that

(i) 0 < s < r, and

(ii) u = 〈〈x, y, z〉〉, and

(iii) ]x− s, x+ s[× ]y − s, y + s[× ]z − s, z + s[ ⊆ Ball(u, r).

Let us consider a subset A of (the real normed space of R)×(the real normed
space of R)× (the real normed space of R). Now we state the propositions:

(6) Suppose for every real numbers a, b, c such that 〈〈a, b, c〉〉 ∈ A there
exists a real-membered set R12 such that R12 is non empty and upper
bounded and R12 = {r, where r is a real number : 0 < r and ]a−r, a+r[×
]b − r, b + r[ × ]c − r, c + r[ ⊆ A}. Then there exists a function F from
A into R such that for every real numbers a, b, c such that 〈〈a, b, c〉〉 ∈ A
there exists a real-membered set R12 such that R12 is non empty and upper
bounded and R12 = {r, where r is a real number : 0 < r and ]a−r, a+r[×
]b− r, b+ r[× ]c− r, c+ r[ ⊆ A} and F (〈〈a, b, c〉〉) = supR12

2 .
Proof: Define P[object, object] ≡ there exist real numbers a, b, c and
there exists a real-membered set R12 such that $1 = 〈〈a, b, c〉〉 and R12 is
non empty and upper bounded and R12 = {r, where r is a real number :
0 < r and ]a− r, a+ r[× ]b− r, b+ r[× ]c− r, c+ r[ ⊆ A} and $2 = supR12

2 .
For every object x such that x ∈ A there exists an object y such that

y ∈ R and P[x, y]. Consider F being a function from A into R such that for
every object x such that x ∈ A holds P[x, F (x)]. For every real numbers a,
b, c such that 〈〈a, b, c〉〉 ∈ A there exists a real-membered set R12 such that
R12 is non empty and upper bounded and R12 = {r, where r is a real
number : 0 < r and ]a − r, a + r[ × ]b − r, b + r[ × ]c − r, c + r[ ⊆ A} and
F (〈〈a, b, c〉〉) = supR12

2 . �

(7) If A is open, then A ∈ σ(MeasRect(σ(MeasRect(L-Field,L-Field)),
L-Field)). The theorem is a consequence of (5), (6), and (1).

(8) Let us consider closed interval subsets I, J , K of R, a partial function
f from ((the real normed space of R) × (the real normed space of R)) ×
(the real normed space of R) to the real normed space of R, and a partial
function g from (R× R)× R to R. Suppose f is continuous on (I × J)×
K and f = g. Let us consider a real number e. Suppose 0 < e. Then there
exists a real number r such that

(i) 0 < r, and

(ii) for every real numbers x1, x2, y1, y2, z1, z2 such that x1, x2 ∈ I and
y1, y2 ∈ J and z1, z2 ∈ K and |x2 − x1| < r and |y2 − y1| < r and
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|z2 − z1| < r holds |g(〈〈x2, y2, z2〉〉)− g(〈〈x1, y1, z1〉〉)| < e.

Proof: Set E = (I × J) ×K. f is uniformly continuous on E. Consider
r being a real number such that 0 < r and for every real numbers x1, x2,
y1, y2, z1, z2 such that 〈〈x1, y1, z1〉〉, 〈〈x2, y2, z2〉〉 ∈ E and |x2−x1| < r and
|y2− y1| < r and |z2− z1| < r holds |g(〈〈x2, y2, z2〉〉)− g(〈〈x1, y1, z1〉〉)| < e.
For every real numbers x1, x2, y1, y2, z1, z2 such that x1, x2 ∈ I and y1,
y2 ∈ J and z1, z2 ∈ K and |x2−x1| < r and |y2−y1| < r and |z2− z1| < r

holds |g(〈〈x2, y2, z2〉〉)− g(〈〈x1, y1, z1〉〉)| < e. �

(9) Let us consider a partial function f from ((the real normed space of R)×
(the real normed space of R)) × (the real normed space of R) to the real
normed space of R, and a partial function g from (R × R) × R to R. If
f = g, then ‖f‖ = |g|.

(10) Let us consider closed interval subsets I, J , K of R, a partial function
f from ((the real normed space of R) × (the real normed space of R)) ×
(the real normed space of R) to the real normed space of R, and a partial
function g from (R× R)× R to R. Suppose f is continuous on (I × J)×
K and f = g. Let us consider a real number e. Suppose 0 < e. Then there
exists a real number r such that

(i) 0 < r, and

(ii) for every real numbers x1, x2, y1, y2, z1, z2 such that x1, x2 ∈ I and
y1, y2 ∈ J and z1, z2 ∈ K and |x2 − x1| < r and |y2 − y1| < r and
|z2 − z1| < r holds ||g|(〈〈x2, y2, z2〉〉)− |g|(〈〈x1, y1, z1〉〉)| < e.

The theorem is a consequence of (9) and (8).

2. Properties on the Projective Function of a Three Variable
Function

Now we state the propositions:

(11) Let us consider a partial function f from ((the real normed space of
R) × (the real normed space of R)) × (the real normed space of R) to
the real normed space of R, a partial function g from (R × R) × R to R,
and elements x, y of R. Suppose f is continuous on dom f and f = g.
Then ProjPMap1(g, 〈〈x, y〉〉) is continuous.
Proof: For every real number z0 such that z0 ∈ dom(ProjPMap1(g, 〈〈x,
y〉〉)) holds ProjPMap1(g, 〈〈x, y〉〉) is continuous in z0 by [13, (4)]. �

(12) Let us consider a partial function f from ((the real normed space of R)×
(the real normed space of R)) × (the real normed space of R) to the real
normed space of R, a partial function g from (R× R)× R to R, a partial
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function p2 from (the real normed space of R) × (the real normed space
of R) to the real normed space of R, and an element z of R. Suppose f
is continuous on dom f and f = g and p2 = ProjPMap2(g, z). Then p2 is
continuous on dom p2.
Proof: For every point x4 of (the real normed space of R) × (the real
normed space of R) such that x4 ∈ dom p2 holds p2� dom p2 is continuous
in x4 by [15, (18)], [14, (9)]. �

(13) Let us consider a partial function f from ((the real normed space of
R) × (the real normed space of R)) × (the real normed space of R) to
the real normed space of R, a partial function g from (R × R) × R to R,
and elements x, y of R. Suppose f is continuous on dom f and f = g.
Then ProjPMap1(|g|, 〈〈x, y〉〉) is continuous. The theorem is a consequence
of (11).

(14) Let us consider a partial function f from ((the real normed space of R)×
(the real normed space of R)) × (the real normed space of R) to the real
normed space of R, a partial function g from (R× R)× R to R, a partial
function p2 from (the real normed space of R) × (the real normed space
of R) to the real normed space of R, and an element z of R. Suppose f is
continuous on dom f and f = g and p2 = ProjPMap2(|g|, z). Then p2 is
continuous on dom p2. The theorem is a consequence of (12).

(15) Let us consider a partial function f from ((the real normed space of R)×
(the real normed space of R)) × (the real normed space of R) to the real
normed space of R, a partial function g from (R×R)×R to R, and elements
x, y of R. Suppose f is uniformly continuous on dom f and f = g. Then
ProjPMap1(g, 〈〈x, y〉〉) is uniformly continuous.
Proof: For every real number r such that 0 < r there exists a real number
s such that 0 < s and for every real numbers z1, z2 such that z1, z2 ∈
dom(ProjPMap1(g, 〈〈x, y〉〉)) and |z1 − z2| < s holds |(ProjPMap1(g, 〈〈x,
y〉〉))(z1)− (ProjPMap1(g, 〈〈x, y〉〉))(z2)| < r. �

(16) Let us consider a partial function f from ((the real normed space of R)×
(the real normed space of R)) × (the real normed space of R) to the real
normed space of R, a partial function g from (R× R)× R to R, a partial
function p2 from (the real normed space of R) × (the real normed space
of R) to the real normed space of R, and an element z of R. Suppose f
is uniformly continuous on dom f and f = g and p2 = ProjPMap2(g, z).
Then p2 is uniformly continuous on dom p2.

(17) Let us consider elements x, y of R, a partial function f from ((the real
normed space of R) × (the real normed space of R)) × (the real normed
space of R) to the real normed space of R, a partial function g from
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(R × R) × R to R, and a partial function P8 from R to R. Suppose f is
continuous on dom f and f = g and P8 = ProjPMap1(R(g), 〈〈x, y〉〉). Then
P8 is continuous. The theorem is a consequence of (11).

(18) Let us consider an element z of R, a partial function f from ((the real
normed space of R) × (the real normed space of R)) × (the real normed
space of R) to the real normed space of R, a partial function g from (R×
R) × R to R, and a partial function P7 from (the real normed space of
R)× (the real normed space of R) to the real normed space of R. Suppose
f is continuous on dom f and f = g and P7 = ProjPMap2(R(g), z). Then
P7 is continuous on domP7. The theorem is a consequence of (12).

(19) Let us consider elements x, y of R, a partial function f from ((the real
normed space of R) × (the real normed space of R)) × (the real normed
space of R) to the real normed space of R, a partial function g from
(R × R) × R to R, and a partial function P8 from R to R. Suppose f

is continuous on dom f and f = g and P8 = ProjPMap1(|R(g)|, 〈〈x, y〉〉).
Then P8 is continuous. The theorem is a consequence of (13).

(20) Let us consider an element z of R, a partial function f from ((the real
normed space of R) × (the real normed space of R)) × (the real normed
space of R) to the real normed space of R, a partial function g from (R×
R)×R to R, and a partial function P7 from (the real normed space of R)×
(the real normed space of R) to the real normed space of R. Suppose f is
continuous on dom f and f = g and P7 = ProjPMap2(|R(g)|, z). Then P7
is continuous on domP7. The theorem is a consequence of (14).

