Constructing Binary Huffman Tree

Hiroyuki Okazaki
Shinshu University
Nagano, Japan

Yuichi Futa
Japan Advanced Institute of Science and Technology
Ishikawa, Japan

Yasunari Shidama
Shinshu University
Nagano, Japan

Summary. Huffman coding is one of a most famous entropy encoding methods for lossless data compression [16]. JPEG and ZIP formats employ variants of Huffman encoding as lossless compression algorithms. Huffman coding is a bijective map from source letters into leaves of the Huffman tree constructed by the algorithm. In this article we formalize an algorithm constructing a binary code tree, Huffman tree.

MSC: 14G50 68P30 03B35

Keywords: formalization of Huffman coding tree; source coding

MML identifier: HUFFMAN1 ver. 8.1.02 5.17.1181

The notation and terminology used in this paper have been introduced in the following articles: [9], [11], [20], [21], [14], [11], [12], [24], [22], [2], [3], [13], [19], [17], [25], [26], [24], [1], [5], [6], 7, and [13].

1. Constructing Binary Decoded Trees

Let D be a non empty set and x be an element of D. Observe that the root tree of x is binary as a decorated tree.

The functor \mathbb{R}_N yielding a set is defined by the term

1This research was presented during the 2013 International Conference on Foundations of Computer Science FCS'13 in Las Vegas, USA.
2This work was supported by JSPS KAKENHI 21240001.
3This work was supported by JSPS KAKENHI 22300285.
(Def. 1) \(\mathbb{N} \times \mathbb{R} \).

Note that \(\mathbb{R}_\mathbb{N} \) is non empty.

Let \(D \) be a non empty set. The binary finite trees of \(D \) yielding a set of trees decorated with elements of \(D \) is defined by

(Def. 2) Let us consider a tree \(T \) decorated with elements of \(D \). Then \(\text{dom}\ T \) is finite and \(T \) is binary if and only if \(T \in \text{it} \).

The Boolean binary finite trees of \(D \) yielding a non empty subset of \(\text{FinTrees}(\mathbb{R}_\mathbb{N}) \) is defined by the term

(Def. 3) \(\{ x, \text{where } x \text{ is an element of } 2^\alpha : x \text{ is finite and } x \neq \emptyset \} \), where \(\alpha \) is the binary finite trees of \(D \).

In this paper \(\mathcal{S} \) denotes a non empty finite set, \(p \) denotes a probability on the trivial \(\sigma \)-field of \(\mathcal{S} \), \(T_1 \) denotes a finite sequence of elements of the Boolean binary finite trees of \(\mathbb{R}_\mathbb{N} \), and \(q \) denotes a finite sequence of elements of \(\mathbb{N} \).

Let us consider \(\mathcal{S} \) and \(p \). The functor \(\text{InitTrees} \) yielding a non empty finite subset of the binary finite trees of \(\mathbb{R}_\mathbb{N} \) is defined by the term

(Def. 4) \(\{ T, \text{where } T \text{ is an element of } \text{FinTrees}(\mathbb{R}_\mathbb{N}) : T \text{ is a finite binary tree decorated with elements of } \mathbb{R}_\mathbb{N} \text{ and there exists an element } x \text{ of } \mathcal{S} \text{ such that } T = \text{the root tree of } ((\text{CFS}(\mathcal{S}))^{-1}(x), p(\{x\})) \} \).

Let \(p \) be a tree decorated with elements of \(\mathbb{R}_\mathbb{N} \). The value of root from right of \(p \) yielding a real number is defined by the term

(Def. 5) \(p(\emptyset)_2 \).

The value of root from left of \(p \) yielding a natural number is defined by the term

(Def. 6) \(p(\emptyset)_1 \).

Let \(T \) be a finite binary tree decorated with elements of \(\mathbb{R}_\mathbb{N} \) and \(p \) be an element of \(\text{dom}\ T \). The value of tree of \(p \) yielding a real number is defined by the term

(Def. 7) \(T(p)_2 \).

Let \(p, q \) be finite binary trees decorated with elements of \(\mathbb{R}_\mathbb{N} \) and \(k \) be a natural number. The functor \(\text{MakeTree}(p, q, k) \) yielding a finite binary tree decorated with elements of \(\mathbb{R}_\mathbb{N} \) is defined by the term

(Def. 8) \(\langle k, (\text{the value of root from right of } p) + (\text{the value of root from right of } q) \rangle \text{-tree}(p, q) \).

