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Summary.We present a formalization of the factor theorem for univariate
polynomials, also called the (little) Bezout theorem: Let r belong to a commuta-

tive ring L and p(x) be a polynomial over L. Then x− r divides p(x) iff p(r) = 0.

We also prove some consequences of this theorem like that any non zero po-

lynomial of degree n over an algebraically closed integral domain has n (non

necessarily distinct) roots.

MML Identifier: UPROOTS.

The articles [28], [37], [26], [10], [2], [27], [36], [15], [20], [38], [7], [8], [3], [6], [35],

[32], [24], [23], [11], [21], [16], [19], [17], [18], [1], [12], [33], [29], [22], [9], [34], [4],

[25], [39], [13], [30], [14], [31], and [5] provide the notation and terminology for

this paper.

1. Preliminaries

One can prove the following propositions:

(1) For every natural number n holds n is non empty iff n = 1 or n > 1.

(2) Let f be a finite sequence of elements of N. Suppose that for every

natural number i such that i ∈ dom f holds f(i) 6= 0. Then
∑

f = len f

if and only if f = len f 7→ 1.

The scheme IndFinSeq0 deals with a finite sequenceA and a binary predicate

P, and states that:

For every natural number i such that 1 ¬ i and i ¬ lenA holds

P[i,A(i)]
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provided the parameters meet the following requirements:

• P[1,A(1)], and

• For every natural number i such that 1 ¬ i and i < lenA holds if

P[i,A(i)], then P[i + 1,A(i + 1)].

We now state the proposition

(3) Let L be an add-associative right zeroed right complementable non

empty loop structure and r be a finite sequence of elements of L. Suppose

len r ­ 2 and for every natural number k such that 2 < k and k ∈ dom r

holds r(k) = 0L. Then
∑

r = r1 + r2.

2. Canonical Ordering of a Finite Set

Let A be a finite set. The functor CFS(A) yielding a finite sequence of

elements of A is defined by the conditions (Def. 1).

(Def. 1)(i) lenCFS(A) = cardA, and

(ii) there exists a finite sequence f such that len f = cardA and f(1) =

〈〈 choose(A), A\{choose(A)}〉〉 or cardA = 0 and for every natural number

i such that 1 ¬ i and i < cardA and for every set x such that f(i) = x

holds f(i + 1) = 〈〈 choose(x2), x2 \ {choose(x2)}〉〉 and for every natural

number i such that i ∈ domCFS(A) holds (CFS(A))(i) = f(i)1.

The following four propositions are true:

(4) For every finite set A holds CFS(A) is one-to-one.

(5) For every finite set A holds rngCFS(A) = A.

(6) For every set a holds CFS({a}) = 〈a〉.

(7) For every finite set A holds (CFS(A))−1 is a function from A into

Seg cardA.

3. More about Bags

Let X be a set, let S be a finite subset of X, and let n be a natural number.

The functor (S, n) -bag yields an element of BagsX and is defined by:

(Def. 2) (S, n) -bag = EmptyBagX+·(S 7−→ n).

We now state several propositions:

(8) Let X be a set, S be a finite subset of X, n be a natural number, and i

be a set. If i /∈ S, then ((S, n) -bag)(i) = 0.

(9) Let X be a set, S be a finite subset of X, n be a natural number, and i

be a set. If i ∈ S, then ((S, n) -bag)(i) = n.

(10) For every set X and for every finite subset S of X and for every natural

number n such that n 6= 0 holds support(S, n) -bag = S.
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(11) Let X be a set, S be a finite subset of X, and n be a natural number. If

S is empty or n = 0, then (S, n) -bag = EmptyBagX.

(12) Let X be a set, S, T be finite subsets of X, and n be a natural number.

If S misses T , then (S ∪ T, n) -bag = (S, n) -bag+(T, n) -bag .

Let A be a set and let b be a bag of A. The functor degree(b) yielding a

natural number is defined as follows:

(Def. 3) There exists a finite sequence f of elements of N such that degree(b) =
∑

f and f = b · CFS(support b).

We now state several propositions:

(13) For every set A and for every bag b of A holds b = EmptyBagA iff

degree(b) = 0.

(14) Let A be a set, S be a finite subset of A, and b be a bag of A. Then

S = support b and degree(b) = cardS if and only if b = (S, 1) -bag .

(15) Let A be a set, S be a finite subset of A, and b be a bag of A. Suppose

support b ⊆ S. Then there exists a finite sequence f of elements of N such

that f = b · CFS(S) and degree(b) =
∑

f.

(16) For every set A and for all bags b, b1, b2 of A such that b = b1 + b2 holds

degree(b) = degree(b1) + degree(b2).