3. Integral of Continuous Three Variable Function

Let us consider subsets I, J of R, a non empty, closed interval subset K of
R, elements x, y of R, a partial function f from ((the real normed space of R)×
(the real normed space of R))× (the real normed space of R) to the real normed
space of R, a partial function g from (R × R) × R to R, and a partial function
P8 from R to R. Now we state the propositions:

(21) Suppose x ∈ I and y ∈ J and dom f = (I × J)×K and f is continuous
on (I × J)×K and f = g and P8 = ProjPMap1(R(g), 〈〈x, y〉〉). Then

(i) P8�K is bounded, and

(ii) P8 is integrable on K.

The theorem is a consequence of (17).

(22) Suppose x ∈ I and y ∈ J and dom f = (I × J)×K and f is continuous
on (I × J)×K and f = g and P8 = ProjPMap1(R(g), 〈〈x, y〉〉). Then
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(i) P8 is integrable on L-Meas, and

(ii)
∫
K

P8(x)dx =
∫
P8 d L-Meas, and

(iii)
∫
K

P8(x)dx =
∫

ProjPMap1(R(g), 〈〈x, y〉〉) d L-Meas, and

(iv)
∫
K

P8(x)dx = (Integral2(L-Meas,R(g)))(〈〈x, y〉〉).

The theorem is a consequence of (21).

(23) Let us consider non empty, closed interval subsets I, J of R, a subset
K of R, an element z of R, a partial function f from ((the real normed
space of R)× (the real normed space of R))× (the real normed space of
R) to the real normed space of R, a partial function g from (R × R) ×
R to R, and a partial function P9 from R × R to R. Suppose z ∈ K and
dom f = (I × J)×K and f is continuous on (I × J)×K and f = g and
P9 = ProjPMap2(R(g), z). Then

(i) P9 is integrable on ProdMeas(L-Meas,L-Meas), and

(ii)
∫
P9 d ProdMeas(L-Meas,L-Meas) =∫
ProjPMap2(R(g), z) d ProdMeas(L-Meas,L-Meas), and

(iii)
∫
P9 d ProdMeas(L-Meas,L-Meas) =

(Integral1(ProdMeas(L-Meas,L-Meas),R(g)))(z).

The theorem is a consequence of (18).

(24) Let us consider subsets I, J of R, a non empty, closed interval subset
K of R, elements x, y of R, a partial function f from ((the real normed
space of R)× (the real normed space of R))× (the real normed space of
R) to the real normed space of R, a partial function g from (R×R)×R to
R, and a partial function P8 from R to R. Suppose x ∈ I and y ∈ J and
dom f = (I × J)×K and f is continuous on (I × J)×K and f = g and
P8 = ProjPMap1(|R(g)|, 〈〈x, y〉〉). Then

(i) P8�K is bounded, and

(ii) P8 is integrable on K.

The theorem is a consequence of (19).

(25) Let us consider subsets I, J of R, a non empty, closed interval subset
K of R, elements x, y of R, a partial function f from ((the real normed
space of R)× (the real normed space of R))× (the real normed space of R)
to the real normed space of R, a partial function g from (R×R)×R to R,
a partial function P8 from R to R, and an element E of L-Field. Suppose



16 noboru endou and yasunari shidama

x ∈ I and y ∈ J and dom f = (I × J) ×K and f is continuous on (I ×
J)×K and f = g and P8 = ProjPMap1(|R(g)|, 〈〈x, y〉〉) and E = K. Then
P8 is E-measurable. The theorem is a consequence of (24).

(26) Let us consider subsets I, J of R, a non empty, closed interval subset
K of R, elements x, y of R, a partial function f from ((the real normed
space of R)× (the real normed space of R))× (the real normed space of
R) to the real normed space of R, a partial function g from (R×R)×R to
R, and a partial function P8 from R to R. Suppose x ∈ I and y ∈ J and
dom f = (I × J)×K and f is continuous on (I × J)×K and f = g and
P8 = ProjPMap1(|R(g)|, 〈〈x, y〉〉). Then

(i) P8 is integrable on L-Meas, and

(ii)
∫
K

P8(x)dx =
∫
P8 d L-Meas, and

(iii)
∫
K

P8(x)dx =
∫

ProjPMap1(|R(g)|, 〈〈x, y〉〉) d L-Meas, and

(iv)
∫
K

P8(x)dx = (Integral2(L-Meas, |R(g)|))(〈〈x, y〉〉).

The theorem is a consequence of (24).

(27) Let us consider non empty, closed interval subsets I, J of R, a subset
K of R, an element z of R, a partial function f from ((the real normed
space of R) × (the real normed space of R)) × (the real normed space
of R) to the real normed space of R, a partial function g from (R ×
R) × R to R, a partial function P9 from R × R to R, and an element
E of σ(MeasRect(L-Field,L-Field)). Suppose z ∈ K and dom f = (I ×
J) × K and f is continuous on (I × J) × K and f = g and P9 =
ProjPMap2(|R(g)|, z) and E = I × J . Then P9 is E-measurable. The
theorem is a consequence of (20).

(28) Let us consider non empty, closed interval subsets I, J of R, a subset
K of R, an element z of R, a partial function f from ((the real normed
space of R)× (the real normed space of R))× (the real normed space of
R) to the real normed space of R, a partial function g from (R × R) ×
R to R, and a partial function P9 from R × R to R. Suppose z ∈ K and
dom f = (I × J)×K and f is continuous on (I × J)×K and f = g and
P9 = ProjPMap2(|R(g)|, z). Then

(i) P9 is integrable on ProdMeas(L-Meas,L-Meas), and

(ii)
∫
P9 d ProdMeas(L-Meas,L-Meas) =∫
ProjPMap2(|R(g)|, z) d ProdMeas(L-Meas,L-Meas), and
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(iii)
∫
P9 d ProdMeas(L-Meas,L-Meas) =

(Integral1(ProdMeas(L-Meas,L-Meas), |R(g)|))(z).

The theorem is a consequence of (20).

(29) Let us consider non empty, closed interval subsets I, J , K of R, a par-
tial function f from ((the real normed space of R) × (the real normed
space of R)) × (the real normed space of R) to the real normed space
of R, a partial function g from (R × R) × R to R, and an element E of
σ(MeasRect(σ(MeasRect(L-Field,L-Field)),L-Field)). Suppose (I × J)×
K = dom f and f is continuous on (I × J)×K and f = g and E = (I ×
J)×K. Then g is E-measurable.
Proof: For every real number r, E∩LE-dom(g, r) ∈ σ(MeasRect(σ(Meas
Rect(L-Field,L-Field)),L-Field)). �

Let us consider non empty, closed interval subsets I, J , K of R, elements
x, y of R, a partial function f from ((the real normed space of R) × (the real
normed space of R)) × (the real normed space of R) to the real normed space
of R, a partial function g from (R×R)×R to R, and a real number e. Now we
state the propositions:

(30) Suppose (I × J)×K = dom f and f is continuous on (I × J)×K and
f = g. Then suppose 0 < e. Then there exists a real number r such that

(i) 0 < r, and

(ii) for every elements u1, u2 of R×R and for every real numbers x1, y1,
x2, y2 such that u1 = 〈〈x1, y1〉〉 and u2 = 〈〈x2, y2〉〉 and |x2−x1| < r and
|y2−y1| < r and u1, u2 ∈ I×J for every element z of R such that z ∈
K holds |(ProjPMap1(|R(g)|, u2))(z)−(ProjPMap1(|R(g)|, u1))(z)| <
e.

Proof: For every element x of R × R and for every element y of R such
that x ∈ I × J and y ∈ K holds (ProjPMap1(|R(g)|, x))(y) = |R(g)|(x, y)
and |R(g)|(x, y) = |g|(〈〈x, y〉〉). Consider r being a real number such that
0 < r and for every real numbers x1, x2, y1, y2, z1, z2 such that x1, x2 ∈ I
and y1, y2 ∈ J and z1, z2 ∈ K and |x2 − x1| < r and |y2 − y1| < r and
|z2 − z1| < r holds ||g|(〈〈x2, y2, z2〉〉)− |g|(〈〈x1, y1, z1〉〉)| < e. �

(31) Suppose (I × J)×K = dom f and f is continuous on (I × J)×K and
f = g. Then suppose 0 < e. Then there exists a real number r such that

(i) 0 < r, and

(ii) for every elements u1, u2 of R×R and for every real numbers x1, y1,
x2, y2 such that u1 = 〈〈x1, y1〉〉 and u2 = 〈〈x2, y2〉〉 and |x2−x1| < r and
|y2−y1| < r and u1, u2 ∈ I×J for every element z of R such that z ∈
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K holds |(ProjPMap1(R(g), u2))(z) − (ProjPMap1(R(g), u1))(z)| <
e.

The theorem is a consequence of (8).

(32) Let us consider non empty, closed interval subsets I, J , K of R, a partial
function f from ((the real normed space of R) × (the real normed space
of R))× (the real normed space of R) to the real normed space of R, and
a partial function g from (R×R)×R to R. Suppose (I × J)×K = dom f

and f is continuous on (I × J)×K and f = g. Then

(i) Integral2(L-Meas, |R(g)|) is a function from R× R into R, and

(ii) Integral2(L-Meas, |R(g)|)�(I × J) is a partial function from R×R to
R, and

(iii) Integral2(L-Meas,R(g)) is a function from R× R into R, and

(iv) Integral2(L-Meas,R(g))�(I × J) is a partial function from R × R to
R.

The theorem is a consequence of (26) and (22).

Let us consider non empty, closed interval subsets I, J , K of R, a partial
function f from ((the real normed space of R)× (the real normed space of R))×
(the real normed space of R) to the real normed space of R, a partial function g
from (R×R)×R to R, and a partial function F4 from (the real normed space
of R) × (the real normed space of R) to the real normed space of R. Now we
state the propositions:

(33) Suppose (I × J)×K = dom f and f is continuous on (I × J)×K and
f = g and F4 = Integral2(L-Meas, |R(g)|)�(I × J). Then F4 is uniformly
continuous on I×J . The theorem is a consequence of (30), (19), and (24).

