Many-sorted Sets

Andrzej Trybulec
Warsaw University
Białystok

Summary. The article deals with parameterized families of sets. When treated in a similar way as sets (due to systematic overloading notation used for sets) they are called many sorted sets. For instance, if \(x \) and \(X \) are two many-sorted sets (with the same set of indices \(I \)) then relation \(x \in X \) is defined as \(\forall i \in I x_i \in X_i \).

I was prompted by a remark in a paper by Tarlecki and Wirsing: "Throughout the paper we deal with many-sorted sets, functions, relations etc. ... We feel free to use any standard set-theoretic notation without explicit use of indices" [3, p.97]. The aim of this work was to check the feasibility of such approach in Mizar. It works.

Let us observe some peculiarities:
- empty set (i.e. the many sorted set with empty set of indices) belongs to itself (theorem 133),
- we get two different inclusions \(X \subseteq Y \) iff \(\forall i \in I X_i \subseteq Y_i \) and \(X \subseteq Y \) iff \(\forall x \in X \Rightarrow x \in Y \) equivalent only for sets that yield non empty values.

Therefore the care is advised.

MML Identifier: PBOOLE.

The articles [5], [1], [4], and [2] provide the terminology and notation for this paper.

1. Preliminaries

In the sequel \(i, e \) will be arbitrary.

A function is empty yielding if:

(Def.1) For every \(i \) such that \(i \in \text{dom} \) it holds \(\text{it}(i) \) is empty.

A function is non empty set yielding if:

(Def.2) For every \(i \) such that \(i \in \text{dom} \) it holds \(\text{it}(i) \) is non empty.
Next we state two propositions:

(1) For every function f such that f is non empty yielding holds $\text{rng } f$ has non empty elements.

(2) For every function f holds f is empty yielding iff $f = \emptyset$ or $\text{rng } f = \{\emptyset\}$.

In the sequel I denotes a set.
Let us consider I. A function is said to be a many sorted set of I if:

(Def.3) \[\text{dom } it = I. \]

In the sequel x, y, z, X, Y, Z, V are many sorted sets of I.

The scheme Kuratowski Function deals with a set A and a unary functor F yielding arbitrary, and states that:

There exists a many sorted set f of A such that for every e such that $e \in A$ holds $f(e) \in F(e)$

provided the following requirement is met:

- For every e such that $e \in A$ holds $F(e) \neq \emptyset$.

Let us consider I, X, Y. The predicate $X \in Y$ is defined by:

(Def.4) For every i such that $i \in I$ holds $X(i) \in Y(i)$.

The predicate $X \subseteq Y$ is defined by:

(Def.5) For every i such that $i \in I$ holds $X(i) \subseteq Y(i)$.

The scheme P Separation deals with a set A, a many sorted set B of A, and a binary predicate P, and states that:

There exists a many sorted set X of A such that for every set i holds if $i \in A$, then for every e holds $e \in X(i)$ iff $e \in B(i)$ and $P[i, e]$ for all values of the parameters.

One can prove the following proposition

(3) If for every i such that $i \in I$ holds $X(i) = Y(i)$, then $X = Y$.

Let us consider I. The functor \emptyset_I yields a many sorted set of I and is defined by:

(Def.6) $\emptyset_I = I \longmapsto \emptyset$.

Let us consider X, Y. The functor $X \cup Y$ yielding a many sorted set of I is defined by:

(Def.7) For every i such that $i \in I$ holds $(X \cup Y)(i) = X(i) \cup Y(i)$.

The functor $X \cap Y$ yielding a many sorted set of I is defined by:

(Def.8) For every i such that $i \in I$ holds $(X \cap Y)(i) = X(i) \cap Y(i)$.

The functor $X \setminus Y$ yields a many sorted set of I and is defined as follows:

(Def.9) For every i such that $i \in I$ holds $(X \setminus Y)(i) = X(i) \setminus Y(i)$.

We say that X overlaps Y if and only if:

(Def.10) For every i such that $i \in I$ holds $X(i)$ meets $Y(i)$.

We say that X misses Y if and only if:

(Def.11) For every i such that $i \in I$ holds $X(i)$ misses $Y(i)$.
Let us consider I, X, Y. The functor $X \rhd Y$ yielding a many sorted set of I is defined as follows:

(Def.12) \(X \rhd Y = (X \setminus Y) \cup (Y \setminus X) \).

