Borel-Cantelli Lemma

Peter Jaeger
Ludwig Maximilians University of Munich
Germany

Summary. This article is about the Borel-Cantelli Lemma in probability theory. Necessary definitions and theorems are given in [10] and [7].

The notation and terminology used here have been introduced in the following papers: [17], [3], [4], [8], [13], [1], [2], [5], [15], [14], [21], [9], [12], [11], [16], [6], [20], [19], and [18].

For simplicity, we adopt the following rules: \(O_1 \) is a non empty set, \(S_1 \) is a \(\sigma \)-field of subsets of \(O_1 \), \(P_1 \) is a probability on \(S_1 \), \(A \) is a sequence of subsets of \(S_1 \), and \(n \) is an element of \(\mathbb{N} \).

Let \(D \) be a set, let \(x, y \) be extended real numbers, and let \(a, b \) be elements of \(D \). Then \((x > y \rightarrow a, b)\) is an element of \(D \).

We now state two propositions:

1. For every element \(k \) of \(\mathbb{N} \) and for every element \(x \) of \(\mathbb{R} \) such that \(k \) is odd and \(x > 0 \) and \(x \leq 1 \) holds \((-x \exp\text{Seq}_{\mathbb{R}})(k+1)+(-x \exp\text{Seq}_{\mathbb{R}})(k+2) \geq 0\).

2. For every element \(x \) of \(\mathbb{R} \) holds \(1 + x \leq (\text{the function } \exp)(x)\).

Let \(s \) be a sequence of real numbers. The functor \(\text{ExpFuncWithElementOf} \) yielding a sequence of real numbers is defined as follows:

\[
\text{Def. 1} \quad \text{For every natural number } d \text{ holds } \langle \text{ExpFuncWithElementOf}(P_1 \cdot A) \rangle(d) = \sum_{\kappa = 0}^{d} -s(d) \exp\text{Seq}_{\mathbb{R}}.
\]

Next we state two propositions:

3. \(\langle \text{The partial product of } \text{ExpFuncWithElementOf}(P_1 \cdot A) \rangle(n) = \langle \text{the function } \exp \rangle(-\langle \sum_{\kappa = 0}^{\kappa}(P_1 \cdot A)(\kappa) \rangle_{\kappa \in \mathbb{N}}(n)). \)

The author wants to thank Prof. F. Merkl for his kind support during the course of this work.
(4) \((\text{the partial product of } P \cdot A^c)\)(n) \(\leq\) \((\text{the partial product of } \text{ExpFuncWithElementOf}(P \cdot A))\)(n).

Let \(n_1, n_2\) be elements of \(\mathbb{N}\). The functor \(\text{SeqOfIFGT1}(n_1, n_2)\) yielding a sequence of \(\mathbb{N}\) is defined by:

(Def. 2) For every element \(n\) of \(\mathbb{N}\) holds \((\text{SeqOfIFGT1}(n_1, n_2))(n) = (n > n_1 \rightarrow n + n_2, n)\).

Let \(k\) be an element of \(\mathbb{N}\). The \(\text{SeqOfIFGT2} k\) yields a sequence of \(\mathbb{N}\) and is defined by:

(Def. 3) For every element \(n\) of \(\mathbb{N}\) holds \((\text{SeqOfIFGT2} k)(n) = n + k\).

Let \(k\) be an element of \(\mathbb{N}\). The \(\text{SeqOfIFGT3} k\) yields a sequence of \(\mathbb{N}\) and is defined as follows:

(Def. 4) For every element \(n\) of \(\mathbb{N}\) holds \((\text{SeqOfIFGT3} k)(n) = (n > k \rightarrow 0, 1)\).

Let \(n_1, n_2\) be elements of \(\mathbb{N}\). One can verify that \(\text{SeqOfIFGT1}(n_1, n_2)\) is one-to-one and \(\text{SeqOfIFGT4}(n_1, n_2)\) is one-to-one.

(5)(i) For all sequences \(A, B\) of subsets of \(S_1\) such that \(n > n_1\) and \(B = A \cdot \text{SeqOfIFGT1}(n_1, n_2)\) holds \((\text{the partial product of } P \cdot B)(n) = (\text{the partial product of } P \cdot A)(n_1) \cdot (\text{the partial product of } P \cdot \text{SeqOfIFGT3}(A, n_1 + n_2 + 1))(n - n_1 - 1)\), and

(ii) for all sequences \(A, B, C\) of subsets of \(S_1\) and for every sequence \(e\) of \(\mathbb{N}\) such that \(n > n_1\) and \(C = A \cdot e\) and \(B = C \cdot \text{SeqOfIFGT1}(n_1, n_2)\) holds \((\text{the partial Intersection of } B)(n) = (\text{the partial Intersection of } C)(n_1) \cap (\text{the partial Intersection of } \text{SeqOfIFGT3}(C, n_1 + n_2 + 1))(n - n_1 - 1)\).

