Extended Real-Valued Double Sequence and Its Convergence

Noboru Endou
Gifu National College of Technology
Gifu, Japan

Summary. In this article we introduce the convergence of extended real-valued double sequences [16], [17]. It is similar to our previous articles [15], [10]. In addition, we also prove Fatou’s lemma and the monotone convergence theorem for double sequences.

MSC: 40A05 40B05 03B35

Keywords: double sequence; Fatou’s lemma for double sequence; monotone convergence theorem for double sequence

MML identifier: DBLSEQ.3 version: 8.1.04 5.32.1246

The notation and terminology used in this paper have been introduced in the following articles: [5], [21], [15], [10], [12], [6], [7], [22], [13], [11], [14], [1], [2], [8], [18], [24], [25], [26], [20], [23], [3], [4], and [9].

1. Preliminaries

Let X be a non empty set. One can verify that there exists a function from X into \mathbb{R} which is non-negative and non-positive and there exists a function from X into \mathbb{R} which is without $-\infty$, without $+\infty$, non-negative, and non-positive and every function from X into \mathbb{R} which is non-negative is also without $-\infty$ and every function from X into \mathbb{R} which is non-positive is also without $+\infty$ and there exists a without $+\infty$ function from X into \mathbb{R} which is without $-\infty$.

Let f be a function from X into \mathbb{R}. Let us observe that the functor $-f$ yields a function from X into \mathbb{R}. Let f be a without $-\infty$ function from X into \mathbb{R}. Note that $-f$ is without $+\infty$.

This work was supported by JSPS KAKENHI 23500029.
Let f be a without $+\infty$ function from X into \mathbb{R}. Let us observe that $-f$ is without $-\infty$.

Let f be a non-negative function from X into \mathbb{R}. Note that $-f$ is non-positive.

Let f be a non-positive function from X into \mathbb{R}. Let us observe that $-f$ is non-negative.

Let A, B be non-empty sets and f be a without $-\infty$ function from $A \times B$ into \mathbb{R}. Let us observe that f^T is without $-\infty$.

Let f be a without $+\infty$ function from $A \times B$ into \mathbb{R}. One can verify that f^T is without $+\infty$.

Let f be a non-negative function from $A \times B$ into \mathbb{R}. One can check that f^T is non-negative.

Let f be a non-positive function from $A \times B$ into \mathbb{R}. Note that f^T is non-positive.

Now we state the propositions:

(1) Let us consider a sequence s of extended reals. Then $(\sum_{\alpha=0}^{\kappa}(-s)(\alpha))_{\kappa \in \mathbb{N}} = - (\sum_{\alpha=0}^{\kappa} s(\alpha))_{\kappa \in \mathbb{N}}$.

Proof: Define $Q[\text{natural number}] \equiv (- (\sum_{\alpha=0}^{\kappa} s(\alpha))_{\kappa \in \mathbb{N}})(S_1) = - (\sum_{\alpha=0}^{\kappa} s(\alpha))_{\kappa \in \mathbb{N}}(S_1)$. For every natural number n, $Q[n]$ from [1] Sch. 2. Define $P[\text{natural number}] \equiv (\sum_{\alpha=0}^{\kappa}(-s)(\alpha))_{\kappa \in \mathbb{N}}(S_1) = (\sum_{\alpha=0}^{\kappa} s(\alpha))_{\kappa \in \mathbb{N}}(S_1)$. For every natural number n such that $P[n]$ holds $P[n+1]$. For every natural number n, $P[n]$ from [1] Sch. 2. □

(2) Let us consider a non-empty set X, and a partial function f from X to \mathbb{R}. Then $-f = f$.

(3) Let us consider non-empty sets X, Y, and a function f from $X \times Y$ into \mathbb{R}. Then $(-f)^T = -f^T$.

Let s be a non-negative sequence of extended reals. One can verify that $(\sum_{\alpha=0}^{\kappa} s(\alpha))_{\kappa \in \mathbb{N}}$ is non-negative.

Let s be a non-positive sequence of extended reals. Let us observe that $(\sum_{\alpha=0}^{\kappa} s(\alpha))_{\kappa \in \mathbb{N}}$ is non-positive.

Now we state the propositions:

(4) Let us consider a non-negative sequence s of extended reals, and a natural number m. Then $s(m) \leq (\sum_{\alpha=0}^{\kappa} s(\alpha))_{\kappa \in \mathbb{N}}(m)$.

Proof: Define $P[\text{natural number}] \equiv s(S_1) \leq (\sum_{\alpha=0}^{\kappa} s(\alpha))_{\kappa \in \mathbb{N}}(S_1)$. For every natural number k such that $P[k]$ holds $P[k+1]$ by [4] (51)]. For every natural number k, $P[k]$ from [1] Sch. 2. □

(5) Let us consider a non-positive sequence s of extended reals, and a natural number m. Then $s(m) \geq (\sum_{\alpha=0}^{\kappa} s(\alpha))_{\kappa \in \mathbb{N}}(m)$. The theorem is a consequence of (4), (1), and (2).
Let us consider a non empty set X. Then every without $-\infty$, without $+\infty$ function from X into \mathbb{R} is a function from X into \mathbb{R}.

Let X be a non empty set and f_1, f_2 be without $-\infty$ functions from X into \mathbb{R}. One can verify that the functor $f_1 + f_2$ yields a without $-\infty$ function from X into \mathbb{R}. Let f_1, f_2 be without $+\infty$ functions from X into \mathbb{R}. One can verify that the functor $f_1 + f_2$ yields a without $+\infty$ function from X into \mathbb{R}. Let f_1 be a without $-\infty$ function from X into \mathbb{R} and f_2 be a without $+\infty$ function from X into \mathbb{R}. Let us observe that the functor $f_1 - f_2$ yields a without $-\infty$ function from X into \mathbb{R}. Let f_1 be a without $+\infty$ function from X into \mathbb{R} and f_2 be a without $-\infty$ function from X into \mathbb{R}. Observe that the functor $f_1 - f_2$ yields a without $+\infty$ function from X into \mathbb{R}. Now we state the propositions:

Let us consider a non empty set X, an element x of X, and functions f_1, f_2 from X into \mathbb{R}. Then

(i) if f_1 is without $-\infty$ and f_2 is without $-\infty$, then $(f_1 + f_2)(x) = f_1(x) + f_2(x)$, and

(ii) if f_1 is without $+\infty$ and f_2 is without $+\infty$, then $(f_1 + f_2)(x) = f_1(x) + f_2(x)$, and

(iii) if f_1 is without $-\infty$ and f_2 is without $+\infty$, then $(f_1 - f_2)(x) = f_1(x) - f_2(x)$, and

(iv) if f_1 is without $+\infty$ and f_2 is without $-\infty$, then $(f_1 - f_2)(x) = f_1(x) - f_2(x)$.

Let us consider a non empty set X, and without $-\infty$ functions f_1, f_2 from X into \mathbb{R}. Then

(i) $f_1 + f_2 = f_1 - -f_2$, and

(ii) $-(f_1 + f_2) = -f_1 - f_2$.

The theorem is a consequence of (7).

Let us consider a non empty set X, and without $+\infty$ functions f_1, f_2 from X into \mathbb{R}. Then

(i) $f_1 + f_2 = f_1 - -f_2$, and

(ii) $-(f_1 + f_2) = -f_1 - f_2$.

The theorem is a consequence of (7).

Let us consider a non empty set X, a without $-\infty$ function f_1 from X into \mathbb{R}, and a without $+\infty$ function f_2 from X into \mathbb{R}. Then

(i) $f_1 - f_2 = f_1 + -f_2$, and

(ii) $f_2 - f_1 = f_2 + -f_1$, and

(iii) $-(f_1 - f_2) = -f_1 + f_2$, and
(iv) \(-(f_2 - f_1) = -f_2 + f_1.\)

The theorem is a consequence of (8), (2), and (9).

Let \(f\) be a function from \(\mathbb{N} \times \mathbb{N}\) into \(\mathbb{R}\) and \(n, m\) be natural numbers. One can check that the functor \(f(n, m)\) yields an element of \(\mathbb{R}\). Now we state the propositions:

(11) Let us consider without \(-\infty\) functions \(f_1, f_2\) from \(\mathbb{N} \times \mathbb{N}\) into \(\mathbb{R}\), and natural numbers \(n, m\). Then \((f_1 + f_2)(n, m) = f_1(n, m) + f_2(n, m)\). The theorem is a consequence of (7).

(12) Let us consider without \(+\infty\) functions \(f_1, f_2\) from \(\mathbb{N} \times \mathbb{N}\) into \(\mathbb{R}\), and natural numbers \(n, m\). Then \((f_1 + f_2)(n, m) = f_1(n, m) + f_2(n, m)\). The theorem is a consequence of (7).

(13) Let us consider a without \(-\infty\) function \(f_1\) from \(\mathbb{N} \times \mathbb{N}\) into \(\mathbb{R}\), a without \(+\infty\) function \(f_2\) from \(\mathbb{N} \times \mathbb{N}\) into \(\mathbb{R}\), and natural numbers \(n, m\). Then

\[
\begin{align*}
(i) \quad (f_1 - f_2)(n, m) &= f_1(n, m) - f_2(n, m), \\
(ii) \quad (f_2 - f_1)(n, m) &= f_2(n, m) - f_1(n, m).
\end{align*}
\]

The theorem is a consequence of (7).