Next we state several propositions:

(4) For every i such that $i \in I$ holds $(X \rhd Y)(i) = X(i) \rhd Y(i)$.

(5) For every i such that $i \in I$ holds $\emptyset_I(i) = \emptyset$.

(6) If for every i such that $i \in I$ holds $X(i) = \emptyset$, then $X = \emptyset_I$.

(7) If $x \in X$ or $x \in Y$, then $x \in X \cup Y$.

(8) $x \in X \cap Y$ iff $x \in X$ and $x \in Y$.

(9) If $x \in X$ and $X \subseteq Y$, then $x \in Y$.

(10) If $x \in X$ and $x \in Y$, then X overlaps Y.

(11) If X overlaps Y, then there exists x such that $x \in X$ and $x \in Y$.

(12) If $x \in X \setminus Y$, then $x \in X$.

2. LATTICE PROPERTIES OF MANY SORTED SETS

One can prove the following proposition

(13) $X \subseteq X$.

Let us consider I, X, Y. Let us observe that $X = Y$ if and only if:

(Def.13) $X \subseteq Y$ and $Y \subseteq X$.

Next we state a number of propositions:

(14) If $X \subseteq Y$ and $Y \subseteq X$, then $X = Y$.

(15) If $X \subseteq Y$ and $Y \subseteq Z$, then $X \subseteq Z$.

(16) $X \subseteq X \cup Y$ and $Y \subseteq X \cup Y$.

(17) $X \cap Y \subseteq X$ and $X \cap Y \subseteq Y$.

(18) If $X \subseteq Z$ and $Y \subseteq Z$, then $X \cup Y \subseteq Z$.

(19) If $Z \subseteq X$ and $Z \subseteq Y$, then $Z \subseteq X \cap Y$.

(20) If $X \subseteq Y$, then $X \cup Z \subseteq Y \cup Z$ and $Z \cup X \subseteq Z \cup Y$.

(21) If $X \subseteq Y$, then $X \cap Z \subseteq Y \cap Z$ and $Z \cap X \subseteq Z \cap Y$.

(22) If $X \subseteq Y$ and $Z \subseteq V$, then $X \cup Z \subseteq Y \cup V$.

(23) If $X \subseteq Y$ and $Z \subseteq V$, then $X \cap Z \subseteq Y \cap V$.

(24) If $X \subseteq Y$, then $X \cup Y = Y$ and $Y \cup X = Y$.

(25) If $X \subseteq Y$, then $X \cap Y = X$ and $Y \cap X = X$.

(26) $X \cap Y \subseteq X \cup Z$.

(27) If $X \subseteq Z$, then $X \cup Y \cap Z = (X \cup Y) \cap Z$.

(28) $X = Y \cup Z$ iff $Y \subseteq X$ and $Z \subseteq X$ and for every V such that $Y \subseteq V$ and $Z \subseteq V$ holds $X \subseteq V$.

(29) $X = Y \cap Z$ iff $X \subseteq Y$ and $X \subseteq Z$ and for every V such that $V \subseteq Y$ and $V \subseteq Z$ holds $V \subseteq X$.
(30) \(X \cup X = X \).
(31) \(X \cap X = X \).
(32) \(X \cup Y = Y \cup X \).
(33) \(X \cap Y = Y \cap X \).
(34) \((X \cup Y) \cup Z = X \cup (Y \cup Z) \).
(35) \((X \cap Y) \cap Z = X \cap (Y \cap Z) \).
(36) \(X \cap (X \cup Y) = X \) and \((X \cup Y) \cap X = X \) and \(X \cap (Y \cup X) = X \) and \((Y \cup X) \cap X = X \).
(37) \(X \cup X \cap Y = X \) and \(X \cap Y \cup X = X \) and \(X \cup Y \cap X = X \) and \(Y \cap X \cup X = X \).
(38) \(X \cap (Y \cup Z) = X \cap Y \cup X \cap Z \) and \((Y \cup Z) \cap X = Y \cap X \cup Z \cap X \).
(39) \(X \cup Y \cap Z = (X \cup Y) \cap (X \cup Z) \) and \(Y \cap Z \cup X = (Y \cap X) \cap (Z \cup X) \).
(40) If \(X \cap Y \cup X \cap Z = X \), then \(X \subseteq Y \cup Z \).
(41) If \((X \cup Y) \cap (X \cup Z) = X \), then \(Y \cap Z \subseteq X \).
(42) \(X \cap Y \cup Y \cap Z \cup Z \cap X = (X \cup Y) \cap (Y \cup Z) \cap (Z \cup X) \).
(43) If \(X \cup Y \subseteq Z \), then \(X \subseteq Z \) and \(Y \subseteq Z \).
(44) If \(X \subseteq Y \cap Z \), then \(X \subseteq Y \) and \(X \subseteq Z \).
(45) \((X \cup Y) \cup Z = X \cup Z \cup (Y \cup Z) \) and \(X \cup (Y \cup Z) = (X \cup Y) \cup (X \cup Z) \).
(46) \((X \cap Y) \cap Z = X \cap Z \cap (Y \cap Z) \) and \(X \cap (Y \cap Z) = (X \cap Y) \cap (X \cap Z) \).
(47) \(X \cup (X \cup Y) = X \cup Y \) and \(X \cup Y \cup Y = X \cup Y \).
(48) \(X \cap (X \cap Y) = X \cap Y \) and \(X \cap Y \cap Y = X \cap Y \).

