Definition of First Order Language with Arbitrary Alphabet. Syntax of Terms, Atomic Formulas and their Subterms

Marco B. Caminati
Mathematics Department “G.Castelnuovo”
Sapienza University of Rome
Piazzale Aldo Moro 5, 00185 Roma, Italy

Summary. Second of a series of articles laying down the bases for classical first order model theory. A language is defined basically as a tuple made of an integer-valued function (adicity), a symbol of equality and a symbol for the NOR logical connective. The only requests for this tuple to be a language is that the value of the adicity in \(=\) is -2 and that its preimage (i.e. the variables set) in 0 is infinite. Existential quantification will be rendered (see [11]) by mere prefixing a formula with a letter. Then the hierarchy among symbols according to their adicity is introduced, taking advantage of attributes and clusters.

The strings of symbols of a language are depth-recursively classified as terms using the standard approach (see for example [16], definition 1.1.2); technically, this is done here by deploying the ‘multiCat’ functor and the ‘unambiguous’ attribute previously introduced in [10], and the set of atomic formulas is introduced. The set of all terms is shown to be unambiguous with respect to concatenation; we say that it is a prefix set. This fact is exploited to uniquely define the subterms both of a term and of an atomic formula without resorting to a parse tree.

MML identifier: FOMODEL1, version: 7.11.07 4.160.1126

The papers [1], [3], [18], [5], [6], [12], [10], [7], [8], [9], [19], [14], [13], [2], [17], [4], [21], [22], [15], and [20] provide the terminology and notation for this paper.

We follow the rules: \(m, n\) are natural numbers, \(m_1, n_1\) are elements of \(\mathbb{N}\), and \(X, x, z\) are sets.

Let \(z\) be a zero integer number. One can check that \(|z|\) is zero.

1The author wrote this paper as part of his PhD thesis research.
2I would like to thank Marco Pedicini for his encouragement and support.
Let us observe that there exists a real number which is negative and integer and every integer number which is positive is also natural.

Let \(S \) be a non degenerated zero-one structure. Observe that \((\text{the carrier of } S) \setminus \{\text{the one of } S\}\) is non empty.

We introduce languages-like which are extensions of zero-one structure and are systems
\[
\langle \text{a carrier, a zero, a one, an adicity} \rangle,
\]
where the carrier is a set, the zero and the one are elements of the carrier, and
the adicity is a function from the carrier \(\setminus\{\text{the one}\}\) into \(\mathbb{Z}\).

Let \(S \) be a language-like. The functor \(\text{AllSymbolsOf } S \) is defined by:

(Def. 1) \(\text{AllSymbolsOf } S = \text{the carrier of } S \).

The functor \(\text{LettersOf } S \) is defined as follows:

(Def. 2) \(\text{LettersOf } S = (\text{the adicity of } S)^{-1}(\{0\}) \).

The functor \(\text{OpSymbolsOf } S \) is defined by:

(Def. 3) \(\text{OpSymbolsOf } S = (\text{the adicity of } S)^{-1}(\mathbb{N} \setminus \{0\}) \).

The functor \(\text{RelSymbolsOf } S \) is defined by:

(Def. 4) \(\text{RelSymbolsOf } S = (\text{the adicity of } S)^{-1}(\mathbb{Z} \setminus \mathbb{N}) \).

The functor \(\text{TermSymbolsOf } S \) is defined as follows:

(Def. 5) \(\text{TermSymbolsOf } S = (\text{the adicity of } S)^{-1}(\mathbb{N}) \).

The functor \(\text{LowerCompoundersOf } S \) is defined as follows:

(Def. 6) \(\text{LowerCompoundersOf } S = (\text{the adicity of } S)^{-1}(\mathbb{Z} \setminus \{0\}) \).

The functor \(\text{TheEqSymbOf } S \) is defined as follows:

(Def. 7) \(\text{TheEqSymbOf } S = \text{the zero of } S \).