Let \(X \) be a non empty finite subset of the binary finite trees of \(\mathbb{R}_\mathbb{N} \). The maximal value of \(X \) yielding a natural number is defined by

(Def. 9) There exists a non empty finite subset \(L \) of \(\mathbb{N} \) such that

(i) \(L = \{ \text{the value of root from left of } p, \text{ where } p \text{ is an element of the binary finite trees of } \mathbb{R}_\mathbb{N} : p \in X \} \), and

(ii) \(\text{it} = \max L \).

Now we state the propositions:
(1) Let us consider a non empty finite subset X of the binary finite trees of \mathbb{R}_N and a finite binary tree w decorated with elements of \mathbb{R}_N. Suppose $X = \{w\}$. Then the maximal value of $X = \text{the value of root from left of } w$. \textbf{Proof:} Consider L being a non empty finite subset of \mathbb{N} such that $L = \{\text{the value of root from left of } p, \text{ where } p \in X\}$ and the maximal value of $X = \max L$. For every element n such that $n \in L$ holds $n = \text{the value of root from left of } w$. For every element n such that $n = \text{the value of root from left of } w$ holds $n \in L$. \hfill \square

(2) Let us consider non empty finite subsets X, Y, Z of the binary finite trees of \mathbb{R}_N. Suppose $Z = X \cup Y$. Then the maximal value of $Z = \max(\text{the maximal value of } X, \text{the maximal value of } Y)$.

(3) Let us consider non empty finite subsets X, Z of the binary finite trees of \mathbb{R}_N and a set Y. Suppose $Z = X \setminus Y$. Then the maximal value of $Z \leq \text{the maximal value of } X$. The theorem is a consequence of (2).

(4) Let us consider a non empty finite subset X of the binary finite trees of \mathbb{R}_N and an element p of the binary finite trees of \mathbb{R}_N. Suppose $p \in X$. Then the value of root from left of $p \leq \text{the maximal value of } X$.

Let X be a non empty finite subset of the binary finite trees of \mathbb{R}_N. A minimal value tree of X is a finite binary tree decorated with elements of \mathbb{R}_N and is defined by

(Def. 10) (i) $it \in X$, and

(ii) for every finite binary tree q decorated with elements of \mathbb{R}_N such that $q \in X$ holds the value of root from right of $it \leq \text{the value of root from right of } q$.

Now we state the propositions:

(5) $\text{InitTrees}_p = \mathcal{S}$. \textbf{Proof:} Reconsider $f_1 = (\text{CFS}(\mathcal{S}))^{-1}$ as a function from \mathcal{S} into Seg \mathcal{S}. Define $\mathcal{P}[\text{element, element}] \equiv \mathcal{S}_2 = \text{the root tree of } (f_1(\mathcal{S}_1), p(\{\mathcal{S}_1\})).$ For every element x such that $x \in \mathcal{S}$ there exists an element y such that $y \in \text{InitTrees}_p$ and $\mathcal{P}[x, y]$ by [12, (5)], [13, (87)], [17, (3)]. Consider f being a function from \mathcal{S} into InitTrees_p such that for every element x such that $x \in \mathcal{S}$ holds $\mathcal{P}[x, f(x)]$ from [12, Sch. 1]. \hfill \square

(6) Let us consider a non empty finite subset X of the binary finite trees of \mathbb{R}_N and finite binary trees s, t decorated with elements of \mathbb{R}_N. Then $\text{MakeTree}(t, s, ((\text{the maximal value of } X) + 1)) \notin X$.

Let X be a set. The set of leaves of X yielding a subset of $2^{\mathbb{R}_N}$ is defined by the term

(Def. 11) \{Leaves(p), where p is an element of the binary finite trees of $\mathbb{R}_N : p \in X$\}.