(34) Suppose (I × J)×K = dom f and f is continuous on (I × J)×K and
f = g and F4 = Integral2(L-Meas,R(g))�(I × J). Then F4 is uniformly
continuous on I×J . The theorem is a consequence of (31), (17), (21), and
(22).

(35) Let us consider non empty, closed interval subsets I, J , K of R, a partial
function f from ((the real normed space of R) × (the real normed space
of R))× (the real normed space of R) to the real normed space of R, and
a partial function g from (R×R)×R to R. Suppose (I × J)×K = dom f

and f is continuous on (I × J)×K and f = g. Then

(i) Integral1(ProdMeas(L-Meas,L-Meas), |R(g)|) is a function from R in-
to R, and

(ii) Integral1(ProdMeas(L-Meas,L-Meas), |R(g)|)�K is a partial function
from R to R, and
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(iii) Integral1(ProdMeas(L-Meas,L-Meas),R(g)) is a function from R into
R, and

(iv) Integral1(ProdMeas(L-Meas,L-Meas),R(g))�K is a partial function
from R to R.

The theorem is a consequence of (20), (28), (18), and (23).

Let us consider non empty, closed interval subsets I, J , K of R, a partial
function f from ((the real normed space of R)× (the real normed space of R))×
(the real normed space of R) to the real normed space of R, a partial function
g from (R×R)×R to R, and a partial function G3 from R to R. Now we state
the propositions:

(36) Suppose (I × J)×K = dom f and f is continuous on (I × J)×K and
f = g and G3 = Integral1(ProdMeas(L-Meas,L-Meas), |R(g)|)�K. Then
G3 is continuous.
Proof: Consider a, b being real numbers such that I = [a, b]. Consider
c, d being real numbers such that J = [c, d]. For every real number e
such that 0 < e there exists a real number r such that 0 < r and for
every real numbers z1, z2 such that |z2 − z1| < r and z1, z2 ∈ K for
every real numbers x, y such that x ∈ I and y ∈ J holds ||g|(〈〈x, y,
z2〉〉)− |g|(〈〈x, y, z1〉〉)| < e. Set R11 = R(g). For every elements x, y, z of R
such that x ∈ I and y ∈ J and z ∈ K holds (ProjPMap2(|R11|, z))(x, y) =
|R11|(〈〈x, y〉〉, z) and |R11|(〈〈x, y〉〉, z) = |g(〈〈x, y, z〉〉)| and |R11|(〈〈x, y〉〉, z) =
|g|(〈〈x, y, z〉〉). For every real number e such that 0 < e there exists a re-
al number r such that 0 < r and for every elements z1, z2 of R such
that |z2 − z1| < r and z1, z2 ∈ K for every elements x, y of R such
that x ∈ I and y ∈ J holds |(ProjPMap1(ProjPMap2(|R11|, z2), x))(y) −
(ProjPMap1(ProjPMap2(|R11|, z1), x))(y)| < e. For every real numbers
z0, r such that z0 ∈ K and 0 < r there exists a real number s such that
0 < s and for every real number z1 such that z1 ∈ K and |z1 − z0| < s

holds |G3(z1)−G3(z0)| < r. �

(37) Suppose (I × J)×K = dom f and f is continuous on (I × J)×K and
f = g and G3 = Integral1(ProdMeas(L-Meas,L-Meas),R(g))�K. Then G3
is continuous.
Proof: Consider a, b being real numbers such that I = [a, b]. Consider c,
d being real numbers such that J = [c, d]. For every real number e such
that 0 < e there exists a real number r such that 0 < r and for every
real numbers z1, z2 such that |z2 − z1| < r and z1, z2 ∈ K for every real
numbers x, y such that x ∈ I and y ∈ J holds |g(〈〈x, y, z2〉〉) − g(〈〈x, y,
z1〉〉)| < e. Set R11 = R(g). For every elements x, y, z of R such that x ∈ I
and y ∈ J and z ∈ K holds (ProjPMap2(R11, z))(x, y) = R11(〈〈x, y〉〉, z)
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and R11(〈〈x, y〉〉, z) = g(〈〈x, y, z〉〉) and R11(〈〈x, y〉〉, z) = g(〈〈x, y, z〉〉).
For every real number e such that 0 < e there exists a real number r

such that 0 < r and for every elements z1, z2 of R such that |z2 − z1| < r

and z1, z2 ∈ K for every elements x, y of R such that x ∈ I and y ∈ J holds
|(ProjPMap1(ProjPMap2(R11, z2), x))(y)−(ProjPMap1(ProjPMap2(R11,
z1), x))(y)| < e. For every real numbers z0, r such that z0 ∈ K and 0 < r

there exists a real number s such that 0 < s and for every real number z1
such that z1 ∈ K and |z1 − z0| < s holds |G3(z1)−G3(z0)| < r. �

Let us consider non empty, closed interval subsets I, J , K of R, a partial
function f from ((the real normed space of R) × (the real normed space of
R))× (the real normed space of R) to the real normed space of R, and a partial
function g from (R× R)× R to R. Now we state the propositions:

(38) Suppose (I × J)×K = dom f and f is continuous on (I × J)×K and
f = g. Then Integral2(L-Meas, |R(g)|) is non-negative. The theorem is
a consequence of (24) and (25).

(39) Suppose (I × J) × K = dom f and f is continuous on (I × J) × K

and f = g. Then Integral1(ProdMeas(L-Meas,L-Meas), |R(g)|) is non-
negative. The theorem is a consequence of (20) and (27).

(40) Let us consider non empty, closed interval subsets I, J , K of R, an ele-
ment u of R×R, a partial function f from ((the real normed space of R)×
(the real normed space of R)) × (the real normed space of R) to the real
normed space of R, and a partial function g from (R×R)×R to R. Sup-
pose (I × J)×K = dom f and f is continuous on (I × J)×K and f = g.
Then (Integral2(L-Meas, |R(g)|))(u) < +∞. The theorem is a consequence
of (32).

(41) Let us consider non empty, closed interval subsets I, J , K of R, an ele-
ment z of R, a partial function f from ((the real normed space of R) ×
(the real normed space of R)) × (the real normed space of R) to the real
normed space of R, and a partial function g from (R×R)×R to R. Suppose
(I ×J)×K = dom f and f is continuous on (I ×J)×K and f = g. Then
(Integral1(ProdMeas(L-Meas,L-Meas), |R(g)|))(z) < +∞. The theorem is
a consequence of (35).

(42) Let us consider non empty, closed interval subsets I, J , K of R, a par-
tial function f from ((the real normed space of R) × (the real normed
space of R)) × (the real normed space of R) to the real normed space
of R, a partial function g from (R × R) × R to R, and an element E of
σ(MeasRect(L-Field,L-Field)). Suppose (I × J) × K = dom f and f is
continuous on (I × J) ×K and f = g. Then Integral2(L-Meas, |R(g)|) is
E-measurable.
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Proof: Set F = Integral2(L-Meas, |R(g)|). Set I1 = I × J . Reconsider
G = Integral2(L-Meas, |R(g)|)�I1 as a partial function from R × R to R.
Reconsider R4 = Integral2(L-Meas,R(g))�I1 as a partial function from R×
R to R. Reconsider G1 = G as a partial function from (the real normed
space of R)× (the real normed space of R) to the real normed space of R.

Reconsider R6 = R4 as a partial function from (the real normed
space of R) × (the real normed space of R) to the real normed space
of R. G1 is uniformly continuous on I × J . R6 is uniformly continu-
ous on I × J . F is non-negative. Reconsider H = R × R as an ele-
ment of σ(MeasRect(L-Field,L-Field)). For every real number r, H ∩
LE-dom(F, r) ∈ σ(MeasRect(L-Field,L-Field)). �

Let us consider non empty, closed interval subsets I, J , K of R, a partial
function f from ((the real normed space of R) × (the real normed space of
R))× (the real normed space of R) to the real normed space of R, and a partial
function g from (R× R)× R to R. Now we state the propositions:

(43) Suppose (I × J)×K = dom f and f is continuous on (I × J)×K and
f = g. Then

(i) g is integrable on ProdMeas(ProdMeas(L-Meas,L-Meas),L-Meas),
and

(ii) for every element u of R × R, ProjPMap1(R(g), u) is integrable on
L-Meas, and

(iii) for every element U of σ(MeasRect(L-Field,L-Field)),

Integral2(L-Meas,R(g)) is U -measurable, and

(iv) Integral2(L-Meas,R(g)) is integrable on ProdMeas(L-Meas,L-Meas),
and

(v)
∫
g d ProdMeas(ProdMeas(L-Meas,L-Meas),L-Meas) =∫
Integral2(L-Meas,R(g)) d ProdMeas(L-Meas,L-Meas).

Proof: Set F = Integral2(L-Meas, |R(g)|). Set I1 = I×J . Reconsider G =
Integral2(L-Meas, |R(g)|)�I1 as a partial function from R×R to R. Recon-
sider R4 = Integral2(L-Meas,R(g))�I1 as a partial function from R×R to
R. Reconsider A1 = I×J as an element of σ(MeasRect(L-Field,L-Field)).
Reconsider G1 = G as a partial function from (the real normed space of
R)×(the real normed space of R) to the real normed space of R. Reconsider
R6 = R4 as a partial function from (the real normed space of R)×(the real
normed space of R) to the real normed space of R. G1 is uniformly conti-
nuous on I×J . R6 is uniformly continuous on I×J . Reconsider N1 = (R×
R)\A1 as an element of σ(MeasRect(L-Field,L-Field)). F is non-negative.
Reconsider H = R × R as an element of σ(MeasRect(L-Field,L-Field)).
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F is H-measurable. Set F1 = F �N1. For every object x such that x ∈
domF1 holds F1(x) = 0. Reconsider K1 = (I × J) ×K as an element of
σ(MeasRect(σ(MeasRect(L-Field,L-Field)),L-Field)). g isK1-measurable.
For every element x of R× R, (Integral2(L-Meas, |R(g)|))(x) < +∞. �

(44) Suppose (I × J)×K = dom f and f is continuous on (I × J)×K and
f = g. Then

(i) for every element z of R, ProjPMap2(R(g), z)

is integrable on ProdMeas(L-Meas,L-Meas), and

(ii) for every element V of L-Field, Integral1(ProdMeas(L-Meas,L-Meas),

R(g)) is V -measurable, and

(iii) Integral1(ProdMeas(L-Meas,L-Meas),R(g)) is integrable on L-Meas,
and

(iv)
∫
g d ProdMeas(ProdMeas(L-Meas,L-Meas),L-Meas) =∫
Integral1(ProdMeas(L-Meas,L-Meas),R(g)) d L-Meas.