The functor \(\text{TheNorSymbOf } S \) is defined as follows:

(Def. 8) \(\text{TheNorSymbOf } S = \text{the one of } S \).

The functor \(\text{OwnSymbolsOf } S \) is defined by:

(Def. 9) \(\text{OwnSymbolsOf } S = (\text{the carrier of } S) \setminus \{\text{the zero of } S, \text{the one of } S\} \).

Let \(S \) be a language-like. An element of \(S \) is an element of \(\text{AllSymbolsOf } S \).

The functor \(\text{AtomicFormulaSymbolsOf } S \) is defined by:

(Def. 10) \(\text{AtomicFormulaSymbolsOf } S = \text{AllSymbolsOf } S \setminus \{\text{TheNorSymbOf } S\} \).

The functor \(\text{AtomicTermsOf } S \) is defined by:

(Def. 11) \(\text{AtomicTermsOf } S = (\text{LettersOf } S)^1 \).

We say that \(S \) is operational if and only if:

(Def. 12) \(\text{OpSymbolsOf } S \) is non empty.

We say that \(S \) is relational if and only if:

(Def. 13) \(\text{RelSymbolsOf } S \setminus \{\text{TheEqSymbOf } S\} \) is non empty.

Let \(S \) be a language-like and let \(s \) be an element of \(S \). We say that \(s \) is literal if and only if:
(Def. 14) \(s \in \text{LettersOf} \, S \).
We say that \(s \) is low-compounding if and only if:

(Def. 15) \(s \in \text{LowerCompoundersOf} \, S \).
We say that \(s \) is operational if and only if:

(Def. 16) \(s \in \text{OpSymbolsOf} \, S \).
We say that \(s \) is relational if and only if:

(Def. 17) \(s \in \text{RelSymbolsOf} \, S \).
We say that \(s \) is termal if and only if:

(Def. 18) \(s \in \text{TermSymbolsOf} \, S \).
We say that \(s \) is own if and only if:

(Def. 19) \(s \in \text{OwnSymbolsOf} \, S \).
We say that \(s \) is of-atomic-formula if and only if:

(Def. 20) \(s \in \text{AtomicFormulaSymbolsOf} \, S \).

Let \(S \) be a zero-one structure and let \(s \) be an element of (the carrier of \(S \)) \(\{ \text{the one of} \, S \} \). The functor \(\text{TrivialArity} \, s \) yields an integer number and is defined by:

(Def. 21) \(\text{TrivialArity} \, s = \begin{cases} -2, & \text{if } s = \text{the zero of} \, S, \\ 0, & \text{otherwise}. \end{cases} \)

Let \(S \) be a zero-one structure and let \(s \) be an element of (the carrier of \(S \)) \(\{ \text{the one of} \, S \} \). Then \(\text{TrivialArity} \, s \) is an element of \(\mathbb{Z} \).

Let \(S \) be a non degenerated zero-one structure. The functor \(S \, \text{TrivialArity} \) yielding a function from (the carrier of \(S \)) \(\{ \text{the one of} \, S \} \) into \(\mathbb{Z} \) is defined by:

(Def. 22) For every element \(s \) of (the carrier of \(S \)) \(\{ \text{the one of} \, S \} \) holds \((S \, \text{TrivialArity})(s) = \text{TrivialArity} \, s\).

Let us observe that there exists a non degenerated zero-one structure which is infinite.

Let \(S \) be an infinite non degenerated zero-one structure.
Observe that \((S \, \text{TrivialArity})^{-1}(\{0\})\) is infinite.

Let \(S \) be a language-like. We say that \(S \) is eligible if and only if:

(Def. 23) \(\text{LettersOf} \, S \) is infinite and \((\text{the adicity of} \, S)(\text{TheEqSymbOf} \, S) = -2\).