Now we state the propositions:
(7) Let us consider a finite binary tree \(X\) decorated with elements of \(\mathbb{R}_N\). Then the set of leaves of \(\{X\} = \{\text{Leaves}(X)\}\). \textbf{Proof:} For every element \(x, x \in \text{the set of leaves of } \{X\} \text{ iff } x \in \{\text{Leaves}(X)\}\). \(\Box\)

(8) Let us consider sets \(X, Y\). Then the set of leaves of \(X \cup Y = (\text{the set of leaves of } X) \cup (\text{the set of leaves of } Y)\). \textbf{Proof:} For every element \(x, x \in \text{the set of leaves of } X \cup Y \text{ iff } x \in (\text{the set of leaves of } X) \cup (\text{the set of leaves of } Y)\). \(\Box\)

(9) Let us consider trees \(s, t\). Then \(\emptyset \notin \text{Leaves}(\widehat{s,t})\). \textbf{Proof:} For every element \(p, p \in \widehat{s,t} \text{ iff } p \in \text{the elementary tree of } 0\) by [4, (19), (29)], [10 (130)]. \(\Box\)

(10) Let us consider trees \(s, t\). Then \(\text{Leaves}(\widehat{s,t}) = (\{0\} \smallsetminus p, \text{ where } p \text{ is an element of } t \bigcap p \in \text{Leaves}(t)) \cup (\{1\} \smallsetminus p, \text{ where } p \text{ is an element of } s : p \in \text{Leaves}(s)\). The theorem is a consequence of (9). \textbf{Proof:} Set \(L = \{0\} \smallsetminus p, \text{ where } p \text{ is an element of } t : p \in \text{Leaves}(t)\}. Set \(R = \{1\} \smallsetminus p, \text{ where } p \text{ is an element of } s : p \in \text{Leaves}(s)\}. Set \(H = \text{Leaves}(\widehat{s,t})\). For every element \(x, x \in H \text{ iff } x \in L \cup R\) by [21 (23)], [9 (6)]. \(\Box\)

Let us consider decorated trees \(s, t\), an element \(x\), and a finite sequence \(q\) of elements of \(\mathbb{N}\). Now we state the propositions:

(11) If \(q \in \text{dom } t\), then \((x\text{-tree}(t,s))(\{0\} \smallsetminus q) = t(q)\).

(12) If \(q \in \text{dom } s\), then \((x\text{-tree}(t,s))(\{1\} \smallsetminus q) = s(q)\).

Now we state the propositions:

(13) Let us consider decorated trees \(s, t\) and an element \(x\).

Then \(\text{Leaves}(x\text{-tree}(t,s)) = \text{Leaves}(t) \cup \text{Leaves}(s)\). The theorem is a consequence of (10), (11), and (12). \textbf{Proof:} Set \(L = \{0\} \smallsetminus p, \text{ where } p \text{ is an element of } \text{dom } t : p \in \text{Leaves}(\text{dom } t)\}. Set \(R = \{1\} \smallsetminus p, \text{ where } p \text{ is an element of } \text{dom } s : p \in \text{Leaves}(\text{dom } s)\}. \text{For every element } z, z \in (x\text{-tree}(t,s))L \text{ iff } z \in t^\circ(\text{Leaves}(\text{dom } t)). \text{For every element } z, z \in (x\text{-tree}(t,s))R \text{ iff } z \in s^\circ(\text{Leaves}(\text{dom } s))\). \(\Box\)

(14) Let us consider a natural number \(k\) and finite binary trees \(s, t\) decorated with elements of \(\mathbb{R}_N\). Then \(\bigcup \text{the set of leaves of } \{s,t\} = \bigcup \text{the set of leaves of } \{\text{MakeTree}(t,s,k)\}\). The theorem is a consequence of (8), (7), and (13).

(15) \(\text{Leaves}(\text{the elementary tree of } 0) = \text{the elementary tree of } 0\). \textbf{Proof:} For every element \(x, x \in \text{Leaves}(\text{the elementary tree of } 0) \text{ iff } x \in \text{the elementary tree of } 0\) by [4 (29), (54)]. \(\Box\)

(16) Let us consider an element \(x\), a non empty set \(D\), and a finite binary tree \(T\) decorated with elements of \(D\). Suppose \(T = \text{the root tree of } x\). Then \(\text{Leaves}(T) = \{x\}\). The theorem is a consequence of (15).
2. Binary Huffman Tree

Let us consider S, p, T_1, and q. We say that T_1, q, and p are constructing binary Huffman tree if and only if

(Def. 12) (i) $T_1(1) = \text{InitTrees} p$, and

(ii) $\text{len } T_1 = \overline{S}$, and

(iii) for every natural number i such that $1 \leq i < \text{len } T_1$ there exist non empty finite subsets X, Y of the binary finite trees of \mathbb{R}_N and there exists a minimal value tree s of X and there exists a minimal value tree t of Y and there exists a finite binary tree v decorated with elements of \mathbb{R}_N such that $T_1(i) = X$ and $Y = X \setminus \{s\}$ and $v \in \{\text{MakeTree}(t, s, ((\text{the maximal value of } X) + 1)), \text{MakeTree}(s, t, ((\text{the maximal value of } X) + 1))\}$ and $T_1(i + 1) = (X \setminus \{t, s\}) \cup \{v\}$, and