3. The Empty Many Sorted Set

Next we state several propositions:

(49) \(\emptyset_I \subseteq X \).
(50) If \(X \subseteq \emptyset_I \), then \(X = \emptyset_I \).
(51) If \(X \subseteq Y \) and \(X \subseteq Z \) and \(Y \cap Z = \emptyset_I \), then \(X = \emptyset_I \).
(52) If \(X \subseteq Y \) and \(Y \cap Z = \emptyset_I \), then \(X \cap Z = \emptyset_I \).
(53) \(X \cup \emptyset_I = X \) and \(\emptyset_I \cup X = X \).
(54) If \(X \cup Y = \emptyset_I \), then \(X = \emptyset_I \) and \(Y = \emptyset_I \).
(55) \(X \cap \emptyset_I = \emptyset_I \) and \(\emptyset_I \cap X = \emptyset_I \).
(56) If \(X \subseteq Y \cup Z \) and \(X \cap Z = \emptyset_I \), then \(X \subseteq Y \).
(57) If \(Y \subseteq X \) and \(X \cap Y = \emptyset_I \), then \(Y = \emptyset_I \).
4. The Difference and the Symmetric Difference

We now state a number of propositions:

(58) \(X \setminus Y = \emptyset_I \) iff \(X \subseteq Y \).

(59) If \(X \subseteq Y \), then \(X \setminus Z \subseteq Y \setminus Z \).

(60) If \(X \subseteq Y \), then \(Z \setminus Y \subseteq Z \setminus X \).

(61) If \(X \subseteq Y \) and \(Z \subseteq V \), then \(X \setminus V \subseteq Y \setminus Z \).

(62) \(X \setminus Y \subseteq X \).

(63) If \(X \subseteq Y \setminus X \), then \(X = \emptyset_I \).

(64) \(X \setminus X = \emptyset_I \).

(65) \(X \setminus \emptyset_I = X \).

(66) \(\emptyset_I \setminus X = \emptyset_I \).

(67) \(X \setminus (X \cup Y) = \emptyset_I \) and \(X \setminus (Y \cup X) = \emptyset_I \).

(68) \(X \cap (Y \setminus Z) = X \cap Y \setminus Z \).

(69) \((X \setminus Y) \cap Y = \emptyset_I \) and \(Y \cap (X \setminus Y) = \emptyset_I \).

(70) \(X \setminus (Y \setminus Z) = (X \setminus Y) \cup X \cap Z \).

(71) \((X \setminus Y) \cup X \cap Y = X \) and \(X \cap Y \cup (X \setminus Y) = X \).

(72) If \(X \subseteq Y \), then \(Y = X \setminus (Y \setminus X) \) and \(Y = (Y \setminus X) \cup X \).

(73) \(X \cup (Y \setminus X) = X \cup Y \) and \((Y \setminus X) \cup X = Y \cup X \).

(74) \(X \setminus (X \setminus Y) = X \cap Y \).

(75) \(X \setminus Y \cap Z = (X \setminus Y) \cup (X \setminus Z) \).