One can check that there exists a language-like which is non degenerated.
One can check that there exists a non degenerated language-like which is eligible.
A language is an eligible non degenerated language-like.
We follow the rules: \(S, S_1, S_2 \) are languages and \(s, s_1, s_2 \) are elements of \(S \).

Let \(S \) be a non empty language-like. Then \(\text{AllSymbolsOf} \, S \) is a non empty set.

Let \(S \) be an eligible language-like. Note that \(\text{LettersOf} \, S \) is infinite.
Let \(S \) be a language.
Then \(\text{LettersOf} \ S \) is a non-empty subset of \(\text{AllSymbolsOf} \ S \). Note that \(\text{TheEqSymbOf} \ S \) is relational.

Let \(S \) be a non-degenerated language-like. Then \(\text{AtomicFormulaSymbolsOf} \ S \) is a non-empty subset of \(\text{AllSymbolsOf} \ S \).

Let \(S \) be a non-degenerated language-like. Then \(\text{TheEqSymbOf} \ S \) is an element of \(\text{AtomicFormulaSymbolsOf} \ S \).

We now state the proposition

\[(1) \] Let \(S \) be a language. Then \(\text{LettersOf} \ S \cap \text{OpSymbolsOf} \ S = \emptyset \) and \(\text{TermSymbolsOf} \ S \cap \text{LowerCompoundersOf} \ S = \text{OpSymbolsOf} \ S \) and \(\text{RelSymbolsOf} \ S \setminus \text{OwnSymbolsOf} \ S = \{ \text{TheEqSymbOf} \ S \} \) and \(\text{OwnSymbolsOf} \ S \subseteq \text{AtomicFormulaSymbolsOf} \ S \) and \(\text{RelSymbolsOf} \ S \subseteq \text{LowerCompoundersOf} \ S \) and \(\text{OpSymbolsOf} \ S \subseteq \text{TermSymbolsOf} \ S \) and \(\text{LettersOf} \ S \subseteq \text{TermSymbolsOf} \ S \setminus \text{OwnSymbolsOf} \ S \) and \(\text{OpSymbolsOf} \ S \subseteq \text{LowerCompoundersOf} \ S \subseteq \text{AtomicFormulaSymbolsOf} \ S \).

Let \(S \) be a language. One can verify the following observations:

* Every element of \(S \) which is own is also of-atomic-formula,
* Every element of \(S \) which is relational is also low-compounding,
* Every element of \(S \) which is operational is also termal,
* Every element of \(S \) which is literal is also termal,
* Every element of \(S \) which is termal is also own,
* Every element of \(S \) which is operational is also low-compounding,
* Every element of \(S \) which is low-compounding is also of-atomic-formula,
* Every element of \(S \) which is termal is also non relational,
* Every element of \(S \) which is literal is also non relational, and
* Every element of \(S \) which is literal is also non operational.

Let \(S \) be a language. Note that there exists an element of \(S \) which is relational and there exists an element of \(S \) which is literal. Observe that every low-compounding element of \(S \) which is termal is also operational. One can check that there exists an element of \(S \) which is of-atomic-formula.

Let \(s \) be an of-atomic-formula element of \(S \). The functor \(\text{ar} \ s \) yielding an element of \(\mathbb{Z} \) is defined by:

\[(\text{Def. 24}) \quad \text{ar} \ s = (\text{the adicity of} \ S)(s). \]

Let \(S \) be a language and let \(s \) be a literal element of \(S \). Note that \(\text{ar} \ s \) is zero. The functor \(S\text{-cons} \) yielding a binary operation on \((\text{AllSymbolsOf} \ S)^* \) is defined as follows:

\[(\text{Def. 25}) \quad S\text{-cons} = \text{the concatenation of} \ \text{AllSymbolsOf} \ S. \]

Let \(S \) be a language.
The functor S-multiCat yields a function from $((\text{AllSymbolsOf } S)^*)^*$ into $(\text{AllSymbolsOf } S)^*$ and is defined by:

(Def. 26) \[S\text{-multiCat} = (\text{AllSymbolsOf } S)\text{-multiCat}. \]

Let S be a language. The functor S-firstChar yielding a function from $(\text{AllSymbolsOf } S)^* \setminus \{\emptyset\}$ into $\text{AllSymbolsOf } S$ is defined as follows:

(Def. 27) \[S\text{-firstChar} = (\text{AllSymbolsOf } S)\text{-firstChar}. \]

Let S be a language and let X be a set. We say that X is S-prefix if and only if:

(Def. 28) \[X \text{ is AllSymbolsOf } S\text{-prefix}. \]

Let S be a language and let X be a set. We say that X is S-prefix if and only if:

(Def. 29) \[\text{Compound}(s, S_3) = \{\langle s \rangle \triangleright S\text{-multiCat}(S_4); S_4 \text{ ranges over } \text{elements of } ((\text{AllSymbolsOf } S)^*)^*; \text{rng } S_4 \subseteq S_3 \land S_4 \text{ is } \{\text{ar } s\}\text{-element}\}. \]

Let S be a language, let s be an of-atomic-formula element of S, and let S_3 be a set. The functor S-termsOfMaxDepth yields a function and is defined by the conditions (Def. 30).

(Def. 30)(i) \[\text{dom}(S\text{-termsOfMaxDepth}) = \mathbb{N}, \]

(ii) \[S\text{-termsOfMaxDepth}(0) = \text{AtomicTermsOf } S, \]

(iii) for every natural number n holds $S\text{-termsOfMaxDepth}(n + 1) = \bigcup\{\text{Compound}(s, S\text{-termsOfMaxDepth}(n)); s \text{ ranges over of-atomic-formula elements of } S; s \text{ is operational}\} \cup S\text{-termsOfMaxDepth}(n)$.

Let us consider S. Then $\text{AtomicTermsOf } S$ is a subset of $(\text{AllSymbolsOf } S)^*$. Let S be a language. The functor $\text{AllTermsOf } S$ is defined as follows:

(Def. 31) \[\text{AllTermsOf } S = \bigcup \text{rng}(S\text{-termsOfMaxDepth}). \]

One can prove the following proposition

(2) \[S\text{-termsOfMaxDepth}(m_1) \subseteq \text{AllTermsOf } S. \]

Let S be a language and let w be a string of S. We say that w is termal if and only if:

(Def. 32) \[w \in \text{AllTermsOf } S. \]

Let m be a natural number, let S be a language, and let w be a string of S. We say that w is m-termal if and only if:
(Def. 33) \(w \in S\text{-termsOfMaxDepth}(m) \).

Let \(m \) be a natural number and let \(S \) be a language. Note that every string of \(S \) which is \(m \)-termal is also termal.

Let us consider \(S \). Then \(S\text{-termsOfMaxDepth} \) is a function from \(\mathbb{N} \) into \(2^{(AllSymbolsOfS)^*} \). Then \(AllTermsOfS \) is a non empty subset of \((AllSymbolsOfS)^* \). Note that \(AllTermsOfS \) is non empty.

Let us consider \(m \). One can verify that \(S\text{-termsOfMaxDepth}(m) \) is non empty. Observe that every element of \(S\text{-termsOfMaxDepth}(m) \) is non empty. Observe that every element of \(AllTermsOfS \) is non empty.

Let \(m \) be a natural number and let \(S \) be a language. Note that there exists a string of \(S \) which is \(m \)-termal. Observe that every string of \(S \) which is 0-termal is also 1-element.

Let \(S \) be a language and let \(w \) be a 0-termal string of \(S \). Observe that \(S\text{-firstChar}(w) \) is literal.

Let us consider \(S \) and let \(w \) be a termal string of \(S \). Observe that \(S\text{-firstChar}(w) \) is termal.