(iv) there exists a finite binary tree T decorated with elements of \mathbb{R}_N such that $\{T\} = T_1(\text{len } T_1)$, and

(v) $\text{dom } q = \overline{S}$, and

(vi) for every natural number k such that $k \in \overline{S}$ holds $q(k) = \overline{T_1(k)}$ and $q(k) \neq 0$, and

(vii) for every natural number k such that $k < \overline{S}$ holds $q(k + 1) = q(1) - k$, and

(viii) for every natural number k such that $1 \leq k < \overline{S}$ holds $2 \leq q(k)$.

Now we state the proposition:

(17) There exists T_1 and there exists q such that T_1, q, and p are constructing binary Huffman tree. The theorem is a consequence of (5) and (6). PROOF: Define $\mathcal{A}[\text{natural number, set, set}] \equiv$ if there exist elements u, v such that $u \neq v$ and $u, v \in \mathbb{S}_2$, then there exist non empty finite subsets X, Y of the binary finite trees of \mathbb{R}_N and there exists a minimal value tree s of X and there exists a minimal value tree t of Y and there exists a finite binary tree w decorated with elements of \mathbb{R}_N such that $\mathbb{S}_2 = X$ and $\mathbb{S}_1 = Y = X \setminus \{s\}$ and $w \in \{\text{MakeTree}(t, s, ((\text{the maximal value of } X) + 1)), \text{MakeTree}(s, t, ((\text{the maximal value of } X) + 1))\}$ and $\mathbb{S}_3 = (X \setminus \{t, s\}) \cup \{w\}$. For every natural number n such that $1 \leq n < \overline{S}$ for every element x of the Boolean binary finite trees of \mathbb{R}_N, there exists an element y of the Boolean binary finite trees of \mathbb{R}_N such that $\mathcal{A}[n, x, y]$. Reconsider $I = \text{InitTrees} p$ as an element of the Boolean binary finite trees of \mathbb{R}_N. Consider T_1 being a finite sequence of elements of the Boolean binary finite trees of \mathbb{R}_N such that $\text{len } T_1 = \overline{S}$ and $T_1(1) = I$ or $\overline{S} = 0$ and for every natural number n such that $1 \leq n < \overline{S}$ holds $\mathcal{A}[n, T_1(n), T_1(n + 1)]$ from [15, Sch. 4]. Define $\mathcal{B}[\text{element, element}] \equiv$ there exists a finite set X such that
$T_1(\mathcal{S}_1) = X$ and $\mathcal{S}_2 = \overline{X}$ and $\mathcal{S}_2 \neq 0$. For every natural number k such that $k \in \text{Seg} \overline{\mathcal{S}}$ there exists an element x of \mathbb{N} such that $\mathcal{B}[k, x]$ by [11] (3)). Consider q being a finite sequence of elements of \mathbb{N} such that $\text{dom} q = \text{Seg} \overline{\mathcal{S}}$ and for every natural number k such that $k \in \text{Seg} \overline{\mathcal{S}}$ holds $\mathcal{B}[k, q(k)]$ from \mathcal{S}, Sch. 5]. For every natural number k such that $k \in \text{Seg} \overline{\mathcal{S}}$ holds $q(k) = T_1(k)$ and $q(k) \neq 0$. For every natural number k such that $1 \leq k < \overline{\mathcal{S}}$ holds if $2 \leq q(k)$, then $q(k+1) = q(k) - 1$ by \mathcal{S}, (1)], [2] (10), (11), (13)]. Define $\mathcal{C}[\text{natural number}] \equiv$ if $\mathcal{S}_1 < \overline{\mathcal{S}}$, then $q(\mathcal{S}_1 + 1) = q(1) - \mathcal{S}_1$. For every natural number n such that $\mathcal{C}[n]$ holds $\mathcal{C}[n + 1]$ by [2] (10), \mathcal{S}, (1)], [2] (14), (13)]. For every natural number n, $\mathcal{C}[n]$ from [2, Sch. 2]. For every natural number n such that $1 \leq n < \overline{\mathcal{S}}$ holds $2 \leq q(n)$ by [2] (21), (13)]. For every natural number k such that $1 \leq k < \text{len} T_1$ there exist non empty finite subsets X, Y of the binary finite trees of $\mathbb{R}_\mathbb{N}$ and there exists a minimal value tree s of X and there exists a minimal value tree t of Y and there exists a finite binary tree w decorated with elements of $\mathbb{R}_\mathbb{N}$ such that $T_1(k) = X$ and $Y = X \setminus \{s\}$ and $w \in \{\text{MakeTree}(t, s, ((\text{the maximal value of } X) + 1)), \text{MakeTree}(s, t, ((\text{the maximal value of } X) + 1))\}$ and $T_1(k + 1) = (X \setminus \{t, s\}) \cup \{w\}$ by \mathcal{S}, (1)]. Consider T_2 being a finite set such that $T_1(\mathcal{S}) = T_2$ and $q(\mathcal{S}) = T_2$ and $q(\mathcal{S}) \neq 0$. Consider u being an element such that $T_2 = \{u\}$.