The theorem is a consequence of (43) and (41).

(45) Let us consider non empty, closed interval subsets I, J , K of R, a partial
function f from ((the real normed space of R)×(the real normed space of
R))×(the real normed space of R) to the real normed space of R, a partial
function g from (R×R)×R to R, an element x of R, and an element E of
L-Field. Suppose (I × J)×K = dom f and f is continuous on (I × J)×
K and f = g and x ∈ I. Then ProjPMap1(| Integral2(L-Meas,R(g))|, x)
is E-measurable.
Proof: Set F4 = Integral2(L-Meas,R(g)). Reconsider G4 = Integral2(L-
Meas,R(g)) as a function from R × R into R. Reconsider G = G4�(I ×
J) as a partial function from R× R to R. Reconsider F = G as a partial
function from (the real normed space of R) × (the real normed space of
R) to the real normed space of R. F is uniformly continuous on I ×J . Set
F5 = ProjPMap1(|F4|, x). Set L0 = F5�J . For every element t of R such
that t ∈ J holds 0 ¬ L0(t). Reconsider H = R as an element of L-Field.
For every real number r, H ∩ LE-dom(F5, r) ∈ L-Field. �

(46) Let us consider non empty, closed interval subsets I, J , K of R, a partial
function f from ((the real normed space of R) × (the real normed space
of R))× (the real normed space of R) to the real normed space of R, and
a partial function g from (R×R)×R to R. Suppose (I × J)×K = dom f

and f is continuous on (I × J)×K and f = g. Then

(i) for every element x of R, (Integral2(L-Meas, | Integral2(L-Meas,

R(g))|))(x) < +∞, and
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(ii) for every element x of R, ProjPMap1(Integral2(L-Meas,R(g)), x) is
integrable on L-Meas.

Proof: Reconsider G4 = Integral2(L-Meas,R(g)) as a function from R×
R into R. Reconsider G = G4�(I × J) as a partial function from R × R
to R. Reconsider F = G as a partial function from (the real normed
space of R) × (the real normed space of R) to the real normed space
of R. F is uniformly continuous on I × J . For every element x of R,
(Integral2(L-Meas, | Integral2(L-Meas,R(g))|))(x) < +∞ by [6, (5)], [7,
(75)]. Integral2(L-Meas,R(g)) is integrable on ProdMeas(L-Meas,L-Meas).
�

(47) Let us consider non empty, closed interval subsets I, J , K of R, a partial
function f from ((the real normed space of R)×(the real normed space of
R))×(the real normed space of R) to the real normed space of R, a partial
function g from (R×R)×R to R, an element y of R, and an element E of
L-Field. Suppose (I × J)×K = dom f and f is continuous on (I × J)×
K and f = g and y ∈ J . Then ProjPMap2(| Integral2(L-Meas,R(g))|, y)
is E-measurable.
Proof: Set F4 = Integral2(L-Meas,R(g)). Reconsider G4 = Integral2(L-
Meas,R(g)) as a function from R × R into R. Reconsider G = G4�(I ×
J) as a partial function from R× R to R. Reconsider F = G as a partial
function from (the real normed space of R) × (the real normed space of
R) to the real normed space of R. F is uniformly continuous on I × J .
Set F6 = ProjPMap2(|F4|, y). Set L0 = F6�I. For every element t of R
such that t ∈ I holds 0 ¬ L0(t). For every element r of R, 0R ¬ F6(r).
Reconsider H = R as an element of L-Field. For every real number r,
H ∩ LE-dom(F6, r) ∈ L-Field. �

(48) Let us consider non empty, closed interval subsets I, J , K of R, a partial
function f from ((the real normed space of R) × (the real normed space
of R))× (the real normed space of R) to the real normed space of R, and
a partial function g from (R×R)×R to R. Suppose (I × J)×K = dom f

and f is continuous on (I × J)×K and f = g. Then

(i) for every element y of R, (Integral1(L-Meas, | Integral2(L-Meas,
R(g))|))(y) < +∞, and

(ii) for every element y of R, ProjPMap2(Integral2(L-Meas,R(g)), y) is
integrable on L-Meas.

Proof: Reconsider G4 = Integral2(L-Meas,R(g)) as a function from R×
R into R. Reconsider G = G4�(I × J) as a partial function from R × R
to R. Reconsider F = G as a partial function from (the real normed
space of R) × (the real normed space of R) to the real normed space
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of R. F is uniformly continuous on I × J . For every element y of R,
(Integral1(L-Meas, | Integral2(L-Meas,R(g))|))(y) < +∞. Integral2(L-
Meas,R(g)) is integrable on ProdMeas(L-Meas,L-Meas). �

(49) Let us consider non empty, closed interval subsets I, J , K of R, a par-
tial function f from ((the real normed space of R) × (the real normed
space of R)) × (the real normed space of R) to the real normed space
of R, a partial function g from (R × R) × R to R, and an element E of
σ(MeasRect(L-Field,L-Field)). Suppose (I × J) × K = dom f and f is
continuous on (I × J) ×K and f = g. Then Integral2(L-Meas, |R(g)|) is
E-measurable.
Proof: Set F = Integral2(L-Meas, |R(g)|). Set F0 = F �(I×J). Reconsider
G = F0 as a partial function from R×R to R. Reconsider G1 = G as a par-
tial function from (the real normed space of R)×(the real normed space of
R) to the real normed space of R. G1 is uniformly continuous on I×J . Re-
consider R2 = R×R as an element of σ(MeasRect(L-Field,L-Field)). F is
non-negative. For every real number r,R2∩LE-dom(F, r) ∈ σ(MeasRect(L-
Field,L-Field)). �

(50) Let us consider non empty, closed interval subsets I, J , K of R, a partial
function f from ((the real normed space of R)×(the real normed space of
R))×(the real normed space of R) to the real normed space of R, a partial
function g from (R× R)× R to R, and an element E of L-Field. Suppose
(I ×J)×K = dom f and f is continuous on (I ×J)×K and f = g. Then
Integral1(ProdMeas(L-Meas,L-Meas), |R(g)|) is E-measurable.
Proof: Set F = Integral1(ProdMeas(L-Meas,L-Meas), |R(g)|). Set F0 =
F �K. Reconsider G = F0 as a partial function from R to R. G�K is
bounded and G is integrable on K. Reconsider R = R as an element of
L-Field. F is non-negative. For every real number r, R ∩ LE-dom(F, r) ∈
L-Field. �

(51) Let us consider non empty, closed interval subsets I, J , K of R, a partial
function f from ((the real normed space of R)×(the real normed space of
R))×(the real normed space of R) to the real normed space of R, a partial
function g from (R × R) × R to R, and an element x of R. Suppose (I ×
J)×K = dom f and f is continuous on (I × J)×K and f = g. Then

(i) ProjPMap1(Integral2(L-Meas,R(g)), x) is a function from R into R,
and

(ii) ProjPMap1(| Integral2(L-Meas,R(g))|, x) is a function from R into
R.

The theorem is a consequence of (32).
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(52) Let us consider non empty, closed interval subsets I, J , K of R, a partial
function f from ((the real normed space of R)×(the real normed space of
R))×(the real normed space of R) to the real normed space of R, a partial
function g from (R × R) × R to R, and an element y of R. Suppose (I ×
J)×K = dom f and f is continuous on (I × J)×K and f = g. Then

(i) ProjPMap2(Integral2(L-Meas,R(g)), y) is a function from R into R,
and

(ii) ProjPMap2(| Integral2(L-Meas,R(g))|, y) is a function from R into
R.

The theorem is a consequence of (32).

(53) Let us consider non empty, closed interval subsets I, J , K of R, a par-
tial function f from ((the real normed space of R) × (the real normed
space of R)) × (the real normed space of R) to the real normed space
of R, and a partial function g from (R × R) × R to R. Suppose (I ×
J) × K = dom f and f is continuous on (I × J) × K and f = g. Then
| Integral1(ProdMeas(L-Meas,L-Meas),R(g))| is a function from R into R.
The theorem is a consequence of (35).

(54) Let us consider an element x of R, non empty, closed interval subsets
I, J , K of R, and a partial function g from (R × R) × R to R. Suppose
(I × J)×K = dom g. Then

∫
ProjPMap1(Integral2(L-Meas,R(g)), x)�R \

J d L-Meas = 0.

(55) Let us consider an element y of R, non empty, closed interval subsets
I, J , K of R, and a partial function g from (R × R) × R to R. Suppose
(I × J)×K = dom g. Then

∫
ProjPMap2(Integral2(L-Meas,R(g)), y)�R \

I d L-Meas = 0.

(56) Let us consider non empty, closed interval subsets I, J , K of R, and
a partial function g from (R×R)×R to R. Suppose (I×J)×K = dom g.
Then

∫
Integral1(ProdMeas(L-Meas,L-Meas),R(g))�R \K d L-Meas = 0.

(57) Let us consider an element x of R, non empty, closed interval subsets I, J ,
K of R, a partial function f from ((the real normed space of R)×(the real
normed space of R))×(the real normed space of R) to the real normed spa-
ce of R, a partial function g from (R×R)×R to R, and a partial function P1
from R to R. Suppose x ∈ I and (I×J)×K = dom f and f is continuous on
(I×J)×K and f = g and P1 = ProjPMap1(Integral2(L-Meas,R(g)), x)�J .
Then P1 is continuous. The theorem is a consequence of (32) and (34).