(17) Let L be an associative commutative unital non empty groupoid, f , g

be finite sequences of elements of L, and p be a permutation of dom f. If

g = f · p, then
∏

g =
∏

f.

4. More on Polynomials

Let L be a non empty zero structure and let p be a polynomial of L. We say

that p is non-zero if and only if:

(Def. 4) p 6= 0. L.

One can prove the following proposition

(18) For every non empty zero structure L and for every polynomial p of L

holds p is non-zero iff len p > 0.

Let L be a non trivial non empty zero structure. Note that there exists a

polynomial of L which is non-zero.

Let L be a non degenerated non empty multiplicative loop with zero struc-

ture and let x be an element of L. Note that 〈x,1L〉 is non-zero.

Next we state three propositions:

(19) For every non empty zero structure L and for every polynomial p of L

such that len p > 0 holds p(len p−′ 1) 6= 0L.

(20) Let L be a non empty zero structure and p be an algebraic sequence of

L. If len p = 1, then p = 〈p(0)〉 and p(0) 6= 0L.
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(21) Let L be an add-associative right zeroed right complementable right

distributive non empty double loop structure and p be a polynomial of L.

Then p ∗ 0. L = 0. L.

Let us mention that there exists a well unital non empty double loop struc-

ture which is algebraic-closed, add-associative, right zeroed, right complemen-

table, Abelian, commutative, associative, distributive, integral domain-like, and

non degenerated.

We now state the proposition

(22) Let L be an add-associative right zeroed right complementable distri-

butive integral domain-like non empty double loop structure and p, q be

polynomials of L. If p ∗ q = 0. L, then p = 0. L or q = 0. L.

Let L be an add-associative right zeroed right complementable distri-

butive integral domain-like non empty double loop structure. Observe that

Polynom-RingL is integral domain-like.

Let L be an integral domain and let p, q be non-zero polynomials of L. One

can check that p ∗ q is non-zero.

We now state a number of propositions:

(23) For every non degenerated commutative ring L and for all polynomials

p, q of L holds Roots p ∪ Roots q ⊆ Roots(p ∗ q).

(24) For every integral domain L and for all polynomials p, q of L holds

Roots(p ∗ q) = Roots p ∪ Roots q.

(25) Let L be an add-associative right zeroed right complementable distribu-

tive non empty double loop structure, p be a polynomial of L, and p1 be

an element of Polynom-RingL. If p = p1, then −p = −p1.

(26) Let L be an add-associative right zeroed right complementable distribu-

tive non empty double loop structure, p, q be polynomials of L, and p1, q1

be elements of Polynom-RingL. If p = p1 and q = q1, then p−q = p1−q1.

(27) Let L be an Abelian add-associative right zeroed right complementable

distributive non empty double loop structure and p, q, r be polynomials

of L. Then p ∗ q − p ∗ r = p ∗ (q − r).

(28) Let L be an add-associative right zeroed right complementable distri-

butive non empty double loop structure and p, q be polynomials of L. If

p− q = 0. L, then p = q.

(29) Let L be an Abelian add-associative right zeroed right complementable

distributive integral domain-like non empty double loop structure and p,

q, r be polynomials of L. If p 6= 0. L and p ∗ q = p ∗ r, then q = r.

(30) Let L be an integral domain, n be a natural number, and p be a poly-

nomial of L. If p 6= 0. L, then pn 6= 0. L.

(31) For every commutative ring L and for all natural numbers i, j and for

every polynomial p of L holds pi ∗ pj = pi+j .
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(32) For every non empty multiplicative loop with zero structure L holds

1. L = 〈1L〉.

(33) Let L be an add-associative right zeroed right complementable right

unital right distributive non empty double loop structure and p be a po-

lynomial of L. Then p ∗ 〈1L〉 = p.

(34) Let L be an add-associative right zeroed right complementable distri-

butive non empty double loop structure and p, q be polynomials of L. If

len p = 0 or len q = 0, then len(p ∗ q) = 0.

(35) Let L be an add-associative right zeroed right complementable distribu-

tive non empty double loop structure and p, q be polynomials of L. If p∗ q

is non-zero, then p is non-zero and q is non-zero.

(36) Let L be an add-associative right zeroed right complementable distribu-

tive commutative associative left unital non empty double loop structure

and p, q be polynomials of L. If p(len p −′ 1) · q(len q −′ 1) 6= 0L, then

0 < len(p ∗ q).

(37) Let L be an add-associative right zeroed right complementable distri-

butive commutative associative left unital integral domain-like non empty

double loop structure and p, q be polynomials of L. If 1 < len p and

1 < len q, then len p < len(p ∗ q).