(14) Let us consider non empty sets \(X, Y\), and without \(-\infty\) functions \(f_1, f_2\) from \(X \times Y\) into \(\mathbb{R}\). Then \((f_1 + f_2)^T = f_1^T + f_2^T\). The theorem is a consequence of (7).

(15) Let us consider non empty sets \(X, Y\), and without \(+\infty\) functions \(f_1, f_2\) from \(X \times Y\) into \(\mathbb{R}\). Then \((f_1 + f_2)^T = f_1^T + f_2^T\). The theorem is a consequence of (7).

(16) Let us consider non empty sets \(X, Y\), a without \(-\infty\) function \(f_1\) from \(X \times Y\) into \(\mathbb{R}\), and a without \(+\infty\) function \(f_2\) from \(X \times Y\) into \(\mathbb{R}\). Then

\[
\begin{align*}
(i) \quad (f_1 - f_2)^T &= f_1^T - f_2^T, \\
(ii) \quad (f_2 - f_1)^T &= f_2^T - f_1^T.
\end{align*}
\]

The theorem is a consequence of (7).

One can verify that every sequence of extended reals which is convergent to \(+\infty\) is also convergent and every sequence of extended reals which is convergent to \(-\infty\) is also convergent and every sequence of extended reals which is convergent to a finite limit is also convergent and there exists a sequence of extended reals which is convergent and there exists a without \(-\infty\) sequence of extended reals which is convergent and there exists a without \(+\infty\) sequence of extended reals which is convergent.

Now we state the proposition:

(17) Let us consider a convergent sequence \(s\) of extended reals. Then
(i) \(s \) is convergent to a finite limit iff \(-s \) is convergent to a finite limit, and
(ii) \(s \) is convergent to \(+\infty\) iff \(-s \) is convergent to \(-\infty\), and
(iii) \(s \) is convergent to \(-\infty\) iff \(-s \) is convergent to \(+\infty\), and
(iv) \(-s\) is convergent, and
(v) \(\lim(-s) = -\lim s \).

The theorem is a consequence of (2).

Let us consider without \(-\infty\) sequences \(s_1, s_2\) of extended reals. Now we state the propositions:

(18) Suppose \(s_1 \) is convergent to \(+\infty\) and \(s_2 \) is convergent to \(+\infty\). Then
(i) \(s_1 + s_2 \) is convergent to \(+\infty\) and convergent, and
(ii) \(\lim(s_1 + s_2) = +\infty \).

The theorem is a consequence of (7).

(19) Suppose \(s_1 \) is convergent to \(+\infty\) and \(s_2 \) is convergent to a finite limit. Then
(i) \(s_1 + s_2 \) is convergent to \(+\infty\) and convergent, and
(ii) \(\lim(s_1 + s_2) = +\infty \).

The theorem is a consequence of (7).

Now we state the proposition:

(20) Let us consider without \(+\infty\) sequences \(s_1, s_2\) of extended reals. Suppose \(s_1 \) is convergent to \(+\infty\) and \(s_2 \) is convergent to a finite limit. Then
(i) \(s_1 + s_2 \) is convergent to \(+\infty\) and convergent, and
(ii) \(\lim(s_1 + s_2) = +\infty \).

The theorem is a consequence of (7).

Let us consider without \(-\infty\) sequences \(s_1, s_2\) of extended reals. Now we state the propositions:

(21) Suppose \(s_1 \) is convergent to \(-\infty\) and \(s_2 \) is convergent to \(-\infty\). Then
(i) \(s_1 + s_2 \) is convergent to \(-\infty\) and convergent, and
(ii) \(\lim(s_1 + s_2) = -\infty \).

The theorem is a consequence of (7).

(22) Suppose \(s_1 \) is convergent to \(-\infty\) and \(s_2 \) is convergent to a finite limit. Then
(i) \(s_1 + s_2 \) is convergent to \(-\infty\) and convergent, and
(ii) \(\lim(s_1 + s_2) = -\infty \).
The theorem is a consequence of (7).

(23) Suppose \(s_1 \) is convergent to a finite limit and \(s_2 \) is convergent to a finite limit. Then

(i) \(s_1 + s_2 \) is convergent to a finite limit and convergent, and
(ii) \(\lim(s_1 + s_2) = \lim s_1 + \lim s_2 \).

The theorem is a consequence of (7).

Now we state the propositions:

(24) Let us consider without \(+\infty\) sequences \(s_1, s_2 \) of extended reals. Then

(i) if \(s_1 \) is convergent to \(+\infty\) and \(s_2 \) is convergent to \(+\infty\), then \(s_1 + s_2 \) is convergent to \(+\infty\) and convergent and \(\lim(s_1 + s_2) = +\infty \), and

(ii) if \(s_1 \) is convergent to \(+\infty\) and \(s_2 \) is convergent to a finite limit, then \(s_1 + s_2 \) is convergent to \(+\infty\) and convergent and \(\lim(s_1 + s_2) = +\infty \), and

(iii) if \(s_1 \) is convergent to \(-\infty\) and \(s_2 \) is convergent to \(-\infty\), then \(s_1 + s_2 \) is convergent to \(-\infty\) and convergent and \(\lim(s_1 + s_2) = -\infty \), and

(iv) if \(s_1 \) is convergent to \(-\infty\) and \(s_2 \) is convergent to a finite limit, then \(s_1 + s_2 \) is convergent to \(-\infty\) and convergent and \(\lim(s_1 + s_2) = -\infty \), and

(v) if \(s_1 \) is convergent to a finite limit and \(s_2 \) is convergent to a finite limit, then \(s_1 + s_2 \) is convergent to a finite limit and convergent and \(\lim(s_1 + s_2) = \lim s_1 + \lim s_2 \).

The theorem is a consequence of (17), (21), (10), (9), (2), (22), (18), (19), and (23).

(25) Let us consider a without \(-\infty\) sequence \(s_1 \) of extended reals, and a without \(+\infty\) sequence \(s_2 \) of extended reals. Then

(i) if \(s_1 \) is convergent to \(+\infty\) and \(s_2 \) is convergent to \(-\infty\), then \(s_1 - s_2 \) is convergent to \(+\infty\) and convergent and \(\lim(s_1 - s_2) = +\infty \) and \(\lim(s_2 - s_1) = -\infty \), and

(ii) if \(s_1 \) is convergent to \(+\infty\) and \(s_2 \) is convergent to a finite limit, then \(s_1 - s_2 \) is convergent to \(+\infty\) and convergent and \(\lim(s_1 - s_2) = +\infty \) and \(\lim(s_2 - s_1) = -\infty \), and

(iii) if \(s_1 \) is convergent to \(-\infty\) and \(s_2 \) is convergent to a finite limit, then \(s_1 - s_2 \) is convergent to \(-\infty\) and convergent and \(\lim(s_1 - s_2) = -\infty \) and \(\lim(s_2 - s_1) = +\infty \), and
(iv) if \(s_1 \) is convergent to a finite limit and \(s_2 \) is convergent to a finite limit, then \(s_1 - s_2 \) is convergent to a finite limit and convergent and \(s_2 - s_1 \) is convergent to a finite limit and convergent and \(\lim(s_1 - s_2) = \lim s_1 - \lim s_2 \) and \(\lim(s_2 - s_1) = \lim s_2 - \lim s_1 \).

The theorem is a consequence of (17), (24), (18), (10), (19), (22), (23), and (2).

2. Subsequences of Convergent Extended Real-Valued Sequences

Let us consider sequences \(s_1, s_2 \) of extended reals. Now we state the propositions:

(26) Suppose \(s_2 \) is a subsequence of \(s_1 \) and \(s_1 \) is convergent to a finite limit. Then

(i) \(s_2 \) is convergent to a finite limit, and
(ii) \(\lim s_1 = \lim s_2 \).

Proof: Consider \(g \) being a real number such that \(\lim s_1 = g \) and for every real number \(p \) such that \(0 < p \) there exists a natural number \(n \) such that for every natural number \(m \) such that \(n \leq m \) holds \(|s_1(m) - \lim s_1| < p \) and \(s_1 \) is convergent to a finite limit. Reconsider \(L = \lim s_1 \) as an extended real number. There exists a real number \(g \) such that for every real number \(p \) such that \(0 < p \) there exists a natural number \(n \) such that for every natural number \(m \) such that \(n \leq m \) holds \(|(s_2(m) - g) \text{ qua extended real)}| < p \) by [19] (14), [7] (15). For every real number \(p \) such that \(0 < p \) there exists a natural number \(n \) such that for every natural number \(m \) such that \(n \leq m \) holds \(|s_2(m) - L| < p \) by [19] (14), [7] (15).

(27) Suppose \(s_2 \) is a subsequence of \(s_1 \) and \(s_1 \) is convergent to \(+\infty \). Then

(i) \(s_2 \) is convergent to \(+\infty \), and
(ii) \(\lim s_2 = +\infty \).

(28) Suppose \(s_2 \) is a subsequence of \(s_1 \) and \(s_1 \) is convergent to \(-\infty \). Then

(i) \(s_2 \) is convergent to \(-\infty \), and
(ii) \(\lim s_2 = -\infty \).
3. Convergency for Extended Real-Valued Double Sequences

Let us consider a function R from $\mathbb{N} \times \mathbb{N}$ into \mathbb{R}. Now we state the propositions:

(29) Suppose the lim in the first coordinate of R is convergent. Then the first coordinate major iterated lim of $R = \lim \text{ (the lim in the first coordinate of } R)$.