(58) Let us consider an element y of R, non empty, closed interval subsets I, J ,
K of R, a partial function f from ((the real normed space of R)×(the real
normed space of R))×(the real normed space of R) to the real normed spa-
ce of R, a partial function g from (R×R)×R to R, and a partial function P2
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from R to R. Suppose y ∈ J and (I×J)×K = dom f and f is continuous on
(I×J)×K and f = g and P2 = ProjPMap2(Integral2(L-Meas,R(g)), y)�I.
Then P2 is continuous. The theorem is a consequence of (32) and (34).

(59) Let us consider an element x of R, non empty, closed interval subsets I, J ,
K of R, a partial function f from ((the real normed space of R)×(the real
normed space of R))×(the real normed space of R) to the real normed spa-
ce of R, a partial function g from (R×R)×R to R, and a partial function P1
from R to R. Suppose x ∈ I and (I×J)×K = dom f and f is continuous on
(I×J)×K and f = g and P1 = ProjPMap1(Integral2(L-Meas,R(g)), x)�J .
Then

(i) P1 � J is bounded, and

(ii) P1 is integrable on J .

The theorem is a consequence of (32) and (34).

(60) Let us consider an element y of R, non empty, closed interval subsets I, J ,
K of R, a partial function f from ((the real normed space of R)×(the real
normed space of R))×(the real normed space of R) to the real normed spa-
ce of R, a partial function g from (R×R)×R to R, and a partial function P2
from R to R. Suppose y ∈ J and (I×J)×K = dom f and f is continuous on
(I×J)×K and f = g and P2 = ProjPMap2(Integral2(L-Meas,R(g)), y)�I.
Then

(i) P2 � I is bounded, and

(ii) P2 is integrable on I.

The theorem is a consequence of (32) and (34).

(61) Let us consider non empty, closed interval subsets I, J , K of R, a partial
function f from ((the real normed space of R)×(the real normed space of
R))×(the real normed space of R) to the real normed space of R, a partial
function g from (R × R) × R to R, and a partial function G3 from R to
R. Suppose (I × J)×K = dom f and f is continuous on (I × J)×K and
f = g and G3 = Integral1(ProdMeas(L-Meas,L-Meas),R(g))�K. Then

(i) G3 � K is bounded, and

(ii) G3 is integrable on K.

The theorem is a consequence of (37).

(62) Let us consider an element x of R, non empty, closed interval subsets I, J ,
K of R, a partial function f from ((the real normed space of R)×(the real
normed space of R))×(the real normed space of R) to the real normed spa-
ce of R, a partial function g from (R×R)×R to R, and a partial function P1
from R to R. Suppose x ∈ I and (I×J)×K = dom f and f is continuous on
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(I×J)×K and f = g and P1 = ProjPMap1(Integral2(L-Meas,R(g)), x)�J .
Then

(i) ProjPMap1(Integral2(L-Meas,R(g)), x)�J is integrable on L-Meas,
and

(ii)
∫
J

P1(x)dx =
∫

ProjPMap1(Integral2(L-Meas,R(g)), x)�J d L-Meas,

and

(iii)
∫
J

P1(x)dx =
∫

ProjPMap1(Integral2(L-Meas,R(g)), x) d L-Meas, and

(iv)
∫
J

P1(x)dx = (Integral2(L-Meas, Integral2(L-Meas,R(g))))(x).

The theorem is a consequence of (46), (59), and (54).

(63) Let us consider an element y of R, non empty, closed interval subsets I, J ,
K of R, a partial function f from ((the real normed space of R)×(the real
normed space of R))×(the real normed space of R) to the real normed spa-
ce of R, a partial function g from (R×R)×R to R, and a partial function P2
from R to R. Suppose y ∈ J and (I×J)×K = dom f and f is continuous on
(I×J)×K and f = g and P2 = ProjPMap2(Integral2(L-Meas,R(g)), y)�I.
Then

(i) ProjPMap2(Integral2(L-Meas,R(g)), y)�I is integrable on L-Meas, and

(ii)
∫
I

P2(x)dx =
∫

ProjPMap2(Integral2(L-Meas,R(g)), y)�I d L-Meas,

and

(iii)
∫
I

P2(x)dx =
∫

ProjPMap2(Integral2(L-Meas,R(g)), y) d L-Meas, and

(iv)
∫
I

P2(x)dx = (Integral1(L-Meas, Integral2(L-Meas,R(g))))(y).

The theorem is a consequence of (48), (60), and (55).

Let us consider non empty, closed interval subsets I, J , K of R, a partial
function f from ((the real normed space of R) × (the real normed space of
R))× (the real normed space of R) to the real normed space of R, and a partial
function g from (R× R)× R to R. Now we state the propositions:

(64) Suppose (I × J)×K = dom f and f is continuous on (I × J)×K and
f = g. Then

(i) for every element U of L-Field, Integral2(L-Meas, Integral2(L-Meas,

R(g))) is U -measurable, and
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(ii) Integral2(L-Meas, Integral2(L-Meas,R(g))) is integrable on L-Meas,
and

(iii)
∫

Integral2(L-Meas,R(g)) d ProdMeas(L-Meas,L-Meas) =∫
Integral2(L-Meas, Integral2(L-Meas,R(g))) d L-Meas, and

(iv)
∫
g d ProdMeas(ProdMeas(L-Meas,L-Meas),L-Meas) =∫
Integral2(L-Meas, Integral2(L-Meas,R(g))) d L-Meas, and

(v) Integral2(L-Meas,R(g))�(I×J) is integrable on ProdMeas(L-Meas,L-
Meas), and

(vi)
∫

Integral2(L-Meas,R(g))�(I × J) d ProdMeas(L-Meas,L-Meas) =∫
Integral2(L-Meas, Integral2(L-Meas,R(g))�(I × J)) d L-Meas.

The theorem is a consequence of (32), (43), (46), (40), and (34).

(65) Suppose (I × J)×K = dom f and f is continuous on (I × J)×K and
f = g. Then

(i) for every element V of L-Field, Integral1(L-Meas, Integral2(L-Meas,
R(g))) is V -measurable, and

(ii) Integral1(L-Meas, Integral2(L-Meas,R(g))) is integrable on L-Meas,
and

(iii)
∫

Integral2(L-Meas,R(g)) d ProdMeas(L-Meas,L-Meas) =∫
Integral1(L-Meas, Integral2(L-Meas,R(g))) d L-Meas, and

(iv)
∫
g d ProdMeas(ProdMeas(L-Meas,L-Meas),L-Meas) =∫
Integral1(L-Meas, Integral2(L-Meas,R(g))) d L-Meas, and

(v)
∫

Integral2(L-Meas,R(g))�(I × J) d ProdMeas(L-Meas,L-Meas) =∫
Integral1(L-Meas, Integral2(L-Meas,R(g))�(I × J)) d L-Meas.

The theorem is a consequence of (32), (43), (48), (40), and (34).

(66) Let us consider an element x of R, non empty, closed interval subsets I, J ,
K of R, a partial function f from ((the real normed space of R)×(the real
normed space of R))×(the real normed space of R) to the real normed spa-
ce of R, a partial function g from (R×R)×R to R, and a partial function P1
from R to R. Suppose x ∈ I and (I×J)×K = dom f and f is continuous on
(I×J)×K and f = g and P1 = ProjPMap1(Integral2(L-Meas,R(g))�(I×
J), x). Then

(i) P1 is continuous, and

(ii) dom(ProjPMap1(Integral2(L-Meas,R(g))�(I × J), x)) = J , and

(iii) P1�J is bounded, and

(iv) P1 is integrable on J , and
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(v)
∫
J

P1(x)dx =
∫

ProjPMap1(Integral2(L-Meas,R(g))�(I × J), x) d L-

Meas, and

(vi)
∫
J

P1(x)dx = (Integral2(L-Meas, Integral2(L-Meas,R(g))�(I×J)))(x),

and

(vii) ProjPMap1(Integral2(L-Meas,R(g))�(I × J), x) is integrable on L-

Meas.

The theorem is a consequence of (32) and (34).

(67) Let us consider an element y of R, non empty, closed interval subsets I, J ,
K of R, a partial function f from ((the real normed space of R)×(the real
normed space of R))×(the real normed space of R) to the real normed spa-
ce of R, a partial function g from (R×R)×R to R, and a partial function P2
from R to R. Suppose y ∈ J and (I×J)×K = dom f and f is continuous on
(I×J)×K and f = g and P2 = ProjPMap2(Integral2(L-Meas,R(g))�(I×
J), y). Then

(i) P2 is continuous, and

(ii) dom(ProjPMap2(Integral2(L-Meas,R(g))�(I × J), y)) = I, and

(iii) P2�I is bounded, and

(iv) P2 is integrable on I, and

(v)
∫
I

P2(x)dx =
∫

ProjPMap2(Integral2(L-Meas,R(g))�(I × J), y) d L-

Meas, and

(vi)
∫
I

P2(x)dx = (Integral1(L-Meas, Integral2(L-Meas,R(g))�(I×J)))(y),

and

(vii) ProjPMap2(Integral2(L-Meas,R(g))�(I × J), y) is integrable on L-

Meas.

The theorem is a consequence of (32) and (34).

(68) Let us consider non empty, closed interval subsets I, J , K of R, a partial
function f from ((the real normed space of R)×(the real normed space of
R))×(the real normed space of R) to the real normed space of R, a partial
function g from (R×R)×R to R, and a partial function G8 from R to R.
Suppose (I×J)×K = dom f and f is continuous on (I×J)×K and f = g

and G8 = Integral2(L-Meas, Integral2(L-Meas,R(g))�(I × J))�I. Then

(i) domG8 = I, and
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(ii) G8 is continuous, and

(iii) G8 � I is bounded, and

(iv) G8 is integrable on I, and

(v) Integral2(L-Meas, Integral2(L-Meas,R(g))�(I×J))�I is integrable on
L-Meas, and

(vi)
∫

Integral2(L-Meas, Integral2(L-Meas,R(g))�(I × J))�I d L-Meas =∫
I

G8(x)dx, and

(vii)
∫

Integral2(L-Meas,R(g))�(I × J) d ProdMeas(L-Meas,L-Meas) =∫
I

G8(x)dx.