(38) Let L be an add-associative right zeroed right complementable left di-

stributive non empty double loop structure, a, b be elements of L, and p

be a polynomial of L. Then (〈a, b〉 ∗ p)(0) = a · p(0) and for every natural

number i holds (〈a, b〉 ∗ p)(i + 1) = a · p(i + 1) + b · p(i).

(39) Let L be an add-associative right zeroed right complementable distri-

butive well unital commutative associative non degenerated non empty

double loop structure, r be an element of L, and q be a non-zero polyno-

mial of L. Then len(〈r,1L〉 ∗ q) = len q + 1.

(40) Let L be a non degenerated commutative ring, x be an element of L,

and i be a natural number. Then len(〈x,1L〉
i) = i + 1.

Let L be a non degenerated commutative ring, let x be an element of L, and

let n be a natural number. Note that 〈x,1L〉
n is non-zero.

Next we state two propositions:

(41) Let L be a non degenerated commutative ring, x be an element of L, q be

a non-zero polynomial of L, and i be a natural number. Then len(〈x,1L〉
i∗

q) = i + len q.

(42) Let L be an add-associative right zeroed right complementable distri-

butive well unital commutative associative non degenerated non empty

double loop structure, r be an element of L, and p, q be polynomials of L.

If p = 〈r,1L〉 ∗ q and p(len p−′ 1) = 1L, then q(len q −′ 1) = 1L.
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5. Little Bezout Theorem

Let L be a non empty zero structure, let p be a polynomial of L, and let n

be a natural number. The functor poly shift(p, n) yields a polynomial of L and

is defined by:

(Def. 5) For every natural number i holds (poly shift(p, n))(i) = p(n + i).

We now state several propositions:

(43) For every non empty zero structure L and for every polynomial p of L

holds poly shift(p, 0) = p.

(44) Let L be a non empty zero structure, n be a natural number, and p be

a polynomial of L. If n ­ len p, then poly shift(p, n) = 0. L.

(45) Let L be a non degenerated non empty multiplicative loop with zero

structure, n be a natural number, and p be a polynomial of L. If n ¬ len p,

then len poly shift(p, n) + n = len p.

(46) Let L be a non degenerated commutative ring, x be an element of L,

n be a natural number, and p be a polynomial of L. If n < len p, then

eval(poly shift(p, n), x) = x · eval(poly shift(p, n + 1), x) + p(n).

(47) For every non degenerated commutative ring L and for every polynomial

p of L such that len p = 1 holds Roots p = ∅.

Let L be a non degenerated commutative ring, let r be an element of L, and

let p be a polynomial of L. Let us assume that r is a root of p. The functor

poly quotient(p, r) yielding a polynomial of L is defined as follows:

(Def. 6)(i) len poly quotient(p, r) + 1 = len p and for every natural number i

holds (poly quotient(p, r))(i) = eval(poly shift(p, i + 1), r) if len p > 0,

(ii) poly quotient(p, r) = 0. L, otherwise.

Next we state several propositions:

(48) Let L be a non degenerated commutative ring, r be an element of

L, and p be a non-zero polynomial of L. If r is a root of p, then

len poly quotient(p, r) > 0.

(49) Let L be an add-associative right zeroed right complementable left di-

stributive well unital non empty double loop structure and x be an element

of L. Then Roots〈−x,1L〉 = {x}.

(50) Let L be a non trivial commutative ring, x be an element of L, and p, q

be polynomials of L. If p = 〈−x,1L〉 ∗ q, then x is a root of p.

(51) Let L be a non degenerated commutative ring, r be an element of L,

and p be a polynomial of L. If r is a root of p, then p = 〈−r,1L〉 ∗

poly quotient(p, r).

(52) Let L be a non degenerated commutative ring, r be an element of L,

and p, q be polynomials of L. If p = 〈−r,1L〉 ∗ q, then r is a root of p.
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6. Polynomials Defined by Roots

Let L be an integral domain and let p be a non-zero polynomial of L. One

can verify that Roots p is finite.

Let L be a non degenerated commutative ring, let x be an element of L,

and let p be a non-zero polynomial of L. The functor multiplicity(p, x) yields a

natural number and is defined by the condition (Def. 7).

(Def. 7) There exists a finite non empty subset F of N such that F = {k; k

ranges over natural numbers:
∨

q :polynomial of L p = 〈−x,1L〉
k ∗ q} and

multiplicity(p, x) = maxF.

Next we state two propositions:

(53) Let L be a non degenerated commutative ring, p be a non-zero polyno-

mial of L, and x be an element of L. Then x is a root of p if and only if

multiplicity(p, x) ­ 1.

(54) For every non degenerated commutative ring L and for every element x

of L holds multiplicity(〈−x,1L〉, x) = 1.