(30) Suppose the lim in the second coordinate of R is convergent. Then the second coordinate major iterated lim of $R = \lim \text{ (the lim in the second coordinate of } R)$.

Let E be a function from $\mathbb{N} \times \mathbb{N}$ into \mathbb{R}. We say that E is P-convergent to a finite limit if and only if

(Def. 1) there exists a real number p such that for every real number e such that $0 < e$ there exists a natural number N such that for every natural numbers n, m such that $n \geq N$ and $m \geq N$ holds $|E(n, m) - (p \text{ qua extended real})| < e$.

We say that E is P-convergent to $+\infty$ if and only if

(Def. 2) for every real number g such that $0 < g$ there exists a natural number N such that for every natural numbers n, m such that $n \geq N$ and $m \geq N$ holds $g \leq E(n, m)$.

We say that E is P-convergent to $-\infty$ if and only if

(Def. 3) for every real number g such that $g < 0$ there exists a natural number N such that for every natural numbers n, m such that $n \geq N$ and $m \geq N$ holds $E(n, m) \leq g$.

Let f be a function from $\mathbb{N} \times \mathbb{N}$ into \mathbb{R}. We say that f is convergent in the first coordinate to $+\infty$ if and only if

(Def. 4) for every element m of \mathbb{N}, curry'(f, m) is convergent to $+\infty$.

We say that f is convergent in the first coordinate to $-\infty$ if and only if

(Def. 5) for every element m of \mathbb{N}, curry'(f, m) is convergent to $-\infty$.

We say that f is convergent in the first coordinate to a finite limit if and only if

(Def. 6) for every element m of \mathbb{N}, curry'(f, m) is convergent to a finite limit.

We say that f is convergent in the first coordinate if and only if

(Def. 7) for every element m of \mathbb{N}, curry'(f, m) is convergent.

We say that f is convergent in the second coordinate to $+\infty$ if and only if

(Def. 8) for every element m of \mathbb{N}, curry(f, m) is convergent to $+\infty$.

We say that f is convergent in the second coordinate to $-\infty$ if and only if

(Def. 9) for every element m of \mathbb{N}, curry(f, m) is convergent to $-\infty$.
We say that \(f \) is convergent in the second coordinate to a finite limit if and only if
(Def. 10) for every element \(m \) of \(\mathbb{N} \), \(\text{curry}(f, m) \) is convergent to a finite limit.

We say that \(f \) is convergent in the second coordinate if and only if
(Def. 11) for every element \(m \) of \(\mathbb{N} \), \(\text{curry}(f, m) \) is convergent.

Now we state the propositions:

(31) Let us consider a function \(f \) from \(\mathbb{N} \times \mathbb{N} \) into \(\mathbb{R} \). Then
(i) if \(f \) is convergent in the first coordinate to \(+\infty \) or convergent in the first coordinate to \(-\infty \) or convergent in the first coordinate to a finite limit, then \(f \) is convergent in the first coordinate, and
(ii) if \(f \) is convergent in the second coordinate to \(+\infty \) or convergent in the second coordinate to \(-\infty \) or convergent in the second coordinate to a finite limit, then \(f \) is convergent in the second coordinate.

(32) Let us consider non empty sets \(X, Y, Z \), a function \(F \) from \(X \times Y \) into \(Z \), and an element \(x \) of \(X \). Then \(\text{curry}(F, x) = \text{curry'}(F^T, x) \).

(33) Let us consider non empty sets \(X, Y, Z \), a function \(F \) from \(X \times Y \) into \(Z \), and an element \(y \) of \(Y \). Then \(\text{curry'}(F, y) = \text{curry}(F^T, y) \).

(34) Let us consider non empty sets \(X, Y \), a function \(F \) from \(X \times Y \) into \(\mathbb{R} \), and an element \(x \) of \(X \). Then \(\text{curry}(-F, x) = -\text{curry}(F, x) \).

(35) Let us consider non empty sets \(X, Y \), a function \(F \) from \(X \times Y \) into \(\mathbb{R} \), and an element \(y \) of \(Y \). Then \(\text{curry'}(-F, y) = -\text{curry'}(F, y) \).

Let us consider a function \(f \) from \(\mathbb{N} \times \mathbb{N} \) into \(\mathbb{R} \). Now we state the propositions:

(36) (i) \(f \) is convergent in the first coordinate to \(+\infty \) iff \(f^T \) is convergent in the second coordinate to \(+\infty \), and
(ii) \(f \) is convergent in the second coordinate to \(+\infty \) iff \(f^T \) is convergent in the first coordinate to \(+\infty \), and
(iii) \(f \) is convergent in the first coordinate to \(-\infty \) iff \(f^T \) is convergent in the second coordinate to \(-\infty \), and
(iv) \(f \) is convergent in the second coordinate to \(-\infty \) iff \(f^T \) is convergent in the first coordinate to \(-\infty \), and
(v) \(f \) is convergent in the first coordinate to a finite limit iff \(f^T \) is convergent in the second coordinate to a finite limit, and
(vi) \(f \) is convergent in the second coordinate to a finite limit iff \(f^T \) is convergent in the first coordinate to a finite limit.

The theorem is a consequence of (33) and (32).

(37) (i) \(f \) is convergent in the first coordinate to \(+\infty \) iff \(-f \) is convergent in the first coordinate to \(-\infty \), and
(ii) f is convergent in the first coordinate to $-\infty$ iff $-f$ is convergent in the first coordinate to $+\infty$, and

(iii) f is convergent in the first coordinate to a finite limit iff $-f$ is convergent in the first coordinate to a finite limit, and

(iv) f is convergent in the second coordinate to $+\infty$ iff $-f$ is convergent in the second coordinate to $-\infty$, and

(v) f is convergent in the second coordinate to $-\infty$ iff $-f$ is convergent in the second coordinate to $+\infty$, and

(vi) f is convergent in the second coordinate to a finite limit iff $-f$ is convergent in the second coordinate to a finite limit.

The theorem is a consequence of (35), (17), (2), and (34).

Let f be a function from $\mathbb{N} \times \mathbb{N}$ into \mathbb{R}. The functors: the lim in the first coordinate of f and the lim in the second coordinate of f yielding sequences of extended reals are defined by conditions

(Def. 12) for every element m of \mathbb{N}, the lim in the first coordinate of $f(m) = \lim \text{curry}'(f, m),$

(Def. 13) for every element n of \mathbb{N}, the lim in the second coordinate of $f(n) = \lim \text{curry}(f, n),$

respectively. Now we state the proposition:

(38) Let us consider a function f from $\mathbb{N} \times \mathbb{N}$ into \mathbb{R}. Then

(i) the lim in the first coordinate of $f = $ the lim in the second coordinate of f^T, and

(ii) the lim in the second coordinate of $f = $ the lim in the first coordinate of f^T.

The theorem is a consequence of (33) and (32).

Let X, Y be non empty sets, F be a without $+\infty$ function from $X \times Y$ into \mathbb{R}, and x be an element of X. Let us observe that $\text{curry}(F, x)$ is without $+\infty$.

Let y be an element of Y. One can verify that $\text{curry}'(F, y)$ is without $+\infty$.

Let F be a without $-\infty$ function from $X \times Y$ into \mathbb{R} and x be an element of X. Let us note that $\text{curry}(F, x)$ is without $-\infty$.

Let y be an element of Y. Observe that $\text{curry}'(F, y)$ is without $-\infty$.

Let f be a function from $\mathbb{N} \times \mathbb{N}$ into \mathbb{R}. The partial sums in the second coordinate of f yielding a function from $\mathbb{N} \times \mathbb{N}$ into \mathbb{R} is defined by

(Def. 14) for every natural numbers n, m, $it(n, 0) = f(n, 0)$ and $it(n, m + 1) = it(n, m) + f(n, m + 1)$.

The partial sums in the first coordinate of f yielding a function from $\mathbb{N} \times \mathbb{N}$ into \mathbb{R} is defined by
for every natural numbers \(n, m \), \(it(0, m) = f(0, m) \) and \(it(n + 1, m) = it(n, m) + f(n + 1, m) \).

Let \(f \) be a without \(-\infty\) function from \(\mathbb{N} \times \mathbb{N} \) into \(\overline{\mathbb{R}} \). Let us note that the partial sums in the second coordinate of \(f \) is without \(-\infty\).

Let \(f \) be a without \(+\infty\) function from \(\mathbb{N} \times \mathbb{N} \) into \(\overline{\mathbb{R}} \). Observe that the partial sums in the second coordinate of \(f \) is without \(+\infty\).

Let \(f \) be a non-negative function from \(\mathbb{N} \times \mathbb{N} \) into \(\mathbb{R} \). Let us observe that the partial sums in the second coordinate of \(f \) is non-negative as a function from \(\mathbb{N} \times \mathbb{N} \) into \(\mathbb{R} \).

Let \(f \) be a non-positive function from \(\mathbb{N} \times \mathbb{N} \) into \(\mathbb{R} \). One can check that the partial sums in the second coordinate of \(f \) is non-positive as a function from \(\mathbb{N} \times \mathbb{N} \) into \(\mathbb{R} \).