The theorem is a consequence of (32) and (34).

(69) Let us consider non empty, closed interval subsets I, J , K of R, a partial
function f from ((the real normed space of R)×(the real normed space of
R))×(the real normed space of R) to the real normed space of R, a partial
function g from (R×R)×R to R, and a partial function G7 from R to R.
Suppose (I×J)×K = dom f and f is continuous on (I×J)×K and f = g

and G7 = Integral1(L-Meas, Integral2(L-Meas,R(g))�(I × J))�J . Then

(i) domG7 = J , and

(ii) G7 is continuous, and

(iii) G7 � J is bounded, and

(iv) G7 is integrable on J , and

(v) Integral1(L-Meas, Integral2(L-Meas,R(g))�(I×J))�J is integrable on
L-Meas, and

(vi)
∫

Integral1(L-Meas, Integral2(L-Meas,R(g))�(I × J))�J d L-Meas =∫
J

G7(x)dx, and

(vii)
∫

Integral2(L-Meas,R(g))�(I × J) d ProdMeas(L-Meas,L-Meas) =∫
J

G7(x)dx.

The theorem is a consequence of (32) and (34).
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Summary. We continue the formalization of field theory in Mizar [2], [3],
[4]. We introduce separability of polynomials and field extensions: a polynomial
is separable, if it has no multiple roots in its splitting field; an algebraic extension
E of F is separable, if the minimal polynomial of each a ∈ E is separable. We
prove among others that a polynomial q(X) is separable if and only if the gcd
of q(X) and its (formal) derivation equals 1 – and that a irreducible polynomial
q(X) is separable if and only if its derivation is not 0 – and that q(X) is separable
if and only if the number of q(X)’s roots in some field extension equals the degree
of q(X).

A field F is called perfect if all irreducible polynomials over F are separable,
and as a consequence every algebraic extension of F is separable. Every field with
characteristic 0 is perfect [13]. To also consider separability in fields with prime
characteristic p we define the rings Rp = { ap | a ∈ R} and the polynomials
Xn − a for a ∈ R. Then we show that a field F with prime characteristic p is
separable if and only if F = F p and that finite fields are perfect. Finally we
prove that for fields F ⊆ K ⊆ E where E is a separable extension of F both E
is separable over K and K is separable over F .
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Introduction

In this paper we formalize separability [7] using the Mizar formalism [2], [3],
[6]. A polynomial is separable, if it has no multiple roots in its splitting field;
an algebraic extension E of F is separable, if the minimal polynomial of each
a ∈ E is separable [8], [10], [5].
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In the first two sections we provide some technical lemmas necessary later.
They concern for example divisibility and gcds of integers, in particular we show
that a prime p divides

( p
m

)
for 1 ¬ m < p. We also need a number of results on

powers of polynomials among them that a polynomial q(X) divides (X − a)n if
and only if q(X) = (X − a)‘l for some 0 ¬ l ¬ n or that a is an n-fold root of
(X − a)n.

In the third section we define the ring Rp = { ap | a ∈ R} for a given ring R
with prime characteristic p. In order to do so we proved that (a+ b)p = ap+ bp,
also called freshman’s dream.

Then we define the polynomial q(X) = Xn − a necessary to describe sepa-
rability in fields with characteristic p 6= 0. Note that the roots of q(X) are the
elements b with bp = a, so that q(X) = (X − b)p if there exists such a b and is
irreducible otherwise.

In section five we deal with multiplicity of polynomials. We show among
others that a polynomial q(X) has a multiple root (in a field extension where
q(X) splits) if and only if the gcd of q(X) and its (formal) derivation is not 1.
For irreducible q(X) this can be sharpened to q(X)’s derivation being 0. We
also prove that in fields with characteristic p 6= 0 the derivation of a polynomial
q(X) is 0 if and only if there exists a polynomial r(X) such that q(X) = r(Xp).

The next two sections are devoted to separability of polynomials. We define
a polynomial q(X) to be separable, if it has no multiple roots in its splitting
field. Note that the splitting field of q(X) is unique only up to isomorphism, so
that we had to prove that the definition indeed is independent of a particular
splitting field. We prove a number of characterizations of separability found in
the literature, for example that q(X) is separable if and only if the number of
q(X)’s roots equals the degree of q(X) in some field extension if and only if q(X)
is square free in every field extension in which q splits. Then we introduce perfect
fields, e.g. fields in which every irreducible polynomial is separable. Fields with
characteristic 0 are perfect (see [13]). Fields F with characteristic p 6= 0 are
perfect if and only if F = F p. This is shown using the polynomial Xp−a, which
is inseparable and irreducible if there is no b with bp = a. Because in finite fields
the multiplicative group is cyclic in finite fields such a b always exists and so
finite field are perfect.

In the last section we define separable extensions: an algebraic extension
is separable if the minimal polynomial of every a ∈ E is separable. As an
easy consequence we get that for p(X) ∈ F [X]\F , where F is perfect, the
splitting field of p(X) is both normal and separable. We also show that for
fields F ⊆ K ⊆ E where E is a separable extension of F both E is a separable
extension of K and K is a separable extension of F .
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1. Preliminaries

Let R be a ring and k be a non zero natural number. One can check that
(0R)k reduces to 0R.

Let k be a natural number. Note that (1R)k reduces to 1R.
Let p be a prime number. Observe that there exists a field which is finite

and has characteristic p.
Let F be a finite field. Let us observe that char(F ) is prime.
Let R be a non degenerated ring. One can verify that every element of

the carrier of Polynom-RingR which is monic is also non zero.
Let F be a field, p be a non constant element of the carrier of Polynom-RingF ,

and a be a non zero element of F . One can verify that the functor a · p yields
a non constant element of the carrier of Polynom-RingF . Now we state the
propositions:

(1) Let us consider a natural number n, and a non zero natural number m.
Then n

m is a natural number if and only if m | n.

(2) Let us consider a prime number p, and natural numbers n, a, b. If p | a
and p - b and n = a

b , then p | n. The theorem is a consequence of (1).

(3) Let us consider a prime number p, and a non zero natural number n. If
n < p, then gcd(n, p) = 1.

(4) Let us consider a non zero natural number n, and a prime number p.
Then there exist natural numbers k, m such that

(i) n = m · pk, and

(ii) p - m.

The theorem is a consequence of (1).

Let R be an integral domain, a be a non zero element of R, and n be a natural
number. One can check that an is non zero.

Now we state the propositions:

(5) Let us consider a ring R, an element a of R, and an even natural number
n. Then (−a)n = an.

(6) Let us consider a ring R, an element a of R, and an odd natural number
n. Then (−a)n = −an.

(7) Let us consider a ring R with characteristic 2, and an element a of R.
Then −a = a.

(8) Let us consider an add-associative, right zeroed, right complementable,
Abelian, non empty double loop structure R, and an integer i. Then
i ? 0R = 0R.
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Proof: Define P[integer] ≡ $1 ? 0R = 0R. For every integer u such that
P[u] holds P[u−1] and P[u+ 1] by [12, (64), (60), (62)]. For every integer
i, P[i]. �

Let F be a finite field. Let us observe that MultGroup(F ) is cyclic.
Now we state the propositions:

(9) Let us consider a field F , and an extension E of F . Then MultGroup(F )
is a subgroup of MultGroup(E).

(10) Let us consider a skew field R, a natural number n, an element a of R,
and an element b of MultGroup(R). If a = b, then an = bn by [1, (17)],
[11, (8)].

Let us consider a ring R, a polynomial p over R, and elements a, b of R.
Now we state the propositions:

(11) (a+ b) · p = a · p+ b · p.
(12) (a · b) · p = a · (b · p).
(13) Let us consider a ring R, an element q of the carrier of Polynom-RingR,

a polynomial p over R, and a natural number n. If p = q, then n ·(1R) ·p =
n · q by [9, (26)].

(14) Let us consider a ring R, an element q of the carrier of Polynom-RingR,
a polynomial p over R, and natural numbers n, j. If p = n · q, then
p(j) = n · q(j).

(15) Let us consider a field F , an element a of F , a polynomial p over F ,
an extension E of F , an element b of E, and a polynomial q over E. If
a = b and p = q, then a · p = b · q.

(16) Let us consider a field F , an irreducible element p of the carrier of
Polynom-RingF , and an element q of the carrier of Polynom-RingF . If
q | p, then q is unital or associated to p.

(17) Let us consider a field F , an irreducible element p of the carrier of
Polynom-RingF , and a monic element q of the carrier of Polynom-RingF .
If q | p, then q = 1.F or q = NormPoly p.

Let us consider a field F and a non zero element p of the carrier of Polynom-
RingF . Now we state the propositions:

(18) p is reducible if and only if p is a unit of Polynom-RingF or there exists
a monic element q of the carrier of Polynom-RingF such that q | p and
1 ¬ deg(q) < deg(p).

(19) p is reducible if and only if there exists a monic element q of the carrier
of Polynom-RingF such that q | p and 1 ¬ deg(q) < deg(p).
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2. On Powers of Polynomials

Let R be an integral domain, p be a non zero polynomial over R, and n be
a natural number. Observe that pn is non zero. Let F be a field, p be a non
constant polynomial over F , and n be a non zero natural number. One can verify
that pn is non constant.

Let p be a non constant element of the carrier of Polynom-RingF . Let us
note that pn is non constant. Let p be a constant element of the carrier of
Polynom-RingF . One can check that pn is constant and pn is constant. Now we
state the propositions:

(20) Let us consider an integral domain R, a polynomial p over R, and a na-
tural number n. Then LC pn = (LC p)n.

(21) Let us consider an integral domain R, a non zero polynomial p over R,
and a natural number n. Then deg(pn) = n · (deg(p)).

(22) Let us consider a commutative ring R, a polynomial p over R, and a non
zero natural number n. Then (pn)(0) = p(0)n.