Let us consider \(S \) and let \(t \) be a termal string of \(S \). The functor \(ar_t \) yielding an element of \(Z \) is defined as follows:

(Def. 34) \(ar_t = ar_S\text{-firstChar}(t) \).

Next we state the proposition

(3) For every \(m_1 + 1 \)-termal string \(w \) of \(S \) there exists an element \(T \) of \(S\text{-termsOfMaxDepth}(m_1)^* \) such that \(T \) is \(|ar_S\text{-firstChar}(w)| \)-element and \(w = \langle S\text{-firstChar}(w) \rangle \triangleleft S\text{-multiCat}(T) \).

Let us consider \(S, m \). Note that \(S\text{-termsOfMaxDepth}(m) \) is \(S \)-prefix.

Let us consider \(S \) and let \(V \) be an element of \((AllTermsOfS)^* \). Observe that \(S\text{-multiCat}(V) \) is relation-like.

Let us consider \(S \) and let \(V \) be an element of \((AllTermsOfS)^* \). One can verify that \(S\text{-multiCat}(V) \) is function-like.

Let us consider \(S \) and let \(p_1 \) be a string of \(S \). We say that \(p_1 \) is 0-w.f.f. if and only if:

(Def. 35) There exists a relational element \(s \) of \(S \) and there exists an \(|ar s| \)-element element \(V \) of \((AllTermsOfS)^* \) such that \(p_1 = \langle s \rangle \triangleleft S\text{-multiCat}(V) \).

Let us consider \(S \). Note that there exists a string of \(S \) which is 0-w.f.f.. Let \(p_1 \) be a 0-w.f.f. string of \(S \). Observe that \(S\text{-firstChar}(p_1) \) is relational.

The functor \(AtomicFormulasOfS \) is defined as follows:

(Def. 36) \(AtomicFormulasOfS = \{ p_1; p_1 \text{ ranges over strings of } S; p_1 \text{ is 0-w.f.f.} \} \).

Let us consider \(S \). Then \(AtomicFormulasOfS \) is a subset of \((AllSymbolsOfS)^* \setminus \{ \emptyset \} \). Note that \(AtomicFormulasOfS \) is non empty. Observe that every element of \(AtomicFormulasOfS \) is 0-w.f.f.. Observe that \(AllTermsOfS \) is \(S \)-prefix.
Let us consider S and let t be a termal string of S. The functor SubTerms_t yields an element of $(\text{AllTermsOf } S)^*$ and is defined by:

(Def. 37) SubTerms_t is $| \text{ar } S\text{-firstChar}(t) |$-element and $t = \langle S\text{-firstChar}(t) \rangle \bowtie S\text{-multiCat}(\text{SubTerms}_t)$.

Let us consider S and let t be a termal string of S. One can verify that SubTerms_t is $| \text{ar } t |$-element.

Let t_0 be a 0-termal string of S. Note that SubTerms_t_0 is empty.

Let us consider m_1, S and let t be an $m_1 + 1$-termal string of S. One can verify that SubTerms_t is $S\text{-termsOfMaxDepth}(m_1)$-valued.

Let us consider S and let p_1 be a 0-w.f.f. string of S. The functor SubTerms_{p_1} yields an $| \text{ar } S\text{-firstChar}(p_1) |$-element element of $(\text{AllTermsOf } S)^*$ and is defined as follows:

(Def. 38) $p_1 = \langle S\text{-firstChar}(p_1) \rangle \bowtie S\text{-multiCat}(\text{SubTerms}_{p_1})$.

Let us consider S and let p_1 be a 0-w.f.f. string of S. Note that SubTerms_{p_1} is $| \text{ar } S\text{-firstChar}(p_1) |$-element.