Let \(f \) be a without \(-\infty\) function from \(\mathbb{N} \times \mathbb{N} \) into \(\overline{\mathbb{R}} \). Let us note that the partial sums in the first coordinate of \(f \) is without \(-\infty\).

Let \(f \) be a without \(+\infty\) function from \(\mathbb{N} \times \mathbb{N} \) into \(\overline{\mathbb{R}} \). Observe that the partial sums in the first coordinate of \(f \) is without \(+\infty\).

Let \(f \) be a non-negative function from \(\mathbb{N} \times \mathbb{N} \) into \(\mathbb{R} \). Let us observe that the partial sums in the first coordinate of \(f \) is non-negative as a function from \(\mathbb{N} \times \mathbb{N} \) into \(\mathbb{R} \).

Let \(f \) be a non-positive function from \(\mathbb{N} \times \mathbb{N} \) into \(\mathbb{R} \). One can check that the partial sums in the first coordinate of \(f \) is non-positive as a function from \(\mathbb{N} \times \mathbb{N} \) into \(\mathbb{R} \).

Let \(f \) be a function from \(\mathbb{N} \times \mathbb{N} \) into \(\mathbb{R} \). The functor \((\sum_{\kappa=0}^{\kappa} f(\alpha))_{\kappa \in \mathbb{N}}\) yielding a function from \(\mathbb{N} \times \mathbb{N} \) into \(\overline{\mathbb{R}} \) is defined by the term

\[(\text{Def. 16}) \quad \text{the partial sums in the second coordinate of the partial sums in the first coordinate of } f.\]

Now we state the propositions:

(39) Let us consider a function \(f \) from \(\mathbb{N} \times \mathbb{N} \) into \(\overline{\mathbb{R}} \), and natural numbers \(n, m \). Then

(i) \((\text{the partial sums in the first coordinate of } f)(n, m) = (\text{the partial sums in the second coordinate of } f^T)(m, n) \), and

(ii) \((\text{the partial sums in the second coordinate of } f)(n, m) = (\text{the partial sums in the first coordinate of } f^T)(m, n) \).

Proof: Define \(\mathcal{P}[\text{natural number}] \equiv (\text{the partial sums in the first coordinate of } f)(\$1, m) = (\text{the partial sums in the second coordinate of } f^T)(m, \$1) \). For every natural number \(k \) such that \(\mathcal{P}[k] \) holds \(\mathcal{P}[k+1] \). For every natural number \(k \), \(\mathcal{P}[k] \) from [1 Sch. 2]. Define \(\mathcal{Q}[\text{natural number}] \equiv (\text{the partial sums in the second coordinate of } f)(n, \$1) = (\text{the partial sums in the first coordinate of } f^T)(m, n) \).
coordinate of $f^T(\$1, n)$. For every natural number k such that $Q[k]$ holds $Q[k + 1]$. For every natural number k, $Q[k]$ from [1] Sch. 2. □

(40) Let us consider a function f from $\mathbb{N} \times \mathbb{N}$ into \mathbb{R}. Then

(i) (the partial sums in the first coordinate of $f^T = $ the partial sums in the second coordinate of f^T, and
(ii) (the partial sums in the second coordinate of $f^T = $ the partial sums in the first coordinate of f^T.

The theorem is a consequence of (39).

(41) Let us consider a function f from $\mathbb{N} \times \mathbb{N}$ into \mathbb{R}, an extended real-valued function g, and a natural number n. Suppose for every natural number k,

(i) for every natural number k, $(\sum_{\alpha=0}^{\kappa} f(\alpha))_{\kappa \in \mathbb{N}}(n, k) = (\sum_{\alpha=0}^{\kappa} g(\alpha))_{\kappa \in \mathbb{N}}(k)$, and
(ii) (the lim in the second coordinate of $(\sum_{\alpha=0}^{\kappa} f(\alpha))_{\kappa \in \mathbb{N}})(n) = \sum g$.

(42) Let us consider a function f from $\mathbb{N} \times \mathbb{N}$ into \mathbb{R}. Then

(i) the partial sums in the second coordinate of $-f = -(\text{the partial sums in the second coordinate of } f)$, and
(ii) the partial sums in the first coordinate of $-f = -(\text{the partial sums in the first coordinate of } f)$.

Proof: For every element z of $\mathbb{N} \times \mathbb{N}$, $-\text{(the partial sums in the second coordinate of } f)(z) = \text{(the partial sums in the second coordinate of } -f)(z)$ by [9, (87)]. For every element z of $\mathbb{N} \times \mathbb{N}$,

$-\text{(the partial sums in the first coordinate of } f)(z) = \text{(the partial sums in the first coordinate of } -f)(z)$ by [9, (87)]. □

(43) Let us consider a function f from $\mathbb{N} \times \mathbb{N}$ into \mathbb{R}, and elements m, n of \mathbb{N}. Then

(i) (the partial sums in the first coordinate of $f)(m, n) = (\sum_{\alpha=0}^{\kappa} (\text{curry'}(f, n))(\alpha))_{\kappa \in \mathbb{N}}(m)$, and
(ii) (the partial sums in the second coordinate of $f)(m, n) = (\sum_{\alpha=0}^{\kappa} (\text{curry}(f, m))(\alpha))_{\kappa \in \mathbb{N}}(n)$.

Proof: Define $P[\text{natural number}] \equiv (\text{the partial sums in the first coordinate of } f)(\$1, n) = (\sum_{\alpha=0}^{\kappa} (\text{curry'}(f, n))(\alpha))_{\kappa \in \mathbb{N}}(\$1)$. For every natural number k such that $P[k]$ holds $P[k + 1]$. For every natural number k, $P[k]$ from [1] Sch. 2. Define $Q[\text{natural number}] \equiv (\text{the partial sums in the second coordinate of } f)(m, \$1) = (\sum_{\alpha=0}^{\kappa} (\text{curry}(f, m))(\alpha))_{\kappa \in \mathbb{N}}(\$1)$. For
every natural number k such that $Q[k]$ holds $Q[k + 1]$. For every natural number k, $Q[k]$ from [Sch. 2]. □

(44) Let us consider without $-\infty$ functions f_1, f_2 from $\mathbb{N} \times \mathbb{N}$ into \mathbb{R}. Then

(i) the partial sums in the second coordinate of $f_1 + f_2 = (\text{the partial sums in the second coordinate of } f_1) + (\text{the partial sums in the second coordinate of } f_2)$, and

(ii) the partial sums in the first coordinate of $f_1 + f_2 = (\text{the partial sums in the first coordinate of } f_1) + (\text{the partial sums in the first coordinate of } f_2)$.

The theorem is a consequence of (11).

(45) Let us consider without $+\infty$ functions f_1, f_2 from $\mathbb{N} \times \mathbb{N}$ into \mathbb{R}. Then

(i) the partial sums in the second coordinate of $f_1 + f_2 = (\text{the partial sums in the second coordinate of } f_1) + (\text{the partial sums in the second coordinate of } f_2)$, and

(ii) the partial sums in the first coordinate of $f_1 + f_2 = (\text{the partial sums in the first coordinate of } f_1) + (\text{the partial sums in the first coordinate of } f_2)$.

The theorem is a consequence of (10), (9), (2), (42), (44), and (8).

(46) Let us consider a without $-\infty$ function f_1 from $\mathbb{N} \times \mathbb{N}$ into \mathbb{R}, and a without $+\infty$ function f_2 from $\mathbb{N} \times \mathbb{N}$ into \mathbb{R}. Then

(i) the partial sums in the second coordinate of $f_1 - f_2 = (\text{the partial sums in the second coordinate of } f_1) - (\text{the partial sums in the second coordinate of } f_2)$, and

(ii) the partial sums in the first coordinate of $f_1 - f_2 = (\text{the partial sums in the first coordinate of } f_1) - (\text{the partial sums in the first coordinate of } f_2)$, and

(iii) the partial sums in the second coordinate of $f_2 - f_1 = (\text{the partial sums in the second coordinate of } f_2) - (\text{the partial sums in the second coordinate of } f_1)$, and

(iv) the partial sums in the first coordinate of $f_2 - f_1 = (\text{the partial sums in the first coordinate of } f_2) - (\text{the partial sums in the first coordinate of } f_1)$.

The theorem is a consequence of (10), (44), (42), and (45).

(47) Let us consider a without $-\infty$ function f from $\mathbb{N} \times \mathbb{N}$ into \mathbb{R}, and natural numbers n, m. Then

(i) $(\sum_{\alpha=0}^\kappa f(\alpha))_{\kappa \in \mathbb{N}}(n+1, m) = (\text{the partial sums in the second coordinate of } f)(n+1, m) + (\sum_{\alpha=0}^\kappa f(\alpha))_{\kappa \in \mathbb{N}}(n, m)$, and
(ii) (the partial sums in the first coordinate of the partial sums in the second coordinate of \(f\))(n, m + 1) = (the partial sums in the first coordinate of \(f\))(n, m + 1) + (the partial sums in the first coordinate of the partial sums in the second coordinate of \(f\))(n, m).