(23) Let us consider an integral domain R, a non zero element a of R, and
a natural number n. Then 〈0R, a〉n = an · (〈0R, 1R〉n).

(24) Let us consider a field F , an element a of F , and a natural number n.
Then (a�F )n = an�F .

(25) Let us consider a field F , a non zero element a of F , and natural numbers
n, m. Then (anpoly(a,m))n = anpoly(an, n ·m).

(26) Let us consider a field F , an element a of F , and a natural number n.
Then deg((X− a)n) = n.

(27) Let us consider a field F , an element a of F , and a non zero natural
number n. Then Roots((X− a)n) = {a}.

Let us consider a field F , an element a of F , and a natural number n. Now
we state the propositions:

(28) multiplicity((X− a)n, a) = n. The theorem is a consequence of (26).

(29) BRoots((X− a)n) = n.

(30) Let us consider a non degenerated commutative ring R, a commutative
ring extension S of R, an element a of R, an element b of S, and an element
n of N. If a = b, then (X− b)n = (X− a)n.

(31) Let us consider a field F , a monic polynomial p over F , an element a of
F , and a natural number n. Then p | (X− a)n if and only if there exists
a natural number l such that l ¬ n and p = (X− a)l. The theorem is
a consequence of (27), (28), and (26).
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(32) Let us consider a non degenerated commutative ring R, elements a, b of
R, and a natural number n. Then eval((X+ a)n, b) = (a+ b)n.

(33) Let us consider a field F , an element a of F , and a non zero natural
number n. Then (X− a)n splits in F .
Proof: Define P[natural number] ≡ (X− a)$1 splits in F . For every na-
tural number k such that k ­ 1 holds P[k]. �

(34) Let us consider a field F1, an F1-homomorphic field F2, a homomorphism
h from F1 to F2, an element a of F1, and a natural number n. Then
(PolyHom(h))((X− a)n) = (X−h(a))n.

3. The Rings Rp for Primes p

Let p be a prime number. One can verify that every commutative ring with
characteristic p is non degenerated. Now we state the propositions:

(35) Let us consider a prime number p, a commutative ring R with characte-
ristic p, and an element a of R. Then p · a = 0R.

(36) Let us consider a prime number p, a commutative ring R with charac-
teristic p, a non zero element a of R, and a non zero natural number n. If
n < p, then n · a 6= 0R.

Let us consider a prime number p, a commutative ring R with characteri-
stic p, an element a of R, and a natural number n. Now we state the propositions:

(37) n · p · a = 0R.

(38) If p | n, then n · a = 0R. The theorem is a consequence of (37).

(39) Let us consider a prime number p, a commutative ring R with characte-
ristic p, a non zero element a of R, and a natural number n. Then p | n if
and only if n · a = 0R. The theorem is a consequence of (37) and (36).

(40) Let us consider a prime number p, a commutative ring R with characte-
ristic p, and elements a, b of R. Then (a+ b)p = ap + bp.
Proof: Set F = 〈

(p
0

)
a0bp, . . . ,

(p
p

)
apb0〉. Consider f1 being a sequence of

the carrier of R such that
∑
F = f1(lenF ) and f1(0) = 0R and for every

natural number j and for every element v of R such that j < lenF and
v = F (j + 1) holds f1(j + 1) = f1(j) + v. Define P[element of N] ≡ $1 = 0
and f1($1) = 0R or 0 < $1 < lenF and f1($1) = ap or $1 = lenF and
f1($1) = ap + bp. For every element j of N such that 0 ¬ j ¬ lenF holds
P[j]. �

(41) Let us consider a prime number p, a commutative ring R with characteri-
stic p, elements a, b ofR, and a natural number i. Then (a+ b)p

i

= ap
i
+bp

i
.
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Proof: Define P[natural number] ≡ (a+ b)p
$1 = ap

$1 + bp
$1 . For every

natural number k, P[k]. �

(42) Let us consider a prime number p, a commutative ring R with charac-
teristic p, and an element a of R. Then −ap = (−a)p. The theorem is
a consequence of (40).

Let p be a prime number and R be a commutative ring with characteristic p.
The functor Rp yielding a strict double loop structure is defined by

(Def. 1) the carrier of it = the set of all ap where a is an element of R and the
addition of it = (the addition ofR) � (the carrier of it) and the multiplica-
tion of it = (the multiplication of R) � (the carrier of it) and 1it = 1R and
0it = 0R.

Let us observe that Rp is non degenerated.
Let us consider a prime number p, a commutative ring R with characteri-

stic p, elements a, b of R, and elements x, y of Rp. Now we state the propositions:

(43) If a = x and b = y, then a+ b = x+ y.

(44) If a = x and b = y, then a · b = x · y.

Let p be a prime number and R be a commutative ring with characteristic p.
Note that Rp is Abelian, add-associative, right zeroed, and right complementable
and Rp is commutative, associative, well unital, and distributive.

Let F be a field with characteristic p. One can verify that F p is almost left
invertible. Let R be a commutative ring with characteristic p. Observe that Rp

has characteristic p. Let F be a field with characteristic p. One can verify that
the functor F p yields a strict subfield of F .

4. The Polynomials Xn − a

Let R be a unital, non empty double loop structure, a be an element of R,
and n be a non zero natural number. The functor Xn − a yielding a sequence
of R is defined by the term

(Def. 2) 0.R+·[0 7−→ −a, n 7−→ 1R].

Let us observe that Xn − a is finite-Support.
Let R be a unital, non degenerated double loop structure. One can verify

that Xn − a is non constant and monic.
Let R be a non degenerated ring. One can verify that the functor Xn − a

yields a non constant, monic element of the carrier of Polynom-RingR. Now we
state the proposition:

(45) Let us consider a unital, non degenerated double loop structure L, an ele-
ment a of L, and a non zero natural number n. Then
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(i) (Xn − a)(0) = −a, and

(ii) (Xn − a)(n) = 1L, and

(iii) for every natural number m such that m 6= 0 and m 6= n holds
(Xn − a)(m) = 0L.

Let us consider a unital, non degenerated double loop structure R, a non
zero natural number n, and an element a of R. Now we state the propositions:

(46) deg(Xn − a) = n.

(47) LCXn − a = 1R.

(48) Let us consider a non degenerated ring R, a non zero natural number n,
and elements a, x of R. Then eval(Xn − a, x) = xn − a.
Proof: Set q = Xn − a. Consider F being a finite sequence of elements
of R such that eval(q, x) =

∑
F and lenF = len q and for every element

j of N such that j ∈ domF holds F (j) = q(j −′ 1) · powerR(x, j −′ 1).
n = deg(q). Consider f1 being a sequence of the carrier of R such that∑
F = f1(lenF ) and f1(0) = 0R and for every natural number j and

for every element v of R such that j < lenF and v = F (j + 1) holds
f1(j + 1) = f1(j) + v. Define P[element of N] ≡ $1 = 0 and f1($1) = 0R
or 0 < $1 < lenF and f1($1) = −a or $1 = lenF and f1($1) = xn− a. For
every element j of N such that 0 ¬ j ¬ lenF holds P[j]. �

(49) Let us consider a field F , a non zero natural number n, and elements a,
b of F . Then b is a root of Xn − a if and only if bn = a. The theorem is
a consequence of (48).

(50) Let us consider a field F , an extension E of F , a non zero natural number
n, an element a of F , and an element b of E. If b = a, then Xn−a = Xn−b.
The theorem is a consequence of (43).

(51) Let us consider a non degenerated, commutative ring R, a non trivial
natural number n, and an element a of R. Then (Deriv(R))(Xn − a) =
n · (X(n−1) − (0R)). The theorem is a consequence of (43) and (14).

(52) Let us consider a prime number p, a commutative ring R with charac-
teristic p, and an element a of R. Then (Deriv(R))(Xp − a) = 0.R. The
theorem is a consequence of (43) and (38).

(53) Let us consider a prime number p, a field F with characteristic p, and
elements a, b of F . If bp = a, then Xp − a = (X− b)p. The theorem is
a consequence of (7), (43), (40), (22), and (6).

(54) Let us consider a prime number p, a field F with characteristic p, and
an element a of F . Suppose there exists no element b of F such that bp = a.
Then Xp − a is irreducible. The theorem is a consequence of (50), (49),
(53), (18), (31), (22), (5), (6), (3), (9), and (10).



Separable polynomials and separable extensions 41

5. More on Multiplicity of Roots

Now we state the propositions:

(55) Let us consider a field F , a non zero polynomial p over F , and an element
a of F . Then deg(p) ­ multiplicity(p, a).

(56) Let us consider a field F , a non zero polynomial p over F , an ele-
ment a of F , and an element n of N. Then (X− a)n | p if and only if
multiplicity(p, a) ­ n.

(57) Let us consider a field F , an extension E of F , a non zero element p of
the carrier of Polynom-RingF , and an element a of E. Then a is a root of
p in E if and only if multiplicity(p, a) ­ 1. The theorem is a consequence
of (56).

(58) Let us consider a field F , a non zero polynomial p over F , an extension
E of F , and a non zero polynomial q over E. Suppose q = p. Let us
consider an E-extending extension K of F , and an element a of K. Then
multiplicity(q, a) = multiplicity(p, a).

(59) Let us consider a field F , a non zero polynomial p over F , an extension
E of F , and a non zero polynomial q over E. Suppose q = p. Let us
consider an element a of E. Then multiplicity(q, a) = multiplicity(p, a).
The theorem is a consequence of (58).

(60) Let us consider a field F , a non zero polynomial p over F , a non ze-
ro element c of F , and an element a of F . Then multiplicity(c · p, a) =
multiplicity(p, a).

(61) Let us consider a field F , an extension E of F , a non zero polyno-
mial p over F , a non zero element c of F , and an element a of E. Then
multiplicity(c · p, a) = multiplicity(p, a). The theorem is a consequence of
(15) and (59).

(62) Let us consider a field F , an extension E of F , non zero polynomials p, q
over F , and an element a of E. Then multiplicity(p∗q, a) = multiplicity(p, a)
+ multiplicity(q, a). The theorem is a consequence of (59).