Let us consider \mathcal{S} and p. A binary Huffman tree of p is a finite binary tree decorated with elements of $\mathbb{R}_\mathbb{N}$ and is defined by

(Def. 13) There exists a finite sequence T_1 of elements of the Boolean binary finite trees of $\mathbb{R}_\mathbb{N}$ and there exists a finite sequence q of elements of \mathbb{N} such that T_1, q, and p are constructing binary Huffman tree and $\{it\} = T_1(\text{len} T_1)$.

In this paper T denotes a binary Huffman tree of p.

Now we state the propositions:

(18) \cup the set of leaves of InitTrees $p = \{z\}$, where z is an element of $\mathbb{N} \times \mathbb{R}$: there exists an element x of \mathcal{S} such that $z = ((\text{CFS}(\mathcal{S}))^{-1}(x), \text{p}(\{x\}))$. The theorem is a consequence of (16). PROOF: Set $L = \cup$ the set of leaves of InitTrees p. Set $R = \{z\}$, where z is an element of $\mathbb{N} \times \mathbb{R}$: there exists an element x of \mathcal{S} such that $z = ((\text{CFS}(\mathcal{S}))^{-1}(x), \text{p}(\{x\}))$. For every element $x, x \in L$ iff $x \in R$ by [13] (87)], [7] (3)]. □

(19) Suppose T_1, q, and p are constructing binary Huffman tree. Let us consider a natural number i. Suppose $1 \leq i \leq \text{len} T_1$. Then \cup the set of leaves of $T_1(i) = \{z\}$, where z is an element of $\mathbb{N} \times \mathbb{R}$: there exists an element x of \mathcal{S} such that $z = ((\text{CFS}(\mathcal{S}))^{-1}(x), \text{p}(\{x\}))$. The theorem is a consequence of (18), (8), and (14). PROOF: Define $\mathcal{P}[\text{natural number}] \equiv$ if $\mathcal{S}_1 < \text{len} T_1$, then \cup the set of leaves of $T_1(\mathcal{S}_1 + 1) = \{z\}$, where z is an element of $\mathbb{N} \times \mathbb{R}$: there exists an element x of \mathcal{S} such that $z = ((\text{CFS}(\mathcal{S}))^{-1}(x)$,
Leaves(T) = \{ z, \text{where } z \text{ is an element of } \mathbb{N} \times \mathbb{R} : \text{there exists an element } x \text{ of } \mathbb{S} \text{ such that } z = \langle (\text{CFS}(\mathbb{S}))^{-1}(x), p(\{x\}) \rangle \}. The theorem is a consequence of (19) and (7).

Let us consider elements t, s, r of dom T. Suppose

(i) t ∈ dom T \ Leaves(dom T), and
(ii) s = t \langle 0 \rangle, and
(iii) r = t \langle 1 \rangle.

Then the value of tree of t = (the value of tree of s) + (the value of tree of r). The theorem is a consequence of (21).

Let us consider a non empty finite subset X of the binary finite trees of \(\mathbb{R}_N \). Suppose a finite binary tree T decorated with elements of \(\mathbb{R}_N \) and for every natural number i, \(\mathbb{P}[i] \) from [2 Sch. 2].