Proof: Set \(R_1 = (\sum_{\alpha=0}^{\kappa} f(\alpha))_{\kappa \in \mathbb{N}}\). Set \(C_1 = \) the partial sums in the first coordinate of the partial sums in the second coordinate of \(f\). Set \(R_2 = \) the partial sums in the first coordinate of \(f\). Set \(C_2 = \) the partial sums in the second coordinate of \(f\). Define \(P[\text{natural number}] \equiv R_1(n + 1, \$_1) = C_2(n + 1, \$_1) + R_1(n, \$_1)\). For every natural number \(k\) such that \(P[k]\) holds \(P[k + 1]\). For every natural number \(k, P[k]\) from \([\Pi\text{ Sch. 2}]. Define \(Q[\text{natural number}] \equiv C_1(\$_1, m + 1) = R_2(\$_1, m + 1) + C_1(\$_1, m)\). For every natural number \(k\) such that \(Q[k]\) holds \(Q[k + 1]\). For every natural number \(k, Q[k]\) from \([\Pi\text{ Sch. 2}]. □

(48) Let us consider a without \(+\infty\) function \(f\) from \(\mathbb{N} \times \mathbb{N}\) into \(\mathbb{R}\), and natural numbers \(n, m\). Then

(i) \((\sum_{\alpha=0}^{\kappa} f(\alpha))_{\kappa \in \mathbb{N}}(n+1, m) = (\text{the partial sums in the second coordinate of } f)(n+1, m) + (\sum_{\alpha=0}^{\kappa} f(\alpha))_{\kappa \in \mathbb{N}}(n, m), \) and

(ii) (the partial sums in the first coordinate of the partial sums in the second coordinate of \(f\))(n, m + 1) = (the partial sums in the first coordinate of \(f\))(n, m + 1) + (the partial sums in the first coordinate of the partial sums in the second coordinate of \(f\))(n, m).

The theorem is a consequence of (2), (42), and (47).

(49) Let us consider a function \(f\) from \(\mathbb{N} \times \mathbb{N}\) into \(\mathbb{R}\). Suppose \(f\) is without \(-\infty\) or without \(+\infty\). Then \((\sum_{\alpha=0}^{\kappa} f(\alpha))_{\kappa \in \mathbb{N}} = \) the partial sums in the first coordinate of the partial sums in the second coordinate of \(f\).

(50) Let us consider without \(-\infty\) functions \(f_1, f_2\) from \(\mathbb{N} \times \mathbb{N}\) into \(\mathbb{R}\). Then \((\sum_{\alpha=0}^{\kappa} (f_1 + f_2)(\alpha))_{\kappa \in \mathbb{N}} = (\sum_{\alpha=0}^{\kappa} f_1(\alpha))_{\kappa \in \mathbb{N}} + (\sum_{\alpha=0}^{\kappa} f_2(\alpha))_{\kappa \in \mathbb{N}}\). The theorem is a consequence of (44).

(51) Let us consider without \(+\infty\) functions \(f_1, f_2\) from \(\mathbb{N} \times \mathbb{N}\) into \(\mathbb{R}\). Then \((\sum_{\alpha=0}^{\kappa} (f_1 + f_2)(\alpha))_{\kappa \in \mathbb{N}} = (\sum_{\alpha=0}^{\kappa} f_1(\alpha))_{\kappa \in \mathbb{N}} + (\sum_{\alpha=0}^{\kappa} f_2(\alpha))_{\kappa \in \mathbb{N}}\). The theorem is a consequence of (45).

(52) Let us consider a without \(-\infty\) function \(f_1\) from \(\mathbb{N} \times \mathbb{N}\) into \(\mathbb{R}\), and a without \(+\infty\) function \(f_2\) from \(\mathbb{N} \times \mathbb{N}\) into \(\mathbb{R}\). Then

(i) \((\sum_{\alpha=0}^{\kappa} (f_1 - f_2)(\alpha))_{\kappa \in \mathbb{N}} = (\sum_{\alpha=0}^{\kappa} f_1(\alpha))_{\kappa \in \mathbb{N}} - (\sum_{\alpha=0}^{\kappa} f_2(\alpha))_{\kappa \in \mathbb{N}}, \) and

(ii) \((\sum_{\alpha=0}^{\kappa} (f_2 - f_1)(\alpha))_{\kappa \in \mathbb{N}} = (\sum_{\alpha=0}^{\kappa} f_2(\alpha))_{\kappa \in \mathbb{N}} - (\sum_{\alpha=0}^{\kappa} f_1(\alpha))_{\kappa \in \mathbb{N}}\).

The theorem is a consequence of (46).

(53) Let us consider a function \(f\) from \(\mathbb{N} \times \mathbb{N}\) into \(\mathbb{R}\), and an element \(k\) of \(\mathbb{N}\). Then
(i) \(\text{curry}'(\text{the partial sums in the first coordinate of } f, k) = (\sum_{\alpha=0}^{\kappa}(\text{curry}'(f, k))(\alpha))_{\kappa \in \mathbb{N}} \), and

(ii) \(\text{curry}(\text{the partial sums in the second coordinate of } f, k) = (\sum_{\alpha=0}^{\kappa}(\text{curry}(f, k))(\alpha))_{\kappa \in \mathbb{N}}. \)

The theorem is a consequence of (43).

(54) Let us consider a function \(f \) from \(\mathbb{N} \times \mathbb{N} \) into \(\overline{\mathbb{R}} \). Suppose \(f \) is without \(-\infty\) or without \(+\infty\). Then

(i) \(\text{curry}(\sum_{\alpha=0}^{\kappa} f(\alpha))_{\kappa \in \mathbb{N}}, 0) = \text{curry}(\text{the partial sums in the second coordinate of } f, 0), \) and

(ii) \(\text{curry}'(\sum_{\alpha=0}^{\kappa} f(\alpha))_{\kappa \in \mathbb{N}}, 0) = \text{curry}'(\text{the partial sums in the first coordinate of } f, 0). \)

(55) Let us consider non empty sets \(C, D \), without \(-\infty\) functions \(F_1, F_2 \) from \(C \times D \) into \(\overline{\mathbb{R}} \), and an element \(c \) of \(C \). Then \(\text{curry}(F_1 + F_2, c) = \text{curry}(F_1, c) + \text{curry}(F_2, c) \). The theorem is a consequence of (7).

(56) Let us consider non empty sets \(C, D \), without \(-\infty\) functions \(F_1, F_2 \) from \(C \times D \) into \(\overline{\mathbb{R}} \), and an element \(d \) of \(D \). Then \(\text{curry}'(F_1 + F_2, d) = \text{curry}'(F_1, d) + \text{curry}'(F_2, d) \). The theorem is a consequence of (7).

(57) Let us consider non empty sets \(C, D \), without \(+\infty\) functions \(F_1, F_2 \) from \(C \times D \) into \(\overline{\mathbb{R}} \), and an element \(c \) of \(C \). Then \(\text{curry}(F_1 + F_2, c) = \text{curry}(F_1, c) + \text{curry}(F_2, c) \). The theorem is a consequence of (7).

(58) Let us consider non empty sets \(C, D \), without \(+\infty\) functions \(F_1, F_2 \) from \(C \times D \) into \(\overline{\mathbb{R}} \), and an element \(d \) of \(D \). Then \(\text{curry}'(F_1 + F_2, d) = \text{curry}'(F_1, d) + \text{curry}'(F_2, d) \). The theorem is a consequence of (7).

(59) Let us consider non empty sets \(C, D \), a without \(-\infty\) function \(F_1 \) from \(C \times D \) into \(\overline{\mathbb{R}} \), a without \(+\infty\) function \(F_2 \) from \(C \times D \) into \(\overline{\mathbb{R}} \), and an element \(c \) of \(C \). Then

(i) \(\text{curry}(F_1 - F_2, c) = \text{curry}(F_1, c) - \text{curry}(F_2, c) \), and

(ii) \(\text{curry}'(F_2 - F_1, c) = \text{curry}'(F_2, c) - \text{curry}'(F_1, c) \).

The theorem is a consequence of (7).

(60) Let us consider non empty sets \(C, D \), a without \(-\infty\) function \(F_1 \) from \(C \times D \) into \(\overline{\mathbb{R}} \), a without \(+\infty\) function \(F_2 \) from \(C \times D \) into \(\overline{\mathbb{R}} \), and an element \(d \) of \(D \). Then

(i) \(\text{curry}'(F_1 - F_2, d) = \text{curry}'(F_1, d) - \text{curry}'(F_2, d) \), and

(ii) \(\text{curry}'(F_2 - F_1, d) = \text{curry}'(F_2, d) - \text{curry}'(F_1, d) \).

The theorem is a consequence of (7).
Now we state the propositions:

(61) Let us consider a non-negative sequence s of extended reals. Suppose $\left(\sum_{\alpha=0}^{\kappa} s(\alpha)\right)_{\kappa \in \mathbb{N}}$ is not convergent to $+\infty$. Let us consider a natural number n. Then $s(n)$ is a real number.

(62) Let us consider a non-negative sequence s of extended reals. Suppose s is non-decreasing. Then s is convergent to $+\infty$ or convergent to a finite limit.

Let f be a non-negative function from $\mathbb{N} \times \mathbb{N}$ into \mathbb{R} and n be an element of \mathbb{N}. Let us observe that curry(f, n) is non-negative and curry$'$$(f, n)$ is non-negative.