(63) Let us consider a field F , a non zero polynomial p over F , extensions
E1, E2 of F , and a function i from E1 into E2. Suppose i is F -fixing and
isomorphism. Let us consider an element a of E1. Then multiplicity(p, a) =
multiplicity(p, i(a)).
Proof: Set n = multiplicity(p, a). Reconsider E3 = E2 as an E1-homomor-
phic field. Reconsider h = i as an additive function from E1 into E3. Recon-
sider X1 = (X− a)n as an element of the carrier of Polynom-RingE1. Re-
consider X2 = (X− a)n+1 as an element of the carrier of Polynom-RingE1.
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(PolyHom(h))(X1) = (X−h(a))n and (PolyHom(h))(X2) = (X−h(a))n+1.
(PolyHom(h))(p) = p. �

(64) Let us consider a field F , a non zero polynomial p over F , an exten-
sion E of F , and an element a of F . Then multiplicity(p,@(a,E)) =
multiplicity(p, a).

(65) Let us consider a field F , a non zero polynomial p over F , an extension
E of F , an E-extending extension K of F , and an element a of E. Then
multiplicity(p,@(a,K)) = multiplicity(p, a).

(66) Let us consider a field F , a non zero polynomial p over F , a polynomial
q over F , and an element a of F . Suppose p = (X− a)multiplicity(p,a) ∗ q.
Then eval(q, a) 6= 0F .

(67) Let us consider a field F , and a non zero polynomial p over F . Then

Roots(p) < BRoots(p) if and only if there exists an element a of F such
that multiplicity(p, a) > 1.

(68) Let us consider a field F , a non zero polynomial p over F , and an element
a of F . Then multiplicity(NormPoly p, a) = multiplicity(p, a).

(69) Let us consider a field F , and a non constant polynomial p over F . Then

deg(p) = Roots(p) if and only if p splits in F and for every element a of
F , multiplicity(p, a) ¬ 1. The theorem is a consequence of (67) and (68).

(70) Let us consider a field F , a non zero element p of the carrier of Polynom-
RingF , and an element a of F . Suppose a is a root of p. Then

(i) multiplicity(p, a) = 1 iff eval((Deriv(F ))(p), a) 6= 0F , and

(ii) multiplicity(p, a) > 1 iff eval((Deriv(F ))(p), a) = 0F .

The theorem is a consequence of (66).

(71) Let us consider a field F , and a non zero element p of the carrier of
Polynom-RingF . Then there exists an element a of F such that multiplicity
(p, a) > 1 if and only if gcd(p, (Deriv(F ))(p)) has roots. The theorem is
a consequence of (70).

(72) Let us consider a field F , a non zero element p of the carrier of Polynom-
RingF , and an extension E of F . Suppose p splits in E. Then there
exists an element a of E such that multiplicity(p, a) > 1 if and only if
gcd(p, (Deriv(F ))(p)) 6= 1.F . The theorem is a consequence of (70).

(73) Let us consider a field F , an irreducible element p of the carrier of
Polynom-RingF , and an extension E of F . Suppose p splits in E. Then
there exists an element a of E such that multiplicity(p, a) > 1 if and only
if (Deriv(F ))(p) = 0.F . The theorem is a consequence of (17) and (72).

(74) Let us consider a prime number p, a commutative ring R with cha-
racteristic p, and an element f of the carrier of Polynom-RingR. Then
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(Deriv(R))(f) = 0.R if and only if for every natural number i such that
i ∈ Support f holds p | i. The theorem is a consequence of (38) and (39).

6. Separable Polynomials

Let F be a field and p be a non constant element of the carrier of Polynom-
RingF . We say that p is separable if and only if

(Def. 3) for every element a of the splitting field of p such that a is a root of p in
the splitting field of p holds multiplicity(p, a) = 1.

We introduce the notation p is inseparable as an antonym for p is separable.
Let us observe that there exists a non constant, monic element of the carrier

of Polynom-RingF which is separable and there exists a non constant, monic
element of the carrier of Polynom-RingF which is inseparable.

Let us consider a field F and a non constant element p of the carrier of
Polynom-RingF . Now we state the propositions:

(75) p is separable if and only if for every extension E of F such that p
splits in E for every element a of E such that a is a root of p in E holds
multiplicity(p, a) = 1. The theorem is a consequence of (63).

(76) p is separable if and only if there exists an extension E of F such that
p splits in E and for every element a of E such that a is a root of p in E

holds multiplicity(p, a) = 1. The theorem is a consequence of (63).

(77) p is separable if and only if for every extension E of F and for every
element a of E, multiplicity(p, a) ¬ 1. The theorem is a consequence of
(58), (57), (75), and (76).

(78) p is separable if and only if there exists an extension E of F such that
p splits in E and for every element a of E, multiplicity(p, a) ¬ 1. The
theorem is a consequence of (57) and (76).

(79) Let us consider a field F , and a separable, non constant element p of

the carrier of Polynom-RingF . Then deg(p) = Roots(p) if and only if p
splits in F . The theorem is a consequence of (75), (60), and (69).

(80) Let us consider a field F , and a non constant element p of the carrier of
Polynom-RingF . Then p is separable if and only if gcd(p, (Deriv(F ))(p)) =
1.F . The theorem is a consequence of (77) and (72).

(81) Let us consider a field F , and a non constant, irreducible element p of
the carrier of Polynom-RingF . Then p is separable if and only if (Deriv(F ))
(p) 6= 0.F . The theorem is a consequence of (77) and (73).

(82) Let us consider a field F , and a non constant element p of the carrier of
Polynom-RingF . Then p is separable if and only if for every splitting field
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E of p, there exists an element a of E and there exists a product of linear
polynomials q of E and Roots(E, p) such that p = a · q. The theorem is
a consequence of (75), (59), and (60).

(83) Let us consider a field F , and a non constant, monic element p of the car-
rier of Polynom-RingF . Then p is separable if and only if for every splitting
field E of p, p is a product of linear polynomials of E and Roots(E, p).
The theorem is a consequence of (82).

Let us consider a field F and a non constant element p of the carrier of
Polynom-RingF . Now we state the propositions:

(84) p is separable if and only if for every extension E of F such that p splits
in E holds p is square-free over E. The theorem is a consequence of (60),
(75), and (56).

(85) p is separable if and only if there exists an extension E of F such that

Roots(E, p) = deg(p). The theorem is a consequence of (77), (58), (79),
(69), and (78).

(86) Let us consider a field F , a non constant element p of the carrier of
Polynom-RingF , and a non zero element a of F . Then a · p is separable
if and only if p is separable. The theorem is a consequence of (15), (75),
and (61).

(87) Let us consider a field F , non constant elements p, q of the carrier of
Polynom-RingF , and an element r of the carrier of Polynom-RingF . If
p = q ∗ r, then if p is separable, then q is separable. The theorem is
a consequence of (77) and (62).

(88) Let us consider a field F , an extension E of F , a non constant element p of
the carrier of Polynom-RingF , and a non constant element q of the carrier
of Polynom-RingE. If p = q, then p is separable iff q is separable. The
theorem is a consequence of (80).

Let F be a field and a be an element of F . One can verify that X− a is
separable and irreducible. Let n be a non trivial natural number. Note that
(X− a)n is inseparable and reducible. Let F be a field with characteristic 0. One
can check that every irreducible element of the carrier of Polynom-RingF is
separable. Now we state the proposition:

(89) Let us consider a prime number p, a field F with characteristic p, and
an element a of F . If a /∈ F p, then Xp − a is irreducible and inseparable.
The theorem is a consequence of (54), (50), (49), (53), (28), and (77).
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7. Perfect Fields

Let F be a field. We say that F is perfect if and only if

(Def. 4) every irreducible element of the carrier of Polynom-RingF is separable.

Let us note that every field with characteristic 0 is perfect. Now we state
the propositions:

(90) Let us consider a prime number p, a field F with characteristic p, and
an element q of the carrier of Polynom-RingF . Suppose for every natural
number i such that i ∈ Support q holds p | i and there exists an element a
of F such that ap = q(i). Then there exists an element r of the carrier of
Polynom-RingF such that rp = q. The theorem is a consequence of (25)
and (40).

(91) Let us consider a prime number p, and a field F with characteristic p.
Then F is perfect if and only if F ≈ F p. The theorem is a consequence of
(89), (75), (57), (73), (74), and (90).

(92) Let us consider a field F . Then F is finite if and only if there exists
a non zero natural number n such that F = (char(F ))n. The theorem is
a consequence of (39) and (4).

(93) Let us consider a prime number p, a finite field F with characteristic p,
and an element a of F . Then there exists an element b of F such that
bp = a. The theorem is a consequence of (92) and (10).

Observe that every finite field is perfect and every algebraic closed field is
perfect.

8. Separable Extensions

Let F be a field, E be an extension of F , and a be an element of E. We say
that a is F -separable if and only if

(Def. 5) there exists an F-algebraic element b of E such that b = a and MinPoly(b,
F ) is separable.

One can verify that there exists an element of E which is non zero and F -
separable and every element of E which is F -separable is also F-algebraic. Let
a be an F -separable element of E. Observe that MinPoly(a, F ) is separable. We
say that E is F -separable if and only if

(Def. 6) E is F-algebraic and every element of E is F -separable.

We introduce the notation E is F -inseparable as an antonym for E is F -
separable. Let us observe that there exists an extension of F which is F -finite and
F -separable and every extension of F which is F -separable is also F-algebraic.
Let E be an F -separable extension of F . Note that every element of E is F -
separable. Now we state the proposition:
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(94) Let us consider a field F , an extension K of F , and a K-extending
extension E of F . Suppose E is F -separable. Then

(i) E is K-separable, and

(ii) K is F -separable.

The theorem is a consequence of (88) and (87).

Let F be a perfect field. One can verify that every F-algebraic extension
of F is F -separable and there exists an extension of F which is F -normal and
F -separable. Let p be a non constant element of the carrier of Polynom-RingF .
Let us note that every splitting field of p is F -normal and F -separable.
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