Then $\text{AllTermsOf } S$ is an element of $2^{(\text{AllSymbolsOf } S)^* \setminus \{\emptyset\}}$. Note that every element of $\text{AllTermsOf } S$ is termal. The functor $S\text{-subTerms}$ yielding a function from $\text{AllTermsOf } S$ into $(\text{AllTermsOf } S)^*$ is defined by:

(Def. 39) For every element t of $\text{AllTermsOf } S$ holds $S\text{-subTerms}(t) = \text{SubTerms}_t$.

We now state several propositions:

(4) $S\text{-termsOfMaxDepth}(m) \subseteq S\text{-termsOfMaxDepth}(m + n)$.

(5) If $x \in \text{AllTermsOf } S$, then there exists n_1 such that $x \in S\text{-termsOfMaxDepth}(n_1)$.

(6) $\text{AllTermsOf } S \subseteq (\text{AllSymbolsOf } S)^* \setminus \{\emptyset\}$.

(7) $\text{AllTermsOf } S$ is S-prefix.

(8) If $x \in \text{AllTermsOf } S$, then x is a string of S.

(9) $\text{AtomicFormulaSymbolsOf } S \setminus \text{OwnSymbolsOf } S = \{\text{TheEqSymbOf } S\}$.

(10) $\text{TermSymbolsOf } S \setminus \text{LettersOf } S = \text{OpSymbolsOf } S$.

(11) $\text{AtomicFormulaSymbolsOf } S \setminus \text{RelSymbolsOf } S = \text{TermSymbolsOf } S$.

Let us consider S. Observe that every of-atomic-formula element of S which is non relational is also termal.

Then $\text{ OwnSymbolsOf } S$ is a subset of $\text{ AllSymbolsOf } S$. Observe that every termal element of S which is non literal is also operational.

Next we state three propositions:

(12) x is a string of S if and only if x is a non empty element of $(\text{AllSymbolsOf } S)^*$.

(13) x is a string of S if and only if x is a non empty finite sequence of elements of $\text{AllSymbolsOf } S$.

(14) $S\text{-termsOfMaxDepth}$ is a function from \mathbb{N} into $2^{(\text{AllSymbolsOf } S)^*}$.
Let us consider S. Note that every element of LettersOf S is literal. One can check that TheNorSymbOf S is non low-compounding.

Observe that TheNorSymbOf S is non own.

Next we state the proposition

(15) If $s \neq \text{TheNorSymbOf } S$ and $s \neq \text{TheEqSymbOf } S$, then $s \in \text{OwnSymbolsOf } S$.

For simplicity, we use the following convention: l, l_1, l_2 denote literal elements of S, a denotes an of-atomic-formula element of S, r denotes a relational element of S, w, w_1 denote strings of S, and t_2 denotes an element of AllTermsOf S.

Let us consider S, t. The functor Depth t yielding a natural number is defined by:

(Def. 40) t is Depth t-termal and for every n such that t is n-termal holds Depth $t \leq n$.

Let us consider S, let m_0 be a zero number, and let t be an m_0-termal string of S. Note that Depth t is zero.

Let us consider S and let s be a low-compounding element of S. Note that ar s is non zero.

Let us consider S and let s be a termal element of S. Observe that ar s is non negative and extended real.

Let us consider S and let s be a relational element of S. Note that ar s is negative and extended real.

Next we state the proposition

(16) If t is non 0-termal, then S-firstChar(t) is operational and SubTerms $t \neq \emptyset$.

Let us consider S. Observe that S-multiCat is finite sequence-yielding.

Let us consider S and let W be a non empty AllSymbolsOf $S^* \setminus \{\emptyset\}$-valued finite sequence. One can verify that S-multiCat(W) is non empty.

Let us consider S, l. Note that $\langle l \rangle$ is 0-termal.

Let us consider S, m, n. One can check that every string of S which is $m + 0 \cdot n$-termal is also $m + n$-termal.

Let us consider S. One can check that every own element of S which is non low-compounding is also literal.

Let us consider S, t. One can check that SubTerms t is rng t^*-valued.