Now we state the propositions:

(63) Let us consider a non-negative function f from $\mathbb{N} \times \mathbb{N}$ into \mathbb{R}, and an element m of \mathbb{N}. Then curry$(the \ partial \ sums \ in \ the \ second \ coordinate \ of \ f, m)$ is non-decreasing.

Proof: Set $P = curry$(the partial sums in the second coordinate of f, m). For every natural numbers n, j such that $j \leq n$ holds $P(j) \leq P(n)$ by [4, (51)], [1, (13), (20)]. □

(64) Let us consider a non-negative function f from $\mathbb{N} \times \mathbb{N}$ into \mathbb{R}, and an element n of \mathbb{N}. Then curry$'$$(the \ partial \ sums \ in \ the \ first \ coordinate \ of \ f, n)$ is non-decreasing. The theorem is a consequence of (63), (40), and (33).

Let f be a non-negative function from $\mathbb{N} \times \mathbb{N}$ into \mathbb{R} and m be an element of \mathbb{N}. One can check that curry$(the \ partial \ sums \ in \ the \ second \ coordinate \ of \ f, m)$ is non-decreasing and curry$'$$(the \ partial \ sums \ in \ the \ first \ coordinate \ of \ f, m)$ is non-decreasing.

Let us consider a non-negative function f from $\mathbb{N} \times \mathbb{N}$ into \mathbb{R}. Now we state the propositions:

(65) (i) if f is convergent in the first coordinate, then the lim in the first coordinate of f is non-negative, and

(ii) if f is convergent in the second coordinate, then the lim in the second coordinate of f is non-negative.

(66) (i) the partial sums in the first coordinate of f is convergent in the first coordinate, and

(ii) the partial sums in the second coordinate of f is convergent in the second coordinate.

Let us consider a non-negative function f from $\mathbb{N} \times \mathbb{N}$ into \mathbb{R}, an element m of \mathbb{N}, and a natural number n.

Let us assume that curry$'$$(the \ partial \ sums \ in \ the \ first \ coordinate \ of \ f, m)$ is not convergent to $+\infty$. Now we state the propositions:
(67) $f(n, m)$ is a real number.

(68) $f(m, n)$ is a real number.

Let us consider a non-negative function f from $\mathbb{N} \times \mathbb{N}$ into \mathbb{R} and natural numbers n, m. Now we state the propositions:

(69) Suppose for every natural number i such that $i \leq n$ holds $f(i, m)$ is a real number. Then (the partial sums in the first coordinate of $f)(n, m) < +\infty$.

Proof: Define $\mathcal{P}[\text{natural number}] \equiv$ if $\frac{1}{i} \leq n$, then (the partial sums in the first coordinate of $f)(\frac{1}{i}, m) < +\infty$. For every natural number k such that $\mathcal{P}[k]$ holds $\mathcal{P}[k + 1]$ by [4, (51)], [1, (13)]. For every natural number k, $\mathcal{P}[k]$ from [1, Sch. 2]. □

(70) Suppose for every natural number i such that $i \leq m$ holds $f(n, i)$ is a real number. Then (the partial sums in the second coordinate of $f)(n, m) < +\infty$.

Proof: Define $\mathcal{P}[\text{natural number}] \equiv$ if $\frac{1}{i} \leq m$, then (the partial sums in the second coordinate of $f)(n, \frac{1}{i}) < +\infty$. For every natural number k such that $\mathcal{P}[k]$ holds $\mathcal{P}[k + 1]$ by [4, (51)], [1, (13)]. For every natural number k, $\mathcal{P}[k]$ from [1, Sch. 2]. □

Now we state the proposition:

(71) Let us consider a without $-\infty$ function f from $\mathbb{N} \times \mathbb{N}$ into \mathbb{R}. Suppose $\left(\sum_{\alpha=0}^{\kappa} f(\alpha)\right)_{\kappa \in \mathbb{N}}$ is convergent in the first coordinate to $-\infty$. Then there exists an element m of \mathbb{N} such that curry' (the partial sums in the first coordinate of f, m) is convergent to $-\infty$. The theorem is a consequence of (54).

Let us consider a non-negative function f from $\mathbb{N} \times \mathbb{N}$ into \mathbb{R} and a natural number m. Now we state the propositions:

(72) for every element k of \mathbb{N} such that $k \leq m$ holds curry' (the partial sums in the second coordinate of f, k) is not convergent to $+\infty$ if and only if for every element k of \mathbb{N} such that $k \leq m$ holds $\lim \text{curry}'$ (the partial sums in the second coordinate of $f, k) < +\infty$. The theorem is a consequence of (62).

(73) for every element k of \mathbb{N} such that $k \leq m$ holds curry' (the partial sums in the first coordinate of f, k) is not convergent to $+\infty$ if and only if for every element k of \mathbb{N} such that $k \leq m$ holds $\lim \text{curry}'$ (the partial sums in the first coordinate of $f, k) < +\infty$. The theorem is a consequence of (62).

(74) $\left(\sum_{\alpha=0}^{\kappa} (\text{the lim in the second coordinate of the partial sums in the second coordinate of } f)(\alpha)\right)_{\kappa \in \mathbb{N}}(m) = +\infty$ if and only if there exists an element k of \mathbb{N} such that $k \leq m$ and curry' (the partial sums in the second coordinate
of f, k is convergent to $+\infty$. The theorem is a consequence of (72), (65), and (4).

(75) \(\sum_{\alpha=0}^{\kappa} (\text{the lim in the first coordinate of the partial sums in the first coordinate of } f)(\alpha) \in \mathbb{N}(m) = +\infty \) if and only if there exists an element k of \mathbb{N} such that $k \leq m$ and curry'(the partial sums in the first coordinate of f, k) is convergent to $+\infty$. The theorem is a consequence of (38), (40), (74), and (32).

Now we state the proposition:

(76) Let us consider a non-negative function f from $\mathbb{N} \times \mathbb{N}$ into \mathbb{R}, and natural numbers n, m. Then

(i) (the partial sums in the first coordinate of $f)(n, m) \geq f(n, m)$, and
(ii) (the partial sums in the second coordinate of $f)(n, m) \geq f(n, m)$.

PROOF: Define $P[\text{natural number}] \equiv \text{if } \$1 \leq n, then (the partial sums in the first coordinate of } f)(\$1, m) \geq f(\$1, m). \text{ For every natural number } k \text{ such that } P[k] \text{ holds } P[k+1] \text{ by } [4, (51)]. \text{ For every natural number } k, P[k] \text{ from } \Pi \text{ Sch. 2}. \text{ Define } Q[\text{natural number}] \equiv \text{if } \$1 \leq m, then (the partial sums in the second coordinate of } f)(n, \$1) \geq f(n, \$1). \text{ For every natural number } k \text{ such that } Q[k] \text{ holds } Q[k+1] \text{ by } [4, (51)]. \text{ For every natural number } k, Q[k] \text{ from } \Pi \text{ Sch. 2}. \square

Let us consider a non-negative function f from $\mathbb{N} \times \mathbb{N}$ into \mathbb{R} and an element m of \mathbb{N}. Now we state the propositions:

(77) Suppose there exists an element k of \mathbb{N} such that $k \leq m$ and curry(the partial sums in the second coordinate of f, k) is convergent to $+\infty$. Then

(i) curry(the partial sums in the second coordinate of the partial sums in the first coordinate of f, m) is convergent to $+\infty$, and
(ii) $\lim \text{curry'(the partial sums in the second coordinate of the partial sums in the first coordinate of } f, m) = +\infty$.

PROOF: For every real number g such that $0 < g$ there exists a natural number N such that for every natural number n such that $N \leq n$ holds $g \leq (\text{curry'(the partial sums in the second coordinate of the partial sums in the first coordinate of } f, m))(n)$ by $[26(7)], (76). \square$

(78) Suppose there exists an element k of \mathbb{N} such that $k \leq m$ and curry'(the partial sums in the first coordinate of f, k) is convergent to $+\infty$. Then

(i) curry'(the partial sums in the first coordinate of the partial sums in the second coordinate of f, m) is convergent to $+\infty$, and
(ii) $\lim \text{curry'(the partial sums in the first coordinate of the partial sums in the second coordinate of } f, m) = +\infty$.

The theorem is a consequence of (40), (32), and (77).

Now we state the propositions:

(79) Let us consider a without $-\infty$ function f from $\mathbb{N} \times \mathbb{N}$ into $\overline{\mathbb{R}}$. Then $(\sum_{\alpha=0}^{\kappa} f(\alpha))_{\kappa \in \mathbb{N}}$ is convergent in the first coordinate to a finite limit if and only if the partial sums in the first coordinate of f is convergent in the first coordinate to a finite limit. The theorem is a consequence of (54), (47), (7), and (23).

(80) Let us consider a non-negative function f from $\mathbb{N} \times \mathbb{N}$ into $\overline{\mathbb{R}}$. Suppose $(\sum_{\alpha=0}^{\kappa} f(\alpha))_{\kappa \in \mathbb{N}}$ is convergent in the first coordinate to a finite limit. Let us consider an element m of \mathbb{N}. Then $(\sum_{\alpha=0}^{\kappa}(\text{the lim in the first coordinate of the partial sums in the first coordinate of } f(\alpha))_{\kappa \in \mathbb{N}}(m) = \lim \text{curry}'(\text{the partial sums in the first coordinate of the partial sums in the second coordinate of } f, m)$.