(76) \(X \setminus X \cap Y = X \setminus Y \) and \(X \setminus Y \cap X = X \setminus Y \).

(77) \(X \cap Y = \emptyset_I \) iff \(X \setminus Y = X \).

(78) \((X \cup Y) \setminus Z = (X \setminus Z) \cup (Y \setminus Z) \).

(79) \(X \setminus Y \cap Z = X \setminus (Y \cup Z) \).

(80) \(X \cap Y \setminus Z = (X \setminus Z) \cap (Y \setminus Z) \).

(81) \((X \cup Y) \setminus Y = X \setminus Y \).

(82) If \(X \subseteq Y \cup Z \), then \(X \setminus Y \subseteq Z \) and \(X \setminus Z \subseteq Y \).

(83) \((X \cup Y) \setminus X \cap Y = (X \setminus Y) \cup (Y \setminus X) \).

(84) \(X \setminus Y \cap Y = X \setminus Y \).

(85) \(X \setminus (Y \cup Z) = (X \setminus Y) \cap (X \setminus Z) \).

(86) If \(X \setminus Y = Y \setminus X \), then \(X = Y \).

(87) \(X \cap (Y \setminus Z) = X \cap Y \setminus X \cap Z \) and \((Y \setminus Z) \cap X = Y \cap X \setminus Z \cap X \).

(88) If \(X \setminus Y \subseteq Z \), then \(X \subseteq Y \cup Z \).

(89) \(X \setminus Y \subseteq X \setminus Y \).

(90) \(X \setminus Y = (X \setminus Y) \cup (Y \setminus X) \).

(91) \(X \setminus \emptyset_I = X \) and \(\emptyset_I \setminus X = X \).

(92) \(X \setminus X = \emptyset_I \).
\[(93) \quad X \div Y = Y \div X. \]
\[(94) \quad X \cup Y = (X \div Y) \cup X \cap Y. \]
\[(95) \quad X \div Y = (X \cup Y) \setminus X \cap Y. \]
\[(96) \quad (X \div Y) \setminus Z = (X \setminus (Y \cup Z)) \cup (Y \setminus (X \cup Z)). \]
\[(97) \quad X \setminus (Y \div Z) = (X \setminus (Y \cup Z)) \cup X \cap Y \cap Z. \]
\[(98) \quad (X \div Y) \div Z = X \div (Y \div Z). \]
\[(99) \quad \text{If } X \setminus Y \subseteq Z \text{ and } Y \setminus X \subseteq Z, \text{ then } X \div Y \subseteq Z. \]
\[(100) \quad X \cup Y = X \div (Y \setminus X). \]
\[(101) \quad X \cap Y = X \div (X \setminus Y). \]
\[(102) \quad X \setminus Y = X \div X \cap Y. \]
\[(103) \quad Y \setminus X = X \div (X \cup Y). \]
\[(104) \quad X \cup Y = X \div Y \div X \cap Y. \]
\[(105) \quad X \cap Y = X \div Y \div (X \cup Y). \]

5. Meeting and Overlapping

The following propositions are true:

\[(106) \quad \text{If } X \text{ overlaps } Y \text{ or } X \text{ overlaps } Z, \text{ then } X \text{ overlaps } Y \cup Z. \]
\[(107) \quad \text{If } X \text{ overlaps } Y, \text{ then } Y \text{ overlaps } X. \]
\[(108) \quad \text{If } X \text{ overlaps } Y \text{ and } Y \subseteq Z, \text{ then } X \text{ overlaps } Z. \]
\[(109) \quad \text{If } X \text{ overlaps } Y \text{ and } X \subseteq Z, \text{ then } Z \text{ overlaps } Y. \]
\[(110) \quad \text{If } X \subseteq Y \text{ and } Z \subseteq V \text{ and } X \text{ overlaps } Z, \text{ then } Y \text{ overlaps } V. \]
\[(111) \quad \text{If } X \text{ overlaps } Y \cap Z, \text{ then } X \text{ overlaps } Y \text{ and } X \text{ overlaps } Z. \]
\[(112) \quad \text{If } X \text{ overlaps } Z \text{ and } X \subseteq V, \text{ then } X \text{ overlaps } Z \cap V. \]
\[(113) \quad \text{If } X \text{ overlaps } Y \setminus Z, \text{ then } X \text{ overlaps } Y. \]
\[(114) \quad \text{If } Y \text{ does not overlap } Z, \text{ then } X \cap Y \text{ does not overlap } X \cap Z \text{ and } Y \cap X \text{ does not overlap } Z \cap X. \]
\[(115) \quad \text{If } X \text{ overlaps } Y \setminus Z, \text{ then } Y \text{ overlaps } X \setminus Z. \]
\[(116) \quad \text{If } X \text{ meets } Y \text{ and } Y \subseteq Z, \text{ then } X \text{ meets } Z. \]
\[(117) \quad \text{If } X \text{ meets } Y, \text{ then } Y \text{ meets } X. \]
\[(118) \quad Y \text{ misses } X \setminus Y. \]
\[(119) \quad X \cap Y \text{ misses } X \setminus Y. \]
\[(120) \quad X \cap Y \text{ misses } X \div Y. \]
\[(121) \quad \text{If } X \text{ misses } Y, \text{ then } X \cap Y = \emptyset. \]
\[(122) \quad \text{If } X \neq \emptyset, \text{ then } X \text{ meets } X. \]
\[(123) \quad \text{If } X \subseteq Y \text{ and } X \subseteq Z \text{ and } Y \text{ misses } Z, \text{ then } X = \emptyset. \]
\[(124) \quad \text{If } Z \cup V = X \cup Y \text{ and } X \text{ misses } Z \text{ and } Y \text{ misses } V, \text{ then } X = V \text{ and } Y = Z. \]
(125) If $Z \cup V = X \cup Y$ and Y misses Z and X miss V, then $X = Z$ and $Y = V$.
(126) If X misses Y, then $X \setminus Y = X$ and $Y \setminus X = Y$.
(127) If X misses Y, then $(X \cup Y) \setminus Y = X$ and $(X \cup Y) \setminus X = Y$.
(128) If $X \setminus Y = X$, then X misses Y and Y misses X.
(129) $X \setminus Y$ misses $Y \setminus X$.

6. The Second Inclusion

Let us consider I, X, Y. The predicate $X \subseteq Y$ is defined as follows:

(Def.14) For every x such that $x \in X$ holds $x \in Y$.

The following three propositions are true:

(130) If $X \subseteq Y$, then $X \subseteq Y$.
(131) $X \subseteq X$.
(132) If $X \subseteq Y$ and $Y \subseteq Z$, then $X \subseteq Z$.

7. Non Empty and Non-empty Many Sorted Sets

The following propositions are true:

(133) $\emptyset \in \emptyset$.
(134) For every many sorted set X of \emptyset holds $X = \emptyset$.

We follow a convention: I will be a non empty set and x, X, Y, Z will be many sorted sets of I.

The following propositions are true:

(135) If X overlaps Y, then X meets Y.
(136) It is not true that there exists x such that $x \in \emptyset_I$.
(137) If $x \in X$ and $x \in Y$, then $X \cap Y \neq \emptyset_I$.
(138) X does not overlap \emptyset_I and \emptyset_I does not overlap X.
(139) If $X \cap Y = \emptyset_I$, then X does not overlap Y.
(140) If X overlaps X, then $X \neq \emptyset_I$.

Let I be a set. A many sorted set of I is empty yielding if:

(Def.15) For every i such that $i \in I$ holds it(i) is empty.

A many sorted set of I is non empty set yielding if:

(Def.16) For every i such that $i \in I$ holds it(i) is non empty.

Let I be a non empty set. Observe that every many sorted set of I which is non-empty is also non empty and every many sorted set of I which is empty is also non-empty.

One can prove the following propositions:
(141) X is empty iff $X = \emptyset_I$.
(142) If Y is empty and $X \subseteq Y$, then X is empty.
(143) If X is non-empty and $X \subseteq Y$, then Y is non-empty.
(144) If X is non-empty and $X \subseteq Y$, then $X \subseteq Y$.
(145) If X is non-empty and $X \subseteq Y$, then Y is non-empty.

In the sequel X denotes a non-empty many sorted set of I.

The following propositions are true:

(146) There exists x such that $x \in X$.
(147) If for every x holds $x \in X$ iff $x \in Y$, then $X = Y$.
(148) If for every x holds $x \in X$ iff $x \in Y$ and $x \in Z$, then $X = Y \cap Z$.

REFERENCES

Received July 7, 1993