Let \(O_1\) be a non empty set, let \(S_1\) be a \(\sigma\)-field of subsets of \(O_1\), let \(P_1\) be a probability on \(S_1\), and let \(A\) be a sequence of subsets of \(S_1\). We say that \(A\) is all independent w.r.t. \(P_1\) if and only if the condition (Def. 8) is satisfied.
(Def. 8) Let B be a sequence of subsets of S_1. Given a sequence e of \mathbb{N} such that e is one-to-one and for every element n of \mathbb{N} holds $A(e(n)) = B(n)$. Let n be an element of \mathbb{N}. Then (the partial product of $P_1 \cdot B)(n) = P_1((\text{the partial Intersection of } B)(n))$.

The following propositions are true:

(6) Suppose $n > n_1$ and A is all independent w.r.t. P_1. Then $P_1((\text{the partial Intersection of } A^c)(n_1)) \cap (\text{the partial Intersection of } @\text{ShiftSeq}(A, n_1 + n_2 + 1))(n - n_1 - 1)) = (\text{the partial product of } P_1 \cdot A^c)(n_1) \cdot (\text{the partial product of } P_1 \cdot @\text{ShiftSeq}(A, n_1 + n_2 + 1))(n - n_1 - 1)$.

(7) $(\text{The partial Intersection of } A^c)(n) = (\text{the partial Union of } A)(n)^c$.

(8) $P_1((\text{the partial Intersection of } A^c)(n)) = 1 - P_1((\text{the partial Union of } A)(n))$.

Let X be a set and let A be a sequence of subsets of X. The UnionShiftSeq A yielding a sequence of subsets of X is defined as follows:

(Def. 9) For every element n of \mathbb{N} holds $(\text{the UnionShiftSeq } A)(n) = \bigcup \text{ShiftSeq}(A, n)$.

Let O_1 be a non empty set, let S_1 be a σ-field of subsets of O_1, and let A be a sequence of subsets of S_1. The $\text{UnionShiftSeq } A$ yields a sequence of subsets of S_1 and is defined as follows:

(Def. 10) The $@\text{UnionShiftSeq } A = \text{the UnionShiftSeq } A$.

Let O_1 be a non empty set, let S_1 be a σ-field of subsets of O_1, and let A be a sequence of subsets of S_1. The $@\text{lim sup } A$ yielding an event of S_1 is defined as follows:

(Def. 11) The $@\text{lim sup } A = \bigcap (\text{the UnionShiftSeq } A)$.

Let X be a set and let A be a sequence of subsets of X. The IntersectShiftSeq A yielding a sequence of subsets of X is defined as follows:

(Def. 12) For every element n of \mathbb{N} holds $(\text{the IntersectShiftSeq } A)(n) = \text{Intersection ShiftSeq}(A, n)$.

Let O_1 be a non empty set, let S_1 be a σ-field of subsets of O_1, and let A be a sequence of subsets of S_1. The $@\text{IntersectShiftSeq } A$ yielding a sequence of subsets of S_1 is defined as follows:

(Def. 13) The $@\text{IntersectShiftSeq } A = \text{the IntersectShiftSeq } A$.

Let O_1 be a non empty set, let S_1 be a σ-field of subsets of O_1, and let A be a sequence of subsets of S_1. The $@\text{lim inf } A$ yielding an event of S_1 is defined by:

(Def. 14) The $@\text{lim inf } A = \bigcup (\text{the IntersectShiftSeq } A)$.

The following propositions are true:

(9) $(\text{The IntersectShiftSeq } A^c)(n) = (\text{the UnionShiftSeq } A)(n)^c$.

\[\text{Borel-Cantelli lemma}\] 229
(10) Suppose \(A \) is all independent w.r.t. \(P_1 \). Then \(P_1((\text{the partial Intersection of } A^c(n)) = (\text{the partial product of } P_1 \cdot A^c)(n) \).

(11) Let \(X \) be a set and \(A \) be a sequence of subsets of \(X \). Then

(i) the superior setsequence \(A = \text{the UnionShiftSeq} A \), and

(ii) the inferior setsequence \(A = \text{the IntersectShiftSeq} A \).

(12)(i) The superior setsequence \(A = \text{the @UnionShiftSeq} A \), and

(ii) the inferior setsequence \(A = \text{the @IntersectShiftSeq} A \).

Let \(O_1 \) be a non empty set, let \(S_1 \) be a \(\sigma \)-field of subsets of \(O_1 \), let \(P_1 \) be a probability on \(S_1 \), and let \(A \) be a sequence of subsets of \(S_1 \). The functor \(\text{SumShiftSeq}(P_1, A) \) yields a sequence of real numbers and is defined by:

(Def. 15) For every element \(n \) of \(\mathbb{N} \) holds \((\text{SumShiftSeq}(P_1, A))(n) = \sum(P_1 \cdot \text{@ShiftSeq}(A, n)) \).

We now state several propositions:

(13) If \((\sum_{\alpha=0}^n (P_1 \cdot A)((\alpha))_{\alpha \in \mathbb{N}} \) is convergent, then \(P_1((\text{the @lim sup} A) = 0 \) and \(\lim \text{SumShiftSeq}(P_1, A) = 0 \) and \(\text{SumShiftSeq}(P_1, A) \) is convergent.