Proof: The partial sums in the first coordinate of f is convergent in the first coordinate to a finite limit. Define $\mathcal{P}[\text{natural number}] \equiv$ for every element k of \mathbb{N} such that $k \leq S_1$ holds $(\sum_{\alpha=0}^{\kappa}(\text{the lim in the first coordinate of the partial sums in the first coordinate of } f(\alpha))_{\kappa \in \mathbb{N}}(k) = \lim \text{curry}'(\text{the partial sums in the first coordinate of the partial sums in the second coordinate of } f, k)$.

(81) Let us consider a without $-\infty$ function f from $\mathbb{N} \times \mathbb{N}$ into $\overline{\mathbb{R}}$. Then $(\sum_{\alpha=0}^{\kappa} f(\alpha))_{\kappa \in \mathbb{N}}$ is convergent in the second coordinate to a finite limit if and only if the partial sums in the second coordinate of f is convergent in the second coordinate to a finite limit. The theorem is a consequence of (36), (40), and (79).

(82) Let us consider a non-negative function f from $\mathbb{N} \times \mathbb{N}$ into $\overline{\mathbb{R}}$. Suppose $(\sum_{\alpha=0}^{\kappa} f(\alpha))_{\kappa \in \mathbb{N}}$ is convergent in the second coordinate to a finite limit. Let us consider an element m of \mathbb{N}. Then $(\sum_{\alpha=0}^{\kappa}(\text{the lim in the second coordinate of the partial sums in the second coordinate of } f(\alpha))_{\kappa \in \mathbb{N}}(m) = \lim \text{curry}(\text{the partial sums in the second coordinate of the partial sums in the first coordinate of } f, m)$. The theorem is a consequence of (36), (40), (38), (80), and (32).

Let us consider a non-negative function f from $\mathbb{N} \times \mathbb{N}$ into $\overline{\mathbb{R}}$ and a sequence s of extended reals. Now we state the propositions:

(83) Suppose for every element m of \mathbb{N}, $s(m) = \lim \inf \text{curry}'(f, m)$. Then $\sum s \leq \lim \inf(\text{the lim in the second coordinate of the partial sums in the second coordinate of } f)$.

Proof: For every element m of \mathbb{N} and for every elements N, n of \mathbb{N}
such that \(n \geq N \) holds (the inferior real sequence curry'\((f, m)\))(N) \(\leq f(n, m) \) by \([26] \) (7), (8). Define \(F(\text{element of } \mathbb{N}) = \) the inferior real sequence curry'\((f, s_1)\). Define \(G(\text{element of } \mathbb{N}, \text{element of } \mathbb{N}) = \) (the inferior real sequence curry'\((f, s_2)\))(\(s_1\)). Consider \(g \) being a function from \(\mathbb{N} \times \mathbb{N} \) into \(\mathbb{R} \) such that for every element \(n \) of \(\mathbb{N} \) and for every element \(m \) of \(\mathbb{N} \), \(g(n, m) = G(n, m) \) from \([5\) Sch. 4\]. For every element \(m \) of \(\mathbb{N} \) and for every elements \(N, n \) of \(\mathbb{N} \) such that \(n \geq N \) holds (the partial sums in the second coordinate of \(g)\)(\(N, m) \leq (\text{the partial sums in the second coordinate of } f)(n, m)\). For every element \(m \) of \(\mathbb{N} \) and for every elements \(N, n \) of \(\mathbb{N} \) such that \(n \geq N \) holds (the partial sums in the second coordinate of \(g)\)(\(N, m) \leq (\text{the inferior real sequence curry'}\((f, m)\))(N) \leq f(n, m) \) by \([26] \) (37), (23)]. Define \(Q[\text{natural number}] \equiv \) for every element \(m \) of \(\mathbb{N} \) such that \(m = s_1 \) holds \(\left(\sum_{\alpha=0}^{\kappa} s(\alpha))_{\kappa \in \mathbb{N}}(m) = \text{lim inf (the partial sums in the second coordinate of } g, m)\). For every element \(m \) of \(\mathbb{N} \), \(\text{curry'}\((\text{the partial sums in the second coordinate of } g, m)\) is convergent by \([26] \) (7), (37)]. For every natural number \(k \) such that \(Q[k] \) holds \(Q[k+1] \) by \([26] \) (37)], \([4] \) (51), (52)], \([14] \) (11)]. For every natural number \(k, Q[k] \) from \([1\) Sch. 2\]. For every natural number \(m, (\sum_{\alpha=0}^{\kappa} s(\alpha))_{\kappa \in \mathbb{N}}(m) \leq \text{lim inf (the lim in the second coordinate of the partial sums in the second coordinate of } f)\) by \([26] \) (37), (38)]. For every object \(m \) such that \(m \in \text{dom } s \) holds \(0 \leq s(m) \) by \([4] \) (51), (52)], \([26] \) (23)]. \(\square \)

(84) Suppose for every element \(m \) of \(\mathbb{N} \), \(s(m) = \text{lim inf curry'\((f, m)\)}\). Then \(\sum s \leq \text{lim inf (the lim in the first coordinate of the partial sums in the first coordinate of } f)\). The theorem is a consequence of \((32), (83), (38), \) and \((40)\).

Now we state the proposition:

(85) Let us consider a function \(f \) from \(\mathbb{N} \times \mathbb{N} \) into \(\mathbb{R} \), a sequence \(s \) of extended reals, and natural numbers \(n, m \). Then

(i) if for every natural numbers \(i, j, f(i, j) \leq s(i) \), then (the partial sums in the first coordinate of \(f)\)(\(n, m) \leq (\sum_{\alpha=0}^{\kappa} s(\alpha))_{\kappa \in \mathbb{N}}(n)\), and

(ii) if for every natural numbers \(i, j, f(i, j) \leq s(j) \), then (the partial sums in the second coordinate of \(f)\)(\(n, m) \leq (\sum_{\alpha=0}^{\kappa} s(\alpha))_{\kappa \in \mathbb{N}}(m)\).

PROOF: Define \(\mathcal{P}[\text{natural number}] \equiv \) (the partial sums in the second coordinate of \(f)\)(\(n, s_1) \leq (\sum_{\alpha=0}^{\kappa} s(\alpha))_{\kappa \in \mathbb{N}}(s_1)\). For every natural number \(k \) such that \(\mathcal{P}[k] \) holds \(\mathcal{P}[k+1] \). For every natural number \(k, \mathcal{P}[k] \) from \([1\) Sch. 2\]. \(\square \)

Let us consider a sequence \(s \) of extended reals and an extended real number \(r. \) Now we state the propositions:
(86) If for every natural number \(n \), \(s(n) \leq r \), then \(\limsup s \leq r \).

Proof: Define \(F(\text{element of } \mathbb{N}) = r \). Consider \(f \) being a function from \(\mathbb{N} \) into \(\mathbb{R} \) such that for every element \(n \) of \(\mathbb{N} \), \(f(n) = F(n) \) from \([7, \text{Sch. 4}]\). For every natural number \(n \), \(f(n) = r \). For every natural number \(n \), \(s(n) \leq r \). □

(87) If for every natural number \(n \), \(r \leq s(n) \), then \(r \leq \liminf s \).

Proof: Define \(F(\text{element of } \mathbb{N}) = r \). Consider \(f \) being a function from \(\mathbb{N} \) into \(\mathbb{R} \) such that for every element \(n \) of \(\mathbb{N} \), \(f(n) = F(n) \) from \([7, \text{Sch. 4}]\). For every natural number \(n \), \(f(n) = r \). For every natural number \(n \), \(f(n) \leq s(n) \). □

Now we state the proposition:

(88) Let us consider a non-negative function \(f \) from \(\mathbb{N} \times \mathbb{N} \) into \(\mathbb{R} \). Then

(i) for every natural numbers \(i_1, i_2, j \) such that \(i_1 \leq i_2 \) holds (the partial sums in the first coordinate of \(f \))(\(i_1, j \)) \leq (the partial sums in the first coordinate of \(f \))(\(i_2, j \)), and

(ii) for every natural numbers \(i, j_1, j_2 \) such that \(j_1 \leq j_2 \) holds (the partial sums in the second coordinate of \(f \))(\(i, j_1 \)) \leq (the partial sums in the second coordinate of \(f \))(\(i, j_2 \)).

Let us consider a function \(f \) from \(\mathbb{N} \times \mathbb{N} \) into \(\mathbb{R} \) and natural numbers \(i, j, k \). Now we state the propositions:

(89) Suppose for every element \(m \) of \(\mathbb{N} \), \(\text{curry}'(f, m) \) is non-decreasing and \(i \leq j \). Then (the partial sums in the second coordinate of \(f \))(\(i, k \)) \leq (the partial sums in the second coordinate of \(f \))(\(j, k \)).

Proof: Define \(P[\text{natural number}] \equiv (\text{the partial sums in the second coordinate of } f)(i, \$1) \leq (\text{the partial sums in the second coordinate of } f)(j, \$1) \). For every natural number \(n \) such that \(P[n] \) holds \(P[n + 1] \) by \([20, (7)]\). For every natural number \(n \), \(P[n] \) from \([1, \text{Sch. 2}]\). □

(90) Suppose for every element \(n \) of \(\mathbb{N} \), \(\text{curry}(f, n) \) is non-decreasing and \(i \leq j \). Then (the partial sums in the first coordinate of \(f \))(\(k, i \)) \leq (the partial sums in the first coordinate of \(f \))(\(k, j \)). The theorem is a consequence of (32), (89), and (39).