Proof: For every element a such that
Suppose T_1, q, and p are constructing binary Huffman tree. Let us consider a natural number i. Suppose $1 \leq i < \text{len} T_1$. Let us consider non empty finite subsets X, Y of the binary finite trees of \mathbb{R}_N. Suppose

(i) $X = T_1(i)$, and

(ii) $Y = T_1(i+1)$.

Then the maximal value of $Y = (\text{the maximal value of } X) + 1$. **Proof:**

Consider X, Y being non empty finite subsets of the binary finite trees of \mathbb{R}_N, s being a minimal value tree of X, t being a minimal value tree of Y, v being a finite binary tree decorated with elements of \mathbb{R}_N such that $T_1(i) = X$ and $Y = X \setminus \{s\}$ and $v \in \{\text{MakeTree}(t,s,((\text{the maximal value of } X) + 1)), \text{MakeTree}(s,t,((\text{the maximal value of } X) + 1))\}$ and $T_1(i + 1) = (X \setminus \{t,s\}) \cup \{v\}$. Consider L_1 being a non empty finite subset of \mathbb{N} such that $L_1 = \{\text{the value of root from left of } p, \text{ where } p \text{ is an element of the binary finite trees of } \mathbb{R}_N : p \in X0\}$ and the maximal value of $X0 = \max L_1$. Consider L_4 being a non empty finite subset of \mathbb{N} such that $L_4 = \{\text{the value of root from left of } p, \text{ where } p \text{ is an element of the binary finite trees of } \mathbb{R}_N : p \in Y0\}$ and the maximal value of $Y0 = \max L_4$. Reconsider $p_1 = v$ as an element of the binary finite trees of \mathbb{R}_N. For every extended real x such that $x \in L_4$ holds $x \leq \text{the value of root from left of } p_1$ by [2, (16)]. □

Let us consider a natural number i, a non empty finite subset X of the binary finite trees of \mathbb{R}_N, a finite binary tree T decorated with elements of \mathbb{R}_N, an element p of $\text{dom } T$, and an element r of \mathbb{N}. Now we state the propositions:

(25) Suppose T_1, q, and p are constructing binary Huffman tree. Then if $X = T_1(i)$, then if $T \in X$, then if $r = T(p)_{1}$, then $r \leq \text{the maximal value of } X$.

(26) Suppose T_1, q, and p are constructing binary Huffman tree. Then if $X = T_1(i)$, then if $T \in X$, then if $r = T(p)_{1}$, then $r \leq \text{the maximal value of } X$.

Now we state the proposition:

(27) Suppose T_1, q, and p are constructing binary Huffman tree. Let us consider a natural number i, finite binary trees s, t decorated with elements of \mathbb{R}_N, and a non empty finite subset X of the binary finite trees of \mathbb{R}_N. Suppose

(i) $X = T_1(i)$, and

(ii) s, $t \in X$.

Let us consider a finite binary tree z decorated with elements of \mathbb{R}_N. Suppose $z \in X$. Then $\{((\text{the maximal value of } X) + 1, (\text{the value of root from right of } t) + (\text{the value of root from right of } s)) \notin \text{rng } z\}$. The theorem is a consequence of (26).

Let x be an element. Note that the root tree of x is one-to-one.

Now we state the propositions:

(28) Let us consider a non empty finite subset X of the binary finite trees of \mathbb{R}_N and finite binary trees s, t, w decorated with elements of \mathbb{R}_N. Suppose

(i) for every finite binary tree T decorated with elements of \mathbb{R}_N such that $T \in X$ for every element p of $\text{dom } T$ for every element r of \mathbb{N} such that $r = T(p)_1$ holds $r \leq \text{the maximal value of } X$, and

(ii) for every finite binary trees p, q decorated with elements of \mathbb{R}_N such that $p, q \in X$ and $p \neq q$ holds $\text{rng } p \cap \text{rng } q = \emptyset$, and

(iii) $s, t \in X$, and

(iv) $s \neq t$, and

(v) $w \in X \setminus \{s, t\}$.