Let L be an integral domain and let p be a non-zero polynomial of L. The

functor BRoots(p) yields a bag of the carrier of L and is defined as follows:

(Def. 8) supportBRoots(p) = Roots p and for every element x of L holds

(BRoots(p))(x) = multiplicity(p, x).

Next we state several propositions:

(55) For every integral domain L and for every element x of L holds

BRoots(〈−x,1L〉) = ({x}, 1) -bag .

(56) Let L be an integral domain, x be an element of L, and p, q be non-

zero polynomials of L. Then multiplicity(p ∗ q, x) = multiplicity(p, x) +

multiplicity(q, x).

(57) For every integral domain L and for all non-zero polynomials p, q of L

holds BRoots(p ∗ q) = BRoots(p) + BRoots(q).

(58) For every integral domain L and for every non-zero polynomial p of L

such that len p = 1 holds degree(BRoots(p)) = 0.

(59) For every integral domain L and for every element x of L and for every

natural number n holds degree(BRoots(〈−x,1L〉
n)) = n.

(60) For every algebraic-closed integral domain L and for every non-zero po-

lynomial p of L holds degree(BRoots(p)) = len p−′ 1.

Let L be an add-associative right zeroed right complementable distributive

non empty double loop structure, let c be an element of L, and let n be a natural

number. The functor fpoly mult root(c, n) yielding a finite sequence of elements

of Polynom-RingL is defined as follows:

(Def. 9) len fpoly mult root(c, n) = n and for every natural number i such that

i ∈ dom fpoly mult root(c, n) holds (fpoly mult root(c, n))(i) = 〈−c,1L〉.
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Let L be an add-associative right zeroed right complementable distributive

non empty double loop structure and let b be a bag of the carrier of L. The func-

tor poly with roots(b) yields a polynomial of L and is defined by the condition

(Def. 10).

(Def. 10) There exists a finite sequence f of elements

of (the carrier of Polynom-RingL)∗ and there exists a finite sequence s of

elements of L such that len f = card support b and s = CFS(support b)

and for every natural number i such that i ∈ dom f holds f(i) =

fpoly mult root(si, b(si)) and poly with roots(b) =
∏
Flat(f).

The following propositions are true:

(61) Let L be an Abelian add-associative right zeroed right complementable

commutative distributive right unital non empty double loop structure.

Then poly with roots(EmptyBag (the carrier of L)) = 〈1L〉.

(62) Let L be an add-associative right zeroed right complementable distri-

butive non empty double loop structure and c be an element of L. Then

poly with roots(({c}, 1) -bag) = 〈−c,1L〉.

(63) Let L be an add-associative right zeroed right complementable distribu-

tive non empty double loop structure, b be a bag of the carrier of L, f be

a finite sequence of elements of (the carrier of Polynom-RingL)∗, and s

be a finite sequence of elements of L. Suppose len f = card support b and

s = CFS(support b) and for every natural number i such that i ∈ dom f

holds f(i) = fpoly mult root(si, b(si)). Then lenFlat(f) = degree(b).

(64) Let L be an add-associative right zeroed right complementable distri-

butive non empty double loop structure, b be a bag of the carrier of L,

f be a finite sequence of elements of (the carrier of Polynom-RingL)∗,

s be a finite sequence of elements of L, and c be an element of L such

that len f = card support b and s = CFS(support b) and for every natural

number i such that i ∈ dom f holds f(i) = fpoly mult root(si, b(si)). Then

(i) if c ∈ support b, then card(Flat(f)−1({〈−c,1L〉})) = b(c), and

(ii) if c /∈ support b, then card(Flat(f)−1({〈−c,1L〉})) = 0.

(65) For every commutative ring L and for all bags b1, b2 of the carrier of L

holds poly with roots(b1 +b2) = poly with roots(b1)∗poly with roots(b2).

(66) Let L be an algebraic-closed integral domain and p be a non-zero poly-

nomial of L. If p(len p−′ 1) = 1L, then p = poly with roots(BRoots(p)).

(67) Let L be a commutative ring, s be a non empty finite subset of L,

and f be a finite sequence of elements of Polynom-RingL. Suppose

len f = card s and for every natural number i and for every element c

of L such that i ∈ dom f and c = (CFS(s))(i) holds f(i) = 〈−c,1L〉. Then

poly with roots((s, 1) -bag) =
∏

f.

(68) Let L be a non trivial commutative ring, s be a non empty finite subset
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of L, x be an element of L, and f be a finite sequence of elements of

L. Suppose len f = card s and for every natural number i and for every

element c of L such that i ∈ dom f and c = (CFS(s))(i) holds f(i) =

eval(〈−c,1L〉, x). Then eval(poly with roots((s, 1) -bag), x) =
∏

f.
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