Let us consider a non-negative function \(f \) from \(\mathbb{N} \times \mathbb{N} \) into \(\mathbb{R} \) and a sequence \(s \) of extended reals. Now we state the propositions:

(91) Suppose for every element \(m \) of \(\mathbb{N} \), \(\text{curry}'(f, m) \) is non-decreasing and \(s(m) = \lim \text{curry}'(f, m) \). Then

(i) the lim in the second coordinate of the partial sums in the second coordinate of \(f \) is non-decreasing, and
(ii) \[\sum s = \lim \text{(the lim in the second coordinate of the partial sums in the second coordinate of } f). \]

Proof: \[\sum s \leq \lim \inf \text{(the lim in the second coordinate of the partial sums in the second coordinate of } f). \] For every natural numbers \(n, m, f(n, m) \leq s(m) \) by [26 (37)], [8] (3)]. For every natural numbers \(n, m \) such that \(m \leq n \) holds (the lim in the second coordinate of the partial sums in the second coordinate of \(f)(m) \leq (\text{the lim in the second coordinate of the partial sums in the second coordinate of } f)(n) \) by [26 (37)], (89), [26 (38)]. For every natural number \(n \), (the lim in the second coordinate of the partial sums in the second coordinate of \(f)(n) \leq \sum s \) by [26 (37)], [4] (39)], (87), [26 (41)]. \(\lim \sup \text{(the lim in the second coordinate of the partial sums in the second coordinate of } f) \leq \sum s. \square \)

(92) Suppose for every element \(m \) of \(\mathbb{N} \), \(\text{curry}(f, m) \) is non-decreasing and \(s(m) = \lim \text{curry}(f, m) \). Then

(i) the lim in the first coordinate of the partial sums in the first coordinate of \(f \) is non-decreasing, and

(ii) \[\sum s = \lim \text{(the lim in the first coordinate of the partial sums in the first coordinate of } f). \]

The theorem is a consequence of (32), (91), (33), and (40).

5. **Pringsheim Sense Convergence for Extended Real-Valued Double Sequences**

Let us consider a function \(f \) from \(\mathbb{N} \times \mathbb{N} \) into \(\mathbb{R} \). Now we state the propositions:

(93) If \(f \) is P-convergent to \(+\infty \), then \(f \) is not P-convergent to \(-\infty \) and \(f \) is not P-convergent to a finite limit.

(94) If \(f \) is P-convergent to \(-\infty \), then \(f \) is not P-convergent to \(+\infty \) and \(f \) is not P-convergent to a finite limit.

Let \(f \) be a function from \(\mathbb{N} \times \mathbb{N} \) into \(\mathbb{R} \). We say that \(f \) is P-convergent if and only if

(Def. 17) \(f \) is P-convergent to a finite limit or P-convergent to \(+\infty \) or P-convergent to \(-\infty \).

Assume \(f \) is P-convergent. The functor \(P\lim f \) yielding an extended real is defined by

(Def. 18) there exists a real number \(p \) such that \(it = p \) and for every real number \(e \) such that \(0 < e \) there exists a natural number \(N \) such that for every natural numbers \(n, m \) such that \(n \geq N \) and \(m \geq N \) holds \(|f(n, m) - it| < e\).
and \(f \) is P-convergent to a finite limit or \(it = +\infty \) and \(f \) is P-convergent to \(+\infty \) or \(it = -\infty \) and \(f \) is P-convergent to \(-\infty \).

Now we state the propositions:

(95) Let us consider a function \(f \) from \(\mathbb{N} \times \mathbb{N} \) into \(\overline{\mathbb{R}} \), and a real number \(r \). Suppose for every natural numbers \(n, m, f(n, m) = r \). Then

(i) \(f \) is P-convergent to a finite limit, and
(ii) \(\text{P-lim } f = r \).

(96) Let us consider a function \(f \) from \(\mathbb{N} \times \mathbb{N} \) into \(\overline{\mathbb{R}} \). Suppose for every natural numbers \(n_1, m_1, n_2, m_2 \) such that \(n_1 \leq n_2 \) and \(m_1 \leq m_2 \) holds \(f(n_1, m_1) \leq f(n_2, m_2) \). Then

(i) \(f \) is P-convergent, and
(ii) \(\text{P-lim } f = \sup \text{rng } f \).

(97) Let us consider functions \(f_1, f_2 \) from \(\mathbb{N} \times \mathbb{N} \) into \(\overline{\mathbb{R}} \). Suppose for every natural numbers \(n, m, f_1(n, m) \leq f_2(n, m) \). Then \(\sup \text{rng } f_1 \leq \sup \text{rng } f_2 \).

(98) Let us consider a function \(f \) from \(\mathbb{N} \times \mathbb{N} \) into \(\overline{\mathbb{R}} \), and natural numbers \(n, m \). Then \(f(n, m) \leq \sup \text{rng } f \).

Let us consider a function \(f \) from \(\mathbb{N} \times \mathbb{N} \) into \(\overline{\mathbb{R}} \) and an extended real number \(K \). Now we state the propositions:

(99) If for every natural numbers \(n, m, f(n, m) \leq K \), then \(\sup \text{rng } f \leq K \).

(100) If \(K \neq +\infty \) and for every natural numbers \(n, m, f(n, m) \leq K \), then \(\sup \text{rng } f < +\infty \).

Now we state the propositions:

(101) Let us consider a without \(-\infty \) function \(f \) from \(\mathbb{N} \times \mathbb{N} \) into \(\overline{\mathbb{R}} \). Then \(\sup \text{rng } f \neq +\infty \) if and only if there exists a real number \(K \) such that \(0 < K \) and for every natural numbers \(n, m, f(n, m) \leq K \).

(102) Let us consider a function \(f \) from \(\mathbb{N} \times \mathbb{N} \) into \(\overline{\mathbb{R}} \), and an extended real \(c \). Suppose for every natural numbers \(n, m, f(n, m) = c \). Then

(i) \(f \) is P-convergent, and
(ii) \(\text{P-lim } f = c \), and
(iii) \(\text{P-lim } f = \sup \text{rng } f \).

(103) Let us consider a function \(f \) from \(\mathbb{N} \times \mathbb{N} \) into \(\overline{\mathbb{R}} \), and without \(-\infty \) functions \(f_1, f_2 \) from \(\mathbb{N} \times \mathbb{N} \) into \(\overline{\mathbb{R}} \). Suppose for every natural numbers \(n_1, m_1, n_2, m_2 \) such that \(n_1 \leq n_2 \) and \(m_1 \leq m_2 \) holds \(f_1(n_1, m_1) \leq f_1(n_2, m_2) \) and for every natural numbers \(n_1, m_1, n_2, m_2 \) such that \(n_1 \leq n_2 \) and \(m_1 \leq m_2 \) holds \(f_2(n_1, m_1) \leq f_2(n_2, m_2) \) and for every natural numbers \(n, m, f_1(n, m) + f_2(n, m) = f(n, m) \). Then
(i) \(f \) is P-convergent, and
(ii) \(\text{P-lim } f = \sup \text{rng } f \), and
(iii) \(\text{P-lim } f = \text{P-lim } f_1 + \text{P-lim } f_2 \), and
(iv) \(\sup \text{rng } f = \sup \text{rng } f_1 + \sup \text{rng } f_2 \).

The theorem is a consequence of (96) and (101).

Let us consider a without \(-\infty\) function \(f_1 \) from \(\mathbb{N} \times \mathbb{N} \) into \(\mathbb{R} \), a function \(f_2 \) from \(\mathbb{N} \times \mathbb{N} \) into \(\mathbb{R} \), and a real number \(c \). Now we state the propositions:

(104) Suppose \(0 \leq c \) and for every natural numbers \(n, m \), \(f_2(n, m) = c \cdot f_1(n, m) \). Then

(i) \(\sup \text{rng } f_2 = c \cdot \sup \text{rng } f_1 \), and
(ii) \(f_2 \) is without \(-\infty\).

The theorem is a consequence of (102) and (101).

(105) Suppose \(0 \leq c \) and for every natural numbers \(n_1, m_1, n_2, m_2 \) such that \(n_1 \leq n_2 \) and \(m_1 \leq m_2 \) holds \(f_1(n_1, m_1) \leq f_1(n_2, m_2) \) and for every natural numbers \(n, m \), \(f_2(n, m) = c \cdot f_1(n, m) \). Then

(i) for every natural numbers \(n_1, m_1, n_2, m_2 \) such that \(n_1 \leq n_2 \) and \(m_1 \leq m_2 \) holds \(f_2(n_1, m_1) \leq f_2(n_2, m_2) \), and
(ii) \(f_2 \) is without \(-\infty\) and P-convergent, and
(iii) \(\text{P-lim } f_2 = \sup \text{rng } f_2 \), and
(iv) \(\text{P-lim } f_2 = c \cdot \text{P-lim } f_1 \).

The theorem is a consequence of (96) and (104).

REFERENCES

Received July 1, 2015