Then $\text{rng } \text{MakeTree}(t, s, ((\text{the maximal value of } X) + 1)) \cap \text{rng } w = \emptyset$. The theorem is a consequence of (11) and (12). Proof: Set $d = \text{MakeTree}(t, s, ((\text{the maximal value of } X) + 1))$. For every element a such that $a \in \text{dom } d$ holds $a = \emptyset$ or there exists an element f of $\text{dom } t$ such that $a = (0) \cap f$ or there exists an element f of $\text{dom } s$ such that $a = (1) \cap f$ by [2] (23)]. Consider n_2 being an element such that $n_2 \in \text{rng } d \cap \text{rng } w$. Consider a_1 being an element such that $a_1 \in \text{dom } d$ and $n_2 = d(a_1)$. Consider b_1 being an element such that $b_1 \in \text{dom } w$ and $n_2 = w(b_1)$. $w \in X$ and $w \neq s$ and $w \neq t$. □

(29) Suppose T_1, q, p are constructing binary Huffman tree. Let us consider a natural number i and finite binary trees T, S decorated with elements of \mathbb{R}_N. Suppose

(i) $T, S \in T_1(i)$, and

(ii) $T \neq S$.

Then $\text{rng } T \cap \text{rng } S = \emptyset$. The theorem is a consequence of (26) and (28). Proof: Define $\mathcal{P}[\text{natural number}] \equiv$ if $1 \leq s_1 \leq \text{len } T_1$, then for every finite binary trees T, S decorated with elements of \mathbb{R}_N such that $T, S \in T_1(s_1)$ and $T \neq S$ holds $\text{rng } T \cap \text{rng } S = \emptyset$. For every natural number i such that $\mathcal{P}[i]$ holds $\mathcal{P}[i + 1]$ by [21] (8)], [2] (16), (14)]. For every natural number i, $\mathcal{P}[i]$ from [2] Sch. 2]. □

(30) Let us consider a non empty finite subset X of the binary finite trees of \mathbb{R}_N and finite binary trees s, t decorated with elements of \mathbb{R}_N. Suppose

(i) s is one-to-one, and
(ii) t is one-to-one, and
(iii) $t, s \in X$, and
(iv) $\text{rng } s \cap \text{rng } t = \emptyset$, and
(v) for every finite binary tree z decorated with elements of \mathbb{R}_N such that $z \in X$ holds $\langle (\text{the maximal value of } X) + 1, (\text{the value of root from right of } t) + (\text{the value of root from right of } s) \rangle \notin \text{rng } z$.

Then $\text{MakeTree}(t, s, ((\text{the maximal value of } X) + 1))$ is one-to-one. The theorem is a consequence of (11) and (12). \textbf{Proof:} Set $d = \text{MakeTree}(t, s, ((\text{the maximal value of } X) + 1))$. For every element a such that $a \in \text{dom } d$ holds

$a = \emptyset$ or there exists an element f of $\text{dom } t$ such that $a = \langle 0 \rangle \uparrow f$ or there exists an element f of $\text{dom } s$ such that $a = \langle 1 \rangle \uparrow f$ by [2, (23)].

For every element x such that $x \in \text{dom } d$ and $x \neq \emptyset$ holds $d(x) \neq d(\emptyset)$ by [11, (3)]. For every elements x_1, x_2 such that $x_1, x_2 \in \text{dom } d$ and $d(x_1) = d(x_2)$ holds it is not true that there exists an element f of $\text{dom } s$ such that $x_1 = \langle 1 \rangle \uparrow f$ and there exists an element f of $\text{dom } t$ such that $x_2 = \langle 0 \rangle \uparrow f$ by [11, (3)]. For every elements x_1, x_2 such that $x_1, x_2 \in \text{dom } d$ and $d(x_1) = d(x_2)$ holds $x_1 = x_2$. \hfill \square

(31) Suppose T_1, q, and p are constructing binary Huffman tree. Let us consider a natural number i and a finite binary tree T decorated with elements of \mathbb{R}_N. If $T \in T_1(i)$, then T is one-to-one. The theorem is a consequence of (27), (29), and (30). \textbf{Proof:} Define $\mathcal{P}[\text{natural number}] \equiv$ if $1 \leq i_1 \leq \text{len } T_1$, then for every finite binary tree T decorated with elements of \mathbb{R}_N such that $T \in T_1(i_1)$ holds T is one-to-one. For every natural number i such that $\mathcal{P}[i]$ holds $\mathcal{P}[i + 1]$ by [2] (16), (14)]. For every natural number i, $\mathcal{P}[i]$ from [2] Sch. 2. \hfill \square

Let us consider p.

Now we are at the position where we can present the Main Theorem of the paper: Every binary Huffman tree of p is one-to-one.

\textbf{References}

Constructing binary Huffman tree

Received June 18, 2013