(14)(i) For every set \(X \) and for every sequence \(A \) of subsets of \(X \) and for every element \(n \) of \(\mathbb{N} \) and for every set \(x \) holds there exists an element \(k \) of \(\mathbb{N} \) such that \(x \in (\text{ShiftSeq}(A, n))(k) \) iff there exists an element \(k \) of \(\mathbb{N} \) such that \(k \geq n \) and \(x \in A(k) \),

(ii) for every set \(X \) and for every sequence \(A \) of subsets of \(X \) and for every set \(x \) holds \(x \in \text{Intersection} (\text{the UnionShiftSeq} A) \) iff for every element \(m \) of \(\mathbb{N} \) there exists an element \(n \) of \(\mathbb{N} \) such that \(n \geq m \) and \(x \in A(n) \),

(iii) for every sequence \(A \) of subsets of \(S_1 \) and for every set \(x \) holds \(x \in \bigcap (\text{the @UnionShiftSeq} A) \) iff for every element \(m \) of \(\mathbb{N} \) there exists an element \(n \) of \(\mathbb{N} \) such that \(n \geq m \) and \(x \in A(n) \),

(iv) for every set \(X \) and for every sequence \(A \) of subsets of \(X \) and for every set \(x \) holds \(x \in \bigcup (\text{the IntersectShiftSeq} A) \) iff there exists an element \(n \) of \(\mathbb{N} \) such that \(k \geq n \) holds \(x \in A(k) \),

(v) for every sequence \(A \) of subsets of \(S_1 \) and for every set \(x \) holds \(x \in \bigcup (\text{the @IntersectShiftSeq} A^c) \) iff there exists an element \(n \) of \(\mathbb{N} \) such that for every element \(k \) of \(\mathbb{N} \) such that \(k \geq n \) holds \(x \in A(k) \), and

(vi) for every sequence \(A \) of subsets of \(S_1 \) and for every element \(x \) of \(O_1 \) holds \(x \in \bigcup (\text{the @IntersectShiftSeq} A^c) \) iff there exists an element \(n \) of \(\mathbb{N} \) such that for every element \(k \) of \(\mathbb{N} \) such that \(k \geq n \) holds \(x \notin A(k) \).

(15)(i) \(\lim \sup A = \text{the @lim sup} A, \)

(ii) \(\lim \inf A = \text{the @lim inf} A, \)

(iii) \(\text{the @lim inf} A^c = (\text{the @lim sup} A)^c, \)

(iv) \(P_1(\text{the @lim inf} A^c) + P_1(\text{the @lim sup} A) = 1, \) and

(v) \(P_1(\lim \inf(A^c)) + P_1(\lim \sup A) = 1. \)
(16)(i) If \((\sum_{n=0}^{\infty}(P_{n} \cdot A)(\alpha))_{\kappa \in \mathbb{N}}\) is convergent, then \(P_{1}(\lim \sup A) = 0\) and \(P_{1}(\lim \inf (A^{c})) = 1\), and

(ii) if \(A\) is all independent w.r.t. \(P_{1}\) and \((\sum_{n=0}^{\infty}(P_{n} \cdot A)(\alpha))_{\kappa \in \mathbb{N}}\) is divergent to \(+\infty\), then \(P_{1}(\lim \inf (A^{c})) = 0\) and \(P_{1}(\lim \sup A) = 1\).

(17) If \((\sum_{n=0}^{\infty}(P_{n} \cdot A)(\alpha))_{\kappa \in \mathbb{N}}\) is not convergent and \(A\) is all independent w.r.t. \(P_{1}\), then \(P_{1}(\lim \inf (A^{c})) = 0\) and \(P_{1}(\lim \sup A) = 1\).

(18) If \(A\) is all independent w.r.t. \(P_{1}\), then \(P_{1}(\lim \inf (A^{c})) = 0\) or \(P_{1}(\lim \inf (A^{c})) = 1\) but \(P_{1}(\lim \sup A) = 0\) or \(P_{1}(\lim \sup A) = 1\).

(19) \((\sum_{n=0}^{\infty}(P_{1} \cdot \Delta \text{ShiftSeq}(A, n_{1}+1))(\alpha))_{\kappa \in \mathbb{N}}(n) \leq (\sum_{n=0}^{\infty}(P_{1} \cdot A)(\alpha))_{\kappa \in \mathbb{N}}(n_{1}+1+n) - (\sum_{n=0}^{\infty}(P_{1} \cdot A)(\alpha))_{\kappa \in \mathbb{N}}(n_{1}).

(20) \(P_{1}(\text{the @IntersectShiftSeq } A^{c})(n)) = 1 - P_{1}(\text{the @UnionShiftSeq } A)(n)).

(21)(i) If \(A^{c}\) is all independent w.r.t. \(P_{1}\), then \(P_{1}(\text{the partial Intersection of } A)(n) = (\text{the partial product of } P_{1} \cdot A)(n)\), and

(ii) if \(A\) is all independent w.r.t. \(P_{1}\), then \(1 - P_{1}(\text{the partial Union of } A)(n)) = (\text{the partial product of } P_{1} \cdot A^{c})(n)\).

References

Received January 31, 2011