Let p_0 be a 0-w.f.f. string of S. Observe that SubTerms p_0 is rng p_0^*-valued. Then S-termsOfMaxDepth is a function from N into $2^{(\text{AllSymbolsOf } S^* \setminus \{\emptyset\}$.

Let us consider S, m_1. Observe that S-termsOfMaxDepth(m_1) has non empty elements.

Let us consider S, m and let t be a termal string of S. One can verify that $t \text{null } m$ is Depth $t + m$-termal. One can check that every string of S which is termal is also TermSymbolsOf S-valued. Observe that AllTermsOf $S \setminus (\text{TermSymbolsOf } S)^*$ is empty.
Let p_0 be a 0-w.f.f. string of S. Observe that $\SubTerms p_0$ is $\TermSymbolsOf S^e$-valued. One can verify that every string of S which is 0-w.f.f. is also $\AtomicFormulaSymbolsOf S$-valued. One can check that $\OwnSymbolsOf S$ is non empty.

In the sequel p_0 is a 0-w.f.f. string of S.

The following proposition is true
(17) If S-firstChar(p_0) \neq TheEqSymbOf S, then p_0 is $\OwnSymbolsOf S$-valued.

Let us observe that there exists a language-like which is strict and non empty.
Let S_1, S_2 be languages-like. We say that S_2 is S_1-extending if and only if:
(Def. 41) The adicity of S_1 \subseteq the adicity of S_2 and TheEqSymbOf $S_1 = \TheEqSymbOf S_2$ and TheNorSymbOf $S_1 = \TheNorSymbOf S_2$.

Let us consider S. One can verify that S null is S-extending. Observe that there exists a language which is S-extending.
Let us consider S_1 and let S_2 be an S_1-extending language. Observe that $\OwnSymbolsOf S_1 \setminus \OwnSymbolsOf S_2$ is empty.

Let f be a Z-valued function and let L be a non empty language-like. The functor L extendWith f yields a strict non empty language-like and is defined by the conditions (Def. 42).
(Def. 42)(i) The adicity of L extendWith $f = f\|(\dom f \setminus \{\text{the one of } L\}) + \cdot$ the adicity of L,
(ii) the zero of L extendWith f = the zero of L, and
(iii) the one of L extendWith f = the one of L.

Let S be a non empty language-like and let f be a Z-valued function. Note that S extendWith f is S-extending.
Let S be a non degenerated language-like. Observe that every language-like which is S-extending is also non degenerated.
Let S be an eligible language-like. One can check that every language-like which is S-extending is also eligible.
Let E be an empty binary relation and let us consider X. Note that $X|E$ is empty.
Let us consider X and let m be an integer number. Note that $X \mapsto m$ is Z-valued.
Let us consider S and let X be a functional set.
The functor S addLettersNotIn X yields an S-extending language and is defined as follows:
(Def. 43) S addLettersNotIn X =
S extendWith($\{(\AllSymbolsOf S \cup \SymbolsOf X)$-freeCountableSet $\mapsto 0$ qua Z-valued function).
Let us consider S_1 and let X be a functional set.
Note that $\text{LettersOf}(S_1 \text{addLettersNotIn} X) \setminus \text{SymbolsOf} X$ is infinite.
Let us note that there exists a language which is countable.
Let S be a countable language. Observe that $\text{AllSymbolsOf} S$ is countable.
One can verify that $\langle \text{AllSymbolsOf} S \rangle^* \setminus \{\emptyset\}$ is countable.
Let L be a non empty language-like and let f be a \mathbb{Z}-valued function. Note that $\text{AllSymbolsOf}(L \text{extendWith} f) \setminus (\text{dom} f \cup \text{AllSymbolsOf} L)$ is empty.
Let S be a countable language and let X be a functional set. One can check that $S \text{addLettersNotIn} X$ is countable.

REFERENCES

Received December 29, 2010